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A 2D MODEL OF ULTRASONIC TESTING FOR CRACKS NEAR A

NON-PLANAR SURFACE

J. WESTLUND, A. BOSTRÖM

Abstract. 2D P-SV elastic wave scattering by a crack near a non-planar surface is
investigated. The solution method employed is based on a reformulation of the wave
scattering problem as two coupled boundary integral equations (BIE): a traction BIE
for the crack opening displacement (COD) and a displacement BIE for the back surface
displacement. The two coupled integral equations are solved using a combination of the
boundary element method (BEM) for the back surface and a series expansion of the COD
in Chebyshev functions. To model an ultrasonic contact probe in transmission, the traction
on the surface beneath the probe is prescribed. The action of the receiving ultrasonic probe
is modelled using a reciprocity relation. A few numerical examples illustrating the influence
of the back surface are given.

1. Introduction

The propagation of elastic waves and scattering by defects have important applications in
nondestructive testing (NDT) and evaluation (NDE), for instance in the nuclear power and
aerospace industries. Many efforts have therefore been directed towards modelling of such
scattering processes. A good and validated model has several important uses. It is easy to
perform parametric studies with a model, and in this way costly experiments can be kept
to a minimum. A model is also a valuable tool when testing procedures are developed and
optimized. A model gives an increased understanding of the ultrasonic wave propagation
and scattering and is also useful in qualification work.

The most important and critical defect is a crack and a lot of work has been done on
the scattering by cracks. However, not so much effort has been put into the modelling of
the whole NDT situation, including also models of ultrasonic probes in transmission and
reception and the calibration by some standard reflector, such as a side-drilled hole. Chap-
man [1] and Calmon et al. [2] use combinations of the Geometrical Theory of Diffraction
and the Kirchhoff approximation to consider quite general geometries, but it is hard to tell
how well these approximations work in a particular case. Bövik and Boström [3] employ a
hypersingular integral equation method to investigate the scattering by a strip-like crack
with a close planar back surface, the results then being in essence exact.

The purpose of the present work is to investigate the scattering by a crack close to a non-
planar back surface, i.e. the surface opposite to the scanning surface. This is a situation that
occurs in applications such as the testing of thick-walled pipes, with a diameter change or
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a connection, in the nuclear power industry. The combination of a crack and a non-planar
back surface complicates the ultrasonic testing because the signal from the crack may be
masked by the signal from the non-planar surface. The 2D in-plane case is considered
in this paper and this is an extension of the earlier work by Westlund [4], where the
corresponding antiplane case is studied. The employed solution method is a combination
of a displacement boundary integral equation (BIE) for the back surface displacement and
a hypersingular traction BIE for the crack opening displacement. This gives a very effective
treatment of the crack while allowing a general geometry of the back surface, and since
the method is essentially exact the model provides accurate results for both high and low
frequencies.

The plan of the present paper is as follows. In section 2 the scattering problem is formulated
and in section 3 the different Green’s tensors are discussed. In section 4 the two integral
equations are derived starting from an integral representation. Section 5 describes the
modelling of ultrasonic probes in transmission and reception. In section 6 the discretization
of the integral equations is stated and in section 7 the numerical treatment is discussed
and a few numerical examples given. Section 8 offers some concluding remarks.

2. Problem formulation

Consider a 2D scattering geometry as depicted in Fig. 1, where an interior strip-like crack
of width 2a is located in a thick-walled component with a non-planar back surface. In the
exterior of the crack the component is isotropic and homogeneous with Lamé constants λ
and µ and density ρ. The inclination of the crack with respect to the horizontal is given
by the angle β.

Figure 1 also introduces two coordinate systems: the crack coordinate system (x1, x2) and
the back surface coordinate system (xb1, x

b
2). The superscript ‘b’ on quantities indicate that

they are represented in the back surface coordinate system. The standard transformation
rules for the transformation between the two coordinate systems apply.

On the scanning surface of the component two ultrasonic contact probes are located: a
transmitting ultrasonic probe (t) and a receiving ultrasonic probe (r). The half-widths of
the probes are denoted wt and wr, respectively, and the positions of the probes in relation
to the crack center are given by (tb1, t

b
2) and (rb1 , r

b
2) in the coordinate system of the back

surface. As a special case one probe can act as both transmitter and receiver in a pulse-echo
testing situation.

The multiple scattering between the crack and the back surface is accounted for in the
model, so the distance between them may be arbitrary as long as the crack is interior and
not surface-breaking. However, the distance between the scanning surface of the component
and the crack and back surface is assumed to be large enough (i.e. at least a couple of
wavelengths) so that multiple scattering between these surfaces can be neglected.
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Figure 1. The geometry with an interior strip-like crack in a thick-walled
component with a non-planar back surface.

To enable the subsequent boundary element discretization of the back surface, it is trun-
cated at the left and right truncation limits T1 and T2. The actual shape of the non-planar
back surface g(xb1) may be quite arbitrary as long as it has no cusps, as scattering by such
cusps is not accounted for. The back surface is assumed to be planar to the left of some
lower limit b and to the right of some upper limit c, and A is the vertical distance between
the lower and upper parts of the back surface.

In 2D elastodynamics the wave motion decouples into two types: in-plane P and SV waves
and antiplane SH waves. In this paper the coupled P-SV wave scattering problem is treated.
Time-harmonic conditions are considered, and the time-factor e−iωt is suppressed through-
out (where ω is the angular frequency and t the time). Under these conditions the equations
of motion are:

∇ · σ + ρω2u = 0, (2.1)

where σ is the Cauchy stress tensor and u the displacement. The Cauchy stress tensor is
given in terms of the stiffness tensor C and the displacement u by Hooke’s law:

σ = C : ∇u. (2.2)

For the isotropic and homogeneous material considered the elastic stiffness tensor C can
be expressed as:

C = λI2 ⊗ I2 + 2µS4, (2.3)

where I2 is the second-order identity tensor and S4 the symmetric fourth-order identity
tensor. By using the explicit form of the stiffness tensor (2.3) in Hooke’s law (2.2), the
equations of motion (2.1) can be rewritten on the familiar form:

k−2
p ∇(∇ · u)− k−2

s ∇× (∇× u) + u = 0, (2.4)
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where kp = ω/cp is the pressure wave number, cp =
√

(λ+ 2µ)/ρ the pressure wave speed,

ks = ω/cs the shear wave number and cs =
√

µ/ρ the shear wave speed.

The crack is open and thus traction-free, and the back surface is also free of tractions. In
addition, the scanning surface of the component is free of tractions except for the action of
the ultrasonic probes which is discussed in section 5. Letting CBS denote the back surface,
e2 the unit normal vector in the 2-direction of the coordinate system of the crack and n

the downward unit normal vector on CBS, the boundary conditions on the crack and back
surface are thus:

{

lim
x2→0+

σ(x) · e2 = lim
x2→0−

σ(x) · e2 = 0, |x1| < a

σ(x) · n = 0, (x1, x2) ∈ CBS.
(2.5)

It should be noted that since u is discontinuous across the crack the boundary condition on
the crack must be taken as a limit as the point approaches the crack, from either side.

3. The Green’s tensors

The solution method employed in this paper reformulates the wave scattering problem as
two coupled boundary integral equations, which are subsequently solved simultaneously.
The reformulation is based on the use of the outward propagating Green’s tensor for the
infinite plane. In the following, the outward propagating Green’s displacement tensor is
denoted U k(x,y;ω). The corresponding stress tensor, denoted Σ

k(x,y;ω), is calculated
by applying Hooke’s law (2.2) to the displacement tensor U k(x,y;ω), i.e. Σk(x,y;ω) =
C : ∇U k(x,y;ω). Here and throughout, the ∇-operator always acts on the x-coordinates
unless otherwise specified.

The Green’s tensor, also called the Helmholtz fundamental solution in plane strain, is the
outward propagating solution to the equation:

∇ ·Σk(x,y;ω) + ρω2U k(x,y;ω) = −δ(x− y)ek (3.1)

where δ(x−y) is the 2D Dirac delta distribution and ek the unit vector in the k-direction
of the coordinate system of the crack. The Green’s tensor is easily computed using the
formula (for a derivation see e.g. Ström [5]):

Uk
j (x,y;ω) =

i

4µk2s

[

k2sδjkH
(1)
0 (ks|x− y|)

+
∂

∂xj

∂

∂xk

(

H
(1)
0 (ks|x− y|)− H

(1)
0 (kp|x− y|)

)]

,

(3.2)

where δjk is the Kronecker delta and H
(1)
0 the Hankel function of the first kind and zeroth

order.

The solution method also employs the Fourier integral representation of the Green’s ten-
sor. This representation can be derived by expanding the Green’s tensor in plane P and
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SV waves and using the jump conditions introduced by the presence of the Dirac delta
distribution on the right-hand side of Eq. (3.1). Alternatively, Eq. (3.2) may be used in
conjunction with the following Fourier integral representation of the Hankel function:

H
(1)
0 (kj|x− y|) = 1

π

∫ ∞

−∞

1

hj
ei(q(x1−y1)+hj |x2−y2|) dq, (3.3)

where j = p, s and hj = hj(q) =
√

k2j − q2. Here and throughout, the branch of the complex

square root is chosen such that Im
√
z ≥ 0 ∀z ∈ C.

The regularization process employed in section 4 makes use of the static Green’s displace-
ment tensor for the infinite plane, denoted U k(x,y) with corresponding static Green’s
stress tensor Σ

k(x,y) = C : ∇U k(x,y). The static Green’s tensor, also called the Kelvin
fundamental solution in plane strain, is the corresponding solution of (3.1) for ω = 0. It is
given explicitly by e.g. Bonnet [6].

4. The integral equations

In this section the Green’s tensors are used to reformulate the wave scattering problem as
two coupled boundary integral equations (BIEs): one BIE for the back surface and one for
the crack. The unknowns are the crack opening displacement (COD), i.e. the displacement
jump over the crack, and the back surface displacement.

4.1. The integral equation for the back surface. The BIE for the back surface is
derived from an application of the 2D divergence theorem. Since the multiple scattering
between the scanning surface of the component and the crack and back surface is neglected,
the scattering by a crack in a half-plane with a non-planar back surface is the problem to
be solved. To this end consider a closed contour Cr + Cε,r + Cε + Cδ1,δ2 + Ci as depicted
in Fig. 4.1, where y is an arbitrary point on the back surface CBS. Here Cr is a semicircle
of radius r with center at y, and Cε,r is the part of the back surface within the distance r
from y but with a neighborhood around y excluded. Cε is an exclusion neighborhood of
arbitrary shape and a radius ≤ ε. The exclusion neighborhood around y is necessary since
the integrand is singular at y. Cδ1,δ2 is a closed contour containing the crack with circular
arcs of radius δ2 centered at the crack tips, and straight lines parallel with the crack at
a distance δ1 (with δ1 < δ2) from it. Ci is a closed contour containing the source of the
incoming field, i.e. the transmitting probe.
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Figure 2. The integration contour used in the derivation of the integral
equation for the back surface.

Integration of U k·(2.1)−u·(3.1) over the closed contour Cr+Cε,r+Cε+Cδ1,δ2 +Ci, letting
first δ1 → 0+ and then δ2 → 0+, yields after invoking the boundary conditions:

∫

Cr

[

Uk
i (x,y;ω)σij(x)− ui(x)Σ

k
ij(x,y;ω)

]

nj(x) dsx

−
∫

Cε,r+Cε

ui(x)Σ
k
ij(x,y;ω)nj(x) dsx

+

∫ a

−a

∆ui(x1)Σ
k
i2(x1, 0,y;ω) dx1 + uink (y) = 0.

(4.1)

Here uink is the k:th component of the incoming field from the transmitting probe in the
absence of the crack and back surface, ∆ui is the COD: ∆ui(x1) ≡ ui(x1, 0

+)− ui(x1, 0
−)

and k = 1, 2.

The limit ε → 0+ is to be considered next. In this limit the integrand in the integral over
Cε,r + Cε becomes strongly singular [7]. The integral over Cε then gives rise to a so-called
free-term, and the strongly singular integral over the back surface must be interpreted in
the sense of a Cauchy principal value integral. In order to avoid the difficulties associated
with the numerical computation of strongly singular integrals, an indirect regularization
approach (in the nomenclature of Bonnet [6]) is employed in this paper. To this end the
terms ui(x)Σ

k
ij(x,y) and ui(y)Σ

k
ij(x,y) in the integral over Cε,r + Cε are subtracted and
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added back to yield:
∫

Cr

[

Uk
i (x,y;ω)σij(x)− ui(x)Σ

k
ij(x,y;ω)

]

nj(x) dsx

−
∫

Cε,r+Cε

ui(x)
[

Σk
ij(x,y;ω)− Σk

ij(x,y)
]

nj(x) dsx

−
∫

Cε,r+Cε

[ui(x)− ui(y)] Σ
k
ij(x,y)nj(x) dsx

−ui(y)
∫

Cε,r+Cε

Σk
ij(x,y)nj(x) dsx

+

∫ a

−a

∆ui(x1)Σ
k
i2(x1, 0,y;ω) dx1 + uink (y) = 0.

(4.2)

Since the singular behaviour of Σk(x,y;ω) and Σ
k(x,y) is the same, the first integral over

Cε,r + Cε is regular. Granted that the displacement u satisfies the usual assumption of
Hölder continuity [6, 8], i.e. u ∈ C0,α with 0 < α ≤ 1, the second integral over Cε,r + Cε

is weakly singular. In the limit ε → 0+, these two integrals over Cε hence vanish and the
integrals over Cε,r become ordinary integrals over CBS,r, i.e. over the back surface extending
to a distance r from y and without an exclusion neighborhood around y. The third and
strongly singular integral over Cε,r + Cε remains. However, by using the 2D divergence
theorem this integral can be transformed to an integral over Cr which can be evaluated
analytically.

The limit r → ∞ must also be considered. Since the Green’s tensor of the infinite plane is
used, it satisfies an appropriate radiation condition. For a physically reasonable displace-
ment u and associated stress σ, the integral over Cr must then vanish when r → ∞.
Further, after transforming the strongly singular integral over Cε,r +Cε to an integral over
Cr and evaluating it analytically, one obtains:

lim
r→∞

∫

Cε,r+Cε

Σk
ij(x,y)nj(x) dsx =

1

2
δik. (4.3)

Letting CBS,∞ denote the back surface extending to infinity (i.e. not truncated), in the
limit r → ∞, ε→ 0+ Eq. (4.2) then yields:

−
∫

CBS,∞

ui(x)
[

Σk
ij(x,y;ω)− Σk

ij(x,y)
]

nj(x) dsx

−
∫

CBS,∞

[ui(x)− ui(y)] Σ
k
ij(x,y)nj(x) dsx −

1

2
uk(y)

+

∫ a

−a

∆ui(x1)Σ
k
i2(x1, 0,y;ω) dx1 + uink (y) = 0,

(4.4)

where y ∈ CBS and k = 1, 2. Equation (4.4) is the regularized integral equation for the
back surface, and it contains no worse than weakly singular integrals. In order to solve
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the integral equation, the truncated back surface CBS is used instead. The integrals over
CBS,∞ are thus replaced by integrals over CBS. For sufficiently large truncation limits T1
and T2, this is expected to be a good approximation.

4.2. The integral equation for the crack. The integral equation for the crack is de-
rived by applying Hooke’s law (2.2) to an integral representation of the displacement, and
then invoking the boundary condition on the crack. The integral representation of the dis-
placement is derived in a manner analogous to the derivation of Eq. (4.1). With y now an
interior point so that no exclusion neighborhood is necessary, one obtains:

−
∫

CBS,∞

ui(x)Σ
k
ij(x,y;ω)nj(x) dsx +

∫ a

−a

∆ui(x1)Σ
k
i2(x1, 0,y;ω) dx1

+ uink (y) = uk(y). (4.5)

Since the singular point y is not excluded, the right-hand side is now non-zero. Further,
the integral over CBS,∞ is also here approximated by an integral over the truncated back
surface CBS. By applying Hooke’s law (2.2) (with the gradient now taken with respect
to y), taking the limit y2 → 0 and invoking the boundary condition on the crack one
obtains:

lim
y2→0

σi2(y1, y2) = −
∫

CBS

uj(x)Ci2kl
∂

∂yl
Σk

jm(x, y1, 0;ω)nm(x) dsx

+ lim
y2→0

∫ a

−a

∆uj(x1)Ci2kl
∂

∂yl
Σk

j2(x1, 0, y1, y2;ω) dx1

+Ci2kl
∂

∂yl
uink (y1, 0) = 0,

(4.6)

where i = 1, 2, |y1| < a and Cijkl are the components of the elastic stiffness tensor C in
the coordinate system of the crack. It should be noted that the limit in front of the second
integral cannot be moved inside the integral since the integrand is hypersingular [7, 9, 10].
This is expected, as noted above in the comment on the boundary condition on the crack.
This problem is also automatically resolved by the solution method, as clarified in section
7.

5. Probe modelling

The contact probes used in ultrasonic nondestructive testing usually consist of a piezoelec-
tric crystal attached to a wedge. The wedge is typically made of a plastic material, and a
couplant is usually applied between the wedge and the scanning surface of the component
to increase the transmission of the emitted waves into the material. Following the 2D ana-
logue of the model by Boström and Wirdelius [11], the action of a transmitting probe of
this type can be modelled by prescribing the traction on the scanning surface underneath
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it. For the transmitting probe (t), the boundary condition on the upper surface of the
component is then taken as the traction:

tb =











A0iµkp

[

δ sin 2γ exb
1
+
(

k2s
k2p

− 2 sin2 γ
)

exb
2

]

e−ikp(xb
1
−tb

1
) sin γ,P probe,

A0iµks

[

−δ cos 2γ exb
1
+ sin 2γ exb

2

]

e−iks(xb
1
−tb

1
) sin γ, SV probe,

(5.1)

beneath the surface of the probe (i.e. |xb1− tb1| < w1 and xb2 = d+ tb2), and tb = 0 elsewhere.
The two options are referred to as P probe and SV probe, respectively, since for δ = 1 the
tractions correspond exactly to the traction of a plane P or SV wave, respectively, restricted
to the surface of the probe. The parameter δ accounts for the effect of the couplant applied
between the wedge and the scanning surface: δ = 0 represents fluid coupling and δ = 1 a
glued probe. Fluids of different viscosity can be modelled by setting an appropriate value of
δ with 0 < δ < 1. The constant A0 is the amplitude of the plane wave and γ is the angle of
the probe, measured clockwise from the normal of the probe. This model of the transmitting
probe can also be generalized to include the effect of a non-constant traction tapering off
towards the edges of the probe. Since this effect is quite small that generalization is not
made here, but it is discussed in the paper by Boström and Wirdelius [11].

The multiple scattering between the scanning surface and the crack and back surface is
neglected, so the component can be regarded as half-infinite. To determine the incoming
field it can then be expanded in P and SV plane wave potentials:

uin,b(xb) = ∇bϕ(x
b) +∇b ×

(

ψ(xb)exb
3

)

, (5.2)

where ∇b denotes the nabla operator in the coordinate system of the back surface and the
potentials ϕ(xb) and ψ(xb) are given by:

ϕ(xb) =
1

2π

∫ ∞

−∞

A(q)ei(q(x
b
1
−tb

1
)−hp(xb

2
−tb

2
−d)) dq,

ψ(xb) =
1

2π

∫ ∞

−∞

B(q)ei(q(x
b
1
−tb

1
)−hs(xb

2
−tb

2
−d)) dq.

(5.3)

The Fourier transform of the traction vector given by Eq. (5.1) is:

T b =



















A0iµkp

[

δ sin 2γ exb
1
+
(

k2s
k2p

− 2 sin2 γ
)

exb
2

]

2 sin
(

wt(q+kp sin γ)
)

q+kp sin γ
,P probe,

A0iµks

[

−δ cos 2γ exb
1
+ sin 2γ exb

2

]

2 sin
(

wt(q+ks sin γ)
)

q+ks sin γ
, SV probe.

(5.4)
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Identification of the Fourier transform of the traction from the incoming field with Eq.
(5.4) yields the functions A(q) and B(q):

A(q) =
2qhsT

b
1 + (2q2 − k2s)T

b
2

µR
,

B(q) =
(2q2 − k2s)T

b
1 − 2qhpT

b
2

µR
,

(5.5)

where the Rayleigh function is R = (2q2−k2s)2+4q2hphs and T b
1 and T b

2 are the components
of the Fourier transformed traction vector T b given by Eq. (5.4). This determines the
incoming field.

With the incoming field given by Eq. (5.2), solving the integral equations (4.4) and (4.6)
yields the back surface and crack opening displacements. In order to model an ultrasonic
testing situation it remains to relate these to the measured quantity - the output voltage of
the receiving probe. For this purpose the electromechanical reciprocity relation by Auld [12]
is ideal. It states that the change in transmission coefficient (or reflection coefficient in
pulse-echo testing) due to a defect, as observed at the receiving probe (r) when the system
is excited by an incident wave from the transmitting probe (t), is given by:

δΓ =
−iω

4P

∫

C

(u2 · t1 − u1 · t2) ds. (5.6)

Here u1 is the displacement and t1 = (C : ∇u1) · n the corresponding traction when the
transmitting probe (t) acts as a transmitter in the presence of the defect. The quantities
u2 and t2 = (C : ∇u2) ·n are the corresponding displacement and stress when the receiving
probe (r) acts as a transmitter in the absence of the defect. The probes are assumed to
be transmitting at the angular frequency ω, and the quantity P is essentially the power
supplied to the probe in transmitting mode. The contour C is any contour enclosing the
defect, and n is the inward unit normal vector of the contour. With δΓ computed according
to Eq. (5.6) the electric output signal Vr(ω) from the receiving probe (r) due to the scatterer
is then given by:

Vr(ω) = δΓ (ω)Vt(ω),

where Vt(ω) is the electric signal incident on the transmitting probe (t). The application of
Auld’s reciprocity relation to probe signal response calculations is discussed in more detail
in the paper by Mattsson and Niklasson [13].

An application of Eq. (5.6) to the present case gives the change in transmission coefficient
due to the crack as:

δΓC =
−iω

4P

∫ a

−a

∆ui(x1)σ
re
i2(x1, 0) dx1. (5.7)

Here σre
i2 is the traction in the absence of the crack but in the presence of the back surface,

when the receiving probe is transmitting. The COD ∆ui is due to an incoming field from
the transmitting probe, in the presence of both the crack and back surface. The action of
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the receiving probe acting as a transmitter is modelled in the same way as the transmitting
probe.

An application of the reciprocity relation (5.6) also gives the change in transmission coef-
ficient due to the back surface as:

δΓBS =
iω

4P

∫

CBS

urei (x)σ
in
ij (x)nj(x) ds. (5.8)

Here urei is the displacement in the absence of the crack but in the presence of the back
surface, when the receiving probe is transmitting. The stress σin

ij is the stress resulting from
an incoming field from the transmitting probe (t), in the absence of both the crack and
the back surface. It is computed by applying Hooke’s law (2.2) to the incoming field given
by Eq. (5.2).

It should be noted that all the computed δΓ are computed for a fixed angular frequency,
i.e. δΓ = δΓ (ω). In an experimental testing situation, the quantity of interest is the signal
response as measured in the time domain. To obtain these time traces, an inverse Fourier
transform of δΓC(ω) and δΓBS(ω) is taken with the frequency spectrum:

4π

ω2 − ω1

sin2

(

π
ω − ω1

ω2 − ω1

)

=
1

∆f
cos2

(

π
f − fc
2∆f

)

,

where fc is the center frequency and ∆f the 6 dB bandwidth.

6. Discretization

In order to numerically solve the two coupled integral equations (4.4) and (4.6) for the
crack opening and back surface displacements, three discretizations are introduced; (1):
the COD ∆u is expanded in a series of N Chebyshev functions, (2): the back surface CBS

is partitioned into Ne boundary elements with Ng geometrical nodes and approximated on
each element by shape functions, (3): Ni interpolation nodes on the back surface are chosen
and the displacement u is approximated between the interpolation nodes on each element
by interpolation functions. These discretizations yield a system of linear equations which
are subsequently solved simultaneously for the 2N coefficients in the series expansion of
the COD and the 2Ni displacements at the Ni interpolation nodes.

The series expansion of the COD in Chebyshev functions ψm is:

∆ui(x1) =
N
∑

m=1

αimψm(x1/a), (6.1)

where:

ψm(v) =

{

1
π
cos(m arcsin v), m = 1, 3, . . . ,

i
π
sin(m arcsin v), m = 2, 4, . . . .
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These functions form a complete orthogonal set on [−1, 1] with respect to the ordinary
weighted L2-norm, with the weight function (1−v2)−1/2. They also incorporate the correct
square-root behaviour at the crack edges and satisfy a convenient integral property:

∫ 1

−1

ψm(v) e
−iγv dv =

m

γ
Jm(γ), (6.2)

where Jm is the Bessel function of the first kind and orderm. The use of the series expansion
(6.1) in the truncated integral equation for the back surface (4.4) yields the equation:

−
∫

CBS

ui(x)
[

Σk
ij(x,y;ω)− Σk

ij(x,y)
]

nj(x) dsx

−
∫

CBS

[ui(x)− ui(y)] Σ
k
ij(x,y)nj(x) dsx −

1

2
uk(y)

+
N
∑

m=1

αim

∫ a

−a

ψm(x1/a)Σ
k
i2(x1, 0,y;ω) dx1 + uink (y) = 0, k = 1, 2.

(6.3)

Further, after inserting the series expansion (6.1) in the integral equation (4.6) and pro-
jecting on the expansion functions one obtains:

−
∫ a

−a

ψn(y1/a)

[
∫

CBS

uj(x)Ci2kl
∂

∂yl
Σk

jm(x1, x2, y1, 0;ω)nm(x) dsx

]

dy1

+
N
∑

m=1

αjm lim
y2→0

∫ a

−a

ψn(y1/a)
[

∫ a

−a

ψm(x1/a)Ci2kl

× ∂

∂yl
Σk

j2(x1, 0, y1, y2;ω) dx1
]

dy1 +

∫ a

−a

ψn(y1/a)Ci2kl
∂

∂yl
uink (y1, 0) dy1

= 0, i = 1, 2 and n = 1, 2, . . . , N. (6.4)

where an overline is used to denote the complex conjugate. In order to get a square matrix
the choice to project on N expansion functions is made in Eq. (6.4).

The boundary element discretization remains. In this paper an isoparametric interpolation
(i.e. the shape and interpolation functions are the same and the geometrical nodes are used
also as interpolation nodes) with quadratic Lagrangian interpolation functions is used. The
BEM discretization is performed in the usual way, see e.g. Bonnet [6] and Domínguez [14].
For isoparametric interpolations Ni = Ng. Letting Nnode denote this number, the use of
quadratic interpolation functions implies that Nnode = 2Ne+1. By collocating Eq. (6.3) at
the 2Ne+1 node points, 2(2Ne+1) equations are obtained. Together with the 2N equations
(6.4), one obtains a system of 2(2Ne+1+N) linear equations in 2(2Ne+1+N) unknowns:
the 2(2Ne + 1) back surface displacements and the 2N series coefficients αim.

After computing the incoming field and assembling and solving the discretized equations, it
remains to compute the signal responses δΓC and δΓBS given by Eqs. (5.7) and (5.8). The
computation of δΓBS requires knowledge of the displacement urei , i.e. the the back surface
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displacement in the absence of the crack but in the presence of the back surface, with the
receiving probe acting as transmitter. This displacement is computed by solving Eq. (6.3)
with N = 0 (since the crack is absent) and the incoming field generated by the receiving
probe (r). To compute δΓBS once urei is known, it remains to compute the stress σin

ij on
the back surface by applying Hooke’s law (2.2) to the incoming field given by Eq. (5.2),
integrate the product urei σ

in
ijnj on each boundary element and sum over the elements.

To compute δΓC , the series expansion (6.1) is used in Eq. (5.7) to give:

δΓC =
−iω

4P

N
∑

m=1

αim

∫ a

−a

ψm(x1/a)σ
re
i2(x1, 0) dx1. (6.5)

The coefficients αim are known after solving the integral equations, and the traction σre
i2

on the crack is computed by applying Hooke’s law (2.2) to the truncated version of the
integral representation (4.5) (with ∆ui = 0 since the crack is absent). The displacement urei ,
which is known from the computation of δΓBS, is then used in the integral representation
(4.5).

7. Numerical examples

In this section the numerical computations are discussed, and a few numerical examples
are given to illustrate the model and the influence of the back surface.

The numerical computations are quite straightforward, owing mainly to the fact that the
integral equation for the back surface is regularized and that the COD is computed with
an analytically oriented method. Compared to an ordinary application of the BEM, the
additional considerations required in the present hybrid method concern the choice of
representation of the Green’s tensors and the number of terms in the series expansion of
the COD. Compared to an ordinary analytically oriented hypersingular integral equation
method, the additional considerations required here mainly concern the truncation of the
back surface and the length of the boundary elements.

In the computation of all integrals with dynamic Green’s tensors in the integrand, in the
integral equations (6.3) and (6.4), the choice between the closed Hankel form and the
Fourier integral representation of the Green’s tensor must be made. For the 2D SH case [4]
these choices are discussed in detail, and the conclusions drawn there apply also to this
case. Thus: in Eq. (6.3) the closed Hankel form is used throughout, whereas in Eq. (6.4) the
closed Hankel form is used in the integral over the back surface while in the crack integral
the Fourier representation is used instead. The Fourier representation has the benefit of
enabling the application of the integral relation (6.2), thus reducing the order of integration
by one for each application of the integral relation.
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More important, however, is the fact that the use of the Fourier representation of the
Green’s tensor in conjunction with the integral relation (6.2) allows for an analytical treat-
ment of the hypersingularity:

lim
y2→0

∫ a

−a

ψn(y1/a)

[
∫ a

−a

ψm(x1/a)Ci2kl
∂

∂yl
Σk

j2(x1, 0, y1, y2;ω) dx1

]

dy1

=
iµmn

4πk2s

∫ ∞

−∞

[

fi(q)fj(q)
1

hp
+ gi(q)gj(q)

1

hs

]

1

q2
Jm(aq)Jn(aq) dq,

i, j = 1, 2 and m,n = 1, 2, . . . , N. (7.1)

Here the functions fi(q) and gi(q) are defined by:

fi(q) = −δi12qhp + δi2(k
2
s − 2q2),

gi(q) = δi1(k
2
s − 2q2) + δi22qhs.

(7.2)

In Eq. (7.1) the limit has been moved inside the integral, since it is convergent. This follows
from the fact that for i = j (the integrand is zero for i 6= j) the asymptotic behaviour of
the integrand as |q| → ∞ is:

fi(q)fi(q)

hpq2
+
gi(q)gi(q)

hsq2
=

2i(k2s − k2p)

|q| +O(|q|−3). (7.3)

To compute the integrals in Eq. (7.1) the range of integration is transformed to integration
from 0 to ∞, and the leading order terms are evaluated analytically using the relation:

∫ ∞

−∞

Jm(aq)Jn(aq)

|q| dq =
δmn

m
.

The rest converges quickly enough for a direct numerical integration.

All integrals are computed numerically using Gauss-Legendre quadrature except the inverse
temporal Fourier transform, which is computed using the trapezoidal rule. In all boundary
element integrals, around 10 integration points are sufficient. An important consequence
of the use of an isoparametric interpolation is that it enforces the Hölder continuity of u
which was assumed in the regularization of the integral equation (4.4). As a result, the
singularity in the weakly singular integrals is cancelled and the integrals can be accurately
computed using ordinary Gauss-Legendre quadrature.

For the outer integration in the first integral in (6.4), around 30 integration points are
sufficient. In all other integrals, at the most 400 integration points are required. The integral
relation (6.2) is used also for the last integral in Eq. (6.4). Regarding the truncation of
the series expansion (6.1), the required number of terms grows with frequency so roughly
N = aks + 8 terms seem to be enough.
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(a) Planar back surface.
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(b) Non-planar back surface.

Figure 3. The echo amplitude as a function of probe position, crack angle
β = 90◦. Solid curves (—): crack present, dashed curves (- -): crack absent.

In all the examples presented a pulse-echo testing situation (i.e. the same probe acting as
both transmitter and receiver) is simulated and the back surface g(xb1) is chosen as:

g(xb1) =











0, xb1 < b,
A
2

[

1 + sin
(

π
c−b

(

xb1 − c+b
2

))]

, b ≤ xb1 ≤ c,

A, xb1 > c,

where A, b, and c are defined in Fig. 1. In the numerical examples given, the parameters
of the non-planar back surface are A = 7.5mm, b = −1mm and c = 6.5mm. The Lamé
constants of the material are λ = 113.2GPa and µ = 80.9GPa, respectively, and the
density is ρ = 7900 kg/m3. A 5mm wide crack with β = 90◦ (i.e. vertical) or β = 135◦ is
considered, and in both cases the crack center is located 5mm from the lower part of the
back surface. The probe is a 10mm wide SV-probe with angle γ = −45◦ and fluid coupling
so that δ = 0. The probe is located at a vertical distance of 20mm from the lower part
of the back surface. Damping is incorporated in the model by giving the Lamé constants
imaginary parts of 1% of the real parts.

The numerical results presented in this section were obtained for a back surface length
of roughly 50 pressure wavelengths and boundary elements with a length of 1/4 of the
Rayleigh wavelength. In the computation of the time traces 100 frequencies were used.
These choices have been seen to generate good accuracy in the considered cases.

Figures 3 and 4 show the pulse-echo signal response as a function of probe position for
crack angles β = 90◦ and β = 135◦, respectively. These signal responses were computed for
a single frequency of 2MHz. The results are not calibrated, but the same normalization is
used so the results can be compared. In these figures the dashed curves show the signal
response from the back surface in the absence of the crack, and the full-drawn curves show
the total signal response with the crack present.

Figures 3(a) and 3(b) show the results for the vertical crack with a planar and non-planar
back surface, respectively. As seen in Fig. 3(a) the crack gives a strong corner echo with
an amplitude maximum for a probe position around 18mm to the left of the crack. In the

B15



−40 −20 0 20 40
−60

−40

−20

0

Probe position [mm]

E
ch

o 
am

pl
itu

de
 [d

B
]

(a) Planar back surface.
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(b) Non-planar back surface.

Figure 4. The echo amplitude as a function of probe position, crack angle
β = 135◦. Solid curves (—): crack present, dashed curves (- -): crack absent.

case of the non-planar back surface in Fig. 3(b) the total amplitude maximum is instead
attained for a probe position around 9mm to the left of the crack, where the reflection by
the back surface is strongest.

Figures 4(a) and 4(b) show the corresponding results for the crack with β = 135◦. A strong
echo from the crack is observed in Fig. 4(a), with amplitude maximum for a probe position
around 25mm to the left of the crack. The results for the non-planar back surface in Fig.
4(b) show a strong echo with maximum for a probe position around 17mm to the left
of the crack. This maximum is stronger than for the planar back surface in Fig. 4(a), as
expected due to a focusing effect of the non-planar part of the back surface which reflects
incoming waves onto the crack and back to the probe.

It can also be noted in Figs. 3(a) and 4(a) that the planar back surface gives a very weak
signal response which is also independent of probe position, as expected. The back surface
signal response is also seen to be the same in Figs. 3(a) and 3(b) as in Figs. 4(a) and 4(b),
respectively, as they must be since the back surface is the same.

Figures 5 and 6 show the time traces for the cracks with β = 90◦ and β = 135◦, respectively,
for a probe position 20.1mm to the left of the crack center. The center frequency is fc =
2MHz and the 6 dB bandwidth is ∆f = 1MHz. The normalization is the same in all time
traces, but it should be noted that the scale is different in the time traces for the planar
back surface without the crack.

The time traces provide valuable means of checking the results, since the different contri-
butions to the total signal response can be identified in these plots. This is discussed below
for the results in Fig. 5, and an analogous analysis can be carried out to identify the pulses
in Fig. 6. This is omitted here, but as noted above the back surface signal response must
be identical regardless of crack angle. Accordingly, one may note that the time traces are
the same in Figs. 5(a) and 5(c) as in Figs. 6(a) and 6(c), respectively.

Figure 5(a) shows the time traces for the planar back surface without the crack. In the
traces only the small fraction of the pulses reflected vertically by the back surface are
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(a) Planar back surface, crack
absent.
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(b) Planar back surface, crack
present.
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(c) Non-planar back surface, crack
absent.
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(d) Non-planar back surface, crack
present.

Figure 5. The time traces for a probe located 20.1mm to the left of the
crack, crack angle β = 90◦.

present, as expected. This wave path length corresponds to an arrival time of t ≈ 6.8µs
for a pure P-wave pulse, and this pulse is clearly visible in the traces. The mode converted
pulses with arrival times of t ≈ 9.6µs are also visible. The pure SV-wave pulse with an
arrival time of t ≈ 12.5µs is very weak since the coupling parameter δ = 0, but a careful
look reveals also this pulse in the traces.

Figure 5(b) shows the time traces for the planar back surface with the vertical crack
present. The pulses from the back surface are of course present also here, but the pure
SV-wave pulse from the corner echo with a wave path length corresponding to an arrival
time of t ≈ 17.9µs now dominates the signal response. The corresponding pure P-wave
pulse is much weaker since the probe is of SV type. This pulse, with an arrival time of
t ≈ 9.7µs, also coincides with the mode converted pulses from the back surface mentioned
above in connection to Figs. 5(a) and 5(b). In addition, the pure P-wave pulse which is
diffracted by the lower crack tip and then reflected by the back surface also has an arrival
time of t ≈ 9.6µs, and these three pulses are thus indistinguishable from each other. More
apparent in the traces is the total contribution of the corner echo pulses from incoming
SV-waves which are mode converted at the back surface (arrival time t ≈ 13.4µs) and on
the crack (arrival time t ≈ 14.3µs), respectively. Finally, in contrast to the case in Fig.
5(a) with no crack, there are now also possibilities of multiple reflections between the crack
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present.
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(c) Non-planar back surface, crack
absent.
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present.

Figure 6. The time traces for a probe located 20.1mm to the left of the
crack, crack angle β = 135◦.

and back surface. These multiple reflections give rise to small pulses arriving late in the
traces, as observed in Fig. 5(b).

The situation is more complicated for the non-planar back surface in Figs. 5(c) and 5(d).
The time traces obtained in the absence of the crack, as shown in Fig. 5(c), feature the same
pure P-wave pulse from the back surface arriving at t ≈ 6.8µs as in the cases above, and
the corresponding mode converted pulses and the pure SV-wave pulse are also present.
However, the strong direct reflection by the non-planar part of the back surface of the
pure SV-wave dominates the signal response, with a wave path length corresponding to
an arrival time of t ≈ 17.7µs. The corresponding pure P-wave pulse arriving at t ≈ 9.6µs
is also present although impossible to distinguish in time from the mode converted pulses
from the planar part of the back surface. Finally the mode converted pulses from direct
reflection by the non-planar part of the back surface with arrival times of t ≈ 13.7µs are
also clearly visible in the figure.

Figure 5(d) shows the time traces for the non-planar back surface, with the crack present.
As expected the weak reflections by the planar part of the back surface, discussed above,
are present also here. In addition the corner echoes and the pulses reflected by the non-
planar part of the back surface, all discussed above, are also present. However, since the
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arrival times of these pulses coincide the different contributions cannot be distinguished.
The mode converted corner echoes and pulses reflected by the non-planar part of the back
surface are seen to generate a stronger signal response as compared to Figs. 5(b) and
5(c). In contrast, the pure SV-wave corner echo and reflection by the non-planar part of
the back surface are seen to generate a weaker signal response in the same comparison.
These effects are likely due to constructive and destructive interference, respectively, of the
different pulses. Finally it can be noted that with a non-planar back surface more complex
multiple reflections between the crack and back surface are possible than for the planar
back surface, resulting in more and stronger pulses arriving late in the time traces.

8. Concluding remarks

In this paper a 2D P-SV model of ultrasonic testing for interior strip-like cracks near
a non-planar back surface is developed. The incident field emitted from an ultrasonic
contact probe is modelled by prescribing the traction on the component beneath the probe.
This enables the derivation of an explicit expression for the incident field in terms of
an inverse Fourier transform. The wave scattering problem is solved by reformulating it
as two coupled boundary integral equations for the unknown crack opening and back
surface displacements. By using a combination of a series expansion of the crack opening
displacement and a boundary element discretization of the back surface to solve the coupled
integral equations, the hypersingularity in the BIE for the crack can be treated analytically
while the geometry of the back surface is allowed to be quite arbitrary. The model is
completed by employing an electromechanical reciprocity relation to model the action of
the receiving probe and applying an inverse temporal Fourier transform to obtain the time
traces.

The model presented in this paper treats the 2D in-plane case with a strip-like crack. In
future research the 3D case with other types of defects will be treated.
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