

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, March 2010

Fix Cache Based Regression Test Selection

Master of Science Thesis in the Programme Communication

Engineering

Authors: Zhe Wang

 2

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology store the Work electronically and
make it accessible on the Internet.

Fix Cache Based Regression Test Selection

Zhe Wang

© Zhe Wang, March 2010.

Examiner: Christer Carlsson

Industrial Supervisor: Greger Wikstrand

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden March 2010

 3

Abstract

Regression testing is a crucial step in the software development process, which
ensures the quality of software systems by detecting whether new faults have been
introduced into previously tested code. Regression testing becomes costly as more
and more regression test cases are created. Regression test selection, which selects
a sub-set of the available regression test cases based on different criteria, is a well-
known method to reduce test scope and improve the efficiency of regression testing

This paper presents a new method, named fix cache based regression test selection,
which computes test case coverage based on what files were updated to fix faults
found by the test cases. Our method uses a cache to monitor the most fault-prone
files and recommends test cases related with continuously updated files. The method
is useful for predicting new faults and selecting the most fault-prone test cases for
automatic regression testing.

The thesis explores the concepts and processes for how to implement and evaluate
this method.

We have implemented the method and evaluated it during two months‘ period in a
large, industrial, embedded, real-time software system. Our results show that the fix
cache based selection method is effective with reaching weekly cache hit rates in the
range 50%-80% for a fully automatic regression testing.

 4

Acknowledgements

First of all I would like to thank my supervisor at Ericsson AB, Dr. Greger Wikstrand
for giving me the opportunity to work on this exciting topic and thank you my thesis
partner Jeevan Kumar Gorantla for giving me good suggestions during our thesis
cooperation. A special note of gratitude goes to Lars Johansson and Dr. Johan Natt
och Dag for their wonderful support during the entire duration of the thesis work. I
would like to thank Thomas Andersson, Andreas Ekberg for providing valuable
insights for the project.

And last but not the least I would like to thank my family and friends for their
unconditional and amazing support throughout my thesis.

Lund, March 2010

Zhe Wang

 5

 CONTENTS

Abstract ... 3
1 Introduction ... 6
1.1 Research Context ... 6

1.2 Background ... 6

1.3 Aims and Objectives ... 8

1.4 Thesis Outline ... 8

2 Algorithm Selection ... 9
2.1 Cache Algorithm ... 10

2.1.1 The Fix Cache Algorithm .. 12

2.2 Coverage Based Algorithm ... 15

2.3 Risk Based Algorithm .. 18

2.3.1 Two Kinds of Risk Based Regression Test Selection 18

2.4 Summary of Algorithm Analysis .. 20

3 Ericsson Tools Introduction ... 22
4 Develop the Fix Cache Algorithm in Ericsson ... 25
4.1 Algorithm Design ... 25

4.1.1 Pre-fetch Cache .. 27

4.1.2 Update Cache ... 27

4.1.2.1 Cache Replacement Policies .. 29

4.1.3 Find Fault-prone Test Cases .. 30

4.2 Algorithm Implementation ... 30

4.2.1 Pre-fetch Cache .. 30

4.2.2 Update Cache ... 32

4.2.3 Find Fault-prone Test Cases from CQTM ... 34

5 Result and Conclusion .. 36
5.1 Result Analysis ... 36

5.2 Discussion ... 38

6 Future Work .. 41
6.1 Tool Analysis about eROSE Plug-in ... 42

7 Reference ... 44

 6

1 Introduction

1.1 Research Context

Ericsson Mobile Platforms mission is to be a leading mobile platform supplier, with
complete and optimized solutions in all segments, making their customers truly
successful. Ericsson offers a complete platform portfolio across 2.5G and 3G to
manufacturers of mobile phones and other wireless devices such as mobile handsets
and PC cards. The technology is based on Ericsson's global standardization
leadership and the world's strongest IPR (intellectual property rights) portfolio.

Regression testing is a crucial step in the software development to ensure that
modifications do not break previously working functionality [6, 25]. However,
regression testing is often expensive and time consuming as more and more
regression test cases are created. The number of regression test cases can be very
large, e.g. including tens of thousands of test cases, requiring days or weeks to
execute [5]. Regression test selection, regression test prioritization and regression
test reduction are three methods to improve the efficiency of regression testing.

Regression test selection methods select a sub-set of the available regression test
cases based on different criteria, for instance, coverage of changed code. Regression
test prioritization orders the available test cases so that the most important ones are
executed first, but the initial failure detection rate is maximized. The underlying
assumption being that this approach enables developers to start working on bugs as
soon as possible. Regression test reduction permanently removes test cases which
no longer apply to the changed software or requirements.

Developers at Ericsson build a system for advanced automatic regression testing
based on a large amount of available regression test cases. The regression test
cases of real-world and large-scale systems in Ericsson are selected manually by
human experts based on tester working experience today, which is both time-
consuming and cost-consuming. The task to be performed in this thesis is to
implement and evaluate a method for automatic selecting the most fault-prone
regression test cases in order to make regression testing more efficient.

1.2 Background

Regression testing is a traditional testing technique that has been given much
research interest over the years [6]. Regression testing provides the only reliable
means to verify that code base changes and additions from version N to version N+1
don't "break" an application's existing functionality, and it can have the single greatest
impact in controlling product release delays, budget overruns, and the prospect of

 7

software errors slipping into released/deployed products. The purpose of regression
testing is to detect unexpected faults — especially those that occur because a
developer did not fully understand the internal code correlations when modifying or
extending code. Every time code is modified or used in a new environment,
regression testing should be used to check the code's integrity.

Regression testing is an important step in the software development. Regression
testing aims to reduce the cost of developing and maintaining code, helping build
confidence in its correctness and to improve its reliability. Two major types of
regression testing are corrective regression testing when the specification has not
been modified, and progressive regression testing when the specification has been
modified [7]. In this paper our focus is on the corrective regression testing.

Regression testing is one of the most commonly used testing technique and many
companies develop their own regression testing tools [2]. Since regression testing
becomes costly as more and more regression test cases are created in real-world,
large-scale and industrial software systems [21], regression test selection, regression
test prioritization and regression test reduction are three good methods to be used for
predicting and selecting the minimal set of fault-prone test cases in order to improve
the efficiency of regression testing [5, 10].

Some authors have presented their processes which support the regression testing
for large software systems [2, 21]. However, with the increasing size of software
systems and the increasing efforts spent on developing automatically executable test
cases, it is not clear that rerunning all of test cases will continue to be a viable
strategy.

White and Robinson [10] presented empirical results on evaluating different
regression testing techniques on several large industrial systems. They focused on
the use of testing firewalls to group different source codes together so that regression
tests can be minimized by only needing to rerun tests for interactions over the group
limits. In paper [10] they show that a subset of test cases which are selected over
group limited is more efficient and less cost-consuming for rerunning in regression
test comparing with rerunning all of test cases on a large industrial system. That
means regression test selection on a large industrial system is good for improving the
efficiency of regression testing and reducing the cost of rerunning test.

 8

1.3 Aims and Objectives

The regression test cases of real-world and large-scale systems in Ericsson are
selected manually by human experts today based on tester working experience.
Ericsson has no available method for effectively automatic selecting a subset of most
fault-prone regression test cases from the large amount of available test cases. In
order to reduce the cost and improve the efficiency of regression testing, the aim of
our thesis work is to implement and evaluate a test selection method for automatically
selecting the most fault-prone test cases and predicting future faults for regression
testing.

Cache algorithms, code-coverage based algorithms and risk based algorithms are
three various types of algorithms based on regression test selection methods and
they have been investigated by different authors in the previous literatures. These
algorithms are used for predicting and selecting a minimal set of fault-prone test
cases on large software systems in order to improve the efficiency of regression
testing. These three various types of algorithms will select a subset of most fault-
prone test cases based on different criteria and use this selected subset of fault-prone
test cases in next regression testing cycle. In this paper, we will select a suitable
algorithm out of these three algorithms at first. And then we will evaluate the algorithm
in order to automatically select the most fault-prone regression test cases based on
all available test cases for one Ericsson special product.

1.4 Thesis Outline

The rest of the report is structured in the following way:

 Chapter 2 describes the analysis of three different algorithms based on Ericsson
testing environment and then concludes about which algorithm is most suitable to
be used for our thesis work. This chapter explains the algorithms in a more
detailed manner and compares them with their advantages and disadvantages.

 Chapter 3 introduces the Ericsson tools which will be used in the implementation
of our test selection algorithm.

 Chapter 4 describes algorithm design and algorithm implementation with Ericsson
Tools -- the processes of pre-fetch cache, cache update and the way of finding
the fault-prone test cases corresponding to the most fault-prone source files in the
fix cache.

 Chapter 5 analyzes the result of implementing the fix cache algorithm in Ericsson
product and compares the hit rate with different linear combinations of pre-
fetching the cache.

 Chapter 6 discusses the potential for future enhancements to the thesis work.

 9

2 Algorithm Selection

In this chapter, we will compare three types of algorithms corresponding to their
advantages and disadvantages and then decide which algorithm is most suitable for
the testing environment in our application.

In the majority of software projects, time and people available are not sufficient to
eliminate all faults before a release. Any technique that allows software engineers to
reliably identify the most fault-prone software functions or files provides several
benefits. It permits available resources to be focused on the functions or files that
have the most faults.

Two important qualities of software fault prediction algorithms are accuracy and
granularity. The accuracy is the degree to which the algorithm correctly identifies
future faults. The granularity specifies the locality of the prediction. Typical fault
prediction granularities are the executable binary [13], a module (often a directory of
source code) [1], or a source code file [21]. For example, a directory level of
granularity means that predictions indicate a fault will occur somewhere within a
directory of source code.

Cache algorithms, code-coverage based algorithms and risk based algorithms are
three various types of algorithms based on regression test selection methods and
they have been investigated by different authors in the previous literates. These
algorithms are used for predicting and selecting a minimal set of fault-prone test
cases on large software systems in order to improve the efficiency of regression
testing. These three various types of algorithms will select a subset of most fault-
prone test cases based on different criteria and use this subset of fault-prone test
cases in next regression testing cycle. Therefore, regression testing will be more
efficient and less cost-consuming with implementing regression test selection method.

Since a typical system developed by Ericsson has tens of thousands of source code
files and today regression test cases of real-world and large-scale systems in
Ericsson are selected manually by human experts, it is quite time consuming and cost
consuming. In order to reduce the cost and make regression testing more efficient,
our thesis will be focused on how to evaluate algorithms to predict the most fault-
prone source codes at file level. The most fault-prone test cases which can predict
more future faults during software regression testing will be selected corresponding to
these most fault-prone source code files. Therefore, the accuracy of algorithms at file
level is the most important factor to be considered when we select which algorithm
will be used in our application.

 10

2.1 Cache Algorithm

The cache algorithm [16, 17], developed by Kim et al, is a fault prediction algorithm,
which is executed over the fault history of a software product. The algorithm uses the
insight that faults do not occur uniformly in time across the history of a file, but instead
appear in bursts.

There are four different kinds of locality where faults frequently occurrences:

 Changed-file locality: If a file was changed recently, it will tend to introduce faults
soon.

 New-file locality: If a file has been added recently, it will tend to introduce faults
soon.

 Temporal locality: If a file introduced a fault recently, it will tend to introduce other
faults soon.

 Spatial locality: If a file introduced a fault recently, relative files (in the sense of
logical coupling) will also tend to introduce faults soon.

Following Hassan and Holt [1], Kim et al borrowed the notion of a cache from
operating systems research, and applied it for the purpose of fault prediction. The
cache algorithm employs only a small subset of the product‘s files that are most fault-
prone (as Kim et al used 10% of the files in their experiments). The cache is a
convenient mechanism for holding fault history as a dynamically updated list of the
most fault-prone files, and for aggregating multiple heuristics for maintaining the
cache.

The cache is a dynamically updated fault history for predicting future faults, and
contains the source code files that are for the moment most fault-prone. The switch to
a cache involves a subtle but important shift. Instead of creating mathematical
functions that predict future faults, the cache selects and removes files based on
specific criteria. By consulting the cache after a fault has been fixed [11, 12],
developers can predict most-likely fault-prone files. Therefore, the cache algorithm is
useful for making a more targeted allocation of available resources on the most fault-
prone files.

The cache size can be adjusted based on the number of resources available for
testing or verification. A typical cache size is 10% of the total number of source code
files, since this provides a reasonable tradeoff between cache size and the accuracy
of the cache algorithm. Larger cache size results in higher hit rate which means better
prediction for future faults, but the faults will spread out over a greater number of
source code files, and it will be difficult to select the real most fault-prone source code
out of a large mount of source files. The ideal is to minimize the size of cache while at
the same time maximizing the accuracy of the cache algorithm.

 11

The basic process of the cache algorithm at file level is as follows.

There are two main parts of the cache algorithm execution -- Cache Initialization and
Cache Operation.

Cache Initialization:

Step 1: Modified source code files are extracted by mining a product‘s version archive
and fault database.

Step 2: Pre-fetch the cache (e.g. files with the largest lines of source code) in the
initial product revision, creating the initial state of the cache.

Cache Operation:

Step 3: If at revision n, the fault has been fixed in a source file, probe the cache to
see whether the corresponding source file is present in the current cache. If
yes, count a hit, otherwise a miss.

Step 4: If the source file is missed which is not contained in the current cache revision
n, fetch the source file considering as fault-prone files due to temporal locality
and spatial locality into the cache for future fault predictions starting at
revision n+1.

Step 5: Also at revision n, fetch source files that have been created due to new-entity
locality and modified due to changed-entity locality since revision n-1.
(Optional step)

Step 6: Since the size of the cache memory is fixed, we have to remove files, which
are selected using a cache replacement policy.

Step 7: The hit rate is computed by the formula:

missofhitof

hitof
hitrate

##

#

Step 8: Iterate over steps 3-7 to cover the existing modified source files and fault
history.

The higher hit rate is, more future faults are possible to predict with the updated
cache.

 12

The cache algorithm is a dynamically updated method which can make an automatic
way for selecting test cases, which is good for automatic selecting fault-prone test
cases from a large amount of test cases. The cache algorithm doesn‘t require testers
to access and understand the source code files, this is convenient and time-
consuming.

The experimental assessment on seven open source products done by Kim et al
showed that the cache algorithm was 73%-95% accurate at predicting future faults at
the file level and 46%-72% accurate at the entity level with optimal options [17].

2.1.1 The Fix Cache Algorithm

In [17] Kim et al give two variants of the cache algorithm, the bug cache algorithm and
the fix cache algorithm. We will primary describe the fix cache algorithm because
Ericsson has no tools which can support for implementing the bug cache algorithm.

The fix cache algorithm will dynamically check and update the cache when a fault has
been fixed as shown in Figure 1. The cache contains file names of the modified
source codes. The fix cache algorithm is a deployable fault prediction algorithm which
shows how to turn localities into a practice fault prediction model.

As shown in Figure 1, the fix cache algorithm will check and update the cache when

the fault has been fixed in the source code at fixt .

Figure 1. Fix Cache Algorithm

 13

In Figure 1, bugt is the time when a bug was introduced. A bug is a mistake in the

source code which maybe leads to a fault. A fault is a situation when the testing result
of the source code is an uncorrected result, which will be aware of a bug existence in

the source code. A fault will be found during test after bugt . fixt is the time when the

mistake in buggy code has been corrected and the fault has been fixed in the new
version of source code.

In Figure 1, the cache is illustrated as rhombus. The cache is a fault history which
contains a collection of the modified source code files. The ―star‖, ―circle‖, ―square‖,
―triangle‖ and small ―rhombus‖ in Figure 1 are the names of different source code files,
which have been modified due to the existence of bugs and the occurrence of faults.
Arrows shown in Figure 1 describe the direction about how the cache updates. At the

time fixt , the bug in ―star‖ has been fixed, where ―star‖ is the file name of the modified

source code, the fix cache algorithm will check if file ―star‖ is in the current cache.
Since file ―star‖ is not in the current cache, the cache will be updated and it will
include the changed source code file ―star‖ into the cache. In Figure 1, I only show an
easy example to explain how the cache updates with modified file but not consider
the cache replacement policy. If the modified source code file is ―circle‖ instead of
―star‖ as in the example shown in Figure 1.1, the cache will not update because file
name ―circle‖ is already contained in the cache.

Figure 1.1. Example of Fix Cache Algorithm Update

 14

The hit rate is computed at time fixt by:

missofhitof

hitof
hitrate

##

#

If the name of a changed source code file is already in the current cache as the
name ―circle‖ in Figure 1.1, it counts as a hit, otherwise it counts as a miss (which is
the case with the name ―star‖ shown in Figure 1).

In order to reduce the number of ―missed‖ file names regarding to hit rate
computation, we can pre-fetch a subset of potential fault-prone source code files (i.e.
according to the greatest lines of code which it is much more possible to have bug in
the source code) when initializing the cache.

When the cache is full, the algorithm must unload some files based on the cache
replacement policies before it can load other new modified files in order to keep the
required cache size. The cache replacement policy will be described in Chapter 4.

Advantage of cache algorithm:

 The algorithm has high accuracy at predicting faults (accuracy at file level 73%-
95%) [16, 17].

 The cache model is dynamic and is able to adapt quickly to new fault distributions,
since the fault occurrences directly affect the model.

 The algorithm is useful for prioritizing verification and validation resources on the
most fault prone files or entities.

Disadvantage of cache algorithm:

 Never estimate the cost-efficiency for company software development

 15

2.2 Coverage Based Algorithm

Code-coverage based algorithm is one of the test case prioritization and test case
selection techniques [15, 19] based on the coverage of the code elements, which
aims to improve the effectiveness of regression testing by ordering the test cases, so
that the most beneficial test cases with highest priority are selected and executed
first. In order to achieve code coverage at the fastest rate possible in the initial phase
of regression testing which is considered as the aim of speedy achievement of
coverage, scheduling test cases helps us to reach 100 percent coverage soonest or
to reach the maximum possible coverage.

Formally, a test case prioritization problem is defined as follows [15]:

Given: T, a subset of test cases; PT, the set of all permutations of T; and f, a
function from PT to the real numbers.

Problem: Find T‘ PT such that

)''()'()''')('')(''(TfTfTTPTTT

Where, T‘ is a subset of test cases which has highest priority, PT represents the set
of all possible prioritizations (orderings) of T and f is a function that, applied to any
such ordering, yields an award value for that ordering.

The code-coverage based algorithm requires testers to access and fully understand
each element in the source code in order to reach the speedy achievement of
coverage, even maximum possible coverage. This is quite hard work for testers and it
is time-consuming, especially if the number of test cases is very large.

Greedy search technique is one optimization techniques which can be used for code
coverage based algorithm as shown below. Greedy search technique may produce
suboptimal results because they may construct results that denote only local minima
within the search space. We will investigate three different algorithms based on
Greedy search technique.

The Greedy algorithm is an implementation of the ―next best‖ search philosophy. It
works on the principle that the element with the maximum weight is taken first,
followed by the element with the second-highest weight and so on, until a complete
but possibly suboptimal solution has been constructed. Greedy search seeks to
minimize the estimated cost to reach some goal, which is simple but in situations
where its result are of high quality it is attractive since it is typically inexpensive both
in implementation and execution time.

Below is one example about how to calculate the weight and how to select the test
cases with the Greedy algorithm.

 16

Assume we have eight elements in the source code (E1-E8) and four test cases (TA-
TD), which are related as shown in Table 1. The test cases are arranged in code
coverage order, i.e. after how many elements of source code they cover. In other
words each test case has a weight, which is equal to how many elements the test
case covers. The Greedy algorithm will select test case TA first, since it covers six
elements of source code and thus has the highest weight. Test case TB, which
covers five elements, will be selected next due to the second-highest weight test case
TC and TD cover the same number of elements, therefore the Greedy algorithm could
sort these four test cases either TA,TB,TC,TD or TA,TB,TD,TC. The order of the test
cases given from the algorithm will be the execution order of test cases. If we want to
select the top 50% of the total number of test cases which have the highest weights to
execute in regression testing instead of executing all test cases, the Greedy algorithm
will select test cases TA and TB out of four test cases in this example.

Test
Cases

E1 E2 E3 E4 E5 E6 E7 E8

TA x x x x x x

TB x x x x x

TC x x x x

TD x x x x

 Table 1. The example of Greedy algorithm

The additional Greedy algorithm is a kind of the Greedy algorithm, but with a different
strategy. It combines the feedback from previous selections in order to achieve 100%
coverage at first. It iteratively selects the maximum weight element of the problem
from that part which has not already been consumed by previously selected elements.

If using the additional Greedy algorithm on the example shown in Table 1, test case
TA will be selected first, since it has the highest weight. The uncovered elements are
E4 and E5. Test case TB is shipped since it covers neither element E4 nor E5, thus it
is not helpful for achieving the maximum coverage. Test case TC and TD cover
elements E4 and E5 respectively. Each test case covers only one uncovered element.
Thus, the Additional Greedy would execute test cases as the order of either TA, TC,
TD, TB or TA, TD, TC, TB.

 17

The 2-Optimal (Greedy) Algorithm is an instantiation of the K-optimal Greedy
Algorithm when K=2. The K-optimal algorithm selects the next K elements that, taken
together, consume the largest part of the problem. The 2-optimal approach is
choosing the pair of test cases first which have the maximum coverage.

If using the 2-Optimal Greedy algorithm on the example shown in Table 1, test cases
TC and TD will be executed at first since the combination of test cases TC and TD
covers all of eight elements which will achieve the maximum coverage among all
pairs of test cases. Therefore, the order of test cases execution will be TC, TD, TA,
TB.

Advantage of coverage based algorithm:

 Accuracy at predicting faults at file level is 40%-50% better than manual
regression test selection [15,19], where the hit rate of manual regression test
selection is around 30.5% in Ericsson.

 Speedy achievement of code coverage.

Disadvantage of coverage based algorithm:

 Code-coverage based algorithms are very difficult to manage thus to all the
information obtained from code. It is also hard to create corresponding
management matrices when testing a larger or more complex component. Code-
coverage based algorithms are not suitable for testing larger components at more
abstract levels.

 Require testers to access and to understand the code, which is very time-
consuming.

 Language-dependent, it will make the situation more complex.

 18

2.3 Risk Based Algorithm

Risk based algorithm [23] is one kind of safety regression test [4], which ensures that
the potential problem areas are properly handled based on risk analysis and assures
that the remaining faults will not bring serious failures. There are two important
parameters to be considered in this risk based algorithm: severity probability (P) and
cost (C). A subset of test cases which have highest value of Risk Exposure will be
selected, where Risk Exposure is the multiplication of Cost and Severity probability as
formula RE=P*C.

Cost (C) means the cost of the requirements attributes that this test case covers. Cost
is categorized on a one to five scale, where one is low and five is high. Cost for the
top 20% of test cases with the highest cost will be five and cost for the bottom 20% of
test cases will be one. Two kinds of costs will be taken into consideration: the
consequences of a fault as seen by the customer, for example, losing market share
because of faults; the consequences of a fault as seen by the vendor, for example,
high software maintenance costs because of faults.

After running all of the test cases in a subset of test cases group, we can sum up the
number of faults uncovered by each subset. Severity probability (P) is computed
based on multiplying the number of faults by the average severity of faults. It falls into
a zero to five scales, where zero is low and five is high. For each test case without
any fault, severity probability (P) is equal to zero. For the rest of test cases, severity
probability for the top 20% of test cases with highest estimate severity probability
value will be five, and severity probability for the bottom 20% of test cases will be one.

2.3.1 Two Kinds of Risk Based Regression Test Selection

 Model-based selection (for each test case) :

Step 1: Estimate the cost for each test case.

Step 2: Derive severity probability for each test case.

Step 3: Calculate Risk Exposure for each test case.

Step 4: Select test cases that have the highest values of Risk Exposure as safety
tests.

 Risk-based end-to-end test scenario selection (more customer-directed):

Since end-to-end scenarios involve many components of the system working
together, they are highly effective at finding regression faults. There are two rules
of selection strategy.

 19

R1: Select scenarios to cover the most critical test cases.

R2: Ensure scenarios cover as many test cases as possible.

Step 1: Calculate Risk Exposure (RE) for each scenario:

Since scenarios consist of test cases, we can simply calculate the Risk Exposure
for each scenario by summing up the Risk Exposure for all test cases that this
scenario covers according to the traceability matrix. Traceability matrix [23] is a
matrix shown the relationship between the test suite and its risk exposure. If one
scenario consists of n test cases, the mathematical formula for RE(s) is:

itREsRE)()(, where ni1 and test case i is covered by this scenario.

Step 2: Select the scenario with highest RE(s)

Step 3: Update the traceability matrix and re-build:

When running the chosen scenario, all test cases covered by the scenario will be
executed. According to our selection rules, these test cases should not affect our
selection any more. We should focus on those test cases that have not yet been
executed.

After the chosen scenario has been executed, we cross out the column for the
chosen scenario, and rows for all the test cases covered by the scenario.

Step 4: Repeat Steps 2 and 3 as desired.

Advantages of risk-based selection:

 Cost-efficiency for company software development.

 More customer-directed (especially in the case of test scenario selection).

 Accuracy at predicting faults at file level is around 52.6% better than manual
regression test selection [23].

Disadvantages of risk-based selection:

 It is difficult to estimate the cost for each test case in our application.

 There has no fault history and we can not trace back to find bug-introducing
change.

 20

2.4 Summary of Algorithm Analysis

We have investigated and compared three various types of algorithms for regression
test selection -- cache algorithms, risk based algorithms and code-coverage based
algorithms. Regression test selection can be used for improving the efficiency of
regression testing. Cache algorithms select a sub-set of most fault-prone regression
test cases, which is useful for predicting new faults based on the dynamically updated
cache as fault history. Risk based algorithms order the available test cases so that
the most critical ones which can detect more faults in the software (with highest risk
exposure) are executed first. Code-coverage based algorithms aim to improve the
effectiveness of regression testing by ordering the test cases and reaching 100
percent coverage soonest, so that the most beneficial test cases with highest priority
are executed.

Based on the experimental results from conference papers, the comparison between
different regression test selections is shown in Table 2.

 Fix Cache

Algorithm based

Regression Test

Selection

Risk-based

Regression

Test Selection

Coverage-

based

Regression

Test

Selection

Manual

Regression

Test Selection

Require of test

cases

prioritization

No Yes No No

Require of code

instrumentation

No No Yes No

Accuracy at file

level

73%-95% 52.6% 40%-50% 30.5%

Table 2. Comparison of different algorithms based regression test selection

 21

Since our thesis work consider real-world, large-scale and industrial software systems
with large number of testing components, a code-coverage based algorithm is not
suitable for our application. Although code-coverage based regression techniques
can be applied effectively to regression testing at the unit level, it becomes very
difficult to manage all the information obtained from code and to create corresponding
management matrices when testing a larger or more complex component, for
example, a utility or a subsystem. Therefore, code-coverage based algorithms are not
suitable for testing larger components at more abstract levels; secondly code-
coverage based algorithms require testers to access and understand the code, which
is very time-consuming; finally, code-coverage based algorithms are language-
dependent, which will make the situation more complex. Considering the weakness of
code-coverage based algorithms above, a code-coverage based algorithm is not a
good choice to our thesis work. We don‘t propose to select a code-coverage based
algorithm to be used in our implementation.

We don‘t propose to select a risk based algorithm to be used in our implementation.
Since severity probability (P) and cost (C) are two important parameters in risk based
algorithms, we can not estimate the cost for each test case in our test environment.
Therefore, risk based algorithms are not suitable to use in our application.

We propose to select the fix cache algorithm for our implementation. The fix cache
algorithm has the highest accuracy for predicting future faults in regression testing,
which uses dynamic updating cache and relates with new fault distribution. Accuracy
73%-95% at file level is the most important factor as we interested in. In our thesis
work, we will select the most fault-prone source code files in order to find relative
most fault-prone test cases. Therefore, highest accuracy at file level is the most
important advantage for our thesis development. Additionally, the fix cache algorithm
doesn‘t require code instrument and test cases prioritization, which is the best method
for our testing environment in practice.

 22

3 Ericsson Tools Introduction

The test environment in Ericsson includes three main tools – CME, FIDO and CQTM.

CME is a tool to enforce the software configuration management (SCM) process and
to help developers in their day-to-day work. CME is based on version control, which
contains each version of changed source code files. A View in CME will correspond to
one product and it is a filter that allows you to see all of source files which are related
with this product. The advantage of CME is that it supports parallel development,
enabling different development projects to work with the same set of source files
concurrently, which allows several developers in the same project and distributes
development teams geographically and more efficiently.

FIDO is a tool working as a bug tracking system for incident management in all
phases of product development and maintenance. FIDO includes all of the
information for each fault from the time of bug introduced until the fault has been
fixed.

The workflow in FIDO is shown in Figure 2. After a bug is introduced, the fault is
found during regression testing. In order to fix this fault, the tester needs to create an
Error Report (ER) to inform the presence of this fault. An Error Report in FIDO is the
document created for recording the presence of faults when testers found faults
during regression testing for a product. An ER ID is a number which represents the
document of an Error Report in FIDO. Each Error Report, thus, has its own unique ER
ID number. We can find all information of a fault if we know the relative ER ID.

 23

Figure 2. FIDO Workflow

After the Error Report has been created, the manager will decide whether this fault is
severe to be fixed or it should be rejected. The Error Report either will be assigned to
a developer for fixing the fault or it will be rejected directly by manager. There are four
severity levels — Critical, High, Medium and Low, which is a judgment on how severe
this problem is.

 Critical Severity: The fault will affect one or more development or test projects or
even the whole project will be delayed, and must be fixed at first with the highest
priority.

 High Severity: The fault has high impact on functionality in one project.

 Medium Severity: The fault is not easy reproducible during test, it is possible to be
fixed if reproduce next time.

 24

 Low Severity: The fault has no effects or low impact on functionality. It is not
urgent to fix the faulty issue.

If the Error Report is confirmed by the manager, the ER is assigned to a developer for
fixing the fault and the Task needs to be created in FIDO. The Task is a part of the
Error Report, which describes an implementation task and requires executing some
modifications by developers. Developers will execute activities in order to modify the
source code and to fix the fault during the FIDO Task States (as shown in Figure 2).
Each time when the source file is modified for fixing the fault, the modified date of this
file will be recorded in Error Report. After developers finished code modification, the
modified source code will be re-tested with the same test case as previously. If the
result of re-test is passed, that means the fault has been fixed, thus Task is
completed. Relative Error Report will be closed after the fault has been fixed.

Therefore, FIDO database contains all of the information of each modified source files
(for instance, file name and file path, changed date etc) and the changed dates when
fault has been found and fixed. For instance, latest changed date and ER created
date and ER closed date for each modified source code, where latest changed date is
the last time when developer modified the file and ER created date and ER closed
date will be the same as the time when the fault has been found during test and the
time when the fault was fixed.

Clear Quest Test Manager (CQTM) is a new developed test management tool from
IBM/Rational. CQTM provides a database to store information and data about test
cases and requirement mapping. Test case ID is a number which represent its
relative test case information, such as test case name and what will be tested for.
When a test case has been executed, the testing result will be reported automatically
and stored in the CQTM database. If a fault has been found during regression
testing, an Error Report will be created in FIDO (as described above). The belonging
ER ID for this Error Report will be recorded by CQTM. Therefore, the test cases in the
CQTM database will be related with the Error Report IDs corresponding to one
product. That means you can find test case information from the CQTM database
based on relative ER IDs from the FIDO database. Therefore, an ER ID is a common
number which will be related with both the fault information in FIDO and the test case
information in CQTM. It is easy to find all test cases and the testing result in the
CQTM database corresponding to an Error Report ID in the FIDO database.

 25

4 Develop the Fix Cache Algorithm in Ericsson

Considering the available tools and test environment in Ericsson as described in
Chapter 3, we will plan how to design the fix cache algorithm with Ericsson tools in
the Section 4.1 and describe how to implement the fix cache algorithm with Ericsson
test environment in the Section 4.2.

4.1 Algorithm Design

Each CME View contains all available source code files which are related with one
Ericsson special product. Since we are focused on .c and .h source files, we only
fetch all available .c and .h files from the CME View corresponding to the special
product as we are interested in. After we get all file names and file paths from the
CME View, we will check both file name and file path for each file in the FIDO
database in order to get the latest changed date, and the dates when fault was found
and fixed for each relative file. And then we will pre-fetch the cache corresponding to
our assumptions.

The cache size can be adjusted based on the number of resources available for
testing or verification. A typical cache size is 10% of the total number of source code
files, which provides a reasonable tradeoff between cache size and the accuracy of
the cache algorithm. Larger cache size results in higher hit rate which means better
prediction for future faults, but the faults will spread out over a greater number of
source code files and will be difficult to select the real most fault-prone source code
out of a large mount of source files. The ideal is to minimize the size of cache while at
the same time maximizing the accuracy of the cache algorithm.

The reason why we decide the cache size to be 10% is based on Kim et al [17],
where 10% is a typically empirical value and the result of hit rate at file level is 73%-
95% accurate in Kim et al [17]. If we select the cache size to be 10%, it is easy to
compare the hit rate of our developed algorithm with the hit rate mentioned in Kim et
al report, and then we can know if our development is good enough to use for
predicting future errors on Ericsson products.

After pre-fetching the cache, the fix cache will contain file name, file path, latest
changed date, and ER ID for each source file. Then the algorithm will check each
newly modified source code file every x hours and update dynamically and
continuously based on fix cache algorithm.

Since the cache memory size is limited, our developed algorithm needs to unload one
file from the cache, based on the cache replacement policies in order to keep the
required cache size, before loading a new modified file to the cache.

 26

The CQTM database contains all test case information and also relative ER ID
numbers, where ER ID is a common number which is related with both the fault
information in FIDO and the test case information in CQTM. The most fault-prone
regression test cases will be finally selected from CQTM database corresponding to a
list of ER ID which is related with the most fault-prone files in the continuously
updated cache.

Figure 3 shows the processes about how to develop the fix cache algorithm with
Ericsson Tools. In the following sub-chapters, the details about how to pre-fetch
cache, update cache and finally find the most fault-prone test cases will be described.

Figure 3. The processes of fix cache algorithm

 27

4.1.1 Pre-fetch Cache

In order to improve the hit rate of the fix cache algorithm, we use pre-fetching
techniques for pre-populating the fix cache before update the cache. Pre-fetching
means that we load files for which we have not yet encountered a fixed fault. Our
motivation is as follows: assume we would load files only when we encounter a fixed
fault. As a consequence, we would have inevitable misses since we start with an
empty cache. Additionally, it would be impossible to predict faults for files that have
exactly one fixed fault in their lifetime. In order to reduce the miss count, we pre-fetch
potential fault-prone files in advance by using the algorithm described below.

Initial pre-fetch, which describes, initially the fix cache is empty and in the absence of
pre-fetching, this would lead to many misses. We avoid this and initialize the fix cache
with the files likely to have faults as assumed by the greatest values of linear
combining three parameters for each file, which are the number of changes, the
number of relative critical fault reports and the number of lines of code.

Therefore, we will pre-fetch 10% of all available .c and .h source code files in our
application, where we assume these files to be the most fault-prone ones.

4.1.2 Update Cache

After pre-fetching the cache, the current cache is the initial revision of the cache,
which contains 10% of all available .c and .h source files as assumed as fault-prone
ones, together with their relative file path, the latest changed date and the relative
fault report.

According to the fix cache algorithm, we plan the way about how to update the fix
cache and how to keep the required cache memory size at mean time. After the fault
has been fixed, the algorithm will check the current cache with each of the newly
modified files. If the file name of a newly modified source code is already contained in
the current cache, count as a hit and the algorithm doesn‘t need to load this file name
into the cache. The algorithm only needs to update the latest changed date for this file
in the current cache. If the newly modified file is not contained in the current cache,
which means it is a new one for the current cache, count as a miss and the algorithm
must unload one file based on the cache replacement policies before it can load this
new file. After checking each of the newly modified files, the algorithm summarizes
the number of hits and the number of misses and then calculates the hit rate of the
updating cache.

The algorithm will continuously update the fix cache every x hours during execution
cycle, where we choose x=24 in our application. The reason why we update the
cache every 24 hours is that the hit rate is easy to track daily.

 28

Below we show one example about how to update the cache once. The current cache
is shown in Table 3. Assume that a fault has been fixed in the file named ―y.c‖. Then
the algorithm only needs to update latest changed date for the file because ―y.c‖ is
already contained in the current cache. Assume next that a fault has been fixed in the
file named ―mm.c‖. Since the file is not contained in the current cache, the algorithm
must unload one file before it can load new file ―mm.c‖ into the cache

File name File path Latest changed date ER ID in FIDO

x.c C:\ww 2009-07-10 753849

y.c C:\ww 2008-01-11 253648

z.h C:\ww 2007-05-09 543879

Table 3. Example of current fix cache

If we use the ―Least recently modified (LRU)‖ cache replacement policy for unloading
files, this means that the file in the cache with least recently changed date will be
unloaded. In the example in Table 3, the LRU policy will unload file ―z.h‖. After the
cache has been updated, the files contained in the cache will be as shown in Table 4.

File name File path Latest changed date ER ID in FIDO

x.c C:\ww 2009-07-10 753849

y.c C:\ww 2008-01-11 253648

mm.c C:\ww 2009-08-20 864390

Table 4. Example of updated fix cache due to new file “mm.c”

 29

4.1.2.1 Cache Replacement Policies

As the obligation is to maintain the cache size to be 10% of the total number of
source code files, if some new files need to be loaded into the cache during the cache
update, the same number of files has to be obliterated from the cache before load
new file names. The cache replacement policy describes which files should be
unloaded first.

We have investigated three different cache replacement policies as described in [17].

 Least recently modified (LRU):

This algorithm unloads the file that has been least recently modified due to a fault.
The LRU cache replacement policy is possible to implement based on the latest
changed date of each source file.

 Number of changes (CHANGE):

When a file has changed many times in the past, it is more likely to have faults in
the future. We want to keep such files in the cache as long as possible.
Consequently, we unload the file with the least number of changes.

 Number of previous faults (BUG):

This policy is similar to the change-weighted LRU. It removes the file with the
least number of observed faults. The intuition here is that when a file has had
many faults, it will likely continue to have faults.

In operating systems, a frequently used policy is the least recently modified (LRU),
which will replace and unload the elements used the longest time ago. We decide to
use LRU policy for fix cache algorithm in the thesis work and unload the least recently
modified files from the cache based on the latest changed date of each file.

 30

4.1.3 Find Fault-prone Test Cases

The duration of algorithm execution for continuously updating cache and selecting the
most fault-prone test cases should be the same as the duration of one cycle of
regression testing. For instance, one cycle of regression testing for delivery test on
Ericsson special product R13/2 is three months, so we should continuously update
the cache every 24 hours in three months. The most fault-prone files will be contained
in the final revision of the updated cache. Based on these most fault-prone files, the
most fault-prone test cases can be selected from CQTM database. And these
selected test cases will be executed in the next cycle of regression testing on product
R13/2 delivery test instead of running all available test cases.

The most fault-prone test cases are a small subset of the total number of available
regression test cases. In our application, we use 10% to be the cache size and the
most fault-prone files are selected based on these 10% source files in final updated
cache. Therefore, we will select around 10% of the total number of test cases to be
executed in next regression testing cycle. The efficiency of regression testing will be
improved and next testing cycle will be less cost-consuming due to test case selection.

4.2 Algorithm Implementation

Based on the algorithm design which is described in Section 4.1, the processes about
how to implement the fix cache based regression test selection in Ericsson test
environment are shown in this Section.

Step 1:Pre-populate the cache with 10% of the total number of available .c and .h
source files.

Step 2: Continuously update the cache every 24 hours during the execution cycle.

Step 3: After the execution cycle, the most fault-prone test cases can be found from
CQTM database based on the final revision of updated cache.

4.2.1 Pre-fetch Cache

Initially the cache is empty, we will pre-fetch the cache with 10% of all available .c and
.h files, where we assume these files to be the most fault-prone files based on our
three assumptions as mentioned below.

In our thesis work, we assume that:

 31

 If the source code file has the largest number of code lines, it is most possible to
have bugs inside the source code and it is most possible to trigger faulty issues
during test.

 If the file has been modified most frequently, it is most possible to be fault-prone.

 If the source code file has been related with a large number of critical ER in FIDO
database, where critical ER is the most severity fault that needs to be fixed with
the highest priority, it is most possible to be a fault-prone file.

In order to pre-fetch the cache, we should consider three different parameters for
each source code file as assumed above -- the number of changes, the number of
lines of code and the number of critical ER. We purpose to select the top ten percent
of total number of source code files regarding to the linear combination of these three
parameters for each source code file.

The linear combination is computed by the following formula:

321
_#

#

__#

_#

_#

#
a

LOCsum

LOC
a

criticalsERsum

criticalsER
a

changessum

changes
linear

 Where,

 ‗#changes‘ means the number of changes for each source file name which can be
found in FIDO database; ‗#sum_changes‘ means the total number of changes for
all source code files.

 ‗#ER_criticals‘ means the number of Error Reports for each source file where ER
have critical severity; ‘#sum_ER_criticals‘ means the total number of critical Error
Reports for all source code files.

 ‗#LOC‘ means the number of lines of code of each file; ‗#sum_LOC‘ means the
total number of lines of code for all source files.

 32

 1a , 2a , 3a are three parameters for linear combination which are the percentage

weight of each assumption, where 1a + 2a + 3a =100%. For instance, if we assume

the number of lines of code is the most important factor which will affect the

selection of the fault-prone source code, we can set the value of 3a to be high

percentage, i.e. 80% and 1a = 2a =10%; if we assume the number of lines of code

is the only factor which will affect the selection of fault-prone files, that means the
source code has the largest number of lines which is the most possible to be the

fault-prone file, therefore we can set 3a =100% and 1a , 2a are 0% instead. It is

possible to setup any percentage value to 1a , 2a , 3a as our assumptions for pre-

fetching the most possibly fault-prone files.

According to the idea of linear combination of three different factors which are
possibly related with the selection and pre-fetch of the most possible fault-prone
source codes, we can assume which factor has highest weight for pre-fetching most
fault-prone files. In our thesis, we will try several different linear combinations and
then decide which parameter of these three is the most important one and which

group of 1a , 2a , 3a linear combination is the best one for pre-fetching fault-prone

source code files based on the hit rate of the fix cache with each linear combination.

4.2.2 Update Cache

After pre-fetching the cache, the current cache will include 10% of all available .c and
.h source file names, together with their relative file path, ER ID and the latest
changed date. And then we will start to update the fix cache every 24 hours
continuously during the execution cycle. The processes of updating fix cache are
shown in Figure 5.

Step 1: Find all of newly closed Error Report IDs during the latest 24 hours in FIDO.

Step 2: Check all these closed ER IDs (got from Step 1) and select ER IDs if it
belongs to the special product R13/2. R13/2 as shown in Figure 5 is one of
product name in Ericsson which we are interested in our thesis.

Step 3: Fetch all newly modified file names from the FIDO database since a fault has
been fixed in each of these files. Newly modified source code files are related
with the closed ER IDs in FIDO during previous 24 hours.

Step 4: Check each of these newly modified files with the current cache if the file is
already in the current cache, count as a hit or a miss. And update the file in
the cache.

 33

 Step 4.1: If the file is already in the current cache, update the file with the
latest changed date and count as a hit.

 Step 4.2: If the file is not in the current cache, count as a miss. Unload the
least recently modified file based on cache replacement policy LRU before
loading this newly modified source code file into the current cache.

Step 5: Summarize the number of hits and the number of misses got from Step 4 and
then calculate the hit rate.

Step6: Continuously updating cache every 24 hours during the execution cycle
following Step1-5.

Fix

Cache
FIDO

R13/2
Find all of newly closed ER ID

every 24 hours

Select ER ID which

are related to R13/2

Update Cache corresponding

to relative filenames if it is new

for the current fix cache

Find file names corresponding

to newly closed ER ID in FIDO

Figure 5. The processes of Cache Update

 34

4.2.3 Find Fault-prone Test Cases from CQTM

After continuously updating cache during the execution cycle, the most fault-prone
source code file names will be finally contained in the updated cache. We can find the
most fault-prone test cases from CQTM database based on these updated fault-prone
file names in the cache.

Since CQTM database contains test case information and also relative ER IDs, where
ER IDs are common numbers which are related with both the fault information in
FIDO and the test case information in CQTM, it is easy to find all relative test cases
based on ER IDs. Since all relative ER IDs can be found in the FIDO database based
on the most fault-prone files contained in the final revision of the cache, the most
fault-prone regression test cases will be found finally from the CQTM database
corresponding to a list of ER IDs which are related with the most fault-prone source
code file names in the fix cache.

One example of finding the most fault-prone test cases based on the continuously
updated cache is shown in Figure 6. The first table in Figure 6 is an example of the
final revision of updated cache evaluation. The second table shows the most fault-
prone test cases IDs to be found from the CQTM database corresponding to the ER
IDs in the first table.

 35

 Figure 6. The example of finding fault-prone test cases

 36

5 Result and Conclusion

5.1 Result Analysis

Our developed regression test selection algorithm based on the fix cache algorithm
has been evaluated in two months on one special Ericsson product. We pre-fetched
the cache based on 10% of all available .c and .h source code files and we assume
these files to be most fault-prone files. We continuously updated the cache every 24
hours during the execution cycle.

The daily hit rate in the whole execution period is shown in Figure 7. The weekly hit
rate, which is the average value of seven daily hit rates during one week, is shown in
Figure 8. The average hit rate varies between 0.50 (50%) and 0.80 (80%). If
comparing Figure 7 with Figure 8, it is easy to see that the hit rate is significantly
lower than these averages for some days and the hit rate is significantly higher than
the averages on several days. In Figure 7, there are four days during these two
months which are even 1.0 (100%) hit rate. However, there is quite a lot of variation
even within weeks and also a drop in week 5 since the processing of Ericsson
product R13/2 is not stable.

As the results shown in Figure 7 and Figure 8, different groups of linear combination

which have different percentage weights to setup 1a , 2a , 3a values are tested in our

application. However, the difference between the best hit rate trend and the worst one
which correspond to two different linear combinations is within 10% of the maximum.
That means the actual linear combination used to pre-fetch the cache has no
significant impact on the hit rate, the simplest linear combination should be selected
and implemented when pre-populating cache, for instance only consider two
parameters such as the number of changes and the number of lines of code (LOC) to
be severity parameters instead of fetching three parameters. Therefore, it will be
much easier when pre-fetching the cache due to fewer factors to be considered in the
linear combination.

The linear combination used to pre-populate cache does not seem to affect the
results of hit rate so much. It could be that this is to be expected since the daily
updating will soon overtake any effects of the pre-population cache. It could also be
that even with normalized ranges one variable has a more extreme distribution and
thus comes to dominate the results.

 37

Since our thesis work has limited duration for evaluating our algorithm, the result is
only the hit rates of updating cache in two months‘ algorithm execution, which is
shorter than one cycle of regression testing of Ericsson special product. However,
based on our result of hit rate, more evaluation of our developed algorithm will be
continued by Ericsson testers after our thesis finished.

Trend Figure (every day)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

01-jul 11-jul 21-jul 31-jul 10-aug 20-aug 30-aug 09-sep

Date

R
a

ti
o

No.6 #Changes=0.35, #Criticalities=0.15, #Lines_code=0.5 No.9 #Changes=0.5, #Criticalities=0, #Lines_code=0.5

No.7 #Changes=0.1, #Criticalities=0.1, #Lines_code=0.8 No.2 #Changes=0.75, #Criticalities=0.15, #Lines_code=0.1

2 per. Mov. Avg. (No.9 #Changes=0.5, #Criticalities=0, #Lines_code=0.5) 2 per. Mov. Avg. (No.6 #Changes=0.35, #Criticalities=0.15, #Lines_code=0.5)

2 per. Mov. Avg. (No.7 #Changes=0.1, #Criticalities=0.1, #Lines_code=0.8) 2 per. Mov. Avg. (No.2 #Changes=0.75, #Criticalities=0.15, #Lines_code=0.1)

 Figure 7. Hit rate in days at file level for updating fix cache

 38

Trend figure (every week)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9

Week

R
a

ti
o

No.6 #Changes=0.35, #Criticalities=0.15, #Lines_code=0.5 No.9 #Changes=0.5, #Criticalities=0, #Lines_code=0.5

No.7 #Changes=0.1, #Criticalities=0.1, #Lines_code=0.8 No.2 #Changes=0.75, #Criticalities=0.15, #Lines_code=0.1

Figure8. Hit rate in weeks at file level for updating fix cache

5.2 Discussion

In this paper we present a new method for regression test selection, named fix cache
based regression test selection, based on fixed error reports and modified source
code files. Fix cache based regression test selection is a method where test cases
are selected based on their ability to detect as many future faults in regression testing
as possible. The cache is a convenient mechanism for holding fault history as a
dynamically updated list of the most fault-prone files, and for aggregating multiple
heuristics for maintaining the cache. In our thesis, we develop a method for automatic
selecting the most fault-prone files and test cases based on the fix cache algorithm
[17]. The most fault-prone test cases are selected based on the most fault-prone files
contained in the continuously updated cache. The hit rate of the fix cache algorithm,
which is the accuracy of predicting future faults based on the updated cache, was
investigated during two months‘ execution cycle and it is shown in the final result.

 39

There are two important advantages of fix cache algorithm based regression test
selection.

An important advantage of this algorithm, compared with other techniques, is that it
can more easily and dynamically adapt to changes in the fault history, which is quite
helpful for automatic selecting fault-prone regression test cases. For code-coverage
based and risk based regression testing techniques the fault prediction models they
develop are more static and rely on factors that have historically been correlated with
faults. This can imply that they rely on assumptions that may not hold in practice. We
thus think that dynamic and adaptive methods like the one we have investigated here
show more potential for real-world and large-scale use. We encourage the research
community to investigate and develop such methods to a larger extent than today.
However, it is important that evaluation of testing techniques and methods are done
on large software systems and not only open-source ones. We would encourage the
academic and industrial domains to cooperate more around such studies in the future.

Another important advantage of the fix cache algorithm over other regression test
selection models, for instance the coverage based regression test selection and the
risk based regression, is that the fix cache algorithm has the highest accuracy for
predicting future faults and it can adapt more quickly to new fault distributions. This is
an important reason why we decide to use fix cache algorithm in our thesis. In
practice, we can see from the final result of hit rate in Figure 7 and Figure 8, the
accuracy of the fix cache algorithm is quite high at file level.

The fix cache algorithm doesn‘t require code instrument and it doesn‘t require testers
to access and understand the source code files, therefore, it is convenient to
implement for selecting a subset of test cases in even large software system.

Most previous prediction models found in the literature use fault correlated factors
and develop a model to predict future faults. The model is static and it incorporates all
precious history and factors after it is developed. In contrast, the fix cache algorithm
can cooperate with the fault distributions of each product. Even though products have
different fault distributions, the fix cache algorithm adaptively updates and calculates
the hit rate based on the number of hit and the number of miss. The cache size will
affect the hit rate of updating cache. Larger cache size results in higher hit rate which
means better prediction for future faults, but with the faults spread out over a greater
number of source code files. The ideal is to minimize the size of cache while at the
same time maximizing the accuracy of cache algorithm. Our extension is a way to link
source code files in CME View with regression test cases in CQTM database based
on Error Reports in FIDO database, where CME, CQTM and FIDO are three different
tools in Ericsson test environment.

The fix cache algorithm has been implemented and evaluated in a large, industrial,
embedded, real-time software system at Ericsson in Sweden. The software system is
consisted by several million lines of code and a five digit number of source code files,
which is a software system used by mobile phone manufacturers.

 40

In addition to being an industrial evaluation of the previously proposed fix cache
algorithm, a contribution of our thesis work is the way we link test cases and source
code files without requiring explicit code coverage measurements and code
instrument. This makes the approach useable for systems where coverage
information is not readily available, such as in real-time and embedded systems. A
further contribution is that our system has also been evaluated in an actual, industrial
production environment.

The result of the fix cache algorithm implementation in practice shows that the hit rate
of fix cache algorithm which we got in our thesis work are lower (typically in the range
50-80%) than the previously presented ones (73-95%) in the literature [17]. However,
there is a very large reduction in the number of test cases comparing with the total
number of test cases. We have a list of the most fault-prone test cases which will be
recommended in future regression testing. The potential efficiency gains are very
large.

In future work we will examine the quality and effectiveness of this list of the most
fault-prone test cases, as well as investigate extensions to the fix cache algorithm for
a large, industrial, embedded, real-time software system in practice in order to
increase the hit rate of updating cache.

 41

6 Future Work

We currently update the cache daily even if regression testing is not done daily. In
future work we should investigate if cache updating based on the frequency of
regression testing offers better opportunities for optimizing the cache updating
scheme. By including more information, i.e. over several days, in a single cache
update decision, that decision could potentially be more accurate.

In our thesis work, only test cases which have failed and where the problem has been
fixed are included by the algorithm. We are looking into performing low intrusive
system level code coverage measurements to be able to associate more test cases
with source files. Another way to create better linking information would be to monitor
changes to source or test files and correlate them. Thus we could update the links
between test cases and source files as changes are made rather than only when
faults are fixed. The cache size can also be evaluated and changed corresponding to
deleted files during cache update. In our thesis, we use 10% to be cache size and
make sure the size to be 10% with cache replacement policy during cache update. In
the future work, we can create another database to contain all deleted files due to
cache replacement. In this database, we can count how many times each file is
deleted during cache update. If there are some files which have been frequently
deleted, that means these files are also frequently modified. Therefore, we should
enlarge the size of cache and add these files into updated cache.

Another future work is to implement the bug cache algorithm to evaluate module with
finding bug introducing changes. By comparing the current software version with the
latest tested version, it would be more accurate to find the difference between two
versions and find the place of bug introducing changes. Thus it is more effective for
predicting future faults.

In this study we have seen considerably lower hit rates on a few days than was
reported in [17]. It is not clear what causes this difference. We speculate that
differences in development of industrial and open-source software might be the cause.
However, for all days in our study where the hit rate is very low it quickly recovered in
the following days. Thus, the overall efficiency of cache-based regression test
selection schemes should not be affected much, even if the hit rates are temporarily
lower. Potentially our method could be enhanced by resorting to other cache update
strategies on days when the hit rates are lower than normal. This is a potential area
for future research.

 42

6.1 Tool Analysis about eROSE Plug-in

eROSE plug-in [27] uses version archives to make recommendations for guiding
programmers, which is effective and unobtrusive for predicting faults. If we can
integrate the cache algorithm with eROSE, this tool can automatically suggest further
locations to be examined for related faults whenever a fault is fixed [9]. All eROSE
needs is a CVS repository [14], which is easy to obtain with CME View version
control.

Since there is a feature for software that is ‗programmers who changed function X
also changed function Y‘, we could analyze version histories of large software
systems and try to identify commonalities and anomalies for this purpose, and also
guide the programmer to understand and maintain. The major application for eROSE
is to guide users through source code, i.e. the user changes some entities and
eROSE automatically recommends related changes in a view. Since this dependency
is undetectable by program analysis, eROSE is more useful for improving navigation
and preventing errors.

eROSE consists of two parts: Preprocessing and Mining.

Since CVS have some weaknesses, i.e. it is slow and loses information on
transactions, fine-grained changes and merges, the preprocessing of data is a fast
access to CVS data and necessary in eROSE, which includes four essential
preprocessing tasks (data extraction, transaction recovery, mapping changes to
entities and data cleaning).

For data mining techniques in eROSE, there are three main advantages comparing
with other tools:

 Use full-fledged data mining techniques to obtain association rules from version
histories.

 Detect coupling between fine-grained program entities such as functions or
variables, thus increasing precision and integrating with program analysis.

 Thoroughly evaluates the ability to predict future or missing changes, thus
evaluating the actual usefulness of our techniques.

However, there are three different evidences of data mining in eROSE:

 For stable systems, eROSE gives many and precise suggestions: 44% of related
files and 28% of related entities can be predicted, with a precision of about 40%
for each single suggestion, and a likelihood of over 90% for the three topmost
suggestions.[27]

 43

 For rapidly evolving systems, eROSE gives most useful suggestions at the file
level. Overall, this is not surprising, as eROSE would have to predict new
functions, which is probably out of reach for any approach.

 In about 4%–7% of all erroneous transactions, eROSE correctly detects the
missing change. If such a warning occurs, it should be taken seriously, as only
2% of all transactions cause false alarms.[27]

However, we should take these evidence into account if we implement eROSE plug-
in for our cache algorithm in the future work.

 44

7 Reference

[1] A. E. Hassan and R. C. Holt, "The Top Ten List: Dynamic Fault Prediction," Proc.

of International Conference on Software Maintenance (ICSM 2005), Budapest, Hungary,
2005, pp. 263-272.

[2] A. K. Onoma,W.-T. Tsai, M. Poonawala, and H. Suganuma. Regression testing in
an industrial environment. Commun. ACM, 41(5):81–86, 1998.

[3] A. Mockus and L. G. Votta, "Identifying Reasons for Software Changes Using
Historic Databases," Proc. of International Conference on Software Maintenance (ICSM

2000), San Jose, California, USA, 2000, pp. 120-130.

[4] A. Mockus and D. M. Weiss, "Predicting Risk of Software Changes," Bell Labs

Technical Journal, vol. 5, pp. 169-180, 2002.

[5] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering, 27(10):929–948,
2001.

[6] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London. Incremental Regression
Testing. In Proceedings of the IEEE Software Maintenance Conference, pages 348–
357, 1993.

[7] H. Leung and L. White. Insights into regression testing. In Proceedings of the IEEE
Software Maintenance Conference, pages 60–69, 1989.

[8] H. Srikanth, L. Williams, and J. Osborne. System test case prioritization of new
and regression test cases. In 2005 International Symposium on Empirical Software
Engineering, pages 64–73. IEEE, 2005.

[9] J. liwerski, T. Zimmermann, and A. Zeller, "When Do Changes Induce Fixes?,"
Proc. of Int'l Workshop on Mining Software Repositories (MSR 2005), Saint Louis, Missouri,
USA, 2005.

[10] L. White and B. Robinson. Industrial real-time regression testing and analysis
using firewalls. In Proceedings of the IEEE Software Maintenance Conference, pages
18–27, 2004.

[11] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release History Database
from Version Control and Bug Tracking Systems," Proc. of 19th International
Conference on Software Maintenance (ICSM 2003), Amsterdam, The Netherlands,
pp. 23-32, 2003.

 45

[12] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data for
feature tracking. In Proc. 10th Working Conference on Reverse Engineering (WCRE 2003),
Victoria, British Columbia, Canada, Nov. 2003. IEEE.

[13] N. Nagappan and T. Ball, "Use of Relative Code Churn Measures to Predict
System Defect Density," Proc. of 2005 Int'l Conference on Software Engineering (ICSE

2005), Saint Louis, Missouri, USA, 2005, pp. 284-292.

[14] N. Nagappan, T. Ball, and A. Zeller, "Mining Metrics to Predict Component
Failures," Proc. of 2006 Int'l Conference on Software Engineering (ICSE 2006), Shanghai,
China, 2006, pp. 452-461.

[15] S. Elbaum, G.Rothermel, S.Kanduri, and Alexey G. Malishevsky, " Selecting

a Cost-effective Test Case Prioritization Technique‖, IEEE, 2004

[16] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead, Jr., "Automatic
Identification of Bug Introducing Changes," Proc. of International Conference on

Automated Software Engineering (ASE 2006), Tokyo, Japan, 2006.

[17] S. Kim, T. Zimmermann, E. J.W. Jr., and A. Zeller. Predicting faults from cached
history. In ICSE‘07, pages 489–498, Washington DC, USA, 2007. IEEE Computer
Society.

[18] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting Fault Incidence
Using Software Change History," IEEE Transactions on Software Engineering, vol. 26, pp.
653-661, 2000.

[19] T. M. Khoshgoftaar and E. B. Allen, "Ordering Fault-Prone Software Modules,"
Software Quality Journal, vol. 11, pp. 19- 37, 2003.

[20] T. M. Khoshgoftaar and E. B. Allen, "Predicting the Order of Fault-Prone Modules
in Legacy Software," Proc. of The Ninth International Symposium on Software Reliability

Engineering, Paderborn, Germany, 1998, pp. 344-353.

[21] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the Location and
Number of Faults in Large Software Systems," IEEE Transactions on Software

Engineering, vol. 31, pp. 340- 355, 2005.

[22] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, "Mining Version Histories
to Guide Software Changes," IEEE Trans. Software Eng., vol. 31, pp. 429-445, 2005.

[23] Y. Chen, R. L. Probert, and D. P. Sims. Specification-based regression test
selection with risk analysis. In CASCON ‘02, pages 1–14. IBM Press, 2002.

 46

[24] Y.-F. Chen, D. Rosenblum, and K.-P. Vo. TESTTUBE: a system for selective
regression testing. In ICSE‘94, pages 211–220. IEEE Computer Society, 1994.

[25] Y. Li and N. J. Wahl. An overview of regression testing. SIGSOFT Softw. Eng.
Notes, 24(1):69–73, 1999.

[26] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for regression test case
prioritization. IEEE Transactions on Software Engineering, 33(4):225–237, 2007.

[27] Zimmermann.T , Dallmeier.V, Halachev.K and Zeller.A. eROSE: Guide
Programmers in Eclipse

 47

