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Impurity transport driven by electrostatic turbulence is analyzed in weakly collisional tokamak
plasmas using a semianalytical model based on a boundary layer solution of the gyrokinetic
equation. Analytical expressions for the perturbed density responses are derived and used to
determine the stability boundaries and the quasilinear particle fluxes. For moderate impurity charge
number Z, the stability boundaries are very weakly affected by the increasing impurity charge for
constant effective charge, while for lower impurity charge the influence of impurities is larger, if the
amount of impurities is not too small. Scalings of the mode frequencies and quasilinear fluxes with
charge number, effective charge, impurity density scale length, and collisionality are determined and
compared to quasilinear gyrokinetic simulations with GYRO [J. Candy and R. E. Waltz, J. Comput.
Phys. 186, 545 (2003)] resulting in very good agreement. Collisions do not affect the mode
frequencies, growth rates, and impurity fluxes significantly. The eigenfrequencies and growth rates
depend only weakly on Z and Z; but they are sensitive to the impurity density gradient scale length.
An analytical approximate expression of the zero-flux impurity density gradient is derived and used

to discuss its parametric dependencies. © 2010 American Institute of Physics.

[doi:10.1063/1.3430639]

I. INTRODUCTION

Understanding impurity transport in tokamak plasmas is
important since fusion performance is significantly affected
by impurities. In particular, impurity accumulation in the
core may lead to fuel dilution and radiation power losses
resulting in lower fusion power and potentially even plasma
disruptions. However, impurities are welcome at the edge
since they can prevent high heat fluxes to the wall by creat-
ing a radiative belt. Models of impurity transport driven by
microturbulence' " and neoclassical processes 18 are now
well developed, but there are still many open issues regard-
ing the sign and magnitude of the impurity particle flux and
its parametric dependencies. To get reliable predictions for
the turbulent fluxes, nonlinear electromagnetic gyrokinetic
(GK) simulations are needed, but these are costly in comput-
ing time. However, the quasilinear electrostatic approxima-
tion has been proven to retain much of the relevant physics
and reproduce the results of nonlinear GK simulations for a
wide range of paxrameters.19 Reduced theoretical models,
based on quasilinear approximations, benchmarked to GK
simulations can ease the interpretation of the results of ex-
periments or numerical simulations and can contribute to the
better understanding of the underlying processes.

The aim of the present work is to calculate the quasilin-
ear GYrokinetic IMpurity transport driven by ElectroStatic
turbulence (GYIMES) using a semianalytical model based on a
boundary layer solution of the GK equation. Following the
approach of Refs. 20 and 21, we use a model electrostatic
potential motivated by a variational analysis and GK simu-
lations, and present analytical expressions for the perturbed
density of the electrons, ions, and impurities. These are used
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in the quasineutrality equation that is solved numerically to
obtain the frequencies and growth rates of the unstable
modes, including the effect of impurities on these modes and
the quasilinear impurity particle fluxes. In particular, we
study the parametric dependences of the above quantities
with respect to impurity charge, impurity density, inverse
impurity scale length and collisionality, and the effect of the
impurities on the stability boundaries. Using the analytically
calculated expression for the perturbed impurity density re-
sponse, we derive an approximative expression for the zero-
flux impurity density gradient R/L,,. Here R is the major
radius and L,, is the impurity density scale length. Such a
zero impurity flux region is relevant to steady state plasmas
in the core of tokamaks since the impurity influx occurs
through the edge, and a simple analytical approximation for
the zero-flux impurity density gradient is useful to be able to
analyze its parametric dependencies. The results of GYIMES
are compared to linear GK simulations with GYRO,22 and the
agreement is very good.

The remainder of the paper is organized as follows. In
Sec. I, the perturbed electron, ion, and impurity density and
temperature responses are calculated. In Sec. III, the disper-
sion relation is presented and the dependence of the stability
boundaries on the charge number and fraction of impurities
is studied. In Sec. IV, the quasilinear transport fluxes are
calculated and scalings of the growth rates, eigenfrequencies,
and fluxes with charge number, fraction of impurities, impu-
rity density scale length, and collisionality are discussed and
compared to GYRO results. Finally, the results are summa-
rized in Sec. V.

© 2010 American Institute of Physics
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Il. PERTURBED DENSITY RESPONSE

The perturbed electron, ion, and impurity responses are
obtained from the linearized GK equation,23
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where g, is the nonadiabatic part of the perturbed distribu-
tion function, @ is the extended poloidal angle ¢ is the
perturbed electrostatic potential, f,,=n, /(\r’ﬂ'vTa) Sexp(—x2) is
the equilibrium Maxwellian distribution function, x,=v/vy,
is the velocity normalized to the thermal speed vy,
=(12T,/m,)"? n,, T,, m,, and e, are the density, temperature,
mass, and charge of species a, respectively, w.,
_—kgT /e BL,, is the diamagnetic frequency, . =Wl
+( __) 7711] Na= Lna/LTa’ na= [(9 ln na)/ar] 1? and LTa
=—[(?(1n T,)/dr]" are the density and temperature scale
lengths, kg, is the poloidal wave number, wDa:_ktg(Ui/ 2
+vﬁ)(cos 0+s6 sin 0)/ w.,R is the magnetic drift frequency,
w.,=e,B/m, is the cyclotron frequency, B is the equilibrium
magnetic field, ¢ is the safety factor, s=(r/q)(dg/dr) is the
magnetic shear, r and R are the minor and major radii, and J,
is the Bessel function of the first kind and z,=k v | / w.,. We
consider an axisymmetric, large aspect ratio torus with cir-
cular magnetic surfaces. We assume the following ordering
of the electron/ion bounce frequencies and the eigenfre-
quency of the mode, w,;<w<w,,, and consider weakly
collisional plasmas so that v,,=v,/€ew,,<<1, where
e=r/R is the inverse aspect ratio and v, is the electron col-
lision frequency, including collisions with ions and
impurities, v,=(Dy,+ i+ D) /X, = (L 41/ ny+ 220,/ n,) b,/ X
=(14Zeg) Do/ x2, With ,,=n,e* In A/ (4megmiv3,), and In A
is the Coulomb logarithm. The electron collisions are mod-
eled by a pitch-angle scattering operator
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where é=v/v and )\zvi/ (Bv?). Collisions are neglected in
the ion and impurity equations. The condition for which im-
purity collisions can be neglected is

(ZmJm)"*(n,2’In) ev,, < 1 (3)

and is well-satisfied for not too high charge numbers (de-
pending on the exact parameters, up to Z=~15-25) if we
assume, consistent with the rest of our orderings, that e<<1,
v,,<1, and n.Z?/n;=0(1). Note that the condition in Eq. (3)
breaks down for very high charge numbers, specially when
v, 1s not too small, in which case collisional effects can
modify the impurity fluxes as shown in Ref. 14. As in Ref.
20, we use the following perturbed electrostatic potential:

<1+cos€

H(6) = ¢, +if, sin® 0)[H(0+ m) -H(0-m], (4)

where H is the Heaviside function and f; can approximately
be written as f,=—0.6s+s>—0.3s>. In Ref. 20, this model
potential was motivated with a variational method and expe-
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rience from GYRO simulations. The approximation for the
perturbed electrostatic potential breaks down for low and
high shears (outside the region 0.2<<s<1.7) or near mar-
ginal instability, and correct quantitative predictions for the
transport can only be expected in regions where the assump-
tion for the potential is valid.

A. Electron response

The circulating electrons are assumed to be adiabatic and
the nonadiabatic trapped electron distribution can be ex-
panded g,=g.0+&.1+ - in the smallness of w/wy, and the
normalized collisionality v,,, which gives dg,,/d6=0 in low-
est order. The electron GK equation is orbit averaged be-
tween the mirror reflection points, providing a constraint for

8e0>

(0= 0n)a= g 702
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where (---) is an average over the bounce orbit of the
trapped electrons, k=[1=\By(1—¢€)]/(2e\By), By is the flux-
surface averaged magnetic field, J=E(k)+(x=1)K(x), and
E(x) and K(k) are the complete elliptic integrals. Here, the
bounce average of the potential is

1- K:|}

and the orbit-averaged precession frequency for trapped elec-
trons is

E(k) 1 E(k)
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with  wpy=—ko?*/w.,R. We introduce the parameter
D=,/ wye, which will be treated as small in the following
analysis. This condition restricts the applicability of the so-
lution for high temperature plasmas (such as ITER). Here, w
is the absolute value of the real part of the eigenfrequency so
that w=cowy+iy=(0+iy)wy=yw, o=sign(R{w}) denotes
the sign of the real part of the eigenfrequency, and y=y/w,
is the normalized growth rate.

In the limit of small collisionalities, we can construct a
boundary layer solution to the GK equation

NN/ NN K K)
V[geO+(1n J) ge0]+l A~ (w_<wDe>)ge0
J(,OO

KWL (1 e, )
JwoT,

In the outer region, far away from the trapped/passing
boundary, collisions can be neglected, and the solution to
Eq. (7) is
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In the inner region, we can approximate J (x) with its
asymptotic limit for k— 1: J (k) = 1. Furthermore we assume
that in the inner region g’,> (In J)' g.o» the validity of which
is checked a posteriori. Changing variables in Eq. (7) to ¢
=(1—K)/\/17/ gives
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and the solution is

A [t A
&inner = outer T €1 eXP[— (1 - K) \‘JMK(K)/V]
+ ¢, expl(1 — k)ViiK(k)/ D], (10)

where li=—i(y—{wp,)/ ). ¢; is determined by the boundary
condition g,o(xk=1)=0 and é,=0 to match the inner and
outer solutions. The global solution is then

8e0 = Gouer(1 — exp[—= (1 = k) ViK(k)/D]), (11)

which agrees very well with the numerical solution of Eq. (5)
for experimentally relevant parameters, as it will be shown in
the Appendix. Interestingly, the boundary layer solution is a
very good approximation of the numerically obtained distri-
bution function g,, even when 7 is of order unity.

Performing the velocity-space integration as outlined in
the Appendix gives the following expression for the per-
turbed electron density response:

n, [ e¢ - = .
— —=1- 12 "
ne/ T, (75{\ e[w,]
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where ¢=(1+4if,/5)4¢dy/ (3meh), @p,=wpe/ (wx2), ,=x],
D= Wiyl @, @py=1-(1-37,/2)B.,, and Fj(z)=,F,
(a,b;;z), where ,F, denotes the generalized hypergeometric
function. To obtain Eq. (12), no approximation on the small-
ness of the normalized magnetic drift has been made and the
hypergeometric functions incorporate the full effect of the
drift resonances. The effect of the impurities is contained in
the factor 1+Z.; multiplying the collisionality parameter.
Furthermore, the unstable mode frequencies and growth rates
are affected by the impurities in certain conditions, as will be
shown.

The solution in Eq. (11) reproduces the numerical solu-
tion of the GK equation more accurately than the Wentzel—-
Kramers—Brillouin-solution used in Refs. 20 and 21, espe-

Phys. Plasmas 17, 062501 (2010)

cially in the case of complex electrostatic potentials.
However, comparing the resulting perturbed electron density
response (12) with the corresponding expression in Eq. (9) of
Ref. 20, we find that the difference is only the appearance of

a factor 4/ in .

B. Background ion and impurity responses

For the ions, we neglect the parallel compressibility by
assuming ku7;<w. In this limit, Eq. (1) can be solved ne-
glecting the parallel derivative and replacing the magnetic
drift frequency wp; with its weighted flux-surface averaged
value (wp;)y, where (X(6))y=/".X(0)$(0)d6/ [T H(6)d0,
and thus the perturbed ion density becomes

30n.:
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T 2
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Here,  b,=(by)g=ball +s2[27—12+if,(27*=3)1/[6(1
+if,)]} is the weighted flux-surface averaged value of the
finite Larmor radius (FLR) parameter, b,=b,(1+s*6¢),
bayo=kgps,)?, and py,=v7,/ \rEwm. The averaged normalized
magnetic drift frequency is

6+ (9 + 16if,)s wpuo
12(1+if) o

Wpsa =

s

where wDa0=—2kgv%a/3me, and we used the constant en-
ergy resonance approximation for the ion resonance [v2l
+2vﬁ—>4(vzL +v||)2/3].23 To obtain the expression for the per-
turbed ion response (13), only long-wavelength perturbations
were considered, and only the terms linear in b;;, were kept.
This approximation is typically valid for the fastest growing
ion temperature gradient (ITG) modes (kgp,;~0.2).

For the impurities, collisions can be neglected as well,
and thus the structure of the impurity solution is the same as
for the ions and reads

@/Zaﬁ_ B (35sz b)
=T Wt — Yz

n, T, 2
Jon

lll. STABILITY

- — A |~
- E(ﬂzw*z - stzwn*z)}-WZ(stz) .

(14)

The dispersion relation follows from the quasineutrality
condition

|3>

—(I_Zfz)_+Zfz ’ (15)

e Z

S

where f,=n_./n, is the fraction of impurities, and the per-
turbed electron, ion, and impurity densities are given by Egs.
(12), (13), and (14), respectively. The dispersion relation ob-
tained here is valid for both ITG modes propagating in the
ion diamagnetic direction (o=-1) and trapped electron
modes propagating in the electron diamagnetic direction
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FIG. 1. (Color online) (a), (b) normalized mode frequency (in units of ¢,/a) vs Z (a) and Z (b). (c), (d) critical ion temperature gradient vs Z (c) and Z
(d). Dashed: analytical expression from Eqs. (17) and (18). (a), (c) dots: Z=1.5; squares: Z.z=2. (b), (d) dots: Z=10; squares: Z=20. The impurity charge
or density does not affect the mode frequency or the critical ion temperature gradient significantly for Z>10.

(o=1), but in this paper we will focus only on the ITG mode
stability and the quasilinear fluxes driven by them. In the
limit of large aspect ratio, e— 0, the trapped part of the per-
turbed electron density can be neglected, and the dispersion
relation for ITG (0=-1) modes with adiabatic electrons re-
duces to the following expression:

. 5. _ -
X |:w77*i - 5(771“1’*[ - stiwn*i)]:;/z(sti)] }

35
_Zz sz{a*z_ (% _bz>

. 5. . _
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where 7,=T,/T,. Using the condition for marginal stability,
y=0, we can derive an approximate stability condition for
the ITG modes. As in Ref. 20, we note that if the imaginary
parts of @p,, and b, are negligible (which is the case if f, <1
at marginal stability y=0), then the expression in Eq. (16) is
real except for the terms containing the functions ]—"%/2(6034)
and ]—"; 1»(@p,) that have imaginary parts for all values except
wpy;=0 and @p,,=0. We also note that for impurity charge
numbers Z= 10, the imaginary part of the impurity hyper-
geometric function is negligible compared to the ion term.
Therefore, in this limit, the condition y=0 can only be sat-
isfied if the coefficient in front of F},(@p,;) vanishes. This
leads to the conclusion that for higher impurity charge num-
bers, the eigenfrequency and stability boundary are very
weakly affected by the increasing impurity charge, even for a
significant fraction of impurities, and are approximately
equal to the corresponding quantities in a pure plasma,20

wy, b1 ( l) (2 +3s)L,,; a7
w., Th+1 ) (tb+1)2R’
a _(1+7'i_1)(2+3s)a (18)

Ly 3R(1-b)

In Fig. 1, we show the mode frequency w, (normalized to
c,/a, where c,=\T,/m; is the ion sound speed) and critical
temperature gradient a/Ly;. computed from the full disper-
sion relation (including the nonadiabatic electrons) as a func-
tion of the impurity charge Z and Z.g, together with the ex-
pressions given in Egs. (17) and (18). The parameters used in
the calculations were s=1, ¢=2, a/R=1/3, a/r=2, a/L,,
=1, and kgp,=0.2. The agreement with the analytical expres-
sions is excellent, except for impurities with lower charge
numbers, where the impurity hypergeometric function is of
the same order of magnitude as that of the ions. For lower
impurity charge, especially for helium or carbon dilutions,
impurities are expected to significantly influence the eigen-
frequency and thus the stability boundary if the amount of
impurities is not too small.

IV. QUASILINEAR PARTICLE FLUXES

The quasilinear particle flux for species a is given by

— |2 _
e ngn
a 3(—“_ : ) (19)
Ta ea¢/ Ta
where the bar denotes flux-surface averaged quantities, ¢
=(1+if,) /2, and i,/ n, is the nonadiabatic perturbed den-
sity response. The quasilinear fluxes are evaluated using the

expressions for the perturbed electron, ion and impurity den-
sities from Eqgs. (12)—(14), respectively, and solving the

_ k0pa
eB

a=
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FIG. 2. (Color online) (a), (c) normalized mode frequency (solid) and growth rate (dashed) (in units of ¢,/a) vs Z for Z.z=1.5. (b), (d) mode frequency (solid)
and growth rate (dashed) vs Z. for Z=6. The dots and squares are the corresponding GYRO results. (a), (b) GA standard case. (c), (d) hybrid case.

dispersion relation (15), including the nonadiabatic electron
response, for the unstable mode frequencies and growth
rates. In the following, we will present scalings of the eigen-
frequency, growth rate, and impurity particle fluxes with im-
purity charge Z, effective charge Z.y, inverse impurity den-
sity scale length a/L,,, and collisionality, together with
quasilinear GYRO results for the GA standard case,”” al Ly,
=a/Lpy=3, s=1, q=2, a/R=1/3, r/la=1/2, a/L,,=1, and
kgp,=0.2, and parameters relevant to the inner core of hybrid
plasmas, a/Ls,=al/Lp=3, s=1, g=1.25, a/R=1/3, rl/a
=1/4, a/L,,=1.5, and kyp;=0.2. All the frequencies and
growth rates are given in units of ¢,/a, and the fluxes are

normalized to kgp,/eBled/T,|*.

A. Z- and Z-scalings

For moderate Z (i.e., 10=<Z=<25), the eigenfrequency
and growth rate of the unstable modes are only weakly af-
fected by increasing Z. The main reason for this is the fact
that the imaginary part of the impurity hypergeometric func-
tion is negligible compared to the ion term for Z=10. The
absolute values of the eigenfrequencies and growth rates de-
crease slightly with increasing Z.g, reflecting the fact that the
impurity terms of the dispersion relation start to play a larger
role when the impurity density is increased, and the presence
of impurities is stabilizing. In Fig. 2, we show the scalings
with Z and Z; for the GA standard and hybrid cases, to-
gether with the results of quasilinear GYRO simulations.

Figure 3 shows that the normalized impurity flux is ex-
pected to be outward for the cases we studied. As we will
show later, for these parameters, this is expected when
R/L,.=?2. The rapid fall in Fig. 3(a) with increasing Z is due
to the fact that we keep Z.; constant. Although the impurity
flux is not sensitive to Z, the normalized impurity flux is
rapidly decreasing since it is proportional to n,/n,~1/Z>.
The normalized flux increases for increasing impurity den-

sity and this is more pronounced for impurities with lower
charge numbers since the relative increase in Z.y is larger
than for high charge numbers. The ion and electron fluxes are
expected to be inward and their absolute values decrease
with increasing Z.

B. a/L,,-scaling

The eigenfrequencies and growth rates depend moder-
ately on the inverse impurity density gradient, and the par-
ticle fluxes show a strong dependence, as illustrated in Fig. 4,
for the GA standard and hybrid cases. The impurity flux
changes sign at a certain fixed value of the radial impurity
density gradient. For the GA standard case with Z4=1.5
shown in Fig. 4(b), the crossovers are at a/L,,=0.59 for
Z=6 and a/L,,=0.68 for Z=10, and for the hybrid case
shown in Fig. 4(d) it is at a/L,,=0.62 for Z=6 and a/L,,
=(.67 for Z=10. For Z. =2 and Z=6, the crossover point
shifts to a/L,,=0.55 for the GA standard case and a/L,,
=(.58 for the hybrid case. Thus, the crossover point is al-
most at the same a/L,, independently of the charge number
Z, effective impurity charge Z., and inverse background
temperature scale lengths. Using the perturbed impurity den-
sity from Eq. (14), we can derive an approximation for the
crossover point by noting that the impurity hypergeometric
function can be replaced by its asymptotic limit for small
arguments, J7,,(@p,.)=1 (which is a good approximation for
heavy impurities since the argument @p,, > 1/Z). If we also
assume that the impurity FLR-term is negligible, b,
<3wp,,/2, the crossover point is expected to be at

] 3@pg| . S5
Jw, = J{ %[‘UW*Z - E(sz*z - stzwn*z):| } . (20)

In the limit of moderate or high impurity charge, all terms of
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FIG. 3. (Color online) (a), (c) normalized impurity flux vs impurity charge Z for Z.z=1.5. (b), (d) normalized impurity flux vs Z for Z=6 (solid) and Z
=10 (dashed). The dots and squares are the corresponding GYRO results. (a), (b) GA standard case. (c), (d) hybrid case.

order 1/Z? can be neglected so Eq. (20) simplifies to
J&,,=3{3@p,,/2}. Using the approximation @p,,
=(2435)wp;p/6w (valid if f;<<1), the zero-flux impurity
density gradient becomes R/L,..=(2+3s)/2. This is some-
what larger than the value obtained keeping all the terms in
the expression for the impurity flux (which for the GA stan-
dard case and Z=10 is R/L,_.=2). Note that to arrive at Eq.
(20), we only assumed high Z and b, <3&p,./2, no assump-
tions on the eigenfrequency or the magnitude of other param-
eters have been used. It is interesting to note that for high Z
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the zero-flux impurity density gradient becomes nearly inde-
pendent of the charge number. Previously, similar results
have been obtained in fluid simulations of ITG turbulence
dominated transport.5 The physical reason for this is that the
convective flux originating from the curvature drift is nearly
independent of the charge number, while the convection
caused by thermodiffusion decreases with increasing Z (this
corresponds to the term proportional to 7,).

For moderate and high Z, the expression for the zero-flux
impurity density gradient can be refined to be
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FIG. 4. (Color online) (a), (c) normalized mode frequency (solid) and growth rate (dashed) (in units of ¢ /a) vs inverse radial impurity density gradient for
Z=6 and Z=1.5. (b), (d) normalized impurity particle flux vs inverse radial impurity density gradient for the parameters: solid: Z=1.5, Z=6, dashed:
Zei=2, Z=6, and dotted: Z.4=2, Z=10. The dots and squares are the corresponding GYRO results. (a), (b) GA standard case. (c), (d) hybrid case.
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FIG. 5. (Color online) Normalized mode frequency, growth rate [(a) and (c)] and normalized impurity particle flux [(b) and (d)] vs normalized collisionality
(in ¢,/a) for Z=6 and (solid) Z.=1.5 and (dashed) Z.;=2. The dots and squares are the corresponding GYRO results. (a), (b) GA standard case. (c), (d) hybrid

case.

2 kp, (i a2+ 3s)5)
R (2+3s)  1+9Zrwg\L, R 6
Ly 2 a2+3s kep, ’

+
R1+ % Zr.w)
(21)

where we neglected terms of order 1/Z% in Eq. (20). Here, o}
is wy normalized to c¢,/a. For the GA standard case, this
expression gives a/L,,.=0.58 for Z=6 and a/L,,.=0.67 for
Z=10, which are in excellent agreement with the values that
are obtained by keeping all the terms in the expression for
the impurity flux (here we used ¥=1.2 and wy=0.2). Equa-
tion (21) shows that for higher impurity temperature gradient
or higher kgp, the zero-flux impurity density gradient is
lower, a trend which is in good agreement with our numeri-
cal results.

In the approximate analysis above we assumed the un-
stable mode frequencies and growth rates to be constant, as,
for the same set of parameters, they do not show a strong
dependence on the charge number or impurity density. How-
ever, if, for instance, the inverse electron density scale length
alL,, or the temperature ratio 7; are changed, the unstable
mode frequencies and growth rates will also change and the
zero-flux impurity density gradient will be affected by that,
especially for low Z when the effect of thermodiffusion can-
not be neglected. This means that in scenarios with more
peaked electron density profiles or strongly differing
electron-to-ion temperature ratios, the zero-flux impurity
density gradient is expected to be different from that in sce-
narios with flat density profiles or if 7;=1. An indication of
this can be seen by comparing the hybrid case with a/L,,
=1.5 with the GA standard case with a/L,,=1. The hybrid
case leads to a higher normalized growth rate, and, due to the

terms proportional to 1/(1+%7) in the expression for R/L,_,,
this leads to a slightly larger R/L,, . for Z=6. R/L, . for
Z=10 is the same in these two cases because for higher Z,
the effect of the terms proportional to 1/(1+47) is reduced.

C. Collisionality scaling

Previous work noted that collisions do not affect the im-
purity fluxes signiﬁcantly.3 The results of the GYIMES model
confirm this. In Fig. 5, it is shown that the unstable mode
frequencies are slightly decreasing with increasing collision-
ality but the growth rates are almost independent of colli-
sionality in both the GA standard and hybrid cases. The ef-
fect of collisions on the impurity flux only enters through the
eigenfrequency, which means that the impurity flux is only
very weakly dependent on collisionality. This is in contrast
to the very sensitive dependence of the electron particle
flux on collisionality, for which, in general, a sign change
from inward to outward is expected at very small
collisionalities." 20!

V. CONCLUSIONS

In this paper we presented a semianalytical model for
impurity transport driven by electrostatic turbulence. The
model does not rely on expansions in the smallness of the
magnetic drift frequencies, and includes collisions modeled
by a Lorentz operator. By assuming large aspect ratio, low
beta, toroidal symmetry, circular cross section, and weak col-
lisionality, and assuming a ballooning eigenfunction for the
electrostatic potential, analytical expressions can be derived
for the ion, impurity, and electron perturbed densities and the
quasilinear fluxes. The semianalytical character of the model
eases the interpretation of experimental and simulation re-
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FIG. 6. (Color online) (a) Absolute value of the trapped electron distribution function as a function of the trapping parameter « for f,=0.18, y=—1+0.2i, and
®p=0.6. Solid (black) line is the numerical solution of Eq. (5), dashed (red) line is the boundary layer solution from Eq. (11), dotted line is Eq. (11) using the
asymptotic value of the elliptic integral K(«) for k=1 (K(x)=1n ©/4) in the exponent, and dot-dashed (blue) line is Eq. (11) using a constant approximation
for K(x)=2 in the exponent. Thin lines are for #=0.01 and thick lines are for #=0.1. The dot-dashed line approximates the full numerical solution very well
for all collisionalities and this is used in the calculations. (b) Absolute value of the collisional part of the «-integral of the perturbed electron distribution
function: (solid) f(l)K(K)<¢>exp[(K— I)GK(K)/(ZH)]dK; (dotted) 4/3[1 +(i4fs/5)]f(l)exp[(;<— 1)/\nldx; (dashed) (4/3)[1+(i4f,/5)]Vn. The parameters are the

same as in (a).

sults. In this paper, we study only ITG turbulence dominated
cases, but the model is suitable for trapped electron mode
turbulence as well.

For moderate or high impurity charge number Z> 10,
the eigenfrequency and stability boundary are very weakly
affected by the increasing impurity charge for constant effec-
tive charge, even for a significant fraction of impurities in the
plasma, and are approximately equal to the corresponding
quantities in a pure plasma. For lower impurity charge, the
effect of the impurities influences the eigenfrequency and
thus the stability boundary significantly if the amount of im-
purities is not too small.

If the mode is far from marginal stability, the effect of
increasing charge number and density affects the growth
rates and mode frequencies only weakly. Furthermore, the
impurity particle flux is only very weakly dependent on the
charge number. The normalized impurity flux is reduced with
increasing charge number if Z is kept constant, but that is
an artifact of the reducing impurity fraction n./n,~ 1/Z°.
The impurity flux changes sign from inward to outward at
approximately the same value of a/L,, independently of Z,
Zt, and many other plasma parameters. This has been noted
previously,5 but here we also derive an approximate analyti-
cal expression for the zero-flux impurity density gradient
R/L,,. using the analytical expression for the perturbed im-
purity density. This is useful to gain better understanding of
the parametric dependencies of R/L,,.. We find that colli-
sions do not affect the mode frequencies, growth rates, and
impurity fluxes significantly, in agreement with previous
results.”

The results of the impurity transport model presented in
this paper agree well with quasilinear GK simulations with
GYRO. It includes some effects that previously have been
neglected in analytical calculations, for instance, collisions
and magnetic drifts are treated with more accuracy than in
other existing semianalytical models, but it is still simple
enough to ease the interpretation of certain physical effects,
as we illustrated with the approximation for the zero-flux
impurity density gradient. Due to its simplicity, it is straight-

forward to extend it by including several impurity species or
include it in transport simulations. However, due to the
model electrostatic potential used in the calculations, reliable
quantitative predictions can only be obtained in the moderate
shear region.
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APPENDIX: DERIVATION OF THE PERTURBED
ELECTRON DENSITY RESPONSE

The perturbed electron density response is proportional
to

o 1
f 8eod’v =4\'26J v’dv J K(0)geod, (A1)
0 0
where, using the solution from Eq. (11), g.0=&outer(]
—exp[—(1-k)\iiK(x)/#]) and the identity

[

E(k) + i%[(ZK— DE(k)+ (1 - k)K(k)] (dk

4( .4f.;)
=—{1+i—=],
3 5

the k-integral can be evaluated. To make analytical progress
we will approximate the elliptic integral in the exponent of
g0 With a constant value K(x)= [ (I)K(K)dK=2. To show the
validity of this approximation Fig. 6(a) compares the abso-
lute value of g, as a function of the trapping parameter «
from a numerical solution of Eq. (5), and the boundary layer
solution from Eq. (11) for two collisionalities (#=0.01 and
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p=0.1). We show also with dotted line the solution from Eq.
(11) using the asymptotic value of the elliptic integral K(x)
for k= 1 (K(k)=1In »/4) in the exponent, and the dot-
dashed line is Eq. (11) using a constant approximation for
K(k)=2 in the exponent. The dot-dashed line approximates
the full numerical solution very well for all collisionalities
and this is used in our calculations. Interestingly, the ap-
proximation using the asymptotic value of the elliptic inte-
gral breaks down for large collisionalities. The reason for
this is that the logarithmic behavior of the elliptic integral is
only exhibited very close to k=1, and therefore, for larger
(experimentally relevant) collisionalities, when the width of
the boundary layer is larger, the logarithmic value is not a
good approximation to the elliptic integral. Using the ap-
proximation {wp,)=wpy/2 and g.0=gouer (1—exp[—(1
—K) w%]) the k-integral becomes

1 T

4 - ol 4

fK(K)geOdK—"‘— ej}’feo( b )(1+i—f’)
0 . \w—wpy/2 5

e
X{1=A|————|,
y(2 - @p)

where @p=wpo/ @ denotes the normalized magnetic drift fre-
quency. To obtain an analytical expression for the collisional
part of the integral in Eq. (A2), we approximated | K (k)
X (pyexpl(k—1)/ \in]dkz f(l)K(K)(qS)dKf(l)exp[(K— 1)/\nldxk
=4/3(1+i4f,/5)\n, with n=i?/y(2—&p), and after integra-
tion retained terms only to the lowest order in #"?. A com-
parison with the numerical solution confirms that the ap-
proximate expression (A2) agrees very well with the correct
value. In Fig. 6(b), we illustrate the good agreement between
the full integral and its approximation by showing with solid
line the numerical solution of the collisional part of the
k-integral from Eq. (Al), including the «-variation in the
averaged electrostatic potential JoK () prexpl(x
-1)VyK(k)/(2n)]dk, with dotted we show 4/3(1
+i4fs/5)f(l)exp[(K— 1)/ \r’;]dk, and with dashed line 4/3(1

(A2)
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+i4f/ 5)\"’2. The latter is the approximation we use to obtain
the expression in Eq. (A2).
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