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Abstract 

The effects of dynamic strain ageing (DSA) and dynamic precipitation (DP) on the stress strain response during low-cycle 

fatigue of naturally aged (NA) and peak-aged (PA) AA7030 alloy at different temperatures was investigated. The results show 

that the PA temper is largely unaffected by DSA/DP, and the cyclic deformation behavior is controlled by the accumulation of 

dislocations and strain localization due to repeated shearing of precipitates. In the NA temper, on the other hand, the effect of 

temperature on DSA and DP is the main mechanism controlling the stress strain response. At temperature above room 

temperature, DP in the intense slip bands inhibits cyclic softening and the samples harden until the on-set of crack growth. At

lower temperatures, the rate of DP is too slow to compensate for the softening in the slip bands and the stress amplitude saturates 

or decreases. The stress amplitude development is shown to primarily be a result of the evolution of the effective stress associated 

with dislocation precipitate interactions. 
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1. Introduction 

The effects of dynamic strain ageing (DSA), where mobile solute atoms repeatedly lock moving dislocations, 

thereby causing increased flow stresses, reduced ductility, negative strain rate sensitivity, positive temperature 

sensitivity etc., are well known under monotonic deformation of aluminium alloys. The alloy AA7030 has been 

shown earlier to exhibit strong DSA effects in naturally aged [1-3] and solution treated [4-8] conditions, while weak 

effects were found in the peak-aged material [1-3,8]. 

Dynamic precipitation (DP) occurs readily under monotonic plastic deformation of supersaturated 7000 series 

aluminium alloys [9-12]. The phenomenon of DP is closely related to DSA, where the initial solute clustering 

required for precipitation is caused by the DSA of dislocation junctions. When the dislocations break free from the 

solute lock, the clusters left behind can nucleate precipitates which act as obstacles for the following dislocations 

[11]. This causes a continuous increase in the flow stress, which can be seen as an additional strain hardening in  

* Corresponding author. Tel.: +46-520-94074; fax: +46-520-98589. 

E-mail address: magnus.hornqvist@volvo.com. 

c© 2010 Published by Elsevier Ltd.

Procedia Engineering 2 (2010) 265–273

www.elsevier.com/locate/procedia

1877-7058 c© 2010 Published by Elsevier Ltd.
doi:10.1016/j.proeng.2010.03.029

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.proeng.2010.03.029


2 M. Hörnqvist et al. / Procedia Engineering 00 (2010) 000–000 

Nomenclature 

A  asymmetry factor 

DP  dynamic precipitation 

DSA  dynamic strain ageing 

N  cycle number 

Nf  number of cycles to failure 

NA  naturally aged (temper) 

PA  peak-aged (temper) 

true strain 

a strain amplitude

a,p  plastic strain amplitude

  true stress 

a stress amplitude 

c compressive peak stress

eff effective stress

eff,prec  precipitate contribution to the effective stress 

int  internal stress 

m  mean stress 

t tensile peak stress 

monotonic deformation [9-14]. For solution treated Al-Zn-Mg it has been reported that DP occurs through  

nucleation of small (0.6 nm) zones, while in naturally aged material the main effect is growth if existing zones (in 

the range of 1 nm) [11]. Indirect observations of precipitation of clusters, invisible in electron microscopy, during 

plastic flow of a Al-Zn-Mg alloy in the DSA regime have been made [15]. 

The occurrence of DP during cyclic plastic deformation of aluminium alloys is so far largely unexplored. Christ 

et al. [16] showed that a solution treated Al-Zn-Mg-Cu alloy, corresponding to AA7022, showed extensive cyclic 

hardening and drastically reduced fatigue life under low-cycle fatigue conditions, and this was shown to be a result 

of dynamic precipitation during cycling. Cyclically deformed Al-Ag alloys, heat treated to contain Guinier-Preston 

(GP) zones and shearable ’ precipitates, showed evidence of deformation induced precipitation of stable phases, 

and even over-ageing [17,18]. In the process, the GP zones in the vicinity of the precipitates dissolved. However, the 

precise effects of the precipitation during cycling on the cyclic stress–strain response were not clearly revealed [17]. 

Al-Cu alloys aged to contain GP zones and ”, on the other hand, did not show any trace of deformation induced 

precipitation [19].  

In previous investigations it was shown that naturally aged AA7030 cyclically hardens until the on-set of crack 

growth, in spite of strong strain localization [20]. Normally, the repeated localization of strain into slip bands as a 

result of precipitate shearing leads to a softening during cycling [21-23], as was observed in the peak-aged version 

of the same alloy [20]. One explanation for this anomalous behavior could be that DP occurs during cycling, which 

continuously increases the flow stress level. This paper aims to further investigate the connection between cyclic 

plastic deformation and concomitant DSA and DP through indirect observations during LCF testing at different 

temperatures of AA7030 in different tempers. 

266 M. Hörnqvist, B. Karlsson / Procedia Engineering 2 (2010) 265–273



M. Hörnqvist et al. / Procedia Engineering 00 (2010) 000–000 3

2. Experimental 

The material was obtained in the form of extruded rods, 36 mm in diameter, with a grain size of approximately 

120 m. Cylindrical samples, with a waist diameter of 10 mm and a parallel length of 16 mm, were machined from 

the rods. The material was solution treated at 480ºC for 30 min, water quenched and aged 24 h at room temperature 

to obtain the temper referred to as the naturally aged (NA). For comparison, a number of samples were also treated 

to the peak-aged (PA) temper, 24 h at 120ºC following the solution treatment and quenching, as the DSA/DP 

phenomena is largely suppressed in this temper. The choice of the NA temper, instead of the solution treated (ST), 

was made as the ST material is very unstable and the effects of temperature and deformation induced precipitation 

are harder to separate. Before testing, the samples were ground and polished to remove any effects of machining and 

surface roughness. The testing was performed in an INSTRON 8032 servo-hydraulic rig with a temperature 

chamber. The strain was measured using a 10 mm axial extensometer and a triangular fully reversed push-pull 

strain–time profile, with constant total strain amplitude and strain rate 1 10-3 s-1, was employed. The NA samples 

were deformed with a total strain amplitude of 0.6% and the PA with 0.8%, this to yield plastic strain amplitudes of 

0.2% at half-life, at temperatures of –20, 20 and 60ºC. Inspired by the results on the influence of temperature on the 

monotonic properties of AA7030 [1-3,13], it was decided to perform tests at both lower and higher temperatures 

than ambient, namely 20 C, 20 C and 60 C.

Table 1: Composition of AA7030 in weight per cent. 

Element Al Zn Mg Cu Fe Si 

Wt.% Bal. 5.2 1.1 0.3 0.18 0.06 

3. Results and discussion 

3.1. Cyclic stress–strain response 

The hysteresis loops from the 20th cycle can be seen in Fig. 1, where the serrated yielding due to DSA is clearly 

visible at room temperature and 60 C. Figure 2 shows the stress amplitude, a, as a function of number of cycles, N,

and normalized fatigue life N/Nf. The results are discussed separately for the two tempers below. 

3.1.1. Peak-aged temper 
In the PA material, a initially increases rapidly, reaching a maximum at approximately 30% of the fatigue life. 

After this, the amplitude decreases continuously until the on-set of rapid crack growth which can be determined 

from investigations of the plastic strain amplitude and peak-stress asymmetry (see later sections). The final 

catastrophic crack growth and fracture is very fast, occupying only a small fraction of the total fatigue life. The 

softening from peak stress amplitude is more pronounced at lower temperature. This leads to the observation that the 

stress amplitude at half-life is essentially temperature independent. 

Fig. 1. Engineering stress strain hysteresis loops from the 20th cycle of (a) PA and (b) NA samples deformed at different temperatures. 
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Most commercial 7000 aluminium alloys in the peak-aged (T6) condition exhibit initial cyclic hardening, 

followed by saturation [24-29]. In the present investigation, on the other hand, softening commences after about 20-

30% of the fatigue life, progressively decreasing the stress amplitude until failure. Similar softening of peak- aged 

7000 alloys has been observed before, e.g. [20,30], and is attributed to the shearable precipitates (GP-zones and 

small ’) which act as the strengthening phases. When the particles are sheared, they lose some of the strength on the 

crystallographic slip plane. Further slip on the same plane is promoted, and localization of the strain into intense slip 

bands occurs. The dislocation structure will consist of slip bands with high dislocation density, acting as the plastic 

strain carriers, embedded in a matrix with low dislocation density [18,21,23]. The localization of strain in these 

bands results in the observed softening, as the flow stress in the bands decreases with the repeated cutting of the 

precipitates. The mechanism of softening of the bands in different precipitation hardened systems has been debated, 

but it has been argued that in 7000 alloys, the reversion of precipitates is responsible [23,31]. The occurrence of 

strain localization can be directly observed as slip bands on the sample surface, as seen in Fig. 3. The fact that 

softening is observed here, but not in most commercial alloys although the arguments should apply equally for other 

peak-aged 7000 materials, can be attributed to the large grain size, low Cu content and low concentration of 

dispersoid-forming elements. 

Fig. 2. (a) Cyclic stress response vs. number of cycles, N, and (b) vs. normalized fatigue lige N/Nf.

Stress axis 

Fig. 3. Optical micrograph of the outer surface of (a)  NA sample deformed at 60 C, and (b) PA sample deformed at room temperature.  
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Fig. 4. Comparison of the initial part of the stress response curves for the NA temper deformed at -20 and -60 C with a=0.6%. Inserted is the 

yield stress ( Y) measured as the 0.2% proof strength from the first cycle.   

3.1.2. Naturally aged temper 
Also the NA samples initially harden rapidly. However, the behavior after the initial transient, corresponding to 

roughly 10% of Nf, the behavior is distinctly temperature dependent. At 20 and 60 C, a period of slower hardening 

commences, where the hardening rate increases with temperature. This continues until the crack growth related 

softening begins. At –20 C on the other hand, the stress amplitude goes through a maximum at approximately 10% 

of the fatigue life, after which there is a decrease followed by a slow continuous increase until the crack growth 

comes to dominate.  

In the NA temper, strain localization is observed at all test temperatures, but the density of the slip bands is much 

higher (Fig. 3(a)). The GP(I) zones in the NA state present much weaker obstacles to dislocation motion than the 

GP(II) and ’ present in the PA material. Consequently, even though the particles are sheared by the moving 

dislocations so that slip bands are formed the strength difference between the bands and the matrix is small. As a 

result the localization is not as strong as in the PA condition [18,21], which is reflected in the high density of slip 

bands. Nevertheless, the presence of intense slip bands is expected to cause cyclic softening [21-23]. However, the 

present results show that at the two higher temperatures, 20 C and 60 C, the NA samples undergo cyclic hardening, 

and the rate of hardening increases with temperature. At –20 C, the samples actually soften after an initial period of 

hardening and then saturates. If the temperature is decreased further to –60 C (Fig. 4), the yield stress (0.2% proof 

stress from the first hysteresis loop) increases compared to the tests at –20 C, and the initial rapid hardening was 

more pronounced. The stress amplitude reaches a maximum, but the subsequent drop in a is significantly more 

pronounced and following this, the amplitude slowly decreases for the remainder of the fatigue life. 

These anomalous effects in the present case can be explained in terms of DSA and DP in the following way: The 

initial rapid hardening is a result of the generation and accumulation of dislocations [21]. Although DSA/DP can be 

expected to influence the behavior to some extent, i.e. increase the rate of hardening, the main mechanism is 

undoubtedly the increasing dislocation density and the resulting forest hardening. Somewhere around 10% of the 

fatigue life, according to Fig. 2, the dislocation structure is stabilized in the form of intense slip bands due to 

shearing of the GP zones, as explained above. At the lower test temperatures, –20 C and –60 C, there is a drop in 

the stress amplitude at this point, consistent with the expected cyclic softening. At –60 C, the diffusion rate is too 

low to allow an efficient DSA/DP process, and the softening continues progressively until failure, similar to the PA 

material. At –20 C, the increased diffusion rate in combination with the high dislocation density in the slip bands 

allow DSA/DP to commence. These effects balance the softening in the slip bands by the locking of dislocations and 

continuous precipitation of GP zones. Upon further temperature increases, the DSA/DP process is sufficiently fast to 

outweigh the softening mechanisms and there is a continuous stress amplitude increase. The hardening rate is higher 

at 60 C as the DSA/DP process is faster. However, as dislocation motion is hindered and the flow stresses are higher 

at this temperature, the initiation, growth and coalescence of micro-cracks are faster. Consequently, at 

approximately 50% of the fatigue life, the stress amplitude starts to decrease due to macroscopic crack growth. At 

20 C, on the other hand, the crack initiation and growth are slower, and the hardening continues until late in the 

fatigue life. 
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Fig. 5. (a) The plastic strain amplitude, a,p, and (b)peak stress asymmetry factor, A, as a function of normalised fatigue life, N/Nf.

3.2. Plastic strain amplitude development 

Another way to represent the cyclic hardening/softening behavior is to examine the development of the plastic 

strain amplitude, a,p, with N/Nf, as shown in Fig. 5(a). The initial hardening can be seen as a decrease of a,p, and it 

is obvious that the amount of cyclic hardening is greater in the NA temper. The behavior then essentially follows the 

development of the (inverse of the) stress amplitude in both tempers, where the softening after the peak stress 

amplitude in PA is seen as a continuous increase of a,p, and the constant stress amplitude at –20 C and continuous 

hardening at 20 C in the NA temper is reflected in the curves in Fig. 5(a). The NA sample tested at 60 C, on the 

other hand, shows a somewhat different behavior. Even though a decreases after N/Nf = 0.5, a,p continues to 

decrease until failure, presumably due to slow macroscopic crack growth which has started at approximately half-

life, leading to changes in the hysteresis loop shape which comes through as an decreased plastic strain amplitude. 

3.3. Peak stress asymmetry 

The onset of crack growth can also be investigated by observation of the asymmetry factor, A, defined as 

A = (| c| t)/([| c| + t]/2) = 2 m/ a (1) 

where t and c are the true peak stresses, corrected for the Poisson effects, in tension and compression in a cycle 

and m is the mean stress [25,32]. Consequently, a positive value of A in a given cycle indicates that the peak stress 

is higher in compression in that cycle, and vice versa. The development of A with N/Nf can be seen in Fig. 5(b).  

After an initial transient, A remains relatively constant with increasing number of cycles, indicating that both t and 

c undergo similar changes. At some point, the A values start to increase rapidly, i.e. the magnitude of t decreases 

compared to c, indicating macroscopic crack growth. In the PA temper, this occurs close to N/Nf=1, whereas rapid 

crack growth starts at roughly 70% of the fatigue life at –20 C and 20 C in NA, consistent with the development of 

a. At 60 C, the on-set occurs much earlier, at N/Nf values of approximately 0.5, corresponding to the maximum in 

the stress amplitude, indicating much earlier growth of macroscopic cracks as compared to lower temperatures.  

3.4. Internal and effective stresses 

To further investigate the cyclic stress development, the decomposition of the stress into effective, eff, and 

internal, int, components was studied using the statistical approach (SAP) proposed by Polák et al. [33,34]. The 

results are presented in Fig. 6. It is considered that the internal stress, int, is a function of the long-range stress fields 

built up in the material and is therefore purely athermal. The effective stress, eff, on the other hand, is related to the 

stresses on the dislocations imposed by the strains in the material, and has both a thermal and an athermal 

component. Using this, and the presence of DSA/DP during deformation, it is possible to hypothesize regarding the 

development of the stress components with cycling as follows: 
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In the PA temper, int increases initially as the dislocation density is built up. Early in the deformation, the 

dislocation structure develops and int decreases, whereas the effective stress continues to increase due to the 

dislocation-dislocation interactions.  As the precipitates are sheared, the dislocation structure takes the form of 

intense slip bands, corresponding to a stable value of the long-range stresses. At this point, eff decreases as the 

planar deformation in the slip bands decreases the interaction between mobile and forest dislocations.

The behavior of the NA material is different. Initially, both eff and int increase as the dislocation density 

increases. After about 10% of the fatigue life, the banded dislocation structure takes form and int starts to decrease. 

eff, on the other hand, continues to increase as the DP continuously increases the glide resistance in the bands. The 

effect of the temperature can be clearly seen: an increased temperature, corresponding to more efficient DP, leads to 

higher values of eff and this behavior controls the stress amplitude. The internal stress on the other hand decreases 

with temperature.  

Bath and Laird [19] argued that in precipitation hardened poly-crystals a part of the effective stress, 

approximately equal in magnitude to the internal stress, should develop with accumulated plastic strain in the same 

manner as the internal stress and that the effective stress component due to the presence of precipitates is given by 

eff,prec= eff– int. Applying this in the present case leads to initially negative values of eff,prec in the NA temper. 

Assuming that the fraction of eff not connected to the precipitates is larger than proposed by Bath and Laird, so that 

eff,prec is positive, the precipitate effects according to this approach can be seen in Fig. 7 (note the relative scaling of 

the ordinate in Fig. 7). During the initial transient, the internal stress development is important due to the rapid 

accumulation of dislocations, but after some few percent of the fatigue life, eff,prec essentially follows the 

development of the stress amplitudes, confirming that the stress strain response in both tempers is essentially 

controlled by the effective stresses associated with the precipitate dislocation interactions.  

Fig. 6. Development of the effective, eff, and internal, int, stress components with normalised fatigue life N/Nf in (a) for PA samples cyclically 

deformed with a=0.8% and NA samples with a=0.6%, at different temperatures. 

Fig. 7. The development of the part of the effective stress associated with the precipitates in (a) PA and (b) NA temper. The absolute magnitudes 

of the stresses are not known (see the text in the discussion) and the scaling of the ordinate is therefore relative. 
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4. Conclusions 

The stress–strain response of the NA temper is determined by the combination of strain localisation and 

concurrent dynamic strain ageing (DSA) and dynamic precipitation (DP). At temperatures where DSA/DP is largely 

suppressed, initial rapid hardening followed by an abrupt drop in the stress amplitude and subsequent saturation or 

slow softening, is observed. At higher temperatures, DSA/DP outweighs the inherent slip band induced softening, 

and the stress amplitude increases up to the point of catastrophic crack growth. The stress levels increased with 

temperature due DSA and DP, and the occurrence of these phenomena could be used to explain the evolution of the 

internal and effective stresses derived from the hysteresis loops. 

In the PA temper, where DSA/DP are suppressed due to solute depletion, the samples initially harden rapidly to a 

peak stress and subsequently soften due to microstructural effects until the onset of final catastrophic crack growth. 

The behavior can be explained in terms of strain localization due to precipitate shearing in combination with a large 

grain size and the absence of dispersoid-forming elements. 
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