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Nonlinear condensation modes
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Abstract. In the far edge, in L-mode plasmas and the outer parts of the H-mode
barrier, tokamak plasmas may be so collisional that parallel electron motion can
be neglected or included as a perturbation. Thus we have a regime that is basically
two dimensional. We will here consider the outer part of the H-mode barrier where
transport is small. Recently a condensation mode was found for this regime. We
have extended the theory to the nonlinear regime.

1. Introduction

The interest in the theory of the edge region of tokamaks was greatly increased
after the discovery of the H-mode in 1982 [1]. Reactive linear eigenmodes of the
type that we study here were actually discovered in 1991 for steep gradients in
a system of ion temperature gradient (ITG) modes and trapped electron (T-E)
modes [2]. Since the H-mode barrier usually starts just inside the separatrix, its
outer parts should be in a strongly collisional regime. Thus interest is focused on
possible instabilities in this regime, including the reactive electrostatic ballooning
mode found by Novakovskii et al. in 1995 [3]. This mode becomes a reactive two-
dimensional mode when the collisionality is so strong that it completely prevents
electrons from moving along the magnetic field lines or for large mode numbers.
This is a strongly unstable mode with a growth rate of the order of the ideal MHD
magnitude. This mode is actually recovered in the same mathematical form as for
trapped fraction equal to 1 in the system of toroidal ITG modes and T-E modes
mentioned above. It can be stabilized by finite Larmor radius (FLR) effects [2] and
was found to be important in turbulence simulations by Rogers et al. [4, 5]. The
results also compared favourably with experiment [6].
In a later workmost of the results of Rogers et al. were also recovered analytically

[7], and it was also found that the reactive mode, discussed above, also persists for
lower collisionality if the mode number is high.
The L-H transition due to the FLR stabilization of the Novakovskii mode was

studied in detail in [8], including comparison with ITGmodes. In the FLR-stabilized
regime (H-mode), a mode with a growth rate of the order of the magnetic drift
frequency was found both for the ITG–TE system [2] and the collision-dominated
case [9]. This mode gives a small transport compatible with H-mode and also gives a
particle pinch. Both the ITG–TE system and the collision-dominated system were
reviewed in [10], including a comparison of H-mode thresholds due to stabilization
by FLR and shear flows. Later a generalized formalism with a complex trapped
fraction was shown to be able to make the transition from the drift wave system
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to the collision-dominated system [11]. In this transition, the typical separation
in two modes remained for the whole transition. Thus it could apply to the whole
H-mode barrier.

2. Basic equations

For ions we use the following energy equation:
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In a strongly collisional, Braghinskii regime, we may write the parallel electron
current as
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Then using the same reactive parts of the electron energy equation as for ions, we
arrive at
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where
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The density perturbations take the forms
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where
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N(ω) = ω − 5
3
ωD e + 1.14ω + 1.06 (ω − ωD e) . (6c)

Now quasineutrality leads to an eigenvalue equation that is quartic in ω. This
is actually the simplest way to derive an eigenvalue equation. We now consider
edge parameters where εn � 1. The derivation is further simplified by assuming
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ηi ∼ ηe ∼ 1/εn. However, this assumption can be relaxed. For the present de-
rivation, we will make use of the large η ordering. As it turns out, the quartic
dispersion relation (taking the local limit) in this ordering leads to two quadratic
dispersion relations: one with ω ∼ ω∗ (high frequency) and one with ω ∼ ωD

(low frequency). These modes are both mixed between ITG and T-E modes. The
high-frequency mode also has higher growth rate and dominates in L-mode. The
low-frequency mode is, on the other hand, compatible with H-mode. The transition
in this system is caused by FLR stabilization. The low-frequency mode takes the
form of a condensation mode δP = 0 when FLR and ion inertia can be ignored.
This can easily be seen from the condition of vanishing parallel current as

∇ · j⊥ = 0. (7)

Here the ExB drifts cancel (also the nonlinear effects) and the only remaining drifts
are the ion polarization and diamagnetic drifts. The latter give magnetic drifts
and pressure perturbation. We now include the Hasegawa–Mima nonlinearity by
modifying FL in (5b) by adding
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The dielectric function will have the following form:
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The nonlinear equation can in general be written as
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We now need the divergence of the current in order to eliminate the Laplacian that
will be generated by the denominator in (8). Thus, in order to get more tractable
expressions, we eliminate the denominators coming from (5a) and (6a), ignoring
parallel electron conductivity to get the following nonlinear equation:
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Because we have assumed strong temperature gradients, we now approximate

δp(2) ≈ δnδT. (11)
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We note that the form of the electron temperature perturbation turns into that of
ions in the limit of large collisionality. The nonlinear equation obtained here can
also be obtained from the general set of nonlinear equations in collision-dominated
plasmas derived by Shukla and Weiland [12].

3. Linear properties

The linear properties of our low-frequency mode are determined through the linear
dispersion relation:

D(ω) = 0. (12)

The resulting dispersion relation can be written as
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where γD is a damping due to parallel motion and will here be assumed to be small.
The coefficients are

ξ =
ηi − ηe + τ/2 − 1/(2τ)

ηi + τηe + 1 + τ
and δ =

ηi + (1/τ)ηe − 7(1 + 1/τ)/3
ηi + τηe + 1 + τ

. (14a,b)

The local part of (13) has the solution:
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We note that the direction of propagation depends on the relation between electron
and ion temperature gradients with zero frequency for equal temperatures and
gradients.

4. Nonlinear properties

We now return to (9a). Considering the case of weak nonlinearity, we can expand
D(ω) around the linear eigenfrequency, i.e.
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Now this coefficient will vanish for:
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Our nonlinear equation is now written as
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In the present limit of large temperature gradients, we have
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These expressions should be substituted into (21) in order to obtain a well-defined
nonlinear equation. Because of the form of Γ(ω), the denominators of the density
perturbations will be cancelled thus simplifying the nonlinear equation. Here D(ω)
represents the linear dispersion function and its derivative with respect to frequency
gives the wave energy. It is interesting to note that the linear growth rate has
its maximum for purely growing modes, and we have this when the temperature
gradients of electrons and ions are equal for equal temperatures. This case also
corresponds to zero wave energy at marginal stability according to (17). We would
in this case have to continue the expansion to second-order derivative. This is a
typical property seen in most systems. We have here strictly applied our ordering
to the nonlinear terms. We note, however, that the Hasegava–Mima nonlinearity
[13] enters to next order. Thus, in practice there will be a dual cascade. Since Γ(ω)
does not depend on the temperature gradients, we see that a change of direction
of propagation near D(ω) = 0 would not change the sign of the coupling factor.
Thus we could change the total sign of the nonlinear couplings so that we can get
nonlinear instability [14].

5. Discussion

In this paper, we considered the nonlinear evolution of a type of condensation mode
previously found to occur on the H-mode barrier after FLR stabilization. The
condensation property is obtained only in the linear local limit and is expressed as

δP = 0.

However, the mode retains its condensation nature when the non-local and non-
linear effects are small and we can then study its evolution under more realistic
conditions. We found possibility for both nonlinear instability and dual cascade.
This could potentially influence the stability of an H-mode. An interesting property
of the mode, found already in previous linear studies, is that the diamagnetic heat
flow is needed for instability. Thus, quadratic curvature effects are needed, although
εn � 1. The reason for this is that the mode frequency is of the order of the magnetic



492 J. Weiland

drift frequency, although the diamagnetic drift frequency is much higher. This
property is due to the separation of the general quartic dispersion relation into
two quadratic dispersion relations for an edge ordering. Another special property
is that the dominant nonlinearity is due to magnetic inhomogeneity.
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