An Anthropomorphic Solver for Raven’s
Progressive Matrices

Simone CIRILLO
Victor STROM

Supervisor: Claes Strannegard
Examiner: Claes Strannegard

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
Goteborg, Sweden 2010

Report No. 2010:096
ISSN: 1651-4769

An Anthropomorphic Solver for Raven’s Progressive Matrices
Simone CIRILLO, Victor STROM

© Simone CIRILLO, Victor STROM, 2010.

Report No. 2010:096

ISSN: 1651-4769

Department of Applied Information Technology
Chalmers University of Technology

SE-41296 Goteborg

Sweden

Telephone: +46 (0)31-772 1000

Goteborg, Sweden
June 2010

Ezemplaria in oculo spectatoris sunt

An Anthropomorphic Solver for Raven’s Progressive Matrices
Simone CIRILLO, Victor STROM

Department of Applied Information Technology

Chalmers University of Technology

Abstract

This report describes a computer program for solving Raven’s Progressive Matrices (RPM),
a multiple choice test of abstract reasoning introduced by Dr. John C. Raven in 1936.
Each RPM problem consists of a grid (or matrix) of 2x2 or 3x3 cells with graphical con-
tent, where the cell content in the bottom right corner is omitted; the solver’s task is to
pick the missing content from a set of eight solution candidates.

We argue these problems are not only mathematical, but also psychological in nature. Due
to this and other considerations such as algorithmic transparency, the program makes use
of a simple cognitive model.

The program solves RPM problems in a fully automatic fashion, without taking the so-
lution candidates into account. The input is an RPM problem represented as a vector
graphics file; the output is a complete or partial solution for the missing entry, repre-
sented in the same format. Internally we use multi-layered structures which enable the
perception of the problems’ different organizational levels.

The program was tested on sections C, D and E of the Standard Progressive Matrices
(SPM) and produced correct solutions for 28 of the 36 considered problems.

Keywords: Antropomorphic Artificial Intelligence, Cognitive Model, General Artificial
Intelligence, Intelligence Tests, Raven’s Progressive Matrices

Acknowledgements

We would like to thank all those guiding, helping and supporting us during this project and the
writing this report, only a proportion of which we have space to acknowledge here.

First and foremost special thanks to our supervisor and examiner Claes Strannegard for his
dedication to the project and active contribution. Without your continued support this work would
not be what it is today.

We would also like to thank Carl-Martin Allwood for interesting discussions during the course
of the project and Ingvar Lind for sharing with us the thoughts behind constructing 1Q tests.

Simone: I would like to thank all the people who enabled me to take part in this project and
who supported and endured me throughout its course: my parents, D.ssa Barbara Loddo, my

friends, The Pentacle, and the Synth scene.

Victor: A special thanks goes to my friends and family that have supported me during this project,
especially my fiancée Kajsa for inspiration and encouragement along the way.

Simone Cirillo and Victor Stréom
Goteborg, June 2010

I11

Contents

Abstract I
Acknowledgements 111
1 Introduction 1
1.1 Motivation L e 1
1.2 Background 1
1.2.1 Intelligence and Artificial Intelligence 1

1.2.2 Raven’s Progressive Matrices L. 2

1.2.3 Automatically Solving Raven’s Progressive Matrices 4

1.3 Previous Work 4
1.4 Goals L 5
1.5 Disposition of This Reporto 5

2 Problem Analysis 7
2.1 Background 7
2.1.1 Visual Perceptual Organization 7

2.1.2 RPM Solution 8

2.1.3 Simplicity 8

2.2 Our Approach e 9

3 Knowledge Representation 11
3.1 Imput Format e 11
3.2 Overview of the Perception Stage 11
3.3 Representation Structure oL o 12
3.3.1 Differences from the conceptual model, 13

3.3.2 Computation 13

4 Computational Model 17
4.1 The Use of Abstraction Layers to Solve RPM 17

4.2 Pattern Detection. e
4.2.1 Algorithmic Function Part
4.2.2 Pattern Matching Part o oo

4.3 Notes Abobut the Overall Processing

Implementation

5.1 Choose Problem e e

5.2 Active Problem e
5.2.1 Drawn Solution

5.3 Visualization e

5.4 LOGEEro e

5.5 Multilogger e

Results

6.1 Obtained RPM Solutions e
6.1.1 Alternative Function Orders
6.1.2 Patterns
6.1.3 Abstraction Levels

6.2 Computation Times L

6.3 Points of Failure e

Discussion & Conclusions

7.1
7.2

7.3

7.4

Remarks on the solution process and on the obtained results
Goals And Performance Evaluation
7.2.1 Representation Structure
7.2.2 Cognitive Model
7.2.3 Anthropomorphic Aspects
Considerations on the RPM
7.3.1 Underspecified Problems 0 o
7.3.2 Ad-Hoc Patterns
7.3.3 Vector Graphics Versus Raster Image Representation.
7.3.4 APM Results Speculation o
Future Work L
7.4.1 More Patterns L
7.4.2 Advanced Progressive Matrices
7.4.3 Raw Image Processing oo
7.4.4 Answer Alternatives
7.4.5 Architectural Changes
7.4.6 Psychological Dimension oL

VI

23
23
24
24
26
26
27

31
31
31
33
33
33
34

List of Figures
List of Tables
Bibliography

A List of Processed Atttributes

41

43

47

49

Chapter 1
Introduction

In this Master’s thesis project report we will describe the creation of a computer program aimed
at solving as many problems as possible from a well-known set of Intelligent Quotient (IQ) tests,
Raven’s Progressive Matrices (RPM).

1.1 Motivation

Presume a program achieving perfect scores on an established and standardized IQ test was created;
would that program truly be intelligent?

1.2 Background

Giving an answer to the provocative statement above is not trivial: human intelligence and artificial
intelligence (AI) have both been given several definitions. Without specifying what is intended by
intelligence and whether that is actually measured by IQ tests, it is impossible to answer the
question in a proper fashion.

Although this thesis is rooted in computer science and will not discuss the intricacies of cog-
nitive psychology and the human brain, we will start by providing a quick overview of what
intelligence and artificial intelligence are and by introducing Raven’s Progressive Matrices.

We will examine related previous work, describe the similarities and differences of our approach
and discuss some key concepts about the task of solving RPM before going into the details of our
implementation.

1.2.1 Intelligence and Artificial Intelligence

As mentioned above, many definitions of intelligence exist. Bringsjord & Schimanski (2003) propose
the following, strictly operational one, which brings together human and artificial intelligence:
“Some agent is intelligent if and only if it excels at all established, validated tests of intelligence”,
later amended to include “tests of artistic and literary creativity, mechanical ability, and so on”.

2 Chapter 1. Introduction

According to Legg & Hutter (2007), being able to solve such tests successfully is a necessary,
but not sufficient, condition for intelligence. They argue that a collection of algorithms specifically
constructed for solving the tests with no real usefulness or application in any other domain does
not qualify as an intelligent agent.

However, looking at the discipline of Artificial Intelligence, a standard textbook in the field from
Russell & Norvig (2003) discusses four alternative definitions: “Systems that think like humans”,
“Systems that act like humans”, “Systems that think rationally” and “Systems that act rationally”.
Elaborating on the last definition, the one preferred in the book, a system is considered to be
rational if it always chooses to perform the actions that maximize the (expected value of) its
performance measure.

If we wish to use the same performance measure to evaluate both human and artificial intelli-
gences, nothing prevents us from using the scores obtained on various standardized tests. However,
claiming the test-solving algorithms are intelligent is wrong, since that capability is a necessary
condition, but not a sufficient one.

McCarthy (2007) defined AT as: “the science and engineering of making intelligent machines”

Given that humans are intelligent machines, and that humans can solve intelligence tests, it

is still relevant for the discipline to investigate such tests to understand the competences proper
artificial intelligent machines should have.

With respect to the Raven’s Progressive Matrices, the investigation is still not complete. In this
report we describe a methodology and a program for solving RPM problems in a fully automatic
fashion.

1.2.2 Raven’s Progressive Matrices

An issue with some standardized IQ tests is that they are verbally based, requiring considerable
language proficiency as a prerequisite. Raven’s Progressive Matrices (RPM), however, are pictorial
tests of abstract reasoning where the language factor is entirely removed.

Extensive analysis and studies on these tests have been performed in the past sixty years,
evidencing high levels of correlation with other multi-domain intelligence tests and measures of
achievement (Raven & Court, 2003) (Snow et al., 1984). As a result RPM are often used as a test
of so-called general intelligence (Snow et al., 1984), which was also one of Raven’s (1936) goals
when first constructing the test.

Each RPM problem is presented as a 2x2 or 3x3 matrix of pictures following a pattern. The
bottom right position in each matrix is left blank and the solver’s task is to choose the missing
picture for that cell from a list of eight provided solution alternatives. Figure 1.1 shows an example
of such type of problems; for copyright reasons all the illustrations in this report will not feature
actual RPM problems, but constructed equivalents. The first and most common set of RPM are
the Standard Progressive Matrices (SPM), developed in 1936 (Raven, 1936) and published in 1938.
This set contains five sequential sections: A-E, each more difficult than the previous one. Each
set contains 12 matrices to solve, also ordered by increasing difficulty. The two easiest sections,
A and B, consist of 2x2 matrices while C, D and E feature 3x3 matrices. All SPM problems are
represented in black ink over a white background. Later on several other RPM sets have been
created in order to better assess different population segments and to increase the discriminative

1.2. Background

Problem

OB G)
OF 83
oht

Answer Alternatives

PSR MO §
SESCK)

Figure 1.1: Example of a 3x3 RPM-like problem

4 Chapter 1. Introduction

power of the SPM: the Advanced Progressive Matrices (APM) for adults and adolescents with
above average intelligence and the Colored Progressive Matrices (CPM) for children, elderly and
people with learning disabilities.

The work presented here focuses on the three hardest sections (C, D and E) of the SPM, all 3x3
matrix problems. The 3 sections consist of 12 items each, for a total of 36 problems to solve
(Raven, 1990c¢).

1.2.3 Automatically Solving Raven’s Progressive Matrices

As of today the cognitive and computational characteristics of RPM aren’t yet well understood
(Kunda et al., 2009) and no general algorithm for solving them in their entirety has been developed.
However several attempts to build an automated solver have been made throughout the years.

1.3 Previous Work

There have been four documented attempts at solving the RPM with computer programs since
they were originally constructed: Carpenter et al. (1990), Bringsjord & Schimanski (2003), Lovett
et al. (2007), and Kunda et al. (2009).

Carpenter et al. (1990) conducted a seminal study along with implementations of an automated
solver in 1990. They investigated human RPM solution strategies by means of experiments involv-
ing think-aloud protocols and tracking gazing patterns and successively implemented two distinct
solvers based on production systems and cognitive models.

The two solvers were aimed at mimicking the RPM performance of their average and high
scoring subject, respectively. Both programs achieved results that correlated well with the experi-
mental data.

The input to these solvers consisted of manmade individually tailored textual descriptions of
the RPM problems. However, as pointed out by Meo et al. (2007), this approach relies heavily on
human pre-processing on the levels of perception, encoding and information filtering. Therefore,
the two solvers do not solve RPM problems strictly speaking, but substantially simplified non-
pictorial versions of them.

In 2003 Bringsjord & Schimanski reported the implementation of theorem prover-based agents
“able to infallibly crack not only geometric analogies, but RPM items they have never seen before”.
Any other information regarding the implementation or the obtained results is however missing.

A more recent attempt was made Lovett et al. (2007), using the sKEA/CogSketch sketch un-
derstanding architecture (Forbus et al., 2004, 2008). They managed to get very good results on
SPM sections B and C using an analogical reasoning strategy, but did not publish any attempts
on any other sections.

In 2009 Kunda et al. proposed fractal coding and affine transformation based approaches. No
results were mentioned in their preliminary study and at the time of writing this report they are

1.4. Goals 5

in the process of evaluating them.

Summarizing, several different approaches have been proposed and tried to automatically solve
RPM, but the challenge of finding a solution methodology that handles the entire set of problems

is still open.

1.4

Goals

The goals of this Master’s thesis project are:

1.5

Solving as many RPM problems as possible from the three hardest sections of SPM: C, D,
and E

The definition of a knowledge representation structure, a rudimentary cognitive model and
a solution process enabling the automated generation, rather than the choosing, of RPM
solutions.

Disposition of This Report

In Chapter 2, Problem Analysis, several problems tangent to the task of solving Raven
Progressive Matrices will be discussed and a general overview of our methodology will be
provided.

Knowledge Representation, Chapter 3, will introduce and explain the format of the inputs
and the internal problem representation structures used by the program.

Chapter 4, Computational Model, describes the process used to compute the RPM solutions.

In Chapter 5, Implementation, we detail the software application developed to implement
the previously discussed algorithms and strategies.

Chapter 6, Results, presents the obtained results and some immediate considerations.

In Discussion & Conclusions , Chapter 7, we will articulate several interesting points emerg-
ing from the results, delineate strenghts and weaknesses of our implementation, and propose
directions of possible future development.

Chapter 1. Introduction

Chapter 2
Problem Analysis

After examining the layout of RPM, the ideas behind them and relevant previous work, we now
proceed to analyze the problems themselves in more depth.

2.1 Background

To design a way to solve the problems we drew inspiration from human solving strategies. Since
RPM are fully pictorial tests, we looked into psychological and computational theories of the
organization of visual stimuli. Secondly, we examined the notion of simplicity as that concept is
often brought up as the general criterion to be used when solving intelligence tests.

2.1.1 Visual Perceptual Organization

Gestalt psychologists such as Koffka, Wertheimer and Kohler in the 1930s and 40s sought to define
the principles guiding the perception of raw stimuli into organized wholes. In particular they
focused on visual perception and tried to explain the perception of groups of objects and parts of
objects. Their findings are coded in the Gestalt Law of Pragnanz, stating the following criteria:
closure, similarity, proximity, symmetry, continuity and common fate (Wertheimer, 1939).

Structural Information Theory (SIT), initiated in the 1960s by Leeuwenberg (1968, 1969, 1971),
is argued the best (Palmer, 1999) framework derived from Gestalt concepts because it overcomes
the entirely qualitative aspect of the original Gestalt laws by providing a mathematical formalism
for generating perceptual interpretations. SIT considers the simplicity princple the criterion for
interpreting stimuli: the preferred interpretation of a stimulus is the one yielding the simplest code.
Simplest codes imply a hierarchical stimulus organizations in terms of wholes and parts (van der
Helm, 2007).

8 Chapter 2. Problem Analysis

2.1.2 RPM Solution

To solve RPM problems, the test candidates are instructed to choose the solution alternative that
completes the pattern from a eight listed options. Completing the pattern traditionally means
that the global information content of the problem grid is minimized. In terms of Kolmogorov
complexity this corresponds to finding the generating function of minimum length, the shortest
description.

2.1.3 Simplicity

Consider the following question about number progressions: Which are the successive three num-
bers in the sequence:
1,1,2,3,5

People trained in mathematics would immediately see that the progression corresponds to the
Fibonacci series: Fy =0, F_1, F,, = F,,_1 + F,,_>. Hence for them the full sequence will be:

1,1,2,3,5,8,13,21

Another possible approach would be performing a polynomial expansion, which with the fourth
degree polynomial P(n) = 0.0833n* — n® + 4.4167n? — 7.5n + 5 would yield a very good fit for the
given values. The resulting answer would then be:

1,1,2,3,5,11,26,57

So, which of the two answers is the correct one?

If the question above was an item within an intelligence test, the answer sheet would almost
certainly list the first one. Fibonacci and similar “notable” series are a common feature in such
tests.

However, the second option is based on a very straightforward and mechanical approach and,
given it fits the given series, it cannot be said to be wrong.

Why is there a bias towards the Fibonacci function then?

Many would confidently affirm that it is the simplest one generating the progression. The no-
tion of simplicity, however, has no mathematical meaning unless it is properly defined. Technically,
simplicity corresponds to a drop in Kolmogorov complexity but to apply this definition it is first
necessary to specify the description language, to instantiate the machine.

Simplicity theory, a cognitive theory seeking to explain the attractiveness of situations or events
to human minds (Chater & Vitdnyi, 2003), avoids the problem of the a priori incomputability
of Kolmogorov complexity by positing that when dealing with cognitive systems complexity is to
be defined as relative to the specific observer. The shortest, and thus simpler, description is the
shortest one among the ones currently available to the observer and it heavily depends on the
cognitive model used (Dessalles, 2010).

In the case of number progressions, the cognitive model is the set of patterns (functions, oper-
ations, etc) known to the individual problem solver and which can be computed given the limited

2.2. Our Approach 9

available cognitive resources as well as the heuristics used to guide the search, for example a prece-
dence relation between the functions. Regarding RPM the situation appears to be completely
analogous. The problems are similar in the sense that the RPM can be viewed as glyph progres-
sions on a bidimensional grid.

Computer programs designed to solve such problems in human-like fashion need to feature similar
cognitive models in order to be able to produce solutions of maximum simplicity within their own
scope.

2.2 Owur Approach

Our objective is to construct a program that performs as well as possible on RPM problems.
Although our approach superficially coincides with that Carpenter et al. (1990), amongst other
things the goals differ; Carpenter et al. had the aim to produce cognitive models modeling human
solving strategies, we try to extract only the positive parts of the human problem solving and not
fail on problems where humans tend to fail - all in all our goal is to contribute to Al rather than
cognitive psychology.

Despite that we, when constructing the program, took inspiration from the fact that our tar-
get problems are solvable by humans. If our program could imitate their strategies closely enough,
then it should be able to solve the problems as well.

In agreement with the complexity definition offered by Simplicity Theory, our program features
a very rudimentary cognitive model. It consists of several patterns and a precedence relation
between them; the patterns were isolated through introspection of our own solving strategies. Our
cognitive model does not include any limitation in its resources (such as working memory), but does
subscribe to the approach of anthropomorphic artificial intelligence (Strannegard, 2007), where the
idea is to use cognitive models as frameworks for solving Al problems.

Following Lovett et al. (2007), the inputs to our program are files containing vector graphics
representations of the RPM problems. Given that such files contain the same information as the
original problems, this choice of format enables us to investigate not only the pattern-matching,
but also the perceptual strategies to some extent. In terms of level of pre-organization of the
input information, vector graphics representations lie between the two extremes of raster images
(bitmaps) and textual, propositional encodings.

A characteristic feature of our program is its internal knowledge representation. While not
directly implementing their strategies, we have drawn inspiration from Gestalt and SIT princi-
ples. From our input, we automatically construct hierarchical structures to capture different levels
of possible perceptual organization for the problem, enabling our pattern-matching to work on
different levels.

Another important thing to note is that the program does not choose the answer from the
provided alternatives but rather computes the solution entirely on its own, something made possible
by relying on a cognitive model. Therefore we deal with a task much harder than conventional
RPM solving, with the bonus of being able to detect inconsistencies and other issues with the
problems’ specifications that might not be obvious when choosing from a list of possible answers.

10

Chapter 2. Problem Analysis

Chapter 3

Knowledge Representation

As we have introduced earlier, we want to be able to process the RPM problems using different
levels of abstraction. From the input format we therefore need to perceive and represent the
problem in a flexible multi-leveled fashion.

3.1 Input Format

Vector graphic representations of Standard Progressive Matrices sections C-D-E were created; each
file encodes one problem and its eight candidate solutions. Specifically the chosen file format is
XAML (Extensible Application Markup Language): a user interface markup language also capable
of general purpose serialization.

3.2 Overview of the Perception Stage

The conceptual model we use abstracts RPM according to different organizational levels in order
to facilitate detection of the underlying logical patterns. The four main levels the problems can be
perceived at are:

e Attributes
Isolated properties of the graphical elements or groups: height, width, color, etc. ..

¢ Elements
Single graphical elements, such as a filled black circle with a specific size

e Groups
Sets of distinct elements behaving as a single one, such as two lines making up an X or a +
figure.

e Cells
Entire cells of the RPM matrix.

The first stage of our software is a procedure that, starting from an input file, produces a problem
representation in terms of this conceptual model.

11

12 Chapter 3. Knowledge Representation

3.3 Representation Structure

The conceptual model introduced above is implemented using a layered graph structure built up
of interconnected nodes. Each layer corresponds to an organizational level of the input problem
and each node corresponds to a feature on that level. Nodes are allowed to be connected only if
they belong to different layers.

The main reason for having such a complex structure is that, since our aim is to both com-
pute and visualize the solutions, we want to be able to solve the problem using the appropriate
abstraction level while still retaining every piece of information needed to go back to a graphical
representation.

In the complete structure eight node layers are present and from top to bottom they represent:

1. Attribute Nodes
The relevant attributes directly extracted from the vector graphics objects (shape, line thick-
ness, etc) or simple geometrical properties computed from them (bounding box width, center
position, etc).

2. Attribute Value Nodes
Values of the extracted attributes (type=rectangle, line thickness=2, etc)

3. Element Model Nodes
Sets of Attribute Value representing maximum common denominators with respect to the
Element Instances

4. Element Instance Nodes
Position-less single visual elements. Are made up of a combination of links to Attribute Value
nodes and Element Models.

5. Relative Position Nodes
Positions Element Instances relative to others within a group

6. Group Nodes
Groups Relative Position nodes to make groups of Element Instance nodes comparable with
single Element Instance nodes.

7. Absolute Positions
Positions Element Instance nodes or Group nodes inside the Cell nodes.

8. Cell Nodes
Represents the actual cells of the RPM problem. Contains a number of Cell Objects, which
are links to the Absolute Position nodes contained in the cell.

Figure 3.1 shows a progressive matrix and the representation structure the program extrapo-
lates from it; for visual clarity reasons, however, the diagram is simplified: it does not depict all the
considered attributes and the Position attribute is presented as a single, qualitative one instead of
two quantitative coordinates. The CellObject nodes of the diagram correspond to Absolute Posi-
tion nodes of the actual structure; CellObject nodes are also used in the graphical visualization of

3.3. Representation Structure 13

{ Shape |

(Rsctangla_) (Gircle)C irce

\\\

o) (o) (o

(oo) (omoom) (Tomtorn) A ' A

Figure 3.1: Representation structure for a simple progressive matrix

the structure featured in the program, as will be explained in Section 5.3.

In Figure 3.2 instead we have the graph representation for a single cell of a more elaborate pro-
gressive matrix. Here a Group is present: the four squares at the corners; note how all of them
are represented by the same Flement node and the different positions are modeled at a successive
layer. Group Element nodes in the diagram correspond to Relative Position nodes in the actual
structure.

3.3.1 Differences from the conceptual model

Specific layers for the positioning were added because we want to consider the graphical object
and its position within the cell as two separate features. Given the overall nature of the RPM sets,
multiple identical looking objects in different positions in the same cell can occur, the separation
of objects and positions is an efficient way of representing such situations.

Since not every RPM problem contains all features, layers 3, and 5 and 6, are populated only
when the presence of Element Models and Groups, respectively, are detected.

3.3.2 Computation

The graph structure is computed only from the information contained in the input file, and ex-
panded in several stages. Each stage roughly corresponds to a conceptual operation and they are
performed in the following order:

14 Chapter 3. Knowledge Representation

FhelatlvePaelmn |: Position)

(Dlamnnd) @amngle) (TopLeﬁ) CTopngh CBattamLeﬁ (BatmmRnghD (Middle

@ A

GroupElement @raupElemenD (GrnupEIemanl GroupElement

_

Group

lfJ:tquI]

Figure 3.2: Representation structure for a single cell of a moderately elaborate progressive matrix

3.3. Representation Structure 15

1. Initialization

2. Common Attributes Extraction
3. Element Instances Cleanup

4. Element Models Creation

5. Common Elements Extraction

6. Element Groups Creation and Group Merging

Initialization

The input file is read and the vector graphics objects of each cell are processed one by one. For
each object the names and values of some predefined attributes are extracted and used to populate
layers 1 and 2; for a complete list of the attributes taken into consideration refer to Appendix A.

Next, an Element Instance, layer 4, is created and connected to the Attribute Value nodes.

Finally an Absolute Position node, layer 7, is generated and connected to the Attribute Value
nodes of the object’s X and Y position coordinates, the previously created Element Instance, and
the Cell node, layer 8, currently being processed.

Common Attributes Extraction

Attributes appearing in every generated Element Instance node with the same value are removed
from the structure and not processed any further because they can be considered problem-wide
constants, providing no information about the solution pattern.

These common attributes will be factored back in at a later stage; specifically they will be added
to the attributes of each generated solution element.

Element Instances Cleanup

Redundant Element Instance and Absolute Position nodes are merged in this method.

This means that now all identical looking graphical elements in the input are represented by a
single Element Instance node and that no duplicate Absolute Position nodes for the same Element
Instance are allowed.

Element Models Creation

This procedure creates layer 3, Element Models. Element Models are sets of attribute values
representing maximum common denominators with respect to the Element Instances. Attributes
considered for model creation do not include the ones related to positioning and connected to the
nodes in layer 7.

The purpose of Element Models is to provide a way to infer additional Attribute Values from
a single one when inspecting the problem at such level.

16 Chapter 3. Knowledge Representation

Common Elements Extraction

Absolute Position nodes occurring in every cell are at this point removed from the structure and
consequently from further processing.

Common Absolute Positions represent constant elements with respect to the cells and are
added to the objects contained in the solution cell, along with a reference to the Element Instance
they belong to.

Element Groups

Two or more Absolute Position nodes are grouped if and only if they appear in the same cells
throughout the problem. This concept was introduced is to correctly represent single elements
which are impossible to draw with a single glyph in the vector format, for example X shapes or
+ shapes, but it is also useful to model other situations where multiple elements either appear
concurrently or none of them is present.

Absolute Position nodes to be grouped are detected by constructing their cell appearance lists
and comparing them: the nodes whose lists are exactly the same will be grouped accordingly. The
positions of all group elements are first processed to calculate the group’s own center and bounding
box; successively they are recomputed as relative, expressed as offsets, with respect to the group’s.

In terms of the representation structure the grouped Absolute Position nodes are removed from
the graph and each of them is replaced by a Relative Position node in layer 5; Groups are added
as nodes in layer 6; a new Absolute Position node for the whole group is added in layer 7.

Group Merging

The main reason we implemented groups was to be able to compare visual objects made up
of one Element Instance with visual objects made up of multiple Element Instances. However,
our grouping algorithm works only on the basis of co-occurrence, without considering any other
information. This can lead to situations where several compound visual objects are grouped
together but elsewhere in the problem a separate group for the single compound visual object has
been constructed.

To resolve this issue, from “compound” groups where a subset of the pairs of the Element In-
stances and corresponding Relative Position ancestors constitutes the full ancestor set of a differ-
ent, smaller group, the Relative Position ancestors are removed and to represent the corresponding
graphical elements an Absolute Position node pointing to the minimal group is introduced instead.

Chapter 4
Computational Model

In this chapter we will describe the methods used to solve RPM problems in the form of the struc-
tures described in the previous chapter.

The core idea in our solving algorithm is a pattern matching process. We process the problems
row by row or column by column, looking for patterns that match on both the first and second
row/column and then try to apply them to the last one.

In the example shown in Figure 4.1 the pattern finding algorithm would realize that the Identity
pattern matches on the first and second rows and would predict the ninth cell, the solution cell, to
contain a triangle, since that object shows up in cells seven and eight.

The other important concept is being able to process problems using different abstraction
levels. Always in the very simple problems, like the one in Figure 4.1, the whole problem can be
solved on the Full Cell level, meaning that it is enough to consider the full content in each cell -
no specific processing of the individual objects inside the cells is required.

If instead a slightly more challenging problem is encountered, like the one in Figure 4.2, a cell-
wide processing would not be able to predict the content of cell nine. Instead we need to reduce
the level of abstraction and process the individual cell objects, resulting in two Identity patterns
being found, a horizontal one and a vertical one.

In this section we will detail the computational models employed, discuss how we use the concept
of abstraction and what are the patterns we currently detect. We will also discuss the possibility
of expanding the program to be able to solve more types of problem.

4.1 The Use of Abstraction Layers to Solve RPM

The main reason to use different levels of abstraction in the processing of RPM is to be able to
look at each problem in as little detail as possible, while still being able to solve it. If a problem
is not solvable at one abstraction level, we move on to the next. The levels of abstraction our
representation structure allows the problem to be perceived at, where patterns can occur on, are
the following;:

17

18 Chapter 4. Computational Model

Figure 4.1: A very simple progressive matrix solved by the |dentity pattern on the Cell processing level

AN

Figure 4.2: Progressive matrix solved by two |dentity patterns on the Cell Objects processing level

4.2. Pattern Detection 19

Cells - pattern entities are entire cells

e Object Count - pattern entities are the numbers of objects within the cells

Cell Objects - pattern entities are positioned objects in the cells

Instances - pattern entities are un-positioned cell objects

Element Models - pattern entities are sets of attributes constituting maximum common
denominators between different elements

When a pattern is found to match, it outputs a part of the solution for the missing RPM cell; the
level of these partial solutions is the same as where the pattern was found. This means that if a
pattern matches on the Cell level, the entire content of the solution cell will be predicted and the
solution process can stop.

If on the other hand a Cell Object is predicted, the processing might not be complete - for
this level processing stops only when the number of Cell Objects predicted on the Objects Count
abstraction level has been found.

The process of solving an RPM problem is then defined as iterating through the patterns until the
missing cell has been completely determined or until all the patterns on all levels have been tried.

4.2 Pattern Detection

In practice the patterns are built as separate, easily extendable modules and are imple-
mented in two parts: one algorithmic function able to operate on the graph structure and one
pattern-matching function testing if the pattern holds for a list of entities found by the algorithmic
part.

4.2.1 Algorithmic Function Part

For each pattern, the processing of the graph structure can be done in two different ways, supervised
or independent. The pattern itself chooses what abstraction levels or types of entities to process
in the different modes.

e Supervised Mode
The pattern matching method is iteratively called on all combinations of entities processable
at the current abstraction level. The algorithm works in an exhaustive, brute force, way:
all combinations will be tested, but the mode is relatively slow. This is the most commonly
used mode.

e Independent Mode
Processes the tree in a free, function-specific way. One example would be to simultaneously
look at horizontal and vertical patterns and build a compound entity in the solution cell
based on both horizontal and vertical pattern findings.

20 Chapter 4. Computational Model

4.2.2 Pattern Matching Part

The pattern matching function of each pattern gets a list of entities and returns a flag to the
algorithm that tells if the pattern can be applied or not, predicting a value for the next cell if
possible. There are currently seven implemented patterns; as previously mentioned the architecture
is very modular and more patterns can easily be added. The final important property is what levels
of abstraction are relevant for each pattern. The implemented patterns and the abstraction levels
each of them is able to act on are shown in Table 4.1. The details of each function are now going
to be explained in more detail.

Pattern Abstraction Levels
Cells Object Count Cell Objects Instances Element Models

Identity X X X X X
Distribution of X X X X X
Three Entities

Numeric X

Progression

Translation X

Binary AND X

Binary OR X

Binary XOR X

Table 4.1: Patterns and relevant abstraction levels

Identity

Identity is the first tested function for each level. As the name implies it checks for identity, meaning
that it succeeds if and only if all entities sent to the pattern matching function are identical. If
they are, the Identity function predicts the next value in the series to be the same as the others.
The function works for a matrix of arbitrary size.

Distribution of Three Entities

During processing row by row, the Distribution of Three Entities function works by identifying
three entities that appear in each row, but in different order. For the first row, the function will
save the entities passed in and succeed if all entities are different. The second row succeeds if the
same entities saved during the processing of the first one are encountered here as well. The final
row will succeed if the two entities passed in are found in those in the first row and predict the
missing entity.

The pattern works the same way for other processing directions and, despite its name, can
process square matrices of any size.

4.3. Notes Abobut the Overall Processing 21

Numeric Progression

The Numeric Progression pattern can be thought of as a +n function and only works on the
Objects Count level, that is on sets of integers nq,...,n,, where m > 2, meaning that the matrix’
size is 3x3 or larger. For each set of integers passed in the functions checks that the difference
between all pairs of integers n,4+1 and ng,, where a < m, are the same. If so it predicts the next
value to be the n,, +n44+1 —nge. The function checks both the horizontal and the vertical direction
simultaneously, making sure that the numeric progression holds for both of them. If the pattern
would only check one direction local, false, numeric progression patterns could be detected.

Translation

The Translation pattern tracks objects moving in a consistent way between the cells. It first checks
that all Absolute Position nodes passed in point to the same instance node, be it an element instance
or a group.

When processing the first row it saves the translation (displacement of x and y position) from
each cell to the next and for subsequent rows it checks that the translation is the same. When
encountering a set of entities containing one element less than those previously processed, it predicts
a new element at the last position encountered plus the saved translation between the next to last
and last objects in the processed sets.

Binary AND

Binary AND works only on the full Cell level and is hence only concerned with lists of Cell Objects.
It starts with the list of objects in the first cell and performs a binary AND operation of all cells
objects in the cells between the first and the last one in the row or column being processed. Finally
it checks that the objects left match with the objects in the last cell of the row or column.

Binary OR

The Binary OR pattern works the same way as the Binary AND one, except that the function
performed between the cell objects is binary OR and not binary AND.

Binary XOR

The Binary XOR pattern works the same way as the two binary functions introduced above, but
employs the XOR function.

4.3 Notes Abobut the Overall Processing

The overall processing is done by testing all patterns for all abstraction levels. Both the patterns
and the abstraction level are ordered and after each pattern has been tested the current state of
the solution is evaluated to determine if the full solution has been computed or not.

22

Chapter 4. Computational Model

The abstraction levels processed are in order, as previously mentioned:

1. Full Cell
2. Cell Objects Count
3. Cell Objects

4. Instances

5. Element Models

The patterns processed are, in order:

1. Identity

Distribution of Three
Numeric Progression
Translation

Binary AND

Binary OR

N ol w N

Binary XOR

The order of the patterns above is the default order - in chapters 6 and 7 the outcomes of changing

this order and omitting some functions are discussed.

Once a pattern function succeeds it returns an entity, whose type depends on the abstraction
level currently being processed, that according to the algorithm discussed in 4.2.1 is added to the

structure of the solution cell.

Chapter 5
Implementation

The methodology described in this report was implemented as a Windows application written in
C#.Net version 3.5. The application’s GUI has a tabbed layout with the following panels:

1. Choose Problem
2. Active Problem
3. Visualization

4. Logger

5. MultiLogger

The application is operated by manually selecting the desired input file from the first panel. As
soon as the file is loaded the representation structure is built and the solution search begins. Once
this process is completed, regardless of whether the problem was solved or not, control is returned
to the user and the second panel takes focus, where the problem and the found solution are dis-
played. At this point it is also possible to access panels 3 and 4 to visualize the constructed graph
structure and the event log, respectively.

The five panels are now going to be described in detail.

5.1 Choose Problem

This first panel, shown in Figure 5.1, allows the user to choose and load input files into the program.
The file selection dialog features a custom built preview pane where the RPM problem contained
in the currently selected file is shown. This preview visualization does not include the solution
alternatives.

The Choose Problem panel also includes buttons to automatically pass to the next or previous
input file without going back to the file selection dialog. Lastly, after loading a problem file, the
panel offers the possibility to run through the whole problem set and output a condensed log to a
text file. The condensed log contains information regarding the solution, specifying the matched

23

24 Chapter 5. Implementation

Choose Problern | Active Problem | Visualizati MultiLogger

Choose input file..| C\Users\Spooky\Desktop'Master's Run all and log results

Figure 5.1: Choose Problem interface panel

patterns and the abstraction levels, or lack of thereof for each of the problems, as well as record
benchmarking data.

5.2 Active Problem

Here the currently loaded RPM problem is displayed. Additionally, a text label indicating the
input file name, zoom controls to scale the drawing and the same previous/next file buttons as in
the first panel are present as well. The Active Problem panel also features a checkbox acting as a
toggle for the display of the computed partial or total solution to the problem. Finally, the bottom
section of the panel includes textual information about the obtained solution indicating which
pattern-finding functions have matched, how many matches were found and on which processing
levels. The Active Problem panel is depicted in Figure 5.2.

5.2.1 Drawn Solution

When the corresponding checkbox is toggled the found solution is displayed, positioned in its
intended location at the bottom-right cell of the matrix. This is accomplished by converting the

5.2. Active Problem

25

p— “
' Raven Solver EuL
Choose Problem | Active Problem | Visualizati Logger | MultiLogger

OF S
OB St
O §

Functions needed to solve active problem:

ObjectsCount:
RFIdentity : 2

AbsolutePositionlnstances:
RFIdentity : 2
RFDistributeionOfThree : 0

Processing completed, solution g 1 in full.

Figure 5.2: Active Problem interface panel

26 Chapter 5. Implementation

solution from its nodes and arcs form back to vector graphics.

Each drawable (Absolute and Relative Positions, Groups, Element Instances, Cells) node in
the structure has a DrawIn method which renders its content relative to a translation passed
in as argument. A full cell is drawn by incrementally adding translations and delegating the
actual drawing to each individual element: when calling Drawln on a Cell node the method call
is propagated upwards along the tree adding the encountered Absolute and Relative positioning
offsets until it reaches the Element Instances, where all the other attributes from itself and its
models are retrieved and the graphical object finally drawn.

5.3 Visualization

Here the full internal representation structure is displayed. Each rectangle represents a node and
lines are the connecting arcs. The visualization is represented as going from left to right following
the layer order explained in section 3.3 but it features an additional Cell Objects layer to more
conveniently show the Absolute Positions contained in each cell; Cell Object nodes are just a visual
construct and they are not part of the representation structure.

Layer 1 and 2 nodes are labeled with the actual attribute name or value, while labels for other
nodes just indicate their type. Layer 2 nodes colored in green represent common attributes, while
Layer 7 nodes colored in blue are the common elements.

Figure 5.3 shows the Visualization panel.

Hovering the mouse cursor over a node highlights the arcs connecting it to its parents and
children and displays a tooltip providing more information about it. The tooltip contains extended
information about the node’s makeup in terms of its ancestors all the way up to the individual
attributes. When possible the tooltips also feature a drawing of their corresponding node. For
nodes not specifying positioning information (Element Instances, Groups) the drawing is rendered
as if they were centered within a cell.

Given the large dimensions reached by drawn structures, the Visualization panel includes a
zoom control.

5.4 Logger

This panel shows a textual log of messages generated during input file loading and parsing, graph
structure construction and problem solution. The messages allow users to keep track of what
happened at every processing step and are generated during code execution. The principal log
messages for every stage are:

e Loading/Previewing Indication of whether files have been correctly loaded and whether
problem and solution candidates were found.

e Structure Construction Graphical objects found in each Cell and their attributes. Com-
mon Attributes detection results. Cells state after Absolute Positions generation. Element
Instances and Absolute Positions count after merging the duplicates. Number of Element
Models created. Cells state after Element Models creation. Number of created Groups.

5.5. Multilogger 27

2| Raven Solver -8 x |9

Choose Problem | Active Problem| Visualization | Logger | MultiLogger

Figure 5.3: Visualization interface panel

e Solution Process Notification of which functions are being run, on which level and in which
processing direction.

e Final Report Same information displayed in bottom part of the Active Problem panel.
Reports the functions which found a match, the level where the match were found at, and
the number of matches found for each function, level pair.

Figure 5.4 is a screenshot of the Logger panel.

5.5 Multilogger

This last panel, displayed in Figure 5.5, becomes available when the option to run through all
the RPM problems at once has been selected in the Choose Problem panel. Here the generated
condensed log is displayed.

28

Chapter 5. Implementation

-

1" Raven Solver

[=o[@] = |

Choose Problem | Active Problem | Vist

i | Logger | MultiLogger

File Doubleldentity.xaml loaded correctly
File previewed

File Identity.xaml loaded correctly

File previewed

File RPM-like-problem.xaml loaded correctly

File previewed

File Identity.xaml loaded correctly

File previewed

File Doubleldentity.xaml loaded correctly
File previewed

File RPM-like-problem.xaml loaded correctly
File previewed

File Identity.xaml loaded correctly

File previewed

File Doubleldentity.xaml loaded correctly
File previewed

File Identity.xaml loaded correctly

File previewed

File RPM-like-problem.xaml loaded correctly
File previewed

File RPM-like-problem.xaml loaded correctly
Problem grid found

Candidates grid found

Problem Grid Sent To GUI

Building Tree Structure:
19 Attributes Added
Parsing Preblem Cells...

Cell #1:

4 m

Addinn | aaf Flementinctance: 10 Attributac Muna - Fllince Width - (1 A5 Hainht « 0 A5 VertavDainteConnt - 4 Vartay

m

3

Figure 5.4: Logger interface panel

5.5. Multilogger

29

r

i " Raven Solver

(= [=] =]

Choose Problem | Active Problem | Vise

ion | Logger| MultiLogger

Results for all 5SPM problems:

Problem CO1

ObjectsCount solved using:
RFIdentity : 2 connections

CellObjects solved using:
RFDistributeionOfThree : 2 connections

Processing completed, solution generated in full.

Problem C02
ElementMaodels solved using:
RFIdentity : 0 connections

RFDistributeionOfThree : 0 connections

Processing completed, solution NOT generated in full.

Problem C03

CellObjects solved using:

m

Figure 5.5: Multilogger interface panel

30

Chapter 5. Implementation

Chapter 6

Results

Our program solves 8 of 12 SPM set C problems, 10 of 12 for set D, and 10 of 12 for set E. In total
28 of 36 problems are solved, 78%.

Removing the problems not solvable without considering the answer alternatives, we solve 85%
of the problems.

6.1 Obtained RPM Solutions

Table 6.1 presents a detailed account of the obtained results: for each problem in SPM sections
C, D, and E the matched patterns are evidenced along with the abstraction level they were found
at, the levels are indicated using the numbered ordered explained in Section 4.3. An indication
of whether a complete solution was produced is also present. In the bottom row of the table the
sums of the occurrances of each pattern are shown.

6.1.1 Alternative Function Orders

In addition to the processing order of Section 4.3 the program was run using three other function
orders, specified as follows:

e Alternative 1: In this alternative, the Binary XOR pattern is processed before the two
other binary patterns, completely eliminating the need for the Binary OR function.

e Alternative 2: Here we use the original order but run the Distribution of Three Entities
pattern before the Identity pattern, almost removing the need for the Identity function

e Alternative 3: The last alternative shown combines the two changes mentioned above.

The sums of the each pattern’s occurrances for the original and alternative orders are reported in
Table 6.2.

When looking at the resulting tables it is evident that a person could get a very high score
knowing only very few patterns.

31

Chapter 6. Results

Problem Identity Distribution Numeric Translation
of Three Progression

Binary Binary Binary Solved
AND OR XOR

Co1 2 1 v

C02

Cco3 1

Co4

NENEN

Co05

C06

N[N W w
»

Cco7

I
<

Cco8 2

Co09 2 4

NN

C10 4

C11 2

C12 3 2

D01 2 1

D02 2

D03 2, 1

g

o

(=]
NN
wWlwlwlw

NSNS RRRAE

W w| o wlw

v}

=3

°
NN

E04 1

ANENENENENEN

E10 2 1

o
(=}
©
=

NESESEN

E11 1

E12

Occurrances [17 [13 [4 [3 [1 [4 [5

[
oo

Table 6.1: Detailed account of the obtained RPM solutions

Identity Distribution Numeric Translation Binary Binary Binary Solved
of Three Progression AND OR XOR Problems

Original 17 13 4 1 5 28
Alternative 1 17 13 4 28
Alternative 2 3 20 4 28
Alternative 3 3 20 4 28

©

4
1 0
1 4
1 0

W W ww
© o

Table 6.2: Pattern occurrances sums for alternative function orders

6.2. Computation Times 33

Taking the results to the extreme by only using Distribution of Three Entities and Binary
XOR, the program correctly solves as many as 21 problems of the total 36, over 58%! Not taking
into account the three ones which is not possible to solve with the current approach, those two
functions alone solve over 63% of the attempted problems!

Including the Identity function as well, which most candidates probably, know 3 more problems
are solved, giving a total of 24 solved problems (66% or 72% solved, depending on method used).
Adding the Translation pattern to the repertoire solves another 3, for a total of 27 solved problems
(75% or 81% solved depending on method). To beat the last problem solved by the program in
the current implementation the Binary AND function is required.

6.1.2 Patterns

As shown, most of the problems can be solved using a very small subset of the implemented
patterns. The distribution of the patterns across the sets is worth noting as well: while the makeup
of section C is pretty varied, in section D 9 out of the 10 solved problems need the Distribution of
Three Entities pattern to be solvable and in 11 out of 12 problems the Objects Count is predicted
using Identity. For the E set, 8 out of the 10 solved problems only need Binary XOR to be solved;
some can however be solved with the Binary OR function instead.

6.1.3 Abstraction Levels

In 22 out of 36 problems the number of the graphical objects of the solution cell is predictable
separately from any other kind of information about them, as evidenced from the results achieved
by the Object Count processing level. Since this is the most abstract of the considered levels, it
is the only determined one in the four cases where we have obtained partial solutions: C06, CO8,
C11, and D11.

14 of the 28 solved problems are determined on the Full Cell abstraction level; 13 are solved
on Cell Objects level, of which 3 feature two distinct patterns; only one problem, D08, is solved at
the Element Models level.

6.2 Computation Times

The execution time for the complete solution process is around 5 seconds, and includes structure
computation, solution search, generation of the structure’s visual representation and writing of log
data to screen and disk.

Looking only at the solution search, not including the rest of the processing described above,
the situation is very different. Considering over 10 runs the average problem is solved in under
10ms, the hardest one in around 55ms and the easiest one in less than 4ms. The mean value of
the standard deviation over the test problems was around 10ms. This means that the full set of
SPM problems C-E is processed in less than half a second.

34 Chapter 6. Results

6.3 Points of Failure

The problems we do not solve fall in two categories:
e Problems for which the solution is incomputable unless the alternatives are considered:

— (C2: the figure gets qualitatively larger, but its components do not scale uniformly or
consistently, making it impossible to predict the exact size and position of each.

— D12: impossibility to determine the curvature and the position of the solution elements

e Problem requiring not implemented patterns or capabilities:

C6: point-level geometrical operations (shape morphing)

C8: point-level geometrical operations (shape morphing)

C11: numeric and positional progression
— D11: advanced morphing, possibly qualitative

— ET: categorization

E12: abstraction of graphical features to arithmetical entities

Chapter 7

Discussion & Conclusions

In this Chapter we are going to discuss the outcomes and consequences of the work performed and
draw some conclusions based on that. First we are going to analyze the results obtained by the
implemented program and evaluate its performance against the goals set in Section 1.4.

Next we will compare our approach with the previous attempts documented in 1.3 and make
some reflections about Raven’s Progressive Matrices as a problem.

Finally, we are going to propose several directions for future improvements of both the program
and the representation framework.

7.1 Remarks on the solution process and on the obtained
results

Currently, seven patterns are implemented: Identity, Distribution of Three Entities, Numeric Pro-
gression, Translation, Binary AND, Binary OR, Binary XOR.

However, the patterns are unhomogeneously represented in the full problem set: depending on
the application order, Distribution of Three can solve as many as 21 problems, while Binary AND
is used only once.

From the cumulative results of the alternative function orders described in subsection 6.1.1 we
can deduce that the classes of problems solvable by the different functions do sometime overlap:
Distribution of Three Entities “masks” Identity in most cases, when applied first; while Binary
XOR completely “masks” Binary OR.

The first behavior is caused by the fact that in many problems there is a horizontal Distribution
of Three Entities pattern together with a vertical Identity or vice-versa and that they can be solved
by using either one of them.

The second behavior instead is caused by the equivalence of the XOR and OR operators when
the operands do not have “1”values in the same positions:

1010 & 0001 = 1011

35

36 Chapter 7. Discussion & Conclusions

1010 v 0001 = 1011

Which is exactly the situation appearing in the involved RPM items.

Another very important deduction stemming from the results is that the cognitive model used, the
order the functions are applied in our case, does contribute to the way the solution is computed.

Other variables coming into play are the allowed processing directions, and of course the
availability or not of a given function.

7.2 Goals And Performance Evaluation

With respect to the goal of solving as many problems as possible from sections C, D, and E of
SPM, the program achieved a good level of performance, 78%. Estimating an IQ score for the
program based on those results, however, is well outside the scope of this work.

Our second goal, designing a system able to automatically generate RPM solutions, was
achieved even better than the first one, with a success rate of 85% of the total problems where this
is actually possible.

We also believe we succeeded in constructing a very powerful and easy to understand concep-
tual framework to represent and solve RPM and RPM-like problems in, especially considering
that by slightly expanding the program’s pattern repertoire 100% of the SPM problems where the
answer alternatives are not strictly needed would be solvable. While this program still has some
way to go to become the optimal RPM solver, it comes closer to the goal than any documented
previous program we know of. We also believe our program constitutes a general platform that
can potentially handle any kind of progressive matrices problems, even far more advanced than
RPM.

Next the different sections of our architecture are going to be critically evaluated.

7.2.1 Representation Structure

The designed representation structures enable the perception of the RPM problems in a way very
easy for people to understand and follow, capturing all the available levels of organization at the
same time not losing or discarding any information present in the original input. The graph struc-
ture used is also economical in the sense that on every level of the hierarchy no duplicate nodes exist.

Given that, considering the complete problem set, patterns are detected on every implemented
abstraction level, the representation strategy results seem to be well-structured with respect to the
pattern detection methods.

Compared to the work of Carpenter et al. (1990), our structures allow the solution of the
same kind of abstract, purely logical, patterns they seek but starting from an unfiltered, drawable
description of the problem.

Another positive effect produced by introducing an intermediate representation layer between
the input and the solver is the capability of dealing with all those RPM-like problems which are

7.2. Goals And Performance Evaluation 37

logically equivalent but graphically different from the original solved test items.

7.2.2 Cognitive Model

The cognitive model we implemented is very simple and rudimentary, consisting only of a series of
pattern-finding functions and an application order between them, but it allowed us to solve 85%
of the attempted, possible, problems.

Its best conceptual characteristic is that it enables finding the same pattern on different levels,
therefore subscribing to a very abstract definition of pattern; a strong technical point instead is
the modularity of the code implementing the pattern-finding functions, providing convenient ex-
tendability.

About our cognitive model one can argue that its functions can be considered too mechanical:
when the processing is ran in supervised mode, they are effectively brute-forcing the subproblem
defined by the three specified cells and the objects they contain at the considered abstraction level.
Given the very small size of such kind of search spaces, this doesn’t result in computational black
holes or noticeable slowdowns; however it can produce the effect of masking patterns that may be
more obvious to the human observer but that are further down the processing list.

A solution to these concerns could for example be limiting the pattern-finding functions in their
supervised processing mode and substituting the simple ordered list of patterns and abstraction
levels with a proper action planner in order to orchestrate the solution process in more elaborate
ways.

7.2.3 Anthropomorphic Aspects

Anthropomorphic means “Having human characteristics”.

In this acception the proposed approach to RPM solution has several anthropomorphic aspects:

1. The representation stage follows heuristics inspired by studies of human visual perception
2. Tt uses a cognitive model, albeit a very rudimentary one

3. It features patterns that human solvers report to use, proved by the studies of Carpenter
et al. (1990) and introspection.

4. Tt autonomously generates the solutions, behavior found to occur in high achieving human
solvers (Carpenter et al., 1990).

The obtained results indicate that anthropomorphic artificial intelligence, the use of cognitive mod-
els to solve Al problems while at the same time not modeling the performance bottlenecks of human
cognition, and simplicity theory, a framework providing a computable definition of complexity for
cognitive systems, are tools worth considering when constructing computer programs for solving
tests of human intelligence.

38 Chapter 7. Discussion & Conclusions

7.3 Considerations on the RPM

Although most RPM problems are well defined and follow certain patterns (most of our pattern
functions produce matches in more than one occasion), there are some issues with the underlying
problem formulations which will be discussed below. The discussion is purely based in computer
science and does not attempt to make any claims about the psychological and psychometrical
aspects of the RPM.

7.3.1 Underspecified Problems

One of our objectives is to construct a methodology able to autonomously generate pictorial so-
lutions to RPM problems, without considering the answer alternatives. We have already clarified
that this is not the actual protocol for RPM tests, since there candidates have access to the list of
proposed solution alternatives, and that ours is a harder task.

However it is not always possible to generate the complete solution without considering the
answer alternatives.

While most of the SPM problems are fully determined there are some cases, namely three
(C02, D12, E12), where the information extrapolated from the problem grid alone is not sufficient
to produce an exact graphical rendition of the solution. There, considering the answer alternatives
becomes a necessity in order to solve the task. Specifically the missing information regards the
positioning, size or orientation of the graphical elements within the cell.

We ignore if this feature is by design, acting as a discriminant in assessing the capabilities of
the test subjects; however it does constitute an important aspect in determining the computational
characteristics and requirements of RPM as a whole. Apart from these “unsolvable” problems, our
approach shows that the the rest of SPM set are a completely mechanical pattern-matching task
requiring no additional information or creative step do be solved. The fact that all but three of the
inspected 36 problems can be solved in a completely mechanical way is on its own a very interesting
result.

7.3.2 Ad-Hoc Patterns

Most of the RPM items feature and are solvable using patterns that keep recurring throughout
the section, set, and even beyond (to the APM problems). In stark contrast, some items feature
patterns never occurring again, ad-hoc for all intents and purposes. This characteristic makes it
difficult to create a general model for them and even to understand if they are mathematically
formalizable at all on the graphical level or if they are just intended to be qualitative, highly
abstract relations where the solution alternatives are required to produce a solution as explained
in Section 7.3.1.

7.3.3 Vector Graphics Versus Raster Image Representation

In its current state our program starts from a vector graphics representation. Since the intended
input stimulus for human solvers is the printed RPM booklet, a collection of raster images, one

7.4. Future Work 39

might argue that by starting from vectors instead some of the initial pre-processing stages are
skipped.

However, the images in the booklet are most certainly created using vector graphics software
and the raster images seen in the booklets are just there because no commercial vector graphics
printing format exists. Additionally, we argue the human solution process does not start from a
raster representation: when solving progressive matrices the conscious mind does not perceive the
problem as a dot matrix, but as collections of objects instead.

So, which one of the two formats is the correct one to start from? In this work we focused
on the conscious solution process, so for our purposes it is enough to start from a vector graphics
representation. We also think the bias of considering the raster level as irrelevant is a reasonable
one to have; the progressive matrices problems are most certainly not constructed to test raster
image relationships. However we have built the program in such a way that it can easily be
extended by a raster to vector graphics preprocessor, thus encompassing also the subconscious
parts of human pre-processing.

7.3.4 APM Results Speculation

APM are the natural follow-up to the SPM test we worked on. Following a qualitative analysis
we speculate that in its current state our program would be able to correctly solve 7 out of 12
problems in APM Set I. Regarding APM Set II we predict circa 15 out of 36 problems solved.

7.4 Future Work

Below we will suggest future work extending or building on this one. Based on the modular
structure of the architecture employed, it should even be possible to directly expand the program
described in this report.

7.4.1 More Patterns

Pattern-finding functions for the “ad-hoc” or seldom occurring patterns could be added to the
system using the already existing modular function structure. Examples of such patterns are
simple arithmetical operations, shape folding, shape stretching, etc.

7.4.2 Advanced Progressive Matrices

The speculations and predictions made about the results of our software on the Advanced Pro-
gressive matrices could be verified by producing XAML vector graphics representations of those
problems and monitoring the results.

7.4.3 Raw Image Processing

For the reasons discussed in 7.3.3 above, we decided to start our processing from the vector graphics
level. However, we welcome future work that builds on our results and expand them with a raster

40 Chapter 7. Discussion & Conclusions

image preprocessor.

7.4.4 Answer Alternatives

Since for a few RPM items it is not possible to compute the complete solution, the capability of
processing the answer alternatives will make it possible to optimally deal with such situations as
well.

An implementation for this could consist of creating separate representation structures for the
eight solution candidates, using the very same algorithms used to create the one for the problem,
compare them one by one with the computed (complete or partial) solution across all levels, and
pick the most similar as the answer to the problem.

7.4.5 Architectural Changes

Architectural revisions could be performed in order to more closely mimic human cognitive pro-
cessing while solving RPM. For instance a limited working memory could be introduced, or an
explicit action planner to direct the solution process. This, however, was not one of the goals of
the work presented here.

7.4.6 Psychological Dimension

Lastly, it would be interesting to get a psychological view on the herein proved fact that solving
RPM only requires a very mechanical approach and that good results can be achieved knowing as
few as two patterns and what implications that has for the RPM test as whole.

List of Figures

1.1

3.1
3.2

4.1

4.2

5.1
5.2
5.3
5.4
5.5

Example of a 3x3 RPM-like problem 3
Representation structure for a simple progressive matrix 13
Representation structure for a single cell of a moderately elaborate progressive matrix 14

A very simple progressive matrix solved by the Identity pattern on the Cell pro-
cessing level L 18

Progressive matrix solved by two Identity patterns on the Cell Objects processing

level . . . o 18
Choose Problem interface panel oL 24
Active Problem interface panel L L oL 25
Visualization interface panel L Lo 27
Logger interface panel 28
Multilogger interface panel L oL oo 29

41

42

LIST OF FIGURES

List of Tables

4.1 Patterns and relevant abstraction levels

6.1 Detailed account of the obtained RPM solutions

6.2 Pattern occurrances sums for alternative function orders

43

44

LIST OF TABLES

Bibliography

Bethge, H., Carlson, J. & Wiedl, K. (1982), ‘The effects of dynamic assessment procedures on raven
matrices performance, visual search behavior, test anxiety and test orientation’, Intelligence
6(1), 89-97.

Bringsjord, S. & Schimanski, B. (2003), What is artificial intelligence? psychometric ai as an
answer, in ‘IJCAI’03: Proceedings of the 18th international joint conference on Artificial intel-
ligence’, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 887-893.

Carpenter, P., Just, M. & Shell, P. (1990), ‘What one intelligence test measures: A theoretical
account of the processing in the raven progressive matrices test’, Psychological review 97(3), 404—
431.

Chater, N. (1999), ‘The search for simplicity: A fundamental cognitive principle?’, The Quarterly
Journal of Experimental Psychology A 52(2), 273-302.

Chater, N. & Vitdnyi, P. (2003), ‘Simplicity: A unifying principle in cognitive science?’, Trends in
cognitive sciences T(1), 19-22.

Dessalles, J.-L. (2010), ‘Simplicity theory - unexpectedness’.
URL: http://www.simplicitytheory.org/

Forbus, K., Gentner, D., Markman, A. & Ferguson, R. (1998), ‘Analogy just looks like high
level perception: Why a domain-general approach to analogical mapping is right’, Journal of
Experimental & Theoretical Artificial Intelligence 10(2), 231-257.

Forbus, K., Lockwood, K., Klenk, M., Tomai, E. & Usher, J. (2004), Open-domain sketch under-
standing: The nusketch approach, in ‘AAAI Fall Symposium on Making Pen-based Interaction
Intelligent and Natural’, AAAT Press, pp. 58-63.

Forbus, K., Usher, J., Lovett, A., Lockwood, K. & Wetzel, J. (2008), Cogsketch: Open-domain
sketch understanding for cognitive science research and for education, in ‘Proceedings of the

Fifth Eurographics Workshop on Sketch-Based Interfaces and Modeling’.

Freed, K. & Ram, H. (2005), Finding patterns in series - measuring complexity of human recollec-
tion, Master’s thesis, Chalmers University of Technology.

45

46 BIBLIOGRAPHY

Galos, P., Nordin, P., Olsén, J. & Ringnér, K. S. (2003), A General Approach to Automatic
Programming Using Occam’s Razor, Compression, and Self-Inspection, in ‘Genetic and Evolu-
tionary Computation GECCO 2003’, Vol. 2724 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg.

Kunda, M., McGreggor, K. & Goel, A. (2009), Addressing the ravens progressive matrices test of
general intelligence, in ‘Fall AAAT Symposium on Multimodal Representations’.

Leeuwenberg, E. (1968), Structural information of visual patterns: an efficient coding system in
perception., Mouton, The Hague.

Leeuwenberg, E. (1969), ‘Quantitative specification of information in sequential patterns.’, Psy-
chological Review 76(2), 216-220.

Leeuwenberg, E. (1971), ‘A perceptual coding language for visual and auditory patterns’, The
American journal of psychology 84(3), 307-349.

Legg, S. & Hutter, M. (2007), Tests of machine intelligence, in ‘50 years of artificial intelligence:
essays dedicated to the 50th anniversary of artificial intelligence’, Springer-Verlag, Berlin, Hei-
delberg, chapter Tests of Machine Intelligence, pp. 232-242.

Lovett, A., Forbus, K. & Usher, J. (2007), Analogy with qualitative spatial representations can
simulate solving ravens progressive matrices, in ‘Proceedings from the 29th Annual Conference
of the Cognitive Science Society’, pp. 449-454.

McCarthy, J. (2007), ‘What is artificial intelligence?’.
URL: http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

Meo, M., Roberts, M. J. & Marucci, F. S. (2007), ‘Element salience as a predictor of item difficulty
for raven’s progressive matrices’, Intelligence 35(4), 359 — 368.
URL: hitp://www.sciencedirect.com/science/article/B6 W4 M-4MHSBF'Y-
1/2/7d47660fcbc995267633f85fdfcb2245

Palmer, S. (1999), Vision science: Photons to phenomenology, MIT Press, Cambridge, MA.

Raven, J. C. (1936), Mental tests used in genetic studies: The performances of related individuals
in tests mainly educative and mainly reproductive., Master’s thesis, University of London.

Raven, J. C. (1990a), Advanced Progressive Matrices Set I, Oxford Psychologists Press Ltd.
Raven, J. C. (1990b), Advanced Progressive Matrices Set II, Oxford Psychologists Press Ltd.

Raven, J. C. (1990¢), Standard Progressive Matrices Sets A, B, C, D & E, Oxford Psychologists
Press Ltd.

Raven, J. C. & Court, J. H. (2003), Manual for Raven’s Progressive Matrices. Research Supplement
No. 2 and Part 3, Section 7., Harcourt Assessment, San Antonio, TX.

Russell, S. & Norvig, P. (2003), Artificial Intelligence: A Modern Approach, Prentice Hall.

BIBLIOGRAPHY 47

Snow, R., Kyllonen, P. & Marshalek, B. (1984), The topography of ability and learning correlation,
in R. J. Steinberg, ed., ‘Advances in the Psychology of Human Intelligence’, Vol. 2, Erlbaum,
Hillsdale, NJ, pp. 47-103.

Strannegard, C. (2007), Antropomorphic artificial intelligence, in ‘Kapten Mnemos Kolumbarium’,
Vol. 33 of Filosofiska Meddelanden - Webbserien, Goteborgs Universitetet.
URL: http://www.phil.gu.se/posters/festskrift2/mnemo_strannegard. pdf

van der Helm, P. (2007), ‘Structural information theory’.
URL: http://www.nici.kun.nl/ peterh/doc/sit.hitml

Wertheimer, M. (1939), Laws of organization in perceptual forms, in W. D. Ellis, ed., ‘A source
book of Gestalt Psychology’, Routledge, London, pp. 71-88.

48

BIBLIOGRAPHY

Appendix A

List of Processed Atttributes

The attributes processed by the program are either originally present in the input files, or simple
quantities derived from them. These attributes are:

CenterX, CenterY
Bounding box coordinates, expressed in a reference frame centered at the cell’s center and where the cell height and
width are unitary.

CenterXRelative, CenterYRelative
Bounding box coordinates, expressed relative to the group’s bounding box.

FillBrush
Brush used to paint the shape’s fill. Solid color or textured pattern.

Height, Width
Element height and width, expressed in cell length units.

PathGeometry

Provides a uniform way to operate at the same time on open (Line, Path) and closed (Ellipse, Rectangle, Polygon)
shapes. Contains the list of the shape’s vertex points sorted according to drawing order, the type of the connecting
segments (straight line, arc, etc) and their relevant settings.

RotateTransformAngle, RotationTransformCenterX, RotationTransformCenterY
Parameters of the shape’s rotation transform: clockwise rotation angle and rotation center coordinates, respectively.

StrokeBrush
Brush used to paint the shape’s outline. always a solid color in this project. Stroke patterns is specified with the
next set of attributes.

StrokeDashArray, StrokeDashOffset
Define an outline dashing pattern.

StrokeEndLineCap
Shape at the end of shape outline segments:

e Flat
e Square
e Round

e Triangle

49

50

Appendix A. List of Processed Atttributes

StrokeThickness
Width of the shape’s outline.

Type

Element class type:

Line - Straight line between two points

Ellipse - Ellipses and circles

Path - Series of connected lines and curves, arcs, open shapes
Polygon - Connected series of lines

Rectangle - Squares and rectangles

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Background
	Intelligence and Artificial Intelligence
	Raven's Progressive Matrices
	Automatically Solving Raven's Progressive Matrices

	Previous Work
	Goals
	Disposition of This Report

	Problem Analysis
	Background
	Visual Perceptual Organization
	RPM Solution
	Simplicity

	Our Approach

	Knowledge Representation
	Input Format
	Overview of the Perception Stage
	Representation Structure
	Differences from the conceptual model
	Computation

	Computational Model
	The Use of Abstraction Layers to Solve RPM
	Pattern Detection
	Algorithmic Function Part
	Pattern Matching Part

	Notes Abobut the Overall Processing

	Implementation
	Choose Problem
	Active Problem
	Drawn Solution

	Visualization
	Logger
	Multilogger

	Results
	Obtained RPM Solutions
	Alternative Function Orders
	Patterns
	Abstraction Levels

	Computation Times
	Points of Failure

	Discussion & Conclusions
	Remarks on the solution process and on the obtained results
	Goals And Performance Evaluation
	Representation Structure
	Cognitive Model
	Anthropomorphic Aspects

	Considerations on the RPM
	Underspecified Problems
	Ad-Hoc Patterns
	Vector Graphics Versus Raster Image Representation
	APM Results Speculation

	Future Work
	More Patterns
	Advanced Progressive Matrices
	Raw Image Processing
	Answer Alternatives
	Architectural Changes
	Psychological Dimension

	List of Figures
	List of Tables
	Bibliography
	List of Processed Atttributes

