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Abstract 

Sodium chlorate is mainly used for onsite generation of chlorine dioxide used in the pulp and 

paper industry. It is produced in a very power intensive process where the formation of 

hydrogen bubbles on the cathode surface creates a circulation through the cell which is critical 

for the supply of fresh electrolyte to the electrodes. There is a strong need to better 

characterize and predict the flow pattern between the electrodes to accomplish a more optimal 

and less power consuming cell design.  

This work is part of a research field at EKA Chemicals to broaden the knowledge of the flow 

patterns inside the electrode gap. Two electrolytes were used, i.e. a 100 g/l NaCl solution and 

a 100 g/l NaCl + 500 g/l NaClO3 solution. Both solutions contained a small amount of 

dichromate to exclude side reaction on the cathode surface. Laser Doppler Velocimetry 

(LDV) was used to measure velocity profiles in the electrode gap.  A high speed CCD camera 

was used to measure inlet velocities, bubble sizes and the behaviour of the bubble layer, 

formed at the cathode surface. All experiments were done as a function of composition, 

temperature and current density at different positions along the electrode gap. 

It was concluded that the velocity at the cathode side increases and at the anode side decreases 

as a function of height. Surprisingly, an increase in density resulted in an increase in velocity 

despite a simultaneous increase in viscosity. The average diameter of bubbles close to the 

inlet was 45 µm and they leave the gap with a diameter in the range 100 – 150 µm. The 

thickness of the bubble curtain appeared to be dependent of the flow velocity and the height in 

the electrode gap and displayed a fluctuating periodicity with a minimum and maximum value 

along the cathode. Remarkable is the fact that the velocities measured with the LDV set up 

were significantly lower than the ones measured wit the high-speed camera, although 

calibration test were made for both techniques. 

A preliminary CFD model of the electrode gap has been made, both a 2D and a 3D approach, 

and has been compared with the experimental data. The models were solved with a laminar or 

k-! turbulence pressure-based mixture model which is a simplification of the Euler-Euler 

approach. The results are in qualitative agreement with the LDV measurements but a lot of 

fine tuning is necessary.     
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1:  Introduction 

Sodium chlorate, NaClO3, is a white crystalline powder that has a high solubility in water: 

101.0 g/100 ml at 20 °C (Perry, 1999). Approximately 95% of the produced sodium chlorate 

is used in the pulp and paper industry, where it is the main reagent to produce chlorine 

dioxide, ClO2, which is nowadays the predominant bleaching agent. The rest is used in the 

agriculture where it has a function as herbicide, in the match industry and as an intermediate 

in the production of perchlorates. Chlorate is also used as a chemical oxygen generator as for 

example in airplanes where it provides emergency oxygen to passengers to protect them form 

pressure drops in the cabin. Iron powder is used as a catalyst and barium peroxide is used to 

absorb the formed chlorine gas (Zhang et al, 1993).  

The production of sodium chlorate starts with the electrochemical oxidation of a hot sodium 

chloride solution. Like every electrolysis, this is an enormously power consuming process. By 

using Faraday’s Law, it is possible to calculate the energy needed per ton chlorate, which is 

approximately 1.5 MAh, assuming 100 % current efficiency. To run an electrolyzer, a 

superimposed potential around 3 V is needed, giving a power consumption of 4.5 MWh per 

ton chlorate. One can imagine that this is a huge cost for a company such as EKA Chemicals 

that produces about 1 Million tons chlorate per year. 

As part of the former Swedish Nobel Industries, EKA can trace its history all the way back to 

the 1640's when the Bofors forge was founded in Sweden. Its own history though starts in 

1896 when Alfred Nobel, the founder of the Nobel Prize, was among those who started EKA - 

Elektrokemiska Aktiebolaget in Bengtsfors. After several mergers it finally became part of the 

Akzo Nobel group in 1994. Today, EKA is the world leading manufacturer of chlorate (32% 

of the world production), with a focus onto pulp and paper industry. Due to the continuous 

growth of demand of their production and the rising energy prices, it is necessary to be as 

efficient as possible.  

Deepend knowledge of flow patterns, mass and heat transfer, bubble effects, reactor design is 

necessary to improve the effectiveness of new chlorate cells that have to be built in future. 

With the computational capacity nowadays, it is possible to model chlorate electrolyzers, 

although experimental work is still needed to provide data for the verification of the models. 

Once a model is approved, it can be used to quantify momentum, heat, mass and charge 

transport processes. Also the effect of bubbles on cell voltage and current efficiency is of 

particular interest. 
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Previous work regarding transport phenomena has been done by Janssen et al (1970-1991). 

He studied the effect of bubbles on momentum, mass and heat transfer by the use of optical 

techniques and special electrode set ups, e.g. segmented electrodes. However, a forced flow 

was used. Byrne et al. (1999, 2001) studied the effect of hydrodynamic behaviour on total 

current density and cell voltages along with the effects on current density distributions and 

individual overpotentials at the respective electrodes. He verified his experimental work with 

mathematical models. Wedin (1999, 2001) used image analysis and a fiber optics velocimeter 

to validate his numerical models of a chlorate electrolyzer, based on mixture modeling.  

Regarding validation of EFD modeling in multiphase flow, Kreysa and Kuhn (1985) for 

example succeeded with their work to define a maximum void fraction and Ishii and Zuber 

(1975) predicted the viscosity of dispersions. A theoretical approach about bubbles and their 

effect on transport phenomena, without going far into detail, is given by for example Vogt 

(1977-2009). 

To validate models made at EKA Chemicals, experimental work with high speed camera’s 

has been done by Hell and Wanngård (2009) regarding bubble size distributions and flow 

velocities in small scale chlorate electrolyzers. This thesis is a continuation of the work done 

by Hell et al, to provide experimental data for the validation of two phase flow models.  
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2:  Purpose and objectives 

The purpose of this work is to contribute to the research done at EKA Chemicals regarding 

the hydrodynamics and bubble effects inside a chlorate electrolyzer. A newly built small scale 

chlorate electrolyzer is to be tested and investigated for its possibility to provide experimental 

data to validate the modelling of two-phase flow at high void fractions of gas.  

 

 

The objectives of this work are: 

to retrieve information about velocities of the flow in the inter electrode gap as a 

function of current density, electrolyte composition and temperature. 

 

to study the bubble sizes, bubble curtain thicknesses at the cathode surface as a function 

of current density, electrolyte composition and temperature. 

 

to make a preliminary model with commercial software of the electrode gap and to 

compare the model with the experimental results. 
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3:  The chlorate process 

3.1  Chemistry behind the chlorate process 

Chlorine dioxide is mostly used in the paper industry as a bleaching agent. ClO2 is produced 

out of sodium chlorate. The production of sodium chlorate in turn starts with the 

electrochemical oxidation of a sodium chloride solution. Hydrogen gas is produced at the 

cathode and forms a supersaturated gas-liquid dispersion. At the anode, chlorine is produced. 

Chlorine is consumed almost immediately through reacting with other products in the 

electrolyte as described later. Oxygen is an undesired by-product. It is also produced at the 

anode surface and consumes 2-4 % of the imposed current (Byrne et al., 

1999).Equation Section 3 

The reaction scheme for the production of sodium chlorate involves the following 

electrochemical and chemical reactions. They were first derived by Foerster (1924): 

 
   
2Cl!

k f

kb

! "!!# !!! Cl2(aq) + 2e!  (3.1) 

  

 
   
Cl2(aq) + H2O

k f

kb

! "!!# !!! HClO + H + + Cl!  (3.2) 

   

 
  
HClO

k f

kb

! "!!# !!! ClO! + H +  (3.3) 

   

 
   
2HClO + ClO! k f

kb

! "!!# !!! ClO3
! + 2H + + 2Cl!  (3.4) 

 

where k represents the rate of reaction in either the forward (f) or backward (b) direction. 

Reaction (3.4) has the highest reaction rate when the ratio of [HClO]:[ClO-] is equal to 2, thus 

  (3.5) 
 

where pKa refers to reaction (3.3). This corresponds to a pH of 6-7. The rate of reaction (3.4) 

is strongly temperature dependent. (Coleman, 1981) 

An industrial chlorate electrolyte basically contains a highly concentrated solution of sodium 

chlorate, sodium chloride, sodium hypochlorite, and sodium dichromate, Na2Cr2O7, the latter 
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creating a chromium hydroxide film on the cathode. This film inhibits side reactions, so that 

practically only hydrogen gas is produced according to 

 
  
2H2O + 2e! "#" H2 ( g ) + 2OH !  (3.6) 

 

The super saturation level at the anode is never high enough to obtain chlorine bubble 

formation. Chlorine is slightly soluble in water: ca. 6.6 g/L at 25°C and 1 atm (Perry, 1999). 

The hydrolysis reaction (3.2) rapidly consumes the dissolved chlorine as it diffuses out into 

the bulk. The formed hypo, HClO, in its turn rapidly dissociates to hypochlorite ions. Finally, 

hypo disproportionates with hypochlorite ions forming chlorate. 

A number of side reactions are known to exist in all conditions (Boxall et al., 1992). When 

DSA-anodes (Trassati, 2000) are used, it is assumed the following homogeneous reaction 

occurs: 

 
   
2ClO! k f

kb

! "!!# !!! 2Cl! + O2( g )  (3.7) 

 

This reaction takes place everywhere in the electrolyte, but is catalyzed at the anode surface. 

Another side reaction, proposed by Hardee and Mitchell (Hardee et al., 1989) is given by 

   ClO!  + H2O "#"  Cl! + 2H + + O2 + 2e!  (3.8) 
 

or as the Foerster reaction 

 
  
3ClO!  + 3H2O "#"  ClO3

! + 2Cl! + 6H + + 3
2

O2 + 6e!  (3.9) 

 

although reactions (3.8) and (3.9) still evoke discussions about the stochiometry and the real 

ongoing chemistry. This reaction can appear to be a superposition of the homogeneous decay 

of the hypochlorite ion and the electrochemical production of oxygen from water. Therefore 

the hypo level should be kept low, by using the correct pH (between 6 and 7) and keeping the 

reactor volume high. 

At low current densities, also the oxidation of water at the anode is considered to be a side 

reaction. 

    2H2O! "!# !! O2 + 4H + + 4e!  (3.10) 



 

  7 

3.2  The effect of side reactions on power consumption 

The overall reaction for the production of chlorate out of sodium chloride is given by 

   NaCl + 3H2O
6e!" #" NaClO3 + 3H2  (3.11) 

 

For each mole of sodium chlorate six moles of electrons are required. The charge needed to 

produce 1 ton sodium chlorate can be calculated and is approximately 1.5 MAh / ton NaClO3. 

Now, the anodic and cathodic current efficiencies will be described. 

3.2.1 Current efficiency 

The anodic reactions are on the one hand the formation of hypo out of choride ions. This is 

the combination of reactions (3.1) and (3.2). On the other hand a watersplit reaction takes 

place. 

   2H2O ! O2 + 4H + + 4e"  (3.12) 
 

The anodic current could be described as 
   
Ia = 2F !nH ,G + 4F !nO2

with  the molar flux. 

Subindices H,G and O2 stands for generated hypo and oxygen.  

At the cathode, reduction of hypo and even chlorate takes place. However, the most important 

cathodic reaction is the formation of hydrogen out of water. 

   ClO! + 2H + + 2e! " Cl! + H2O  (3.13) 

  (3.14) 

  (3.15) 

 

The cathodic current in its turn is then given by 
   
Ic = 2F !nH ,L + 6F !nC ,L + 2F !nH2

. Subindices 

H,L; C,L and H2 refers to lost hypo and chlorate due to reduction, and hydrogen. 

Due to the conservation of charge, the anodic current must be equal to the cathodic current, 

resulting in: 

 
   
Ia = 2F !nH ,G + 4F !nO2

= 2F !nH ,L + 6F !nC ,L + 2F !nH2
= Ic  (3.16) 
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The net formed chlorate and the expected amount in the ideal conditions are given by: 

 

   

!nchlorate,ideal =
Ia

6F

!nnetto chlorate =
1
3

( !nH ,G ! !nH ,L ) ! !nC ,L

"

#
$$

%
$
$

 (3.17) 

 

By taking the ratio of the net formed chlorate to the ideal situation, both current efficiencies 

could be determined. This ratio is the total current efficiency ". 

 
   
! = 2F

I
!nH2

1" 2
!nO2

!nH2

#

$
%

&

'
( " !c 1" 2yO2

( )  (3.18) 

 

with #c the cathodic current efficiency and 
  
1! 2yO2
( ) the anodic current efficiency. Typical 

values are #c = 0.98 and = 0.02. Power consumption P per ton chlorate is equal to 

 

  

P =
Charge x Superimposed  Potential

Current  efficiency
=

1,5MAh x 3V

!c 1" 2yO2
( ) ton NaClO3

 (3.19) 

 

With the values mentioned above, P is equal to 4,8 MWh/ton. Eka Chemicals produces 106 

ton NaClO3 per year. This gives a cost equal to 2,5.109 SEK/y or ca. 250.106 EUR/y. 
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4:  Experimental techniques 

4.1  Laser Doppler AnemometryEquation Section (Next) 

When a fire truck with sirens on passes, one will hear a downshift in frequency due to the 

Doppler Effect. The faster this fire truck moves, the larger the frequency shifts. This 

phenomenon is also observed with light. When light is reflected from a moving particle, then 

the scattered light has a frequency shift proportional to the speed of that particle. By 

observing this shift, one can calculate the velocity. This is the foundation for the LDA 

technique. The principle of LDA is shown in Figure 4.1. (Dantec Dynamics, 2010) 

 

Figure 4.1: The principle of LDA 

The basic configuration of a LDA set-up consists out of a monochromatic laser beam, 

transmitting options including a beam splitter (the Bragg cell) and a focusing lens, receiving 

optics including a photo detector and an interference filter and at last a signal conditioner and 

processor. The output of the Bragg cell is two laser beams of equal intensity, but one slightly 

shifted with a known frequency fs. Because of this, it is also possible to determine the 

direction of the flow as will be shown later. The beams are led to a probe by using optic 
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fibres. In the probe, the beams are directed to intersect, and the point of intersection is the 

probe volume. 

 

Figure 4.2: Fringe pattern and processing 

Due to interference of the two beams, the light intensity is modulated. Zones with different 

intensities are created, a so called fringe pattern, Figure 4.2. The distance between two 

successive fringes, df, is determined by the angle between the two beams and their wave 

length. 

  (4.1) 

As a particle crosses the fringe pattern, the intensity of the scattered light varies with the 

intensity of the fringes. Thus, the amplitude of the signal burst varies with timescale dF/V, 

where V is the velocity component perpendicular to the fringe pattern. The frequency of the 

amplitude modulation is thus  

  (4.2) 

Note that with a two laser beam system, the position of the photo detector does not influence 

the Doppler frequency, because it is only dependent of the contact angle between the two 

beams. It is also dependent on the magnitude of the velocity but not on its direction. Negative 

and positive values for the velocity give the same Doppler frequency value. To determine the 

direction, one of the incident laser beams is shifted with a known frequency fs. Due to this 

frequency difference, the fringe pattern moves with a speed  toward the incident 

unshifted beam. The Doppler frequency is now given by 

 
  
fD = fs +

2V
!

sin "
2

#
$%

&
'(

 (4.3) 
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with the direction of the flow reflected in fD. Note that   to avoid wrong 

interpreted directions and magnitudes. 

4.2  Particle Image Velocimetry 

Particle Image Velocimetry (PIV) provides instantaneous velocity vector measurements in a 

cross-section of a flow and is thus classified as a whole-flow-field technique. This technique 

is non-intrusive and allows the application of PIV in high speed flows, boundary layer studies 

of fluids. The fluid is seeded with particles which are generally assumed to faithfully follow 

the flow dynamics. It is the motion of these seeding particles from which the velocity 

information is calculated. It is done by taking two images shortly after one another and 

calculating the distance individual particles traveled within this time. A typical PIV setup 

consists of a CCD camera, high power laser, an optical arrangement to convert the laser 

output light to a light sheet, tracer particles and the synchronizer. The principle is shown in 

Figure 4.4. (Dantec Dynamics, 2010) 

A CCD (charge coupled device) camera is a tool which is designed to convert optical 

brightness into electrical amplitude signals using multiple CCDs and then reproduce the 

image by using the electric signals without time restriction. CCDs are arrays of semiconductor 

gates, formed on a substrate of an integrated circuit or chip (Figure 4.3).  

 

Figure 4.3: CCD element 

They all collect, store and transfer charge individually. When it is meant to use a CCD camera 

in image applications, the collected and stored data in each gate of the array represents a pixel 

of an image. The CCD image sensor includes an image section, which performs a 

photoelectric conversion. It also includes a storage section which temporarily stores charges 

acquired by the photoelectric conversion. For further information about CCD, the author 

refers to an article of C. Peterson (2001). 
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Figure 4.4: Principle of PIV 

4.3  Other experimental techniques 

4.3.1 Backlighting 

This is a photographic method with light source from the back, shining through the system 

that has to be measured, towards a (CCD) camera. The principle is similar to the PIV, but 

without the use of a laser. Processing of the pictures can be done manually or by use of 

advanced software. Flora Tomasoni (VKI, Brussels) used shadow imaging and the software 

Focused-Recognition-Overlapping-Globules (FROG), which takes into account the out-of-

focus bias and discriminates overlapping bubbles. This technique is used to measure bubble 

sizes. However, the conditions Flora used, were far below the more technical related 

conditions used in this work. (Tomasoni, 2010) 

4.3.2 Constant temperature anemometry 

Constant Temperature Anemometry (CTA) is used to measure fine structures in turbulent gas 

and liquid flows. The working principle is based on the cooling effect of a flow on a heated 

body. CTA measures the velocity at a point and provides continuous velocity time series, 
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which can be processed into amplitude and time-domain statistics. The drawback of this 

technique is that it is an intrusive measuring technique, disturbing the flow field. The sensors 

are also not resistant to the aggressive environment. Only teflons, glass and titanium could be 

used in chlorate electrolyzers. (J. Pettersson, 2010) 

4.3.3 Bubble probes 

Bubble probes are for example used at VKI in Brussels to determine bubble sizes. It is also an 

intrusive technique and the drawback is that it is not capable of detecting bubbles in the size 

range of electrochemically created gas bubbles (5.10-5 m – 5.10-4 m). (J. Pettersson, 2010) 

4.3.4 Ultrasonic techniques 

This is a very advanced technique, using very complicated sensors. The equipment is at the 

moment still expensive, but it is possible that it can be used in the future to measure bubble 

sizes. For more information the reader is referred to the work of Wiklund (2003). 
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5:  TheoreticalEquation Section (Next) 

(B. Andersson et al 2010, M. Sommerfeld et al 2008, J. Blazek  2001, J. Tu 2008, M. Ishii et 

al 2006) 

5.1  Introduction 

The early 1970’s is regarded as the start of the history of Computational Fluid Dynamics, or 

CFD. It was mostly used to simulate fluid flows and is seen as a combination of physics, 

numerical mathematics and computer sciences. At first, only 1D problems were solvable, but 

with the increase of computer power also the possibilities increased and solving 2D and 3D 

Euler equations were not a big problem any longer.  

Since the mid 80’s, the focus started to shift to more demanding simulations of viscous flows 

described by the Navier-Stokes equations. Together with this, a variance of turbulence models 

came on the market. The leading edge in turbulence modelling is represented by the Direct 

Numerical Simulation and the Large Eddy Simulation. Despite the current supercomputers 

and their power, it is still unthinkable of using these models for large industrial and 

engineering applications. 

5.2  Governing equations 

This thesis is not meant to be a course in CFD. Therefore, the interested reader is referred to 

specialized literature as mentioned above.  

Fluid dynamics stands for the investigation of the interactive motion of a large number of 

individual particles, which are often molecules or atoms. It is assumed that the density of the 

fluid is high enough, so it can be regarded as a continuum. This means also that it is possible 

to define pressure, temperature, velocity, density, etc. in every point of the fluid.  

All mathematical models are based on the same basic equations, i.e. the equations for 

conservation of mass, momentum and in non-isothermal cases also energy. In this work, the 

conditions are assumed to be isothermal and the energy equation shall be excluded. The 

equations for continuity and momentum are given by (5.1) and (5.2).  

  (5.1) 
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  (5.2) 

 

where j should be summed over all dimensions and where i denotes the number of equations, 

depending on the dimensions of the system. For a 3D case (5.2) stands for 3 different 

equations. gi represents the external body forces. The combination of the continuity equation 

and the equation of motion is often referred to as the Navier-Stokes (NS) equations. 

5.3  Multiphase f low models 

Multiphase flow could be any flow that consists out of two or more phases. E.g. liquid-solid 

like fiber flows, gas-solid like fluidized beds, gas-liquid like bubble dispersions as used in this 

work, but also an immiscible liquid system is in practical purposes often regarded as a 

multiphase system.  

Characterizing the two-phase flow is of ultimate importance when starting modelling. Two 

phase flows can be classified based on their combinations of two phases as mentioned above, 

but can also be classified based on the interface structures and the distribution of each phase. 

However, this is more difficult to make because of the non-steady state of those interface 

structures. Two phase flow can be classified in three main classes, i.e. separated, transitional 

or mixed and dispersed flow (Ishii 1975) depending of the degree of phase distribution.  

Multiphase flows are characterized by a lot of (often dimensionless) parameters. The most 

important one is the void fraction of the gas phase (sometimes called gas hold up) which is the 

ratio of the volume occupied by gas over the total volume. 

  (5.3) 

 

Note that # is a local variable and could change in time and space. In this work, the terms 

‘dispersed phase’ shall be used for the gas phase, and ‘continuous phase’ for the liquid phase 

with subindices d respectively c.  

Time and length scales are of great importance for multiphase modelling, although it is 

difficult to define an exact scale as these are given by large distributions. For physical 

mechanisms, e.g. collisions, inertia, dissipation, it is still useful to determine one dominant 

timescale.  
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5.3.1 Stokes number 

The dimensionless Stokes number gives the ratio of the dispersed time scale to the continuous 

phase time scale. For example, the turbulent Stokes number is given by 

  (5.4) 

If the Stokes number is much bigger than 1, it means that the particles are insensitive to the 

specified timescale of the continuous phase. When, however, the turbulent Stokes number 

tends to 0, it means that the particles will follow the flow completely. This is often seen for 

very small particles.  

Another Stokes number is the one that gives an idea of the diluteness of a flow and is given by 

the collision Stokes number.  

  (5.5) 

If Stc is much larger than 1, the system may be assumed to be dense; When it tends to 0, the 

system is considered to be dilute. 

5.3.2 Coupling between continuous and dispersed phase. 

Elgobashi (1994) provided a general classification of dispersed two-phase flows (see Figure 

5.1), taking into account the interaction with the continuous phase. The first possibility is, for 

St << 1, that the dispersed particles do not influence the flow and that their interaction is 

negligible, but the flow influences the particles. This is defined as one-way coupling and 

particle tracking may be done in a post-processor.  

For higher particle concentrations, interactions between particles become more important. In a 

first case, the particle interaction could still be neglected, but they influence the fluid flow 

already. The effect of particles on the flow has to be implemented in the equations for the 

continuous phase. This is known as two-way coupling.  

If the density of the dispersed phase increases more, thus for a larger Cav (typically for void 

fraction larger than 10-3), particle interactions can not be neglected. The particles interact thus 

on each other (not necessarily by collision), influence the flow and are influenced by the flow. 

This is defined as four-way coupling.  
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Figure 5.1: The Elgobashi (1994) classification on particle-fluid interactions, with St the Stokes number, 

Cav the average volumetric particle concentration  

5.3.3 Mixture model 

Often referred to as the algebraic slip model or drift-flux model. It is preferred because of its 

simplicity. It is a simplification of the Euler-Euler model, because the flows of the different 

phases are assumed to be in kinetic equilibrium. It is thus not necessary to solve the NS-

equations for each phase separately. The problem however is that the viscosity is estimated 

for the mixture, but there are no general validated models available and (semi-) empirical 

relations for viscosity must be found. Velocities are calculated from forces like buoyancy, 

drag, lift, etc.  

The individual phase velocities relative to the mean velocity is called drift velocity and is 

denoted (for phase k) as Ui,dr,k. The set of equations for the mixture model is given by 
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where m represents the mixture property. 
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The mixture properties are typically weighted by the volume fraction, e.g. 

  (5.7) 

The volume fraction can be determined from the continuity equation of each species. 

Typically, an algebraic expression based on the force balance (5.10) with the acceleration on 

the left hand side set to zero, is specified for the drift velocity to close the mixture model. 

5.3.4 Turbulence modelling: k-! model 

Due to the low Reynolds numbers that are dealt with in this work, the k-! model was chosen. 

It also does not require wall functions, if the grid density is high enough close to the wall (the 

first grid layer should be below y+ = 5 and the first 10 layers below y+ = 20). It is a two-

equation model, which means that two extra PDEs are solved together with the RANS-

equations to describe the length and velocity scales of turbulent flows.  

The k-equation (5.8) is used to model the turbulent velocity scale and the !-equation (5.9) for 

the turbulent length scale. ! stands for the specific dissipation, and should be interpreted as 

the inverse of the time scale on which dissipation occurs.  
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where $T is the turbulent viscosity and is calculated by $T = k / !. 

The coefficients #, %, %*, &k and &! in eqs (5.8) and (5.9) are closure coefficients and assumed 

to be universal and thus constant. However they can change slightly from flow to flow. The 

values are listed in Table 5.1. 

Table 5.1: Closure coefficients in the k- ! model 

Constant " ) )* *k *! 

Value 5/9 3/40 9/100 1/2 1/2 

5.4  Forces acting on particles 



 

  20 

To describe the motion of particles (eg. Stokean bubbles) consideration of all relevant forces 

acting on the particle is required. The forces on a single particle are given by 

  (5.10) 

where 

mp  The mass of the particle 

Ui,p  The linear velocity of the particle 

Fi,Drag  Drag force 

Fi,Press  Pressure force due to a pressure gradient 

Fi,Buoy  Forces due to gravity 

Fi,Lift  Saffman and Magnus lift force due to a velocity gradient and 

particle rotation 

Fi,Rest  Includes the Basset force, Virtual mass force, thermophoretic 

force, turbulence forces and Brownian force. 

5.4.1 Drag force 

The drag force is expressed as a function of the relative velocity between the two phases. 

  (5.11) 

 

CD is called the drag coefficient and describes friction and form resistance (Grén and 

Theliander, 1995) The drag coefficient is given as a function of the particle Reynolds number 

(5.12) and empirical expressions are developed for different intervals of Reynolds numbers 

(White, 1986) 

  (5.12) 

with µL the dynamic viscosity of the fluid. 

The relationship between the drag coefficient of a spherical Stokean bubble and the Reynolds 

number has been plotted, based on experimental investigations (Schlichting, 1965) and is 

shown in Figure 5.2.  
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Figure 5.2: Relationship between the drag coefficient and Re, based on experimental investigations 

(Schlichting, 1965)  

The drag coefficients for stiff spherical particles in pure water are listed below for the 

different ReP regions.  

 (5.13) 

Relation (5.13) is an empirical correlation stated by Schiller and Naumann (1933) and is only 

valid for spherical particles submerged in pure water and needs to be adapted for 

contaminated systems. 

5.4.2 Gravitational and buoyancy force 

The gravitational force, acting on a bubble, is given by 

  (5.14) 
 

The buoyancy force, or Archimedes force, on a submerged bubble is equal to the weight of 

the fluid displaced.  

  (5.15) 
Both forces can be merged into one net force:  

  (5.16) 
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5.4.3 Lift forces 

This group includes two major forces, the Saffman and Magnus lift forces. Small bubbles 

moving in a shear layer experience a transverse lift force, called the Saffman force. This is 

due to the non-uniform pressure distribution on the bubble surface. 

  (5.17) 

where y is the direction perpendicular to the trajectory of the particle. 

Particles, whose rotation is hindered in a flow, may also experience a lift force due to their 

rotation, the so-called Magnus force. The rotation of the particle results in a deformation of 

the flow field around the particle. The sphere will add velocity to the side where the rotation 

and fluid velocity are the same and will slow down the velocity on the other side, resulting in 

a force in the direction of higher velocity.  

  (5.18) 

where ! is the rotation velocity of the particle. However, it is assumed that small bubbles 

have no rotation. The Magnus force will not be taken into account for bubbles.  

5.5  Modell ing of a small  scale chlorate electrolyzer 

The commercial software used in this work was Ansys Workbench which included 

DesignModeler for making the geometries, Meshing to create grids and Fluent, used for the 

calculation of the equations and post processing of the outcome. Two approaches were used, 

i.e. a 2D and a 3D approach of the electrode gap. The reason to choose for a 2D model to 

describe a 3D problem is that the propagation of hydrogen bubbles in the depth dimension is 

neglectable. This also has been seen with the CCD technique.  

Considering the characteristics and applicability of each multiphase model, the mixture model 

has been chosen in this work (like Wedin did in one of his approaches, 1999).  For the 2D 

case, laminar and turbulent approaches have been chosen, and for the 3D case, only the 

standard k-! turbulence model was used, because of its good performance for low Reynolds 

numbers and for its good prediction of wall treatments if a dense mesh close to the wall is 

used. The geometry dimensions are 100 x 3 (x 6) mm. The used boundary conditions are 

given in Table 5.2.  
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Table 5.2: Overview of the applied boundary conditions 

Geometry Type Value 

Inlet velocity inlet 0.1 - 0.15 m/s; "gas = 0 

Outlet pressure outlet Gauge pressure = 0 Pa 

Anode wall no-slip condition 

Cathode mass flow inlet 10-7 kg (H2)/s 

Glass walls (only 3D) symmetry  

 

K and ! should be defined, but are difficult to determine. Instead, turbulence intensity and 

hydraulic diameter were predicted and used in the model. 

To define the system, two phases were chosen, i.e. water with the properties of a 70°C 

chlorate electrolyte as the continuous phase and hydrogen at 70 °C as the dispersed phase. 

The drag force was modelled using the Schiller-Naumann relation The surface tension 

between both phases is set as a constant value of 82 mN/m (Perry, 1999).  

All models were solved using a steady state solver, with convergency after maximum 800 

iterations. 

5.5.1 2D model of the electrode gap 

Only the results will be shown in this section. For the discussion and comparison with 

experimental data the reader is referred to section 7.3. First, a pressure-based mixture model 

with laminar approach was used. A steady state solver was used, which converged after 800 

iterations. The inlet velocity was set to 0.15 m/s. The velocity magnitude, static pressure and 

phase contour plots are shown in Figure 5.3, Figure 5.4 respectively Figure 5.5. It has to be 

mentioned that the horizontal axis is multiplied with a factor 5.  
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Figure 5.3: Contour plot of Velocity magnitude (m/s) for the 2D case, laminar mixture model, with the 

anode surface on the left hand side 

 

 

Figure 5.4: Contour plot of static pressure (Pa) for the 2D case, for the laminar mixture model, with the 

anode surface on the left hand side 
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Figure 5.5: Contour plot of volume fraction of hydrogen for 2D, laminar mixture model, with 

magnification and with the anode surface on the left hand side 

In a second stage, the k-! turbulence model was introduced. With time steps of 5 ms, the 

model reached steady state with convergence after one iteration in each time step. The results 

of this approach however were far from realistic (a velocity increase of only 5 mm/s, static 

pressure differences of 2 atm, etc.) and are for the 2D case omitted of this work.  

5.5.2 3D model of the electrode gap 

A pressure-based mixture model with k-! turbulence model and a steady state solver was 

used. Regarding the contour plots it has to be mentioned that a cross section perpendicular to 

the electrode surfaces 3 mm from the symmetry walls is chosen to discuss the results. Steady 

state or convergency was reached after approximately 670 iterations.  Again only the results 

will be shown and will be discussed in section 7.3.2. The velocity magnitude, static pressure 

and phase contour plots are shown in Figure 5.6, Figure 5.7 respectively Figure 5.8. The 

horizontal axis has been multiplied with a factor 5. 
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Figure 5.6: Contour plot of the velocity magnitude (m/s) for the 3D case, anode at the left hand side 

 

 

 

Figure 5.7: Contour plot of the static pressure (Pa) for the 3D case, anode at the left hand side 
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Figure 5.8: Contour plot of the volume fraction of the hydrogen phase, for the 3D, anode at the left hand 

side 
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6:  ExperimentalEquation Section (Next) 

6.1  The cell  

  

Figure 6.1: Schematic and real view of the used small scale chlorate electrolyzer 

A new small chlorate cell shown in Figure 6.1 has been built between two glass plates with 

dimensions 100 x 3 x 200 mm. The glass was treated to avoid adhesion of bubbles on the 

plates. The titanium based anode and cathode were 10 mm thick and 30 x 100 mm. The walls 

of the electrodes are covered with a PVDF coating, except for the electrode gap walls. The 

electrode gap was 3 mm width. The anode surface has been covered with DSA coating – a 

mixture containing TiO2 and RuO2, provided by Permascand AB. The electrodes were 

sandwiched between the two glass plates to make sure electrolyte could only be transported in 

and out of the gap vertically through the bottom entrance and the top exit. Titanium rods of 

200 mm length and 3mm diameter were attached at the outer side of the electrodes by 

titanium bolts, insulated with PTFE. These rods were connected to a simple DC aggregate by 

copper wires. 

The set-up was placed in a glass vessel with inner dimensions 300 x 62 x 242 mm and with 6 

mm thick glass walls. The glass walls were glued together with silicon based glue. The 

electrode gap inlet was located 30 mm from the bottom. To avoid hydrogen explosions due to 

accumulation of oxygen and hydrogen gas above the surface, an exhaust hood was used. A 

titanium pipe with circulating water was placed in the vessel and connected with hoses to a 

thermostat bad. 
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Temperatures were measured with a common alcohol thermometer with range -10°C to 

110°C. pH was measured with a Metrohm 654 pH-meter. The electrode was calibrated with 

commercial 4.0 and 7.0 buffers at room temperature.  

 

Figure 6.2: Dimensions of the electrode set up 

6.2  LDV study 

Originally LDV (or LDA) would not have been used in this work. However, due to lucky 

circumstances, the instrument became available a week. As this was not foreseen, a thorough 

preparation was not possible.  

6.2.1 Set up and equipment 

The LDA equipment used for the experiments was a DANTEC FiberFlow Series 60X 

(Skovlunde, Denmark) (see Figure 6.3) connected to two Burst Spectrum Analysers (BSA), 

i.e., a DANTEC 57N10, which interpreted the Doppler signal to velocities. The equipment 

was controlled by DANTEC's software Burst Ware, version 3.0. The laser connected to this 

device was a Spectra-Physics laser (Model 2060A-64, Darmstadt, Germany). The wave length 

of the laser beam was 514.5 nm. 
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Figure 6.3: The Dantec laser system 

The vessel, containing the electrolysis cell, was placed with the longest side perpendicular to 

the laser beams, 31 cm from the probe. The distance between the two laser beams leaving the 

probe was 6.2 cm. The probe was placed in such way that the ellipsoidal cross section, with 

approximated dimensions 700*70 µm was located 4 - 6 mm behind the inner glass wall in the 

electrode gap. To avoid too many reflections, a black paper had been placed behind the vessel 

(Figure 6.4). The cell was the same as described earlier. For the measurements, the settings 

were set in such a way that every measurement consisted out of 2000 burst, or detected 

particles.  

 

Figure 6.4: Cell set up while measuring 
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6.2.2 Procedure and calibration 

Although it is a calibration free experimental method, it is necessary to determine the correct 

calibration factor C. This factor is only dependent on the wavelength ' of the laser and the 

distance between the laser beams leaving the probe as described earlier.  

  (6.1) 

with % the wavelength of the laser light (=514.5 nm) and $ the angle between the two crossing 

beams.  

  (6.2) 

With this value, C can be calculated and equals 2.965. 

 

Figure 6.5: Explanation of the used terms for the LDV set-up 

To verify if the measured results were correct, a constant flow with known velocity was 

created (see Figure 6.6). By knowing the inner diameter of the glass tube at the measuring 

position (di), the time (t) necessary to obtain a specific volume of liquid leaving that tube (Vl), 

the average velocity can be calculated by: 

  (6.3) 
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Figure 6.6: System with a known velocity 

After verifying the set up, the vessel was placed perpendicular and the inter electrode gap 

aligned with the laser beams. For the experiments, two different electrolytes were used and 

are given in Table 6.1.  

Table 6.1: Overview of the used electrolytes 

 NaCl (g/l) NaClO3 (g/l) Na2Cr2O7 (g/l) 

Electrolyte A 100 0 3 

Electrolyte B 100 500 3 

First, a depth profile was obtained to determine the ideal measuring position, i.e. the place 

where the influence of the glass wall is negligible. This was done by measuring the velocity 

halfway between the electrodes, starting from the glass to maximum 8 mm inside the gap, in 

steps of 1 mm. Two different heights were chosen, one at 40 mm from the inlet and another 

one at 95 mm from the inlet.  

The procedure used for the actual velocity measurements was the same for every case. A 

sweep will be defined as a horizontal velocity profile from anode to cathode. The positions (in 
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mm) are shown with arrows in Figure 6.7. The region close to the cathode surface is the most 

interesting one because of the bubble formation. Therefore the positions are chosen closer to 

each other.  

 

Figure 6.7: Measuring positions for a sweep 

Every sweep was repeated for each change of parameter, i.e. current density, temperature and 

electrolyte composition. An overview of the performed experiments and parameter values is 

given in Table 6.2. 

Table 6.2: Overview of the parameters for the LDA study 

Electrolyte Height from inlet (mm) Current density (kA/m2) Temperature (°C) 

A 0   -   45   -   95 0.33  - 1.00  - 2.00  - 3.00 30 ± 2 , 70 ± 2  

B 0   -   45   -   95 0.33  - 1.00  - 2.00  - 3.00 30 ± 2 , 70 ± 2  

The data was refined using Microsoft Office Excel 2003 to obtain the mean velocity and its 

standard deviation in one specific point. This technique was used to obtain velocity profiles at 

different positions in the electrode gap. 

6.3  CCD study 

6.3.1 Set up and equipment 

The CCD camera (see Figure 6.8) used was a LaVision Imager Pro with max 60000 frames 

per second and a spatial resolution of 4x4 microns and 8 bits resolution. In this work an area 

of 3.5x5.0 mm was covered with 1000 frames per second and an exposure time of 500 µs. It 

was equipped with a microscope Questar QM1. Halogen spots (4) of 50 W each were used for 

the illumination from front and back side. The used software was DaVis 7.0. In this software, 

a built-in ruler could be used to measure distances. 
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Figure 6.8: Set up of the CCD camera (left corner) 

6.3.2 Procedure and calibration 

For this technique, a calibration is necessary. The scales, used in the software, are not always 

correct and need to be adjusted. This was done in a simple way by taking photos of a ruler, 

placed against the glass vessel. One recording is 4.4 s in real time and can be played in slow 

motion afterwards. Velocities were determined with a time consuming, manual method as 

explained in Figure 6.9. Only bubbles/particles smaller than 75 µm were tracked because it 

was assumed that they follow the flow. 

  

Figure 6.9: Determining the velocity by measuring the distance traveled in a certain time, with begin 

position at the left and end position at the right. 

+x 
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To check if the obtained velocities were correct, another calibration test was made. Ion-

exchange particles were dropped in a solution and captured with the CCD camera. The same 

test was repeated with a stopwatch and by looking with the naked eye.  

The focal depth was measured by an EKA-made focal depth ruler (FDR) which is 

unfortunately not yet patented (see Figure 6.10). This FDR was a titanium rod with 

dimensions 200 x 8 x 2 mm. The bottom was made in steps of 0.5 mm. By holding the FDR 

inside the electrode gap against the glass wall, the camera could be focused on a desired 

depth. Make sure that the power is switched off before determining the focal depth. 

 

Figure 6.10: Focal depth ruler 

The parameters are listed in Table 6.3. 

Table 6.3: Overview of the parameter values for the CCD study 

Electrolyte Height from inlet (mm) Current density (kA/m2) Temperature (°C) 

A 0   -   20   -   55    -   100 0.33   -   2.50 30 ± 2 , 70 ± 2  

B 0   -   20   -   55    -   100 0.33   -   2.50 30 ± 2 , 70 ± 2  

 

This technique has been used to measure velocities, bubble sizes and to study phenomena 

occurring at the cathode surface. Measuring the thickness of the bubble layer and its 

behaviour was of particular interest. 
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7:  Results and Discussion 

7.1  LDV studyEquation Section (Next) 

The focal depth varied between 4 and 6 mm behind the inner glass wall, in the electrode gap. 

One must be careful with the exact position because of all the different refractive indices as 

shown in Figure 7.1. In this case it was not that important. If in this LDV study is spoken over 

‘a distance x mm behind the glass wall’, then it is the distance in mm that the probe moved, 

counting from the zero position. The real distance behind the glass will be larger. This, 

however, has no impact on the frequency of the reflected light. 

 

Figure 7.1: Expected and real position of the probe volume, due to the different refractive indices 

7.1.1 Calibration 

For the calibration and software check, a 4 M NaCl solution at room temperature was used. 

The average time of three reproducible results to fill a 50 ml calibrated flask was 13.4 s. The 

inner diameter of the glass tube was 7.07 mm. With the formula, given in the previous 

chapter, a mean velocity equal to 9.5x10-2 m/s was found. The Reynolds number can be 

calculated 

  (7.1) 

Re = 500 means that the flow is still laminar and a fully developed parabolic velocity profile 

was expected. The result of the flow profile, following the diameter aligned with the beams, is 



 

  38 

shown in Figure 7.2. Again, attention should be paid to the position, which is the traverse of 

the probe instead of the traverse of the probe volume.  

 

Figure 7.2: Velocity profile of a 4M NaCl solution at 20°C over the diameter of a glass tube 

As expected, a fully developed parabolic profile was found. For a parabolic velocity profile, 

the average velocity is 1/2 the centreline velocity. The centreline velocity is equal to 0.165 

m/s, resulting in an average velocity of 0.083 m/s which is significantly lower than the 

calculated velocity (0.095 m/s). The experiment was repeated three times, giving the same 

result. Hence, all obtained results with the software were multiplied with a factor 1.145 to 

represent the reality.  

7.1.2 Depth profile 

A depth profile was taken at 40 and 95 mm from the inlet and shown in Figure 7.3. 

Electrolyte A, without chlorate, was used at a temperature of 70°C and with a current density 

of 2.0 kA/m2. It can be seen that there was a wall effect until ca. 3 - 4 mm behind the glass 

wall. For the 95mm-case, it was only possible to measure until 6 mm behind the glass wall. 

Most likely, this is because the bubble density becomes too high and the bubble curtain acts 

like a stationary wall. The lower velocities around 6 mm are probably already an indication 

that the limits are reached. For all these reasons, it was proposed to always measure the 

velocities 4mm behind the inner glass wall.   
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Figure 7.3: Depth profile 

7.1.3 Velocity profiles 

The velocity profiles at different heights are shown below. In the abscis, the position in mm 

counting from the anode surface is given. Position ‘0 mm’ refers to the anode surface, 

position ‘3 mm’ refers to the cathode surface. In the ordinate, the mean velocity in m/s of 

2000 burst is given. 
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Figure 7.4: Velocity profiles at the inlet (0mm) as a function of current density, for electrolyte A at 30oC 

 

Figure 7.5: Velocity profiles at 40mm from the inlet as a function of current density, for electrolyte A at 

30oC 
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Figure 7.6: Velocity profiles at 95mm from the inlet as a function of current density, for electrolyte A at 

30oC 

First of all it can be seen that the velocity increases with the current density. This is also 

confirmed by the studies of Boissonneau and Byrne (2000). An unexpected observation 

(Figure 7.4) is that the velocity profile at the inlet changes from a flat profile to a profile with 

two maxima (at 1.0 and 2.4 mm) when current density increases. One explanation for this 

phenomenon could be the influence of the leaving bubble plume at the top of the electrode 

gap, which hinders a symmetric circulation.  The same inlet profile (Figure 7.7) is seen in the 

CCD study which will be discussed later. 

 

Figure 7.7: Velocity profile at the inlet of the electrode gap, for electrolyte A at 30oC, for a current density 

of 2.5 kA/m2 

Despite the low Reynolds number, no parabolic profile develops in the cell, but rather an 

asymmetric profile with a maximum at the outer border of the bubble curtain (as will be seen 
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in the CCD part). This is due to the presence of bubbles. Due to the change in density of the 

bubble dispersion and the continuous phase (electrolyte), the buoyancy will increase, and 

hence the dispersion accelerates the surrounding liquid while moving up. This effect is 

visualized in Figure 7.8 which represents a diagram of the velocity profiles for electrolyte A 

at 30°C at 2.0 kA/m2 as a function of the height. The velocity at the anode side decreases 

when going higher in the electrode gap. The maximum velocity tends to move to the left when 

going higher in the gap (considering the inlet velocity profile as flat). This is due to the 

increasing thickness of the bubble curtain. 

 

Figure 7.8: Velocity profiles as a function of height, for electrolyte A at 30°C and 2.0 kA/m2 

To study the effect of viscosity and density (Table 7.1), the inlet velocities of all different 

cases at a constant current density are plotted in a same diagram (Figure 7.9 for 0.33 kA/m2 

and Figure 7.10 for 2.0 kA/m2). Out of the properties, the effect of density can be studied by 

comparing case A-30 and B-70. Regarding the viscosity, there is approximately a factor 2 

difference between the 30-cases and the 70-cases, whereas density stays more or less 

invariant. 

 

 

 

 



 

  43 

Table 7.1: Properties of both electrolytes as a function of temperature 

                          Temperature 

Electrolyte 
30 oC 70 oC 

A 

 

' = 1065 kg.m-3 

µ = 0.98 . 10-3 kg.m-1.s-1 

' = 1046 kg.m-3 

µ = 0.50 . 10-3 kg.m-1.s-1 

B 
' = 1366 kg.m-3 

µ = 2.19 . 10-3 kg.m-1.s-1 

' = 1343 kg.m-3 

µ = 0.99 . 10-3 kg.m-1.s-1 

 

 

 

 

 

Figure 7.9: Comparison of the inlet velocities for all cases at 0.33 kA/m2 
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Figure 7.10: Comparison of the inlet velocities for all cases at 2.0 kA/m2 

When comparing A-30 and B-70, it can be seen that there is a significant difference. The inlet 

velocity is much higher for the B-70 case, which means that the role of density is quite 

dominant. A higher density means a stronger buoyancy force (Fb=+'Vpg) of the bubbles, that 

tend to move faster upwards, creating a larger ‘suction force’ into the electrode gap.  

Viscosity quantifies the internal friction in a fluid. The higher the viscosity, the more energy 

is necessary to obtain same results. As expected, the measurements show that a lower 

viscosity with a practically constant density leads to an increased velocity.  

When comparing cases A-30 and B-30 (which has a ca. 30% higher density and a ca. 100% 

higher viscosity than A-30), or cases A-70 and B-70 (similar), then it can be seen that the inlet 

velocities are still higher for the B-cases. This means that density in those cases is more 

dominant than viscosity. However, this trend is only seen for the inlet velocities. Figure 7.11 

and Figure 7.12 show comparison diagrams for 40 mm height, Figure 7.13 and Figure 7.14 

show the comparison diagrams for 95 mm height. The higher in the electrode gap, the more 

influence has the bubble dispersion. This will affect the velocities, but with the LDV study, it 

is hard to say something about it.  
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Figure 7.11: Comparison between the mean velocities at 40 mm height, for 0.33 kA/m2 

 

 

Figure 7.12: Comparison of the mean velocities at 40 mm height, for 2.0 kA/m2 
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Figure 7.13: Comparison of the mean velocities at 95 mm height, for 0.33 kA/m2 

 

 

Figure 7.14: Comparison of the mean velocities at 95mm height, for 2.0 kA/m2 
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7.2  CCD study  

All recordings are stored at the R&D department at EKA Chemicals – Bohus (SE). 

7.2.1 Calibration 

To determine the focal depth, the FDR was used. To make sure that the calculated velocities 

are correct, a calibration test is made. The terminal velocity of ion exchange particles in water 

was measured both visually with a stopwatch and with the CCD camera. The average results 

of three reproducible captions are shown in Table 7.2. It can be seen that the results obtained 

with the CCD camera reflected the reality very well. The results are thus reliable.  

Table 7.2: Results of the calibration test 

 Distance (m) Time (s) Velocity (m/s) 

Stopwatch method 0.09 2.34 0.038 

CCD camera 0.0023 0.059 0.039 

7.2.2 Focal depth: limitations 

When possible, velocities were measured by visual observation, 3.5 mm inside the gap to 

avoid wall effects as much as possible. However, due to the bubble density, it was 

impossible to focus that deep inside the gap, as shown in Figure 7.15. Complementary 

measurements were therefore made behind the inner glass wall [0 – 0.5 mm] when 

needed. Measuring bubble sizes was due to bias and the lack of software like the one 

Tomasoni (2010) used not possible and were thus measured just behind the glass wall. 

The drawback is that those bubbles tend to be larger than the bubbles at the inside. Due 

to the wall friction, bubbles move up slower and have more time to absorb dissolved 

hydrogen.  
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Figure 7.15: Comparison in focal depth and focus (A-70, 50mm from inlet), with left a focus at the inner 

glass wall and right a focus 3.5 mm behind the glass wall 

7.2.3 Inlet velocities 

Assuming a flat profile, the average inlet velocity of 20 small bubbles (<75µm with a 

maximum terminal velocity of 4 mm/s) moving vertically is measured for all cases. The 

results for 0.33 kA/m2 and 2.5 kA/m2 are shown in Table 7.3 respectively Table 7.4 and 

compared with the inlet velocities obtained with the LDV study. The LDV result in Table 

7.4 is an average of the 2.0 kA/m2 and the 3.0 kA/m2 cases, averaged over the range [1 

mm-2 mm] from the anode surface.  

Table 7.3: Comparison inlet velocities between LDV and CCD for 0.33 kA/m2 

0.33 kA/m2 LDV: velocities (m/s) CCD: velocities (m/s) 

A-30 0.047 0.057 

A-70 0.071 0.097 

B-30 0.071 0.074 

B-70 0.085 0.100 

Table 7.4: Comparison inlet velocities between LDV and CCD for 2.5 kA/m2 

2.5 kA/m2 LDV: velocities (m/s) CCD: velocities (m/s) 

A-30 0.112 0.171 

A-70 0.154 0.219 

B-30 0.137 0.172 

B-70 0.168 0.222 
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Both set ups were tested and proved to be measuring correctly (after applying a correction 

factor for the LDV results). Nevertheless, there is a clear difference in velocities between the 

LDV measurements and the CCD measurements. In a previous work (P. Hell et al 2009) the 

velocities were only measured with a CCD set up were quite consistent with the LDV results 

in this study, although their system was not calibrated. A recommendation for future work is 

to calibrate the LDV system with a dispersed gas-fluid system with known volume fractions, 

which has not been done in this study. It could be an explanation for the discrepancy between 

the two methods. 

However, qualitatively seen, the results are quite consistent. For example, the velocity 

profile at the inlet is shown for the A-30 case at 2.5 kA/m2 (Figure 7.16), whose shape is 

consistent with the one for the A-30 case in Figure 7.10. 

 

Figure 7.16: Velocity profile at the inlet for A-30 at 2.5 kA/m2, with the cathode on the right, 3.5 mm FD 

Another example is given in Figure 7.17 which shows the velocity profile at the outlet for 

the A-30 case at 0.33 kA/m2, which is also consistent with Figure 7.13. 

 

Figure 7.17: Velocity profile at the outlet for A-30 at 0.33 kA/m2, with the cathode on the right, 3.5 mm FD 
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7.2.4 Bubble layer 

Out of the images, it was noticed that the boundary layer displays some kind of periodicity 

with a minimum, mean and maximum thickness along the cathode. In what follows, this 

boundary shall be described as a function of current density, electrolyte composition and 

temperature dependent parameters.  

One of the reasons for this periodicity can be found in the presence of large bubbles, formed 

at the bottom side of the electrode. When they detach from the bottom, they have a diameter 

of approximately 0.5 mm. As they move up, they push all neighbouring bubbles upwards. The 

created wake behind such a larger bubble attracts smaller bubbles, creating a vacuum cleaning 

bubble swarm. The same phenomenon can also be found with bubbles that are growing while 

moving along the electrode surface, detach after reaching a sufficiently large diameter and 

catapulted with an enormous speed into the bulk. This is shown in Figure 7.18 with pictures 

taken just after power has been switched on (after 0.5 s) to obtain the best visual result. 

However, it should be stressed that this is an ever occurring phenomenon. 
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Figure 7.18: The effect of a large bubble moving upwards close to the cathode 

The boundary layer in the lower regions of the electrode gap looks more or less always the 

same as illustrated in Figure 7.19. It can be seen that the layer closest to the cathode surface 

exists of very small bubbles (diameters below 30 µm down to 10 µm have been spotted). This 

layer acts like a blanket where larger bubbles can roll over. When the bubbles are too large, 

they will not roll over any longer, but destroy this layer.  

 

Figure 7.19: picture and schematic view of the boundary layer in the lower regions of the electrode gap 
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Figure 7.20 shows the boundary layer at the inlet for the B-70 case at 0.33 kA/m2, 3.5 mm 

inside. The bubble layer is thicker at the inlet of the electrode gap, because of some large 

trapped bubbles at the bottom of the cathode, which influence the flow pattern. Due to this 

bubble ‘blockage’ there is some space with a pressure drop, which entraps bubbles. However, 

the flow is smooth and steady and could be characterized as laminar.  

 

Figure 7.20: Bubble layer at the inlet for the B-70 case, at 0.33 kA/m2, 3.5 mm inside 

Figure 7.21 (B-70, 0.33 kA/m2, 20 mm height) shows a transition to non-steady flow. Bubbles 

are thrown out of the bubble layer, creating eddies. The bubbles formed at the anode (left 

electrode) consist due to the pH (around 6.5) most likely of oxygen with low concentrations 

hydrogen and chlorine.   

 

Figure 7.21: Bubble layer at 20mm height for the B-70 case, at 0.33 kA/m2, 3.5mm inside 
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Figure 7.22 shows the bubble layer half way up in the electrode gap. It is clear that there is no 

steady flow any longer. Lumps of bubble rich dispersions are thrown out into the gap centre. 

The bubble layer has an average thickness of 0.8 mm. 

 

Figure 7.22: Bubble layer at 50mm height, B-70 case, 0.33 kA/m2, 3.5mm inside 

At last the top of the electrode gap. Here the bubbles are distributed over the entire cross 

section. No picture is shown, because nothing else than a gray square would be seen. 

Backlight was not able to pass through the dense bubble dispersion and frontlight did not offer 

better pictures.  

Out of Table 7.5, a few things can be concluded. First it has to be mentioned that strictly 

objective measurements of bubble sizes and bubble curtain thicknesses were not possible due 

to the bad focus. The values are thus approximate estimates. It is also possible that much 

smaller bubbles were present that could simply not be detected due to larger bubbles blocking 

the view. A general trend is that the bubble size increases with an increasing height. Also the 

bubble curtain thickness increases when going further upwards in the gap. The growth is 

driven by the super saturation of hydrogen. Because the inlet region for example is less 

supersaturated due to the continuous supply of fresh electrolyte, the bubbles remain smaller. 

When going further up, the super saturation increases and the bubbles are able to consume 

more dissolved hydrogen. The same counts for the bubble curtain. The higher the super 

saturation, the more smaller bubbles can survive and grow, creating a thicker layer.  
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Table 7.5: Bubble sizes and Bubble layer thickness for all cases as a function of height, at 0.33kA/m2 

0.33 kA/m2 Height from 

inlet 

Bubble size  (µm) 

(min, mean, max) 

Bubble layer thickness (mm) 

(min, mean, max) 

A-30 0 mm 20   -   55   -   130 0.140   -   0.175   -   0.210 

 20 mm 20   -   65   -   140 0.160   -   0.200   -   0.340 

 50 mm 30   -   80   -   200 0.650   -   0.850   -   1.500 

 100 mm 50   -   110   -   250 0.730   -   1.500   -   2.300 

A-70 0 mm 15   -   45   -   150 0.270   -   0.310   -   0.330 

 20 mm 35   -   80   -   190 0.200   -   0.360   -   0.700 

 50 mm 20   -   110   -   200 0.400   -   0.590   -   0.890 

 100 mm 50   -   130   -   250 1.000   -   1.320   -   1.760 

B-30 0 mm 10   -   40   -   120 0.060   -   0.080   -   0.200 

 20 mm 15   -   50   -   210 0.170   -   0.250   -   0.500 

 50 mm 20   -   80   -   270 0.290   -   0.390   -   0.820 

 100 mm 20   -   100   -   300 0.620   -   0.820   -   1.500 

B-70 0 mm 10   -   45   -   140 0.180   -   0.220   -   0.250 

 20 mm 10   -   70   -   180 0.190   -   0.260   -   0.420 

 50 mm 45   -   100   -   210 0.390   -   0.540   -   0.970 

 100 mm could not be measured could not be measured 

7.3  Comparison with CFD results 

7.3.1 2D case 

Out of the static pressure contour plot (Figure 5.4) it can be seen that the static pressure 

decreases with an increasing height. The difference between inlet and outlet (25 Pa) is too low 

to be the result of gravity. According to the formula of pressure due to gravity (='gh), the 

pressure difference should be around 1340 Pa.  
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Velocity profiles of the laminar case have been taken at comparable heights and are shown in 

Figure 7.23. If compared with Figure 7.24, it can be seen that the maximum velocities are 

quite comparable. The general trend (lower velocities at the anode side and increased 

velocities at the cathode side as a function of height) is also obtained. However, the shape 

differs somewhat from the LDV results. Firstly, the maximum velocity in the model is 

reached at position 2.9 in stead of about 2.5 mm, due to the very thin hydrogen gas layer close 

to the cathode surface.  

 

Figure 7.23: Velocity profiles obtained with a mathematical model, with conditions comparable to the B-

70 case. 

Secondly, the influence of oxygen bubbles produced at the anode surface has been neglected. 

These bubbles though will contribute to a higher velocity at the anode side at increased height 

due to buoyancy. 
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Figure 7.24: Velocity profiles for B-70 at inlet, 40 mm and 95 mm height 

The phase contour plot of hydrogen (Figure 5.5) does not agree with the CCD pictures. It can 

be seen that the calculated gas phase layer is extremely thin and that there is barely mixture 

with the continuous phase. In one way this is logical. There will be no mixing on macroscopic 

level due to the laminar regime. Hydrogen also has no time to diffuse into the bulk, due to its 

low diffusivity constant and the relative high velocity. There is a need of a better and faster 

description of the transport out into the bulk flow.  

For a preliminary model the result is acceptable, but to agree with reality, a lot of fine-tuning 

is necessary that unfortunately could not be carried out given the time frame of this maters 

project.  

7.3.2 3D case 

It can be seen that the static pressure (Figure 5.7) shows a similar plot as for the 2D case. The 

pressure difference is still too low (ca. 100 Pa). There is also a region of lower pressure in the 

middle of the gap, which is neglectable. 

The velocity magnitude plot (Figure 5.6) has compared to the 2D case a much steeper profile 

close to the anode. The velocity profiles at height 0, 40 and 95 are plotted and shown in 

Figure 7.25. The general trend of rising velocity at the cathode can be seen. If compared with 

Figure 7.24, it is obvious that this model represents the reality very well. Due to the time 

factor dominating this work, it was not possible to test other cases. 
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Figure 7.25: Velocity profiles obtained with a k-! turbulence mixture model in the 3D case, with the 

anode surface at position 0 

The phase contour plot ( Figure 5.8) is in qualitative agreement with the reality. However, it is 

not possible to have a volume fraction equal to unity regarding bubbles. The maximum 

packing with spherical particles has been found to be 0.68 ( Kreysa and Kuhn 1985). When 

the contours though are taken for a bubble dispersion instead of a single gas phase, then 

bubble layer thicknesses could be determined. Figure 7.26 shows the volume fraction of 

hydrogen in relation to the horizontal position. When taking " = 0 as the place where the 

‘bubble’ layer stops in the model, then the following thicknesses could be obtained (Table 

7.6). Although a lot of assumptions are made, is the result rather acceptable. 

Table 7.6: Comparison between layer thicknesses obtained with a turbulence model and CCD results for 

the B-70 case at 2.0 kA/m2 

Vertical position (mm) layer thickness CFD (mm) layer thickness CCD (mm) 

0 0.2 0.3  -   0.5 

40 1.2 1.1  -   1.3  

95 1.6 not possible to measure  
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Figure 7.26: Thickness of the gas phase layer at the cathode wall, expressed as volume fraction of 

hydrogen, for the 3D case 
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8:  Conclusions and Recommendations 

Experimental results and CFD simulations of the flow pattern of a small scale chlorate 

electrolyzer have been presented and discussed. LDV has been used to measure velocity 

profiles in the electrode gap as a function of position, temperature, composition of the 

electrolyte and current density. A high-speed CCD camera has been used to document inlet 

velocities, bubble sizes and the behaviour of the bubble curtain.  

It can be concluded that: 

There is a shift of the velocity profile towards the cathode, due to the buoyancy of the 

hydrogen bubbles. 

There is a certain depth profile and it has been showed that the wall effect is negligible 

after 4 mm inside the electrode gap. 

Velocities increase with an increasing current density due to the larger amount of 

hydrogen bubbles. 

There is a remarkable effect of density and viscosity regarding the velocity profiles. An 

increase in density results in a higher velocity, an increase in viscosity results in a 

lower velocity. However, the effect of density seems to be more dominant. 

There is a significant difference between the LDV and CCD techniques regarding the 

velocity results, although both techniques were calibrated and tested for their 

correctness. 

Bubble diameters at the inlet of the electrode gap are approximately 45 µm and will leave 

the electrode gap with a diameter between 100 and 150 µm. Bubbles up to 10 µm 

have been studied with respect to size and velocity. It is possible though that even 

smaller bubbles are present. 

The thickness of the boundary layer increases when going towards the top of the gap, 

where it is possible that the bubble curtain covers the whole width of the gap. A 

periodicity has been seen at each place, with a minimum and maximum value. 

The thickness of the boundary layer is dependent on the flow velocity. 

Both CCD and LDV had reached their limits when applying with industrial conditions. 

Due to the bubble density, it was impossible with the camera to focus further than a 
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1 mm inside the gap. For the LDV set up, the bubble curtain became too dense and 

acted as a stationary wall. 

The preliminary models were in fairly good agreement with the experimental data, despite 

all simplifying assumptions made. The mixture model, a simplification of the Euler-

Euler approach, has shown to be acceptable for this study. The k-! turbulence model 

gave good results for the 3D case, but was insufficient for the 2D case. A reason is 

that turbulence is a 3D phenomenon. 

 

Recommendations for future work are 

An improvement of the used experimental techniques.  

The LDV set up should be calibrated with a bubble dispersion with known velocity. It 

is possible that the presence of bubbles affects the obtained results.  

A better way of backlighting or frontlighting should be found for the high-speed 

camera technology, to obtain better results. 

In order to learn more about the formation of bubbles, an extremely small cathode 

surface could be used.  

To avoid large bubbles sticking at the inlet, another electrode shape is recommended. 

Instead of 90° corners, 45° corners at the inner side of the electrode gap could be 

tested. 

An improvement of the CFD models  

Reactions, mass transport and oxygen bubble formation at the anode should be 

included to obtain more reliable models.  
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