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Abstract

The  purpose  of  this  Master's  thesis  is  to  provide  a  feasibility  study  of  encapsulating  and 
transmitting data from an FPGA for transfer across Ethernet, with the encapsulation done with a 
microcontroller. The data rate required is 53 Mbit/s, specified by the MOST50 standard which will 
be the source of the data in the final product. In addition to the streaming capabilities, basic control 
functionality should also be implemented. This thesis was initiated by FYI Communication who 
already  has  a  product,  called  MCBuster,  whose  functionality  and  performance  should  be 
enhanced. 

It was decided that neither TCP nor UDP would be able to fulfill the transport layer requirements 
for the project. Therefore, a custom protocol called FYI CETP was developed on top of UDP. For 
performance reasons, the entire network protocol stack was developed from the ground up.

To transfer data from the FPGA to the microcontroller fast enough, a parallel interface was used, 
called External Peripheral Interface in the Luminary LM3S9B96 microcontroller used. The FPGA, a 
Lattice XP2-8, is interfaced in much the same way as an external memory would be, with separate 
data and address buses.

For the receiving end of the data stream, a heavily threaded logging and control application called 
PCDump was developed using Java.

The project has fulfilled this goal with a broad margin, achieving a sustained transfer rate of 73 
Mbit/s.
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Abbreviations

1 Abbreviations

ARP Address Resolution Protocol
BGA Ball Grid Array
CAN Controller-Area Network
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CSMA/CD Carrier Sense Multiple Access with Collision Detection
DDR Double Data Rate
DMA Direct Memory Access
EEPROM Electrically Erasable Programmable Read-Only Memory
EMAC Ethernet MAC
EMAC PHY EMAC Physical Layer
EPI External Peripheral Interface
FIFO First In First Out
FPGA Field-Programmable Gate Array
FYI CETP FYI  Custom Ethernet Transmission Protocol
GUI Graphical User Interface
IDE Integrated Development Environment
IP Internet Protocol
JTAG Joint Test Action Group
LAN Local Area Network
MAC Media Access Control
MIPS Million Instructions Per Second 
MOST Media Oriented Systems Transport
NDP Neighbor Discovery Protocol
OS Operating System
OSI Open Systems Interconnection
OTG On The Go
PCB Printed Circuit Board
PLL Phase Lock Loop
RTOS Real-Time Operating System
SPI System Packet Interface
SRAM Static Random Access Memory
SWD Serial Wire Debug
TCP Transmission Control Protocol
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Abbreviations

TQFP Thin Quad Flat Package
UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
USB Universal Serial Bus
VHDL Very high speed integrated circuit Hardware Description Language
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Background

2 Background

What the modern automotive industry designs is a highly integrated and complex product with 
many subsystems that need to interact to a certain degree. For the multimedia and infotainment 
systems that are becoming more and more prevalent, the MOST standard was designed. The first 
generation MOST standard specifies a transmission speed of "circa 25 Mbit/s" (for the MOST25 
standard). The more recent MOST50 standard specifies a speed of "circa 50 Mbit/s", and a third 
standard, MOST150 calls for speeds of 150Mbit/s (MOST, 2008, page 24, page 197).

FYI Communication already has a MOST analyzer  on the market,  called 'MCBuster',  which is 
based around an FPGA analyzer core. This analyzer is mostly used when new products using the 
MOST bus are developed. This device translates from the MOST bus to CAN, RS-232 and USB 2.0, 
but  only in  the  lower  speed mode 'Full  Speed'  (limited to  12  Mbit/s).  However,  the  available 
downlink  speed  from  the  MCBuster  through  these  interfaces  is  lower  than  the  MOST25 
specification it was designed for. This is not a problem for the device itself as it filters messages 
and only delivers select parts of the MOST stream downstream.

Since the release of the MCBuster, the MOST50 specification has been developed. This, in addition 
to the desire to be able to analyze all of the data on the MOST bus, is what has lead to this thesis.

The company's desire is to be able to transmit the entire MOST50 datastream downlink through 
Ethernet. In addition to this, it is desired for the next-generation MCBuster to be able to actively 
send data on the MOST bus. Currently, there are no other products on the market operating at this 
speed. This, combined with the challenge of reaching the high performance needed, makes this 
project viable as a Master's thesis.

2.1 Purpose

The goal of this Master's thesis work is to develop a proof of concept for a transmission system 
from an FPGA to a PC operating at more than 53 Mbit/s, according to specification from FYI, as 
well as 500 kbit/s upstream for control messages.

An actual MCBuster will not be used as the source for the data but rather a simpler test source will 
be developed. This is partly due to the proprietary nature of the current MCBuster and partly due 
to ease of use - it was considered easier to design a tester from scratch rather than modify the 
MCBuster for MOST50 operation and connect it to a MOST50 test bed.
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Background

To  accomplish  this  goal,  FYI  wanted  to  use  a 
microcontroller for future extensibility and due to the 
availability of well-documented and thoroughly tested 
interfaces  on  the  microcontroller.  Implementing  the 
design in a microcontroller is also considered to have 
a  shorter  development  time  compared  to  other 
options. Thus, the overall layout of our work will be as 
shown in Figure 1.

2.2 Delimitations

The main delimitation of this project has already been 
mentioned - not using the actual MCBuster as a source 
for the data,  but instead using a much simpler data 
source.

Another delimitation is that we will only attempt to 
implement  the  snooping  MOST50  part  –  actively 
sending  MOST25  data  is  beyond  the  scope  of  this 
thesis.

Data will only be logged or discarded, not handled by the PC in any other way.

4

Figure 1: System overview

From user:
Command

request

PC: PCDump

Microcontroller

FPGA

To user:
Feedback – Speed,

Lost data, etc.

Ethernet

EPI



Theory

3 Theory

This chapter will give a brief overview of some of the topics covered in this report. It is assumed 
that the reader has some previous experience with microcontrollers and FPGA's.

3.1 Ethernet

Ethernet is a family of Local Area Network (LAN) technologies. The IEEE 802.3 standard defines 
Ethernet using the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol 
(Leon-Garcia & Widjaja 2004, 384-387  and page 427-428). This standard was first issued in 1985 but 
is still being revised occasionally. The protocol covers the physical layer and the data link layer of 
the Open Systems Interconnection (OSI) model. It is placed in the link layer of the Internet Protocol 
Suite. CSMA/CD basically works as follows: 

Carrier Sense: First listen until the channel is not busy.
Multiple Access: When the channel is not busy start sending the data.
Collision Detection: If a collision is detected the transfer is aborted. Wait a quasi-random 

time and try to send again.
If a collision is not detected after 2 times the longest propagation delay time of the network, the 
transfer continues until all data is sent. 

The header consists of seven fields; preamble, start-of-frame delimiter, destination address, source 
address, length/type and data followed by frame check sequence. The header is 26 bytes excluding 
the  payload  data.  The  payload  data  may  be  a  maximum  of  1500  bytes  in  common 
implementations. 

Different  Ethernet  standards  support  different  speeds;  10Mbit/s  Ethernet,  Fast  Ethernet 
(100Mbit/s),  Gigabit  Ethernet,  10-gigabit  Ethernet  and even 40  and 100 gigabit  Ethernet  (IEEE 
802.3, last updated 2010).

3.2 IP

The Internet Protocol (IP) is the Internet layer protocol in the Internet Protocol Suite and is referred 
to  as  the  network  layer  in  the  OSI  reference  model.  The  purpose  of  the  protocol  is  to  move 
datagrams through an interconnected set of networks (DOD Standard Internet Protocol, 1980, page 
6). It carries, among other information, the Internet address and a fragment offset for large packets. 
The version that is mostly used is IPv4 but the use of IPv6 is increasing.

The IP header consists of at least 12 fields plus options, which comes to a minimum length of 20 
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bytes. The fields are: version, IP header length, type of service, total length, identification, flags, 
fragment offset, time to live, protocol, header checksum, source IP address, destination IP address, 
options and padding.

3.3 UDP

The User  Datagram Protocol  (UDP) or,  alternatively,  Universal  Datagram Protocol,  is  a  simple 
protocol in the Internet Protocol suite (Postel. J, 1980, page 1-3). UDP is part of the transport layer. 
The header consists of four fields: source port, destination port, length and checksum, each of 2 
bytes  size.  The  protocol  does  not  perform  any  type  of  handshaking  between the  sender  and 
receiver. This means that data may appear malformed, lost or out of order during transmission 
without  being  noticed.  The  protocol  assumes  that  the  error  checking  is  performed  by  the 
application. Compared to TCP, UDP is used when it is preferable to loose data instead of resending 
it. This may be the case in applications that have higher demands on speed than on totally correct 
data packets, and where this loss can be tolerated, for example in streaming media.

3.4 ARP

The Address Resolution Protocol (ARP) is a link layer protocol of the Internet Protocol Suite. This 
protocol is used to determine a lower layer address from a higher layer address (Plummer. C, 1982, 
page  1-5).  For  example,  ARP is  used to  retrieve  the  Ethernet  MAC addresses  when the  IPv4 
address is known. ARP is used for IPv4 while Neighbor Discovery Protocol (NDP) is used for IPv6.

The header consists of 9 fields with a total size of 28 bytes. The fields are: hardware address space, 
protocol  address  space,  byte  length  of  each  hardware  address,  byte  length  of  each  protocol 
address, operation code (opcode), hardware address of sender of this packet, hardware address of 
target of this packet and protocol address of target.

When a MAC address is unknown a user may send a request (opcode = request) using ARP, asking 
a specific IP address what its MAC address is. The owner of the IP address – if it exists – will send 
a reply (opcode = reply) with the corresponding MAC address. The pairs of IP address and MAC 
address will be saved in a table used by the ARP protocol. If the pair already is in the table it is not 
necessary to send a request to get the MAC address. Once the MAC address is known it can be 
used for e. g. sending IP packets over Ethernet.

3.5 Direct Memory Access

Direct Memory Access (DMA) is a method used in processors to do reads and writes to memories 
and peripherals without using the CPU for every memory access. This has the advantage that a 
DMA transfer can run in the background while the processor is free for other operations. The CPU 
is used to set up a transfer and to start it. When it is finished it will generate an interrupt. DMA is 
useful in applications with high demands of performance such as data streaming (Null & Lobour, 
2006, page 336).

In  addition  to  simple  copy  transfer  modes  used  with  DMA,  a  more  advanced  mode  called 
scatter-gather is available. When using DMA with normal transfer mode it is only possible to set 
up starting address and size of the transfer. With scatter-gather, it is possible to send data to and 
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from several memory and/or peripherals' addresses. 

3.6 Non-blocking Reads

The microcontroller LM3S9B96 that is used in the project supports non-blocking reads when using 
the  external  peripheral  interface.  A normal  peripheral  read  will  stall  the  processor  until  the 
memory access is finished. On the contrary a non-blocking will read run in the background until it 
is finished after it is configured and started (Luminary Datasheet, 2009, page 356-357).

3.7 Watchdog Timer

A Watchdog timer is a device used to reset the processor if the program hangs  (Kamal. R, 2009, 
page 37-38). A counter running in the background of the program is reloaded at appropriate times 
when the program works normally. However, if the program gets stuck, for example in a while 
loop, the counter will not be reloaded. When the counter reaches 0 a first interrupt will occur. This 
can, for example, be used to softly (without reset) restore the system to a working state or to save 
information into non-volatile memory for storage through a reset. The counter is then reloaded 
with a value. If a second interrupt occurs it may generate a software reset, depending on if this 
feature is enabled or not.

3.8 MOST

The Media Oriented Systems Transport (MOST) is  an automotive bus standard for media and 
infotainment data (MOST, 2008, page 23-25). The bus differs from other standards, e. g. CAN, in 
the high speed. MOST25 and MOST50 run at speeds of 25 Mbit/s and 50 Mbit/s. A new version 
called MOST150 will run at 150 Mbit/s. The standard defines all seven layers of the OSI model. The 
MOST cooperation sets the standard and consists of 16 car makers and about 60 suppliers. It is not 
an open standard.

3.9 Method

The  project  work  was  divided  into  five  parts.  The  four  first  are  centered  around  one 
communication direction between two modules, and the last is the complete system integration. 
Each of the phases are described briefly here. For a more complete description, please refer to the 
following sub-chapters.

3.9.1 Phase one

In the first phase, the main development of the communication stack in the microcontroller was 
done. This included implementing Ethernet, ARP, IP, UDP and the proprietary protocol FYI CETP 
(Custom  Ethernet  Transmission  Protocol).  In  addition  to  this,  the  microcontroller  was  able  to 
stream dummy data to the PC application.

3.9.2 Phase two

The  second  phase  included  adding  control  mechanisms  that  allowed  the  PC  to  control  the 
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microcontroller. For example, this can be used to stop and start the microcontroller's stream.

3.9.3 Phase three

In the third phase, the PCB for the FPGA was developed. After this was tested and fully functional, 
it was connected to the microcontroller. At the end of this phase, the microcontroller could read 
data from the FPGA. Because the same buffers were used for reading data into the microcontroller 
as those used for sending data to the PC, data could also be sent from the FPGA all the way to the 
PC in this phase.

3.9.4 Phase four

The task in the fourth phase was to send instructions from the microcontroller to the FPGA.

3.9.5 Phase five

The final phase saw the integration of all previous phases. The new functionality implemented was 
being able to send commands from the PC to control the FPGA. After this was accomplished, code 
optimizations were conducted to improve performance, and the entire system was put through a 
rigorous testing to nail down any remaining bugs.

3.10 Feasibility

Before any of the project work was started a feasibility study was conducted to ensure that the 
system was possible to design according to the specification.

All of the applicable microcontrollers had a clock frequency of approximately 80 MHz and could 
execute most instructions in a single cycle, or in some cases slightly more. For the calculations, it 
was assumed that the processor could execute 80 million instructions each second.

According to the specification, at least 50 Mbit of data need to be transmitted each second. This is 
equal to 6.25 MB of data per second. A single UDP datagram can contain 1468 bytes (after 4 bytes 
are removed for the proprietary FYI CETP header). Thus, one datagram needs to be sent every 
224 µs. With 80 million instructions per second, this gives 17920 cycles per datagram. Broken down 
to cycles per sent byte, this gives 12.2 cycles per byte. This shows that the requirement is quite 
strict but possible to achieve.
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4 System description

This chapter will describe how the system was implemented. The design choices that were made 
will be discussed in chapter 5.

4.1 Overview

The implemented system is at first glance quite simple. There are three major components, as can 
be seen in  Figure 1 on page  4 – the PC with PCDump, our logging and control application; the 
microcontroller  which  requests  data  from  the  FPGA and  encapsulates  it  for  transport  across 
Ethernet; and the FPGA which produces data. A user (be it a person or another application) sends 
requests that control what the microcontroller does. The microcontroller in its turn controls the 
functions of the FPGA.

4.2 PCB Design

The PCB that was designed is as simple as possible with the shortest possible trace lengths from 
microcontroller  to  FPGA in  order  to  reduce  noise.  This  desire  resulted  in  a  sandwich-like 
construction.

The  PCB  includes  the  FPGA and  three  different  voltage  regulators  to  provide  the  necessary 
voltages  (1.2V,  2.6V  and  3.3V).  Power  to  these  regulators  is  drawn  from  a  5V  rail  from  the 
microcontroller PCB, eliminating the need for a separate power supply. There is a button for reset, 
LEDs for output indication, and a power supply monitor to provide FPGA resets on power dips 
and power-up. The PLL of the FPGA requires an extra stable power source, which necessitated an 
additional, well-filtered rail. In addition to this, there are plenty of decoupling capacitors. A crystal 
along with the same clock generator as on the original MCBuster is used.

A total of five pin headers of different sizes are provided: One is used to allow the connection of 
external power supplies and selective connection of the on-board ones to the rest of the circuitry. 
Two  are  used  for  configuration  options,  and  the  last  two  headers  are  provided  for  different 
programming connectors. Finally, there is a female pin header connector on the reverse side which 
connects to the microcontroller .

In addition to these basic functions,  a DDR memory was included at the request of the thesis 
initiators. Using a DDR memory also requires matching resistors. These were chosen according to 
common design practice. Additional matching resistors were placed on the traces leading to the 
microcontroller connector.
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The  schematic  and  PCB  layout  was  created  using  Eagle  4  Professional.  To  provide  a  stable, 
low-impedance power supply across the entire board, especially to the DDR memory, a four-layer 
PCB was used. This PCB has a split 3.3 / 2.6 V power plane and a GND plane as internal planes, 
with the outer layers used as signal routing layers.

4.3 FPGA

The  FPGA used  is  a  LFXP2-8E-5TN144C  in  a  TQFP144  packet  from  Lattice  Semiconductor, 
hereafter referred to as the XP2. 

The PCB provides two separate clocks to the device, but the application is clocked with a third 
clock, the EPI clock from the microcontroller that is provided with the EPI bus, running at half the 
microcontroller core, thus 40 MHz. This setup has worked fine without any known issues.

4.3.1 The FPGA Code

The  FPGA  code  is  used  to  simulate  data  flow  to  the  microcontroller  and  some  simple 
communication between the devices. Two modes of operation is supported: A continuous stream 
of data, and a peaks and valleys case when there is  no data intermittently.  The data output is 
simply the value of a counter that is incremented after each write.

The  I/Os  of  the  application  is 
clock,  reset,  epi_data  (16  bits), 
epi_adress  (11  bits),  epi_iRDY, 
epi_rd and epi_wr. See  Figure 2. 
Five LEDs were also used during 
debugging.  Among  the 
interesting  internal  signals  are: 
counter,  counter_step  and 
irdy_trig. The signal counter is 1 
byte wide and holds the value of 
the  counter  (integer  values 
0-255). The signal counter_step is 
1  byte  wide  and  holds  the 
increment  value  of  the  counter 
(0-255). At reset the counter is set 
to 0 and counter_step is set to 1. 
irdy_trig  is  used  to  trigger  a 
pause  in  the  data  flow, 
simulating an out-of-data condition.

Data requests and command messages to the FPGA are controlled by the epi_rd and epi_wr enable 
signals. See Figure 3.
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Data  is  sent  to  the  bus  when  the 
microcontroller sends a request by setting 
the  epi_rd  signal  high.  The  data  that  is 
written  to  the  data  bus  is  the  value  of 
counter  and  counter  plus  counter_step. 
Since the data bus has a width of 2 bytes 
and counter is only 1 byte wide, two values 
are  written  simultaneously.  After  each 
write,  the  counter  is  increased  with  the 
chosen value of counter_step multiplied by 
2.  The  counter  simply  wraps  when  it 
reaches a value above 255.

Setup  commands  are  sent  to  the  FPGA 
when  the  microcontroller  sets  the  epi_wr 
signal high. The command that was sent is 
read  from  the  epi_address  bus,  and  if 
applicable,  a  possible  value  of  the 
command  is  read  from  the  epi_data  bus. 
The used commands are: Set counter and Set counter increment. Set counter sets the value of the 
counter signal. Set counter increment sets the value of the counter_step signal.

The epi_irdy output is an enable signal for the EPI controller in the microcontroller. The signal has 
to be high for the EPI controller to be allowed to read and write. 

The  code  includes  a  state 
machine  that  runs  in  parallel 
with  the  write  and  read  enable 
signals  which  sets  epi_irdy  low 
for  a  given  time.  See  Figure  4. 
This  pause  is  triggered  when 
irdy_trig goes high. The length of 
the  pause is  set  by the Timeout 
signal.  The  signal  Pausecnt  is 
used  as  a  counter  during  the 
pause. This has been used during 
testing to simulate that the FPGA 
has  run  out  of  data  which 
disables  the  read  and  write 
functionality  of  the  EPI 
controller. In the end system used for maximum speed testing the pause is never triggered. 

4.4 Interface: FPGA to microcontroller

The interface  between the  FPGA and microcontroller  consists  of  32  pins,  as  seen in  Figure  5. 
Among these are 16 data pins and 11 address pins.  Two pins are enable signals from the EPI 
interface: one for read and one for write. One pin is an enable signal which is an input for the EPI 

11

Figure  3: The EPI read and write enable signals control  the  
application. A read enable write data to the bus. A write enable  
read setup commands from the microcontroller

Wait for read or 
write enable

Write data to bus
Update counter

epi_rd = 1 epi_wr = 1

epi_rd = 1 
or epi_wr = 

1

Set step = 1
Set counter = 

1 

Set counter Set counter step

Set step = 
1

Set counter = 1

Figure 4: The statemachine was just to simulate when the system is out of  
data. The irdy signal goes low after a given time during a given time

Idle
epi_irdy = 1

Pause
epi_irdy = 0
Pausecnt++

irdy_trig = 
1

irdy_trig = 
0 Pausecnt >= 

Timeout

Pausecnt < 
Timeout



System description

controller. The EPI controller also has the EPI clock as an output. The last pin is not used but could 
be configured as a general purpose IO pin or as an EPI Frame pin.

4.5 Microcontroller

The microcontroller  that  is  used is  a  Stellaris  LM3S9B96 microcontroller  from Luminary/Texas 
Instruments. Among its most important features are:

Processor core: ARM Cortex -M3
Core frequency: 80 MHz, resulting in approximately 100 DMIPs
External memory interface: Up to 32-bit parallel bus
SRAM: 96 KB
Flash Memory: 256 KB
EMAC: Yes, Ethernet MAC PHY
CAN: 2 controllers
USB: 2.0 OTG/Host/Device
UART: 3
SPI: 2
DMA: Yes
DEBUG Interface: JTAG and SWD
Package: 100-pin LQFP
Temperature Range: Industrial (-40° C to +85° C)
OS: FreeRTOS supports ARM cores.
Sleep mode: Yes
Availability: The microcontroller was planned to be in production in 

March 2010,  but  has been delayed. A development board with a microcontroller of 
revision B was used. It has some bugs that should be removed in later revisions.

The  development  board  used  is  the  Stellaris  LM3S9B96  Development  Kit.  Its  most  important 
features are:

Dedicated connector to Ethernet MAC+PHY, USB, CAN, SPI and UART
1 MB Flash Memory
MicroSD card slot
USB cable for debugging (on-board JTAG controller)
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4.6 Microcontroller C program

The C program reads data from the EPI interface into a buffer, 
writes  it  with  DMA  to  the  EMAC  (Ethernet  Media  Access 
Controller) and sends it over Ethernet. The program also replies to 
ARP  requests,  reads  messages  from  the  PC  and  sends  setup 
commands to the FPGA. 

The data is handled in the size of full Ethernet frames, excluding 
the header information.  This  is  1468 bytes.  A buffer with three 
slots of data is used to enable writing and reading simultaneously. 
Figure 6 Is a simplified flowchart showing how the main program 
works.  The stream flag must  be set  for  the  program to keep a 
stream going. If a slot is empty – start an EPI read into this slot. If 
a slot is non-empty – start a Ethernet write from this slot. If a read 
was started, calculate the number of read bytes. See Appendix A.i 
for a more elaborated flowchart.

4.6.1 Initialization

At  startup,  initialization  of  the  microcontroller  and  all  the 
peripherals  units  will  occur.  The microcontroller  sends an ARP 
request to the target  IP to get  its  MAC address.  After the ARP 
response has been received, the programs main loop starts.  See 
Figure 6.

4.6.2 EPI Read

If the FPGA has any data the epi_irdy signal  will be set high. If 
there is an empty slot, an EPI read is started. Non-blocking reads 
are used which run in the background while other processes are 
performed. One full frame of data is read unless a timeout occurs. 
This is tested in “Calculate size” in the above figure. If a timeout 
has  occurred it  means  that  the  FPGA has  run out  of  data  (the 
epi_irdy signal has gone low). If this happens the running read 
stops and the number of read bytes will be calculated.

4.6.3 Ethernet Write

After an EPI read has started, an Ethernet write starts if there is an 
non-empty slot in the buffer. If the slot is full, DMA will be used to 
write to the EMAC. During the DMA interrupt the packet is sent. 
DMA runs in the background while the program continues with 
other processes. If the packet is smaller than full it means that the 
FPGA has run out of data. These packets are sent without DMA 
because it is easier and maximizing performance is not necessary since there is no more data. After 
each write the packet counter in the FYI CETP header is updated.
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Figure  6:  A simplified  flowchart  
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4.6.4 Incoming Ethernet packets

When an Ethernet packet is received an interrupt is triggered. The program handles ARP requests 
and commands from the PC. See chapter 4.7 for more details of the communications between the 
microcontroller and the PC.

4.6.5 ARP request

During  testing,  it  was  found  that  the  target  PC  seemed  to  forget  the  MAC  address  of  the 
microcontroller, thus sending out a new ARP request. The program will identify this incoming 
packet and reply to it between “Start EPI read” and “Write slot non-empty?” in Figure 6.

4.6.6 PC commands

The  program  handles  commands  as  specified  in  chapter  4.7.  If  the  program  receives  a  setup 
command from the PC it will be performed after “Calculate Size” in the above flowchart, Figure 6. 
The command is sent to the FPGA with the EPI controller. 

4.6.7 Watchdog timers

The program has some while loops that are used as wait statements. For example, there is a wait 
for  previous  DMA transfer  to  finish  and a  wait  for  previous  Ethernet  Transfer  to  finish.  The 
program should theoretically never get stuck but this cannot be guaranteed. Therefore, a watchdog 
timer is used to reset the program after a possible timeout. The timeout is set to 8 seconds which is 
the time it takes to fill a memory of 50 MB at the speed of 50 Mbit/s. Before reset, the stream flag 
and the packet counter will be saved in a non-volatile memory, in this case Flash. Furthermore, a 
watchdog flag is set and saved. At restart this information will be read from Flash. If the watchdog 
flag is set, the packet counter and stream flag are updated with the values stored in flash. An error 
message is sent to the PC before the main loop resumes. 

This functionality implies that up to the three frames stored in the microcontroller may be lost.

4.7 Interface: PC to microcontroller

The interface between the microcontroller and the PC was specified to be Ethernet and to be able to 
run at 53 Mbit/s. The actual implementation was not specified. After finding both TCP and UDP 
unsuitable, a new custom protocol was developed, FYI CETP.

FYI CETP is used on top of UDP and provides two different modes: COMMAND and STREAM. 
COMMAND mode is used to control the microcontroller from the PC, while STREAM mode is 
used  to  signify  a  stream from  the  microcontroller.  The  STREAM  mode  allocates  16  bits  as  a 
counter,  thus,  65536 packets can be sent before wrapping this counter.  This counter is  used to 
identify that no packets have been dropped, as well as to try to sort packets that have arrived out 
of order. One bit in the header is used as an inline flag to indicate that a COMMAND has been 
received with inline priority.

Basic transmission control is provided in COMMAND mode by using an ACK-ACK scheme. The 
source sends a command. When the target correctly interprets this command, it replies with an 
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ACK. The source receives this ACK and replies with its own ACK. Not until the target receives this 
ACK is the command actually performed. If, for some reason, either side is unable to understand 
the received command, it replies with a NACK, which prompts the other side to re-send its last 
command (up to a maximum of three times).

The three commands that can be sent to the microcontroller are COMMAND START which will 
start a stream, COMMAND STOP which will  stop a running stream, and COMMAND SETUP 
which will  forwarded setup data to the FPGA. The commands can be sent with four different 
priorities that indicate how the microcontroller should handle them.

The microcontroller will send the COMMAND ERROR to the PC if it has hanged and generated a 
watchdog interrupt.

For a more detailed description of the protocol, please refer to Appendix B.

4.8 PC Application

The PC application developed is as simple as possible, since it is not really in the scope of the 
project but rather a requirement for the testing of the system. The application, called PCDump, is 
developed using Java and relies on a module-based producer-consumer scheme with one worker 
thread performing a more or less complicated task in each module. Between the modules, FIFO 
queues are used to compensate for peaks in incoming data rate and operating system scheduling 
effects.  For  an overview of  this  system, please refer  to  Figure 7 below, and its  explanation in 
chapter 4.8.1.

In short, PCDump communicates with the microcontroller according to the user's requests, checks 
the incoming data stream for out-of-order data and missing data, as well as measures the stream's 
speed.

PCDump is capable of sending all defined FYI CETP commands and also some unsupported ones 
in order to provide a debug tool for the microcontroller and the communication protocol that is as 
complete as possible. For more information, please refer to chapter 4.7.

4.8.1 Detailed description

In Figure 7, each module is shown as a shape, and the buffers between them are arrows.

The UDP in module listens to the network interface for incoming datagrams to the specified port 
(30000). This data is stored in raw form together with an arrival time stamp. Due to the high speed, 
the UDP receive buffer size in the receiving computer has to be increased. The received data is 
interpreted  according  to  the  FYI  Custom  Ethernet  Transmission  Protocol  (CETP)  in  the  next 
module.

The data stream is then split and filtered to produce one stream of COMMAND datagrams and 
one stream of STREAM datagrams.

The STREAM stream is passed through the reorderer module,  which attempts to organize the 
packets in their proper order according to the FYI CETP header. Any missing data is also detected 
here. The resulting stream is then split and sent to a file logger module and to the timing module. 
The timing module calculates an average speed and passes this on to the graphical user interface 
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(GUI).

The  COMMAND  stream  is  delivered  to  the  command  module,  which  is  responsible  for 
maintaining  the  communication  standard  specified  by  FYI  CETP.  This  module  also  receives 
command requests from the GUI and reports communication status back to the GUI. The main 
output of the command module is the outgoing COMMAND datagrams, which are duplicated to 
on-screen logging and to the UDP out module, which is responsible for the actual transmission of 
the datagrams. The on-screen logging module also receives incoming COMMAND datagrams, and 
there is a file logger module to log all COMMAND packets to disk.
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Figure 7: The modules and buffers of the PC Application "PCDump"
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5 Design choices

There are not that many overall design choices in the project. Most were already outlined in the 
specification – such as using a microcontroller for the Ethernet encapsulation.  

The  other  possible  design  choice  envisioned  is  a  more  device-centered  design  where  all  the 
functionality  in  the  FPGA,  the  microcontroller  and  the  PC  is  developed  separately  and  then 
interfaced, as opposed to the used communication-centric design. The following sub-chapters will 
further describe the choices that were made in each of the parts of the system.

5.1 PCB and FPGA

The already existing product MCBuster has an FPGA from Lattice and it  is  desirable from the 
thesis initiators to also use the same family of devices in the future. The XP2 series are non-volatile 
and is the sequel to the XP series that are used in the MCBuster. The most natural is to use one of 
the  development  kits  for  the  XP2,  but  this  was  not  done.  Instead  a  custom  FPGA PCB  was 
developed.  There  were  four  major  reasons  for  this:  Signal  integrity,  available  connections. 
development kit availability and learning desire.

5.1.1 Signal integrity

For a safe, error-free communication between the FPGA and the microcontroller, shorter wires are 
always  better.  This  will  reduce  both  crosstalk  and  signal  reflection.  Using  any  of  the  FPGA 
development kits that were available would have meant using a ribbon cable of at least a couple of 
decimeters.  Building  a  custom  PCB  would  reduce  the  total  signal  path  length  to  below  one 
decimeter.(Johnson, M, 1993, pages 133)

5.1.2 Available connections

The EPI interface on the microcontroller uses 32 signals in different configurations. To maximize 
performance and flexibility, as many as possible of these need to be connected to the FPGA. None 
of the Lattice XP2 FPGA development kits found had enough available outputs. That would have 
necessitated an FPGA provider change and made the final project product require customization 
before use by the project initiator. (Lattice Datasheet, 2009, page 2-3)

5.1.3 Development kit availability

At the time of the project, a Xilinx Spartan3 development kit was freely available, as well as an 
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Altera Cyclone II. Not using one of these kits would have meant another economic investment 
from the project initiator.

5.1.4 Learning desire

The education leading up to the Master's thesis is quite theoretical. Gaining hands-on experience 
with  designing  and  using  actual  hardware  is  a  clear  benefit,  not  only  due  to  the  actual 
development but also in the insight as a user of the hardware.

These factors combined resulted in the development of the custom FPGA PCB. The cost of PCB 
manufacturing  as  well  as  the  components  was  comparable  to  the  cost  of  buying  a  new 
development kit.

The circuit schematic and the layout were designed using Eagle from Cadsoft. This was chosen 
because it was freely available for the project. 

5.1.5 FPGA tools

The tool used for designing the FPGA program was ispLEVER Starter from Lattice Semiconductor. 
This version is available for free and worked fine for the project. For synthesis, SynplifyPro was 
available as a free plugin to ispLEVER. ModelSim has been used as a simulation tool. This is one of 
the most widespread tool used for verification, and both the project members had used it before.

5.2 Interface: FPGA to microcontroller

The microcontroller provides 32 pins for the EPI interface. When deciding how to configure them 
the goal was to achieve high speed combined with an interface which is easy to use. The decision is 
mainly how many pins that should be dedicated to data or address. The specified transmission 
speed of the project is so high that the numbers of operations in the microcontroller should be 
minimized. therefore it is preferable to read as much data as possible during a bus access. The 
FPGA in the end product will always send whole bytes. In almost all cases will it also be an even 
number of bytes and it is easy to pad with one byte if necessary. This motivated the choice of a data 
width of 16 bytes. 

It is fairly easy to change this to 8 bytes if the end product frequently needs to read an odd number 
of bytes. However, doing this will effectively halve the EPI bus bandwidth, probably resulting in 
the system  not reaching the required 53 Mbit/s speed.

5.3 Microcontroller and development kit

The most important features for the microcontroller is that it should be able to handle speeds of 53 
Mbit/s downstream and 500 kbit/s upstream. It should also have some peripheral interfaces to 
Ethernet  and  the  FPGA.  Furthermore,  the  thesis  initiators  had  several  demands  on  the 
microcontroller features for later development of the product. The following specification was set 
up to fulfill this:

High performance in terms of speed.
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DMA and external memory interface.
As much embedded SRAM as possible.
As much embedded Flash memory as possible.
EEPROM
EMAC unit
CAN unit
UART interface
SPI unit
USB 2.0 unit
Non-BGA (or equivalent) package
Operate in industry temperature grade (-40 to +85 degrees)
The  microcontroller  should  also  have  a  processor  core  that  supports  an  open-source 

operating  system.  Source  code,  code  examples  and  forums  should  be  available.  A 
widely used microcontroller is preferred.

The microcontroller should have some kind of sleep mode to save power.
The microcontroller should be in production or soon in production.
The amount of embedded SRAM and Flash memory is set to as much as possible since it 

is very difficult to know how much is necessary before the implementation starts.

5.3.1 Development kit

The specification for the evaluation board is mostly concerned with the connectors and software 
environments  that  are  available.  The evaluation board should have connectors  for  at  least  the 
following:

External memory interface
EMAC
CAN

Other peripherals that are desirable but not necessary:

UART
SPI
USB
CPLD/FPGA
Memory card, such as Compact Flash or MicroSD
Common programming interface
Common debug interface

The cost of both microcontroller and development kit was discussed with FYI. A free or not too 
expensive IDE should be available for the development kit. A good support structure, like an active 
forum, must exist.

Approximately 30 manufacturers of microcontrollers were examined. This was narrowed down to 
three  final  candidates  that  fulfilled  the  specification,  see  Table  1 below for  a  matrix  of  their 
features.  Their differences were fairly small in terms of  speed and size of memory (Luminary 
Datasheet., 2009, page 44-46 ) (ST Datasheet, 2009, pages 11) (Freescale Datasheet, 2009, page 3). 
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After  looking  at  the  development  boards,  the  Stellaris  LM3S9B96  microcontroller  from 
Luminary/Texas Instruments was chosen. The disadvantages of the microcontroller is that it does 
not have an on-chip EEPROM, and the development kit does not have an integrated CPLD/FPGA 
which  means  that  an  external  one  must  be  used.  These  drawbacks  were  not  considered  as 
problems. 

5.3.2 Buffer Size

The buffer in the microcontroller consists of three slots, each the size of the data of an Ethernet 
frame (1468 bytes). Since the FPGA runs at a higher frequency than the microcontroller it is not 
necessary to have a large buffer in the microcontroller. If the microcontroller runs out of data the 
FPGA will quickly be able to fill  it up if there is any more data to be sent. Later projects will 
eventually design a large FIFO buffer for the FPGA to smooth out the inherent peaks and valleys of 
the MOST data flow. 

However, a small buffer is needed to be able to read and write simultaneously. The buffer was 
chosen to contain three slots of data frames. One slot is used for reading from the EPI interface, one 
slot is used for writing to the EMAC. The third slot is used as an extra to prevent glitches; when a 
read or write is finished it is possible to start a new one without delay. 

5.3.3 Microcontroller tools

The tools that were provided with the microcontroller development kit were from Keil, IAR, Code 
Sourcery and Code Red. Red Suite 2 from Code Red was selected since it was a full version locked 
to the board. The other tools had either a code size limit or a time limit. Red Suite is based on 
Eclipse which had been used by both project members before. For the preceding reasons Red Suite 
was used.
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Table 1: A comparison between the final three microcontroller candidates

Vendor Freescale Luminary ST Microelectronics
Microprocessor MCF52259CAG80 LM3S9B96 STR912FAW44
Core Coldfire V2 ARM Cortex-M3 ARM-966E-S
Clock frequency 80 MHz 80 MHz 96 MHz
MIPS 76 MIPS 100 DMIPS 96 MIPS
SRAM 64 kB 96 kB 96 kB
Flash 512 kB 256 kB 512 kB
EEPROM No No No
Eth 100 Yes Yes Yes
CAN Yes Yes Yes
UART 3 3 3
Ext. mem int. Yes Yes Yes
DMA Yes Yes Yes
SPI Yes Yes Yes
USB Yes Yes Yes
Package LQFP 144 LQFP 100 LQFP 128
Phy. size 20x20 mm 16x16 mm 14x14 mm
Temp. range Industrial Industrial Industrial
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5.4 Interface: PC to microcontroller

The two major protocols used to transmit data across Ethernet are TCP and UDP, both operating 
on top of IP. After an initial calculation regarding the available processing power and available 
memory in the microcontroller, it was clear that TCP was out of the question (Kozierok, 2005, page 
692).

Since  TCP  requires  that  packets  be  stored  for  retransmission,  the  available  memory  will  be 
exhausted  very  fast:  The  data  stream  at  50  Mbit/s  equals  6.25  MB/s.  The  microcontroller  we 
selected has 96 KB of RAM, which would last for 15 ms. Considering the possible latencies in a 
network,  possible  TCP retransmission timeout values,  the fact  that  all  of  the RAM can not  be 
dedicated to TCP buffers and the processing power needed to handle TCP packets, we came to the 
conclusion that TCP was unsuitable.

Using UDP forgoes all communication reliability. This in itself is not an issue – dropping packets in 
a stream is acceptable. However, this condition must be detected, which UDP cannot do. Due to 
this limitation, UDP is also unusable.

A quick  survey  of  some of  the  other  available  transport  protocols  showed that  none had the 
functionality and low overhead that we needed. Therefore, we developed our own on top of UDP, 
called FYI CETP. This protocol includes a counter that is used to identify which packet it is. For 
more details, see Appendix B.

5.5 PC Application

The  choice  to  develop  the  PC  Application  PCDump  in  Java  was  based  on  Java's  integrated 
networking capabilities, its ease of creating a GUI and because the project members had previous 
experience with it. (Skansholm, J, 2005, page 641)

The development environment  of  choice was Eclipse  due to its  open nature,  the  multitude of 
plug-ins (for example a SVN client) and above all, previous experience.

Making  the  application  heavily  threaded  with  FIFO  buffers  was  a  given  because  of  the 
performance requirements and fluctuating data rate.  The first  version of the application had a 
more rigid backbone which dispatched data to worker threads. This worked fine with a data rate 
of 50 Mbit/s, but as the performance of the microcontroller improved, the consumption rate of the 
main dispatcher thread became a bottleneck causing dropped data. This warranted the move to the 
current, completely module-based approach.

The application was developed on an computer running the Ubuntu operating system to provide 
easy  access  to  the  packet  analyzer  Wireshark,  and  it  was  apparent  that  Linux  was  more 
accommodating  with  the  connect-disconnect  behavior  exhibited  by  the  microcontroller  during 
reprogramming. Where Windows would need seconds just to identify that the connection was 
down, in Ubuntu all it required was the push of a button. This eased development and debugging 
of the microcontroller.

One caveat of using Linux is that the default maximum UDP receive buffer size is too small and 
will cause datagrams to be dropped. This needs to be adjusted by writing a larger value – 4000000 
was found to be a good size – to /proc/sys/net/core/rmem_max and requesting a larger buffer size 
in the Java application. 2 MB seems to be a good trade-off between memory usage and retaining 
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zero data drops under normal conditions.

The application has never been tested on a Windows machine.  Java is designed for portability 
which  should  mean that  this  should  not  be  a  problem,  aside  from the  UDP receive  problem 
mentioned above. 

The research done seems to suggest that Windows does not have a limit to the receive buffer size 
and will honor any reasonable buffer size request.
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6 Testing and verification

The testing was divided into several  parts  that  were first  tested separately,  then the interfaces 
between each part were tested, and finally the entire system. Furthermore, the PCB was tested 
separately. ModelSim has been used during the project to simulate the FPGA code's functionality. 
The debugger in Red Suite 2 was used to test the C program. Eclipse's debugger was used to test 
PCDump.  The packet  analyzer  Wireshark  was  used to  debug the  data  sent  over  the  interface 
between the microcontroller and the PC.  It was also used to calculate the speed of a stream. A logic 
analyzer was used to analyze the data sent over the interface between the microcontroller and the 
FPGA.  The PC that  has  been used when performing tests  with Wireshark  and PCDump is  a 
FujitsuSiemens Amilo Si1520 with the operating system Ubuntu 9.10. Another PC with better or 
worse performance could produce other results.

6.1 PCB Testing

All voltage levels (1.2 V, 2.6 V and 3.3 V) at the PCB were tested after production to see that they 
were at correct levels. The pins on the card were manually checked to assure that no soldering 
bridges existed. Existing ones were removed using a soldering iron and scalpel.

6.2 System testing

A test to assure that all packets that are read from the FPGA reach the PC was done during long 
running streams.  Several  test  cases  between 15  minutes  and 60  minutes  were  used.  PCDump 
counts the number of received packets and sorts them to assure that none appears twice or is 
missing. The number of packets is compared to the value in the microcontroller debugger.

To simulate the FPGA running out of data, the FPGA code was modified. The code sets the EPI 
enable input (epi_irdy signal) low after different times and with varying durations. The EPI enable 
signal is connected to a dedicated pin in the EPI interface.

Verifying  the  watchdog  functionality  was  done  by  introducing  bugs  in  the  code  to  trigger  a 
watchdog reset.

To test that the functionality of the FYI CETP was working correctly a test protocol was set up to 
verify all functionality, available in its own document. All commands with all priorities were tested 
both during stream and not. Wireshark was used to assure that the header was as expected. In 
total, all of the approximately 75 test cases were successfully completed.
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During the project, PCDump was used to calculate the speed of an active stream. The correct speed 
was calculated using Wireshark by measuring the number of packets during a given time. This was 
done at different speeds by introducing a delay every three packets in the microcontroller. For the 
results, see Table 2. The tests ran for approximately 50 seconds. In PCDump the speed is calculated 
from 1468 bytes per frame. Wireshark uses the whole frame and therefore the speed was adjusted. 
Comparing  these  speeds  gives  PCDump  an  accuracy  better  than  0.65  %.  This  accuracy  is 
extrapolated to all possible speeds.

An approximate reasonability test was performed to see that the values are not totally wrong. The 
number of  packets  received during 10  seconds was measured.  The amount  of  data should be 
approximately the product of speed, time and the payload of a frame,

Received Data = Speed * time * Payload .

Testing this has shown that the speed results are reasonable.

The maximum speed of  the  system was  measured using  PCDump after  everything  had been 
implemented. The specification requires a download stream of 500 kbit/s for control messages. The 
result of the upstream speed is much higher than the requirements of 53 Mbit/s. This means that it 
is no problem to reach the download speed. Because of this and after discussions with the thesis 
initiators it was decided that a test that sends control messages at this speed was not needed.

24

Table  2: Test results for the test of PCDump's internal speed calculation, compared with the stated speed in  
Wireshark which was used as a reference.

Speed Adjusted Diff related to Wireshark
Delay value in µC Wireshark PCDump Wireshark Diff (abs) Diff(%)

25000 10.04 Mbit/s 9.77 Mbit/s 9.73 Mbit/s 0.04 Mbit/s 0.39%
30000 8.56 Mbit/s 8.35 Mbit/s 8.30 Mbit/s 0.05 Mbit/s 0.62%
50000 5.39 Mbit/s 5.23 Mbit/s 5.22 Mbit/s 0.01 Mbit/s 0.13%
80000 2.92 Mbit/s 2.83 Mbit/s 2.83 Mbit/s 0.00 Mbit/s -0.05%

100000 2.35 Mbit/s 2.28 Mbit/s 2.28 Mbit/s 0.00 Mbit/s -0.07%
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7 Results

The maximum measured speed of the system was 73.5 Mbit/s.  Optimizing the code for higher 
speeds by removing functionality  made the DMA transfer the bottleneck of  the system. Then, 
speeds of about 78 Mbit/s were reached. This is the maximum speed that could be reached using 
this solution.

PCDump is not able to log all the data during a stream at maximum data rate on the used PC. By 
introducing a delay in the microcontroller to simulate a speed of 50 Mbit/s it was possible to log 
the data.

The tests of the FYI CETP was done without finding any bugs. Overall, for the entire system, no 
bugs are known.
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8 Discussion

This project is merely a part of a larger project involving the MCBuster, with the obvious goal of 
developing a new version of the MCBuster with additional functionality. We have demonstrated 
that it is possible to transmit the required amount of data across Ethernet and have provided an 
implementation of this that could be used with minimal adaptations.

It is possible that this solution, with its speed of 73 Mbit/s, could be used with the next standard, 
MOST150. This should work if the user does not stream too many MOST channels at the same 
time. If the performance is not satisfactory, a more powerful microcontroller is an option. Another 
option is to encapsulate the data to Ethernet packets within the FPGA either in hardware or by 
using  a  soft-core.  A  third  option  would  be  to  have  a  pure  FPGA  solution,  removing  the 
microcontroller.
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This appendix contains figures that were deemed to large to contain in the main report.
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A.i: The C program
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This appendix contains the proprietary FYI CETP specification.
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B.i: Background

We are designing an embedded system that shall be able to transmit and receive data fast, easily 
and  with  a  specified  and  varying  degree  of  handshaking  and  transmission  reliability.  This 
document describes a proposed protocol to be used on top of UDP to provide this variability.

Our system has two different kinds of transmissions: One part that is not time sensitive which is 
used to  send control  messages  (hereafter  called  'command'),  and one  part  that  needs  as  high 
throughput as possible (hereafter called 'stream').

For our data transmissions, we are using UDP over IP over Ethernet, to give maximum throughput 
with  minimum  overhead  but  still  be  standards-compliant.  UDP,  however,  lacks  any  form  of 
transmission control, which we need for the command parts of our communication. The primary 
alternative to UDP, TCP, has a more elaborate handshaking than we need with a requirement for 
retransmissions of dropped packets. This will severely limit the maximum possible speed of our 
system during the 'stream' phase, therefore TCP is too cumbersome. We don't  need that much 
control during the 'stream' phase either, just a way to detect if there have been dropped packets. 
The 'command' phase could use TCP. However, it is too elaborate for us even then – we can accept 
a much simpler scheme. Thus the need for this protocol.

B.ii: Definitions

This section describes definitions used in this document.

A flag is a one-bit value that can be used to indicate on or off.

A field of flags is several flags grouped together. In a field of flags, each value can be turned on or 
off. This is in contrast to the field of options defined below.
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An option has no fundamental difference from a flag – they are both used to indicate on or off. In 
fact, a single option is identical to a flag.

A field of options is an encoding of mutually-exclusive flags used to save space and provide built-in 
sanity checking. Using a field of N bits, 2^N different options can be encoded.

B.iii: Proposal

We propose to use a 16+16 bit header as described in this document, to be placed immediately after 
the UDP header. This has the clear benefit of maintaining the whole-word alignment present in all 
parent headers, and also maintains this alignment throughout the payload.

The header  is  divided into  two 16-bit  parts:  The first  (low order)  16  bits  contain information 
regarding packet type and some general flags. The next 16 bits (the high order bits) are packet 
type-dependent, but required by this proposal.

B.iii.i: Packet type

Of the 16 bits with low offset, the low 8 contain the packet type encoded as follows:

Value Name Description

0x00 N/A Unused – this value is not permitted and should generate a NACK 
response

0x01 STREAM The packet contains streaming data

0x02 COMMAND The packet contains a command

0x03  → 
0xFE

UNUSED These values are not defined in the current specification

0xFF EXTENDED This is reserved for future expansion and indicates that the 32 bits of 
this header are to be discarded and that another header follows (to be 
specified as needed at a later time)

B.iii.ii: Packet type options

The high 8 of the low 16 bits contain options to indicate modifications of the packet type

Value Name Description

0x00 NONE No options set
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0x01 PROCESSING This flag can be set to acknowledge that a command packet type 
has been received during streaming, but that it has lower priority 
than the streaming and will be handled at the next possible time. 
Note that there are different priority levels for command packets 
received  during  streaming  –  see  the  COMMAND  packet  type 
section for more information.

0x02  0xFF→ UNUSED These values are not defined in the current specification

B.iii.iii: Packet type: STREAM

When using packet type STREAM, the high 16 bits of the header are used as a counter to track 
dropped packets. The stepping of this counter (how often it increases) can be setup to applicable 
powers  of  two,  by  using  the  COMMAND  packet  type,  SETUP  subtype.  This  counter  is 
modulo-2^16 with wrapping, and is send using host byte order – not network byte order. This is 
done  to  improve  performance  on  processors  with  relatively  limited  performance,  such  as 
microcontrollers.

The reasoning behind not incrementing the counter each time is that we won't have to update the 
headers as often during a running process, thus improving performance. We are still guaranteed to 
know if  there has been a dropped packet,  since the target  system will  know the value of  the 
stepping, and can count packets. What we lose is the ability to detect exactly which packet has 
been dropped. This is a tradeoff, naturally, and therefore it has been made available to for run-time 
setting and optimization.

The STREAM packet type has no handshaking – there shall be no retransmission mechanism.

Any packets received by a device while it is using STREAM to send packets will be handled based 
on their priority, see the COMMAND packet type section. Some shall cause an immediate halt, 
some an immediate response with subsequent restart, some shall be handled inline with the stream 
at a convenient time and some will not give any response at all.

B.iii.iv: Packet type: COMMAND

When using the COMMAND packet type, the low 12 of the high 16 bits are defined as options 
with the following definitions:

Value Name Payload Description

0x000 N/A -- Unused  –  this  value  is  not  permitted  and  should  generate  a 
NACK response
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0x001 START Padding Start  streaming  data  according  to  a  previously  sent  SETUP 
request, or resume from the last STOP, whichever is applicable

0x002 STOP Padding Stop streaming data

0x003 SETUP Setup 
structure

Setup  a  streaming  transfer  according  to  the  structure  in  the 
payload

0x004 ACK Padding Acknowledge the last received packet

0x005 NACK Padding Do not acknowledge the last received packet – i.e. message not 
understood. Shall cause a retransmission of the NACK'ed packet

0x006 UACK Padding 'ACK  unavailable'.  Can  not  retransmit  packet  requested  (by 
incoming  NACK).  For  example,  if  last  packet  sent  was  a 
STREAM packet.

0x007 ERROR Error source Indicate that an error has occurred. The payload may be used to 
indicate the error cause.

0x008 
→ 
0xFFE

N/A – These values are not defined in the current specification

0xFFF PANIC Padding This value is used to indicate critical failures or any other reason 
that  needs  to  have the  communication terminated as  soon as 
possible. The behavior after a PANIC is, by nature, undefined.

The  COMMAND  packet  type  uses  a  rudimentary  form  of  transmission  control  and 
retransmissions,  based on  ACK's  and NACK's.  There  shall  be  only  one pending COMMAND 
message at all times, until it has been ACK'ed or NACK'ed, nothing more may be sent – until a 
timeout has elapsed, which should be treated as a NACK.

A COMMAND communication is finished when the initiator has received an ACK on its message 
and  then  replied  with  an  ACK  (creating  the  above  mentioned  ACK-ACK  sequence),  or 
alternatively  with  an  UACK-ACK  sequence  (thus  ending  with  the  respondent's  ACK  of  the 
initiator's UACK).

The  Payload  field  indicates  what  the  bytes  following  the  header  are  used  for.  If  it  is  set  to 
'Padding', there is no more information in the packet and the data is just padding to fulfill the 
Ethernet specification. Any other value shall be specified in this document.
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B.iii.iv.i: COMMAND priorities

When using the COMMAND packet type, the high 4 of the high 16 bits are defined as flags to 
indicate priority (during a STREAM transfer or other future defined , as follows:

Value Name Description

0x0 N/A Unused – this value is not permitted and should generate a NACK response 
unless sent during a running STREAM

0x1 LOW This command will be ignored if sent during a running STREAM

0x2 INLINE This command will  be responded to at  a convenient  time during a running 
STREAM. This shall be when there is no more data to STREAM or when the 
STREAM counter is incremented, whichever occurs first

0x4 RESUME This  command  will  cause  the  STREAM  to  halt  as  soon  as  possible.  This 
command  will  then  be  responded  to,  and  once  the  final  ACK-ACK  (see 
communication flow below) has been reached, the STREAM will restart (same 
as sending a COMMAD START immediately after the ACK-ACK)

0x8 STOP This  command  will  cause  the  STREAM  to  halt  as  soon  as  possible.  This 
command will then be responded to, and the STREAM will be left in a halted 
state. This can later be resumed by sending a COMMAND START

If more than one of these bits are set, the highest one shall count. This enables setting the high 16 
bits to 0xFFFF for a COMMAND PANIC. However, the default behavior is that only one bit should 
be set.

Please note that this priority scheme will make some commands non-functional if the required 
priority  is  not  set  –  a  COMMAND PANIC with  LOW priority  will  have no  impact  during  a 
STREAM! On the other hand it gives flexibility – you can request that the current STREAM be 
stopped immediately, or at a convenient time, for sending other commands, for example.

B.iii.iv.ii: COMMAND SETUP structure

When using  the  COMMAND SETUP command,  the  payload data  shall  contain  these  options 
according to the following format: The first 32 bits is the option name, and the next 32 bits is the 
option value. Multiple options may be specified in a packet, each after the other.

In this specification, the following options are specified. All others are for future use.

Value Name Description
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0x00000000 PAD This value may be used to pad the packet to the length required 
by the Ethernet specification

0x00000001 SET Send SET to the FPGA

0x00000002 INC Send INC to the FPGA

0x00000003 
→ 
0xFFFFFFFF

NA These values are not defined in the current specification

B.iii.v: Transmission flow examples

Simple successful COMMAND COMMAND  with  loss 
(message not understood)

COMMAND  with 
unrecoverable loss (UACK)

Source Target Source Target Source Target

COMMAND 
START

COMMAND 
START

(Message  has 
been  jumbled 
in 
transmission)

COMMAND 
START

(Message  has 
been  jumbled 
in 
transmission)

ACK NACK NACK

ACK COMMAND 
START

UACK

Done  (command  will  be 
executed)

ACK ACK

ACK Done (command will  NOT be 
executed)

Done  (command  will  be 
executed)
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COMMAND with ACK loss COMMAND with S  T loss→ COMMAND with much loss

Source Target Source Target Source Target

COMMAND 
START

COMMAND 
START

COMMAND 
START

(Message  has 
been  jumbled 
in 
transmission)

(ACK  jumbled 
in 
transmission, 
not 
understood)

ACK (timeout  delay 
–  no  response 
to message)

(NACK 
jumbled  in 
transmission, 
not 
understood)

NACK

NACK COMMAND 
START

NACK (NACK 
received  - 
Resend request 
of  target's 
NACK)

ACK ACK NACK

ACK ACK COMMAND 
START

Done  (command  will  be 
executed)

Done  (command  will  be 
executed)

ACK

ACK

Done  (command  will  be 
executed)
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STREAM STREAM with INLINE STREAM with INLINE, loss

Source Target Source Target Source Target

COMMAND 
START

COMMAND 
START

Assuming  already  started 
transfer

ACK ACK STREAM

ACK ACK STREAM

STREAM STREAM COMMAND 
STOP 
(INLINE)

(Cmd  jumbled 
in 
transmission, 
not 
understood)

STREAM STREAM STREAM

STREAM COMMAND 
STOP 
(INLINE)

Zero  or  more 
STREAM

etc. STREAM STREAM  with 
PROCESSING

Zero  or  more 
STREAM

STREAM  with 
PROCESSING 
until  next 
command slot

STREAM  with 
PROCESSING

NACK

STREAM  with 
PROCESSING 
until  next 
command slot

STREAM

ACK COMMAND 
STOP 
(INLINE)
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STREAM

ACK

B.iv: Changes

This section describes the changes made in this document between different versions

B.iv.i: Version 0.5 (2009-11-26)

Removed the 'undersized' flag and associated functions due to redundancy – this same behaviour 
is achieved using the 'length' field in UDP.

Transmission flow examples have been updated.

Changed date format in header.

B.iv.ii: Version 0.6 (2010-02-26)

Added the ERROR packet type

Fixed 3.2, packet options, value 0x00 is allowed and means no options
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