
Thesis for the Degree of Master of Science

Maintenance Optimization in
Stochastic Multi-component

Systems
A Dynamic Programming Approach

Emil Gustafsson

Department of Mathematical Sciences

Division of Mathematics

Chalmers University of Technology

SE-412 96 Göteborg, Sweden
Göteborg, August 2010

Abstract

The main purpose of the thesis is to investigate the possibilities of utilizing dynamic
programming as a solution method for the stochastic opportunistic replacement problem
(SORP). The objective in the SORP is to choose a maintenance policy that will minimize
the expected total maintenance cost over a planning period for a system with stochastic
component lives. Each component failure includes a maintenance occasion cost and a cost
for replacing the failed component. A maintenance policy is a rule which determines whether
it is beneficial to replace more than the necessary components given the system state.

A dynamic programming model is developed and some theoretical properties of the
problem are presented. Three main methods are analyzed; an exact dynamic programming
model, an infinite horizon simplification, and an approximate dynamic programming (ADP)
model.

The size of the dynamic programming model becomes computationally intractable even
for medium size problems, so the main results of the thesis is based on smaller test problems.
For the problems where the exact dynamic programming model is applicable, the model gives
superior results compared to other maintenance policies. That is, the total maintenance cost
obtained by the dynamic programming model is lower than the other policies maintenance
costs. The infinite horizon method gives suprisingly good results even though the simpli-
fication is substantional. The ADP model does not perform as well, but can on the other
hand be used on larger problem instances.

Keywords: opportunistic replacement problem, dynamic programming, maintenance opti-
mization, approximate dynamic programming.

i

Aknowledgements

I would like to thank to my supervisors Adam Wojciechowski and Michael Patricksson from the
optimization research group at the Department of Mathematical Sciences at Chalmers University
for their support. Without their help this project would not have been possible.

A final thank goes to my parents Lennart and Monica Gustafsson for always supporting me
and inspiring me.

Emil Gustafsson, November 3, 2010

ii

Contents

1 Introduction 1

1.1 Purpose . 2
1.2 Limitations . 2

2 Dynamic Programming 3

2.1 The Optimality Equations . 5
2.2 Pre- and Post-decision State Variables . 6
2.3 Finite Horizon . 7
2.4 Infinite Horizon . 9

2.4.1 Value Iteration . 11
2.4.2 Policy Iteration . 12
2.4.3 Linear Programming for Infinite Horizon Problems 12

3 Approximate Dynamic Programming 14

3.1 Finite Horizon . 14
3.1.1 Using Post-decision State Variables . 15
3.1.2 Approximating the Value Function . 16

3.2 Infinite Horizon . 17

4 Maintenance Optimization Problem 18

4.1 Variables . 18
4.2 Transformation Function . 18
4.3 Cost Function . 19
4.4 Transition Probabilities . 19
4.5 Objective . 20
4.6 Pre- and Post-decision State Variables . 23
4.7 Numerical Example . 24

4.7.1 Backward Dynamic Programming . 24
4.7.2 Using Post-decision States . 26
4.7.3 Infinite Horizon, Linear Programming . 27

5 Algorithms 29

5.1 Dynamic Programming . 29
5.2 Approximate Dynamic Programming . 30

6 Results 31

6.1 Test Problems . 31
6.2 Wind Turbine Problem (WT) . 34

7 Conclusions and Future Research 35

A Theorems 37

A.1 Optimality Equations . 37

iii

1 Introduction

Maintenance is needed on many types of systems and the performance of maintenance operations
can in some cases be a large proportion of the total cost of running a system. One maintenance
strategy this thesis will analyze is what is denoted as opportunistic maintenance. One type
of opportunistic maintenance was studied by Dickman et al. [4], and Jorgensen and Radner
[8], where a mathematical model was utilized to determine if doing more than the necessary
maintenance might reduce the total cost over the maintenance period.

One model which utilizes opportunistic maintenance can be found in [1] and studies the
opportunistic replacement problem (ORP). The ORP is a problem that considers a system of
components which all have deterministic lives. When a component fails, a maintenance occasion
cost is paid and the failed component has to be replaced. Because of the maintenance occasion
cost included, it may prove beneficial to replace other components as well, because it might save
an additional maintenance occasion cost in the future. The ORP can be solved by a mixed integer
programming model and a replacement schedule for a whole planning period can be obtained. A
large limitation the ORP is that it can not include stochastic components in the system. Even
though it may seem like a simplification to assume some deterministic component lives, there are
many systems where a deterministic life is justified. For example, aircraft engine components
have regulations according to which they have to be replaced after a certain amount of flight
hours. The probability of failure for these components before such a regulated life id very low.
They can thus be considered as deterministic.

When adding uncertainty to an optimization problem, several difficulties emerge. The first
problem is how to determine the objective in a problem which includes stochastic parameters.
The most common solution is to formulate the problem as minimizing (maximizing) the expected
cost (profit). This may not be preferred in some situations where the robustness of the solution
has a large effect. For example, a solution with minimum expected cost might have a large
variance that in the worst scenarios gives a very high maintenance cost. If we wish to prevent
this, the objective might have to include the variance. Another problem that occurs when
adding uncertainty is that the problem itself becomes much more complicated. To minimize an
expectation of some ”easy” function may in some instances be extremely hard.

For the ORP, a very important feature occurs when adding uncertainty to the life of the
components. When solving the ORP for deterministic lives, one gets an optimal replacement
schedule which denotes exactly which components to replace at each timestep. If we include
components with uncertain lifes, we can not predict how the system will behave (when the
components fail) in the future. If we would like to have a replacement schedule for the whole
planning period, we would have to construct one schedule for each possible outcome. Hence, the
only decision we can make when a component failes is which components we should replace at
that maintenance occasion. To decide which components to replace, we try to find the optimal
decision which will minimize the cost we have to pay at the maintenance occasion plus the
expected future maintenance cost.

To include systems with stochastic lives, the stochastic opportunistic replacement problem
(SORP) has been formulated, see [10]. The SORP can be formulated as finding an optimal
maintenance policy over a specified planning period. A maintenance policy is a function that
tells us which components to replace at a maintenance occasion, depending on how long the
planning period is and how old the components in the system are. To find such a maintenance
policy, several solution mehtods can be applied. In [10], a simplified version of the SORP is
formulated to find near-optimal policies by using a two-stage stochastic programming approach.

1

1.1 Purpose

The purpose of this thesis is to investigate the possibility of utilizing dynamic programming as
a solution method for the SORP. Dynamic programming is a method for solving multi-stage
decision problems and is closely related to the two-stage model in [10]. The notion of dynamic
programming was first used by Richard Bellman when he was trying to solve complex multi-
stage decision problems in the 1940’s and he laid the foundation for the area by publishing
Dynamic Programming [3] in 1959. The SORP has many properties that indicate that a dynamic
programming approach to the problem should be interesting. The problem can be formulated as
a Markov decision problem and it is a sequential decision problem where the objective is to find
an optimal maintenance policy.

Approximate dynamic programming (ADP) is an area within dynamic programming which
utilizes different approximation techniques to find near optimal policies and a large part of the
thesis is concerned with finding approximations that might yield satisfactory policies.

1.2 Limitations

Dynamic programming often experience what is denoted as the curses of dimensionality. This
referres to instances where the size of the state and decision spaces grows exponential and becomes
computationally intractable even for medium size problems. The SORP has this property and
we know that an exact dynamic programming model will not be applicable for larger instances of
the SORP. Therefore, we have limited ourselves to the development and evaluation of the exact
dynamic programming model only for smaller instances. ADP can, in some cases, overcome
the problems regarding dimensionality. Therefore, when analyzing larger problem instances, the
main focus will be the performance of the ADP algorithms.

Another aspect of the SORP is the question of discretization. In reality, the components in
a stochastic system will not fail at certain discretized time steps but will fail according to some
continuous probability distribution. To be able to utilize dynamic programming, we will assume
a discretized time horizon and will not discuss how such discretizations effect the performance
of the policies developed.

2

2 Dynamic Programming

Dynamic programming can be viewed as a method for solving multi-stage decision problems. The
method breakes down complex problems into simpler subproblems. From an optimization point
of view, dynamic programming simplifies a complex decision by dividing it into a sequence of
simpler decision steps. Instead of trying to find optimal decisions for a whole time horizon, one can
construct a subproblem for each timestep and solve each subproblem recursively. When utilizing
dynamic programming, one views the system as being in different states. The optimization
problem is to find the best possible decision, given that the system is in some specific state.
When we make a decision, the system evolves in time. How the system evolves is modelled
by a transition function, which is a function that takes the system from one state to another.
The transition function gives the next state for the system, given an initial state, a decision,
and some exogenous information. The exogenous information is something that ”arrives” to the
system after we have made a decision. This information might depend on some stochastic process
which has an impact on the system.

One simple example where dynamic programming can be utilized is stock trading. If we are
interested in buying or selling a specific stock, we let the present value of the stock be the systems
state. We have to utilize some optimization technique to determine whether we should buy or
sell the stock, i.e. what decision we should take. After the decision is made, the stock price will
move in some direction and the change in stock price is the exogenous information that arrives
to the system.

When engineers and economists utilizes dynamic programming, they usually focus on prob-
lems with continuous states and decisions. In these kind of problems, one often views the decisions
as some kind of controls and therefore, these problems are denoted as problems within control
theory. In the fields of operations research and artificial intelligence, the problems often have
discrete states and decisions and are called Markov decision processes. The Markov property in
dynamic programming refers to systems where the state of the system captures the history of the
system in such a way, that the only information needed to make a decision is the present state.
Not all problems in dynamic programming can be formulated in such a way that they fulfill
the Markov property. One example is trading with specific history dependent options. There
exists a large amount of literature in the area of dynamic programming on problems that do not
have the Markov Property, for example [13]. However, the problems we are analyzing do fulfill
the Markov property, so in the future we are going to assume this property when dealing with
dynamic programming.

In this thesis, we will use st to represent the state of the system at time t. The decision
we make is denoted xt and the exogenous information that arrives is denoted wt. We use φ
to represent the transition function and, with these notations, the system will evolve in time
according to

st+1 = φ(st, xt, wt).

For each decision we make, a cost c(st, xt) has to be paid. If we first assume a deterministic
system. the objective is to minimize the total cost over some planning period. If we assume
that the system is in some state at time 0, and we have to make decisions for the time horizon
0, . . . ,T , our problem is to

minimizex0,...,xT

(
T∑

t=0

c(st, xt)

)

,

subject to st+1 = φ(st, xt, wt).

This implies that that we need to choose decisions x0, . . . ,xT such that the total cost we pay is

3

minimized. This notation is correct as long as we assume that the system is deterministic, which
is the same as having a model where the transition function does not depend on any exogenous
information.

When we analyze a stochastic system, we assume that we are interested in minimizing the
expected total cost we have to pay. A first guess would be to write down our objective as

minimizex0,...,xT
E

(
T∑

t=0

c(st, xt)

)

,

subject to st+1 = φ(st, xt, wt).

This formulation is not mathematically correct because the states st for t = 1, . . . ,T are random
variables. We cannot determine some specific decision xt as the state at time t is random. Hence,
we have to consider our decisions xt as random variables.

This is where dynamic programming is needed for solving problems with stochastic exogenous
information. Dynamic programming was developed in the 1940s by Richard Bellman to solve
sequential decision problems. The biggest impact Richard Bellman did was to develop the Bell-
man equations. The Bellman equations break down a complex decision problem into a sequence
of simpler subproblems. Each time step t yields a subproblem on the form

min
xt

c(st, xt) + E (vt+1(st+1) | st, xt)

s.t. st+1 = φ(st, xt, wt).

For each subproblem we are trying to find the best decision xt that will minimize the cost we
have to pay at time t plus the expected future cost. These subproblems and their connection with
our ”mathematically incorrect” objective function will be explained thoroughly in the following
sections.

One common reason why dynamic programming is dismissed as a solution method for opti-
mization problems are the problems regarding dimensionality. For a general stochastic dynamig
programming model, three kinds of dimensionalities come up.

• The state space - The state variable st = (st1, . . . ,stI) has dimension I. If each sti can
take on L possible values, then the number of states might be as large as LI .

• The outcome space - The exogenous variable wt = (wt1, . . . , wtJ) has dimension J . If
each wti can take on M possible values, then the number of outcomes might be as large as
MJ .

• The decision space - The decision variable xt = (xt1, . . . , xtN) has dimension N . If each
xti can take on K possible values, then the number of decisions might be as large as KN .

4

2.1 The Optimality Equations

Assume a finite planning period from 0 to T . At time 0 ≤ t ≤ T the process is in state st and
xt is the decision variable. The feasible set of decisions, given that the system is in state st, will
be denoted Xst

. We assume that we know the transition matrix P(st+1 | st, xt), which gives the
probability that the system reaches state st+1 at time t + 1, given that the system is in state st

and we make decision xt at time t. This probability depends on the probability of the exogenous
information wt.

In this thesis, we assume that all the problems considered have the Markov property, i.e., the
state st depends only on

• the state st−1,

• the decision variable xt−1, and

• the exogenous information wt−1.

We denote the transformation function by φ, hence

st+1 = φ(st, xt, wt), for 0 ≤ t ≤ T − 1. (1)

By taking decision xt when we are in state st at time t, we have to pay the cost ct(st, xt).
In a stochastic problem, the objective function can not be formulated in the same way as in a

deterministic problem because of the exogenous information. Instead, we formulate the problem
as finding the best policy for choosing xt.

Definition 1 A policy π : S → X is a mapping from the state space to the decision space that
specifies decisions for all states in S.

As explained in the definition above, a policy π tells us what to do for all possible states. Let
xπ

t (st) be a decision made by policy π at time t when the system is in state st . By letting Π be
the set of all possible decision policies, our problem can be formulated as

min
π∈Π

E

(
T∑

t=0

γtct(st, x
π
t (st))

)

, (2)

where γ is a factor that can be included to take into account the time value of money. The
minimum expected cost of being in state st is denoted as vt(st), which is a sum of the cost we
have to pay at time t and the expected cost of the future, i.e.,

vt(st) = min
xt∈Xt

(ct(st, xt) + γE [vt+1(st+1) | st, xt]) (3)

subject to st+1 = φ(st, xt, wt).

Equation 3 is often referred to as the expectation form of Bellman’s equation. Another way of
describing the minimun cost of being in state st is to express the expectation as a sum over the
different states, i.e.,

vt(st) = min
xt∈Xt

(

ct(st, xt) + γ
∑

s′∈S

P(st+1 = s′ | st, xt)vt+1(s
′)

)

(4)

subject to st+1 = φ(st, xt, wt).

5

For simplicity, we let
pss′(x) = P(st+1 = s′ | st = s, xt = x)

be the probability that the state s will transform to state s′ given that we make the decision x.
If we are using a specific policy π to make the decisions, we write the probability as

pπ
ss′ = P(st+1 = s′ | st = s, xt = xπ

t (s)).

By creating a matrix with elements pπ
ss′ , we obtain a different probability matrix P π

t for each
polixy π. Let cπ

t and vt be column vectors with elements c(s, xπ
t (s)) and vt(s) respectively. By

using this notation, Bellman’s equation is

vt = min
π∈Π

(cπ
t + γP π

t vt+1), (5)

where the minimization is made componentwise. By solving these equations, an optimal policy
π∗ is obtained, and hence a decision x∗

t (st) for all states.
The relationship between Bellman’s equation and the objective function (2) is explained in

Theorem 2.1.

Theorem 2.1 Let vt(st) be the solution to Bellman’s equation (4). Then

vt(st) = min
π∈Π

E

(
T∑

t′=t

γt′ct′(st′ ,x
π
t′ (st′)) | st

)

, (6)

Proof See Apendix A.1

Theorem 2.1 tells us that to find the optimal policy π∗ that will minimize the total cost from
time t to T , given that the system is in state st, we can solve the Bellman equations for vt(st).
The problem is that to solve such an equation, the values of vt+1 has to be known.

2.2 Pre- and Post-decision State Variables

In many practical applications, it is possible to break down the effect of the decision and the
exogenous information. This implies that the original transition relation st+1 = φ(st, xt, wt) can
be divided into two steps

sx
t = φx(st, xt)

st+1 = φw(sx
t , wt),

where st is the state of the system just before we make a decision, and sx
t is the state just after

we have made decision xt. st is referred to as the pre-decision state variable and sx
t is referred

to as the post-decision state variable. A schematic figure illustrating the difference between the
two state variables can be seen in Figure 1.

As noted before, vt(st) is the cost (often denoted value) of being in state st just before we
make a decision. Let vx

t (sx
t) be the cost of being in state sx

t just after we hade made a decision.
The relationship between the cost of being in the pre- or post-decision state is

vx
t−1(s

x
t−1) = E[vt(st) | s

x
t−1], (7)

which says that the cost of being in the post-decision state sx
t−1 is equal to the expected cost of

the next pre-decision state vt(st), given that decision x has been made. We can also write the
pre-decision cost as a function of the post-decision cost by

vt(st) = min
xt∈Xt

(ct(st,xt) + γvx
t (sx

t)) . (8)

6

Figure 1: Schematic illustration of the difference between pre- and post-decision states. In the left
figure, a state tree using post-decision variables is shown. In the right figure, a tree consisting
of pre-decision variables only is shown.

If we combine the two equations, we obtain the optimality equations for the post-decision state
variable

vx
t−1(s

x
t−1) = E

[

min
xt∈Xt

(ct(st,xt) + γvx
t (sx

t)) | sx
t−1

]

. (9)

A clear difference between these optimality equations and the standard form of Bellman’s equa-
tion is that the expectation is now outside the min operator. The advantage of using this form
is that the optimization problem inside the expectation is a deterministic problem which can
be solved by various optimization techniques. However, to evaluate vx

t (sx
t), the expectation in

equation (7) must be computed. This is often computationally intractable and in many cases,
this is the part which is approximated.

2.3 Finite Horizon

Finite horizon problems are problems with a specific time horizon T < ∞. As described in
section 2.1, the objective is to find a policy that solves

min
π∈Π

E

(
T∑

t=0

γtc(st,x
π
t (st)) | s0

)

.

By using Theorem 2.1, we know that this is equivalent to solving the Bellman equations for
v0(s0). If we know vT (sT), we can obtain values of the functions vt recursively from T back to
0, and thus find the optimal policy at time 0. In many cases, the cost at the terminal time T
is set to vT (sT) = 0. This is referred to as backward dynamic programming and is presented in
Algorithm 2.1.

7

Algorithm 2.1: Backward Dynamic Programming()

set terminal conditions vT (sT) and let t = T − 1

while t ≥ 0
for all st ∈ St

solve

vt(st) = min
xt∈Xt

(

ct(st,xt) + γ
∑

s′∈St+1

P(s′ | st, xt)vt+1(s
′))

)

and let x∗
t (st) be the optimal decision.

end

let t = t − 1
end

return (x∗
0)

T
t=0

To show how backward dynamic programming works, we look at at deterministic shortest path
problem, see Figure 2. The objective is to find the optimal path from the start A to the goal
E. To get to E, we have to pass through three different nodes, one in layer B, one in layer C
and one in layer D. The numbers on each edge represent the length between the two connected
nodes.

Figure 2: Shortest path problem.

To solve this problem with backward dynamic programming, we begin by finding the shortest
path from all nodes in layer D to the end node E. Then we move to layer C and find the shortest
path from all nodes in layer C to the goal by utlizing the information we obtained in the previous
step. Next layer is B and is solved using the information about the shortest path from C to the
goal. Finally, we go to our start node A and finds the shortest path. A schematic explanation
of the algorithm can be found in Figure 3. By utilizing this algorithm, we see that the shortest
path is to use the path A → B1 → C1 → D1 → E, with a path length of 14.

8

Figure 3: A schematic illustration of backward dynamic programming applied to a shortest path prob-
lem. The dashed lines represents the shortest path from a node to the goal.

2.4 Infinite Horizon

Infinite time horizon problems are problems where the parameters of the underlying processes
do not vary over time.

By letting the time horizon T → ∞, and v(s) = lim
t→∞

vt(ss) (assuming the limit exists), we

obtain the Bellman equation for an infinite horizon problem,

v(s) = min
x∈Xs

(

c(s, x) + γ
∑

s′∈S

P(s′ | s, x)v(s′)

)

. (10)

The main difference between the Bellman equations for finite and infinite horizon problems is
that the infinite horizon problem equation does not contain a time dimension. In the infinite
horizon case we define the total discounted cost, given that we follow a specific stationary policy
π, to be

vπ(s) = E

(
∞∑

t=0

γtc(st,x
π
t (st)) | s0 = s

)

. (11)

The optimality equations for the infinite horizon case is presented in Theorem 2.2

9

Theorem 2.2 Let v(s) be the solution to Bellman’s equation for state s ∈ S. Then

v(s) = min
π∈Π

vπ(s)

= min
π∈Π

E

(
∞∑

t=0

γtct(st, x
π
t (st)) | s0 = s

)

Proof See [11]

As in section 2.3, let pss′(x) be the probability that the system is transformed to state s′,
given that it is in state s and we make decision x. For a given policy π, let the transition matrix
P π consist of the probabilities pπ

ss′ . Let cπ and v be column vectors with elements c(s, xπ(s))
and v(s) respectively. For a given policy π, we define the operator T π : V → V as

T πv = cπ + γP πv,

where V is the set of bounded, real-valued functions on S. Also, we define the operator T : V → V
as

T v = min
π∈Π

T πv

= min
π∈Π

(cπ + γP πv).

where the minimization is carried out componentwise.

Definition 2 Let V be ths space of bounded, real-valued functions. The norm of V is then

||v|| = sup
s∈S

v(s).

We can replace the ”sup” with a ”max” if the state space is finite.

Definition 3 A mapping M : V → V is a contraction mapping if there exists a 0 ≤ α < 1
such that

||Mv −Mu|| ≤ α||u − v||, for u,v ∈ V .

Theorem 2.3 (Banach Fixed-Point Theorem) Let V be a Banach space, and let M : V → V be
a contraction mapping. Then

(a)there exist a unique v∗ ∈ V such that Mv∗ = v∗and,

(b)for an arbitrary v0 ∈ V , the sequence vn defined by vn+1 = Mvn converges to v∗.

By analyzing the operators we just defined, we can show the following proposition.

Proposition 2.4 If 0 ≤ γ < 1, then T is a contraction mapping on V.

Proof Let u, v ∈ V and assume that T v(s) ≥ T u(s) for a state s. Let

x∗
s(v) = arg max

x∈X

(

c(s, x) + γ
∑

s′∈S

P(s′ | s, x)v(s′)

)

,

10

where we assume that the solution exists. Then

0 ≤ T v(s) − T u(s)

= c(s, x∗
s(v)) + γ

∑

s′∈S

P(s′ | s, x∗
s(v))v(s′)

−

(

c(s, x∗
s(u)) + γ

∑

s′∈S

P(s′ | s, x∗
s(u))u(s′)

)

≤ c(s, x∗
s(v)) + γ

∑

s′∈S

P(s′ | s, x∗
s(v))v(s′)

−

(

c(s, x∗
s(v)) + γ

∑

s′∈S

P(s′ | s, x∗
s(v))u(s′)

)

= γ
∑

s′∈S

P(s′ | s, x∗
s(v))(v(s′) − u(s′))

≤ γ
∑

s′∈S

P(s′ | s, x∗
s(v))||v − u||

= γ||v − u||
∑

s′∈S

P(s′ | s, x∗
s(v))

= γ||v − u||.

By using the same reasoning if T v(s) ≤ T u(s), we get that

|T v(s) − T u(s)| ≤ γ||v − u||,

for all states s ∈ S. From the definition of our norm, we conclude that

sup
s∈S

|T v(s) − T u(s)| = ||T v − T u||

≤ γ||u − v||.

�

Now Proposition 2.4 implies that Banach’s fixed point theorem can be applied to the operator
in Bellman’s equation ans implies that

v = T v

has an unique solution v∗. Furthermore, this unique solution is the minimal cost function (or
optimal cost-to-go function)

v∗ = min
π∈Π

vπ.

If v∗ is found, the optimal decision policy π∗ can be generated according to

xπ∗

(s) = argmin
x∈X

(

c(s, x) + γ
∑

s′∈S

P(s′ | s, x)v∗(s′)

)

.

2.4.1 Value Iteration

Banach’s fixed point theorem also tells us that if we start with any initial guess v0 and then utilize
the operator T iteratively, we will eventually converge to the true value of v∗. This method is
often referred to as value iteration.

11

The value iteration algorithm for infinite horizon problems can be viewed as the method that
corresponds to backward dynamic programming for finite horizon problems. The difference is
that we are analyzing a infinite horizon, which implies that we have to have a stopping criteria
for the algorithm. If we terminate the algorithm when

||vn − vn−1|| < ǫ(1 − γ)/2γ, (12)

a bound on the error between the the solution vn and the optimal value v∗ is obtained from
Theorem 2.5

Theorem 2.5 If we apply the value iteration algorithm with stopping parameter ǫ according to
(12), and the algorithm terminates at iteration n with value function vn+1, then

||vn+1 − v∗|| ≤ ǫ/2.

Let πǫ be the greedy policy determined by vn+1, then

||vπǫ

− v∗|| ≤ ǫ.

Proof See [11].

There are many versions of the value iteration method in the litterature but for larg-scale prob-
lems, the algorithm is often computationally intractable. At each step of the algorithm we loop
over all possible states. For many problems, the size of the state space is too large for such a
procedure to be possible.

2.4.2 Policy Iteration

By choosing a policy π, we would find a cost-to-go function vπ by solving

vπ = T πvπ

= cπ + γP πvπ.

If we assume that 0 ≤ γ < 1, this equation system has a unique solution

(I − γP π)−1vπ = cπ,

where I is the identity matrix. What this tells us is that if we choose a policy π, we obtain the
cost of that particular policy by solving the linear system (2.4.2). We then update our policy
by using a greedy method with the obtained values vπ. Repeating this procedure leads to a
convergence towards the optimal policy. The policy iteration algorithm has fast convergence but
clearly it is a computationally hard problem if the state space is large because solving the linear
system (2.4.2) becomes computationally intractable.

2.4.3 Linear Programming for Infinite Horizon Problems

As we have earlier in this section, Bellman’s equations for a infinite horizon problem can be
written on the compact form

v = T v,

where v is the vector of the values for all states. We first provide a theorem which states some
relationships between a vector v and the optimal cost-to-go vector v∗.

12

Theorem 2.6 For a vector v ∈ V,

(a) If v satisfies v ≥ T v, then v ≥ v∗,

(b) If v satisfies v ≤ T v, then v ≤ v∗,

(c) If v satisfies v = T v, then v is the unique solution to v = T v and v = v∗.

Proof See [12]. �

Theorem 2.6 tells us that if
v ≤ T v,

then v is a lower bound on the optimal solution v∗. Consider the problem

maximize βT v, (13)

subject to T v ≥ v.

We refer to the vector β as a vector of state-relevance weights. By using Theorem 2.6, we can
conclude that any feasible v in (13) satisfies v ≤ v∗. So for any β ≥ 0, v∗ is the unique solution
to (13).

Since T is a nonlinear operator, the constructed problem is not linear. But the problem can
be reformulated as a linear program. First we can state (13) equivalently as

maximize βT v, (14)

subject to (T v)(s) ≥ v(s), ∀s ∈ S.

Each constraint in problem (14) is equivalent to the set of constraints

c(s, x) + γ
∑

s′∈S

P(s′ | s, x)v(s′) ≥ v(s), ∀x ∈ Xs.

Now problem (13) can be rewritten as a linear program

maximize βT v (15)

subject to c(s, x) + γ
∑

s′∈S

P(s′ | s, x)v(s′) ≥ v(s), ∀s ∈ S, x ∈ Xs.

This means that the cost-to-go function v can be found by solving the linear program (15) with
any weights β. Even though it is a linear program, since the number of constraints is |S| × |X |,
it still can be very difficult to solve.

13

3 Approximate Dynamic Programming

Because of the problems with dimensionality (see section 2) when using dynamic programming,
the solution method is often computationally intractable. To be able to solve larger problems
with dynamic programming, approximations have to be made. One method is what often is
denoted as approximate dynamic programming.

The basic idea behind approximate dynamic programming is that one approximates the cost
of being in different states and then iteratively updates the approximation. Instead of stepping
backwards in time as with exact dynamic programming, we will step forward by simulating the
process of the system. The problem we face when stepping forward in time is that the cost
of being in different states in the future are unknown. These costs have to be approximated
iteratively.

3.1 Finite Horizon

To find an optimal decision at time t, given that the system is in state st, Bellman’s equation
has to be solved, i.e.

xt = argmax
x∈X

(ct(st, x) + γE[vt+1(st+1) | st]) . (16)

Because the future costs vt+1 are unknown, we begin by approximating them with some initial
guess V 0

t for all t. If no clear approximation for the costs exist, one often uses V 0
t (st) = 0 for all

states. These costs will be updated iteratively. Let V n−1
t be the cost approximation after n − 1

iterations. In iteration n we use the approximated costs V n−1
t instead of the unknown costs vt,

i.e. we will choose decision xn
t by solving

v̂n
t (sn

t) = max
x∈X

(
ct(s

n
t , x) + γE[V n−1

t+1 (st+1) | s
n
t]
)

= max
x∈X

(

ct(s
n
t , x) + γ

∑

s′∈S

P(s′ | sn
t , x)V n−1

t+1 (st+1)

)

.

By solving the equation above, we obtain an approximation of the cost of being in state sn
t .

Instead of letting this estimate be our new approximation, we use a smoothing operation to
update our estimate, i.e.,

V n
t (sn

t) = (1 − αn−1)V
n−1
t (sn

t) + αn−1v̂
n
t (sn

t).

The next step is to move forward in time. We do this by first taking the decision xn
t that solves the

optimization problem in iteration n. Then, we pick a sample realization of exogenous information
at random. The decision taken, xn

t , and the sample realization, wn
t , will decide which state the

system visits in the next time step through the transition function sn
t+1 = φ(sn

t , xn
t , wn

t). In the
next time step, we solve the new optimization problem

v̂n
t+1(s

n
t+1) = max

x∈X

(

ct+1(s
n
t+1,x) + γ

∑

s′∈S

P(s′ | sn
t+1, x)V n−1

t+2 (st+2)

)

and update the value V n
t+1(s

n
t+1) as explained above. An approximate dynamic programming

algorithm can be seen in Algorithm 3.1.

14

Algorithm 3.1: Approximate Dynamic Programming()

set initial approximations V 0
t (st) for all states st

initial state s1
0.

while n ≤ N , do

for t = 0,1, . . . , T

Let

v̂t := min
xt∈Xt

(

ct(s
n
t , xt) + γ

∑

s′∈S

P(s′ | sn
t , xt)V

n−1
t+1 (s′)

)

and let xn
t be the optimal decision.

Let
V n

t (sn
t) := (1 − αn−1)V

n−1
t (sn

t) + αn−1v̂t

Draw a sample wn
t and let

sn
t+1 := φ (sn

t , xn
t , wn

t)
end

Let n = n + 1
end

return xn
0

3.1.1 Using Post-decision State Variables

By using post-decision state variables, the approximate dynamic programming algorithm is sim-
plified. The basic idea is that instead of using the pre-decision state costs vt(st), we will use the
post-decision costs vx

t (sx
t), which to simplify notation we will write as vt(s

x
t). As explained in

section 2.2, Bellman’s equation corresponding to the post-decision state variables can be written
as

vt−1(s
x
t−1) = E

[

min
x∈Xt

(ct(st,x) + γvt(s
x
t)) | sx

t−1

]

.

As mention before, the main differences is that the optimization problem is inside the expectation
and that the optimization problem is deterministic. However, to use approximate dynamic
programming with the post-decision state variables, we still have to approximate the post-decision
costs vt(s

x
t) iteratively. As before, we start with some initial guess V 0

t (sx
t) for all states and times

t = 0, . . . , T .
Assume that we are in iteration n and at time t−1 the post-decision state is sx,n

t−1. By drawing
a sample wn

t−1, we can compute the next pre-decision state by

sn
t = φw

(
sx,n

t−1, w
n
t−1

)
.

Now at time t, we have to solve the optimization problem

v̂n
t = min

x∈Xt

(
ct(s

n
t , x) + γV n−1

t (φx(sn
t , x))

)
,

where V n−1
t are the approximations for the post-decision state costs after n − 1 iterations. The

most important property of this problem is that it is deterministic. We now use v̂n
t to update

our estimate of the cost of being in post-decision state sx,n
t−1 by

V n
t−1(s

x,n
t−1) = (1 − αn−1)V

n−1
t−1 (sx,n

t−1) + αn−1v̂
n
t . (17)

15

The exact value of being in post-decision state sx
t−1 is

vt−1(s
x
t−1) = E

[
vt(st) | s

x
t−1

]
,

but, by using the smoothing operator when doing the update in equation (17), we approximate
the expectation after a large number of iterations. The ADP algorithm for the post-decision
state variables is presented in Algorithm 3.2

Algorithm 3.2: ADP with Post-decision State Variables()

set initial approximations V 0
t (sx

t) for all states sx
t

initial state s1
0.

while n ≤ N , do

for t = 0,1, . . . , T

Let
v̂t := min

xt∈Xt

(
ct(s

n
t , xt) + γV n−1

t (φx(sn
t , x))

)

Let xn
t be the optimal decision.

if t > 0, let
V n

t−1(s
x,n
t) := (1 − αn−1)V

n−1
t−1 (sx,n

t−1) + αn−1v̂t

end

Let
sx,n

t := φx (sn
t , xn

t)

Draw a sample wn
t and let

sn
t+1 := φw (sx,n

t , wn
t)

end

Let n = n + 1
end

return xn
0

3.1.2 Approximating the Value Function

The most common problem in dynamic programming is that the state space is too large to handle.
This problem is not solved by the algorithms above because we still have to find approximations
for the values v(s) for all s ∈ S. To overcome this problem, we create a function V̂t that will
give an approximate value V̂t(st) for all st ∈ S. The difference between this approximation and
Vt used above, is that Vt is a vector containing the approximate values for all different states,
whereas V̂t is a function that will produce a value V̂t(st), given a state st. The computational
advantage of using such an approximation is that when using an ADP algorithm, we do not have
to update the values for all states. We only have to update the parameters of the function V̂t.
The most common way to approximate the value functions is on the form

V̂t(st) =
∑

k∈K

φk(st)θk, (18)

where φk, k ∈ K is a set of basis functions. When doing an iteration in an ADP algorithm, we
update the parameters θ by an updating rule.

16

3.2 Infinite Horizon

As we have described in section 2.4.3, the infinite horizon problem can be formulated as a linear
program

max βT v (19)

s.t. c(s, x) + γ
∑

s′∈S

P(s′ | s, x)v(s′) ≥ v(s), ∀s ∈ S, x ∈ Xs,

where v is a vector of the cost-to-go values v(s) for all states s ∈ S. Because the state space in
many cases is too large to handle, we use the same principles of apprixomations as in section 3.1.
We begin by constructing some basis vectors φ1, . . . ,φK , depending on s, and define the matrix

Φ =

| |

φ1

... φK

| |

 ,

where each row corresponds to the basis functions for a specific state. The objective is to find a
weight vector r̃ ∈ R

K such that Φr̃ is a close approximation to v∗. To find such a weight vector,
we solve

max βT Φr (20)

s.t. T Φr ≥ Φr.

(21) can be reformulated as an LP, to

maximize βT Φr (21)

subject to c(s, x) + γ
∑

s′∈S

P(s′ | s, x)(Φr)(s′) ≥ (Φr)(s), s ∈ S, x ∈ Xs.

After finding an optimal weight vector, we construct a policy πr̃ by letting

πr̃(s) = arg min
x∈Xs

(

c(s, x) + γ
∑

s′∈S

P(s′ | s, x)(Φr̃)(s′)

)

. (22)

By using the function approximation, the number of variables is reduced from |S| to K, but the
number of constraints is still as large as before. Fortunately, for many problems a large proportion
of the constraints are inactive. Numerical studies on different kinds of dynamic programming
models have been performed and some theoretical results can be found in the litterature (see
for instance [5], [6] regarding constraint sampling). Instead of creating constraints for every
state-action pair, one can sample constraints by moving forward in time and adding the new
constraints to the LP.

One difference between this approximate LP and the exact LP is that the state weights β will
effect the quality of the solution. In the exact LP, every feasible solution to the LP produces the
optimal cost-to-go values for any β. In the approximate LP, one can show that the choice of β
actually effects the error bounds ||Φr̃ − v∗||,)see [6]).

17

4 Maintenance Optimization Problem

Consider a system consisting of a set of components N = {1, . . . ,N}. Each component has a
failure distribution according to the distribution function Fi(a) = P(τi ≤ a), where τi is the time
of failure for component i ∈ N . For simplicity, we denote pi(a) = P(τi ≤ a + 1| τi > a). If
there exist deterministic components with life lenghts Ti, we set pi(Ti − 1) = 1 and pi(a) = 0 for
a 6= Ti − 1. We assume some time discretization and denote T = {0, . . . , T}

If a component i ∈ N is broken at any given time step, that component has to be replaced
and a cost of ci has to be paid. Also, for each time we replace any component, an additional
service cost of d has to be paid. Our objective is to find an optimal maintenance policy which
will minimize the total cost for the maintenance period from time 0 to time T , i.e. we are trying
to find decisions that minimizes

(cost today) + (expected future cost)

4.1 Variables

The state variables we will use are denoted by vectors

st = (st1, . . . ,stN) , (23)

where sti represents the age of component i ∈ N at time t ∈ T . If a component is broken, the
age of that component is set to ∞. The decision taken at time t is which components to replace
and is denoted by

xt = (xt1, . . . ,xtN) , (24)

where

xti =

{
1 if component i ∈ N is replaced at time t ∈ T
0 otherwise

For each state st, the set of all allowed decisions is denoted by

Xst
=

{
{0}, if st < ∞,
{(xt1, . . . ,xtn) : xit = 1 for i ∈ B} if sti = ∞ for i ∈ BN

which implies that if no component has failed, maintenance is not performed. If, however, a
subset B ⊆ N of components are broken, those components have to be replaced. However, we
have the option to replace yet non failed components.

After we have taken a decision xt, the system recieves exogenous information about which
components that fail between the current time step t and the next t + 1. This information is
denoted by

wt = (wt1, . . . , wtN) , (25)

where

wti =

{
1, if component i ∈ N fails between time t and t + 1,
0, otherwise.

4.2 Transformation Function

Given a state st, a decision xt, and exogenous information wt, the system will be transformed to
state st+1 according to

(st+1,1, . . . , st+1,N) = (φ1(st1, xt1, wt1), . . . , φN (stN , xtN , wtN)) , (26)

18

where

φi(sti, xti, wti) =

sti + 1, if xti = 0 and wti = 0,
1, if xti = 1 and wti = 0,
∞, otherwise

In the remainder of this thesis we will write the transition relation in short as st+1 =
φ(st, xt, wt).

4.3 Cost Function

The cost of making decision xt at time t is only dependent on the decision xt according to is

c(xt) =

{
0, if xt = 0,

d + cT xt, otherwise,

which says that if we decide to replace a set of components, we have to pay a service cost d plus
the cost of the individual components. If we do not replace anything, the cost is 0.

4.4 Transition Probabilities

The exogenous information wt depends on both st and xt. We assume that wti only depends on
sti and xti, which is to say that the probability distributions of the components are independent
of each other. Assume that component i ∈ N has age sti and we take decision xti, then the
probability that component i will fail between time step t and time step t + 1 is

P (wit = 1) =

{
P(τi ≤ sti + 1 | τi > sti), if xti = 0,

P(τi ≤ 1 | τi > 0), if xti = 1
,

which says that if we do not replace the component, the probability that it will fail before time
step t+1 is pi(sti). If we do replace the component, the probability that it will fail is pi(0). This
can be written in a more compact form as

P(wti = 1) = pi ((1 − xti)sti) . (27)

We procede by analyzing the transition probability between states. Assume that a specific
exogenous information wt arrives such that wti = 1 for i ∈ B ⊆ N . The probability for such
exogenous information, given that the system is in state st and we take decision xt, is

∏

i∈B

pi ((1 − xti)sti)
∏

i′∈N\B

(1 − pi′ ((1 − xti′)sti′)) .

For this exogenous information, the next state the system will occupy is

st+1,i =

{
∞, if i ∈ B,

(1 − xti)sti + 1, otherwise.

Assume that the system is in state st and we take decision xt. Define the set C = {〉 ∈ N | §⊔〉 = ∞}
and assume that a set B ∈ N of components fail between time step t and time step t + 1. We
create the following sets

A1 = (N\C) ∩ B, the set of componets that were not replaced and failed,
A2 = (N\C)\B, the set of componets that were not replaced and did not fail,
A3 = C ∩ B, the set of componets that were replaced and failed,
A4 = C\B, the set of componets that were replaced and did not fail.

19

Using these sets, we can express the next state as

st+1,i =

∞, for i ∈ A1 ∪ A3 = B
1, for i ∈ A4

sti + 1, for i ∈ A2

The transition probability between states st and st+1 given decision xt is the probability of
recieving exogenous information wt with wti = 1 for i ∈ B ⊆ N , given st and xt, which is

P(st+1 | st, xt) =
∏

i∈A1

pi(sti)
∏

j∈A2

(1 − pj(stj))
∏

k∈A3

pk(0)
∏

l∈A4

(1 − pk(0)) .

We will assume that the components in the system have lives distributed according to the
Weibull distribution, that is

pi(s) = P(τi ≤ s + 1 | τi > s) =

s+1∫

s

f(x)dx

∞∫

s

f(x)dx

,

where f is the probability distribution function for the Weibull distribution, given by

f(x; α, β) =

{
β
α

(
x
α

)β−1
exp

(

−
(

x
α

)β
)

, if x ≥ 0,

0, otherwise.

For β ≥ 1, the Weibull distribution has a non-decreasing hazard rate. In the replacement
problem, we will assume that β ≥ 1, which means that pi(s

+) ≥ pi(s
−) for s+ ≥ s− for all

i ∈ N .

4.5 Objective

Our objective is to minimize the total cost of maintenance over a finite time horizon. Because
the system we are performing maintenance on is stochastic, we cannot construct a maintenance
schedule for the future. What we can do is determine what the best possible decision is today
that will minimize the sum of the cost today and the expected future cost. We assume that the
system is in state s0 at time t = 0. Mathematically, we are trying to find the best policy π that
solves

min
π∈Π

E

(
T∑

t=0

γtc(xt) | s0

)

.

When studying a finite time horizon, we will use γ = 1. We showed in section 2.1 that this is
equivalent to solving Bellman’s equations, that is,

vt(st) = min
x∈Sst

(

c(x) +
∑

s′∈S

P(s′ | st, x)v(s′)

)

, ∀s ∈ S, for t = T, T − 1, . . . , 0.

We use vt(s) to denote the minimal expected maintenance cost for the time horizon t, t+1, . . . , T ,
given that the system is in state s at time t. It seems reasonable to expect that vt is an increasing
function because starting out with older components should yield a larger expected maintenance
cost than staring out with new components. The following theorem proves this fact.

20

Theorem 4.1 Let vt be defined as the solution to Bellman’s equation for the replacement prob-
lem, i.e.

vt(st) = min
xt∈Xt

(

c(x) +
∑

s′∈S

P(s′ | st, xt)vt+1(s
′)

)

where c(x) = 0 if x = 0 and c(x) = d+cT x otherwise. Let s+ and s− be states such that s+ ≥ s−.
Then

vt(s
+) ≥ vt(s

−), for t = 0, . . . ,T

Proof The proof is done by induction. We first analyze the case when t = T . Assume a set
of failed components K+ = {i ∈ N | s+

iT = ∞}. Define K− in the same way. Because s+ ≥ s−,
we have that K− ⊆ K+. At the time horizon T , we will only change the components that are
broken, so clearly

∑

i∈K+

= vT (s+) ≥ vT (s−) =
∑

i∈K−

.

Now for 0 ≤ t ≤ T − 1, the induction assumption is that vt+1(s
+) ≥ vt+1(s

−) for states such
that s+ ≥ s−.

We begin by showing that
∑

s′∈S

P(s′ | s+, x)vt+1(s
′) ≥

∑

s′∈S

P(s′ | s−, x)vt+1(s
′). (28)

Assume that s+
i = s−i , ∀i 6= l and s+

l > s−l . If xl = 1, the identity holds with equality, so lets
assume that xl = 0.

For all components except l, we create a reduced system of N − 1 components with state
space Sl. The probability that the reduced system will end up in a state ŝ, where a set J of
components have failed is

P(ŝ | s, x) =
∏

j∈J

P(j fails | sj , xj)
∏

j′∈N\J

(1 − P(j′ fails | sj′ , xj′)) ,

and we denote this probability as P(ŝ). Let p+
l and p−l be the probabilities that component l

fails given that its age is s+
l and s−l respectively. Now the expectation can be written as a sum

over the states of the reduced system, i.e.,
∑

s′∈S

P(s′ | s+, x)vt+1(s
′) =

∑

ŝ∈Sl

P(ŝ)
(
p+

l vt+1(ŝ
+, l) + (1 − p+

l)vt+1(ŝ
+,¬l)

)

where ŝ+, l is the state where component l has failed and the remaining components are in state
ŝ. ŝ+,¬l is the state where component l has not failed and the remaining components are in state
ŝ. For the state s−, the expectation is

∑

s′∈S

P(s′ | s−, x)vt+1(s
′) =

∑

ŝ∈Sl

P(ŝ)
(
p−l vt+1(ŝ

−, l) + (1 − p−l)vt+1(ŝ
−,¬l)

)

We note that ŝ+, l = ŝ−, l because if component l fails, the system will be in the same state
wheter it started out in s+ or s−. Note also that ŝ+,¬l ≥ ŝ−,¬l because if component l does not
fail, the age of the component will be larger if the system started out in s+ instead of s−. Now
we want to show that

∆ =
∑

s′∈S

P(s′ | s+, x)vt+1(s
′) −

∑

s′∈S

P(s′ | s−, x)vt+1(s
′) ≥ 0

21

In order to simplify notation, we denote

vt+1(ŝ
+, l) = vt+1(ŝ

−, l) = u,

vt+1(ŝ
+,¬l) = u+,

vt+1(ŝ
−,¬l) = u−.

By using the sum over the reduced states, we get

∆ =
∑

ŝ∈Sl

P(ŝ)
(
p+

l u + (1 − p+
l)u+

)

−
∑

ŝ∈Sl

P(ŝ)
(
p−l u + (1 − p−l)u−

)

=
∑

ŝ∈Sl

P(ŝ)
(
(p+

l − p−l)u + (1 − p+
l)u+ − (1 − p−l)u−

)

Because of a nondecreasing hazard rate and u ≥ u+ ≥ u− from the induction assumption, we
have p+

l ≥ p−l . Let p+
l = p−l + ε, where ε ≥ 0.

∆ =
∑

ŝ∈Sl

P(ŝ)
(
(p+

l − p−l)u + (1 − p+
l)u+ − (1 − p−l)u−

)

=
∑

ŝ∈Sl

P(ŝ)
(
εu + (1 − p−l − ε)u+ − (1 − p−l)u−

)

=
∑

ŝ∈Sl

P(ŝ)(ε (u − u+)
︸ ︷︷ ︸

≥0

+(1 − p−l) (u+ − u−)
︸ ︷︷ ︸

≥0

)

≥ 0,

which proves that (28) holds. By using inequality (28), we get

vt(s
+) = min

x∈Xt

(

c(x) +
∑

s′∈S

P(s′ | s+, x)vt+1(s
′)

)

= c(x+) +
∑

s′∈S

P(s′ | s+, x+)vt+1(s
′)

≥ c(x+) +
∑

s′∈S

P(s′ | s−, x+)vt+1(s
′)

≥ min
x∈Xt

(

c(x) +
∑

s′∈S

P(s′ | s−, x)vt+1(s
′)

)

= vt(s
−)

which proves that vt(s
+) ≥ vt(s

−). For states where s+
i > s−i for more than one component,

we create a serie of inequalities s+ ≥ s1 ≥ s2 · · · ≥ s−, where each state only differs on one
component.

By the induction principle, this proves that vt(s) is nondecreasing in s for t = 1, . . . ,T . �

22

4.6 Pre- and Post-decision State Variables

As we explained section 2.2, some transition functions can be divided into two functions. One
function that captures the impact of a decision, and one function that captures the impact of
the exogenous information, i.e.,

sx
t = φx(st, xt),

st+1 = φw(sx
t , wt).

Here st is the state the system is in just before we make a decision, and sx
t is the state just after

we have made decision xt. The state variable st is referred to as the pre-decision state variable
and the state variable sx

t is referred to as the post-decision state variable.
We assume that the transition for a component i ∈ N only depends on sti and xti. The

transition function for each component is

φx
i (sti, xti) =

{
0, if xti = 1,

sti, otherwise,

which means that if we replace a component, we set that components age to 0. The exogenous
information transition function for each component is

φw
i (sx

ti, wti) =

{
∞, if wti = 1,

sx
ti + 1, otherwise.

When using post-decision variables, the Bellman equations that we need to solve is

vx
t (sx

t) = E

(

min
x∈Xst

(
c(x) + vx

t+1(s
x
t)
)
| sx

t

)

∀sx
t ∈ Sx, for t = T, T − 1, . . . , 0

where vx
t (sx

t) is the minimal expected maintenance cost for the time period t, t + 1, . . . , T , given
that the system is in post-decision state sx

t at time t.

23

4.7 Numerical Example

We consider at a system with two components. The cost of a maintenance occasion is d and
the replacement costs of the components are c1 and c2. As explained in the model, we denote
pi(s) = P(τi ≤ s+1|τi > s) as the probability that component i fails in the next time step, given
that the component has age s. For our numerical example, we have that

p1(0) = 0, p1(1) = 0.5, p1(2) = 1,

p2(0) = 0, p2(1) = 0, p2(2) = 1,

which means that component 2 is a deterministic component that will fail at the next time step if
the age of the component is equal to 2. Component 1 is a stochastic component with probability
0.5 to fail if the age is 1 and probability 1 if the age is 2. The state space S is then

S =

{(
1
1

)

︸︷︷︸

s1

,

(
1
2

)

︸︷︷︸

s2

,

(
1
∞

)

︸ ︷︷ ︸

s3

,

(
2
1

)

︸︷︷︸

s4

,

(
2
2

)

︸︷︷︸

s5

,

(
2
∞

)

︸ ︷︷ ︸

s6

,

(
∞
1

)

︸ ︷︷ ︸

s7

,

(
∞
2

)

︸ ︷︷ ︸

s8

,

(
∞
∞

)

︸ ︷︷ ︸

s9

}

.

Because we have a system with two components, the decision space X is

X =

{(
0
0

)

︸︷︷︸

x1

,

(
0
1

)

︸︷︷︸

x2

,

(
1
0

)

︸︷︷︸

x3

,

(
1
1

)

︸︷︷︸

x4

}

.

For each state s, a decision space Xs ⊆ X can be found. For a state where no component has
failed, we will not perform any maintenance and the only decision available is to choose decision
x1. In the table below, the decision spaces for all states are presented.

s1 s2 s3 s4 s5 s6 s7 s8 s9

Xs x1 x1 x2, x4 x1 x1 x2, x4 x3, x4 x3, x4 x4

For this numerical example, we let the time horizon be T = 2. For simplicity, we assume that the
only maintenance we will do at the time horizon is the necessary maintenance, i.e. we replace
the broken components and nothing else. This is equivalent to setting v3(s) = 0, for all s ∈ S.

Our problem is to obtain an optimal decision, given the current system state. Assume that
the initial state is s0 = s3 = (1,∞)T , which means that component 2 has failed and component
1 has age 1. The optimization task is to determine if we should replace only component 2 or if
we should replace both components. Mathematically, this is

x∗ = arg min
x0∈X

s3

E

(
3∑

t=0

c(xt) | s0 = s3

)

,

where c(x) = 0 if x = 0 and c(x) = d + cT x otherwise.

4.7.1 Backward Dynamic Programming

As we have showed earlier, this problem can be solved by solving the Bellman equations, which
are

vt(s) = min
x∈Xs

(

c(x) +
∑

s′∈S

P(s′ | s, x)vt+1(s
′)

)

, ∀s ∈ S and t = 2, 1, 0

We do not need to solve Bellman’s equations for all states, only for the states that the system
might reach. In Figure 4, a state tree for time steps t = 0, 1, 2 is shown.

We begin by finding v2(s) for states

24

Figure 4: State tree.

s1 =

(
1
1

)

, s2 =

(
1
2

)

, s5 =

(
2
2

)

, s8 =

(
∞
2

)

The only contribution to v2(s) will be the necessary maintenance done at time t = 2, i.e.,

v2(s
1) = 0,

v2(s
2) = 0,

v2(s
5) = 0,

v2(s
8) = d + c1.

Now we move to time t = 1 and solve v1(s) for states

s1 =

(
1
1

)

, s4 =

(
2
1

)

, s7 =

(
∞
1

)

.

v1(s
1) = 0 + 0.5v2(s

8) + 0.5v2(s
5)

= 0.5(d + c1),

v1(s
4) = 0 + v2(s

5)

= d + c1,

v1(s
7) = min

x3,x4

(

c(s, x) +
∑

s′∈S

P(s′ | s7, x)v2(s
′)

)

= d + c1 + v2(s
2)

= d + c1

25

Now we are down to time t = 0 and can find our optimal decision by

v0(s
3) = min

x2,x4

(

c(s, x) +
∑

s′∈S

P(s′ | s3, x)v1(s
′)

)

The optimal decision depends on the costs d, c1, c2, so we look at both of our decisions.

v0(s
3, x2) = d + c2 + 0.5v1(s

7) + 0.5v1(s
4)

= 2d + c1 + c2

v0(s
3, x4) = d + c1 + c2 + v1(s

1)

= 1.5d + 1.5c1 + c2

We see that if d > c1, we would choose decision x4 and replace both components. If d < c1, we
would only replace component 2. If d = c1, both decisions yield the same expected maintenance
cost.

4.7.2 Using Post-decision States

If we instead use post-decision state variables, we have to construct a state space for the post-
decision variables. This state space is

Sx =

{(
0
0

)

︸︷︷︸

sx,1

,

(
0
1

)

︸︷︷︸

sx,2

,

(
0
2

)

︸︷︷︸

sx,3

,

(
1
0

)

︸︷︷︸

sx,4

,

(
1
1

)

︸︷︷︸

sx,5

,

(
1
2

)

︸︷︷︸

sx,6

,

(
2
0

)

︸︷︷︸

sx,7

,

(
2
1

)

︸︷︷︸

sx,8

,

(
2
2

)

︸︷︷︸

sx,9

}

and a state tree for our problem is illustrated in Figure 5.

Figure 5: State tree using post-decision states.

26

The backward dynamic program for post-decision states is essentially the same as for pre-
decision states, but a major difference is that when solving the optimization problem at each
pre-decision state, the problem is deterministic. As explained earlier, at each pre-decision state
we have to solve

vt(s) = min
x∈Xs

(c(s, x) + vx
t (sx))

which is a deterministic problem. The stochastic part of the model is captured in the value
function vx

t . When we solve small problems exactly, using post-decision state variables does
not simplify the calculations, but when we later use approximative methods, the computational
difference is substantial.

At time t = 2, we have the same values for v2(s) as those we used in section 4.7.1, i.e.
v2(s

1) = v2(s
2) = v2(s

5) = 0 and v2(s
8) = d + c1. Now we can evaluate vx

t (sx) according to

vx
t (sx) = E(vt+1(st+1)),

which gives us

vx
1 (sx,1) = 0,

vx
1 (sx,2) = 0,

vx
1 (sx,5) = 0.5(d + c1),

vx
1 (sx,8) = d + c1.

We proceed to the pre-decision state at time t = 1 and evaluate v1 after which we evaluate vx
0 .

v1(s
1) = 0 + vx

1 (sx,5) vx
0 (sx,1) = 0.5v1(s

7) + 0.5v1(s
4)

= 0.5(d + c1), = d + c1,

v1(s
4) = 0 + vx

1 (sx,8) vx
0 (sx,2) = v1(s

1)

= d + c1, = 0.5(d + c1),

v1(s
7) = d + c1 + vx

1 (sx,2)

= d + c1.

Now we are down to time t = 0, and the problem can be formulated as

v0(s
3) = min

x2,x4
(c(s,c) + vx

0 (sx(x))) ,

which gives us the same answer as in section 4.7.1. If d ≥ c1 we replace both components and if
d ≤ c1 we only replace component 2.

4.7.3 Infinite Horizon, Linear Programming

When solving an infinite horizon problem, we obtain a stationary solution. A stationary solution
gives us optimal decisions for each state and is not dependent on time. As we have proven in
section 2.4, the stationary problem can be reformulated as a LP. We obtain the costs v(s) for
each s ∈ S by solving

max βT v,

s.t. c(x) + γ
∑

s′∈S

P(s′ | s, x)v(s′) ≥ v(s), ∀s ∈ S, x ∈ Xs,

which is a linear program with a constraint for each state-decision pair. The problem defined in
section 4.7 has 9 different states and 13 different state-decision pairs. The constraints are

27

v1 −0.5γv5 −0.5γv8 ≤ 0,
v2 −0.5γv6 −0.5γv9 ≤ 0,

v3 −0.5γv4 −0.5γv7 ≤ d + c2,
−γv1 v3 ≤ d + c1 + c2,

v4 −γv8 ≤ 0,
v5 −γv9 ≤ 0,

v6 −γv7 ≤ d + c2,
−γv1 v6 ≤ d + c1 + c2,

−γv2 v7 ≤ d + c1,
−γv1 v7 ≤ d + c1 + c2,

−γv3 v8 ≤ d + c1,
−γv1 v8 ≤ d + c1 + c2,
−γv1 v9 ≤ d + c1 + c2.

By solving the above linear program with γ = 0.99, and d = 10, c1 = 20, and c2 = 10, the
following result is obtained.

v(s1) = 1588.8, v(s4) = 1596.7, v(s7) =1610.8,

v(s2) = 1596.7, v(s5) = 1596.7, v(s8) =1612.9,

v(s3) = 1607.7, v(s6) = 1612.9, v(s9) =1612.9.

When solving 29 with the given constraints, we do not just obtain the values v. Consider the
constraints corresponding to one specific s ∈ S. Each decision x ∈ Xs yields one constraint,
however, only the constraint corresponding to the optimal decision is active. Considering a non-
optimal decision will yield a constraint with slack. So by analyzing the dual variables of the LP,
one can find the optimal policy by choosing the non-zero dual variables. By doing this, we see
that the optimal decision for our initial state s3 = (1,∞)T is to replace only component 2.

If we, however, change the costs to d = 30, c1 = 20 and c2 = 10, which means that the service
cost is more expensive relative to the component costs, we obtain a solution in which it will be
optimal to replace both components.

28

5 Algorithms

As we have in sections 2 and 3, a number of different methods can be used to solve our problem.
To measure the performance of the different algorithms we use, we will analyze how they perform
against previously developed policies. The policies we will use in the comparison are a non-
opportunistic policy, a policy that uses age limits to decide which components to replace, and
a policy which solves a deterministic replacement problem where the deterministic lives of the
components are taken to be the expected value of their real life length.

Definition 4 (non-opportunistic maintenance policy) Replace failed components only.

Definition 5 (age policy) Given age limits ŝi for all components i ∈ N , a component i ∈ N is
replaced if its age si ≥ ŝi.

When utilizing the age policy, age limits ŝi for all i ∈ N have to be chosen. The heuristic
algorithm for setting the age limits are explained in [1].

Definition 6 (deterministic policy) Solve the opportunistic replacement problem with Ti being
the expected value of the life of component i ∈ N . Replace components according to the optimal
solution at time 0.

The deterministic policy solves a simplified deterministic problem that assumes that the com-
ponents have deterministic lives equal to the expected lives of the stochastic components. By
solving the deterministic replacement problem, a maintenance schedule is obtained but the only
output of the policy is the decision one should take at this timestep, which corresponds to the
decision at time 0.

5.1 Dynamic Programming

Given an initial state s0, we construct a tree which denotes which states that are possible to
reach in each time step. When the state-tree is constructed, we utlize dynamic programming
to find the value vt(st) for all states st in the tree for all t = T, . . . ,1. When these values are
calculated, an optimal policy is deduced. This algorithm is presented more thoroughly in section
2.3.

Definition 7 (dynamic policy) Given a state s, backward dynamic programming (see Algorithm
2.1) is used to decide which components that should be replaced

Even for small instances, the state tree becomes extremely large and the algorithm becomes
computationally intractable.

When assuming an infinite horizon, we evaluate the value function v(s) for all states s ∈ S.
To evaluate the value function, several methods are possible but we found that using the linear
programming approach described in section 2.4.3 was most efficient.

Definition 8 (infinite horizon policy) Evaluate the value function by using the method in section
2.4.3 for all states and use the values to decide which components to replace.

Of course assuming an infinite time horizon is a simplifcation of the original problem, and the
result is a stationary policy which does not take into account the time left to the time horizon.

29

5.2 Approximate Dynamic Programming

Because of the curses of dimensionality (see section 2), exact dynamic programming can not be
used for larger problem. We have to make some approximations in our algorithm and one way to
do so is to utilize approximate dynamic programming (see section 3). The core of approximate
dynamic programming is approximating the cost function vt by some function V̂t. This function
can in principle take on any form but in order to update the approximation iteratively, we choose
a function on the form

V̂t(s) =
∑

k∈K

φk(s)θk,

where φk are some basis functions that are choosen by analyzing the properties of our problem.
By using a set of basis functions, the problem is reduced from evaluating the cost function v(s)
for all states s ∈ S to estimating a set K of parameters.

Linear Value Function

A first set of basis functions are φk = sk for k = 1, . . . , N and φN+1 = T − t. This is an
approximation of the cost function by a linear combination of the ages of the component and
a term which takes into account the time left to the time horizon. The cost function vt is
non-decreasing in s, and our value approximation has the same property as long as θk ≥ 0 for
k = 1, . . . , N . This approximation gives us N +1 parameters to estimate. We construct a policy
that utilizes this approximation.

Definition 9 (ADP linear policy) Utilize Algorithm 3.1 with the linear function approximation.

Quadratic Value function

To extend the linear cost function approximation, we add a new set of basis functions that
includes all possible multiples of ages sisj for all i, j ∈ N and a quadratic term (T − t)2. This

adds N +
(
N
2

)
+ 1 new basis functions, and gives us a cost function approximation on the form

v̂t(s) =
∑

i∈N

θisi +
∑

i,j∈N

θijsisj + θt1(T − t) + θt2(T − t)2, (29)

with totally N(N+3)
2 + 2 parameters to estimate. Also in this case, if the parameters θ are

non-negative, the cost function approximation is non-decreasing in s.

Definition 10 (ADP quadratic policy) Utilize Algorithm 3.1 with the quadratic function approx-
imation.

Approximate Version, Infinite Horizon

To simplify even further, we can use the same value function approximation as above and assume
an infinite time horizon. By solving the LP described in section 3.2, we can find a vector r̃ such
that Φr̃ is a close approximation to v.

Definition 11 (ADP infinite policy) Estimate the parameters r̃ in the approximate LP. By using
the approximation, find which components to replace.

30

6 Results

To evaluate the performance of the different policies defined in section 5, we analyze their per-
formance on different test problems. The evaluation is based on four different aspects;

• Expected maintenance cost : To minimize the expected maintenance cost is the main objec-
tive, so the evaluation focuses mainly on how the different policies perform in minimizing
costs compared to eachother.

• Standard deviation: Because we are analyzing stochastic systems, we have to include an
analysis regarding the standard deviation of the maintenance costs. A policy which has
a smaller expected maintenance cost will not always be preferred if the policy has a large
standard deviation.

• Coputation time: The computation time the policies need for producing a decision is a very
important property. For example, the backward dynamic programming policy might give
the best possible decision, but the policy becomes computationally intractable for larger
problems.

• Problem property: Depending on which properties the problem instance has, different al-
gorithms may be preferred. For example, we might expect the deterministic algorithm
to perform very well in problems where the components have lives with a small standard
deviation.

The evaluation is performed on four different problem instances: two test problems (T1 and
T2) and the wind turbine problem (WT).

6.1 Test Problems

To examine the performance of the policies in section 5 more thouroghly, we have created two
test problems (T1 and T2) that have different properties. The replacement costs and Weibull
parameters for the two problems are presented in Table 1.

Table 1: The data for the test problems T1 and T2, where ci is the replacement cost, and αi and
βi are the Weibull parameters for component i ∈ N . For T2, two of the components have
deterministic lives represented by Ti.

(a) T1, T = 30

no. 1 2 3
ci 2 4 6
αi 5 7 9
βi 6 6 6

(b) T2, T = 30

no. 1 2 3 4 5
ci 2 4 6 5 8
αi 5 7 9 - -
βi 6 6 6 - -
Ti - - - 6 8

The problem we will focus mainly on is T1 because the size of the problem allows us to utilize
and compare the performance of all different policies. In Figure 6, the total mean maintenance
cost for T1 are presented for different maintenance occasion costs d. The results are weighted
against the maintenance cost for the non-opportunistic maintenance policy and clearly, when
the maintenance occasion cost increases, the reduction in maintenance cost for the opportunistic
policies increases. For problem T1, the exact dynamic programming algorithm gives superior
results for all different maintenance costs. When the maintenance cost d is more than three

31

0 2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

d

M
ea

n
of

 to
ta

l m
ai

nt
en

an
ce

 c
os

t

Non−opportunistic policy
Age policy
Deterministic policy
Dynamic policy
Infinite horizon policy
ADP quadratic policy

Figure 6: Mean maintenance cost for problem T1 for six different algorithms where the maintenance
occasion costs d is varied.

times the cost for the most expensive component, the dynamic programming policy reduces the
maintenance cost with almost 40%. The infinite horizon policy, which obtains a stationary policy,
gives higher maintenance costs than the non-opportunistic policy when the maintenance occasion
costs are small compared to the component costs.

In Figure 7, the mean total maintenance costs for the different policies are presented for
the problem T1 where the Weilbull β-parameter is varied. We note that the exact dynamic
programming algorithm still produces a maintenance policy with minimial maintenance cost
for all different scenarios. Note that when β = 1 for all components, the optimal policy will
actually be a non-opportunistic policy. The reason for this is that the hazard rate (failure rate)
for the components are constant, which means that the age of the components does not affect
the maintenance decision. The optimal decision will always be to only replace the necessary
components. When β increases, the components lives becomes less stochastic and when β = 8
for all components, the deterministic maintenance policy produces the same results as the exact
dynamic programming policy. The computation time for the algorithms for T1 can be seen in
Table 2.

Table 2: The computation time in seconds for the policies to compute a decision.

Age Deterministic Dynamic Infinite ADP
T = 30 < 1 < 1 ≈ 300 ≈ 45 ≈ 60
T = 10 < 1 < 1 ≈ 20 ≈ 45 ≈ 10

In Figure 8, the total mean maintenance costs for T2 are presented for different maintenance
occasion costs d. When adding two new components, the size of the problem becomes too large
for exact dynamic programming to be utilizable, so the evaluation is performed on only four
different maintenance policies; the non-opportunistic policy, the deterministic policy, the age
policy and the ADP policy. We note that the ADP policy produces lower maintenance costs
than the non-opportunistic policy. However, both the deterministic policy and the age policy
gives superior results compared with the ADP policy.

32

0 1 2 3 4 5 6 7 8
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

β

M
ea

n
of

 to
ta

l m
ai

nt
en

an
ce

 c
os

t

Non−opportunistic policy
Age policy
Deterministic policy
Dynamic policy
Infinite horizon policy
ADP quadratic policy

Figure 7: Mean maintenance cost for problem T1 for six different algorithms where the maintenance
occasion costs β is varied.

0 2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

d

M
ea

n
of

 to
ta

l m
ai

nt
en

an
ce

 c
os

t

Non−opportunistic policy
Age policy
Deterministic policy
ADP quadratic policy

Figure 8: Mean maintenance cost for problem T2 evaluated for different maintenance occasion costs d.

33

6.2 Wind Turbine Problem (WT)

The wind turbine problem is based on a study made by Poore and Walford [11], and concerns a
land based wind turbine unit. The maintenance considered requires a construction crane to be
used, which makes the maintenance occasion cost d = $30000, a relatively high cost compared
to the component costs. 14 components are considered, and their lives are all modelled by the
Weibull distribution. In Table 3, the components replacement cost and Weibull parameters are
presented. As can be seen in the table, many of the components have shape-parameter β = 1,
which means that they have a constant failure rate. The reason for this is that the failures of
these components depend on external factors and not on the component age. If we have a system
with only components with these property, the optimal policy would be to only replace the failed
components at each maintenance occasion (i.e. non-opportunistic maintenance). However, there
exists components with non-decreasing failure rates in the system, so the problem instance is
interesting from our point of view. Because some of the components have a constant failure rate,
we will only replace those components when they fail. This means that we can reduce the decision
space at each maintenance occasion to a problem where we need to make a decision regarding
only four components. In figure 9, the mean maintenance costs for the WT is presented.

Table 3: The problem parameters for the wind turbine (WT), where ci is the replacement cost and αi

and βi are the Weibull parameters for component i

no. 1-3 4 5-7 8 9 10 11 12 13-14
ci 101 48 43 91 122 85 137 96 36
αi 400 20 400 400 400 20 20 400 17
βi 1.0 1.0 1.0 1.0 1.0 3.5 3.5 1.0 3.5

0 20 40 60 80 100 120
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

d

M
ea

n
of

 to
ta

l m
ai

nt
en

an
ce

 c
os

t

Non−opportunistic policy
Age policy
Deterministic policy
ADP quadratic policy

Figure 9: Mean maintenance cost for the Wind Turbine problem evaluated for different maintenance
occasion costs d.

34

7 Conclusions and Future Research

The policy based on an exact dynamic programming algorithm gives superior results regarding
maintenance cost compared to other maintenance policies. The drawback with this algorithm is
the computation time. Even for medium size problems, an exact dynamic programming algorithm
will be computationally intractable. One method for decreasing the computational time for
a backward dynamic programming algorithm is to construct a ”state tree” which includes all
possible states the system might visit in the future. By constructing state trees, the compuation
time was reduced with up to 40%. Even with such an implementation, the algorithm can not
manage to compute a decision within 5 minutes for problem instances with 5 or more components
and time horizons over 20 time steps.

To overcome the computational difficulties, approximate dynamic programming (ADP) has
been analyzed. The main challenge when utilizaing ADP is to find good approximations to the
value function. We have used two different approximations in this thesis; a linear function and a
quadratic function. The results of the linear function were not satisfactory and did not produce
any opportunistic maintenance decisions. The quadratic form gave better results, but still not
comparable to the deterministic policy. Other approximations might give better maintenance
policies, and I believe that a function on the form

V̂ (s) =

K∑

k=1

θk1s
θk2

k

will give better approximations for the value function. The reason for not evaluating such an
approximation is that to update the parameters θ1k and θ2k, updating techniques based on
solving linear systems can not be utilized. For such value approximations, other techniques such
as neural network methods have to be utilized. Not only the form of the approximating function
is important in ADP. How to update the function is not always obvious. Most common updating
techniques is to use a smoothing operator which updates the cost function values according to

V̂ n = (1 − αn−1)V̂
n−1 + αn−1v̂

n,

where v̂n is the cost observation at iteration n and αn is some suitable step length. Such an
updating rule is easy to implement and often gives satisfactory results. One problem is that the
realization of v̂n depends on the values V̂ n−1, which means that v̂n is a biased observation. To
remove such biases, one can use an updating rule which puts more weight on later observations.

Another way of reducing the problem is to assume an infinite horizon. Even though this is a
large simplification, the method should be able to produce near optimal maintenance policies for
problems where the planning period is long relative to the components lives. But, on the other
hand, for shorter planning periods, the method will probably do more maintenance than what
is optimal. Therefore, a combination between an infinite and a finite time horizon method, in
which the infinite method is applied when the time to the horizon is long and the finite horizon
method is utilized when the time left is short, could prove efficient.

One aspect that we have not analyzed in this thesis is the possibility to do better implemen-
tations of the algorithms. All algorithms used have been implemented in MATLAB and almost
no effort has been concentrated on reducing computational times. For example, the backward
dynamic programming model can with our implementation only handle very small problems with
planning periods up to 50-100 time steps and systems with 3-5 components. With a better im-
plementation, the algorithm might be able to handle larger problem instances (5-10 components).
It should be pointed out that the focus of the thesis was not to find applicable mathods for real
life problems, but rather to investigate the possibility of utilizing a dynamic programming model
for the SORP.

35

References

[1] T. Almgren, N. Andréasson, M. Patriksson, A-B. Stromberg, A. Woj-

ciechowski, The replacement problem: A Poluhedral and complexity analysis. The
complete version, Preprint - Department of Mathematical Sciences, Chalmers Univer-
sity og Technology and Gothenburg University, Gothenburg, 2009

[2] N. Andréasson, A. Evgrafov, and M. Patriksson, An Introduction to Contin-
uous Optimization, Studentlitteratur, Lund, 2005.

[3] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ,
1957.

[4] B. Dickman, S. Epstein, Y. Wilamowsky, A mixed integer linear programming
formulation for multi-component deterministic opportunistic replacement, The Journal
of the Operational Research Society of India, 28 (1991), pp. 165-175.

[5] D. P. de Farias, A. van Roy, The Linear Programming Approach to Approximate
Dynamic Programming, Operations Research, Vol. 5, No. 6, 2003

[6] D. P. de Farias, A. van Roy, On Constraint Sampling in the Linear Program-
ming Approach to Approximate Dynamic Programming, Mathematics of Operations
Research, Vol. 29, No. 3, 2004

[7] S. E. Dreyfus, A. M. Law, The Art and Theory of Dynamic Programming, Aca-
demic Press, Inc., New York, NY, 1977.

[8] D. W. Jorgenson, R. Radner, Optimal Replacement and inspection of stochatically
failing equipment, Paper P-2074, Rand Corporation, Santa Monica, CA, USA, 1960.

[9] A. W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applica-
tions, Academic Press, Inc., New York, NY, 1979.

[10] M. Patriksson, A-B. Stromberg, A. Wojciechowski, The stochastic oppor-
tunistic replacement problem: A two stage solution approach, Chalmers University of
Technology and Gothenburg University, Gothenburg, 2010.

[11] W. B. Powell, Development of an operations and maintenance cost model to identify
cost of energy savings for low wind speed turbines, Subcontract Reposrt NREL/SR-
500-40581, National Renewable Energy Laboratory, Golden, CO, USA, 2008.

[12] W. B. Powell, Approximate Dynamic Programming, John Wiley & Sons, Inc., Hobo-
ken, NJ, 2007.

[13] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic rogram-
ming, John Wiley & Sons, Inc., Hoboken, NJ, 1994.

36

A Theorems

A.1 Optimality Equations

The connections between the objective and the optimality equations in dynamic programming is
essential. Even though they might seem intuitively obvious, it is very important to prove them
thouroghly. We begin by creating a function

Fπ
t (st) = E

(
T−1∑

t′=t

ct′(st′ , x
π
t′(st′)) + cT (sT) | st

)

.

If we take t = 0 we have the expected total cost over the whole period for a specific policy π. The
main purpose of this section is to prove the relation between F π

t and the optimality equations

vπ
t (st) = ct(st, x

π
t (st)) + E

(
vπ

t+1(st+1) | st

)
.

We begin by proving the following theorem

Theorem A.1 Fπ
t (st) = vπ

t (st)

Proof We will prove the theorem by induction. First we note that F π
T (sT) = vπ

T (sT) = cT (sT)
for all sT ∈ S. Next we assume that the theorem holds for t + 1, t + 2, . . . , T . We have that

vπ
t (st) = ct(st, x

π
t (st)) + E (vt+1(st+1) | st)

= ct(st, x
π
t (st)) + E (Ft+1(st+1) | st)

= ct(st, x
π
t (st)) + E

(

E

[
T−1∑

t′=t+1

ct′(st′ , x
π
t′(st′)) + cT (sT) | st+1

]

| st

)

(by using the tower property)

= ct(st, x
π
t (st)) + E

[
T−1∑

t′=t+1

ct′(st′ , x
π
t′(st′)) + cT (sT) | st

]

(the expectation is conditioned on st, so ct(st, x
π
t (st)) is deterministic)

= E

[
T−1∑

t′=t

ct′(st′ , x
π
t′(st′)) + cT (sT) | st

]

= Fπ
t (st)

�

Next we define
F ∗

t (st) = min
π∈Π

Fπ
t (st)

We have assumed earlier that if we solve Bellman’s equations

vt(st) = min
x∈X

(

ct(st, x) +
∑

s′∈S

p(s′ | st, x)vt+1(s
′)

)

we will find the polixy that optimizes Fπ
t . Here is the proof why such an assumption is valid.

37

Theorem A.2

F ∗
t (st) = vt(st). (30)

Proof We will prove the theorem in two steps. First we will show that vt(st) ≤ F ∗
t (st) for

all st ∈ S and t = 0,1, . . . ,T − 1. Clearly, vT (sT) = F ∗
T (sT) for all sT , so we assume that

vt′(st′) ≤ F ∗
t′(st′) for t′ = t + 1, t + 2, . . . , T , and let π be any policy. We have that

vt(st) = min
x∈X

(

ct(st, x) +
∑

s′∈S

p(s′ | st, x)vt+1(s
′)

)

≤ min
x∈X

(

ct(st, x) +
∑

s′∈S

p(s′ | st, x)F ∗
t+1(s

′)

)

≤ min
x∈X

(

ct(st, x) +
∑

s′∈S

p(s′ | st, x)Fπ
t+1(s

′)

)

, for arbitrary π

≤ ct(st, x
π
t (st)) +

∑

s′∈S

p(s′ | st, x
π
t (st))F

π
t+1(s

′)

= Fπ
t (st), by Theorem A.1.

So we have that vt(st) ≤ Fπ
t (st) for any policy π ∈ Π, which proves that vt(st) ≤ F ∗

t (st).
Now we will prove that for any ǫ > 0 there exists a policy π that satisfies

Fπ
t (st) + (T − t)ǫ ≤ vt(st).

We note that it is possible to find a decision x such that the following holds

vt(st) ≥ ct(st, x) +
∑

s′∈S

p(s′ | st, x))vt+1(s
′) + ǫ. (31)

We assume that for any ǫ > 0, there exists a policy π such that vt′(st′) ≤ Fπ
t′ (st′) + (T − t′)ǫ for

all states st and for t′ = t + 1, t + 1, . . . , T . By using Theorem A.1 and the induction hypothesis
we get

Fπ
t (st) = ct(st, x

π
t (st)) +

∑

s′∈S

p(s′ | st, x
π
t (st))F

π
t+1(s

′)

≤ ct(st, x
π
t (st)) +

∑

s′∈S

p(s′ | st, x
π
t (st)) [vt+1(s

′) − (T − (t + 1))ǫ]

= ct(st, x
π
t (st)) +

∑

s′∈S

p(s′ | st, x
π
t (st))vt+1(s

′)

−
∑

s′∈S

p(s′ | st, x
π
t (st)) [(T − (t + 1))ǫ)]

=

[

ct(st, x
π
t (st)) +

∑

s′∈S

p(s′ | st, x
π
t (st))vt+1(s

′) + ǫ

]

︸ ︷︷ ︸

≤vt(st) by equation 31

−(T − t)ǫ

≤ vt(st) − (T − t)ǫ.

So we get
F ∗

t (st) + (T − t)ǫ ≤ F π
t (st) + (T − t)ǫ ≤ vt(st) ≤ F ∗

t (st),

which proves the theorem. �

38

