

Department of Computer Science and Engineering

Division of Software Engineering and Technology

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2010

Designing and implementing a web-based data

warehouse solution for cost analysis

Master of Science Thesis in the Master Degree Programme Software

Engineering and Technology

OSCAR HALLBERG

DAVID ERNSTSSON

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Designing and implementing a web-based data warehouse solution for cost analysis

OSCAR HALLBERG

DAVID ERNSTSSON

© OSCAR HALLBERG, 2010.

© DAVID ERNSTSSON, 2010.

Examiner: Sven-Arne Andreasson

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2010

Abstract

Data warehousing is a term for the theory and techniques used for
extracting, transforming and loading data from multiple sources and
providing advanced analysis on the resulting information. A common
representation of the data within the data warehouse is the multidi-
mensional approach using facts and dimensions which can be designed
and implemented by an OLAP solution. The facts correspond to the
measurable numerical values of interest in the analysis while the di-
mensions are used for giving a context to the facts and built up by
multiple levels within hierarchies.

During this master thesis a web application has been developed
offering business intelligence analysis for telecom related invoice data.
The development has been conducted within the agile Scrum method-
ology with two week iterations. The invoice source data has been
extracted from an external system and then transformed into a more
structural form which has been loaded into an OLAP cube running
Microsoft SQL Server Analysis Services. Because the analyzed data
is read-only within the cube techniques for pre-calculation of results
across hierarchical levels of granularity are made possible which has
been shown to be very effective performance wise.

This report describes different techniques and components used
when designing and building the data warehouse as well as the graph-
ical user interface developed resulting in the final business intelligence
application. Different techniques for optimizing the performance are
mentioned as well as main differences and comparisons with a normal
relational database design.

The resulting application supports decision makers at potential
customers with interesting analysis possibilities as well as providing
fast responses to user requests. A comparison between the imple-
mented multidimensional OLAP solution versus a corresponding rela-
tional database shows the response time in this case is highly signifi-
cantly reduced and in this case with a factor greater than ten to one.

Keywords: OLAP, Data Warehouse, Multi-dimensional data, Busi-
ness Intelligence Application, Cost Analysis, ASP.NET Framework De-
velopment

Sammanfattning

Data warehousing är ett samlingsnanm för den teori och de tekniker
som används för att samla data från olika källor och utföra avancerad
analys på denna data. En vanlig representation av datan i ett data
warehouse är att dela upp den i fakta och dimensioner — även kallat
flerdimensionell lagring — vilket kan realiseras m.h.a. en OLAP-kub.
Faktadatan utgörs då av de mätvärden som analysen avser medans di-
mensionerna används för att gruppera och aggregera dessa mätvärden
på olika nivåer.

Under examensarbetet har ett webbaserat system tagits fram som
syftar till att erbjuda analysmöjligheter för telecom-relaterad fakturering-
data. Arbetetet utfördes med den agila Scrum metodiken med två
veckors iterationer. Faktureringsdatan hämtas från ett externt sys-
tem och läses sedan in i en OLAP-kub som kör ovanpå Microsoft SQL
Server Analysis Services. Genom att den analyserade datan endast
skrivs till systemet periodvis så har tekniker för att i förväg kalkylera
aggregererade mätvärden kunnat användas med framgång, vilket har
visat sig vara mycket effektivt ur en prestandasynpunkt.

Rapporten beskriver de tekniker och metoder som har använts för
att utvinna, omvandla samt modellera datan som lagras i OLAP-kuben
samt utveckligen av det gränssnitt som används för analysen. Utläs-
ningen av datan från OLAP-kuben jämförs även med motsvarande ut-
läsning via en relationsdatabas. Resultaten visar på kraftigt förbättrad
svarstid för analyser som körs mot den multidimensionella databasen
jämförelsevis med relationsdatabasen.

CONTENTS 3

Contents
1 Introduction 7

1.1 The problem . 7
1.1.1 Background . 7
1.1.2 Problem description 8

1.2 Goals . 8
1.3 Limitations . 8
1.4 The Company . 9

2 Theory 10
2.1 Business Intelligence . 10
2.2 Data Warehouse . 10

2.2.1 Storage Approaches . 11
2.2.2 Benefits . 12
2.2.3 Disadvantages . 13

2.3 OLAP . 13
2.3.1 OLAP Types . 15
2.3.2 Aggregations . 17
2.3.3 Partitions . 18
2.3.4 Processing . 18

2.4 MDX . 19
2.4.1 MDX Introduction . 19
2.4.2 SQL simple comparison 21
2.4.3 Main differences compared to SQL 21
2.4.4 Equal result-Different statements 23

3 Technology 25
3.1 Application tier tools and components 25

3.1.1 Microsoft .NET Framework 25
3.1.2 Visual Studio 2010 . 25
3.1.3 ASP.NET . 26
3.1.4 ASP.NET WebForms 26
3.1.5 Asynchronous javascript and XML - AJAX 27
3.1.6 Telerik RadControls For ASP.NET AJAX 28
3.1.7 LINQ . 29
3.1.8 Telerik OpenAccess . 29

3.2 Data tier tools and components 29

CONTENTS 4

3.2.1 Microsoft SQL Server 29
3.2.2 SQL Management Studio 30
3.2.3 SQL Server Profiler . 30
3.2.4 Microsoft Analysis Services 30
3.2.5 Business Intelligence Developement Studio 31

4 Method 32
4.1 Initial stage . 32
4.2 Project planning and execution stage 32

4.2.1 Project methodology 33
4.2.2 Planning the iterations 33

4.3 Final stage . 35

5 Analysis 36
5.1 Use cases . 36

5.1.1 Login use case . 36
5.1.2 Cost analysis use case 36

5.2 Identifying concepts and their relationship 37
5.2.1 Analysis of STAX data model 37
5.2.2 Modeling the period dimension 38
5.2.3 Modeling the type dimension 38

5.3 Generalizing the concepts . 40
5.4 Strategies for slowly changing dimensions 41
5.5 Domain model . 42

5.5.1 Concepts . 42

6 Implementation 46
6.1 Overall architecture . 46

6.1.1 Deployment model . 46
6.1.2 Application tier architecture 46

6.2 Relational database design . 47
6.2.1 Realizing the provider-specific attributes for organiza-

tions and subscriptions 48
6.3 OLAP Cube . 49

6.3.1 Cube Design . 49
6.3.2 Aggregations . 51
6.3.3 Processing . 51

6.4 Data extraction . 52

LIST OF FIGURES 5

6.4.1 Header retrieval . 52
6.4.2 Detail retrieval . 53
6.4.3 Refreshing the cube . 54

6.5 Business objects . 54
6.6 Data access layer . 55

6.6.1 Relational database access layer 56
6.6.2 Examples of MDX queries constructed and result received 58

6.7 Business Logic layer . 58
6.7.1 Managers in the application facade 59

6.8 Presentation layer . 61
6.8.1 User authentication and authorization 61
6.8.2 State, postbacks and asyncronous requests 63
6.8.3 Combining scripts and CSS files 65

7 Performance testing 66
7.1 Web performance testing . 66

7.1.1 Load generation . 68
7.1.2 Measures . 68

7.2 MDX performance compared to SQL 68
7.2.1 Testing environment 68
7.2.2 Design of tests . 69
7.2.3 Results . 71

8 Discussion and Conclusion 73
8.1 Discussion . 73

8.1.1 OLAP Access Layer 73
8.2 Conclusion . 73

9 Appendix A - Use cases 77
9.1 Login use case . 77
9.2 Cost analysis use case . 77

List of Figures
1 Cube showing possible levels of aggregations with measures

inside cells. c©Microsoft. 14
2 A two dimensional slice of a cube. c©Microsoft. 16
3 Model of invoice-related concepts in STAX 37

LIST OF FIGURES 6

4 Diagram displaying the concepts and their relationships in the
domain model . 43

5 Model of the Cube . 50
6 Resulting matrix from above query 59
7 The managers in the business logic layer 60
8 The graphical sketch of the analysis web page 62
9 Table over results from MDX vs SQL comparison 71

1 Introduction 7

1 Introduction

1.1 The problem

1.1.1 Background

Since 2001 the company Links has been developing and maintaining a web-
based system for a large telecom operator. The system is called STAX and
was built to help the customer’s large customers (CC) to organize and ad-
ministrate their MAS agreements they have with the telecom operator. More
specifically the system holds information about the subscriptions associated
to an agreement such as their physical and organizational belongings, the
products on each subscription and their corresponding fixed costs etc. The
system also provides functionality for ordering new subscriptions as well as
administrating the data associated with the subscriptions and their prod-
ucts. Worth mentioning is that the system does not contain any information
about the traffic — such as calls, text messages or similar — for a given
subscription.

For some of the agreements in the system, invoice data is created period-
ically by a report server. Since only fixed costs are stored in the system, the
variable traffic-related costs are retrieved from an external system owned by
the telecom operator. These costs are then mapped to the subscriptions in
the system and the CC:s can use the web interface in order to extract the
invoice data as well as filtering it by date and organizational belonging.

Lately, Links has identified a need of a more sophisticated analysis of the
invoice data created by the system. As for now, the data cannot be filtered
on different types of costs, comparisons of invoices are not supported and the
presentation of the data is done through Microsoft Excel-files. Aside from
this the performance of the extraction is rather poor, for some agreements
the data can take up to 30 minutes to generate.

During the fall of 2009 an idea about a new system, offering high-performing
analysis possibilities and graphical presentation of the invoice data, started
to evolve at Links. A basic requirement specification as well as some use cases
were compiled and have provided the foundation for the work described in
this report.

1.2 Goals 8

1.1.2 Problem description

Based on the initial documentation provided by Links, the task was to design
and implement a first version of a web-based system that provides function-
ality for analyzing and comparing costs provided from the already existing
system described above. The costs should be able to analyze with respect
to time, organizational belonging and type of cost, such as fixed- or mobile
traffic, fees etc. In order to allow for fast retrieval of data it was decided that
the tools and features within Microsoft SQL Server Analysis Services — due
to its support for aggregations and multidimensional data storage – should
be considered when building the system. Some informal requirements were
that the system should be generic, easily extendible and that it should be
fast. Generic in such a way that the functionality fits a wide range of user
needs; extendible in such a way that data from other telecom operators could
be added without too much effort; fast in such a way that the output should
be generated in measures of seconds, not minutes. The working title of the
system is Brix.

1.2 Goals

In the documentation provided by Links, several different use cases were de-
scribed and they covered anything from cost analysis to user administration.
These use cases were prioritized and it was decided that the task should fo-
cus on the most important ones in first hand. The goal of the work carried
out was therefore to implement the functionality described in the use cases
dealing with cost analysis, which includes building an infrastructure that al-
lows for future modifications of the system. More specifically, the goal was
to build a data warehouse solution that is fed with data from STAX and to
implement a web user interface that provides tools for analyzing this data
according to the use cases. The company aimed to have a first version of this
system ready for demonstration to customers before the end of May 2010.

When this first version of the system is complete, Links would then assign
resources in order to implement the other use cases.

1.3 Limitations

As already mentioned in the previous section, no focus was put on the use
cases that didn’t correspond to cost analysis. Since the scope of the described

1.4 The Company 9

system covers everything from building a web user interface to designing a
data warehouse solution it was decided that an external interaction design
company would be hired for dealing with the user-friendliness and graphical
look of the system. Hence this work will not be considered nor described
within this report. However, the actual implementation of the user interface
was still to be made and will be taken into account in this report since it
contains areas of importance for the performance of the system.

Due to the relatively short timeframe of the project it was also decided
that a test engineer at Links would support the authors of this report in
different activities related to testing and verification. These activities will
therefore not be considered in this report.

1.4 The Company

Links Got AB (Links) is a fairly small company with 10 employees and has
their office located in Gamlestaden, Göteborg. Links was founded in year
2000 and has since then been delivering IT services and management support
mainly targeted towards companies within the telecom industry. Links is
specialized on Managed Services (MAS) which briefly described is a practice
where a company offers their customers functionality instead of a technical
solution. For example, instead of selling telephone switches the company
sells the function telephony.

Links is a certified Microsoft Gold Partner and develop their applications
entirely upon products on the Microsoft stack, such as the Windows operating
system, Microsoft.NET platform, SQL Server, BizTalk etc.

2 Theory 10

2 Theory

2.1 Business Intelligence

“Business Intelligence (BI) refers to computer-based techniques used in spot-
ting, digging-out, and analyzing business data, such as sales revenue by
products or departments or associated costs and incomes” [3]. The prod-
uct developed discussed in this report is indeed a good example of a Business
Intelligence application. As the definition implies BI tools are there for of-
fering decision makers with the data needed for performing relevant analysis
and giving solid support when making decisions. It is quite possible the
same data exists elsewhere but BI systems strives for offering the function-
ality wanted and needed by the user. The functionality given should give
a common ground for all the users or a “one truth” as well as good options
for analysis. This together with increased performance and easiness of use
should save time for the users as well as offering better information. BI tools
often use data retrieved from a data warehouse but not all data warehouses
are used for BI and not all BI systems relies on a data warehouse.

2.2 Data Warehouse

A data warehouse system is an organization’s repository for storing data
about the organization but also the means to retrieve and analyze such data.
Organizations typically have several to many more or less standalone systems
for handling all their needs. An organization may have different systems for
handling employees, sales data, customer relations, budget etc and as a whole
these systems are generally not well coped at answerring simple questions of
analytical nature. The essence here is that information needed for answerring
interesting questions like "How much did we sell to customer C? Did he pay
in time? Was C happy?" may not be easily gathered from the sytems.

One of the key problems thus with these different independent systems
is that even though the data needed for user analysis certainly is available
somewhere in the collection of systems there may be no easy way to actually
retrieve it. Another issue is that while the underlying data source systems
contains data and information that may be relevant to that specific system
the data fulfills no purpose when looking at the systems as a whole.

A data warehouse can bridge these problems and make data appear con-
sistent despite any differences in the underlying data sources. On top of this

2.2 Data Warehouse 11

only the relevant information for analysis can be chosen to improve both the
space needed as well as maintainability. The technique of extracting, trans-
forming and loading (ETL) plays a vital part when planning and designing
the usage and role of the data warehouse [20]. With a properly designed
data warehouse users within the organization can then analyze relevant and
consistent data creating a de facto standard for the organization as a whole.
This is possible even though the actual sources may have no implemented
connection between each other.

2.2.1 Storage Approaches

There are two major approaches for the storage of the data in the data
warehouse: the normalized and the dimensional approach.

Normalized approach The normalized approach can be thought of as
a data warehouse being made in a relational database. Tables are created
and grouped by categories such as customers, products, finances and sim-
ilar, meaning it is fairly easy and straightforward to add information into
the database. However it might be difficult to join the data coming from
different sources into meaningful information and also for a user to access
this information without a very good understanding of the actual structure
of the sources of data.

Dimensional approach The dimensional approach is fairly different, here
numerical data such as sales or products ordered are partitioned into facts
while the needed reference information for giving context to the facts are
called dimensions [5]. As an example, for finding out how many products
and for what amount a certain customer placed orders during a certain time
interval one would use the fact table ’Sales’ with the facts/measures ’number
of products ordered’ and ’sales amount’ as well as dimensions for customer,
product and date/time. Further the members in a dimension are usually
aggregated on different levels for improving performance and usability. The
dimension for stores with member attributes specifying the location of the
stores would likely have aggregated data on suitable levels such as ’country’
and ’state’. Advantages to this approach includes that a user lacking insight
into the underlying structure finds such an implementation more intuitive
to understand and use as well as the retrieval of the data tends to operate
very quickly because of the pre-calculated results. However, managing the

2.2 Data Warehouse 12

data from different data sources while maintaining integrity of the facts and
dimensions may be complicated and heavy design and implementation work
could be needed. Also updating and modifying the data warehouse struc-
ture to correspond to the changes in how the organization does its business
involves further maintenance.

There are two different query languages used for extracting information
depending if data warehouse is built in a normalized or dimensionalized way.
SQL (Structured Query Language) is used for queries against the relational
database and has been around since the early 1970s while MDX (MultiDi-
mensional eXpressions) was first introduced in 1997 as part of a Microsoft
specification for Online analytical processing (OLAP).

To further distinguish between a data warehouse and traditional oper-
ational systems the information from business transactions may often be
stored into dozens or more tables in a relational database. This puts empha-
size and focus on maintaining data integrity as well as fast insertions and
updates which can be achieved because only a small portion of the data is
changed during a transaction. Data warehouses are built for a completely
different purpose, namely supporting analysis of the already existing informa-
tion. Thus the main requirement apart from the data being correct is usually
improved reading speed, actually changing the data would have to be made
in the underlying data and then the state of the warehouse would have to
be refreshed. The increased data retrieval performance is mainly accom-
plished through denormalization of the data into the dimensional model as
well as storing the same data multiple times on different levels of granularity,
called aggregations. To summarize, there are several conclusions regarding
the benefits as well as disadvantages with using a data warehouse.

2.2.2 Benefits

• A data warehouse provides a common model of the data of interest for
all analysts and decisions makers throughout the organization. This
makes it easier to analyze and/or report data that may have its origin
in multiple independent underlying systems.

• Existing inconsistencies are identified when designing the data ware-
house and prior to the actual loading. This further supports a general
model of the information within the organization.

• Even if the data in the underlying source is deleted or changed it is

2.3 OLAP 13

possible to keep the old information inside the data warehouse.

• Because the data is stored separately it can be retrieved without af-
fecting and slowing down underlying systems.

• Since a data warehouse is simply a repository with data being read-only
the design on both high and low level can be optimized for performance
speed.

2.2.3 Disadvantages

• The data from the source system(s) needs to be carefully restructured
and transformed to be properly divided into the design of the data
warehouse.

• Due to data being first loaded and transformed from the underlying
system(s) there is always some latency, the only guarantee is that the
data is correct as of the latest time of update.

• Because a data warehouse only provides a new view of the already
existing data it comes with an extra cost for possibly limited new func-
tionality. When changes to the organization and/or the data are made
the data warehouse may have to be updated in order to reflect the
changes [2].

• Functionality can often be duplicated in the subsystems as well as in
the data warehouse. Also functionality that may have been better
off being implemented in data warehouse is created in the underlying
systems and vice versa.

2.3 OLAP

Online analytical processing (OLAP) is a database approach to rapidly an-
swer multidimensional analytical queries. The multidimensionality corre-
sponds to the dimensional approach of a data warehouse and performs better
when retrieving analytical information than the normal relational database
mainly because of pre-calculated results [4]. The data inside an OLAP
database are logically represented of one or more OLAP cubes which in
turn are built up by dimensions and facts. As the name would imply a sim-
ple OLAP cube can be thought of as a normal three dimensional cube with

2.3 OLAP 14

three business related dimensions —i.e. product, customer, date— on the
axes and each cell in the cube a business measure/fact, a numerical value
that is specified by a coordinate along the three axes. The name cube im-
plying three dimensions is however chosen for imaginative reasons, in reality
the number of actual dimensions within a cube has nothing to do with the
number three.

As mentioned earlier in 2.2.1 an important and useful notion is how a
dimension can be aggregated on different levels. The dimension ’Time’ that
intuitively offers a context of when a business measure occurred would in most
cases include a hierarchy consisting of the levels ’year’, ’quarter’, ’month’
and ’date’ and in that order. A company selling furniture consisting of a
time dimension as well as a dimension Products; consisting of a hierarchy
furniture group->furniture id and a measure Sales could then let a query
slice —which can be thought of as applying a filter— down through the cube
on the axes/dimensions. The OLAP database would then calculate the sales
for the cell(s) that has been sliced down to.

Figure 1: Cube showing possible levels of aggregations with measures inside
cells. c©Microsoft.

2.3 OLAP 15

The main benefactor for the improved reading performance of OLAP
compared to a normal relational database is how results can be pre-calculated
along the aggregated levels. A common analysis is the year-to-year change
of sales for all the stores in a given country. In a normal relational database
retrieving the results would demand server calculation of all the individual
sales in all the stores at runtime and then compare the two years with each
other. A typical OLAP database on the other hand pre-calculates results
on different aggregated levels at loading time offering rapid responses to
analytical queries even if the number of underlying fact rows may be huge.

The main query language used against the OLAP database is called MDX
(MultiDimensional Expressions) and can be thought of as the equivalence of
SQL with relational databases. The way MDX queries typically work can
be thought of as firstly specifying the scope which is a subset of all the
information within the cube that will act as a temporary subcube for the
query. Then doing a drill-down on the dimensions within the cube the query
retrieves the result for typically one or more measures as columns with a set of
members of dimension as the rows. As a basic example it could be of interest
to analyze how the amount of sales of a certain product in a specific store
fluctuates during a 12-month period. A user would then chose to slice on a
given store and product and set the resulting matrix to show the measure
sales as the column together with the 12 months as rows. The 12x1 values
of the cells in this resulting matrix would then correspond to the amount
of sales for the specified product during each month. The query could then
easily be modified with adding more measures such as net sales or number
of products sold on the column axis as well as doing the calculations on a
grouped collection of products rather than a single member.

2.3.1 OLAP Types

The data in an OLAP database can be stored in three fundamentally different
ways and each of them deserves mentioning. MOLAP (Multidimensional
OLAP) is the classic and most famous one and is usually referred to —
including this report— as simply OLAP. As mentioned above it stores data
in optimized multidimensional array storage instead of a relational database.
This requires pre-computing and loading of data —processing — into the
cube before it can be used by a user. ROLAP (Relational OLAP) works
directly with storing the data in traditional relational databases. It uses both
more relational-like tables containing all the base data as well as other tables

2.3 OLAP 16

Figure 2: A two dimensional slice of a cube. c©Microsoft.

created for storing the aggregated information. HOLAP (Hybrid OLAP) is a
mix of the two above which can be useful if there are too many members on
the lowest levels of hierarchies which is better stored in a relational database
while parts of more aggregately data can be stored as a MOLAP for better
performance results.

Main advantages of MOLAP include increased performance related to
optimized storage and indexing as well as needing less storage space due to
compression techniques. The reason why it can perform so nicely is how-
ever also the biggest drawback and potential problem. Because results are
pre-calculated at loading time there is the possible bottleneck of this sim-
ply taking too long to be feasible and smooth or in worst case slower than
new data gets added. A general solution if/when this problem occurs is to
choose not to pre-calculate everything but rather deciding which aggregated
data that is more important and used more frequently. This subset of all
potential aggregations would then be pre-calculated in a feasible amount
of time leaving the rest to be calculated at run-time if queries request the
information.

ROLAP can easier and possibly better scale up to a large number of di-
mensions with lots of members and a tremendous amount of fact rows [10].
However pre-calculation of results is more difficult to implement efficiently
and often skipped leading to worse analysis performance than MOLAP. A

2.3 OLAP 17

ROLAP solution is also more limited to the underlying database when it
comes to offering the user with useful specialized business intelligence func-
tions. HOLAP naturally tries to encompass the best of the mix using either
MOLAP or ROLAP when it gives the best performance and scalability.

2.3.2 Aggregations

Aggregations and the corresponding pre-calculated data is one of the key
performance boosters with OLAP due to the fact that to retrieve result
from a high level the server does not have to do real-time calculations of
every single member on the lowest level and then add these together but
instead the result has already been calculated and stored when the data
was processed. This basically means that the performance boost compared
to non aggregated storage increases with dimensions consisting of multilevel
hierarchies where each level consists of a limited number of members. Less
members but more levels means a high number of aggregated results that
is calculated fast and provide that fast cube performance [1]. On the other
hand large number of members means pre-calculations may take too long to
be feasible along all levels as well as the space needed to store the results may
be too much. Without being able to pre-calculate the results the information
wanted by user has to be resolved at run-time by retrieving information from
the data-source which obviously goes slow and with worse performance than
not using a MOLAP at all but instead ROLAP.

To further boost performance analysis services comes with a feature called
Usage based aggregations [21]. This feature allows the system to log queries
to the server and what parts of the cube that was used. This information
both informs the administrator what data is most frequently used and at
what level as well as providing support on what aggregations that would be
most likely give the best effect to pre-calculate. Administrator can then set
how much space that is allowed to be allocated or to how high percent of all
queries that is wanted to be pre-calculated and system will offer automatic
support of this. This feature is often important due to the fact that pre-
calculations of every level may not be feasible and by taking advantage of this
logged information of user behavior a suitable balance between performance
and pre-calculations can be made.

2.3 OLAP 18

2.3.3 Partitions

When designing the cube and preparing it for a relatively high future load of
inserted data it may be crucial to group the information into different physical
partitions. Well-designed partitions means information related to each other
and often asked for in the same MDX query will be within the same partition.
Example of such data would be all the sales for all stores within a specific
country during a certain year. The effect of partitions are primary two: First
of all it greatly decreases time of processing when only partitions effected
of new data needs reprocessing. Secondly data related will be physically
together meaning more efficient caching and increased responding time [15].
As well as this there are further more performance tweaks available to the
developer including optimizations in the design as well as the MDX queries
themselves [19].

2.3.4 Processing

Generally with OLAP there are not really any specific best practices and
there are often many options for accomplishing the same task. As an exam-
ple given earlier with a given set structure the same wanted output could
be accomplished from more or less unlimited different MDX queries. There
are several different high structural ways of selecting the subcube —slicing
down in the dimensions to get a smaller/sub cube from the whole cube—
in the query as well as dozens of different ways of specifying different mem-
ber(s). One should obviously aim for performance but also strive for ease of
understanding and consistency between the different queries.

Processing of the cube is the art of actually getting the information from
the data source(s) into the analysis server [9]. Now while a relational database
simply stores raw data and with the possibility to whenever wanted add new
rows or change existing ones —as long as no constraints are broken — this is
never so simple with a cube. In the simplest case the OLAP designer specifies
a data source view mapping the relational tables and columns of interest into
the fact tables and dimensions of the cube. To make the data ready for the
user to view the administrator then processes the cube thus transforming the
source data into pre-calculated results that may be stored multiple times on
different aggregated levels.

While pre-calculated results certainly boosts reading performance it does
have the drawback that the information the user sees is only accurate and

2.4 MDX 19

valid as of when the latest processing was made. Any new added facts means
new calculations have to be made along all the aggregations that will be
affected. Such a processing is called incremental processing and involves
firstly processing the new rows only and then merging together the old and
new one while caching old cube for user to still be able to read. Changing
existing rows though is another matter due to the fact the information has
already been processed and the connection to the relational row is after that
lost. This means to accurately show changed or deleted fact rows one would
have to reprocess the entire cube —or at least the effected partitions— to
reflect these changes.

It is possible to have a more or less real-time OLAP solution that with
quite little latency reflects the current state of the underlying data source.
While this is a preferred solution in situations with frequent changes to the
data and the need to seem like a real-time system it comes with a price
of automatic polling and less control as well as performance decrease while
updating. For the current system the updates to the relational database
occurs on an automatic known schedule and thus all that is needed is to start
the incremental processing of the cube after the input to the data source has
been completed by the Data Extractor, as described in next chapter.

2.4 MDX

2.4.1 MDX Introduction

The following will just briefly explain the core concepts of an MDX query as
well as highlighting any main differences to SQL, for more detailed informa-
tion there exists several interesting books as well as articles available online
[16] [7] [11]. As a recap and summarization of information earlier given in
this report MDX queries are run against an OLAP cube. A cube can be
thought of consisting of two main concepts:

• Measures are the numerical values used in the analysis such as sales,
number of sales or cost. They correspond to a given cell’s value inside
the cube.

• Dimensions are the categories or reference tables that the cube is built
from. A dimension often consists of a hierarchy with different levels for
the user to specify the granularity of the request. The levels in turn
consist of a number of members. A dimension Time would typically

2.4 MDX 20

be broken down to a hierarchy with levels Year, Month and the finer
grained Date with members for the whole years on the year level and
Date level having every day of these years as members.

A very basic MDX query typically will be following a code skeleton such as:

SELECT axis specification ON COLUMNS,
axis specification ON ROWS
FROM cube name
WHERE slicer specification

With a cube consisting of —amongst others— a Date and Store dimension
as well as a measure for sales the user could be interested in the following
basic analysis:

SELECT
{ [Measures].[Store Sales] } ON COLUMNS,
{ [Date].[2002], [Date].[2003] } ON ROWS

FROM Cube_Sales
WHERE ([Store].[USA].[CA])

The above is a basic example of an MDX query, the actual language in
this form is actually somewhat intuitively understandable. However what
it actually outputs as well as why and how this is done may be trickier to
grasp. First the above query specifies the measures and dimensional members
to output on the axes— typically measures are specified on the columns with
the wanted dimensional members as rows. In this example the matrix will
consist of the members 2002 and 2003 on the x-axis with the measure sales
of the stores as the single member on the y-axis. Cube-Sales is the name of
the cube built up from these dimensions together with the numerical values
given from the fact rows in the data source. The WHERE clause above states
that only the stores of California —a child of the member [Store].[USA]— is
of interest and only the sales from these stores will be calculated. Although
this two dimensional output matrix is a typical example it is quite possible
to retrieve results on more than two axes as well as specifying much more
complex statements.

2.4 MDX 21

2.4.2 SQL simple comparison

A possible mistake for a developer comfortable with SQL would be to think
of MDX as simply another similar query language that works in roughly the
same way. However, while it looks quite similar to the same to specify the
following simple query it really is quite fundamentally different on a lower
level.

SELECT [a measure] on COLUMNS
FROM [a cube] WHERE [some kind of condition]

The SQL statement such as

SELECT [Id] FROM [TableSales] WHERE [Sales]>5

specifies exactly what information to retrieve and then from which table and
what conditions that has to be fulfilled for row to be included. An OLAP
cube on the other hand offers a multidimensional context built up from the
information given in several/many relevant relational tables. The wanted
output is the calculated measures/facts from the cube and thus the simple

SELECT [Measures].[Sales] on COLUMNS from [Cube Sales]

outputs a single numerical field corresponding to the total sum of the sales of
the entire collection of data residing within the cube. WHERE and similar
clauses is used as a way to define the scope, namely defining what smaller
part of the entire cube that is to be used in the rest of the query. If the
member(s) of a certain dimension are not specifically defined then the entire
collection of members is part of the scope. Such as the example above where
every member in every dimension is part of the scope.

As such, the default view of a cube that can be queried can somewhat be
thought of as an SQL query that joins every related table together to the one
containing the measures of interest. Specifying the exact columns in SQL
together with the function sum of the wanted measure and some grouping
would give a similar output as a simple MDX query with two axes.

2.4.3 Main differences compared to SQL

While the two scripting languages may seem somewhat the same at a first
glance there are some very important but yet simple characteristics of MDX
that cannot easily be translated to SQL. As mentioned earlier the cube may

2.4 MDX 22

aggregate results multiple times on different levels on a dimension’s hierar-
chy. The dimension Store could for example be built with the levels Country,
State, City and Store from a table with the columns CountryName, StateId,
CityName and StoreId. A common dimension like Time could similarly in-
clude a hierarchy such as Year-> Quarter-> Month of Quarter-> Date. Rec-
ollecting the very first query from above outputting the sales for 2002 and
2003 from all stores in California it is simple enough to write with MDX
but would require a construction with higher complexity in SQL. Firstly one
would have to join together the three tables with the conditions of retrieving
rows only for the two specified years and the state and then group over the
years together with a sum of the sales.

Albeit the SQL query discussed above would be quite a bit longer involv-
ing different sub-queries it would still be rather doable to construct in SQL
and fairly straight forward. However, the above uses a normalized hierarchy
which works very well to work with and query in a relational database. Some-
times a parent-child hierarchy is preferred —when number of levels may be
different and/or be subject to change at any time— and this does not work
nearly as well in a relational database. A cube on the other hand automat-
ically creates levels corresponding to the parent-child hierarchy and it can
then be used just like a hierarchy coming from a naturalized relational table.
In fact it is even easier start using due to the fact the cube automatically
recognizes the relations while in a normalized hierarchy they would have to
be somewhat manually specified.

As can be seen in addressing parent-child hierarchies with SQL and doing
calculations is not really an easy task and even if divided into multiple queries
it still is not intuitive and straight forward. As a simple example can be used
the dimension Post Type which contains a parent child hierarchy of several
levels of granularity. A root node named ’Traffic Costs’ contains amongst
several others the children ’Data Traffic’ and ’Abroad Calls’ which in turn
may or may not have more children. The rows in the fact table Posts all
include a reference to typically a leaf node at the lowest level of the Post
Type hierarchy. A user may want to slice/filter and include the data that
belongs to Traffic Costs or any of the leaves below it and then group the
result on the leaves one level below Traffic Costs. However, this means first
joining down recursively through the hierarchy—which is no easy task— and
then group the result on a level lower than the first one specified. Finding an
intuitively understandable and easy solution would be tricky and most likely
involving multiple queries. This compared to an MDX query to the cube

2.4 MDX 23

which will do all that by default by first specifying the member Traffic Costs
as a member of the scope and then using an existing function for specifying
its children as one axis of output.

As mentioned earlier there are also several other important differences in
the way the two languages behave on a logically lower level. SQL can only
specify output on a two-dimensional axis (columns and rows) while MDX
can choose output on many more dimensions—64 is the maximum definable
in MDX. Conceptually SQL uses the where clause to filter the data while
MDX provides a slice of this data and while this may seem similar they are
not equal in concept.

2.4.4 Equal result-Different statements

Member Definitions and Member functions There are usually several
different ways of addressing a specific member as well as multiple possibilities
to define a set including many members. On top of this one can choose to
slice out the data that is to be part of the query scope in several ways. The
dimension Date that includes the two hierarchies Year, Quarter, Month of
Quarter, Date and Year, Month, Date can relate to the same member with
these four examples:

• [Date].[Month 3 of Quarter 2 2009]

• [Date].[June 2009]

• [Date].[June 23 2009].Parent

• [Date].[Year-Quarter-Month-Date Hierarchy].[Month of Quarter].[Month
3 of Quarter 2 2009]

Of the above only the last example specifies a hierarchy which shows that
MDX automatically finds members even without explicit definition. The
concept here is how all of the above actually relates to the same member
which got one specific Id that could also have been used if it had been known,
like [Date].[1234]. [Date].[June 23 2009].Parent is an example of a member
function and although this particular specifies the parent of a member many
others exists.

Another example of a member function would be to rewrite the top ex-
ample to the following:

2.4 MDX 24

SELECT
{ [Measures].[Store Sales] } ON COLUMNS,
{ [Date].[Year].Members } ON ROWS

FROM Sales
WHERE ([Store].[USA].[CA])

The above retrieves the sales in California for every year available in
the Date dimension. Yet another example is the Set function Descendants
which can be used like: Descendants([Date].[Year-Quarter-Month-Date Hi-
erarchy].[2005]) which returns a set containing every member drilled down to
the lowest level namely all quarters, months and days of 2005.

Defining the query scope While one could define the members to slice
on for defining the scope in the WHERE part this is mostly not advisable
for performance reasons. Although the result may be cached the database
would in the top example still slice both 2002 and 2003 individually with the
stores in California before calculating the result. A more efficient statement
performance wise is to move the actual slicing so that it is made before any
calculations and look ups is to be made.

SELECT
{ [Measures].[Store Sales] } ON COLUMNS,
{ [Date].[2002], [Date].[2003] } ON ROWS

FROM (SELECT [Store].[USA].[CA] ON COLUMNS FROM Sales)

This outputs the same result as the earliest query but the way it works is
slightly different. The above creates a subcube from the whole cube which
will be the scope in which everything else works. The subcube can of course
be limited by many more dimensions than just stores and it improves perfor-
mance over slicing every member every time with the WHERE clause. Apart
from this there exists more ways for defining the scope in which a statement
exists although the above are the fundamentally simplest to use.

3 Technology 25

3 Technology
Throughout the work several different tools, components and frameworks
where utilized and this chapter gives a brief background and a description of
them.

3.1 Application tier tools and components

3.1.1 Microsoft .NET Framework

Microsoft .NET Framework is a platform upon which developers can build
software applications that executes on computers running the Windows op-
erating system. Except the fact that Java is platform-independent, the .NET
Framework has many similarities to the Java platform. They both contain
two major components; one function library containg classes which develop-
ers can utilize in their applications and a virtual machine where the appli-
cations written for the platform are executed. In .NET Framework, code is
compiled into an intermediate language called CIL (formerly MSIL) and re-
sides in assemblies which could be either libraries (DLL) or processes (EXE).
The assemblies are loaded and executed within the Common Language Run-
time Virtual Machine and referred to as managed code.

The .NET Framework is language independent, i.e. applications writ-
ten for .NET Framework can be written in any language that conforms
to a specification called the Common Language Infrastructure (CLI). Thus
there exists several languages using different paradigms that could be used
when programming applications for the .NET Framework, among them are
C, VB.NET, F etc.

At the moment, version 4.0 is the latest stable release of the .NET Frame-
work and was released in April 2010.

3.1.2 Visual Studio 2010

Visual Studio is an Integrated Development Environment (IDE) created by
Microsoft and mainly targeted to developers building applications upon the
.NET Framework.

3.1 Application tier tools and components 26

3.1.3 ASP.NET

Within the .NET Framework, two different frameworks might be used when
developing web applications; ASP.NET WebForms and ASP.NET MVC. The
former was shipped with the very first release of .NET Framework and was
targeted to developers from the desktop-side. Windows Forms, which is the
corresponding framework for developing desktop applications, share many
concepts with ASP.NET WebForms.

With ASP.NET WebForms, Microsoft introduced a number of mecha-
nisms that aimed to turn web pages into stateful components. Among these
mechanisms was server controls, that abstracts the rendering of the HTML
for the developer and provides an event-driven approach in order to respond
to user interaction, as well as helpful functions for reading and updating the
state of a web page.

Criticism was aimed towards these mechanisms due to the overhead in-
volved when maintaining a state over a stateless media, namely the HTTP
protocol. This criticism gained in strength as light-weight frameworks like
Ruby-on-rails became more popular and in 2008 Microsoft released a new,
alternative, framework called ASP.NET MVC.

In ASP.NET MVC aims to give the developer more control over the ren-
dered html and the state and is to be seen as a complementing, not compet-
ing, framework.

When selecting between those two frameworks a number of factors were
considered. From a performance point of view, web pages developed using
ASP.NET MVC gives a more fine-grained controls of the rendered and also
saves the server from maintaining a state by default [18]. On the other hand,
ASP.NETWebForms can be configured so that state management is disabled.
Eventually, ASP.NET WebForms was selected due to mainly two reasons:

• The developers at Links have more experience within ASP.NET Web-
Forms.

• The components within Telerik RadControls for ASP.NET, among them
server controls for creating charts, are supported.

3.1.4 ASP.NET WebForms

Web pages developed in ASP.NETWebForms are called web forms and gener-
ally contains of two different parts, the code-behind file and the markup-file.

3.1 Application tier tools and components 27

Most often these are located in different files. The markup-file contains the
HTML as well as the declarations of server controls, which could be for ex-
ample graphical components such as a button or a hyperlink but also more
complex controls exists. The code-behind file contains the server-side logic
of the web page.

Similar to the Java swing library, web forms are event-based. Each server
control exposes a number of events that could be handled from the server-side
logic, for example a click on a button could be handled in order to perform
a specific operation.

Web forms and server controls are stateful, which means that ASP.NET
maintains a state at the client that is persisted between different loads, or
postbacks, of the page. This feature is realized by serializing the state of each
server control on the page and adding the resulting string, called viewstate,
to a hidden form field that is embedded to the response sent to the client.
On a postback this string is sent back to the server and by deserializing it
ASP.NET can recreate the state of the user interface. This mechanism comes
in handy when for example a dropdown list is to be filled from a database.
The database only needs to be queried on the first load of the page while
subsequent postbacks can recreate the list by using the viewstate. However,
this obviously also increases the data amount sent between the client and
server.

The entire web form in itself is a server control as well and exposes a
number of events that relates to something called the page lifecycle. This
is initiated when a HTTP request is made to the web page and contains a
number of stages which are briefly described here.

- First, in the request stage, ASP.NET determines whether the requested
page needs to be parsed and compiled or if a cached version of the page can
be delivered to the client.

- In the initialization and load stages, the page is parsed and the server
controls are created and, if a postback is made, their states are recreated
from the viewstate.

- Finally, in the render stage, each server control including the web form
itself is rendered into HTML and appended to the response sent to the client.

3.1.5 Asynchronous javascript and XML - AJAX

AJAX is the name of a collection of technologies for making asynchronous
requests using client-side scripting. By using AJAX developers can build

3.1 Application tier tools and components 28

dynamic interfaces that loads data from the server as it is needed and up-
dates only the part of the display that needs to be updated, thus optimiz-
ing the amount of data loaded. Also, slow-running tasks can be performed
asynchronously without affecting the UI responsiveness. Some examples of
well-known interface components that often utilizes AJAX technology are
progress bars, autocomplete text boxes and interactive maps.

Even though AJAX is a fairly new term, the technologies behind it have
been around since the early days of web development. A central component
of AJAX that makes the asynchronous server communication possible is the
XmlHttpRequest-object, which must be supported by the client’s browser in
order for AJAX to work. Currently all modern browser supports it.

Since different web browsers has slight differences on how to use the
XmlHttpRequest-object, implementing an AJAX engine can be tedious and
needs to keep up the pace as new versions of web browsers are released.
Luckily there exist a number of javascript frameworks that provides a stable
and well-tested AJAX engine as well as utility functions for using it.

3.1.6 Telerik RadControls For ASP.NET AJAX

Since the data were required to be displayed in different types of charts,
a third-party product suite called Telerik RadControls was utilized in the
project. This product suite contains a wide range of server controls that could
be used in ASP.NET solutions and among them are a set of controls rendering
charts of different types as well as a framwork supporting the implementation
of AJAX functionality.

Two controls were used more frequently than others in the project, the
RadChart control and the RadXMLHttpPanel.

RadChart The RadChart component is used in order to visualize data
in a chart. Several different chart types are supported — among them pie
charts, bar- and line diagram — and each chart provides a excessive API in
order to customize the look, such as dimensions and colors, of the chart.

The charts are generally loaded with data by creating one or more chart
series, where each chart series item can contain one or more data points and
are rendered as images before sent to the client.

RadXmlHttpPanel The RadXMLHttpPanel component is used in order
to utilizing the ASP.NET callback mechanism, which as opposed to postbacks

3.2 Data tier tools and components 29

doesn’t cause the web form to execute its entire lifecycle. The server-side
performance is thus increased while on the other hand the client state must
be managed explicitly.

3.1.7 LINQ

LINQ (Language integrated query) is a query language integrated into the
.NET Framework that can be used to query data in any collection implement-
ing the LINQ interface. For example, the same LINQ query can be used for
an in-memory array of objects as well as for an SQL Server database.

Wrappers for many other query languages has lately been released for
LINQ, so called LINQ providers, among them LINQ for XML, LINQ for
objects, LINQ for SQL.

3.1.8 Telerik OpenAccess

Telerik OpenAccess is an object/relational mapper (O/RM) that contains
functionality for retrieving and writing data into persistent state. The OR/M
is used in order to generate a set of classes, or entities, representing the data
in the database. Typically one entity per database table is created, while
any foreign keys in the tables are reflected by relationships among the enti-
ties. Though, OpenAccess can also identify more complex associations such
as inheritance and many-to-many relationships. OpenAccess fully supports
LINQ and is controlled through an interface residing within Visual Studio.

3.2 Data tier tools and components

3.2.1 Microsoft SQL Server

Microsoft SQL Server at its core is a relational database server but it also
comes bundled with many different tools and services including analysis ser-
vices offering an OLAP solution. SQL Server uses several techniques for
handling issues such as concurrency, transactions and buffering for providing
a reliable database with good performance. In this project extensive work
has been carried out relying on different parts of the SQL Server 2008 R1.

3.2 Data tier tools and components 30

3.2.2 SQL Management Studio

SQL Management Studio includes both graphical and scripting tools for the
managing of all the components within the Microsoft SQL Server. The tool
was used throughout the entire lifetime of the work and extensively used for
both exploring of content as well as configuring and managing of both the
relational database as well as the analysis services.

3.2.3 SQL Server Profiler

The profiler can trace and monitor all communication made to the server
showing how it actually resolves the queries internally. This is especially
useful for performance monitoring of the cube. With the profiler it is amongst
other things possible to see the duration of every query executed against the
cube as well as any internal usage of —which is preferable from a performance
point of view— cached data.

The profiler can trace and monitor all communication made to the database
showing how the server resolves the queries internally. This is especially use-
ful for performance monitoring of the cube. With the profiler it is amongst
other things possible to see the duration of every query as well as any inter-
nal usage of —which is preferable from a performance point of view— cached
data.

3.2.4 Microsoft Analysis Services

SQL Analysis Services (SSAS) includes a group of capabilities for OLAP as
well as Data Mining; the method of extracting and finding patterns from
available data. It supports all three different OLAP storage modes — MO-
LAP, ROLAP and OLAP — both on a dimensional level as well as on a lower
partition level with some consistency limitations. SSAS supports several dif-
ferent APIs for communication depending on the level of operation as well as
the programming environment. Below follows a list of a few such noticeably
frameworks:

• XML for Analysis (XMLA), low level API based on XML. Is the in-
dustry standard for interaction with OLAP. XMLA can be used for
both administrative tasks —such as managing structure of cube and
processing of data— as well as accessing existing data for analysis. Not
used extensively in this project as such, rather administrative tasks are

3.2 Data tier tools and components 31

performed with tools and frameworks which in turn rely on XMLA. For
analysis purposes MDX scripts are sent alone —for simplicity and ease
of use— to the server rather than embedding them within an XMLA
statement.

• ADOMD.NET is a .NET based API for running queries against the
OLAP. On a lower level it uses XMLA for interaction with analysis
services.

• AMO is the administrative correlation of ADOMD.Net for managing
the OLAP database and works in a similar fashion within the .NET
framework.

• DDL (Data Definition Language) is an XML based language with com-
mands for defining the OLAP objects and used for data mining.

• MDX is the OLAP query language comparable with SQL for relational
databases. More detailed information about MDX can be found later
in the report.

3.2.5 Business Intelligence Developement Studio

Business Intelligence Developement Studio (BIDS) customizes Visual Studio
—2008 as latest supported version— providing an IDE for developing OLAP
solutions together with SSAS. BIDS offers tools for both the managing and
exploring of the database as well as the reporting services in the SQL Server.
For the administrative tasks the user may opt to work both purely with the
graphical tools available as well as modifying the underlying XMLA scripts.
With the environment users can create a fully working OLAP database from
a data source as well as optimizing performance with specifying aggregations
and partitions. Any changes made by developer can then be chosen to be
deployed to the server when ready for use. BIDS was used to build the
OLAP solution from scratch including defining all the dimensions as well as
which aggregations to pre-calculate and the interface chosen to be exposed
for outside queries.

4 Method 32

4 Method
In large, the work went through three major stages. One initial stage, con-
sisting of theoretical studies and a first analysis of the problem, one stage
where the actual planning and execution of the project were performed and
one final stage where the project was handed over to Links development team
for further implementation.

4.1 Initial stage

During the first two weeks of the work an initial phase took place where
a theoretical understanding of the problem was gained. This was achieved
by literature studies of the theory behind Data Warehouse solutions and
OLAP cubes and by taking an online video-based course describing the tools
within Microsoft SQL Server Analysis Services. Furthermore, meetings and
interviews with people from Links were held in order to gain insight to the
purpose and desired functionality of the desired system.

In order to allow for a direct and efficient communication with the em-
ployees at Links, two work stations were installed at their office where the
work was carried out.

4.2 Project planning and execution stage

Within this stage - that took place in weeks 3-18 - the actual work was
performed. For most software projects, regardless of which methodology that
is applied, this includes the the phases planning, design, implementation,
testing and deployment.

Initially, when the scope and limitations of the project was defined to-
gether with Links, it was decided that external resources were needed in
order to fulfill the company’s goals within the desired timeframe. Therefore,
test-related activities were decided to be delegated to the company’s test en-
gineer and were scheduled later on in the project. Also, the creation of the
system’s Look-and-Feel was assigned to an external company.

Due to the circumstances described above — as well as the fact that
some planning activities, such as elicitation of requirements, had already
been performed — the emphasis during this stage was put on the design and
implementation activities.

4.2 Project planning and execution stage 33

4.2.1 Project methodology

Initially there were many uncertainties in the project, the initial documen-
tation only briefly described the system and there were many things in it
open for interpretation. Aside from this a number of pilot Customers were
supposed to be involved in the process later on, so it was estimated that
requirements and directives were likely to change. It was therefore decided
that an agile methodology should be applied. For a couple of years, Links has
been applying Scrum in their projects and this methodology was therefore
the natural choice for this project.

Scrum Central roles in Scrum are the Product Owner and the Scrum Team.
For this project, the authors of this report formed the Scrum Team while
the Product Owner was represented by an employee at Links. A Scrum
project is performed in a number of iterations, called sprints, with a recom-
mended length of approximately 1-4 weeks. Each sprint contains the phases
Pregame, that includes planning and high-level architecture, Game, where
development-related tasks such as design, implementation, unit-testing and
documentation are performed, and Postgame where system testing, integra-
tion and user documentation is considered.

Requirements are stored in a Product Backlog, prioritized by the Product
Owner. When planning an iteration in the Pregame phase the Product Back-
log Items that should be included in that Sprint is selected during a Sprint
Planning Meeting. The Scrum Team then disassembles these items into one
or more Sprint Backlog Items. The Sprint Backlog contains more technical
descriptions and should describe a task that takes around 4-16 hours. If a
tasks is estimated to take longer time to complete it should be disassembled
further. Each day, the Scrum Team has a short daily meeting, where any
problems and uncertainties are discussed and hopefully resolved.

4.2.2 Planning the iterations

The uncertainties of the project made planning for longer periods difficult,
so it was decided to use a rather short iteration length in the beginning of
the project. Another reason for using a short iteration length was to allow
for rapid changes and to minimize work done in case of misunderstandings.
A length of two weeks was agreed upon to start with.

4.2 Project planning and execution stage 34

Below is a short summary of the performed iterations and their corre-
sponding goals.

Iteration 1 In this iteration the goal was to fill the system with the data
needed for implementing the analysis use cases.

In the Pregame phase, an understanding of the source system and its
relational data model were gained and a list specifying the entities and at-
tributes needed from the source system were created. A relational database,
similar to the source system’s database, was also designed in order to be able
to store the data.

Since the system in its deployed state doesn’t have any direct access to the
source systems, the Game phase focused on reading the specified data over
the network. The initial source system already exposed a web service from
where XML-based reports could be retrieved over the HTTP-protocol. Thus,
a report containing the data specified in the Pregame phase was created by a
developer at Links and a console application responsible for polling the web
service and reading the received report into the database was developed.

Iteration 2 The second iteration focused on two things. Firstly, a first
version of the OLAP cube was modeled upon the relational database in or-
der to get a more practical knowledge of the OLAP-specific tools and query
language, MDX. Secondly, recalling the requirement that the system should
support several data providers, the relational model was extended and gen-
eralized in order to allow data from other source systems to be used in the
system.

The output from the Pregame phase was thus a revised domain model,
where some concepts very specific to the initial source system were general-
ized. The initial OLAP cube as well as the console application developed in
the first iteration was also modified according to the changes in the domain
model.

Iteration 3 The third iteration targeted the overall design of the system.
The different components and their correlations for the full system were
identified and modeled. In the end of this iteration, the final delivery of
the graphical sketches were done and different third-party components and
frameworks were evaluated — among them Telerik RadControls and asyn-
chronous requests — in order to verify that the sketches could be realized.

4.3 Final stage 35

The third iteration targeted the overall design of the system. The dif-
ferent components and their correlations for the full system were identified
and modeled. In the end of this iteration, the final delivery of the graphi-
cal sketches were done and different third-party components and frameworks
were evaluated — among them Telerik RadControls and asynchronous re-
quests — in order to verify that the sketches could be realized.

Iteration 4-8 The forthcoming iterations mostly concerned the design,
testing and implementation of the components of the system, such as the
interfaces to the relational database, the OLAP cube etc. The user interface
and a business logic layer, abstracting the business functionality from the
presentation layer, were also developed.

Thoroughgoing tasks Through the early iterations a number of meetings,
or rather brainstorm sessions, were held together with the external company
that delivered the graphical sketches and the flow of user interactions. During
these the original use cases regarding cost analysis were discussed and many
similarities were found among them. Instead of separating the use cases
dealing with drill-downs and comparison, common functionality in them were
identified and eventually the use cases were merged together into one single
use case.

4.3 Final stage

During the last two weeks the project was handed over to Links in order
for their development team to continue building on the application. Neces-
sary documentation was provided and several meetings where held where the
concepts and architectures used in the system were described.

5 Analysis 36

5 Analysis
The initial documentation provided by Links contained a number of use cases
and a brief requirements specification. Although this documentation gave the
reader an overall picture of the described system many things in it were left
unmentioned and based on implicit assumptions. An analysis of the docu-
mentation and the existing source system, STAX, was therefore performed
during the work in order to clarify the parts that were subject to implemen-
tation. Eventually this analysis resulted in a domain model of the system.

5.1 Use cases

The use cases are described in detail in Appendix A.

5.1.1 Login use case

The login use case is rather straightforward and was selected for implemen-
tation since the cost analysis requires a logged in user.

5.1.2 Cost analysis use case

Many similarities were found in the use cases dealing with cost analysis and
together with the staff at Links, as well as the employees at the external
interaction company, those use cases were replaced by one single use case,
referred to as the cost analysis use case. Despite the name of the use case
not only costs are concerned in the analysis but also other invoice data such
as number of calls etc.

The full cost analysis use case contains several steps and alternative paths
and is attached in Appendix X. However, for the reader’s convenience a brief
description of the main path is hereby given natural language.

The use case requires an authenticated user that is authorized to the
cost analysis module and is initiated when the user selects the cost analysis
option in the application menu. Roughly speaking, the use case contains
three major parts; (1) definition of filters, (2) a drill-down through the type
hierarchy and eventually (3) a listing of the subscriptions and organizations
associated to the filtered invoice data.

In the first step, the system loads a filtering section where the organiza-
tions and invoice periods available to the user are displayed in a hierarchy.

5.2 Identifying concepts and their relationship 37

The user selects a desirable organization and a period for analysis. If appro-
priate the user also selects an earlier period for comparison.

Secondly, the system displays aggregations for amount, number of calls
and call length for the given organization and period, grouped by cost cate-
gory (fixed traffic, mobile traffic or fees). The total number of subscriptions
and — if a comparative period was selected — a comparison between the
aggregated amounts for the periods is also displayed for each category.

The user then selects a category of interest and the system displays a
similar view as before, but with the costs grouped by the sub-category, or
call groups, of the selected category. Similarly, these costs could be further
grouped by their call type in subsequent steps.

In the last step, when the costs could not be grouped by type any further,
the subscriptions for which matching costs are found are displayed to the user.
These subscriptions can be grouped by organizational level such as their
cost locations or company in order to get a picture of the organizational
distribution of the filtered costs. By clicking on an item in the list more
information about the subscription or organization is displayed.

5.2 Identifying concepts and their relationship

Some concepts and attributes was directly extracted from the use case, among
them user, module, subscription, organization etc. However it is not clear
how the invoice data is represented and how the different measures relate
to each other. An analysis of the source system’s data model was therefore
performed.

5.2.1 Analysis of STAX data model

In STAX the invoice data are calculated periodically by a report server and
stored in a SQL server database. The lowest level of invoice data is the
invoice row which is related to a subscription in the system, as shown in the
figure below.

Figure 3: Model of invoice-related concepts in STAX

When comparing the cost analysis use cases to the data model of STAX is
it seen that the measures needed are all available in the invoice rows, which

5.2 Identifying concepts and their relationship 38

thus forms one of the main concepts of the analysis domain model. The
number of subscriptions for a certain set of invoice rows is also available by
counting the distinct subscriptions to which the rows are associated. Or-
ganizational belonging of an invoice row is given by its subscription and is
divided into a hierarchy consisting of the levels company, customer and cost
Location. However, for the type and period dimensions that is used in the
analysis there are no corresponding hierarchies defined in STAX data model.

5.2.2 Modeling the period dimension

The smallest period length used in STAX is one month and a user is likely to
want to group these months by quarter or year. At first glance it seems like
a trivial task to divide these into a hierarchy since a month is always fully
contained within a specific quarter and, similarly, a quarter is fully contained
within a year. One problem is that organizations might choose to start their
financial, or fiscal, year at different times and thus their "quarter one" might
start in March instead of January. This makes grouping more complex since
a period might require more than one parent period and the analysis must
consider the different organizations fiscal years in order to aggregate the data.

The strategy applied here was to not organize the periods into a hierar-
chy but instead realize the grouping of periods by using the start and stop
dates that are associated with each invoice. Also, instead of aggregating
the measurements by period they are aggregated by their invoice. The ag-
gregated value for a period could then be calculated by finding all invoices
whose period is within two dates and summing their contributions. The ad-
vantage of this approach is that periods of any lengths could be aggregated
and analyzed, not only months, quarters and years.

5.2.3 Modeling the type dimension

In the input data, the type of an invoice row is entirely identified by its
textual description. These descriptions have no relation to each other and
could either come from STAX itself or from other systems owned by the
telecom operator. The number of different descriptions in the source system
is in the magnitude of ten thousand and some examples of them are displayed
below.

• Mobile Sub (New subscription)

5.2 Identifying concepts and their relationship 39

• Online Turbo 3G

• To 077 number

The use case specifies how the user drills down through a three-level
hierarchy in order to filter the data by their type. The following levels and
types of costs are mentioned:

• Categories level consisting of the three types fees, fixed traffic, mobile
traffic

• Call group level, consisting of types such as onetime fees, international
calls, datatraffic, messaging services etc.

• Call type level, consisting of types such as SMS, MMS, Received abroad
calls, abroad calls etc.

To complicate things further some of the types at lower levels were ap-
plicable for more than one category, international calls can for example be
a sub type of both fixed and mobile traffic. Also, not all types are divisible
into three levels, some might contain more and some might contain fewer
levels. As an example, the cost type "Onetime fees", which is a child of the
category "Fees" does not have any child types and thus contains only two
levels.

With this knowledge taken into account it was decided to split the type
dimension into two dimensions, one for the top-level category of the costs
and one for the underlying type of the costs. In other words the invoice rows
are associated to both a type as well as one of the three categories. By doing
so the measures can, for example, be grouped both by international calls in
general but also further drilled down by their category, fixed or mobile traffic.
To allow the sub type dimension having a dynamic number of levels it was
decided to model it as a parent-child hierarchy.

By using a set of mapping rules – maintained by a system administrator
where each known textual description is associated with a category and a
type — the invoice rows from the input data can be mapped to a member of
each dimension.

5.3 Generalizing the concepts 40

5.3 Generalizing the concepts

From a business perspective one of the aims for the system was to support
the analysis of telecom-related invoice data from other source systems — or
data providers — and not only STAX. In other words, the system should be
modeled as generic as possible within reasonable limits in order to minimize
the development needed when new data providers are connected.

In the context of analyzing telecom-related invoice data — which is the
main purpose of the system — the measures costs, call length and number of
calls are all applicable for a generic case. If needed, additional measures could
pretty easily be added by adding new attributes to the invoice row concept.
Also, it was decided not to touch the modeling of periods, categories and
types since these were considered generic enough; a period is a globally well-
defined concept and the categories and types are defined in the system itself
and will be used for any provider.

However, two major problems were identified from a generic point of
view; the modeling of the organizational hierarchy as well as the mapping
rules applied when assigning a category and a type to the invoice rows. The
organizational hierarchy in STAX is not very generic and other providers
might use different hierarchies in order to define organizational belonging.

The organizational hierarchy containing the levels company, customer and
cost location was therefore replaced by the two concepts organizational level
and organizational node in order to allow different providers specifying their
own number, and labels, of levels.

Not only the hierarchical levels of the organizations are likely to differ
between providers, but also the attributes of the organizations and the sub-
scriptions. During the drill-down described in the use case only the hierarchy
and the names of the organizations are used, but a user is also supposed to
be able to view information about a specific subscription or an organization
— such as owner, address or similar — later on in the use case. However, the
only attribute that can be considered valid for any provider is name which is
why any other attributes are left unmentioned in the domain model. In or-
der to allow for storage of other attributes a provider-specific implementation
needs to be done, as described in the Implementation chapter.

In order to generalize the mapping rules described in previous section this
concept was associated to the provider concept, thus allowing each provider
to define their own mapping rules.

5.4 Strategies for slowly changing dimensions 41

5.4 Strategies for slowly changing dimensions

Periodically, the system is fed with invoice data containing all information
needed by the system, such as the invoice rows and any related dimensional
data such as subscription and organizational belonging. Even though the
invoice rows represent new data to the system the related data, i.e. the
dimension members, might already reside in the system. This data might
change over time — referred to as slowly changing dimensions — and a
strategy for how to handle these versions of dimension members is needed.

One approach is to treat each unique version as a unique member in the
dimension. The problem with this approach is that the connection between
the versions is lost, thus no comparison between the versions can be done,
which is required in the use case. Some kind of custom mechanism needs to
be implemented at a higher level in order to group different versions.

Another approach is to keep the latest version as a member, i.e. when a
new version appears the old is written over in the dimension. However, this
will destroy the historical data which might be unwanted when analyzing
older periods of time.

The dimensions subject to change are the type and organizational be-
longing. The periods are immutable in that sense that a member is defined
by its own value. For example, "March 2010" cannot change to "February
2010" or similar. An analysis of the cost analysis use case was performed
in order to identify the cases when changes within these dimensions could
cause a problem. Each case was discussed with employees at Links in order
to develop a strategy for how to handle them.

1. Organizational belonging of costs Each post in the system is as-
sociated to a subscription which in turn are associated to an organizational
hierarchy. The attributes of the posts could be aggregated on different levels
within the organization. When an organization moves within the hierarchy,
it was important to ensure that any previous posts associated to the organi-
zation are not reflected in the new hierarchy. For example, if cost location
moves from company A to company B in January 2010 this means that posts
belonging to the cost location only should be included in the aggregations of
company B if they regards a period after January 2010. Any previous costs
should still belong to company A.

The solution to solve this was to create a dimensional member if and only
if the organization hierarchy is changed. Other changes such as name or other

5.5 Domain model 42

information are updated to reflect the last known version of the members. In
order to maintain a connection between two members that has been assigned
to a new hierarchy the concept organizational node and subscription were
extended with a relation, predecessor. An old version of the member is this
associated to the new version of the member.

2. Organization filtering The organizational filter displays the names
and the organizational belonging of the organizations authorized to the user
and is loaded in the first step of the use case. The problem here is how to
handle the display of organizations that change name or that has been moved
within the hierarchy. Since the filter is loaded very first in the use case and
does not depend on the periods selected it was decided to display only the
current state of the moved organization, meaning that previous states of the
organizations are hidden.

Due to the solution in the previous case the organizations might exists
in different versions. This is solved by only displaying members for which
no predecessor exists and thus only the current state of the hierarchy are
displayed.

3. Type of costs Similar to the previous case, the types of costs are
also organized into a hierarchy which might be reorganized over time. A
major difference compared to the organizational dimension is that the type
hierarchy is defined in the system itself and not by the providers. It was
therefore decided that a change in the type hierarchy would be reflected to
all costs in the system, even those retrieved before the change took place.
This strategy doesn’t require any versioning since the members of the type
dimension only exists in one version, the latest.

5.5 Domain model

The analysis resulted in the domain model described in this section.

5.5.1 Concepts

Provider A provider is an actor that feeds the system with data. All data
in the system are directly or indirectly related to a provider. In the current
state of the system only one provider exist, namely STAX.

5.5 Domain model 43

Figure 4: Diagram displaying the concepts and their relationships in the
domain model

5.5 Domain model 44

User A user is able to login to the system. Each user is authorized to
analyze data for one or more organizational nodes and has access to one or
more modules of the application.

Module A module is a sub-part of the system that provides the interface
and functionality needed for a specific use case. Examples of modules are
Cost analysis, Administration etc.

Organizational level An organizational level belongs to a provider and
represents a level within the providersŠ organizational hierarchy. For ex-
ample, STAX defines the organizational levels company, customer and cost
location.

Organizational node An organizational node could be for example a com-
pany, a sub-division of a company or an employee. It is connected to an
organizational level and could have a parent organizational node.

Subscription For cost analysis purpose the subscription could be seen as
the lowest level of the organizational node hierarchy. The reason to separate
the subscription concept from the organizational node is that other parts of
the system are likely to use the subscription concept for other purposes.

Period A period simply defines a start and a stop date and represents a
time interval.

Invoice An invoice belongs to a period and is associated to a number of
invoice rows, or posts.

Post A post represents an invoice row and defines the measures of interest
when performing a cost analysis. A post is directly or indirectly associated
to the dimensions period, organizational belonging, category and type.

Post category A post defines the top-level category of posts and could be
one of fixed traffic, mobile traffic or fees.

5.5 Domain model 45

Post type A post type is used to describe the sub-type of a post. A post
type could have a parent post type in order to structure the types within a
hierarchy.

Mapping rule A mapping rule could be anything that maps the provider-
specific categorization into a post category and a post type. For example,
for STAX these rules defines the mapping between the textual descriptions
into the concepts of the domain model. The mapping rules are applied as
the system is fed with data.

6 Implementation 46

6 Implementation
The implemented system contains a wide range of components and several
third-party components and frameworks were used during the work. This
section aims to explain the functionality, connection and implementation of
these components for which some are described in detail while some are only
briefly described.

6.1 Overall architecture

6.1.1 Deployment model

The system in its deployed state is built upon a three-tier architecture which
involves a data storage tier, an application tier and a client tier. As for
most web applications, the client tier resides in a web browser and uses
web technologies such as HTML, CSS and javascript in order to provide
an interactive user interface. The browser communicates over the HTTP
protocol to a web server running on Internet Information Services (IIS) in
which the application tier resides. The data in the system is located on
a separate database server and contains a relational database running on
Microsoft SQL Server 2008 and an OLAP Cube — where pre-calculated
aggregations from the relational database are stored in order to allow for fast
reading performance — running on Microsoft SQL Server Analysis Services.
The web server and the database server are connected to the same LAN
in order to provide a high-speed communication link between them. Both
the web server and the database server are run upon the operating system
Windows Server 2008.

Except from the IIS web server another application resides in the applica-
tion tier. This application is called the Data Extractor and is responsible for
periodically polling the data providers for data and — if any data exists —
store this data within the data tier. The Data Extractor uses a command-line
interface which makes it easy to schedule using the built-in task scheduler in
Windows.

6.1.2 Application tier architecture

The application tier is developed upon the .NET Framework and uses a
layered architectural style consisting of the layers data access, business logic
and presentation. In this architectural style — which is based on the design

6.2 Relational database design 47

pattern Separation of Concerns — each layer focuses on a specific area within
the application and exposes its functionality by public interfaces [17]. The
main reason for using layers is to promote reusability. For example, in the
future it might be of interest to develop a user interface targeted to mobile
clients. In order to achieve this only the UI layer needs to be rebuilt while
the lower layers can be reused.

The layers resides in separate assemblies and interact to each other using
a top-down approach which means that a layer only interacts with the layer
immediately below itself and that a lower layer never calls a upper layer.

Each layer has access to a separate assembly containing a set of classes
— referred to as business objects — that represents the data in the data tier.
The business objects and the layers of the application are further described
later on in this chapter.

An exception of the layered architecture is that the data extractor by-
passes the business logic layer and in some cases also the data access layer.
This is done in order to retrieve and to persist data that are not part of the
business objects model, such as logging information and retrieval history.

6.2 Relational database design

The modeling of the relational database followed from the domain model
described in the Analysis chapter. When going from a domain model to a
relational schema there exist a number of rules-by-thumb that can be used
[6]. Basically, each concept in the domain model is realized by a database
table with a primary key and each attribute is converted to a column. For
the relationships in the domain model different strategies are applied depend-
ing on the cardinality of the relationship. One-to-many relationships in the
domain model are realized by using foreign keys, which are made nullable
if the one-to-many relationship is optional. Many-to-many relationships are
realized by using a cross reference tables.

These rules-by-thumb where thus applied for all concepts in the domain
model. However, the modeling of the provider-specific fields associated to
subscriptions and organization were still to be done.

6.2 Relational database design 48

6.2.1 Realizing the provider-specific attributes for organizations
and subscriptions

In the domain model the concepts Organizational Node and Subscription
only have one single attribute, name. This is enough in order to fulfill the
filtering and drill-down parts of the use case but eventually the user might
want to view the details for a specific item. The problem here is that these
details might look different for different providers and different organizational
levels.

One solution to this problem would be to retrieve the needed details from
the provider by request, for example via a web service. This would not require
any extra storage in the system and the providers can have full control over
the data sent. However, this solution was not accepted due to the possible
performance overhead when sending data over a network.

Instead, it was decided to create provider-specific tables where detail
data associated to the affected concepts are stored. More specifically, each
provider has at least one table containing subscription details and one ta-
ble containing organizational node details, and each row in these tables has
a reference to the subscription or organizational node it represents. If the
subscription or organizational node details contains any one-to-many rela-
tionships additional tables can be created.

This solution is good for two reasons. First, it separates the data for
which aggregations and calculations are performed from the data needed for
presentation of details. Thus the related dimensions in the OLAP cube are
unaffected as new providers are added to the system, i.e. no change of MDX-
queries or dimension definitions needs to be done. Secondly, it allows the
providers to use whatever relational model they want for their detailed data
since no assumptions are made for it.

For the initial data provider, STAX, three provider-specific tables were
created.

STAXSubscriptions contains the detail fields needed to display a sub-
scription from STAX, such as installation address. Each row has a foreign
key referencing the subscriptions table.

STAXSubscriptionProductRows contains the product rows associated
to each subscription and has fields for product name, quantity and price.

6.3 OLAP Cube 49

STAXOrganizations contains the detail fields needed to display a com-
pany, customer or a cost location from STAX. Since the hierarchy of the
organizations is merged into a single row this table contains a lot of redun-
dant data but also allow for fast reads since no joins are needed in order to
retrieve the full hierarchy of an organization.

6.3 OLAP Cube

6.3.1 Cube Design

The design of the relational database supported a relatively easy transition
into an OLAP solution. The data were structured into tables that roughly
could be translated into the fact table and dimensions modeled in the cube.
The fact table Posts consist of the actual numerical data that is to be ana-
lyzed as well as the references to the dimension tables for the context the data
is subject for. This fact table contains all the recorded rows from the corre-
sponding database table although some additional meta-data is not added to
the cube. The cube is built up from the following data view of the relational
data:

• Subscription

The lowest organizational like dimension. The members can be roughly
thought of as the users of telephones in the organization. Not every
fact row does reference a subscription however meaning it needs to be
its own dimension instead of joined with Organization.

• Organization Contains the structural view of the CC’s internal organi-
zational structure.

• Post Type Parent-child dimension for grouping the fact rows on differ-
ent types of calls as well as several different levels of granularity.

• Post Category Simple dimension with the members Mobile Traffic,
Fixed Traffic, Fees.

• Invoice Acts as a time dimension giving a context of for what period
the facts reference.

• Facts Posts The fact table of the cube and here can be found the facts
for calculations —including amount, number of calls etc.

6.3 OLAP Cube 50

Figure 5: Model of the Cube

6.3 OLAP Cube 51

6.3.2 Aggregations

The data in the system does not in fully conform to the wanted properties
for a preferred data source to gain the perfect OLAP performance boost.
Specifically both the Subscription and Organization dimensions contain a
fairly high amount of members that increases in a somewhat logarithmic
way with respect to number of fact rows. While the dimension Subscription
does contain a huge amount of members —possibly ranging in the rank of
millions— it is not as frequently used in analysis as other the dimensions. The
user may only opt to analyze the costs grouped by subscription at the latest
last level of the application. In combination with this a user only has need
to view a small —but hopefully the most interesting— portion of all possible
subscriptions at the same time which further decreases execution time. In the
case of a user actually wanting a full report of all subscriptions the duration
of retrieval is not as important. Still, the high amount of members and
being rarely used means that if the processing time gets unfeasible and/or
storage load becomes too great the dimension Subscription is certainly a
likely candidate for run-time analysis and calculations.

The Organization dimension consists of three different levels of granular-
ity with the top level including a fairly limited number of members and levels
below exponentially increasing with the total number of members at the very
bottom ranging in numbers of possibly hundreds of thousands. Although the
higher levels will be more frequently used all layers can be accessed at ev-
ery stage in the program. This means performance could be vital even at
the bottom and a longer processing time and bigger storage space may be
acceptable in this case. To improve performance and processing time the
data can be divided into physical different partitions on the hard drive. For
example creating partitions for the members or groups of members that are
known to be related to each other on the top level of Organization would
mean only partitions affected by newly inserted data would need to be re-
processed. Also users query only a part of the full cube (all partitions) which
slightly improves performance.

6.3.3 Processing

It is possible to have a more or less real-time OLAP solution that with quite
short latency reflects the current state of the underlying data source(s) [8].
While this is a preferred solution in situations with frequent changes to the

6.4 Data extraction 52

data and the need to appear like a real-time system it comes with a price
of automatic polling and less control as well as performance decrease while
refreshing the state. For the current system the updates to the relational
database occurs on an automatic known schedule and thus all that is needed
is to start the incremental processing of the cube after the input to the
data source has been completed by the Data Extractor, as described in next
section.

6.4 Data extraction

Too feed the system with data a console application called the Data Extrac-
tor was implemented. In general the application performs three tasks, each
one of them is executed by providing the command-line interface with an
appropriate flag.

1. Poll the provider for to see if there are any new or updated invoice
data to retrieve, referred to as header retrieval. 2. Poll the provider for the
actual invoice data needed, parse it and store it in the relational database,
referred to as detail retrieval. 3. Trigger a refresh of the OLAP cube.

For the two first tasks, the application uses a web service method exposed
by STAX in order to retrieve the data. The web service method returns a tab-
ular data set represented as a XML-document where each node corresponds
to a row and each attribute corresponds to a column. Two different types of
data sets are used; one that contains header information for the invoices on a
given agreement in STAX and one that contains the actual invoice details for
a specific invoice. The latter thus contains the data of interest while the first
one is used in order to know for which invoices details should be retrieved.

6.4.1 Header retrieval

The header retrieval is performed for a given set of agreements and for each
agreement a data set is retrieved from the web service. This data set contains
the identifier and a couple of aggregated values — such as total cost and
number of rows — for all invoices on the given agreement. The data extractor
maintains this information, together with a timestamp, a retrieval status
and a processing status, in a log table that is used in order to control for
which invoices details are requested. On retrieval, each row in the data set
is iterated and the log table is searched for an entry with the same invoice
identifier. Either of the following takes place:

6.4 Data extraction 53

- If no entry in the log table, the row is inserted, assigned retrieval status
"not retrieved". - Otherwise, if one or more entries are found, compare the
aggregated values of the last retrieved entry to those of the row. If changes
are detected, the row is inserted and assigned retrieval status "not retrieved".
If also the found entry has retrieval status "not retrieved", delete this entry
from the log table.

Note that in any case that data is written to the log table by during
the header retrieval the current timestamp and the processing status "not
processed" are assigned to the row.

The reason to include the aggregated values in the header information
is to detect possible changes to the invoice data in STAX. In some cases,
invoices might be re-generated within STAX and a change in this data will
most probably be reflected in the aggregated values. By using this strategy
these changes are eventually reflected in the system.

6.4.2 Detail retrieval

The actual invoice data is retrieved by iterating the entries of the log table
for which the retrieval status are set to "not retrieved". For each entry the
web service is queried using the invoice identifier of the entry. When the
invoice details are inserted into the database the corresponding entry in the
log table are assigned the retrieval status "retrieved".

The received data set contains all invoice data that is needed, which
includes related data such as organizational belonging, subscription informa-
tion etc. This means that the data set is heavily denormalized and contains
a large portion of redundant data.

The mapping of the denormalized data into the relational database follows
a recursive pattern. Each concept is assigned a custom helper class, called
extractor, which is responsible for extracting the fields of the data set relating
to that concept and to create a corresponding row in the appropriate database
table if no such row already exists. In order to not violating any foreign key
constraints the extractors must thus first ensure that any related data are
extracted. The rows of the data set are thus sent one by one to the extractor
representing the lowest-level concept, namely Post, which in turn starts by
invoking the extractors for the related concepts Type and Subscription before
it continues execution.

For the extractors associated to the Category and Type concepts the
provider-specific mapping rules are applied. The extractors reads the textual

6.5 Business objects 54

description of the invoice row and uses a lookup table in order to map it to a
category and a type. In the case when no mapping exists the post is assigned
to a special type and category representing unknown descriptions, until it is
appropriately mapped by a system administrator.

In order to check whether the data already exists in the database is per-
formed by using the numerical identifiers coming from STAX, which are
stored in the provider-specific tables described earlier. In some cases, recall-
ing the versioning strategy that was described in the Analysis chapter, other
fields are also used in order to determine whether the data has changed or
not. The checks for existence requires a large amount of lookups to be per-
formed and in order to avoid polling the database with SELECT-commands
each extractor maintains a bit-array where the identifiers forms the indices.
The bit-arrays are filled on first request, which of course could take a number
of seconds, but was in the long term more efficient since the lookup time was
heavily reduced.

6.4.3 Refreshing the cube

The refresh, or processing, of the cube is performed by first checking whether
or not any non-processed invoices exists in the log table. If so, the AMO API
is used in order to trigger an update of the related dimensions needed before
processing of the fact rows. What really happens is firstly creating a tempo-
rary new empty partition with the new fact rows being added and processed
within this. In the next step this temporary small cube is merged together
with the existing big one with adding together the calculations across the
aggregated levels. The outcome is a new ready-to-use repository in a much
shorter time than it would have taken to reprocess the entire cube from
scratch. The primary objective here is to avoid having to perform a full re-
process of the cube since this may take too long time rendering the system
either unusable or with decreased performance for an unnecessary amount of
time. The current solution supports this with adding new fact rows to the
cube taking a relatively short period of time.

6.5 Business objects

The business objects are used in order to represent the data in the data
tier and can be seen as the carriers of information between the layers of the
application. The components of the data access layer are responsible for

6.6 Data access layer 55

translating the data in the data tier into business objects and vice versa.
The business logic and the presentation layer might then work with these
objects and does not need to depend on any storage-specific representation
of the data.

There are two types of business objects, business entities and OLAP ob-
jects. The business entities represents data from the relational database and
are automatically generated by the object/relational mapper (O/RM) Telerik
OpenAccess, but might be manually extended and customized if appropri-
ate. The business entities exist in both a connected and a disconnected state.
The former is used within the data access and business logic layer where a
persistence context, or scope, is available. The scope is managed by Telerik
OpenAccess and keeps track of changes made to the objects. Disconnected,
or detached, entities are used in the presentation layer where no scope is
available.

The other type of business objects, OLAP objects, represents data re-
trieved from the OLAP cube. These objects have a very basic structure and
generally contain numerical values of the aggregations retrieved from the
cube together with a label describing the dimensional member for which the
aggregations are performed. Since it makes no sense to write this data to the
OLAP cube these objects are made read-only.

The two OLAP objects referred to in this reports are PostRow and Com-
pareRow, both containing the measures amount, number of calls, call length
and number of subscriptions together with a label describing the row. The
compare row also contains an additional value and is used to represent a
difference in amount compared to a given period.

6.6 Data access layer

The data access layer has two major functions. First, it provides an interface
to the components in the data tier by offering functionality for querying and
persisting data. Secondly, it acts as a translator between the data from the
data tier and the business objects. The data access layer is separated into two
modules, one accessing data from the relational database and one accessing
data from the OLAP cube.

6.6 Data access layer 56

6.6.1 Relational database access layer

By using Telerik OpenAccess not only the business entities are automatically
generated but also the entire relational data access layer, supporting query
languages such as OQL and LINQ as well as lambda expressions on the fly.
All methods for retrieving and persisting data using Telerik OpenAccess are
performed using an instance of an object scope, which lifetimes are decided
by the business logic layer since a business method might require several
operations to be performed within the same scope. Below is two examples,
one showing how to query data and one showing how to persist data using
Telerik OpenAccess.

• Query using lambda expression and Telerik OpenAccess

//Retrieve the modules authorized for the given user
IList<Module> modules = context.Extent<ModuleRequest>().

Where(mr=>mr.User.Equals(u) && mr.IsAccepted).
Select(mr=>mr.Module).ToList();

• Code that demonstrates how to persist data using Telerik OpenAccess:

// Initiate a transaction
context.Transaction.Begin();

// Create a new user
User u=new User();
u.Name="Test";
context.Add(u);

// Persist the changes
context.Transaction.Commit();

The OLAP data access layer is used for querying the cube for the wanted
information as well as converting the results into objects that can be under-
stood also by a higher level. Given the filter that is to be applied to the cube
together with the class and method called the layer then puts together a valid
MDX string which is used against the analysis services. It then parses the
result and creates objects holding the information wanted, such as the name
of a post type, total amount and number of calls for the periods wanted. The

6.6 Data access layer 57

filter itself consists of lists of the organizations to be part of the scope, the
level of analysis, the invoices for setting the period etc.

The internal structure itself is as a whole strongly component based in
idea. One class is responsible for the cube connection while another knows
the actual interface of the cube. On a finer grained level another group of
classes puts together the different parts of the MDX query depending on what
has been requested. These parts are then translated by a component into
the resulting query. This means that the functionality is well encapsulated
and the components not connected with the nature of the specific cube or
the information coming from other layer could be used in other systems as
well.

OLAP Base OLAP Base is the only class that actually knows about the
interface — containing name/id of dimensions, measures, hierarchies etc —
exposed by the cube. Apart of defining objects and variables describing
the exposed members the class also contains common stored procedures and
using these definitions for converting objects coming from the service layer
into the corresponding OLAP representation. For example a method would
return a valid MDX set of the representation of a list of organizations given
by the in parameter of an ORM collection of organizations. Typically used
by classes needing to be able to be able to communicate with the analysis
server.

IMdxQueryProvider Classes implementing the interface must expose a
method that returns an object consisting of a valid MDX query. These fine
grained classes typically extends the OLAP Base class for understanding the
structure of the cube as well as getting access to methods assisting in more
low level work. Implementing classes would then use the information about
the wanted analysis coming from the service layer to construct the different
object like parts of the final statement. These parts are then put together to
the valid string to be queried by an MdxQuery object.

MdxQuery While the other classes responsible for creating the MDX queries
preferably use as little MDX specific syntax as possible this class does the
exact opposite. All it really does is exposing methods for adding different
parts of an MDX statement. Typically a collection of strings— representing
the measures requested in the analysis— are used as in parameters to the Ad-

6.7 Business Logic layer 58

dColumns method. Furthermore, methods for adding members to the rows,
sub scope, where clause etc. are exposed as well. The class then uses all this
info to put together a final valid MDX query which can be run against the
cube.

6.6.2 Examples of MDX queries constructed and result received

SELECT
{

[Measures].[Length],[Measures].[Quantity],[Measures].[Amount]
} ON COLUMNS

,NON EMPTY
{

[PostType].[PostTypes].[TrafficCosts].Children
} ON ROWS

FROM
(

SELECT
(

{
[Organization].[Organizations].&[99136]

,[Organization].[Organizations].&[99139]...(and more)
}

,{[Invoice].[InvoiceKey].&[3710]}
) ON COLUMNS

FROM [Cube Posts]
)
WHERE

[PostCategory].[PostCategoryKey].[Fixed Traffic]

6.7 Business Logic layer

The task of the business logic layer is to provide an interface to the business
methods of the system. The business layer applies the facade pattern and
is split among different managers, each one providing functionality needed
for a specific module of the system. Thus there exists one manager for user

6.7 Business Logic layer 59

Figure 6: Resulting matrix from above query

authorization and one manager for cost analysis. Common functionality
used in these managers are either encapsulated in internal helper-classes or
provided by an abstract base class called the BaseManager, from which every
manager derives.

Except from encapsulating the business logic in the system, each manager
is responsible for maintaining data integrity, i.e. users should only be able to
read and write data that they have access to, and therefore needs to be run
in the context of a user. This could be implemented by forcing the caller to
provide user credentials with each call, but in order to avoid excessive code
the service layer stores the user credentials in memory at successful login by
using the built-in HttpContext maintained by ASP.NET [12].

When calling the relational data access layer, the managers are responsi-
ble for providing an open and valid database scope. Following the guidelines
from Telerik it was decided to initiate one scope per HTTP request and then
dispose it as the request finish [13]. Since the scope is not accessible for
upper layers any business entities returned from the business layer must be
detached from the scope and, similarly, attached to a scope again scope when
passed from the presentation layer.

6.7.1 Managers in the application facade

BaseManager All managers share some common functionality, for exam-
ple they all need access to the current user and the database scope. For con-
venience, this functionality is encapsulated into a abstract base class called
BaseManager. The abstract member of this class is a property telling whether
or not the current user is authorized to the module associated to the manager.
In the constructor, the base manager evaluates this property and makes sure
that an exception is thrown if appropriate. As shown later, the presentation

6.7 Business Logic layer 60

Figure 7: The managers in the business logic layer

layer performs a similar check but it was decided to keep this extra layer of
security in order to allow for reuse of the business layer.

Authorization manager The authorization manager contains function-
ality that should be accessible by any user. Among them are authenticated-
related functions such as user validation, reset of passwords as well as func-
tions for retrieval of authorizes modules and organizations.

Cost analysis manager The interface to the cost analysis facade was
identified directly from the steps in the cost analysis the use case.

For the retrieval of periods, a method called GetPeriods() is used in order
to return the periods for which invoice data exists for the current user. The
business object Period is used in order to represent the data.

In the current state of the category and type hierarchy contains of at
most three levels. Thus, three methods exist, each returning invoice data
grouped by a specific level in this hierarchy. These methods are very similar
and in large parts share the same signature. All methods take a set of or-
ganizations, a period and an optional period for comparison as input. The
two methods returning data from the second and third level of the hierar-

6.8 Presentation layer 61

chy takes additional arguments specifying the parent type or category to be
filtered on.

The methods create a dictionary with the periods as keys and a collection
of PostRow-objects as the values. The OLAP data access layer is queried for
data for each given period and the retrieved collection of PostRow-objects
are added to the dictionary together with the period before the dictionary
is returned to the caller. Comparisons between the periods can then be per-
formed with respect to any value in the PostRows, since all data is returned
and associated to the corresponding period.

The retrieval of subscriptions and organizations are performed in a sim-
ilar way with one the major difference, the comparisons of the periods are
performed within the OLAP cube and the data returned is not divided by
period. The reason for this is that only a limited number of rows are returned
and in order to select what rows it was decided to use the ones for which
the amount has grown most. For performance reasons this sorting must be
performed by the OLAP cube. Therefore another type of business object,
CompareRow, is returned.

6.8 Presentation layer

The presentation layer is built by using the ASP.NET web forms framework
and contains the logic for rendering the user interface of the application. The
graphical look and the interaction flow was developed using CSS, HTML and
javascript and followed the graphical sketches that were provided from the
external interaction company.

6.8.1 User authentication and authorization

The user authentication and authorization is implemented by utilizing a cou-
ple of built-in mechanisms and features that ASP.NET provides. First of all,
a number of built-in server controls are used in order to create a user inter-
face and functionality for such things as logging in, resetting and encrypting
passwords etc. These server controls uses an abstract base class called a
membership provider, for which an implementation is done. On successful
login, the membership provider creates an authentication ticket, stored in a
cookie at the client’s web browser, which is sent to the server on each re-
quest in order to verify that the user is authenticated. If no authentication
ticket exists, or if it is expired, the client is automatically redirected to the

6.8 Presentation layer 62

Figure 8: The graphical sketch of the analysis web page

6.8 Presentation layer 63

login page. In the custom implementation of the membership provider ba-
sically three methods are implemented by hand; one verifying that a given
username and password is valid, one resetting the password for the user and
one increasing the number of failed login attempts for a specific user. The
remaining logic is performed automatically by the base class. For the custom
implementation, the authorization manager class in the business logic layer
is used.

Using the membership provider keeps non-authenticated users out of the
system, but since different users are supposed to have access to different
areas, or modules, of the system a role-based access control is needed. This
is achieved by mapping each module to a specific role and by using another
security-related feature of ASP.NET, the role provider. Similarly to the
membership provider, the role provider is an abstract class providing the base
functionality for role-based security. The custom implementation of the role
provider are responsible for retrieving the names of the modules that a specific
user are authorized to access and the role provider are then automatically
performs a check in each request whether or not the user are authorized to
the requested content. A configuration file is used in order to specify what
content that is accessible by what roles. All web forms associated to a specific
module is then added to this folder and is then automatically protected for
non-authorized users.

Since both the membership and role provider uses a configuration file
changes such as shortening the expiration time of authentication tickets or
granting access to a specific module can be performed without the need of
redeploying the system.

6.8.2 State, postbacks and asyncronous requests

During the drill-down of the cost analysis use case, the user should see the
old choices made, i.e. the entire use-case must reside on one single web page.
In other words, as the user navigates through the type hierarchy, the server
must be contacted and render the new data as the old resides in the same
place as before.

In ASP.NET, the classic way to achieve this to use the built-in postback
mechanism. The advantages of this are that it is built in and rather trivial
to use. The downside is that we need to render the entire web page again,
even the parts that are already rendered, and send the full content back to
the client. An alternative is to use an ASP.NET AJAX postback instead,

6.8 Presentation layer 64

where only a small part of the web page is rendered by using. This reduces
the data amount sent to the client.

This disadvantage of both these alternatives is that they both cause a
full postback to the server. The entire life-cycle of the page is executed, and
the viewstate is processed and sent back to the client. A third alternative
is to use a mechanism called ASP.NET client callback instead, causing only
a small part of the page life cycle to be executed. This approach still sends
approximately the same amount of data to the client, but reduces the amount
of server-processing.

When comparing these alternatives the callback mechanism turned out
to be the far most efficient one from a performance perspective [13]. Since
client callbacks requires a relatively large amount of client-side scripting to
be written a component, called RadXMLHttpPanel, is used to utilize the
implementation.

Thus, each updatable part of the cost analysis web page is put into a
RadXMLHttpPanel, or simply a panel. The panels might contain regular
server controls and/or HTML-content. Typically the panels contain a data
table and a number of chart controls as described in the Technology chap-
ter. Each panel are associated to two client-side event handlers; one post
request handler that are invoked after a client callback has been performed
and one error handler that are invoked in cases when a HTTP error occurs.
In order to trigger a client callback a function within the client-side API of
the component is invoked and passed a string argument that is sent to the
server through a HTTP POST request. As the response is retrieved from the
server, the content of the panel is updated and the post request handler is
invoked.

Since the server cannot access the client states of the UI components
when, their state must be explicitly sent together with the HTTP POST
request in order for the server to know which data to query for. Thus, before a
panel is updated the states of each UI component of interest are concatenated
into a comma-separated string containing key/value entries corresponding to
the parameters needed by the server.

The HTTP POST requests triggered by the panels cause an event-handler
to be executed by the server. Each panel has a custom event handler which is
responsible for retrieving the requested data from the business layer and then
to update the server controls within the panel accordingly. The arguments
sent to the business layer are set by parsing the comma-separated string that
was passed with the request.

6.8 Presentation layer 65

6.8.3 Combining scripts and CSS files

From a maintenance point of view there is of importance to modularize the
CSS-files and javascript-files used in the application into several files. On the
other hand web browsers perform better the smaller the number of request
are, so one large request is generally faster than several small since CSS-files
and JS-files are not downloaded in parallell [14].

The presentation layer utilizes mechanisms provided by Telerik that merges
the CSS-files and JS-files into one single file. This file is generated on first
request and then resides in the server memory.

7 Performance testing 66

7 Performance testing
Through the development process the performance of the system and its
components were continuously evaluated in order to support the selection of
technologies and patterns used. This part will describe how the tests were
performed as well as presenting some of the.

Maintainability is often achieved by using well-known design patterns
and by dividing the system into independent, specialized components, also
known as separation of concerns. However, since these design patterns mainly
considers the reusability of the system they are in many cases associated with
a performance cost [17]. The aim of the work was to create a reusable and
flexible system while it at the same time should be able to deliver the response
at an acceptable speed.

The purpose of the performance testing was twofold. Except from pro-
viding support for the selection of technologies and design patterns used, the
purpose was to identify where the bottlenecks in the system are located when
heavy loads are generated.

7.1 Web performance testing

In order to achieved useful test data it is necessary to develop a performance
test plan, where the following questions are considered:

• What should be tested? Which test cases do we need?

• What measures should be done?

• How to generate the load?

When developing the test cases it was decided to target the tests to the
system as a whole, rather than the individual components. By using this
approach not only the individual components are implicitly tested, but the
interaction between them is tested as well. So, in order to achieve realistic
test cases the presentation tier of the system —- the web application — was
targeted.

In order to simulate a visit to the web site, a way to generate and send
HTTP requests to the web server is needed. Visual Studio Ultimate version
can create so called web test, which does exactly that. It is as simple as
pressing a "record"-button, browsing the web site in a web browser and then

7.1 Web performance testing 67

pressing "stop". During the recording, Visual Studio logs all requests made
and saves them into the web test. When running the test later on Visual
Studio generates the very same HTTP Requests to the server as during the
recording.

The web test follows the main path in the cost analysis use case and when
recording it, the following actions were performed:

• Login to the system.

• Load analysis page.

• Select category "Mobile traffic".

• Select call group "International calls"

• Select call type "Received international calls".

• Select the first subscription in the list.

One problem with this web test is that it is not parameterized. When re-
running the test it will always use the same user credentials and the selected
drill-down path as well. Running 50 instances of this test simultaneously is
not very realistic and might probably give a better result than if 50 different
users — selecting different paths were using the web site, due to caching
involved at different levels of the system.

In order to solve this problem, a plugin were developed for each step in
the test case. A web test plugin could handle different events in the execution
of the test and data can be shared between the different steps in the web test
by using a globally accessible context. Most importantly two of the exposed
events are used; the pre-request event, which takes place before the web
test generates the request, and the post-request event that occurs when the
response from the web server is retrieved. The pre-request handlers are used
in order to generate random input data and then modify the appropriate
request parameters sent to the server. The post-request handles are used in
order to generate the data for which the randomization is performed.

More specifically, in the plugin for the first step where a user is logged in
to the system, a pre-request handler is used in order to randomize among a set
of pre-defined username/password combinations. The appropriate request-
parameters are then modified and upon request sent to the server.

7.2 MDX performance compared to SQL 68

For the steps in the performed during the drill-down, the outputted
sub-types are identified in the post-request handler by parsing the HTML-
response. One of the sub-types is selected randomly and added to the web
test context. In the pre-request handler for the next step the appropriate
form parameter values are then set by using the sub-type specified in the
context.

By doing this parameterization we achieve a more realistic scenario when
running many instances at once.

7.1.1 Load generation

In Visual Studio a web test can be executed in isolation or within a load test.
In a load test the appropriate web test is selected and parameters — such as
number of users, running-time etc — is defined. The load test can thus be
used to run the web test in many instances simultaneously and when done a
detailed summary is displayed describing the response-times, throughput for
each one of the steps performed in the web test.

7.1.2 Measures

The main measure of interest was the throughput of the system, i.e. the
number of requests that could be handled per second.

7.2 MDX performance compared to SQL

As a way to more fully illustrate the performance difference between the
OLAP solution and using SQL to extract the information directly from the
relational database a number of tests were performed. The tests were de-
signed from real usage of the application with the MDX statements trans-
lated roughly into similar resulting output in SQL. The result clearly shows
some interesting differences and how superior pre-calculated aggregated data
can be for analysis in comparison to a normal relational database.

7.2.1 Testing environment

Both the MDX and SQL statements were inserted and executed by SQL Man-
agement Studios with SQL Profiler monitoring the duration of the execution.
All tests were run several times to realize if any unexpected spikes would oc-
cur although none were observed and every resulting value was close to the

7.2 MDX performance compared to SQL 69

average. Worth nothing is the relational database was in fact somewhat de-
signed for an easy transition to the OLAP system and the cube consists of
aggregated data on the recommended default levels. This should give a solid
reasonable basis for the tests.

7.2.2 Design of tests

The goal of the testing was to highlight any main differences in the length of
response from the MDX and SQL queries depending on the type of request.
There were basically three connected areas of interest that the tests were
designed to give interesting feedback for:

• Proof of concept that the multidimensional model performs better for
the current analysis system.

• Showing —if any— the major differences of how aggregated data gives
different response times than requests for data at a lower level.

• Both the relational database and the analysis server comes with a built-
in cache for quickly answering new queries related to information re-
trieved earlier. In what way does this affect the results?

The MDX queries used for the tests are those given by a sample run of a user
using the application for analysis from the top to the bottom. All four levels
shows the result for the measures Amount, NrOfCalls, Length, NrOfSub-
scriptions with the rows on each level corresponding to an increasing amount
of members. The first level features only three different PostCategories and
the next two levels relates to two different levels in the parent-child hierar-
chy PostTypes with still a somewhat limited number of members —the lower
level in the order of dozens. The lowest level displays individual subscrip-
tions which currently rank to several hundreds of thousands of rows inserted
into the database. The number of organizations equals to about forty two
thousand and the total number of Post fact rows is just above five million.

Important to note is that the translation of the MDX queries into an
SQL counterpart does not give exactly the same output but what is wanted
is the essence of performing roughly the same calculations. Specifically the
main difference is the SQL will not group the resulting calculations on the
correct level of PostType but this is a simple calculation in any case. As
well as this the multidimensional analysis for the subscriptions calculates

7.2 MDX performance compared to SQL 70

the difference between two periods while the similar SQL query does not.
However this should not affect more than a slightly increased absolute value
of the duration. Further for all other statements the Invoice dimension is used
for stating the single period/time of interest while the set of organisations
are always on a high level within the hierarchy.

In total there were four different requests during the test which in syntax
were all somewhat similar. For comparison reasons most of the query for the
second request can be found below, both for MDX as well as SQL.

• MDX query for analyzing on fixed traffic for given period and organi-
zations

SELECT
{

[Measures].[Length]
,[Measures].[Nr Of Calls]
,[Measures].[Amount]
,[Measures].[Number of Subscriptions]
,[Measures].[PostType Id]

} ON COLUMNS
,NON EMPTY

{
[PostType].[PostTypes].[Traffic Costs]

,[PostType].[PostTypes].[Traffic Costs].Children
} ON ROWS

FROM
(

SELECT
(

{
[Organization].[Organizations].&[1234]

,[Organization].[Organizations].&[1235]...
}

,{
[Invoice].[InvoiceKey].&[1234]

}
) ON COLUMNS

FROM [Cube Posts]

7.2 MDX performance compared to SQL 71

)
WHERE

[PostCategory].[PostCategoryKey].[Fixed Traffic];

• The translation into sql

SELECT PostTypeId, SUM(Amount), SUM(Quantity), SUM(Length),
COUNT(Distinct SubscriptionId) FROM Posts
WHERE OrganizationId IN (
SELECT Id FROM Organizations WHERE ParentId IN (
SELECT Id FROM Organizations WHERE ParentId IN(1234,1235)

)
)
AND InvoiceId IN (3710) AND PostCategoryId=1
AND PostTypeId IN (
SELECT pt1.Id FROM PostTypes pt1
INNER JOIN PostTypes pt2
ON pt1.ParentId=pt2.Id INNER JOIN PostTypes pt3
ON pt2.ParentId=pt3.Id WHERE pt2.ParentId=42

)
GROUP BY PostTypeId

7.2.3 Results

All four tests were individually executed with both cleared cache before test
as well as letting the cache warm up a little with a few similar queries and
then execution

Figure 9: Table over results from MDX vs SQL comparison

The results above does in fact clearly indicate several interesting notions.
The first and most obvious being that the time needed for the analysis server

7.2 MDX performance compared to SQL 72

is highly significantly lower than that of the relational database for every
type of tested request. Further the impact on performance from data be-
ing aggregated with different granularity is also significant. The relational
database which does not do any aggregations responds within a similar length
of time to all requests while the OLAP behaves differently. The MDX query
retrieves results for the aggregated and rather limited number of members
on the first three levels much faster than the lowest level displaying results
for subscriptions —a relatively high number of members— go a lot slower.
Lastly the cached effect shows this even further: the relational database saves
only a seemingly fixed linear time while the cube actually responds pretty
much instantly to the first three queries while taking almost as long as before
for the last one.

8 Discussion and Conclusion 73

8 Discussion and Conclusion

8.1 Discussion

A concern in the beginning of the work was whether or not the OLAP cube
would be able to offer the functionality needed. By spending the first weeks
on getting a good theoretical base in this area the problems and possibilities
related to data warehousing was pretty clear early in the project.

8.1.1 OLAP Access Layer

The architecture could of course have been designed in many different ways
with varied levels of encapsulation and extensibility. Also the communica-
tion and queries themselves could be set up in different ways. The adomd
framework supports the use of olap objects such as dimension or a cube but
really using these for smoothly running different queries does not really help
anything in terms of complexity, one still need to know what one is doing
and then there is no need. Not to mention the difficulty to properly debug
while learning If using existing components one do not understand. Quite
another possibility though would be to use reports or customized expressions
on a pre-set basis that would then require parameters as input. This may
certainly be a viable option if cube structure is not very likely to change
a lot and most or all of the required queries are already specified and set.
However, in this case with an agile development of both the system as well
as the cube it would be far from optimal due to the small changes that would
be needed would take far longer on the lower level of implementation.

8.2 Conclusion

The work that was performed resulted in a web application running on top
of a data warehouse and offers all functionality that was stated in the ini-
tial cost analysis use cases. The final product we beleive is a good example
of a business intelligence tool that offers consistent and useful analysis op-
tions together with a good response time with which users can base possible
decisions on.

One of the key factors for the project to be finished within the desired
timeframe was that the development of the web interface and the underlying
infrastructure utilized a large number of third-party components and frame-

8.2 Conclusion 74

works. This minimized the hours spent on implementation work and focus
could therefore to a large amount be directed to the problem domain rather
than technical details.

During the process, the performance and extendability was throughously
considered. However, neither of these are easily measured. The performance
of the system might be tweaked in many ways but the main focus was to
acheive a scalable system, for which reason it was architected as a 3-tier
solution. However, the response time for which invoice data is retreived is
drastically improved when comparing to the intial system. We can conclude
that the largest contributor to this performance gain was the using of an
OLAP cube, which was not very surprising since calculating data run-time
cannot beat the performance of precalculated data, no matter of CPU power
etc.

There are several different important building blocks needed for devel-
oping an OLAP solution and all vital for a good behaviour of the system.
Much work has been focused on writing efficient MDX queries and the overall
design of the cube as well as an automatic processing of the data. While we
are content with the final outcome further work with design and optimization
could still be made. Because of too many members of one or two dimensions
the data from the underlying system was not completely conformant for the
optimal performance increase for a multidimensional architecture with pre-
calculated results. However the user always starts the analysis of data from
the top meaning the system in most cases responds rapidly in a way that
would not be possible with a normal relational database.

Future developement of the application should focus on both new analy-
sis functionality for end user as well as optimizing performance. Continous
performance testing and redesign of the cube together with it’s access layer
is likely to be needed in the future as well. Extended functionality and in-
creased performance must however not restrict the current scalability of the
system due to the fact requirements are expected to change in the future as
well.

REFERENCES 75

References
[1] Matt Carroll. Sql server best practices article. Technical report, Mi-

crosoft, March 2007.

[2] Surajit Chaudhuri and Umeshwar Dayal. An overview of data ware-
housing and olap technology. SIGMOD Rec., 26(1):65–74, 1997.

[3] Peter Evans. Business intelligence is a growing field. http:
//www.databasejournal.com/sqletc/article.php/3878566/
Business-Intelligence-is-a-Growing-Field.htm, 2010.

[4] Mark Gschwind. Choosing olap or aggregate tables in an aggregate strat-
egy. http://www.information-management.com/specialreports/
20030218/6364-1.html, February 2003.

[5] P. Hylandy H. Hasan. Using olap and multidimensional data for de-
cision making. Technical report, Faculty of Commerce, University of
Wollongong, 2001.

[6] Jennifer Widom Hector Garcia-Molina, Jeffery D. Ullman. Database
Systems: The Complete Book. Prentice Hall, October 2001.

[7] Edward Melomed Irina Gorbach, Alexander Berger. Microsoft SQL
Server 2008 Analysis Services Unleashed. Sams, December 2008.

[8] Justin Langseth. Real-time data warehousing: Challenges and solutions.
http://www.databasejournal.com/sqletc/article.php/3878566/
Business-Intelligence-is-a-Growing-Field.htm, August 2004.

[9] Michelle Wilkie Mary Simmons. Best practice: Optimizing the cube
build process in saső 9.2. Technical report, SAS Institute, Cary, NC,
2009.

[10] MicroStrategy. The case for relational olap. http://www.cs.bgu.ac.
il/~dbm031/dw042/Papers/microstrategy_211.pdf.

[11] MSDN. Key concepts in mdx. http://msdn.microsoft.com/en-us/
library/aa216772(=SQL.80).aspx.

[12] Microsoft Developer Network. Msdn library. http://msdn.microsoft.
com/en-us/library/ms123401(v=MSDN.10).aspx.

http://www.databasejournal.com/sqletc/article.php/3878566/Business-Intelligence-is-a-Growing-Field.htm
http://www.databasejournal.com/sqletc/article.php/3878566/Business-Intelligence-is-a-Growing-Field.htm
http://www.databasejournal.com/sqletc/article.php/3878566/Business-Intelligence-is-a-Growing-Field.htm
http://www.information-management.com/specialreports/20030218/6364-1.html
http://www.information-management.com/specialreports/20030218/6364-1.html
http://www.databasejournal.com/sqletc/article.php/3878566/Business-Intelligence-is-a-Growing-Field.htm
http://www.databasejournal.com/sqletc/article.php/3878566/Business-Intelligence-is-a-Growing-Field.htm
http://www.cs.bgu.ac.il/~dbm031/dw042/Papers/microstrategy_211.pdf
http://www.cs.bgu.ac.il/~dbm031/dw042/Papers/microstrategy_211.pdf
http://msdn.microsoft.com/en-us/library/aa216772(=SQL.80).aspx
http://msdn.microsoft.com/en-us/library/aa216772(=SQL.80).aspx
http://msdn.microsoft.com/en-us/library/ms123401(v=MSDN.10).aspx
http://msdn.microsoft.com/en-us/library/ms123401(v=MSDN.10).aspx

REFERENCES 76

[13] Telerik Developer Network. Telerik developer blogs. http://blogs.
telerik.com/.

[14] Yahoo Developer Network. Best practices for speeding up your web site.
http://developer.yahoo.com/performance/rules.html.

[15] Oracle White Paper. Climbing to the olap summit with oracle warehouse
builder 10gr2. Technical report, Oracle, January 2006.

[16] Sethu Meenakshisundaram Matt Carroll Denny Guang-Yeu Lee Sivaku-
mar Harinath, Robert Zare. Microsoft SQL Server Analysis Services
2008 with MDX. Wrox, March 2009.

[17] David Hill S.Somasegar, Scott Guthrie. Microsoft Application Archi-
tecture Guide (Patterns and practices), 2nd edition. Microsoft Press,
November 2009.

[18] Chris Tavares. Building web apps without web forms. http://msdn.
microsoft.com/en-us/magazine/cc337884.aspx, March 2008.

[19] Elizabeth Vitt. Microsoft sql server 2005 analysis services performance
guide. Technical report, Microsoft, February 2007.

[20] The Data Warehousing and Business Intelligence division @ Vivan. The
evolution of etl-from hand-coded etl to tool-based etl. Technical report,
Vivan Technologies, June 2007.

[21] III William E. Pearson. Optimizing microsoft sql server anal-
ysis services: Optimization tools: Usage-based optimization wiz-
ard by. http://www.sql-server-performance.com/articles/biz/
optimizing_usage_based_wizard_p1.aspx, April 2004.

http://blogs.telerik.com/
http://blogs.telerik.com/
http://developer.yahoo.com/performance/rules.html
http://msdn.microsoft.com/en-us/magazine/cc337884.aspx
http://msdn.microsoft.com/en-us/magazine/cc337884.aspx
http://www.sql-server-performance.com/articles/biz/optimizing_usage_based_wizard_p1.aspx
http://www.sql-server-performance.com/articles/biz/optimizing_usage_based_wizard_p1.aspx

9 Appendix A - Use cases 77

9 Appendix A - Use cases

9.1 Login use case

1. The systems prompts the user for a username and a password.

2. The user enters a username and a password.

3. The system validates that the username/password combination belongs
to a valid user and that the user has accepted the appropriate licence
agreement.

4. The system saves the timestamp of the successful login and loads the
start page of the system.

Alternative path – Not valid username/password combination

3. If the username belongs to a user in the system, the system logs the
failed login attempt with a time stamp. The user is then notified that
the login attempt failed.

Alternative path – Licence agreement not yet accepted

3. The system displays the details of the license agreement.

4. The user accepts the license agreement.

5. The system marks that the user has accepted the licence agreement.

6. The use case continues from step 4 in the main flow.

9.2 Cost analysis use case

Precondition The user is logged in has access to the cost analysis module.

Main path

1. The user selects to analyze costs.

9.2 Cost analysis use case 78

2. The system displays filtering options for period, compared period and
organization. Only organizations and periods authorized to the user
are displayed. By default, all organizations and the latest period are
selected. If a period exactly one year before the latest period exists
this is selected as compared period.

3. The user selects a period, one or more organizations and (optionally)
a comparing period.

4. The system displays a summary of the invoice data matching the pre-
vious selections, grouped by the categories Fixed traffic, Mobile traffic
and Fees. The following data is displayed:
- Category name
- Call length (tt:mm:ss) (*)
- Number of calls (*)
- Number of subscriptions
- Amount (two decimals)
- Difference between the amounts for the selected period and the com-
pared period. (**)
(*) For the category ŞFeesŤ no value are displayed in this field.
(**) Visible only if a compared period is selected in step 3.

5. The user selects one of the categories ŞMobile trafficŤ or ŞFixed traf-
ficŤ.

6. The system displays a summary of the invoice data matching the previ-
ous selections, grouped by call group. The following data is displayed:
- Call group name
- Call length (tt:mm:ss)
- Number of calls
- Number of subscriptions
- Amount (two decimals)
- Difference between the amounts for the selected period and the com-
pared period. (*)
(*) Visible only if a compared period is selected in step 3.

7. The user selects one of the call groups.

8. The system displays a summary of the invoice data matching the pre-
vious selections, grouped by call type. The following data is displayed:

9.2 Cost analysis use case 79

- Call type name
- Call length (tt:mm:ss)
- Number of calls
- Number of subscriptions
- Amount (two decimals)
- Difference between the amounts for the selected period and the com-
pared period. (*)
(*) Visible only if a compared period is selected in step 3.

9. The user selects one of the call types.

10. The system displays a list of subscriptions that has associated invoice
data matching the previous selections. The following data is displayed:
- Subscription name
- Call length (tt:mm:ss)
- Number of calls
- Amount (two decimals)
- Difference between the amounts for the selected period and the com-
pared period. (*)
(*) Visible only if a compared period is selected in step 3

The list is sortable and the data can be grouped by the subscriptionsŠ
organizational belonging.

11. The user selects one of the subscriptions.

12. The system displays information about the selected subscription, such
as organizational belonging, installation address and products. The
system also displays the invoice summary for the selected subscription
where all costs for the selected period and Ű if selected Ű the compared
period are displayed.

Alternative path – Not enough data

2. The system finds no organizations or periods authorized to the user.
The system displays a notification to the user saying that there is not
enough data in order to continue the analysis.

9.2 Cost analysis use case 80

Alternative path – The user selects to analyze fees

5. The user selects the category ŤFeesŤ.

6. The system displays a summary of the invoice data matching the previ-
ous selections, grouped by the fee type. The following data is displayed:
- Fee type name
- Number of subscriptions
- Amount (two decimals)
- Difference between the amounts for the selected period and the com-
pared period. (*)
(*) Visible only if a compared period is selected in step 3.

7. The user selects one of the fee types.

8. The use case continues from step 10 in the main path.

Alternative path – Subscriptions are grouped by organizational
belonging

11. The user chooses to group the subscription list on organizational be-
longing by selecting a desired organizational level, for example cost
location.

12. The system displays a list of organizations that has associated invoice
data matching the selections mad in step 1-10. The following data is
displayed:
- Organization name
- Call length (tt:mm:ss)
- Number of calls
- Amount (two decimals)
- Difference between the amounts for the selected period and the com-
pared period. (*)
(*) Visible only if a compared period is selected in step 3

13. The user selects an organization.

14. The system displays appropriate information about the selected orga-
nization.

	1 Introduction
	1.1 The problem
	1.1.1 Background
	1.1.2 Problem description

	1.2 Goals
	1.3 Limitations
	1.4 The Company

	2 Theory
	2.1 Business Intelligence
	2.2 Data Warehouse
	2.2.1 Storage Approaches
	2.2.2 Benefits
	2.2.3 Disadvantages

	2.3 OLAP
	2.3.1 OLAP Types
	2.3.2 Aggregations
	2.3.3 Partitions
	2.3.4 Processing

	2.4 MDX
	2.4.1 MDX Introduction
	2.4.2 SQL simple comparison
	2.4.3 Main differences compared to SQL
	2.4.4 Equal result-Different statements

	3 Technology
	3.1 Application tier tools and components
	3.1.1 Microsoft .NET Framework
	3.1.2 Visual Studio 2010
	3.1.3 ASP.NET
	3.1.4 ASP.NET WebForms
	3.1.5 Asynchronous javascript and XML - AJAX
	3.1.6 Telerik RadControls For ASP.NET AJAX
	3.1.7 LINQ
	3.1.8 Telerik OpenAccess

	3.2 Data tier tools and components
	3.2.1 Microsoft SQL Server
	3.2.2 SQL Management Studio
	3.2.3 SQL Server Profiler
	3.2.4 Microsoft Analysis Services
	3.2.5 Business Intelligence Developement Studio

	4 Method
	4.1 Initial stage
	4.2 Project planning and execution stage
	4.2.1 Project methodology
	4.2.2 Planning the iterations

	4.3 Final stage

	5 Analysis
	5.1 Use cases
	5.1.1 Login use case
	5.1.2 Cost analysis use case

	5.2 Identifying concepts and their relationship
	5.2.1 Analysis of STAX data model
	5.2.2 Modeling the period dimension
	5.2.3 Modeling the type dimension

	5.3 Generalizing the concepts
	5.4 Strategies for slowly changing dimensions
	5.5 Domain model
	5.5.1 Concepts

	6 Implementation
	6.1 Overall architecture
	6.1.1 Deployment model
	6.1.2 Application tier architecture

	6.2 Relational database design
	6.2.1 Realizing the provider-specific attributes for organizations and subscriptions

	6.3 OLAP Cube
	6.3.1 Cube Design
	6.3.2 Aggregations
	6.3.3 Processing

	6.4 Data extraction
	6.4.1 Header retrieval
	6.4.2 Detail retrieval
	6.4.3 Refreshing the cube

	6.5 Business objects
	6.6 Data access layer
	6.6.1 Relational database access layer
	6.6.2 Examples of MDX queries constructed and result received

	6.7 Business Logic layer
	6.7.1 Managers in the application facade

	6.8 Presentation layer
	6.8.1 User authentication and authorization
	6.8.2 State, postbacks and asyncronous requests
	6.8.3 Combining scripts and CSS files

	7 Performance testing
	7.1 Web performance testing
	7.1.1 Load generation
	7.1.2 Measures

	7.2 MDX performance compared to SQL
	7.2.1 Testing environment
	7.2.2 Design of tests
	7.2.3 Results

	8 Discussion and Conclusion
	8.1 Discussion
	8.1.1 OLAP Access Layer

	8.2 Conclusion

	9 Appendix A - Use cases
	9.1 Login use case
	9.2 Cost analysis use case

