

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, March 2010

System Modelling for Spacecraft On-Board
Computers

Master of Science Thesis in the Programme Networks and Distributed
Systems

Fatemeh Zarvani

2

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and
make it accessible on the Internet.

System Modeling for Spacecraft On-Board Computers

Fatemeh Zarvani

© Fatemeh Zarvani, March 2010.

Examiner: Johan Karlsson

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden March 2010

3

Abstract

This study makes an evaluation of the usability of SysML, a system graphical
modeling language, for capturing functional requirements for space electronic
products. This is done by a case study in which a model of a Packet Telemetry
Encoder system is developed.. The report includes a brief overview of various
graphical modeling languages.. The case study illustrates how the SysML provides
system engineers with a robust modeling language. SysML is an extension to UML
(unified modeling language) which is widely used by software engineers. The
extension to the UML profile includes requirements modeling, parametric
modeling, allocation and extension to structural and activity modeling. These
extensions of the UML language are known as the SysML Profile. SysML is a
representation of domain-specific engineering analysis models and the great
advantage of applying the language is providing a single model to capture
requirements, system elements and the relationship between these model elements.
This capability of SysML is satisfying the traceability of requirements which is
required in every stage during the system development life cycle. SysML is a
methodology and tool independent language.

4

Acknowledgements

There are many people that have helped me throughout my studies, particularly the
thesis work, whom I wish to thank. I want to thank Björn Hansson, my supervisor at
RUAG for all his help and advices throughout the work of this thesis. I wish to
thank Johan Karlsson, the examiner of the thesis at Chalmers. I am grateful for the
support and encourages from my parents and I also wish to thank my family and all
my friends for always being there and supporting me.

5

Table of Contents
Abstract.................... ... 3

Acknowledgements ... 4

1.Introduction........... ... 6

2.Examples of system modelling standards and languages ... 8
2.1.AADL.................... ... 8
2.2.SysML.................. ... 8
2.3.MARTE.......... ... 9
2.4.UPDM.................. ... 10

3.SysML language Description ... 11
3.1. SysML Diagrams .. 11
3.1.1 Requirement Modelling .. 12
3.1.2 Behavioural Modelling .. 13
3.1.3 Structural Modelling ... 14
3.2 SysML Views and View Points ... 16
3.3 SysML Crosscutting and Allocation .. 16
3.4 SysML Tools.......... ... 17

4.Case study.......... ... 19
4.1 Organizing the Model .. 19
4.1.1 Telemetry Data Flow ... 20
4.2 Operational domain (top-level functionalities) ... 23
4.3 System context .. 25
4.4 Modelling the requirements ... 26
4.5 Structural Modelling .. 27
4.5.1 PTME module (component specification and functionalities) 28
4.6 Modelling behaviour .. 35
4.6.1 Packet Telemetry Encoder initialisation time configuration 36
4.6.2 Individual Virtual Channel Operational configuration ... 41
4.6.3 Transfer Frame Generation ... 43
4.6.4 Channel coding, Synchronization and Pseudo-randomization 48
4.7 Requirements Analysis ... 51
4.8 Critical System Properties and Constraints .. 52

5.Related works .. 53
5.1 Simulation-based design ... 53
5.2 Model-based Requirements engineering .. 53
5.3 Modelling, validation and verification .. 54
5.4 SysML Profile for System on chip (Soc) Design ... 55

6.Summary of the PTME SysML model .. 56

7.Conclusions........ ... 58

8.Reference........... ... 60

6

Graphical system modelling is a technique intended to assist developers in
managing the complexity involved in the design and maintenance of large
computers systems. It aims to improve the communication among different
stakeholders, such as end-users, developers and project managers, and others who
have an interest in a given system. Graphical models are abstractions of a real
system that can be useful particularly in refining and managing system
requirements. Multiple aspects of the system are addressed by functional and
behavioural modelling, structural and component modelling, performance
modelling and engineering analysis modelling.

A trade-off analysis must be performed by the system engineers to select a suitable
architecture among different alternative solutions. The system architecture which is
defined by system engineers is considered as requirement of the software and can
be used by software engineers. In order to develop balanced architectural solutions
for a system in response to the stakeholder’s needs, system engineers must
efficiently express and refine the system requirements from the early stages of the
development process. In some cases the preliminary requirements specification are
defined by the customer. In other cases, the starting point is a modified version of
the requirements specification for a previous system. In both cases, it is the
modeller’s task to interpret and analyse the stakeholders’ requirements developing a
precise specification with a minimum amount of ambiguity. For traceability
purposes, the identified system requirements must be linked to the associated
preliminary requirements and further to the system components.

The Term”Development environment“ refers to the tools and repositories used to
support a development process. Project Management tools, Engineering Analysis
tools, Test Tools, System Modeling tools, Engineering Development tools,
requirements management tools and Document Generation tools are considered as
development tools. To support collaborative engineering there must be a logical
connectivity between these tools. The role of the system model in this environment
is to provide an integrated framework for other models. This is done for example by
relating the text requirements to the design, providing the component specification
for design models, supporting verification by providing the test case information
and so on.

Comparison on system engineering vs. software engineering come up with this
result that system engineering is broader discipline. System is the collection of
different related components and software can be one of these elements. This thesis
work aims to demonstrate the benefits that can be achieved by following a model-
based approach to system development. Spacecraft onboard computers are
examples of Software-intensive systems that consist of hardware and software.

Another purpose is to make an overview of existing standards and tools for model-
based requirements analysis, and in particular assess the usefulness of the SysML
language. As satellite systems are becoming increasingly reliant on software, the
compatibility between the software models described in UML and the model of the
system is an important issue, so there is a need for a unified modelling language and

1 Introduction

7

a tool or at least compatible technique for modelling system, both hardware and
software components to perform the transition from document-based approaches to
model-based approach.

A major task is looking at the possibilities of modelling space electronic products at
the system level as an alternative or complement to textual descriptions. The latter
is made through a case study where the requirements for an existing Packet
Telemetry Systems are formulated using SysML. The work started by studying how
the elaboration of functional system requirements is done today at RUAG, system
section, what is the procedure from requirements engineering point of view.

Today, engineers at RUAG use a document-based system engineering approach in
which requirements are written in textual form using a requirement management
tool called DOORS. DOORS support graphical modelling in terms of the block
diagrams and functional diagrams. To express the system requirements and design
specification, requirements are stored in requirements repository and captured in
diagrams and tables, but graphics which are used to illustrate the design and textual
requirements in tables are not fully associated. Therefore using DOORS, it is not
possible to have different views of the system structure all describing the same
concept but from different perspective. The idea is to have a better understanding of
the system by having the text and diagrams in corporation which also provides the
traceability of requirements. Here traceability refers to possible connections
between the requirements and other part of the system, the structure, behaviour and
so on, not only the requirements themselves.

The report is organized as follows. An overview of some system modelling
languages is provided in the next section. Section 3 provides an introduction to the
SysML modelling language and tools that implement the language. The description
of the Packet Telemetry Encoder (PTME) system and its SysML model are covered
in section 4. In section 5, an overview of related work is provided. Section 6
summarizes the SysML modelling capabilities that were explored in the modelling
of the PTME system. Section 7 presents our conclusions and discusses directions
for future work.

8

Modelling languages are used to visualize the System Engineering process (SE) by
means of graphics. The system engineering process begins at an early stage of the
system lifecycle with a requirements analysis to refine the system requirements
specification that can be used in the following stages such as system level design,
integration and validation. The main goal is to represent the allocation (selection of
components which satisfy the requirements), binding (assignment of tasks to
selected components) and scheduling (execution order for the task) by means of
diagrams [1]. Some examples of modelling languages used in industry are described
in this section.

2.1 AADL

Architecture Analysis & Design Language (AADL) is developed by the Society
of Automotive Engineers (SAE) [2]. It is an industry standard that supports model-
based embedded system engineering, allowing designers to model the software and
hardware architecture of real-time, safety-critical, fault-tolerant and embedded
systems with precise syntax and semantics. AADL supports many of the
capabilities for system engineering purposes such as Requirement management in
development process and provides a system design analysis to predict the
performance. Using AADL to design a complex system satisfies both functional
requirements and non-functional attributes, such as performance, reliability,
security and so on [2]. There is an open source tool called OSATE (Open Source
AADL Tool Environment) for editing models, model compilation and front-end
analysis. Some commercial tools such as Illogic [33] and Artisan (UML tools) [33]
also support AADL. A UML profile is included in the Language specification so
AADL can be considered as a specialized modelling notation within the UML
framework.

2.2 SysML

Systems Engineering Modelling Language (SysML) is a graphical modelling
language, derived from the Unified Modelling language (UML). SysML has been
proposed by the Object Management Group (OMG) [30], together with the
international Council on System Engineering (INCOSE) [31]. The official OMG
SysML specification v1.0 became available in September 2007 and SysML v1.1
was adopted by OMG in September 2008. SysML is being used by systems
engineers to specify requirements, system structure, functional behaviour and
allocation during the specification and design phases. The system may include a
variety of components, hardware, software, data, people and natural objects. As
indicated in figure 2.1, which is adopted from Friedenthal et al, the subset of UML
reused by SysML is called UML4SysML. In addition, SysML includes language
constructs that are defined through the profile mechanism, a standard mechanism in
UML to add a collection of domain specific notations. The SysML language
consequently consists of two parts: UML4SysML and the SysML profile.

2 Examples of system modelling standards and
languages

9

The modelling is done at multiple levels. SysML behavioural models represent
function-based, message-based and state-based behaviours with corresponding
interactions, sequential flows and states transitions. Components models depict
structural composition with interconnections and classifications. Requirements
models represent the requirements and their relationship to other requirements,
components, activities, test cases and so on. Constraints on various system
properties (functional and non-functional) are represented in parametric models.
The SysML language is described in more detail in section 3.

UML not required by SysML SysML extensions to UML

 Figure 2.1 Relationships between SysML and UML

2.3 MARTE

Modelling and Analysis of Real Time and Embedded systems (MARTE) is a
UML profile developed by the Object Management Group (OMG) supporting
model-based development of real-time and embedded systems. MARTE provides
support for specification, design and verification/validation of such systems, and
defines a general framework for quantitative analysis, especially scheduling and
performance analysis.

The Beta Specification of MARTE Profile was adopted by OMG in June 2007 and
the Finalization Task Force (FTF) report was submitted in May 2008 to prepare the
final specification [3].

When designing an embedded real-time system, scheduling analysis must be
performed to ensure that all response time requirements are fulfilled. SysML and
MARTE are two well known UML profiles that can be considered as
complementary to identify design points that fulfill the timing constraints. They
enable so called Design Space Exploration (DSE) analysis within the system design
phase. DSE refers to discovering of optimal design solution among all possible ones
[1]. While SysML is used to represent the system architecture and relating the
functional and behavioral requirements to components, the MARTE profile

UML used
 By SysML
 UML4SysML

UML SysML

10

provides a general framework for quantative analysis including scheduling and
performance analysis.

MARTE is composed of four main packages, MARTE foundations, MARTE
Design Model, MARTE Analysis Models and MARTE annexes. The modeling of
non-functional properties such as time modeling is contained in the MARTE
foundations component. The activities of the left branch of “V-model” development
life-cycle model are supported by the MARTE Design Model extension and the
MARTE Analysis Model provides support for model-based analysis [29]. Papyrus
(Eclipse) is the only tool until now that supports both the SysML and MARTE
profiles. Artisan Software plans to implement an Artisan Studio Profile of the
MARTE specification to support all the stereotypes and tag definitions of the
MARTE specification [4].

2.4 UPDM

Unified Modeling Language (UML) Profile for DoDAF and MoDAF (UPDM)
The US Department of Defense Architecture Framework (DoDAF) [34] is a
reference model for how to organize enterprise architectures and system
architectures for complex systems. It defines standardized views of systems
information and helps the system engineers to know what kinds of models to create
so sets of views are used to express the architecture. DoDAF does not require a
specific tool or notation, but modelling languages such as UML can be used for its
implementation. The UK’s Ministry of Defense Architecture Framework (MoDAF)
uses aspects of the existing DoDAF together with additional Viewpoints that are
required to support UK MOD processes, procedures, and organizational structures
[5]. Both architectures can be used to define a system and its users in an effective
way along with the activities that take place to fulfill the requirements. UPDM is an
industry standard UML profile that supports both DoDAF and MoDAF. It was
developed by UPDM group, within Object Management Group. UPDM includes
UML compliance levels and fully leverage SysML features which facilitates the
integration of system of systems (SoS) modelling with system modelling [6].

11

According to Sanford Friendenthal et al [7], SysML language concepts can be
described in three parts: Abstract syntax, Semantics and Concert syntax. Abstract
syntax describes the characteristics of the concepts and their interrelationships in
the language using meta-models. Meta-models consist of meta-classes to describe
individual concepts. For example “Data Type” is a meta-class used to describe
values of attributes. Other examples of meta-classes are packages, blocks, and
activities and so on. Model elements are instances of the meta-classes defined in the
model libraries to support reusability. For example different components of a
system are represented in user models as a model element that can be captured in a
SysML block definition diagram. Semantics describe the meaning of the language
concepts in the system engineering domain. In SysML semantics are described in
English text. Concert syntax or notations are representation of the meaning, in other
words; notations visualize SysML concepts as graphical or textual elements. The
relationships between the concepts are also described by abstract syntax such as
association or generalization. Stereotypes together with constraints are concepts
which are defined as domain specific notations in Profile to extend the language.
The stereotypes are similar to meta-classes that can be derived from meta-classes to
create new or modified concepts for further language customization. For example
“Value Type” is a stereotype derived from “Data Type”.

3.1 SysML Diagrams

SysML notations visualize SysML concepts as graphical symbols on diagrams or
textual elements in tables and matrixes. SysML includes nine diagrams to represent
a particular aspect of the system model graphically. A subset of the UML language
is reused by SysML and the extension to UML includes:

 Requirements modelling.

 Extensions to system structure modeling by defining blocks and value
properties.

 Parametric modelling.

 Allocations between model elements to establish relations between structure
and behavior in general.

 Extensions to activity modeling by introducing “Item flow” and “continues
flows” and so on.

Figure 3.1 shows the SysML diagram taxonomy (adopted from Fridenthal et al).
Several UML diagrams such as deployment diagram and communication diagram is
omitted and the ones that are shown in figure 3.1 are either new diagrams
(Requirement diagram and Parametric Diagram), modified versions of UML
diagrams (Activity Diagram, Block Definition Diagram and Internal Block
Diagram) diagram or the same as those used in UML (Sequence Diagram, State

3 SysML language Description

12

Machine diagram, Use Case Diagram and Package Diagram). Common concepts
such as Frame, Header and Description apply to all SysML diagrams.

Figure 3.1 SysML Diagram Types

3.1.1 Requirement Modelling

Requirement Diagram: SysML has introduced a requirement diagram to capture
text-based requirements in the model, using both graphical and tabular notations.
The «requirement» stereotype extends the language. Some predefined properties are
included in each captured requirement such as identifier and text. Depending on the
application it is possible to extend the «requirement» stereotype to represent certain
types of requirements, Examples of such extension include specify the
«performanceRequirement» stereotype and the «functionalRequirement» stereotype
.The containment relationship is used to decompose requirements hierarchically
into several levels of requirements. . It is also possible to relate the requirements to
other requirements as well as to other model elements. The latter is called cross-
cutting relationships.

A set of stereotypes are defined in the SysML profile to implement relations. The
«derive» represents the derive relationship which is defined between derived and
source requirements. Containment is used to represent the requirements hierarchy.
Another relationship which is defined between requirements is «copy»; this is used
to show reuse of requirements in a different hierarchy. Cross-cutting relationships
are defied as follows. «Satisfy» indicates the satisfy relationship which is defined
between design elements and requirements. For example use cases may satisfy one

13

or several requirements. The verify relationship is defined between requirements
and test cases and indicated by the «verify» stereotype. Model elements can be used
to clarify the requirements, this dependency between the model elements and
requirements is indicated by the «refine» stereotype. The «trace» relationship is
used to relate external documents (source of the requirements) to the captured
requirements in the model. To represent the relationship between the requirements
and model elements the requirement construct can be shown on other diagrams such
as Block Definition Diagram and Use Case Diagram.

The requirements relationships can be depicted using direct notations, Compartment
notations and Callout Notations. A dashed arrow together with the name of
relationship (e.g., «satisfy») is used in direct notation. Relationships can be
displayed using callout notations. There will be a link between the requirement and
the callout which specifies the model element at the other end of the relationship
and corresponding relation name. Another alternative method is to use compartment
notations which display the relation explicitly. This is required that corresponding
model element supports compartment. Rationale is a concept which is provided by
SysML Requirement Diagram to write comments on requirements. Unlike UML
notes, rationale is considered as a model element. The rational information can be
helpful when analyzing the requirement and further changes.

3.1.2 Behavioural Modelling

Use Case Diagram: like UML, use cases describe the behaviors of the system in
terms of functionalities and uses of a system. In use case diagrams, the requirements
are grouped into several use cases therefore Use Case Diagram provides a means of
expressing functional requirements. It also offers a more precise way of expressing
functional requirements than a text specification, and thus provides a means for
reducing ambiguity in SysML models. Requirement blocks which capture the text-
based functional requirements can be related to use cases using the refine
relationship in both Requirement Diagram and Use Case Diagram.
An actor represents any entity that participates in the use of system in a use case
model and can be a human, organization or any external system. Three kinds of
relationships are defined to relate different use cases, specialization, inclusion and
extension. Inclusion is used to denote that one use case contains another use case
functionality. Extension is used to denote that a given use case extends the
behaviour of another use case. Specialization refers to “is a” relationship to classify
different actors that share some common features.

Activity diagram: SysML Activity diagram is a modified version of the UML
activity diagram, which is used to model behaviour in terms of the flow of input,
output and control. One activity comprises several actions. Functional requirements
are grouped in actions. “CallBehaviourAction” is a special type of action which can
be associated to an activity. This association captures the composition of activities
and makes it possible to call an activity from another. In SysML control is treated
as data for starting and disabling actions. The actions are triggered by inputs and
outputs through a controlled sequence. One action stops, it initiates the other action
and when all the actions are complete the activity is complete. Conditional activities
and interchanges between activities can also be captured in the diagram. Events can

14

also trigger an action and it means that something has happened and needs to be
handled by the system. In SysML, flows can be typed by value types, data types,
and blocks.

New concepts are introduced in SysML activity diagram by means of stereotypes.
« Continuous »is one of the important stereotypes. SysML supports continuous flow
modeling in a way that continues output and input can be produced and consumed
by an action while it is executing like flow of water. « Control Operator »
stereotype is applied to action and operation in order to enable or disable the action.
When it applies to an action, control values are needed as an input or the action
provides control values as an output. These new concepts are explained by
Friedentalet al.

Sequence Diagram: Behaviour of the system can be represented by the sequence
diagram in term of message passing between multiple lifelines. There is no
difference between UML sequence diagram and SysML sequence diagram. Each
lifeline represents an entity which is participating in an interaction. Messages can be
synchronous or asynchronous. A sender of a synchronous messages waits for a
reply from the receiver, while a sender of an asynchronous message continues its
execution immediately after the message is sent. Synchronous messages are denoted
a by a closed arrowhead, whereas asynchronous messages are denoted by an open
arrowhead. SysML sequence diagram is effective for capturing the communication
between discrete types of behaviour. It provides a useful mechanism for verifying
system interaction against the use case description. There are techniques to enhance
the scalability of SysML sequence diagrams compare to UML sequence diagrams.
One added feature in SysML is the possibility to use control logics such as
conditional statements, parallel statements and loop statements or Reference
Sequences when illustrating the behaviour of the system. Reference Sequences is
used when trying to illustrate one sequence which contains more sequences. So the
modeller refers to other Sequence diagram by using this notation which is linked to
it. In a sequence diagram, messages are represented on horizontal axis and time is
represented on vertical axis.

State machines: SysML state machine is as same as UML 2.0 state machine and
represents event-based behaviour modelling. Considering the behavioural concepts
of the system in term of different states during the life-cycle of the system, state
machines are used to represent the state changing. Three types of events are
supported, change event, time event and signal event. The goal is to track state
transition with respect to corresponding events.

3.1.3 Structural Modelling

Package Diagram: The SysML package diagram is the same as the UML package
diagram and is used to organize the model. The organization can be done regarding
diagram types such as use cases packages, requirements packages, structure
packages and so on, or regarding different levels such as enterprise, system physical
design, logical design and so on. View points are alternative ways to organize the
model. This concept is described in a separate subsection hereafter.

15

Block definition diagram: Block Definition Diagrams aim to describe the structure
of a system. It is based on the UML class diagram and composite structure diagram.
The enhancement is done by providing two capabilities, reusability of model
elements and interconnections. A block in SysML can be used to represent any type
of component in a system, functional, physical and even human, etc. It is possible to
decompose the system into sub-systems and show the association, composition and
specialization relationships between the blocks such as a block hierarchy in the
block definition diagram. To specify the block characteristics in details the modeller
can add some features to define its properties, operations, its interfaces and
constraints. It is also possible to allocate other model elements from or to the block.
For example allocation of activities to the block, that can be used to define its role
in the system. Different types of allocation are described later in a separate
subsection. If the block satisfies a particular requirement, this can be captured in the
block definition diagram. Blocks are reusable model elements in multiple diagrams.

Parts can be described as the block properties which are composite blocks that
almost represent the physical components of the blocks. References are parts that
are not owned by the enclosing block. The value properties of the Block represent
quantifiable properties with units, dimensions and probability distribution.

Internal block diagram: The internal block diagram represents the internal
structure of a higher level block. Part properties of a block can be shown on internal
block diagram to visualize the blocks interconnections and collaboration to realize
the behaviour of the block. The parts can be connected using connectors and ports.
Ports provide access to the internal structure of a block. In SysML there are two
types of ports, flow ports represent the interfaces, through which the block
communicates with other blocks, and standard ports represent the interfaces for
handling requests and invocations of the services with other blocks [8].

Standard ports are typed either as a required interface or provided interface. As the
names indicate required interface specifies the set of operations which are requested
by the owning block and provided interface specified the set of operations that the
block provides. Flow ports are typed either as an atomic or non-atomic. Atomic
flow port shows the interaction of a single item between two blocks (in/out or in-
out). If there are more one item that flows in different direction between two blocks,
the specification of flow is described by «flow specification». Regardless of type of
flow ports, the item that flow can be in any type, a block, a value type, a data type
or any other user defined types.

Parametric diagram: SysML parametrics diagrams are new modelling capabilities
which are not part of UML. Parametric diagrams integrate engineering analysis
models with system requirements and design models. They are used to define
equations that express constraints for block properties [17]. Performance, reliability,
and physical characteristics are examples of critical system parameters that can be
expressed by parametric diagrams. Constraints are linked to the quantifiable
characteristics of the system and its components which are called “value property”.
They are captured in a block which is tagged by the «constraint» stereotype. The
particular usage of constraint blocks are described by the “Constraints properties“.
The equations represented by constraint properties in the model, specify the relation
among the value properties which are the system properties. For example “F=m*a”

16

is a constraint and “F”, “m” and “a”, are parameters each describing value
properties of the system.

Parametric diagram captured blocks, which are composed of constraint properties
and constraints blocks which in turn can be composed of other constraint blocks.
The binding connectors are used to associate parameters of constraint blocks with
the owning block or constraint block properties.

3.2 SysML Views and View Points

According to “Recommended Practice for Architectural Description of Software-
Intensive Systems” [9], a view is a “representation of the whole system from the
perspective of a related set of concerns” and a Viewpoint is “a specification of the
conventions for constructing and using a view - a pattern or template from which to
develop individual views by establishing the purposes and audience for a view and
the techniques for its creation and analysis”. This standard is a recommended
practice, one kind of IEEE standard [9]. It is notation-independent, which means
that it does not specify the format or the media for the architectural description. The
main objective of the standard is to establish a conceptual framework and
vocabulary for talking about architectural issues of systems. Detailed presentation
through several views makes a system model easier for the analysts and
stakeholders to comprehend. Views do not contain elements but instead import
model elements from different packages in order to collect them into a common
namespace. The Reference Model for Open Distributed Processing (RM-ODP) is a
standardized model implementing the viewpoint approach [10]. It recognizes five
viewpoints: Enterprise, Information, Computation, Engineering and Technology
[11].

SysML models and model elements visualize different aspects of a system. SysML
introduces two concepts, views and viewpoints which are consistent with the IEEE
1471 standard [9]. A view of the system supports a particular stakeholder’s interest
and a viewpoint describes this particular perspective. A SysML block which is
indicated by the «view» stereotype represents a description of a specific interest.
The viewpoint is a block indicated by «viewpoint» stereotype, and includes a set of
properties. The purpose of specific perspective is identified as a property in
viewpoints. Other properties of viewpoints are the language which is used to
present the view, the particular stakeholders and the method which is used to
establish the view. The view conforms to a particular viewpoint.

Several model elements such as activities and requirements can cooperate to capture
a specific view of the system. A package Diagram can be used to depict both
viewpoint and the view that conforms to it together with other related model
elements. Several views of each model can be described by SysML, each view
presenting specific aspect of the model.

3.3 SysML Crosscutting and Allocation

Separation of concerns is the process of breaking a system into distinct features that
overlap in functionality as little as possible (Dijkstra, 1974)[12]. According to this

17

process, complex systems can be decomposed into several components with a
single functionality. Sommerville views concerns as non-functional requirements or
constraints that needs to be identified early on in the requirements definition phase
of a project to assess impact, and provide traceability [13]. Non-functional
requirements such as safety and traceability are needed to be satisfied by the system
components. “Cross-cutting” is a concept that refers to mapping these non-
functional requirements to functional requirements. The flexibility of the means to
address the concerns is important because they may change during the evolution of
system. One example of such concerns is security [14].

Allocation is the most important cross-cutting construct which is a general
relationship that maps one model element to another. This mapping is mentioned in
five categories. Behavioral allocation maps functions to components in SysML
activity diagrams. Structural allocation maps logical components to physical
components. Allocation of software to hardware units is an example of structural
allocations which is captured in SysML block definition diagrams and internal
block diagrams. Allocation of requirements refers to various ways that requirements
can be related to each other and to other model element, as mentioned in section
3.1.1. Allocation of flows refers to the mapping of flows that are captured in
internal block diagrams to the corresponding flows which are represented in activity
diagrams. Allocation of properties is captured in Parametrics diagrams by mapping
the constraints to the system properties.

As mentioned earlier the use of SysML requirement diagrams make it is possible to
associate the requirements with elements of the system model which facilities
analysis, management, testing and refinement of requirements during the
development of a SysML model. To satisfy system-level requirements it is needed
to specify requirements for the components. Huase in [14] called this mapping
mechanism a backward mechanism as the mapping is from the design model to the
design requirements; Forward mapping refers to the mapping from system analyses
to system design.

3.4 SysML Tools

Drawing tools are an important aspect of the introduction of model-based system
development. There are several tools that implement UML profiles (SysML,
MARTE and UPDM) by different tool vendors, such as “Papyrus” [15] and
“Telelogic Tau” [16]. As we are following a unified approach for system and
software modelling, Artisan Real-Time Studio has been chosen because it supports
both UML and SysML. Artisan tool supports the OMG SysML standard for
requirements engineering purposes by implementing the SysML profile.

18

The profile includes the following stereotypes and corresponding definitions to
extend the UML language:

 Activities stereotypes and tag definitions

 Allocations stereotypes and tag definitions

 Blocks stereotypes and tag definitions

 Constraints blocks stereotypes and tag definitions

 Model elements stereotypes and tag definitions

 Ports and Flows stereotypes and tag definitions

 Requirements stereotypes and tag definitions

A requirements profile allows requirements to be fully integrated into the modelling
environment. Management and traceability between requirements and other model
elements are big issues and critical to development effort. Artisan tool supports
these features. Artisan Studio DOORS synchronization provides synchronization of
the contents of Artisan Studio and DOORS. This capability allows the modeller to
create, modify or delete requirements in either of these tools. The exchange of
requirements and their relationships is included in the logical interface between
Artisan studio and DOORS. All the relations between the requirements which are
maintained in the Requirements Management tool are captured in requirements
models if the tools are synchronized any proposed updates to the requirements in
the modelling tool will be applied to the corresponding requirements in the
Requirements Management tool. Reqtify [32] is an alternative tool that can be used
to support traceability analysis and requirements coverage by providing interface
between the modelling tool and requirement management tool such as DOORS.

19

This section contains an example that illustrates the application of SysML to the
design of a spacecraft packet telemetry system (PTM). The case study is oriented
around the functional structure of the PTM system, rather than the detailed
implementation. A packet telemetry system (PTM) permits a spacecraft on-board
data system to transmit telemetry data units to the users located on the ground
across a space link. The system consists of three main parts, an onboard control
system, a ground control system and external entities that produce the transferred
data. In this case study, we present SysML models for a subset of the physical and
logical components of the on-board part of the PTM system.

The packet telemetry encoder (PTME) is a hardware module which is part of the
onboard control system module and comprises several sub-modules such as
encoders, modulators, interfaces and buffers. The core of the PTME is a hardware
component called the telemetry encoder (TME). A TME is included in the CROME
ASIC, a proprietary hardware component developed by RUAG Space. The
CROME ASIC is an integrated device providing on-board telemetry and
telecommand services via standardized interfaces. A commercial off-the-shelf
version of the TME, AT7909, is available from Atmel.

The development of the PTME SysML model involved the following steps:

 Organization of the model and identification of a reusable library of
components.

 Elicitation of operational domain and toptop-level functions by via use cases.

 Defining the system context.

 Modelling the requirements.

 Modelling of the system structure and behaviour

 Analysis of the system requirements.

 Capturing and evaluation of parametric and constraints.

4.1 Organizing the Model

The initial organization of the model includes definitions of packages containing
model elements and libraries of components. The package diagram in figure 4.1
describes the high level organization for the PTME model. The model contains
packages for use cases, requirements, structural components, value types, item
types, activities and parametrics for analysis. The activities package contains
behavioural diagrams including activity diagrams, sequence diagrams and state
diagrams. The analysis package contains constraints blocks which can be used for
performance analysis purposes.

4 Case study

20

Figure 4.1 - [Package] Space communication model

In SysML, model libraries are packages containing reusable elements. In this
example we have two model libraries “Value Types” and “Item Types”. Required
Value Types are defined in this user defined package, prior to use with
corresponding unit and dimension properties, tagged with the “Value Type”
stereotype; they are available to multiple models while Basic types are defined in
the SI definition package and imported by this user defined model library. The same
concept applies to Item Types package. The item types package capture the types of
things that flow in the system. The existence of these Items is independent of where
they flow and how they are used. For example in PTM system source packets,
telemetry packets, transfer frame and channel access data unit (CADU) are defined
as Item types. Several nested packages are contained within each of these packages
and can be captured in different diagrams.

4.1.1 Telemetry Data Flow

As mentioned in the previous section Item Type package contains entities that flow
in the system between components. The description of various data types in PTME
system is mentioned in this section.

Multiple application processes running in different onboard computers generate a
data structure unit called “Source Packet”, that can be fixed or variable in length.
The source packet consists of two major fields:

 The packet header which provides the control information during end-to-end
transmission such as the identification of the source, sequence numbering and
Data Field length.

 The packet data field contains the source data and can be variable in length.

21

Received telemetry data from several source applications will be multiplexed onto
the Telemetry data channel. The data unit at this intermediate stage is called
“Telemetry Packet”. If the data field exceeding a valid length (65536 octets);
segmentation is done on source packets before generating the Telemetry Packets by
the application software. The Telemetry Packet header field must provide control
information to reconstruct the source packet along with the source packet header
field, such as Identification of Telemetry Packet segmentation sequence and the
length of the Data Field of Telemetry Packet which is contains the various segment
of original Source Packet Data Field.

Figure 4.2 shows the structure of telemetry packet and different fields using blocks.
The value property indicates the Value Items which is defined for each individual
block. In this figure the length of each field is defined by the length value.
Telemetry packets are received at Telemetry Encoder and will be encapsulated in
Transfer Frames which is the link protocol data unit. Telemetry packets are
synchronously inserted into the transfer frame data field, with a pointer to the
header of the first packet. Block definition diagrams are used to illustrate the
telemetry packet and transfer frame data structure.

Figure 4.2 - [Package]TelemetryPacket Structur[Parts]

bdd [Package]TelemetryPacket Structur[Parts]

«dataType»
«block»

Telemetry Packet

«block»

values
Length : bit = 48

TMP Header
«block»

values
Length : bit = 64

TMP Data Field

«block»

values
Length : bit = 16

Packet Identification
«block»

values
Lenght : bit = 16

PacketSequenceControl
«block»

values
Legnth : bit = 16

PacketLength

«block»

values
Length : bit = 11

Application Procces ID
«block»

values
Length : bit = 1

Data Field Header Flag
«block»

values
Lenght : bit = 1

Type
«block»

values
Lenght : bit

Version Number

«block»

values
Length : bit = 2

Segmentation Flag
«block»

values
Length : bit = 14

Source Sequence Count

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1
1

1
1

22

As shown in figure 4.3, the Transfer Frame consists of the primary header and the
data field. Generation of Optional fields such as Secondary Header and Transfer
Frame Trailer are indicated by means of flags in Primary Header. The supported
Transfer Frame lengths are 223,446,892 or 1115 octets with four different trailer
options, which are selected by four input pins on ASIC. Here we define constraints
for the length parameter both on Transfer Frame and the data field inside the
Transfer Frame. These constraints are indicated as yellow blocks in the diagram
(figure 4.5). The Transfer Frames will be synchronized then optionally encoded,
randomized and modulated. The data unit that consists of the synchronizer and
codeblock or un-coded Transfer Frame is called the channel access data unit
(CADU). The CADU is then modulated and transmitted over space links as bit
streams.

Figure 4.3 - [package] Transfer Frame Structure [Parts]

bdd [package]Transfer FrameStructure[Parts]

«block»

values
attached synchronisation marker
Length : bit
VCI allocation : N

Transfer Frame

«block»
Primary Header

«block»
Secondary Header

«block»

parts
: FECW
: OPCF

Trailer
«block»

Coding space
«block»

values
Lenght : bit

Data Field

«constraint»

constraints
{Lenght is variable}

DataFieldConstraint

«constraint»

constraints
{Length is selectable to be 223,446,892,1115}

TransferFrameConstraint

«block»

parts
: S/H Lenght
: S/H Frame counter

S/H Identification
«block»

parts
: VC Frame ...

S/H Data

«block»

parts
: VC Id
: S/Craft Id
: OPCF flag
: Version Number

Frame Identification
«block»

parts
: First Header Pointer
: S/H flag
: segment Length Id
: Packet order flag
: Sync Flag

Frame Data Field Status
«block»

VC Frame Count
«block»

Master Channel Frame Count

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

OptionalOptional filled with Telemetry Packets

23

4.2 Operational domain (top-level functionalities)

As mentioned earlier, the functionality of the system can be described with use
cases which are illustrated in SysML “Use Case” diagram. At this step we have the
requirements specification from the stakeholders. Now the task is to identify the
main functionalities, while considering the system as a black-box. Figure 4.4 shows
the Top-Level use cases, and actors who are the users of the system by associations.
For each use case there is a text-based description that corresponds to the functional
requirements to provide additional information. These use case specification can be
captured in the model as a single or multiple comments.

Figure 4.4 - UseCases [TopLevelUseCases]

The top-level use cases are as follows:

 Generate source packet: On-board Control System is responsible to packetize
the telemetry data received from the onboard data sources.

 Deliver source packet: Telemetry data is transferred to the ground for
processing and use.

 PTME configuration: configuration of the operational mode of the on-board
system.

 Receive source packets: ground control system receives telemetry data from
the onboard control system.

 Use Telemetry Data: Telemetry data is processed and analyzed by a ground
user.

UCD UseCases[TopLevelUseCases]

Onboard
Control
System

Ground control
system

use Telemetry
Data

generate
source packet

receive source
packets

Deliver source
packet

(Telemetry Data)

PTME
configuration

24

The use-case diagram in figure 4.5 shows the next level of use case hierarchy for
delivering the source packets. It depicts the major functionalities which are
provided by the Onboard Control System when delivering the telemetry data. At
this stage, the onboard control system is divided into two parts with separate
functionalities: the data handling software, which is executed by the onboard
computers, and the Packet Telemetry Encoder. The data handling software is
responsible for multiplexing source packets to generate data to be inserted in the
data field of the telemetry packets and for conducting segmentation in case of long
source packets. Generating Channel Access Data Unit is a use case for the Packet
Telemetry Encoder, which includes the generation of the Transfer Frames.
Operational configuration, encoding, randomization and modulation are performed
on Transfer Frames before sending the output. The <<include>> dependency is
used to decompose use cases.

Figure 4.5- UseCases [onboard OperationalUseCases]

To describe the interaction between the different part of the system and external
systems such as users, we need to perform a scenario analysis for each use case and
then model these scenarios using either activity diagrams or sequence diagrams.
Addressing the failure scenarios is also critical.

central data
Handling

[application
software]

PTME

generate
Telemetry

Packet
segmentation

multiplex
source packets

generate Cannel
Access Data Unit

encode
Transfer Frame

modulateTransf-
er Frames

Operational
configuration

randomize

generate
Transfer Frame

«include»

«include»

«include»

«include»

«include»

«include»

UCD UseCases[onboard OperationalUseCases]

«include»

25

4.3 System context

To make the analysis and design of the system efficient, understanding of the
environment in which the system will operate is important. Hence, it is essential to
create models of the elements that interact with the PTME. Figure 4.6 is block
definition diagram that shows the main system and the relevant entities in the
environment.

Figure 4.6- [package]PTMsystemModel[parts]

The multiplicity of the relations is 1-1; there is one Ground Control System inside
the PTM system, one telemetry driver within the hardware driver software
(HDSW), and so on. To show how the parts are connected and interact with each
other, we use the Internal Block diagram shown in figure 4.7.

At the space side, the Telemetry data are first processed by the application software,
and then either transmitted directly to the telemetry encoder via the telemetry
hardware driver or stored in a mass memory for later transmission. The telemetry
buffer driver which is also part of the hardware driver software is connected to the
mass memory to store data. The packet telemetry encoder is connected to
transmission hardware for the radio links to the ground communications circuits and
mission control centres.

bdd[package]PTMsystemModel[parts]

«software»
HDSW

«block»
G-SW/HW

«block»
Ground control System

«block»
Onboard control

system

«block»
G-RF-subSyste-

m
«block»

On-board RF
subSystem

«software»
application software

«hardware»
HW/CROM

«logical»
PTME

«logical»
PTMSystem

«block»
TM buffer

Driver

«block»
TMDriver

«block»
External Entitiy

«physical»
Mass Memory

«block»
System clock

«block»
Telecommand
decoder

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*

1

1

1

1

1

1

1

26

Figure 4.7 - [block] PTMSystem[component interconnections]

4.4 Modelling the requirements

Use case diagram can only provide a high level view of the system requirements.
To specify requirements in detail, SysML provides a new feature called requirement
diagrams. These are used to keeping track of requirements during development.
This is done by specifying relations, either between different requirements, or
between requirements and other model elements.

The requirements diagram is useful for stakeholders to express their problems,
because it is simpler to understand from the picture than reading the structured
documents which are provided by requirements management tools. The requirement

ibd[block] PTMSystem[component interconnections]
«logical»

PTMSystem

«part»

: Onboard control system

«part»

: HW/CROM

«part»

: System clock

clk : BitClk

«part»

: Mass Memory tp-out : Telemetry Packet

tp-in : Telemetry Packet

«part»

: PTME

clk : BitClk
CADU : bit stream

bufferedTMP : Telemetry Packet

CLCW : bit

real-time TMP : Telemetry Packet

«part»
: Telecommand decoder

CLCW : bit

«part»

: application softwaretd : Telemetry Data

tp : Telemetry Packet

«part»

: On-board RF subSystem

CADU : bit stream

«part»

: HDSW

tp : Telemetry Packet

«part»

: TM buffer Driver

tp : Telemetry Packet

«part»

: TMDriver

tp : Telemetry Packet

«part»

: Ground control System

«part»

: G-RF-subSystem

«part»

: G-SW/HW

«part»
: External Entitiy td : Telemetry Data

27

diagrams for the PTME depict the requirements described in the requirement
specification documents contained and managed in the DOORS tool. Figure 4.8
shows the requirements hierarchy for the PTME system.

Figure 4.8 - [Package] Requirements [CROMErequirements]

As figure 4.8 shows the CROME requirements which are divided into packages.
Each package contains the related requirements and their relationships. It is possible
to stereotype the requirements to specify the category which could be from various
types.

4.5 Structural Modelling

The system structure is created by decomposing the system (here the PTME) into
different parts, and then defining the parts using block diagrams. System
architecture can be divided into two parts, the logical architecture and the physical
architecture. The purpose is to decompose the system into logical and physical
components. The interactions among these components are needed in order to
satisfy the system requirements. Physical components can be further divided into
different types; hardware, software and so on. The logical components are allocated
to the physical components. The design constraints are imposed on the physical
architecture [7].

pkg [Package] Requirements[CROMErequirements]

Space communication
model::Requirements::CROME_Telemetry_E-
ncoder_req

AOS_req

Virtual _Channel _Allocation

DirectLink_req

Encryption_reqSine_PSK_Modulator_req

Time_Sampling_req

TME_Enable_req

Buffer_Memory _Management_req

TM_Bitrate_and_Subcarrier_Frequency_reqTransponder_Interface_req

TM_SourcePacket_Interfaces_req

Packet_Telemetry_req

28

4.5.1 PTME module (component specification and functionalities)

The packet telemetry encoder module comprises the following sub modules: input
interfaces, bandwidth allocation table, external shared memory, telecommand
decoder interface, PTME internal bus and internal components (PTME-Internal).
Internal components are implementing embedded encoders, randomizer and
modulators. The PTME decomposition and block hierarchy captured in figure 4.9
using the SysML block definition diagram. This diagram shows the functional
blocks such as physical components and the interfaces to the external components.
The texts beside the arrows show the role of the corresponding block. For example
the Bandwidth Allocation Table (BAT) is responsible for virtual channel selection.
The specification of each block is described in details hereafter.

Figure 4.9 - [Package] PacketTelemetryEncoder[parts]

The interactions between the parts are shown in the internal block diagram in figure
4.10. The ports (flow ports in this diagram) are defined and the flow Item is
specified. As it is shown in figure 4.10 PTME Internal Bus (PIB) resides between
the PTME Internal part and the External Shared Memory, because every
communication between these two parts is through this internal bus. The Packet

bdd[Package] PacketTelemetryEncoder[parts]

«physical»

parts
«part» : Packet APB
«part» : Packet Wire
«part» : Packet Parallel
«part» : Packet
 Asynchronous

Input Interfaces

«hardware»
NRZ-M modulator

«hardware»
SP-L Modulator

«logical»
PTME-Internal

«hardware»
PTME Adapter

«hardware»
CIK Divider

« hardware »
R/S encoder

« hardware »
Turbo encoder

« hardware »
Convolutional

encoder

«hardware»
Pseudo-randomiser

«logical»
PTME

«logical»
Virtual Channel

Encoder

«hardware»
encoder

«hardware»
Modulator

«physical»
External Shared
Memory

«block»
PTME Internal Bus

« hardware »

parts
latency and gitter : Internal Input Buffer

Virtual Channel Assembler
« hardware »

Virtual Channel
 Buffer

« hardware »

parts
: VC selection

Virtual Channel Multiplexer

«block»
Telecommand IF

«hardware»
TME

«block»
BAT

« hardware »
Virtual Channel

Interface

1

1

1

1

1

1

1

1

channel coding 1

1

signal modulation

1

1

8

1

1

1

1

1

1

1

CLCW

1

1

1

1 TransferFrameGenerator

1

1Interface convertor

1

1

1

1

VC selection
1

1

1

1

29

Telemetry Internal Bus can be configured at initialization time for logical pointer
addressing or physical addressing, depend on gPhysicalAddress parameter value.
The packet telemetry encoder has several flow ports. Two input ports for receiving
the telemetry packets on different virtual channels. The other input port is
connected to the Telecommand Decoder to retrieve part of the Command Link
Control Word which is inserted into of the transfer frame trailer field via the
telecommand interface. The third input port is connected to the system clock. There
is one output port for transmitting the CADUs.

Figure 4.10 - [block] PTME[component interconnections]

Packet telemetry encoder internal module compromises several sub modules such
as clock divider, telemetry encoder (TME), channel encoders, modulators and
randomizer. Telemetry encoder and clock divider are always instantiates by PTME
module and the rest of modules such as subsequent encoders and modulators
instantiates separately depend on PTME configuration at initialization time. Figure
4.11 shows the internal block diagram of the packet telemetry encoder. Parts and
interconnections between the components are captured. The flow ports and Item
flow types is represented along with connections.

Clock divider: The Clock Divider (CD) generates different clock enable signals for
the different encoders and modulators to control the bit rates. The source for the bit

4.5.1.1 PTME Internal components

ibd [block] PTME[component interconnections]
«logical»
PTME

«part»
: PTME-Internal

TMP-in : Telemetry Packet

CADU : bit stream

CLCW-in : bit

Memory I/O : Memory Interface flow

clk : BitClk

BAT :

«part»
: External Shared

Memory

MEMORY I/O : Memory Interface flow

«part»
CLCW : Telecommand IF

CLCW-out : bit

CLCW-in : bit

bufferedTMP : Telemetry Packet

CADU : bit stream

CLCW : bit

«part»
: PTME Internal Bus

«part»
VC selection : BAT

BAT :

clk : BitClk

real-time TMP : Telemetry Packet
«part»

: Input InterfacesTMP-in : Telemetry Packet

TMP-out : Telemetry Packet

30

rate frequency is always the dedicated bit rate clock input BitCLK. It is able to
divide the bit rate clock frequency by means of the different clock enable signals.

Reed-Solomon Encoder (RSE): If enabled in initialisation time configuration this
block generates and inserts the Reed-Solomon check symbols. RSE encoder
implements the encoding procedure according to the channel coding standard.

Turbo Encoder (TE): The output of this block is turbo codes at a nominal bit rate.
The rate is 2, 3, 4 or 6 times the frame bit rate. This functionality is optional and can
be enabled by setting the enable parameter at initialisation time.

Convolutional Encoder (CE): This block generates Convolutional codes. The
output rate is twice as high as the frame bit rate. This functionality is optional and
can be enabled by setting the enable parameter at initialisation time.

Split-Phase Level modulator (SP): If this option is enabled, Split-Phase
modulation is performed on both the Transfer Frame and the Attached
Synchronisation Marker, being output as a bit stream from preceding encoders.

Non-Return-to-Zero Mark modulator (NRZ): This functional block performs
NRZ_Mark modulation on the Transfer Frames being output. This functionality is
optional and can be enabled by setting the enable parameter at initialisation time.
Both data and the Attached Synchronization Marker (ASM) are affected by the
coding. When the encoder is not enabled, the bit stream is by default non-return-to-
zero level encoded. The Non-Return-to-Zero Mark encoder (NRZ) and Split-Phase
Level modulator (SP) implements signal modulation according to the AD5
standard.

Pseudo-Randomiser (PSR): The functionality of this block is to multiplex the
generated Transfer Frame from previous processes and the Reed-Solomon codes (if
available) with pseudo-random bit pattern. The output is synchronised with each
Transfer Frame. This functionality is optional and can be enabled by setting the
enable parameter at initialisation time.

31

 Figure 4.11 - [block] PTME-Internal[components interconnections]

Telemetry Encoder: Telemetry encoder, the core component of packet telemetry
Encoder receives Telemetry Packets and generates telemetry transfer frames. The
output of the TME is synchronized transfer frames. Telemetry Encoder comprises
six modules which are mentioned here after. Figure 4.12 depicts the interactions
between the components of the telemetry encoder.

Virtual Channel Encoder (VCE): VCE initiates Virtual Channels (VC), Virtual
Channel Multiplexer (VCM), and Virtual Channel Buffer (VCB). The main
functionality of this block is generating Transfer Frames with attached

ibd [block] PTME-Internal[components interconnections]

«logical»
PTME-Internal

«part»
: CIK Divider

Clk-out: clkRate

Clk-in : clkRate

CLCW-in : bit

CADU : bit stream

TMP-in : Telemetry Packet

«part»
channel coding : encoder

cb-out : encoded Transfer frame

TF-in from VCM : Transfer Frame

clk : clkRate

«part»
signal modulation : Modulator

CADU-: bit stream

clk : clkRate
rcb :randomized encoded Transfer frame

«part»
: Pseudo-randomiser

Cb-in : encoded Transfer frame

clk: clkRate

rcb : randomized encoded Transfer frame

«part»
: TME

CLCW : bit
CLKrate : BitClk

SynchronizedTF :

TMP-in : Telemetry Packet

MemoryI/O: Memory Interface flow

BAT :

Memory I/O : Memory Interface flow

clk : BitClk

BAT :

32

synchronization marker. Virtual channels are logical components and up to 8 virtual
channels are supported by the telemetry encoder and decoder on the physical
channel. Each VC is identified by the virtual channel identifier (VCID) and
spacecraft identifier (SCID). They are configured individually during operation and
at system initialisation (power up). The VCs can handle packets and data blocks
with data fields of up to 65536 octets and they are independent of the packet format
and any data structure can be used. Two physical components are resides in VC
module. Each VC comprises one virtual channel assembler and one virtual channel
interface.

Figure 4.12 - [block] TME[interactions]

Virtual Channel Assemblers (VCA): For each Virtual Channel there is a Virtual
channel assembler that receives the telemetry packets over virtual channel Interface
which is connected to the various types of input interfaces depending on how the
virtual channel assemblers are allocated. Data received from serial input interfaces
are assembled into octets which are internally forwarded to the parallel interface.
This data will be transferred over the PTME Internal bus (PIB) to the Virtual

ibd [block] TME

«hardware»
TME

«part»
TransferFrameGenerator : Virtual Channel Encoder

«part»
: Virtual Channel Buffer

I/Oflow2: VCA/VCB Interface flow I/O flow 1: VCM/VCB Interface flow

I/Oflow3: Memory Interface flow

«part»
: Virtual Channel Multiplexer

I/O flow : VCM/VCB Interface flow

CLCW-in : bit

«part»
: Internal prefetch buffer

«part»
VC selection : BAT

interface

BAT :

CTS : signal

Synchronize TF :

«part»
: Virtual Channel Assembler

RTS : signal
TMP-in :

I/O flow : VCA/VCB Interface flow

«part»
: Virtual Channel Interface

TMP-in :

TMP-out :

clk : BitClk

«part»
Interface convertor : PTME Adapter

TMP-in :

TMP-out :

CLCW : bit

CLKrate : BitClk

FlowPort1 : Memory Interface flow

SynchronizedTF :

TMP-in : Telemetry Packet

BAT :

TMP : Telemetry Packet
«ItemFlow»

33

Channel Buffer to be stored in the external buffer memory. There is also a local
buffer in the VCA to allow for latency and jitter on the PIB.

Virtual Channel Interface (VCI): The actual input interfaces that are used to
receive the Telemetry data in form of octets from the onboard data- handling system
placed on ASIC for the virtual channels are placed outside telemetry encoder
module and Virtual Channel Interface resides between this input interfaces and
corresponding virtual channel assembler. The interfaces are situated outside the
VCE.

Virtual Channel Buffer (VCB): Any accesses to the external shared memory from
internal modules are via the VCB over PTME internal bus. The VCB acts as an
arbiter on the PIB to allocate the access bandwidth dynamically to each in proper
way. This is done by multiplexing the different read and writes accesses to the
common external buffer memory interface. VCA communicates to the virtual
channel buffer to manage the allocated memory space.

Virtual Channel Multiplexer (VCM): One to eight Virtual Channel Assemblers
together with one Virtual Channel Multiplexer are used to generate Transfer Frames
according to the ESA Packet Telemetry standard.
VCM include following Interfaces:
Interface for retrieving dynamic part of the Command link Control Word (CLCW)
per Transfer Frame generated. This interface provides two Synchronous bit serial
channels to allow direct connection to two Packet Telecommand Decoders. The
VCM provides a mechanism for multiplexing the CLCW from two Telecommand
Decoders. The retrieved data will form part of the OPCF field in the Transfer Frame
Trailer.

 VCA/VCM Interface: It resides between Virtual Channel Multiplexer and each of
the eight Virtual Channel Assemblers. Ready-To-Send signal is an input from VCA
to VCM which is sent over Virtual Channel Request Interface. This signal is
asserted each time VCA is ready to transfer a packet which is going to be used by
VCM to generate the complete Transfer Frame. The output signal From VCM to
VCA called Clear-To-Send, which is asserted corresponding to the selected VCA.

An internal pre-fetch buffer in VCM is used to allow for latency and jitter on the
PTME internal bus. The depth of this buffer can be increased by means of the
gPreLength constant at initialization time.

VCM and VCAs operates at a maximum clock frequency of 12.5 MHz. the
maximum operating bit rate is 12.5Mbit/s, which is proportional to the clock
frequency used. The VCM operates on the falling BITCLK edge while VCA
operates on the rising BITCLK edge. Both VCA and VCM feature Built-In Self
Test that can be automatically activated after reset.

Depending on the design specification, telemetry data is either transmitted from
application software directly to the Telemetry Encoder or stored in the mass
memory for later transmission. The configuration is done during the operation. In

4.5.1.2 Input Interfaces

34

real-time transmission Telemetry Encoder receives telemetry packets on serial or
parallel interfaces connected to the separate logical components, the virtual
channels (VC). Typically, this connection is via a Space-Wire link from the
processor to the CROME ASIC. The transmission from the mass memory to
Telemetry Encoder is through a Packet-Wire link to the CROME ASIC. The
supported interface types are Space-Wire (via CROME ASIC), Packet-Wire
interface (PW), Packet-Asynchronous (PA), Packet-Parallel (PP) and Packet-APB
(PAPB).

The Bandwidth Allocation Table (BAT) is used for the arbitration of the downlink
bandwidth when several Virtual Channels are trying to access the memory. The size
of the BAT and the number of entries are selectable at initialization time. The
values are in the range of the implemented Virtual Channel Identifiers. Two built-in
algorithms are provided by the Virtual Channel multiplexer (VCM) to select which
Virtual Channel to output the next Transfer Frame. The selection algorithms are
reprogrammable during the operation.

Bandwidth allocation, in this mode the VCM uses adaptive frame ordering. The
bandwidth allocation table entries indicate the virtual channel to be selected. All
virtual channels will therefore have a guaranteed minimum bandwidth allocated
when the bandwidth allocation algorithm is selected. In this table for each virtual
channel one property can be set. The property is set when the ready to send signal is
asserted by the corresponding virtual channel assembler. The VCM scans the BAT
in a round robin fashion to select a virtual channel assembler that has the ready to
send (RTS) flag asserted. Scanning continues until there is no virtual channel
assembler with the RTS flag asserted. If scanning process reaches the VCA with
asserted RTS, the VCM will send a request to corresponding VCA. This is done by
sending clear to send signal (CTS) to that VCA. Otherwise the VCM selects one
VCA and send the request.

Priority selection, in this mode each VC is assigned a priority which is
programmable and VCM selects a VCA with the highest priority that can produce a
normal Transfer Frame. If priority selection is enabled, the Virtual Channel with
identifier zero will have the highest priority and the Virtual Channel with the
highest identifier value will have the lowest priority.

Different virtual channels share a common external memory. The telemetry data
received on each VC is stored temporarily in a buffer in this memory. The sizing
and splitting of the external memory between VCs is almost fixed at initialisation
time. The parameters concerning memory partitioning are: the overall memory size,
the number of areas into which the memory is split, the number of areas that can be
allocated to each VC. The number of memory areas allocated to the Virtual
Channels also can be done dynamically via an external interface.

4.5.1.3 Bandwidth Allocation Table

4.5.1.4 External Shared Memory

35

The packet telemetry encoder is connected to the telecommand decoder to retrieve
part of the command link control word, which is included in the transfer frame
trailer field. The command link control word (CLCW) is transmitted as part of the
Operation Control Field (OPCF) in a Transfer Frame Trailer. CLCW has two parts
with 16 bits length each. The static part is generated by the Telemetry Encoder or
retrieved from external data interface. Static part of the Command Link Control
Word contains: Control Word Type, Version Number, and Status Field, COP in
Effect, Virtual Channel Identifier and Reserved Field. The dynamic part is retrieved
from the Telecommand Decoder via the external data interface and contains the
following parameters: Number of Radio Frequency Available, Number of Bit Lock,
Lock Out, Wait, Retransmit, FARM B Counter, Report Type and Report Value.

4.6 Modelling behaviour

The activity diagrams in the following figures characterize continuous flows and
parallel behaviour of the packet telemetry encoder and its subsystems. Figure 4.13
captures the main activities which are performed when generating the channel
access data units in the packet telemetry encoder. The description of the main
functions that are visualized using SysML diagrams are mentioned thereafter.
Rounded-cornered boxes in a SysML activity diagram represent actions which are
needed to perform a particular activity. The lines that are used to link the actions are
control flows that define the sequence of actions. The things that flow (object
flows) can be represented by object nodes (blocks) connected to actions or activity
parameter nodes which are placed in the boundary of an action box.

Some activities that contain other activities are represented as a
“CallBehaviourAction”. This is used when we want to make a reference from one
activity to the related activities which specify it in more detail. This capability will
also give us the possibility to reuse the activity. The fork sign indicates the
“callBehaviourAction”. The texts beside the arrows show the input to the following
action or activity. An activity will not execute until the required input is available.
Another constraint to start an activity is receiving the required events if it is
mentioned in the specification. Examples of required signals (events) are shown in
figure 4.19.

4.5.1.5 Telecommand Interface

36

Figure 4.13 - [Activity] generate Cannel Access Data Unit [main activities]

4.6.1 Packet Telemetry Encoder initialisation time configuration

Implementation options are selected at initialisation time. The packet telemetry
encoder is very flexible and adaptable to various mission needs. The following
parameters can be programmed during the initialisation time to provide a variety of
services by telemetry encoder. Figure 4.14 shows the actions which are included in
PTME- initialisation time configuration activity.

generate Cannel Access Data Unit
TMP

ModulatedCADU

PTME -Initialisation time configuration

fLength

Channel coding, randomisation and synchronization

TF/IdleTF : Transfer Frame ASM

CADU

interface conversion at PTME adapter

TMPin

TMP-outToEachVCI

Operational configuration for individual VC

TMP

modulation

CADU

Transfer Frame Generation

TF/IdleTF : Transfer Frame
ASM

TMPfLength

Transfer frame length

serial bit stream

37

Figure 4.14 - [Activity] Initialisation time configuration

Virtual channel configuration, configuration of each individual virtual channel is
done by programming a set of parameters and constants. For example, the number
of virtual channels to be implemented is set with the gNumberOfVCs constant at
initialisation time between one and eight.
The support for generation of Idle transfer frame is selectable, either on a separate
virtual channel or any of the implemented virtual channels. Each virtual channel
must be assigned an identifier, either automatically sequentially beginning at 0 or
via external input. This options are selectable depend on the value of the
gFlexVCID constant.

PTME -initialisation time configuration

Memory area Partitioning

Virtual Channel Configuration Clock Divider and clocking styleconfiguration

set parameters to control the Individual VC implementation

PTME capabilities for CADU generation

set the number of Bandwidth
Allocation Table entries

(gBatDepth)

{Depth=2^gBatDepth}tacking into the account the selected Transfer Frame
Length

fLength

38

Figure 4.15 - [Activity] set the parameters related to all Virtual Channels

Memory Partitioning, as described earlier virtual channels share a common
external buffer memory. The splitting and allocation can be done at initialisation
time by setting some constant variables, as it is shown in figure 4.16.

 set the amount of memory to be shared by all VCs (gMemoryDepth)

 set the number of areas into which memory is partitioned(gAreaDepth)

 set the maximum number of memory areas allowed for any VC (gGroupDepth)

 automatic/manual external memory assignment (gGroupInterface)

Virtual Channel Configuration

set the number of VC to be
implemented (gNumberOfVC)

set gIdleFrameVC

implement seperate VC for Idle
Transfer Frame(gIdleFrameVCId)

set Flexible VC Id allocation
(gFlexVCId)

assign VC Id
automatically

assign VC Id via external
input

gIdleFrameVC is set outside the gNumberOfVC gFlexVCId is clear

{begining at 0}

{range 1-8}{range 0-7}

any of implemented VC can be
used to generate Idle TF

39

Figure 4.16 - [Activity] Memory Partitioning and allocation inside VCE

CADU generation capabilities: Different options that can be set at initialisation
time are as following:

 Support for alternative Attached Synchronisation Marker (ASM) generation

 Support for Secondary Header generation

 Support for Operation Control Field (OPCF) generation

 Support for Frame Error Control Word (FECW) generation

 Support for time strobe generation can be selected

 Support for implementing 223 octet based and/or 239 octet based frame
lengths, The Transfer Frame length and trailer type are selected by four input
pins instead of using a mode register.

 The size of internal buffer in VCM and

 The interface to the Bandwidth Allocation Table.

Memory area Partitioning

set the amount of memory to be shared by all VCs
(gMemoryDepth)

set the number of areas into which memory is partitioned
(gAreaDepth)

set the maximum number of memory areas allowed for any
VC(gGroupDepth)

atomatic/manual external memoey assignment
(gGroupInterface)

40

Figure 4.17 - [Activity] Configuration of PTME capabilities

BAT configuration: As mentioned earlier, the Bandwidth Allocation Table (BAT)
is used for the arbitration of the downlink bandwidth. The following interfaces can
be selected: no interface, asynchronous memory type interface, or BAT is
implemented outside the TME (and PTME).

Set parameters to control the individual VC implementation:
The following parameters are configurable at initialisation time for each Virtual
Channel, corresponding Virtual Channel Assembler and Virtual Channel Interface.

 gLenght: the Internal input buffer size for VCA. The default size is one octet
and the value of this parameter is interpreted as an increase of the internal input
buffer size.

 gPacket: Support for packet handling

 When Packet generation is supported, possibility for packet insertion abort
(gAbort) and Support for Idle Source Packet insertion (gIdle) can be selected.
It is also possible to generate First Header Pointer dynamically if the Dynamic
FHP input pin is asserted.

 gReady: Support for external buffer memory availability indication.

PTME capabilities for CADU generation

set (gFrameLength) to selected the
supported Frame Lenght

set (gAltASM)to select support
for alternative ASM

set (gSecHeader) to select support for
Secondary Header generation

set (gOPCF) to select support for OPCF field

generation and related parametrs

set (gTime) to select support for
time strobe generation

set (gReedSolomon) to support for Reed-Solomon encoder and
related parametrs

set (gTurbo) to select support for Turbu encoder
and related paramers

set() to select support for FECW generation

set BatInterface

set gPreLenght to
increase internal buffer of
VCM

41

4.6.2 Individual Virtual Channel Operational configuration

The virtual channel encoder module is the functional module responsible for
generating the transfer frames. The required configurations before the mission are
mentioned earlier regarding the memory allocation, number of Transfer Frame Data
fields and so on for different Virtual Channels. The Virtual Channel Encoder block
consists of two functional blocks, the Virtual Channel Assembler and the Virtual
Channel Multiplexer.

Some configurations are also done for generating the Transfer Frame from
telemetry packets during the mission. These configurations are called operational
configuration. Operational configurations implement the design option which is
selected at initialisation time. They are done for each individual virtual channel in
corresponding virtual channel interface, virtual channel assembler(as mentioned
earlier for each VC there is one VCI and one VCA) and virtual channel buffer and.
The virtual channel interface keeps track of the number of octets received and the
packet boundaries in order to detect the start and the end of a packet. This
information is used by the virtual channel assembler to calculate the first header
pointer. The virtual channel interface also provides the input interfaces which are
resides outside the virtual channel encoder module with information whether the
virtual channel block is busy processing the input data or if there is a space in the
assigned external buffer memory for a new packet (or segment).

Following parameters are generated dynamically by the virtual channel encoder
(VCE) module for each virtual channel during the mission. The encoder should be
reset after a configuration change.

 Assign the memory allocation identifier to each VC, The identifier of the
memory area allocated to a virtual channel is generated by virtual channel
buffer. Then the length of transfer frame data fields and the number of octets
for a frame, allocated to a Virtual Channel is set.

 All VCAs in a PTME are sized according to the same external buffer memory
size, the number of memory areas and the number of areas that can be grouped
together for a single VCA.

 Time strobe periodicity

 VCA input buffer size

 Spacecraft Identifier

 Support for generation of First Header Pointer Dynamically

 Set the threshold for External buffer memory allocation to the Virtual Channel

 Set Idle packet version and insertion timeout values.

42

Figure 4.18 - [Activity] TransferFrameGeneration operational configuration

43

Following parameters are set via the corresponding input ports:

 DynamicFHP input port: Dynamic or static First Header Pointer calculation

 MaxFramePtr input port: Each VCA can then be allocated an individual
number of frames that can be stored in memory. number of Transfer Frame
Data Fields allocated to a Virtual Channel

 MaxOctetPtr input port: the number of octets that can be stored in one such
frame. Note that there must be at least three frames allocated to each. number
of octets allocated per Data Field for a given Virtual Channel

 Rdy Threshold input port: Threshold for external buffer memory availability
indication

 PktVersion input port: Idle Packet version field value (000, 100).

4.6.3 Transfer Frame Generation

Depending on the design specification; different fields in the header of the Transfer
Frame are varied during the operations. These fields are filled partly by the virtual
channel assembler and are completed by virtual channel multiplexer. Figure 4.19
illustrates the activities for generation of transfer frame.

TME provides several different input interfaces to the virtual channels, connected to
virtual channel interfaces and subsequently virtual channel assemblers on the
telemetry encoder chip set. The telemetry data received from the onboard users
through input interfaces can either be packets or a bit stream and are stored
temporarily in pre-allocated external buffer memory slots via the virtual channel
buffer and it is subsequently inserted into transfer frame. These data are inserted in
data field of transfer frames. Virtual channel buffer multiplexes the read and write
accesses on to a common external buffer memory interface.

The part of transfer frame which is called “Partial Transfer Frame” and generated
by the virtual channel assembler consists of the last three octets of Transfer Frame
Primary header fields, optionally the secondary header fields and the Data Field.
The generation of Partial Transfer Frame which is only an internal structure, not
defined in Packet Telemetry Standard is illustrated in figure 4.20. The output is
stored in the external buffer Memory. In order to calculate the First Header Pointer
(FHP), the virtual channel assembler retrieves the required data from corresponding
virtual channel interface and put it in the FHP field in the header. The Partial
Transfer Frame header, generated by VCA will be stored in the memory into the
pre-allocated slots, together will Transfer Frame Data Field.

44

Figure 4.19 - [Activity] Transfer Frame Generation

Transfer Frame Generation

TF/IdleTFASM

TMP

fLength

generate Complete Transfer Frame ,normal/idle

TF/IdleTFASM

store PTFH in pre allocated slots of Memory

PTFheader

scan BAT to select VC

BATEntries

Generate Partial Transfer Frame header
PTFheader

TMP

generate and insert Idle Telemetry Packet in
Data Field

IdePTF

CTS

enable Poll counter for selected VC

Check the amount of Telemetry data stored on Memory
for each individual VC (read Frame pointer)

RTS

CTS

fetch data From the memory slot,

selected VC

PTF

RTS signal

Stor TMP in pre allocated slots
of external Memory

TMP

perform VCA &VCM self test

calculate if the external buffer is not full
(write farme and octet pointer)assert poll

 output

poll output asserted by VCM

RTS has been received
 from the selected VC

insufficient amount of data and request has been
 reveived at selected VC

sufficient amonu of data
avaiable

reached the threshold

Telemetry data from VCI

not full

Selected VC

45

Several parts of the system are responsible to perform this activity, so there are
some concurrent activities and some sequential activities. These are separated
depending on the interactions between the parts. The send and received events
(signals in this example) which are indicated as yellow shapes are used to represent
the synchronisation between the parts when they should interact. As mentioned
earlier the execution of an activity may also depend on receiving the required input
from other activity.

Each VCA informs the VCM when there is an enough data in the external buffer
memory to fill the complete data field of the Transfer Frame. This is done by
sending a ready to send signal (RTS). Meanwhile the Virtual Channel selection
mechanism is performed by VCM selection algorithm as mentioned earlier. For
selected VC it will check if RTS signal has been received or not. If so, it means that
sufficient amount of data is provided by corresponding VCA, the data will be
fetched by VCM to complete the Transfer Frame. In other case when no RTS signal
has been received, depend on algorithm, the VCM will send the request to VCA to
output the required Partial Transfer Frame and also assert a Poll signal. When VCA
receives the request, first it will check if the stored data in its local buffer is
sufficient to generate the Transfer Frame or not, which normally result in negative
case, so the Poll counter will be enabled to count how many poll signals is received
from VCM. When the number of polls reached the threshold, the VCA will generate
the Idle Source Packets to fill the Transfer Frame data field and store them in
memory until the data field is completed. The VCM fetches the Idle source Packets
from memory and generate the complete Transfer Frame.

To configure Frame data Field Status parameters following input ports are used by
VCA:

 SecHeader input port is only used as a data bit for the FDFS and does not affect
the sizing of the Transfer Frame Data Field in any sense.

 The Sync input port is used as a data bit for the FDFS and is also used as one of
the qualifiers for the Idle Source Packet insertion.

 The PktOrder input port is only used as a data bit for the FDFS.

 The SegmentLen input port is only used as data bits for the FDFS and does not
affect the external buffer memory availability signaling.

46

Figure 4.20 - [Activity] Generate Partial Transfer Frame header

Generate Complete Transfer Frame. Serial data generated by selected Virtual
Channel Assembler is an input to the Virtual Channel Multiplexer. The VCM
multiplexes the serial data, generates a Synchronizer Marker and parts of Transfer
Frame Header and the optional Transfer Frame Trailer to complete the Transfer
Frame. Figure 4.21 shows the activities for generating the complete transfer frame.
Generation of the trailer which is a part of transfer frame is presented in a activity
diagram which is shown in figure 4.22.

Generate Partial Transfer Frame header

PTFheader

TMP

fixed FHP to all ones
calculate FHP dynamically

FHP

set VC frame count field

generate Secondary Header

increament frame
counter

fetch data from VCI into internal bufferTMP

set Secondary Header
Flag

set Data Field Synchronisation
flag

set value of theSegment
Length Identifier

set Packet Order Flag

check if Internal buffer availablity

busy

gPacket is set and DynamicFHP inputport is asserted

secondary flag is set in primary header

frame count field value

secondary header fields value
Frame Data Field status fields value

Partial Transfer Frame Header

not full

47

Figure 4.21 - [Activity] generate Complete Transfer Frame, normal/idle

Frame Identification Fields and Master Channel Frame Counter are parts of the
Header that is generated by the VCM. The Master Channel Frame Count retrieved
from the master Frame counter which is incremented by one for each frame that is
output. The optional fields of the trailer are a 16-bit Frame Error correction Word
(FECW) and an Operational Control Field (OPCF). Generation is selectable by
means of setting constants at initialisation time and it is also possible to enable or
disable the insertion at run time.

TF/IdleTF ASM

generate alternative ASM

fetch data from memory

PTF/IdlePTF

generate Transfer Frame Trialer

trailer

leave space for the Reed-
Solomon check codes

generate control signal fopr the
encoder

generate Idle Transfer Frame generate normal Transfer Frame

generate nominal ASM

set Frame Identification
fields

generate Master Channel Frame
Count Fields

generate four blank bits for the
turbo encoder

store TF in Memory and output to the encoders

gReedSolomon is set

elseIdle PTF

gAltASM constant is set/ALtASK asserted

gTurbo is set

optional

generate Complete Transfer Frame ,normal/idle

48

FECW consists of the CRC checksum over the whole Transfer Frame, excluding
the FECW and Attached synchronisation Marker and it is mandatory when Reed-
Solomon encoding is not used.

Figure 4.22- [Activity] generate Transfer Frame Trailer

The VCM will produce the alternative Attached Synchronization Marker (ASM)
when the AltASM input port is asserted and the gAltASM constant is set at
initialization time. Otherwise only the nominal ASM will be generated. The
Spacecraft Identifier is set with the SCId input port. The individual Virtual Channel
Identifiers can be set via the FlexVCId input port.

The VCM can generate blank space for insertion of Reed-Solomon check symbols
by the Reed-Solomon Encoder and four blank bits for the trellis termination process
in the Turbo Encoder. The output at this stage is the complete Transfer Frame with
the Synchronisation Marker and optionally space for Reed-Solomon encoder in
form of serial bit stream.

4.6.4 Channel coding, Synchronization and Pseudo-randomization

The standard prepared by the ECSS-E-ST-50-01C Working Group specifies several
space telemetry channel coding schemes. (Synchronisation and channel coding)
The order of different encoding schemes and modulation is dependent on the
implementation. Synchronization is combined with the different coding options.
Synchronization applies to all telemetry channels, coded or uncoded by attaching an
attached sync marker (ASM) to the codeblock or transfer frame and immediately

generate Transfer Frame Trialer

CLCW

trailer

generate dynamic part of CLCW
generate the FECW

gFECW is set & FECW input port is asserted

gOPCF is set & OPCF input port in asserted

TTC-B-01 interface is selected parallel interface is selected

trailer field

optionally generated when
Reed-Solomon is avaiable

49

proceed. Correct decoding of codeblocks and processing of the transfer frames are
depend on accurate synchronization.

The Virtual Channel Multiplexer produces and sends the 32 bit attached
synchronisation marker before outputting the Transfer Frame. Either nominal or
alternative ASM can be produced at a time. The alternative ASM is produced if
selected at initialisation time. Otherwise the nominal ASM will be generated.

The ASM is not a part of the encoded data, so it shall not be presented to the input
of the encoders or decoder. It is attached to the codeblockes. Synchronization of the
Reed-Solomon or turbo codeblock (or transfer frame, if the telemetry channel is not
Reed-Solomon coded or turbo coded) is achieved by using a codeblocks (or transfer
frames) with an attached sync marker (ASM) between them. The data unit that
consists of the ASM and the stream of fixed-length Reed-Solomon or turbo
codeblock or transfer frame is called the channel access data unit (CADU)

The codeblocks or transfer frames are randomised with a standard pseudo-random
sequence to ensure sufficient randomness in order to achieve minimum bit
transition density. The presence or absence of pseudo-randomization shall be fixed
at initialisation time. Randomization is applied after turbo encoding or Reed-
Solomon encoding (if either is used), but before convolutional encoding (if used).
Pseudo-randomization is combined with synchronization and with the different
coding options. When using Reed-Solomon encoding the Transfer Frame‘s length is
variable correspond to the interleaver factor.

50

Figure 4.23 - [Activity] coding, randomization and synchronization

coding, randomisation and synchronization

TF/IdleTF : Transfer Frame
ASM

CADU

apply R/S encodingapply Turbo encoding

insert ASM

apply convolutional coding

randomize

fetch data from VCM

ASM
TF

R/S coding supportedTurbo coding supported

C coding supported /concatenated
 coding supported

Pseudo-random supported

no coding / convolutional coding supported

51

4.7 Requirements Analysis

In section 4.4 the partitioning of the system requirements is done, containment and
derived relationships are captured. Complex requirements are decomposed into sub-
requirements, using composite relationship. In this section the cross-cutting
relations between the system requirements and other model elements are captured
for traceability purposes. Now it is simpler for different stakeholders to express
their problems by studying the requirements diagram. It is easier to make sure that
the requirements are satisfied. The “trace” and “satisfy” relations are used the most.
Some requirements may be traced to more than one block. On the other hand one
block may satisfy more than one requirement. After defining the cross-cutting
relations, there might be a need to refine the corresponding requirement. The new
requirement is related to the original one using the refine relation. The assumptions
which are made to create the refined requirements are captures as rationales and
connect to the relation.

Figure 4.24 is an example of requirements diagram in which the cross-cutting
relations are captured.

Figure 4.24 - [Package] System Requirements[on-board requirements]

req [Package] System Requirem ents[on-board requirem ents]

Space com m unication m odel

«docum ent»
Space com m unication

m odel::Structurs::Eq ...

«block»
Priority Selection

«block»
CIK Divider

«block»
Onboard control system

«requirem ent»

Packet Telem etry Handling

«requirem ent»

CROME requirem ents

«requirem ent»

Telem etry Encoder

«requirem ent»

Input

«requirem ent»

control and status

«requirem ent»

Functions

«requirem ent»

Outputs

«requirem ent»

Initial Configuration Param eters

«requirem ent»

Function Error Handling

«requirem ent»

In-flight Modification Param eters

«requirem ent»

Telem etry Perform ance

UseCases[onboard
OperationalUseCases]

«trace»

«trace»

«satisfy»

«satisfy»

«satisfy»

«refine»

52

4.8 Critical System Properties and Constraints

Value properties of system components are used to capture the non-functional
requirements of the system. To define the Constraints on value properties the first
step is to identify these properties. I could not find relevant information in
documents to model the Telemetry Encoder Parametrics, so here I can’t put sample
diagrams. This part is left for the future work of modeling the PTME system.

53

5.1 Simulation-based design

As mentioned earlier, SysML provides graphical representations for modeling
system requirements, behavior, structure and integration with engineering analysis.
Two papers written by Peak et al. [17], [18] introduce SysML parametrics and
illustrate how they can be used in simulation-based design. The papers introduce
functional principles of SysML parametrics in general and its applications to
engineering design and analysis in particular. In the first part SysML parametric
concepts, analysis libraries are introduced. The definition of reusable equations and
corresponding SysML constraints blocks and constraint properties to capture the
analysis libraries are also discussed. In the second part the way to reuse the analysis
building blocks (captured by SysML constraint block) in simulation-based design is
mentioned along with some examples. Composable objects (COBs) are concepts
that have been developed at Georgia Institute of Technology to support the
execution of SysML parametric models. COB technology provides a conceptual
foundation for SysML parametrics by combining object and constraint graph
techniques. COB can be used together with SysML to capture engineering
knowledge for further analysis in modular and reusable form. Engineering analysis
models are captured in SysML and executed by analysis tools.

5.2 Model-based Requirements engineering

System requirements are derived from user requirements which need to be
described in detail, analyzed, documented and managed throughout the system
development life cycle. This process is called Requirements Engineering which is
an important phase and the most critical process when developing a system.

Requirement management process includes capture, analysis, refinement and
evolution management [11]. In UML world “Requirements Modeling” which is part
of Requirements management is done using a new profile called SysML. Bruno
Traverson in [11] proposed a modeling approach for requirements, based on three
levels of description. These levels are Product Vision to specify the goals of the
system by capturing the problems, Functional Perimeter to describe the system
functions through Use cases and the third level is Requirements. For the third level,
requirements are divided into three, functional, extra-functional and constraints.
Unlike functional requirements which are specific processing rules or behavior,
extra-functional refers to quality properties that the system must have as the IEEE
830.1198 [19] call them “System Attributes”. These properties are performance,
security, usability and so on. In this paper the goal is to explore the link between
requirements expressions in SysML (SysML requirements Diagram) to
Requirements Management objectives.

In [19-20] Pietro Colombo describes the integration of Problem Frames concept
which is an approach to requirements modeling with SysML. Following the PFs
approach the first task is to understand and represent the various problem domains,

5 Related work

54

the connections between domains and system under development and its connection
to the problem domain by means of context diagrams. These diagrams are defied in
SysML. Next is to add requirements to the context diagram by means of problem
diagram. According to [21] “a PF is a description of recognizable class of
problems”. So far no tool has implemented Problem Frame and there is no support
by notation, these issues limit the use of this concept in industry.

In [22] Mihai Fonoage describes the mechanism for selecting the components and
having automatic design by defining structured representation of requirements and
component then introducing an automatic process for the architectural design. The
proposed methodology is part of the Requirements-Driven Design Automation
framework that has been developed for component based system development [23].
The goal is to reduce the development time and cost by detecting requirement
specification errors before the design stage. A methodology for requirements
specification, representation of functional requirements by corresponding models
and automatic validation for completeness and consistency are described in [1].
SysML has been adopted for the first phase and the validation is done with rule-
based system which is implemented in Prolog.

5.3 Modelling, validation and verification

Unsatisfied properties are detected by verification and validation to assess the
design. In [24] a unified approach for verification and validation of System and
software engineering design models is proposed. The unified paradigm is expressed
in SysML. Formal verification, program analysis and software engineering are three
major techniques that have been combined and used to achieve the objective. Model
checking is performed by formal verification technique. The flow of data and
control is analysed by program analysis and software engineering refers to
measurement techniques for quality attributes in software. In [25] the verification of
system’s safety requirements are discussed by combining SysML as a non-formal
method and formal methods of the discrete event system theory which are
recommended by safety-related standards such as IEC61508. Requirements
refinement and allocation is captured in SysML diagrams and what they have
proposed to proof these relationships in some formal way for verification is to
modify the SysML meta-model and extend it by means of stereotype to introduce
logic properties.

In [26] the lack of formality of SysML modelling language for the verification of
requirements before the system implementation is addressed. The proposed
approach for verification is to use SysML to describe the structure of the system
and the requirements modelling. Petri nets and Temporal logic (LTL) are used to
formalize the system behaviour and requirements for automatic formal requirements
verification. Temporal logic is used to formalize the SysML requirements diagram
and instead of SysML Activity Diagram, Petri nets are used to provide a formal
description of the component behaviours. In [27] the validation of embedded real-
time systems (ERTS) with energy constraints is discussed. SysML is considered in
combination with MARTE as specification language. MARTE is used to support
for quantitative notations and to overcome the lack of formality for validation
SysML Activity Diagram in translated into Time Petri Net with Energy constraints.
Energy consumption and execution time are two critical constraints of ERTSs that

55

are represented by MARTE profile and validated by Time Petri nets in this
proposed approach. Following this approach, the properties of the system can also
be verified. Further research needs to be done in order to automate the generation of
Time Petri nets from SysML Activity diagram and also to cover other diagrams
such as sequence diagram and state machine diagram.

5.4 SysML Profile for System on chip (Soc) Design

In [8] a SysML profile with suitable extensions for modelling Systems-on-chips
(SoCs) is proposed. The transformation of the model into SystemC code is also
discussed. SystemC is an IEEE standard language, based on C++ and it is used for
describing systems at the very high level of abstraction. SystemC codes are
executable and this feature provides the possibility to simulate the system [28].

SysML block definition diagram, Internal Block Diagram and parametric Diagram
has been used to model the structure and express the constraints for further
analyses. The allocation feature of SysML described within Activity Diagram to
allocate behaviour to parts (Different components of the system). According to the
paper the next step is to define basic entities of corresponding SystemC like
modules, ports and processes and map these SysML to SystemC as follows:
“SysML parts to SystemC modules, SysML flow port to SystemC ports and SysML
allocations to SystemC processes.” The procedure is followed by creating a header
file and building the implementation files while translating the SysML model into
SystemC code. The later is done by generating an XMI file through the SysML tool.
This file serves as the textual description of SoC that must be transformed into
SystemC code.

56

The purpose of this section is to summarize the SysML model of the Packet
Telemetry Encoder (PTME). Lessons learned and the conclusions of the case study
are presented in the next section.

The overall goal of the case study was to assess the usefulness of SysML for
specification of hardware-based designs. This was done by developing a functional
design specification of the PTME in SysML. The input to this modeling exercise
was a set of text-based design and requirements specifications, providing detailed
descriptions of the PTME functions at various levels of abstraction.

SysML includes nine diagram types. Six of these were used in the PTME model:
the use case diagram, the block definition diagram, the internal block diagram, the
activity diagram and the requirement diagram and package diagram. The model
consist of two package diagram, two use case diagrams, four block definitions
diagrams, three internal block diagrams, eleven activity diagrams and one
requirement diagram.

The model of the system is organized into several packages all captured in one
package diagram. The packages include use cases, requirements, structural
components, various value and item types, and activities.

The use case diagrams provide a high-level view of the PTME functionalities. The
use case modeling has been done at two levels. One use case diagram describes the
top-levels functions in the entire packet telemetry system from the viewpoints of
two actors, the ground control system and the on-board control system. The other
use case diagram shows the main functions in the on-board system with the
application software running on the on-board computers as one actor, and the
PTME as another actor.

A block is a SysML concept used to represent the system components, subsystems
and other entities in the PTME system. Value properties are used to describe the
attributes of blocks. For example, the transfer frame is modeled by a block, which
has a length as an attribute which is indicated as a value property of the block. Four
block definition diagrams are used to capture the context and the structure of the
system. The environment in which the PTME will operate is illustrated in one block
definition diagram. The purpose is to capture the system context. The structure of
two data types, the telemetry packet and the transfer frame are shown in two block
definition diagrams. One block definition diagram describes the PTME and its
parts.

Internal block diagrams are used to capture the interactions between different parts
and subsystems in the model. One such diagram is used to illustrate the
interconnections between the entities of the PTME system and the environment,
capturing the data flow between different components. There is one internal block
diagram that shows the interactions between the PTME components and one that
describes the interactions between the internal parts of the PTME.

6 Summary of the PTME SysML model

57

The input data to the PTME is a telemetry packet and the output is a modulated
channel access data unit. The internal parts of PTME include the telemetry encoder,
modulators, randomizer, clock divider and other encoders.

The behavioural aspects of the PTME system are captured in Activity diagrams
showing the interactions among the different parts of the system that are defined in
the internal block diagrams. Eleven activity diagrams are used to capture the
various actions involved in producing a channel access data unit. These diagrams
are related and when we follow the associations between the activities, functions are
divided into sub functions at the next level. For example when describing the
creation of Transfer Frames, six activities are shown, each containing other
activities that are captured in separate activity diagrams.

Requirements modeling enables text based requirements to be captured by graphics
in requirement diagrams, tables or tree structures, which can be traced to other
model elements using the satisfy, derive, verify and refine relationships. There is a
very large number of requirements for the PTME system. Translating all of these
requirments and their relations into requirements diagrams was beyond the scope of
this work. However, to illustrate how textual requirements can be expressed in
SysML, I created one package diagram that shows the requirement hierarchy for the
CROME ASIC. This diagram illustrates how cross-cutting relations between
different requirements can be captured.

58

This thesis presents an overview of the SysML modelling language and a case study
where I developed a partial design specification of a packet telemetry encoder in
SysML. The purpose of the case study was to assess the usefulness of SysML for
specifying requirements and documenting the high-level functional design of
hardware units. The main conclusions and lessons learned are as follows:

 I found the SysML language intuitive and easy to learn and use. The book by
Friedenthal et al. [7] is easy to read and very useful for both beginners and
advanced users.

 The Artisan real-time studio modelling tool has a user friendly interface and its
documentation is well written. The tool supports modelling with both SysML
and UML. It is also possible to synchronize the tool with DOORS to import
and export requirements. However, this feature was not explored due to a
problem with file access rights and the synchronization module.

 The main challenge in the case study was to understand the requirements and
the functional design of the PTME system from the documents that were
provided as input for the case study. Once these were understood, it was a
relatively easy task to create the SysML model.

 The PTME model contains only a few use case diagrams. They were useful for
providing a high-level view of the system, but were not essential for capturing
the requirements of the PTME system.

 Modelling the structure of the PTME system using block definition diagrams
and internal block diagrams was straight forward and consumed relative little
time.

 Capturing the behavioural aspects of the system was the most time-consuming
part of the work. For each block diagram, several actions were modelled using
activity diagrams. The activity diagrams provided an efficient means for
modelling data flow and interactions between different blocks.

 SysML follows a profile based approach to extend the language, this feature
enhance the capability of system to add more domain-specific stereotypes to
customize the language and reuse purposes. To expand the profile it’s very
important to create meaningful stereotypes. Knowledge and experiences of
system engineering are needed to define these new constructs.

 Allocation of the system requirements and mapping them to each other as well
blocks and activities enhances traceability. This capability of SysML is used to
keep track of changes either in the requirement’s specification or the component
models. The language does not provide any guidance for how to map
requirements to model elements, so the modeller should preferably be an expert
in the field of requirements engineering. Sometimes it is awkward to capture
requirements as a block in a Requirements diagram. The alternative is to use the
tables and matrixes. There, we can capture the relation just by adding more
columns.

7 Conclusions

59

SysML supports specification, design, analysis, early verification and validation of
software-intensive systems. The structure, the behaviour and the requirements are
captured separately, and then the analyses are performed. The purpose is to figure
out the relations between the diagrams and consequently different accepts of the
system (structure, behaviour and requirements). The result will help the engineers to
perform the verification and validation before the actual implementation.

The limitation of study is due to the time. I could not cover all the elements that
interact with Packet Telemetry Encoder. So some parts of the modelling have been
left behind. Creating SysML Parametric Diagram has not been covered, because I
could not find the relative information in the design specification of PTME.
Another capability of the SysML which I couldn’t cover when doing the case study
is using the view and view point concepts.

60

[1] M. Mura, L. G. Murillo, M. Prevositini,”Model-based Design Space Exploration
for RTES with SysML and MARTE”, Forum on Specification and Design
Languages (FDL´08), Stuttgart, Germany, IEEE CS Press, 2008, pp.203-208, doi:
10.1109/FDL.2008.4641446

[2] http://www.aadl.info

[3] http://www.omgmarte.org

[4] http://www.artisansoftwaretools.com/community/standards/marte/

[5] http://www.modaf.org.uk/2background/55/what-is-modaf-and-why-use-it

[6] M. Hause, “An Overview of UPDM – A Unified Profile for DoDAF/MODAF,”
http://www.mil-embedded.com/articles/id/?3653

[7] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML, Morgan
Kaufmann Publishers, 2008

[8] M. Prevostini, E. Zamsa,”SysML Profile for SoC Design and SystemC
Transformation”, Faculty of Informatics, University of Lugano, Switzerland, May
11, 2007; http://www.prevostini.ch/tech_report/Tech_Report_003.pdf

[9] IEEE Std. 1471-2000, Recommended Practise for Architectural Description for
Software –Intensive Systems, IEEE, 2000.

[10] ISO/IEC 10746, Open Distributed Processing- Reference Model, Part 1-4,
1995.

[11] B.Traverson, “Linking Requirements to Enterprise Viewpoint Specification
Using Correspondence Rules”, 11th Int. IEEE EDOC Conference Workshop, 2008,
pp. 254-259.

[12] E. W. Dijkstra,” On the Role of Scientific Thought”, Selected Writings on
Computing: A Personal Perspective, Edsger W. Dijkstra, Springer-Verlag, 1982

[14] M. Hause, “Cross-Cutting Concerns and Ergonomic Profiling Using
UML/SysML”, INCOSE Int’l Symposium, 2006

[15] http://www.papyrus-uml.org

[16] http://www.telelogic.com/products/tau/index.cfm

[17] R.S. Peak, R.M. Burkhart, S.A Friedenthal, M.W. Wilson, M. Bajaj, I. Kim,
“Simulation-Based Design Using SysML—Part 1: A Parametrics Primer”, INCOSE
Int’l Symposium, San Diego, 2007.

8 References

61

[18] R.S. Peak, R.M. Burkhart, S.A Friedenthal, M.W. Wilson, M. Bajaj, I. Kim,
“Simulation-Based Design Using SysML— Part 2: Celebrating Diversity by
Example”, INCOSE Int’l Symposium, San Diego, 2007.

[19] IEEE Std. 830-1998 Recommended practise for Software requirements
specification, IEEE, 1998.

[20] P. Colombo, V. Del Bianco. L. Lavazza, A. Coen-Porisini, “A Methodological
Framework for SysML:a Problem Frames-based Approach,” 14th Asia-Pacific
Software Engineering Conference. IEEE press,2007, pp. 25-32,
doi:10.1109/ASPEC.2007.56

[21] M.Jackson, Software Requirements and Specification: : a lexicon of practice,
principles and prejudices, Addison-Wesley, 1995.

[22] M. Fonoage, I. Cardei, Ravi Shankar, “Mechanisms for Requirements Driven
Component Selection and Design Automation”, 3rd IEEE Systems Conference,
2009, pp. 1-6, doi: 10.1109/SYSTEMS.2009.4815761.

[23] I. Cardei, M. Fonoage, R. Shankar,”Framework for Requirements-Driven
System Design Automation”, 1st IEEE Systems Conference,USA, April 2007, pp.
1-7, doi: 10.1109/SYSTEM.2007.374671.

[24] L. Alwneh, M. Debbabi, F. Hassaine, Y. Jarraya, A. Soeanu, “A Unified
Approach for Verification and Validation of Systems and Software Engineering
Models”, 13th Int. Symp. and Worshop of Computer Based Systems (ECBS´06),
IEEE CS Press, 2006, pp. 409-418, doi: 10.1109/EBCS.2006.17

[25] D. Evort, J-F. Petin, G. Morel, “Combining SysML and Formals Method for
Safety Requirements Verification”. Insight Journal of INCOSE 11, no. 3, 2008:
http://hal.archives-ouvertes.fr/docs/00/34/48/94/PDF/INSIGHT_EVROT_Vfinale.pdf

[26] M. V. Linhares, R. S. de Oliveira, J-M. Farines, F. Vernadat, “Introducing the
Modelling and Verification process in SysML”. IEEE Int. Conf. On Emerging
Technologies and Factory Automation, 2007, pp. 344-351, doi:
10.1109/EFTA.2007.4416788.

[27] E. Andrade, P. Maciel, G. Callou, B. Nogueira, “A Methodology for Mapping
SysML Activity Diagram to Time Petri Net for Requirement Validation of
Embedded Real-Time Systems with Energy Constraints”, IEEE 3rd Int’l Conf. on
Digital Society, 2009, pp: 266-271, doi: 10.1109/ICDS.2009.19

[28] W. Raslan, A. Sameh, “Accelerating High-Level SysML and SystemC SoC
Designs”, The 2007 IP Based Electronic System International Conference, IP-SoC
2007, Grenoble, France, December 2007: http://www.design-
reuse.com/articles/17562/high-level-sysml-systemc-soc-designs.html

[29] OMG, “UML profile for Modeling and Analysis of Real-Time and Embedded
systems (MARTE)”, http://www.omg.org/spec/MARTE/1.0/

62

[30] http://www.omgsysml.org

[31] http://www.incose.org

[32] http://www.artisansoftwaretools.com

[33] http://www.ilogic.com

[34] http://www.architectureframework.com

