

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, April 2010

Optimization of the feeder assignment for PCB

assembly machines

Master of Science Thesis in the Computer science and engineering

KRISTOFFER WIKLUND

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Optimization of the feeder assignment for PCB assembly machines

KRISTOFFER E. WIKLUND

© KRISTOFFER E. WIKLUND, October 2009.

Examiner: DEVDATT DUBHASHI

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Machine layout for mounting components onto a PCB, see page 29

Department of Computer Science and Engineering

Göteborg, Sweden October 2009

REPORT NO. xxxx/xxxx

Optimization of the feeder assignment
for PCB assembly machines

KRISTOFFER WIKLUND

The Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2009

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: I

Abstract

This report is part of a master thesis done at Chalmers University of Technology in Göteborg

and in cooperation with Valor Computerized Systems. The purpose with the report was to

compare different algorithms performance in solving a subproblem in PCB assembly. PCB

assembly is about to balance the PCB production between different production lines in a

factory. For each line one need to balance electrical parts’ assembly between the machines in

the production line. Finally a minimized sequence of the assembly of components is

constructed. The subproblem for this thesis has been the feeder assignment problem, where

the problem is come up with setup for how and in which feeder slots the components for the

production should be placed, for minimizing the production time. The subproblem has been

showed to be NP-hard been proven that the Traveling Salesman problem can be transformed

to the subproblem.

We have chosen to compare two versions of Local Search algorithms and two versions of

genetic algorithms and a simple heuristic algorithm. To obtain a reliable comparison, the

solutions are imported into Valor’s software to solve and model a complete assembly

machine. Valor’s software has enabled us to obtain the simulated production times. To be able

to use the chosen algorithm a new and simplified cost function has been developed.

Our approach has showed that is possible to lower the production time compared to Valor’s

current software. To draw a concussion of which algorithm to use is not possible. All five

algorithms have given around one percent improvements. One explanation for that is that the

simplified cost function has simplified the problem to much so that it is not possible to

separate a good feeder assignment hungry against a less good solution.

Keywords: PCB, Assembly, Optimization problem, Feeder assignment, Local Search,

Genetic Algorithm, NP-Hard, TSP

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: II

Sammanfattning

Denna rapport är en del av ett examensarbete utfört på Chalmers tekniska högskola i

samarbete med Valor Computerized Systems. Syftet med rapporten var att jämföra olika

algoritmers förmåga att lösa ett utav delproblemen inom kretskortstillverkning.

Kretskortstillverkning handlar om att fördela kretskorts tillverkning mellan olika

produktionslinjer i en fabrik. För varje linje handlar det om att fördela komponenternas

montering mellan maskinerna i en produktionslinje. Slutgiltigt så ska en minimerad sekvens

av montering av komponenter konstrueras. Rapporterns delproblem, matar

fördelningsproblemet, har varit att lösa hur och i vilka matare som komponenter ska placeras

i, så att produktionstiden är minimerad. Delproblemet är bevisat att vara NP-svårt genom att

bevisa att Handelsresandeproblemet kan transformeras till delproblemet.

Vi har valt att jämföra två versioner Local Search algoritmer och två versioner av generiska

algoritmer och en enkel heuristik algoritm. För att få en trovärdig jämförelse har lösningarna

importeras till Valor’s programvara för att lösa och modellera upp en fullständig

monteringsmaskin. Genom Valor’s programvara har vi kunnat erhålla simulerade

produktionstider. För att kunna använda valda algoritmer har också en egen förenklad

kostfunktion utvecklats.

Vår tillgångavägsätt sätt har visat på att det går att sänka produktionstiden jämföra med

Valors nuvarande programvara. Vilken algoritm som ska användas går inte att dra slutsatser

ifrån då de alla fem ligger på runt en procents förbättring. En förklaring till detta har varit den

förenklade kostfunktionen vilket trors ha förenklat problemet för mycket och gjort att bra

lösningar inte kan skiljas från mindre bra lösningar.

Nyckelord: PCB, Kretskort, Tillverkning, Optimerings problem, Local Search, Generiska

algoritmer, NP-Hard, TSP

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: III

Content
Abstract ... I

Sammanfattning .. II

Content ... III

Preface ... V

Notations and definitions ... VI

List of Figures, Tables and Equations ... VII

1 Introduction ... 1

1.1 Background ... 4

1.2 Purpose ... 12

1.3 Delimitations .. 14

1.4 Local Search ... 14

1.5 Genetic Algorithms ... 15

1.6 Heuristic .. 19

2 The Traveling salesman problem transformation .. 20

2.1 General TSP .. 20

2.2 Placement TSP .. 20

2.3 Feeder bank assignment .. 20

3 Methods ... 22

3.1 Internal structure ... 22

3.2 Time factors .. 24

3.3 Cost function for evaluating feeder assignments .. 25

3.4 Revolver setup .. 27

3.5 Algorithms .. 27

3.6 Lower bound ... 28

3.7 Test data .. 29

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: IV

4 Results ... 31

4.1 Performance of the algorithms subject to the cost function ... 32

4.2 Relation between cost function and production time ... 33

4.3 Performance of the algorithms to solve the whole problem ... 37

5 Discussion ... 38

6 Conclusions ... 40

7 Future Work .. 41

8 References ... 42

Appendix 1: Algorithms ... 44

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: V

Preface

This Master Thesis was carried out from April 2009 until October 2009 at the Department of

Computer Science and Engineering, Chalmers University of Technology in Göteborg,

Sweden. Working place for the thesis has been at the R&D department office in Turku,

Finland for Valor Computerized Systems. The work has been formulated and supervised by

Ph.D. Mika Johnsson at Valor Computerized Systems. Examiner of the thesis is Prof. Devdatt

Dubhashi at Chalmers University of Technology.

A special gratitude is dedicated to Prof. Olli Nevalainen at Turku University who has been

helping and supervising me, thanks for reading and correcting my report.

I would like to thank Mika Johnsson and Valor Computerized System for giving me the

opportunity to work with this thesis’s subject. It has been an interested problem, I am thankful

for getting the help concerning my research topic, books and hardware needed when

conducting this study.

I also like to thank my loving wife, Marianne, which have supported me during the work.

Turku October 2009

Kristoffer Wiklund

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: VI

Abbreviations and definitions

Abbreviations

AI Artificial Intelligence

CAD Computer-aided design

GA Genetic algorithm

LS Local Search

PCB Printed circuit board

PMX Partially mapped crossover

RAM Random-access memory

SMT Surface-mount technology

Definitions

Component An electronic element that has one or more connections.

Part Type definition of components, all components of the same part

 have the same form and specification

Placement Description that a given component needs to be placed on

 a given position on the PCB

PCB job Description of a set of parts that will be mounted onto the PCB

Feeder Component supply mechanism in SMT machines

Placement head Mechanical arm of a SMT machine that places the components

Spindle Mechanical part attached to the placement head for picking and

placing a single component

Nozzle Gripping tool for allowing spindles to pick a kinds of components

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: VII

List of Figures, Tables and Equations

List of Figures

Figure 1, Example of production line ... 1

Figure 2, Machine layout ... 2

Figure 3, Dual Delivery placement machine .. 6

Figure 4, Turret style placement machine [5] .. 7

Figure 5, Sequential Pick-And-Place Machine [5] ... 7

Figure 6, Multi-Head Placement Machine [5].. 8

Figure 7, Multi-Station Placement Machine [5] ... 9

Figure 8, Hierarchy of the problems found in PCB assembly ... 9

Figure 9, Feeder assignment problem .. 13

Figure 10, Roulette wheel .. 17

Figure 11, Ranked Roulette Wheel .. 18

Figure 12, Flow of the experimental tests .. 22

Figure 14, MachineConfiguration class. .. 23

Figure 13, PCB class .. 23

Figure 15, Algorithms classes .. 24

Figure 16, Graphical presentation of PCB-9 in the developed software 29

Figure 17, Relation between procedure S and production time for all PCBs 34

Figure 18, Relation between procedure S and production time for PCB-1 35

Figure 19, Relation between procedure S and production time for PCB-2 35

Figure 20, Relation between procedure S and production time for PCB-5 36

Figure 21, Relation between procedure S and production time for PCB-8 36

List of Tables

Table 1, PCBs in number ... 31

Table 2, TEST results with procedure S .. 32

Table 3, PCB results with procedure S .. 32

Table 4, TSP problem results ... 33

Table 5, Average difference in production time for exact same feeder assignment 33

Table 6, Performance of the algorithms solving the final problem .. 37

List of Equations

Equation 1, Ranked Roulette Wheel formula ... 17

Equation 2, Total time .. 24

Equation 3, Time for a revolver ... 24

Equation 4, Pick-up phase .. 25

Equation 5, Placement phase .. 25

Equation 6, Lower bound ... 28

file:///C:/Documents%20and%20Settings/Kristoffer%20Wiklund/My%20Documents/Exjobb/Master%20Thesis.docm%23_Toc243303811
file:///C:/Documents%20and%20Settings/Kristoffer%20Wiklund/My%20Documents/Exjobb/Master%20Thesis.docm%23_Toc243303818
file:///C:/Documents%20and%20Settings/Kristoffer%20Wiklund/My%20Documents/Exjobb/Master%20Thesis.docm%23_Toc243303823
file:///C:/Documents%20and%20Settings/Kristoffer%20Wiklund/My%20Documents/Exjobb/Master%20Thesis.docm%23_Toc243303824

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 1

1 Introduction

Articles about Printed Circuit Board, PCB, [1], [2], almost always discuss the increased

demand, new development and increased production volumes in the PCB assembly

industry. One common explanation for the rapid development in the field is that citizens

own more and more electrical devices and almost each of those devices includes a PCB

in it. Design and construction of PCB is very universal and enables almost every

possible electrical circuit.

In the early years, the components were assembled manually. But over time, specialized

placement machines have taken over the work. Also the way these machines function

has changed. In today´s production, the machines often are organized in production

lines, where every line comprises of several manufacturing stations.

Figure 1, Example of production line

The stations can include several different or equal assembly machines, inspection

stations, oven and more. Duplication of stations can increase the efficiency of

production, as shown with the placement machines in Figure 1.

This thesis concentrates on the placement machines and omits the discussion of other

machine types. The placement machines can work in different ways, but the main

operation principle in all of them is that a mechanical arm picks up an electronic

component from the feeder bank and places it on the PCB at a predefined position.

To solve this assembly task is a NP-hard problem. The task is to come up with a setup

and a placement order for the placement machines such that the production time is

minimized.

The mechanical arm could be built in different ways; the most common types are the

inline head and the revolver head. On each head there are one or several spindles which

are the mechanical parts that pick and place components. In an inline head the spindles

are grouped in one or several lines, and in a revolver head the spindles rotate around a

center point. In Figure 2 a photo of a common assembly mount machine with revolver

head is showed. It is a collect-and place machine with two feeder banks. At position A,

one of the feeder banks is located. Another feeder bank is located just below C. At

position B the PCB is fixed stationary on the table. The revolver head and how the

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 2

spindles are located around it can be seen at C. In the image, the revolver is picking

components at the feeder bank and will later go to the PCB at B and place the

components and after that go to the feeder bank at A again to pick up some new

components.

Placement machines can be classified into 5 categories [3]. The five classes are: Dual

Delivery Placement Machine, Multi-Station Placement Machine, Turret Style

Placement Machine, Multi-Head Placement Machine, and Sequential Pick-and-Place

Machine. Each of these solves the assembly task in a different way. This thesis will

discuss how to solve assembly task for Multi-Head Placement Machines.

PCB assembly control problems have been divided into three subproblems in [2]. The

first problem is to group the PCBs by the similarity of the components and then choose

the machine group/production line. The next problem is to optimally divide the

placements of the components between the machines so that there is no big bottleneck

machine in the group. The last problem is to decide the feeder, nozzle and placement

sequence for each machine.

Figure 2, Machine layout

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 3

All these problems depend on each other when one tries to solve them in a total optimal

way. In order to know which components a machine should place it is necessary to

group the PCBs and machines. For optimal grouping of the PCBs one has to know how

to divide the placements between the machines in the group. It is impossible to solve

one of these subproblems without considering its relation to the other problems.

This thesis deals with the last subproblem, the feeder arrangement, nozzle arrangement

and placement sequence optimization. The problem will be divided into two

subproblems. The first problem is to fix the feeder and nozzle bank setting. The second

problem is to optimize the placement order with respect to the components and feeder

bank. The task in this thesis is to develop, test and compare different algorithms for

fixing the feeder and nozzle bank. In order to see how well the solutions really are, one

has to solve also the second subproblem. For solving the second subproblem we will use

Valor’s planning software to generate a placement sequence and to calculate the total

assembly time for that PCB job.

This thesis has the following structure. Chapter 1 explains the background of the PCB

assembly research and how PCB assembly works out in the real-life industry. The

purpose and delimitations of the thesis is explained and also a description of the

algorithms and techniques is given. Chapter 2 will explain how to transform the TSP

problem into a PCB assembly problem and show that the PCB assembly problem is NP-

hard. Chapter 3 is in detail describing how the problem has been modeled and how we

have adapted the algorithms. The heuristics and the formulas we used are presented in

this chapter. Chapter 4 describes the results of the practical tests; how well our

algorithms run and what works and what does not. Chapter 5 discusses the relation

between the methods and the results and how the results relate to the problem. It

describes the results and how it refers to the problem. Chapter 6 shows what conclusion

one could draw from the results. Chapter 7 discusses how one could do more research

on this subject, how to develop the algorithms, how to implement the software tools in

the industry and how to improve the algorithms.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 4

1.1 Background

The desire to connect electronic components in an easy way has existed from the early

days of electronics. The technique with PCB was invented by Paul Eisler around the

Second World War. After the Second World War the technique was released for

commercial use. In this technique, copper traces are printed on a non-conductive board,

where the traces connect the different components mounted on the board.

A PCB is as the name says a circuit board with a printed electrical circuit. The board is

often green in color and has lots of different components mounted on it and it is placed

in a machine behind a plastic cover. One can find PCBs in a broad range of customer

products including for example computers, cars, phones, dish washer, clocks and more.

There are many different types of circuit boards. Components can be attached by

through-hole construction or by surface-mount construction/ surface-mount technology

(SMT). The material for the board and for the electrical traces can differ. This report

focuses not on the construction of PCBs; instead, it focuses on the assembly of

components on the PCB. The optimization in this thesis will be made for an SMT-

machine, but the results can be applied to through-hole technology as well.

Manual assembly of components on the PCB was the first approach of the technology

and it is still used for special cases. As machines have been developed and become more

advanced, more and more components can be mounted by the machine with greater

accuracy, speed and with fewer faults. As the machines get more and more advanced an

optimization problem is risen; how to sequence the component placements in an optimal

manner. The same problem exists also for manual assembly, but it is not as critical,

instead developing of routines and techniques for lowering the risk of human error have

been investigated. [4]

One important thing to keep in mind is the difference between part, component and

placement. A component is an electronic element that has one or more connection; this

is like an atom for electronics. Part is the type definition for components, all

components of the same part has the same form and specification. Placement is a word

for describing that a component has a fixed placement position on the board. Therefore

a PCB consist of a number of parts that each has one or several placements. A PCB

consists of the same number of components that it has placements in total.

Some components that are going to be placed on the board need to be visually verified

so that the right component is placed and that the component has the right angle.

Therefore machines often have a camera to take a picture of the components. The

camera might only take black and white pictures, and many times it just examines the

shape of the component. Taking pictures of components can be done in different ways;

sometime there is a fixed camera station where the mechanical arm verifies the

components before placing them. Other machines can have a moving camera station so

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 5

that the verification of components can be done while the arm is moving. There are even

more ways of visual verification of the components that the vendors use.

The mechanical arm, the placement head, can be constructed in several different ways

but in most cases they are either of inline or revolver type. A placements head has one

or several spindles. Spindles are the mechanics for picking up a single component, but

in order for the spindle to be able to pick up the component it needs a griping tool. For

that purpose the industry has developed different kinds of nozzles for picking and

placing the components. It works by using a vacuum of air to suck up a component from

the feeder slot and air pressure to place the component on the PCBs. Several kinds of

nozzles can pick up the same type of components and nozzles can pick up several

different component types. The nozzles have different specifications and they set

limitations to the placement head in regard to movement and rotation speed. Special

components that are hard to hold also affect the selection of the placement head and

give it more limitations. The spindles often have the ability to rotate, which makes it

possible to have the right angle of the component when placing it on the PCB.

The difference between inline head and a revolver head is that for an inline head the

spindles are grouped in one or more lines. This feature makes it possible to do gang-

picks. In gang-picks several spindles pick up components simultaneous. If two spindles

are picking components at the same time the time is lowered by 50% for that task and if

6 spindles pick their components at the same moment of times the task consumes 16%

of the time it would take to pick them up sequentially. In revolver heads the spindles are

located in a rotating circle, so that the spindles are rotating around a center point. Some

revolver head types have a camera located at the top of the head. This makes it possible

to do the camera verification of the component placed on the top spindle while the

bottom spindle is picking up a component.

In order to place the components in exactly the right positions there is a set of fiducial

marks on the PCBs. After the PCB is loaded to the machine, the head locates the

fiducial marks by a camera. This takes some production time at the beginning of

processing each PCB but the machines are then able to place components extremely

accurately.

SMT machines are equipped with one or several feeder banks. They supply the

component to the machine. A feeder bank is divided into several feeder slots which are

the mechanical places for holding components. Each slot can be populated with a

feeding unit. A common industry feeder unit is the tape feeder. Here the components are

attached onto a long tape like a movie theater tape. The placement head picks a

component and after this the tape is rotated so that a new component can be picked.

There are tapes of different widths, and therefore some parts take up several feeder

slots. There are also some feeders that can take two or more parts (i.e. component tape

reels) in the same feeder slot.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 6

1.1.1 Machine Classification

As mentioned in the introduction, there are several different types of assembly

machines. SMT machines have been classified into five classes [3]: Dual Delivery

Placement Machine, Multi-Station Placement Machine, Turret Style Placement

Machine, Multi-Head Placement Machine, and Sequential Pick-and-Place Machine.

Dual Delivery Placement (Figure 3) has a movable PCB table that can move in x- and

y-direction. In the machine there are two placement arms, located on the opposite sides

of the table. They can move in y-direction between the placement position and the

pickup position over a movable feeder bank. When one arm is placing components the

PCB table is moved to its side, and the other arm is picking up components. After the

component has been placed, the PCB table moves to the other side there the other arm

places its component.

Figure 3, Dual Delivery placement machine

A Turret Style Placement Machine (Figure 4) has a big rotating turret with several

spindles on it. On one side of the turret there is a moving feeder bank and on the other

side is the PCB table, which moves in the x- and y-direction. The feeder bank is situated

on the side of the machine, the spindles pick up components and the moving feeder

bank is moved in the x-direction so that the correct part is under the spindle. The PCB

table is moved so that the placing position for the component in the spindle is under the

spindle and then the component is placed to its proper position.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 7

Figure 4, Turret style placement machine [5]

A Sequential Pick-and-Place Machine (Figure 5) consists of a moving arm. The arm can

move over a fixed PCB table, a fixed feeder bank and a fixed nozzle bank. The arm has

one spindle that picks up and places components. The placements are done in pick-and-

place blocks, where the placement head first moves to the feeder bank, picks up a

component, then goes to the PCB table and places the component on its correct position.

Figure 5, Sequential Pick-And-Place Machine [5]

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 8

Multi-Head Placement Machine (Figure 6) is almost of the same technology as the

Sequential Pick-And-Place machines. But instead of just one spindle on the placement

head it has multiple spindles. These machines are sometimes called collect-and-place

machines because they collect a number of components from the feeder bank and then

place them on the PCB. Spindles can be arranged into one or several rows or they can

be on a rotating revolver. For the revolver head the head needs to rotate the head before

picking and placing. Inline heads can perform gang-picks.

Figure 6, Multi-Head Placement Machine [5]

A Multi-Station Placement Machine (Figure 7) consists of several modules or stations.

Each module has an arm that can move in x- and y-directions. The arm is picking and

placing a limited set of components on the fixed PCB board. When a station has placed

all of its components for a certain PCB, the PCB is moved to the next station. This

machine is like several Sequential Pick-and-Place Machines in one.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 9

Figure 7, Multi-Station Placement Machine [5]

1.1.2 PCB assembly problem

Mika Johnsson and Jouni Smed [6] have done a hierarchical classification of the PCB

assembly problems by looking at it as a combination of one or several machines and one

or several PCB jobs.

Figure 8, Hierarchy of the problems found in PCB assembly

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 10

Figure 8 shows how they have classified the problem, and how it can be broken down

into subproblems. This differs to the classification made before [3] and is another way

to describe the PCB assembly task.

One PCB job and one machine (1-1). In this problem we have one machine and want to

produce one type of PCB as effectively as possible. The goal is to minimize the

assembly time. For this setup we have four subproblems. The feeder assignment

problem is to organize the parts to the feeder slots in an optimal way so that the travel

time is minimized and gang-picks or other techniques can be used. The placement

sequence problem is to solve the order to place the components such that the head

movement time is minimized. The nozzle assignment problem is to choose the nozzles

to be used. The component retrieval problem exists if the machine has duplications of

parts in several feeder slots, and it is optimized how the picks should be done.

Many PCB jobs and one machine (M-1). The goal in this problem is to minimize the

time for production, but compared to the Single-machine problem one now has to

consider the time to setup the machines. There are two possible way to minimize the

setup time, either one minimizes the time it takes to setup the machine or minimizes the

number of needed setups. The minimizing of setup time for one machine is about

hardware and organization on the factory floor. The second problem has been

researched and is about grouping and balancing [7]. As Johnsson and Smed [6] write

there are different strategies to solve that problem; unique setup strategy, minimum

setup strategy, group setup strategy, and partial setup strategy.

The One PCB job and many Machines problem (1-M) deals with load balancing. The

goal is to divide the parts between the different machines such that the production time

is as equal and low as possible, because the time to produce a PCB is determined by the

machine taking the longest time, the bottleneck machine. For each machine there is the

(1-1) problem to be solved with the set of parts that the machine should produce.

Many PCB jobs and many machines (M-M) is the most advanced and difficult version

of the problem but it is also the problem that is most common in the industry. Here one

has to decide the jobs to the different lines and to decide which PCB jobs each line

should produce.

The classification that Johnsson and Smed [6] have done is to classify the problem but

M Ayob, P Cowling and G Kendal [3] has done a machine classification. The five

machine classification can be described into the hierarchy by looking how they work for

a single PCB job. Dual Delivery Placement Machine, Sequential Pick-and-Place

Machine, Multi-Head Placement Machine and Turret Style Placement Machine are only

facing the (1-1) problem as a single machine. For the Multi-Station Placement Machine

there is always the need to solve the (1-M) problem, because every PCB is processed by

several stations and each stations is like its own machine.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 11

This thesis concentrates on the one machine and one PCB job (1-1) problem for a Multi-

Head Placement Machine. There are many parameters and settings for this problem as

mention before, but the goal is here to minimize the production time for a single PCB

job. Either one could improve the machine with better hardware, like more feeder slots,

faster moving/rotating placement heads or maybe more placements head in the machine.

This approach is pushed by the machine vendors and it is often the more expensive way.

The other way is that one tries to improve the usages of the available resources. There

are studies that show that by optimizing the placement sequence or the planning of

production one could get an improvement on 10% and up over 50% [8].

To do a realistic model of the problem can be very hard. This is because the machines

can differ in many ways between each model and vendor. The movements made by the

machine are also very complex; acceleration and deacceleration are non-linear. The arm

movement from point A to point B cannot be expressed by a simple formula, neither do

the machine vendors have any movement graph to hand out, as it is treated as a trade

secret or they simply don’t have it.

But some type of model of the machine is required to solve the problem, and to test the

solutions. An important thing to think at is that all machine operations consumes some

time. Many times several operations can be done simultaneously which makes that the

time for a group of operations is determined by the operation that takes the longest time.

As an example; if the placement head needs to moves 4 steps in x-direction and 5 steps

in y-direction this movement is done by two moving parts in the machine, one in x-

direction and the other in y-direction. The time for this is the maximum of the time to

move in the two directions.

One need to do some simplification of the problem but if the simplification is done

without research, the results of the model could be really bad, so that a solution of the

model seems to be very good but in reality it does not work in practice.

Here is a short list of common tasks in SMT machines that take some time:

 Placement of a component on the PCB

 Pick up of a component in feeder bank

 Movement of the arm into correct position

 Movement of the PCB table (for the machine that have it)

 Rotation of the head

 Preparation of the component in feeder slot

 Changing of the nozzle

 Loading and reading fiducial marks of the PCB

 Rotation of components

Valor Computerized Systems [9] has developed software for PCB manufacturers. Their

software helps the manufactures the whole way from PCB design, planning and

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 12

assembly. The company has a software tool specialized for line balancing and assembly

optimization. In their software one can build up a model of one or several production

lines, each line with machines of the markets most common models. Then a production

line is created, one or several CAD-drawing of PCB jobs what wants to assembly can be

imported. With the help of that software the assembly tasks and components are

distributed between the lines and machines. There is also the possibility for letting the

software to optimize the distribution of components so that the production time is

minimized. The production schedule along with the necessary machine instructions can

be sent directly to the SMT machines. The software also produces lists that state there

each component is needed. These lists are useful for the workers on the production

floor.

In Valor’s software one can optimize different segments of the production. One can

optimize the production on a particular line by redistributing the components over the

production line. Or one can optimize the allocation of the nozzles and the placement

order for each machine. Valor is not solving their tasks to optimally, as they are too

time consuming/difficult. But they optimize the production step by step for finding

better solutions. For knowing when to stop they have some criteria when a final solution

is good enough, like; if the improvement after one minute of searching is less than half

percent the search is stopped.

1.2 Purpose

The purpose of the thesis is to examine and evaluate different algorithms and heuristics

for a Multi-Head Placement Machine with a rotating head, like the Universal

Instruments, Genesis GC60 [10]. The focus of the thesis is on the single machine

problem (1-1), one machine and one PCB job. The goal is to minimize the total time it

takes to process a specific PCB job with a specific machine. The algorithms are

evaluated for several PCB jobs.

The task is graphically showed in Figure 9. There is one PCB with a number of parts

and each of them with a number of placements. Each part is supplied in a feeder slot.

There could be one or several feeder banks. There can be one or several placement head

and each of them has a number of spindles. The spindles need a nozzle from the nozzle

bank in order to pick components. Each component type needs a specific nozzle type for

picking. The task is to minimize the travel time.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 13

We will not try to solve all subproblems, Nozzle arrangement, Feeder assignment,

Placement sequence, Component retrieval. We consider the nozzle arrangement and the

feeder assignment problems, only. But to know how well our solutions are we need to

solve the placement sequence and component retrieval for calculation the total

production time, because it is the total production time for a PCB job that’s interesting

and relevant.

We use Valor’s software to solve the placement sequence and the component retrieval

and to simulate the total assembly process. We will import a feeder assignment and a

nozzle bank setup that the proposed algorithms find, into Valor’s software, then the

placement sequence and component retrieval is solved, the production time is calculated

thru Valor’s software. Valor’s software also has the possibilities to solve the assignment

problem and the proposed algorithms are compared to Valor’s solution.

We will not be able to use Valor’s software to evaluate each solution candidate as

Valor’s software takes around 1-10 min to solve the placement sequence and the

component retrieval. It is not possible to use so long time in a Local Search algorithm

that tests thousands of candidates.

We will therefore develop a simplified cost function for the feeder assignment problem.

The cost function should give similar results as the final modeling but it should be faster

to calculate. An important thing with the cost function is not that its outcome is

precisely the same as the result from the final model, but it should reflect the relation

between a good and a bad solution. So that a good final solution will have low value

and a bad final solution will have high value of the cost function. One task in creating

solution algorithms for feeder assignment problem is therefore to design a good cost

function.

Figure 9, Feeder assignment problem

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 14

This means that this thesis has two goals. The main goal is to compare different

algorithms for the nozzle and feeder bank setup. But to get good results a good cost

function is needed.

1.3 Delimitations

For not letting the task be too big and hard to examine there is some delimitations. The

simplified cost function is one thing, as it models the problem in a simplified way. We

will only work with Multi-Head Placement Machine with a revolver head. The

assembly is modeled in a perfect world with no miss picks (the nozzle fails in pick up a

component), tool malfunction or component shortage. The time for loading a PCB and

reading fiducial marks is omitted and we thus support that the PCB is already properly

fixed on the table. Rotating of components is also not considered.

The algorithms and models will be just for revolver head machines and not for inline

head machines, as production time for inline head machines are very affected by gang-

picks which the revolver head model don’t capture.

We will just exanimate the situation with only one PCB job at a time. So the minimizing

is just for one PCB at time not a group of PCB’s.

1.4 Local Search

Local search algorithms improve a candidate solution of the problem by looking into

“nearby” solutions. It is a very general technique that could be used for solving almost

any computationally hard problem, [11]. This technique can be found out in real world

where it is quite common to improve a solution just by doing small changes that

improve the overall performance. For an example, one can make an initial plan of the

day and then during the day one can realize that if one buys the food before one picks

up the kids from daycare one could earn five minutes of time. Here we did a local

search step. It is the same for computationally hard problems. The algorithms work by

starting with some initial solution, and then they try different solutions that are just

small modifications of the current solution. In some cases the total fitness don’t have to

be calculated again, like in the day planning example, if the change saves five minutes

the whole day don’t need to be recalculate to see that the plan is five minutes shorter.

But in some other problems this is not as easy as this fitness calculation may be very

complicated. Nevertheless this technique has worked very well and it is able to produce

good solution in short time. [2].

One problem with local search algorithm is to know what a nearby solution is. When a

minimum on a graph is to be found the nearby solution is the position before and after

the current position. In other cases the solution may be a list of numbers or a matrix of

data that is encoded in different way and a nearby solution might sounds strange. The

definition of nearby solution is not strict so one is able to define it as it fits the problem.

In the case there the solution is described as a list of number a nearby solution could be

such that a position in the list gets a new value or such that two values swap places. In

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 15

the case there the solution is a matrix a nearby solution could be a rotation of a group of

cells.

With local search the solution eventually reach a local minimum, where every nearby

solution is worse than the current one. There is no way for knowing that the solution of

a local search algorithm is a global minimum. There are different approaches to get out

of local minimum in order to find the global minimum. The easiest way and a rather

powerful technique are to run the local search algorithm several times with different

initial solution and chose the best local minimum found. Another technique is to give

the solution potential energy, where the solution gets more kinetic energy as it moves to

better solutions. The algorithm is also able to take a worse solution if it has enough

kinetic energy, but in that case the kinetic energy of the solution is decreasing. This is a

model how a ball is rolling down a hill and how it comes over some small obstacle in its

way to find its lowest potential energy. A more common and used technique is the

simulated annealing that Metropolis, Rosenbluth, Rosenbluth, Teller and Teller

presented 1953 [12]. The report describes how to model steel annealing and how the

energy is described. The key formula is the Boltzmann factor; . In local search

algorithm that adapts this thought, a better solution is always accepted. A worse solution

is accepted with the Boltzmann factor, [13], where E is the solutions fitness, k is a

constant and T is the “temperature” that decreases by time.

One problem when choosing nearby solution is to know how many solutions are nearby

solutions. If more solutions are examined in every step the algorithms are more likely

not to end up in a local minimum. As more solutions are checked it takes more time.

2-opt search or k-opt search is used commonly in local search algorithms. It is an easy

technique where the optimal solution is just a permutation of a working solution. The 2-

opt search works by switching two nodes/tasks/points, and this can be done for every

combination of two nodes/tasks/points. If one has a list of values as the solution a 2-opt

step is to swap each pair of two values. The k-opt search is similar to 2-opt search but

instead of testing every combination of 2 values, k different values are check in every

combination. For some problems a higher k could give better result but for some

problems 2-opt search works better because there are possibilities to exanimate more

initial solutions in the same amount of time.

1.5 Genetic Algorithms

Genetic algorithm, GA, is used to imitate the nature and its amazing way to adapt to the

environment. The technique is to convert a solution into a chromosome like a DNA

sequence. After that the genetic algorithm simulates how a population is evolving by

letting good solutions survey and bad solutions die.

This is a description on how a standard GA is build [14], but variation often occurs.

Initializes random generated chromosome until the population limit are reach

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 16

For a number of generation

 For a number of new chromosomes

 Select two parents according to a parent selection formula

 Let the two parents breed a new chromosome thru crossover

 Mutate the new chromosome

 Add the new chromosome to population

 End for

 Select which chromosomes that survives until next generation based on theirs

 fitness

End for

Return best chromosome as the algorithm solution

GA has been mathematically characterized by Holland [15]. He gives the so-called

schema theorem. It states that GA is looking thru different combinations of solution

space. He also shows how GA finds more fitted schemas over time, but he cannot prove

that an optimal solution will be found.

GA is widely used in solving AI problems. It has often been proven to give good

experiential results. It has been used for solving assembly mount problem before, [16].

It almost every time has the capacity to find the optimal solution but for the most times

it also takes the longest time, therefore it is not perfect for every situation.

1.5.1 Fitness function

GA needs a way to measure its chromosomes and different a good solution and a bad

solution. Therefore there is a need of a fitness function, which takes a chromosome and

gives a value of how well it works. Sometimes there is a simple function to calculate it

but if the GA’s task is to find a good chess player the fitness value may be the result

then solutions play against other chess players. The fitness value could be on a fixed

scale or it could be scaled so that the fitness values for all chromosomes are between

fixed values.

1.5.2 Initialization

The first step in GA is initialization. The goal for the initialization is to create a starting

population that contains as various chromosomes as possible, because it is from the

starting population the optimal solutions is evolving from. New chromosomes are often

created purely on random way with no logic; this guarantees that the population is

diverse. But a purely randomized chromosome population will in most cases give very

bad fitness and it takes more generations for the chromosome population to contain

good solutions. Therefore the created chromosome can be made by some greedy

approach or heuristics.

1.5.3 Parent selection

For choosing which parents that should be mated there are different approaches. Just

picking parents randomly is not working so well, it has been shown that if the better

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 17

fitted chromosomes are picked with higher probability the genetic algorithm find the

good solutions faster. Roulette wheel is one way to capture this. Each chromosome gets

a percent of a roulette wheel according to its percent of the total sum of fitness. This is

graphically showed in Figure 10, and now a ball is rotating for a randomized length

round the roulette wheel and where it stops that parent is selected. Here a good parent is

chosen with a higher probability than others. This technique works well for many

applications but it has problems to make difference between chromosomes if the fitness

values are close to each other. Further, if one chromosome takes up all space in the

Roulette Wheel the diversity is lost. Ranked Roulette Wheel is therefore constructed.

Instead of using percent of total the fitness, Equation 1 is used where p is the percent of

roulette wheel, r is the rank of the chromosome in the population and n is the number of

chromosomes in the population.

 Figure 10, Roulette wheel

If the same chromosomes as in Figure 10 are used for Ranked Roulette Wheel the wheel

looks like Figure 11. There, the worst chromosome 7 to 10 doesn’t get so much percent

in the ranked roulette wheel and the top solutions get more percent. This approach is

also suited if the chromosomes vary very much. If a chromosome takes up 90% of a

Roulette Wheel in the first method, it will get much lower percent in Ranked Roulette

Wheel so that more diverse chromosomes can be produced.

Equation 1, Ranked Roulette Wheel formula

Roulette Wheel

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

Chromosome 5

Chromosome 6

Chromosome 7

Chromosome 8

Chromosome 9

Chromosome 10

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 18

Figure 11, Ranked Roulette Wheel

Tournament selection is another method of selection. As it is describe in [17] the

chromosome in the current population is competing to be in the mating pool. A number

of chromosomes (usually 2) are selected randomly from the population and the best one

of these is added to a mating pool. The same action is repeated until the mating pool is

full, and then the parents for mating are selected by random from the pool.

1.5.4 Crossover function

The actually breeding is done in the crossover function. How the crossover is done

depends on how the chromosomes are encoded. If the chromosomes are permutations it

is a little bit tricky to get permutations as new chromosomes. If the chromosomes are

not permutations the easiest way to breed new chromosome is the single point

crossover. Take a position by random and for the positions before the random position

take the genes from first parent and for the genes after the random position take the

genes from the second parent. For example if we breed two parents, P1 = {11101101}

and P2 = {01010111} and have the single point at three the new child is C =

{11110111}, but there is also simple to breed a second child as {01001101}. Instead of

a single point crossover, there could be two (or more) point crossover, and for each

point switch between the parents. For example with a 2-point crossover with the prior

parents the result for crossover point at 2 and 5 would be C1 = {11010101} and C2 =

{01101111}. Uniform crossover chooses for each position a gene by random choosing

which parent it will be copied from. This makes it possible for every type of

combinations of two parents to be found. For the single (and more) point crossover

there is a limit. For example the single point crossover could just generate 16 different

outcomes from two parents with 8 genes and the Uniform crossover could generate 256

different outcomes. This number is smaller than the two parents have some genes in

Ranked Roulette Wheel

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

Chromosome 5

Chromosome 6

Chromosome 7

Chromosome 8

Chromosome 9

Chromosome 10

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 19

common. But with Uniform crossover it is more likely that the method destroys a

sequence of genes that are good as a group.

The algorithms above don’t work if the chromosome is a permutation. For example if

P1 = {12345678} and P2 = {345678123} and a single point crossover at position four

the new chromosomes would be C1 = {12348123} and C2 = {34565678}, and this is

not a permutation of the solution. A way to overcome this is the Partially Mapped

Crossover, PMX, describe in Goldberg and Lingle [18]. This is how it works:

Randomly select a span of genes from P1 and copy them directly to the new

chromosome. Note the indexes of the segment

Looking in the same segment positions in P2, select each value that hasn't

already been copied to the child.

For each of these values (a):

 (i) Note the index of this value in P2. Locate the value, V, from P1 in this

 same position.

 Locate this same value in P2

 If the index of this value in P2 is part of the original span

 Go to step i. using this value.

 Else

 Insert (a) value into the chromosome in this position.

End for

Copy any remaining positions from P2 to the chromosome.

1.5.5 Mutation

Mutation is sometimes necessary in order to find new chromosomes and nature is using

this. It is a simple step where the new chromosome undergoes a small change. So by

random a small part is changed or swapped.

1.5.6 Survival

The way to choose which chromosomes survive until the next generation can be done in

different ways. One way is that only the two children after each reproduction survive.

But a more effective way is the elitism. It says that the best chromosomes always

survive. So, if the new chromosomes are worst than the parents, the parents are kept in

the population. With the elitism the best (and sometime the optimal) solution is kept to

the end.

1.6 Heuristic

Heuristic is the method to do choices based on experience rather than proof [19]. This

knowledge is based on knowing the problem and the experiment of what works and

don’t. This could be used in chess playing to assume that some opening is better than

other. For solving the feeder assignment problem heuristic way stats that is better to

pack the components in the feeder bank, because that will lower the placement heads

movements.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 20

2 The Traveling salesman problem transformation

When this problem was investigated and constructed, two different approaches for

transforming the travel salesman problem (TSP) into assembly mounted problem were

found. TSP is known to be a NP-hard problem [20]. The following description proves

that the surface mounted PCB problem is NP-hard in two different aspects.

2.1 General TSP

The TSP problem is an old problem about a salesman’s travel. It is not known when it

was first introduced but there are writings about the problem from the 1800 century

[20]. The problem is to visit n different cities where the distance between the cities are

known and the goal is to minimize the total length to visit every city once and only once

and then back to the starting city.

2.2 Placement TSP

For transforming a TSP problem into a placement problem the revolver capacity is set

to n, so that the revolver has n spindles. Now, locate a feeder slot at the first cities

position, for the rest of the positions set them as a placement position for one particular

part. The assembly problem is now to pick n-1 components in the feeder slot and then

place the components in the different placement positions. If the problem can be solved

optimally in the assembly problem the solution could easily be transformed back as a

solution to the TSP problem. Therefore if it exist a polynomial time algorithm for the

assembly problem, a TSP could be solved in polynomial time, this shows that the

assembly problem is at least as hard as TSP, in other word it is NP-hard.

2.3 Feeder bank assignment

In assembly mount problem, a revolver needs to pick-up components in different feeder

slots and then place them at the PCB. Each component has a required nozzle that needs

to be in the revolver head in order for the revolver to pick up the component.

In order to transform the TSP problem to a feeder bank assignment problem create n

components each with a unique part number and one placement each. Each of the

components has a unique nozzle which means that the revolver head will be populated

with n nozzles. Make the revolver head fixed so that the nozzles in the spindles are

always the same which leads to that the pickup order of the components will be the

same for ever feeder assignment. Create n feeder slots and give the feeder slots the same

positions as the cities. There will therefore be n feeder slots spread out as the cities.

With the assembly cost function there is a small modification. The calculation for the

placements of components will not be included, just the pickups. So the pickup order

and cost is calculated as:

Move head to feeder banks slot for the components which requires the nozzle in

the last spindle head

For every spindle head

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 21

 Find feeder slot that have the component that require the nozzle that’s in

 the current head

 Increase the Cost with the Euclidean 2D distance between previous position

 and position for the feeder slot related to current head.

 Update position to the current feeder slot

End for loop

With this procedure the cost of a TSP problem is possible to calculate. Each feeder slot

has a component that indicates in which order it will be visit. So instead of a list in

which the cities should be visit (as usually with the TSP) each feeder slot will have a

component (number) which tells in which order it will be visit.

Therefore if an optimal solution is found in the feeder bank assignment problem the

result can be transformed back to a TSP solution. The assignment problem is NP-hard

because it is as hard as TSP to solve.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 22

3 Methods

The algorithms for feeder assignment problem are compared by making a set of

experimental tests. These tests follow the flow of Figure 12.

Figure 12, Flow of the experimental tests

The first four steps are done in the new proposed optimizing program and the last three

steps are preformed in the existing software from Valor. The whole test procedure is

scripted in Valor’s software but the actually feeder optimizing is done thru a binary file

outside Valor’s software. This test procedure of the system model is repeated for every

setting of the parameter.

3.1 Internal structure

The model of the problem instances consists of three blocks / classes. The

MachineConfiguration model contains all the information needed to describe a machine.

Second the PCB model describes the PCBs. Third the Optimizing is a class that is

inherited by each algorithm. Figure 14 shows how the MachineConfiguration is

modeled. MachineConfiguration is the main class that implements a machine having a

number of NozzleBanks, Revolvers and FeederBanks, each with its own attributes.

MachineConfiguration contains the information on how to populate the feeder banks for

Valor’s software.

Import Valor
Machine data and

PCB setup

Choose the feeder
assignment

algorithm and its
parameters

Optimize the
feeder assignment
according to the

cost function

Write feeder
assignment into

setup file

Load Setup file
into Valor's

software

Optimize
placement order

Write the total
production time

into file

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 23

Figure 14, MachineConfiguration class.

The PCB structure is described in Figure 13. A PCB has several components and each

of them is of a specified Part type. Each component can be described as a placement and

all components have a RefDes, Reference Description, which is the unique name for its

placement. This description is sometimes printed in text on the PCB. The algorithms are

build around an Optimizer class from where they inherit functions and also overload the

optimize function, see Figure 15. Each algorithm is loaded with a

MachineConfiguration for description the setup to optimize. If a certain part already has

been placed in the feeder slots or the revolver head is populated, this is considered by

the proposed algorithms. After the optimization is done the results are exported. Except

for these classes there is also a data structure that records static relations and lookup

tables. That data structure states what type of nozzle each part needs to be picked with,

what kind of feeder group a part is stored in and also some other look up tables for

speeding up the optimization. The cost function has its own class for calculating the

feeder assignment cost. The cost function takes a MachineConfiguration as parameter

and calculated the cost for determinate how well a solution is. How the cost is

calculated is described below.

Figure 13, PCB class

1 *

1*

+Name

+Profile

PCB
+Location : Position

+Angle

+RefDes

Component

+IPN : TPart

Part

* 1

*
1

1 * 1 *

1 ** 1

*

1

* 1

+Import()

+Export()

+Name : String

+TablePosition : Position

+TableHeigth : Integer

+TableWidth : Integer

+Camers : Position

MachineConfiguration

+Name : String

NozzleBank
+Nozzle : TNozzle

+Location : Position

+Name : String

NozzleBankSlot

+Name : String

FeederBank+Name : String

+PickTime : Integer

+PlacementTime : Integer

+MovementTime : Integer

Revolver +Location : Position

+Width : Integer

+Feeder : String

+FeederGroup : String

+Name : String

+ComponentCapacity : Integer

+Fixed : Boolean

FeederSlot

-Nozzle : String

-Count

AvailableNozzle

+Nozzle : TNozzle

+Name : String

Spindle

+IPN : TPart

Parts

*

1

*

1

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 24

3.2 Time factors

As mention in the introduction, there are several time factors in an assembly machine

model to consider. This is a list of known time factors.

 Loading of the bare PCB

 Head movements

 Recognition of the fiducial marks

 Component Pick-up

 Component Checking

 Component Placements

 Change time for nozzles

In the model of this thesis there are some simplifications, but the core thoughts

originates from Kallio et al. [21] on a realistic simulator of placement machines.

Loading of the PCB and the recognitions of fiducial marks are not considered as this is

the same operation for every setup. The total production time for a machine setup is

given by Equation 2. Here we recognize that the slowest revolver is the bottleneck of

the

Equation 2, Total time

production time. For the calculation of time used by a revolver head, let G be the

number of task blocks, number of times the revolver goes from picking components in

feeder bank to placing components on the PCB, CCj the time for picking components

Equation 3, Time for a revolver

+Optimize() : MachineConfiguration

+LoadMachineConfiguration(in MachineConfig : MachineConfiguration)

+LoadPCB(in PCB : PCB)

Optimizer

+Optimize() : BankConfiguration

Algorithm1

+Optimize() : BankConfiguration

Algorithm2

Figure 15, Algorithms classes

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 25

for task block j, and CPj the time of placing components for task block j. Then, the time

for each revolver can be calculated as Equation 3. CCj can be given as Equation 4 where

A is number of components to place, MPij is the time to move to the pickup position of

component i in task block j and Pij is the pick-up time for component i in task block j.

CPj can be describe as Equation 5 where A is number of components to place, MIij is the

movement time to the placement position for component i of task block j and Iij is the

placement time for component i in task block j.

Equation 4, Pick-up phase

Equation 5, Placement phase

3.3 Cost function for evaluating feeder assignments

The quality of the feeder assignment is evaluated by a cost function. As the main focus

of this thesis is the solution of the feeder assignment problem the cost function looks on

that part of the PCB assembly problem. Therefore the cost function considers the feeder

setup, the settings of the revolver heads and the PCB and calculates a cost for it. The

cost function does not suppose that the placement problem has been solved optimally.

In contrast to that a greedy approach is used. This simple procedure creates a placement

order and then calculates the cost for it using the time functions mention above. The

reason to trust on a greedy approach for placement order is sufficient due to the simple

nature of the cost function. The procedure for evaluating the cost is described as the

following pseudo-code and is called S.

ComponentToPlace = Number of components to place for revolver

Cost = 0

CurrentPosition = Center of PCB

While ComponentToPlace is greater than zero

 For every spindle in Revolver

 If first spindle then

 F = Component, with matching nozzle as spindle, in feeder bank with most

 placements left

 Else

 F = Closest feeder bank with matching nozzle between spindle and component

 End if

 Increase Cost with movement time from CurrentPosition to feeder slot F

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 26

 Increase Cost with pick-up time for component in F

 Increase Cost with placement time for component in F

 Increase Cost with an average time for moving between placements

 Update CurrentPosition to feeder slot F.

 Decrease ComponentToPlace

 End for

 If revolver needs to verify some components in a camera station

 Increase Cost with movement to camera Station

 Update CurrentPosition to camera station

 End if

 Increase Cost with movement to average position for component in the first

 Nozzle

 Update CurrentPosition to average position for component

 Increase Cost with movement to center of PCB

 Update CurrentPosition to center of PCB

End while

As can be seen there is no consideration of the placement position in S except for the

first component in every task block. This is because the placements can be done in

many different ways and therefore that sequence is excluded. The average time for

moving between placements is analyzed by Valor’s software using several different

PCB job.

The time for placements head movements is determinate by the longest axial distance,

because the head moves independently in the x- and y-directions. The time in

millisecond for the particular machine is the distance in millimeters times 0.5 plus 132.

This has been verified from the movement graphs given by Valor, it is not a perfect

match but close in the general case.

For evaluating the performance of the algorithms in solving the TSP problems an

optimized version of the cost function was developed, named STSP. It is almost the

same as the previous cost function, S, but there are some simplifications and the

distance calculation are modified to reflect the TSP. The pick-up order in procedure

STSP is same as procedure S for TSP problems. The cost is calculated as this:

Find component that needs the nozzle for the last spindle in revolver

Set CurrentPosition to that component’s feeder slot

Set Cost to zero

For every spindle in head

 Find component that needs the nozzle for current spindle

 Set F to feeder slot for that component

 Increase Cost with Euc2D between CurrentPosition and F

 Update CurrentPosition to F

End for

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 27

Distance between positions is calculated with Euclidean distance function for 2D, which

is based on Pythagorean formula, which is used in

general TSP problems.

3.4 Revolver setup

How to populate the revolver head with nozzles in an optimal way is a hard problem,

because this depends on two NP-hard problems, the placement problem and the feeder

assignment problem. The task in this thesis is to evaluate the performance of our

proposed algorithm in Valor’s software. Therefore, the nozzle to head assignment

technique that is used in this thesis is the same as in Valor’s software. The technique

aims at minimizing the number of task blocks. The algorithm works in following ways:

Populate revolver with one nozzle of each type that is needed for placing the

components

While space left in revolver

 Find nozzle with highest ratio, placements with that nozzle / nozzles of that

 type already in revolver

 If two or more nozzle has the same ratio choose the one with the most

 placements

 Add that nozzle to Revolver

 Decrease space left in revolver

End while

Sort revolver by first nozzle type count and second nozzle name

For an example, if a revolver with 10 spindles should place 12 components with nozzle

A and 5 components with nozzle B and 7 components with nozzle C and 1 component

with nozzle D the revolver will look like this; 4 of A, 3 of C, 2 of B, 1 of C.

This algorithm does not guarantee the finding an optimal placement order. It is said that

it will minimize the number of task blocks to the optimal but this has not been proven.

3.5 Algorithms

Three different algorithms have been developed for solving the feeder assignment

problem and also a variation of two of them is tested. The first algorithm is a simple

randomized setup algorithm with heuristics, the second applies local search technique

and the last one is a genetic algorithm. In order to do a fair comparison of the

algorithms, they are run for a limited period of time. This will be achieved by adjusting

the number of generations and the number of new starts.

3.5.1 Randomized

The algorithm consist of a loop to generate a randomized feeder assignment and then

the feeder banks are packed, meaning that every component is moved towards the center

of the feeder bank so that no spaces exist between the components. After that the cost

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 28

for the feeder setup is calculated and the best solution is kept. See Appendix 1 for

pseudo-code.

3.5.2 Local Search

Local search is performed in a straight forward manner. The neighborhood is rather

large; swapping of each pair of feeder slots is tested. If a better solution is found it is

kept and the same is iterated until no more single swaps produce a better solution. After

that the local search is restarted from a new randomized feeder setup. The algorithm is

terminated when the given time limit of the running time is reach. A pseudo-code of the

algorithm can be found in Appendix 1. An extended version of local search was also

developed, it has the same basic idea as the ordinary local search but after no

improvement could be found by swaps, the algorithm tries to invert the order of the

components of a group of feeder slots. For an example if we have components in the

order <1,2,3,4,5,6,7,8> and we invert the order of components from position 2 to 5 the

result should be <1,5,4,3,2,6,7,8>. This operation is done for every position and the

length from two to the end of feeder bank.

3.5.3 Genetic Algorithm

The genetic algorithm applies the PMX crossover and ranked roulette wheel selection

method. The mutation step consists of randomized swapping of components. One

problem that was discovered with an ordinary PMX is that it could not handle the

situation where several parts can be stored in the same feeder slot. Therefore a

modification of PMX was developed, see Appendix 1. The idea is to use the PMX

crossover method and if this creates conflicts they are postponed and solved later. The

Uniform crossover method was also tested as a second version. The Genetic Algorithms

are run with a population of 100 and with 80 children. The mutation rate is set to 5%.

3.6 Lower bound

For knowing how well the results are, a lower bound algorithm has been developed. The

goal was to produce a lower bound function that gives as high value as possible. Let n

be the number of components to place, pp the time to rotate revolver head one step plus

the minimum time to place a component, t the number of needed task blocks, c the

closest distance between a feeder slot and the center of board, r the number of revolver

heads and m the number of placements for the part that have most placements. Then the

lower bound can be calculated as in Equation 6.

Equation 6, Lower bound

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 29

3.7 Test data

For test data we had several PCB products to choose from. Some PCB products where

with rather few parts and others have more parts than the capacity for the machine.

Therefore we constructed PCB jobs with a few parts up to the limit for the machine. For

some PCB jobs we have used subsets of the required parts for the PCB products as a

job. Theses setups are labeled by PCB-X. In Figure 16 a graphical presentation of

instance PCB-9 is showed, this is from the developed program. The dotted red lines on

top and bottom of the image indicate the feeder slots, the big green rectangle in center

of the image is the PCB, between the feeder banks and the PCB is a bunch of blue dots,

this is nozzle bank slots. The white dotes on the PCB mark the component placements.

Figure 16, Graphical presentation of PCB-9 in the developed software

Two PCB assembly tasks were also constructed such that the optimal solution is easy to

calculate. TEST-1 includes 60 parts with one placement of each and the placements are

all in the center of the board. The 60 parts are divided by seven different nozzles needed

for the pickup. Here the optimal solution is that we have 30 components in each feeder

bank. The parts are ordered so that the revolver head is picking up the first component

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 30

in slot one and the second component is picked up in slot two and so on. Is means that

the revolver goes to the feeder bank and do a straight line move over the feeder bank

and then go to the placements in the middle of the board. TEST-2 consists of 11 parts

with a total of 240 placements. The optimal solutions is such that 5 parts are in one

feeder bank and 6 parts in the other and each revolver head has 120 placements and they

are done in exactly four task blocks.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 31

4 Results

The test results can be divided into three categories. The first category answers to the

question on how well the algorithms are to solve the optimizing problem according to

the simplified cost function. The second category tells how well is the relation between

the cost function and the production time from Valor’s software. The last and the most

interesting question is how well the algorithms are to solve the whole problem. We

make the following abbreviations; R stands for the random algorithm, LS standard local

search algorithm, LSE extended version of local search with the inversion step,

GAPMX genetic algorithm with PMX crossover and GAU genetic algorithm with

uniform crossover. In order to give a fair comparison each algorithm was run for the

same time, preferably 40 seconds but no more than 50 second. The tests are performed

on an ordinary laptop with a 1.7 GHz processor and 1 GB of RAM. Each algorithm is

run ten times and the average values of these runs are displayed. We focus on the

average cost or production time instead of the lowest cost or production time, this is

because there are lots of random decisions in our approach and some problem instances

could be easy by luck, so we are interested in the average case. Because of the time

limit and the different size of problem the algorithms has different number of new starts

and generation for the different problem. Algorithm R did 60’000 to 120’000 new starts.

Algorithm LS did 2 to 190 new starts depending on problem, algorithm LSE did 1 to

110 new starts and the generic algorithms did 700 to 2700 generations. For generating

the production time from Valor’s software the feeder setup is imported to the software

and the placement order optimizing is done three times and after that the average

productions time is calculated. From the final results it is observed that the order

optimizing gives in average production time 0.68% from the lowest production time for

the same feeder assignment. In Table 1 the data of the different PCB jobs are showed

along with the best production time observed, lower bound and the best cost observed

by the cost function. The last column is the average production time for Valor’s feeder

optimization after ten runs. This shows that there are some improvements available to

PCB
name

PCB number Parts /
Placements

Lower
Bound

Best Cost
Observed

Best prod.
Time

Observed

Valor

PCB-1 73-10400-03 8 / 78 15238 15494 15815 15913

PCB-2 73-10412-01 36 / 256 38610 41039 44959 48009

PCB-3 73-10400-03 32 / 345 51991 54746 55298 58837

PCB-4 73-10412-01 35 / 252 38052 40622 44024 47772

PCB-5 73-10098-05 62 / 487 73410 77637 86615 91358

PCB-6 73-10098-05 105 / 201 30293 33740 42653 44038

PCB-7 73-10412-01 13 / 509 76479 79048 76956 80486

PCB-8 73-10142-52 32 / 109 16493 17937 24212 25720

PCB-9 73-10142-52 45 / 409 61563 64855 70725 75892

Table 1, PCBs in number

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 32

do for Valor’s software. The improvements that can be done are from 0.62% to 7.85%

with an average of 5%.

4.1 Performance of the algorithms subject to the cost function

Table 2 shows the results of the TEST runs. The results are given as percentage from

the known optimal solution using procedure S. TEST-1f and TEST-2f is the same as

TEST-1 and TEST-2 but here the revolver is fixed to the nozzle that is used in the

optimal solution. Here we can observe that the algorithms don’t have any problems to

find the optimal solution for the setup with just a few parts but with lots of placements.

The optimal solution has been compared also to the lower bound. For TEST-1 the

algorithms showed worse performance in finding good solutions. For TEST-1 the

optimal solution is 28.47 % higher than the lower bound and for TEST-2 the optimal

solution is 7.28 % higher than the lower bound.

 R LS LSE GAPMX GAU

TEST-1 3,52 % 0,00 % 0,00 % 1,12 % 1,46 %

TEST-2 0,14 % 0,00 % 0,00 % 0,08 % 0,20 %

TEST-1f 6,80 % 8,24 % 6,92 % 3,31 % 4,08 %

TEST-2f 0,16 % 0,00 % 0,00 % 0,02 % 0,03 %

Table 2, TEST results with procedure S

The performance in solving the PCB jobs of the algorithms of the present studies is

compared to each other in Table 3. The optimal solution is not known here. The percent

ratio is compared to the best algorithm. The last column in Table 3 is the ratio between

the best solution observed and the lower bound. It turns out that the different algorithms

PCB R LS LSE GAPMX GAU Best

PCB-1 0,00 % 0,00 % 0,00 % 0,00 % 0,00 % 1,68 %

PCB-2 1,47 % 0,75 % 0,64 % 0,35 % 0,00 % 6,29 %

PCB-3 0,79 % 0,33 % 0,39 % 0,00 % 0,04 % 5,30 %

PCB-4 1,23 % 0,39 % 0,40 % 0,38 % 0,00 % 6,75 %

PCB-5 1,94 % 0,67 % 0,50 % 0,11 % 0,00 % 5,76 %

PCB-6 3,71 % 0,42 % 0,00 % 0,15 % 1,59 % 11,38 %

PCB-7 0,00 % 0,06 % 0,16 % 0,23 % 0,21 % 3,36 %

PCB-8 0,85 % 0,28 % 0,12 % 0,37 % 0,00 % 8,76 %

PCB-9 1,21 % 0,34 % 0,19 % 0,09 % 0,00 % 5,35 %

Average 1,24 % 0,36 % 0,27 % 0,19 % 0,21 %

Table 3, PCB results with procedure S

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 33

are almost equal in producing good result except for R. For PCB-1 an exhaustive search

was done and the best solution found by the algorithms is also the optimal solution

subject to cost function. The performance of the algorithms to solve the TSP problem

for feeder bank assignment problem with procedure STSP was also tested, see Table 4.

Problem instances r4 and r11 are small TSP problems with 4 and 11 cities placed by

random and the optimal solution is calculated by testing every combination. Problem

instance wi29, dj28, xqf131 has been taken directly from Georgia Tech’s TSP

homepage [22] where the optimal solution is known.

 R LS LSE GAPMX GAU

r4 0,00 % 0,00 % 0,00 % 0,00 % 0,00 %

r11 2,65 % 0,00 % 0,00 % 0,00 % 0,00 %

wi29 134,70 % 5,25 % 5,23 % 9,89 % 8,27 %

dj38 191,27 % 22,21 % 28,16 % 33,42 % 19,71 %

xqf131 581,66 % 97,48 % 104,90 % 399,02 % 247,94 %
Table 4, TSP problem results

4.2 Relation between cost function and production time

In Figure 17 results of all test runs for all the algorithms are displayed using the cost

from procedure S in the y-axis and the actual production time from Valor’s software in

x-axis. The groups of dots are the repeated runs for each PCB job. The straight line is

the trend line regression for the result. The relation is almost linear and not far away

from a 1:1 match. One thing to mention is that the loading of PCB is not a part of the

procedure S and this is typically of the size 2500 milliseconds. In the case with PCB-1

(Figure 18) we can see that the actual production time can vary up to 423 milliseconds

for the same cost calculated by procedure S. As mention earlier it has been observed

that the average difference in production times is 0.68% for the same feeder assignment.

In the worst case it has been observed that the production time could differ 7.5% from

the best production time to the worst case for the exactly same feeder assignment. The

average different in production time for ten runs compared to the lowest production

time found in the ten runs for each PCB is summarized in Table 5

PCB-1 PCB-2 PCB-3 PCB-4 PCB-5 PCB-6 PCB-7 PCB-8 PCB-9

0,22 % 0,68 % 0,61 % 0,90 % 0,80 % 1,00 % 0,48 % 0,49 % 0,98 %
Table 5, Average difference in production time for exact same feeder assignment

The production time is therefore not treated as a fixed value instead it is an indication of

how well the final production time can be after the placements order has been solved.

For PCB-2 (Figure 19) and PCB-5 (Figure 20) it is observed that the trend line is not as

good as in Figure 17, and the line is almost horizontal for PCB-2. Two interesting

observation can be done from the figures; the instance which gives the lowest cost

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 34

according to procedure S also gives the lowest production time. For PCB-8 (Figure 21)

the trend line points in the right direction but the relation between the cost function

result and the production time is not perfect. The instance that gives the lowest cost, by

procedure S, gives not the lowest production time neither is it in the top ten production

time and the best production time is not in the top ten instances with lowest cost by

procedure S.

Figure 17, Relation between procedure S and production time for all PCBs

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
o

st
 b

y
 p

ro
ce

d
u

re
 S

Production Time Valor's software (ms)

All PCBs

Linear (All PCBs)

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 35

Figure 18, Relation between procedure S and production time for PCB-1

Figure 19, Relation between procedure S and production time for PCB-2

15300

15350

15400

15450

15500

15550

15600

15650

15700

15900 15950 16000 16050 16100 16150 16200 16250 16300

C
o

st
 b

y
 p

ro
ce

d
u

re
 S

Production Time Valor's software (ms)

PCB-1

Linear (PCB-1)

39000

39500

40000

40500

41000

41500

42000

42500

43000

43500

44000

45000 45500 46000 46500 47000 47500 48000 48500 49000 49500 50000

C
o

st
 b

y
 p

r
o

c
e
d

u
r
e
 S

Production Time Valor's software (ms)

PCB-2

Linear (PCB-2)

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 36

Figure 20, Relation between procedure S and production time for PCB-5

Figure 21, Relation between procedure S and production time for PCB-8

74000

75000

76000

77000

78000

79000

80000

81000

82000

86000 87000 88000 89000 90000 91000 92000 93000 94000

C
o

st
 b

y
 p

r
o

c
e
d

u
r
e
 S

Production Time Valor's software (ms)

PCB-5

Linear (PCB-5)

16000

16500

17000

17500

18000

18500

19000

24000 24500 25000 25500 26000 26500 27000

C
o

st
 b

y
 p

r
o

c
e
d

u
r
e
 S

Production Time Valor's software (ms)

PCB-8

Linear (PCB-8)

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 37

4.3 Performance of the algorithms to solve the whole problem

The performance of the algorithms is summarized in Table 6. Here we can see how well

the feeder assignments actually are in the real production after the placement order

optimizations has been done. Each algorithm is compare to the result of Valor’s feeder

optimization. The production time for Valor’s software is the average production time

after ten runs of feeder optimization from a random start and the placements order

optimization. As can been seen in the table, every algorithm manage to get better

production times than Valor’s software. The best algorithm in an average turns out to be

the genetic algorithm with Uniform crossover but it is not the best algorithm for every

PCB jobs. The results differ a lot between different PCB jobs. Some PCB jobs gets up

to 3.5 percent improvements against Valor’s optimization but some other will have just

under a percents improvement and for the first PCB job the results are even worse. The

best algorithm is only slightly better than the others. Interested things are that the next

best algorithm is the random based algorithm, because it operates very badly in the task

to find the lowest cost by procedure S.

PCB Valor R LS LSE GAPMX GAU

PCB-1 100,00 % 101,62 % 101,39 % 101,31 % 101,09 % 100,98 %

PCB-2 100,00 % 97,29 % 98,67 % 98,47 % 98,84 % 96,92 %

PCB-3 100,00 % 97,25 % 99,42 % 99,97 % 98,46 % 97,67 %

PCB-4 100,00 % 97,22 % 96,93 % 97,64 % 96,42 % 97,08 %

PCB-5 100,00 % 98,89 % 99,47 % 98,73 % 98,31 % 97,64 %

PCB-6 100,00 % 100,73 % 99,67 % 100,71 % 100,93 % 100,82 %

PCB-7 100,00 % 97,18 % 97,52 % 97,93 % 97,90 % 98,27 %

PCB-8 100,00 % 98,92 % 99,04 % 99,10 % 100,04 % 99,39 %

PCB-9 100,00 % 99,88 % 98,15 % 98,46 % 98,91 % 96,50 %

Average 100,00 % 98,78 % 98,92 % 99,15 % 98,99 % 98,36 %
Table 6, Performance of the algorithms solving the final problem

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 38

5 Discussion

The first step for this thesis was to develop a machine model software where it is

possible to import, optimize and export the results to Valor’s software. This has been

working well with some minor problems that have been solved. It has also been shown

that there are improvements to be done in Valor’s software and some more production

seconds to earn. In the task for solving the problem subject to the cost function the

algorithm had different success rates. For constructed problems and the PCB job where

the optimal solution could be calculated, the proposed algorithms of the present work

found the optimal solution for the most cases, as seen in Table 2. For TEST-1 where we

have 60 parts in every feeder bank the task is more complicated and it is almost to solve

two TSP problem with 30 cities. This is not all true because we don’t have unique

nozzle need for each part, therefore some parts can swap places and we still have an

optimal solution, this is not possible for TSP. TEST-2 is an simpler problem to solve as

we have fewer components to place in the feeder banks. For TEST-1f the algorithms

have more difficulties to find the optimal solution. One theory why this happens is

because the nozzles are fixed in the revolver head some solution have a greater number

of task blocks than if the nozzles were repopulated in the revolver head for each feeder

assignment in order to minimize the task blocks. This leads to more local minima and

local search algorithms have more difficulties than GA to get out of local minima and

find the global minimum.

The algorithms performance, Table 3, to find good solutions where the optimal solution

is unknown is not so diverted. The algorithms are equally good but the random based

algorithm somewhat worse. GA solves the task better than LS but the difference is too

small in order to say some conclusions from that. For the most PCB jobs and in special

for PCB-7 the best solution is not far away from the lower bound. The algorithms solve

the task well and produce solutions near optimal solution or the optimal solution for the

feeder assignment problem subject to the cost function. One factor that affects the

solution is the running time for the algorithm. We have chosen a rather short running

time because industry manufactures work daily with planning PCB production and they

can’t wait on the computer for long time. The randomized based algorithm gives not

much better results by increasing their running time. As it is now the randomized based

algorithm checks around 80 000 feeder assignments in 40 seconds. If the time is double

so that 80 000 more feeder assignments are checked the probability to find a better

solution then is found so far is not high. But for the genetic algorithm is takes a longer

time before the population converts to a good solution and its results improve then the

running time is increased.

In the case of the TSP relaxation problem the algorithm has big difficulties for bigger

problem instances. It founds the optimal solution for smaller problems but the bigger

ones the results are not good. The theory is that the LS has difficulties to find a good

solution as the relaxation of the problem makes the 2-opt step work in a different way.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 39

Also the relaxations of the problem produces lots of local minima. LS has been proven

to work well for TSP problems only when the starting setup has some potential.

The cost function that has been developed in this thesis has been proven to work well.

We have an almost 1:1 relation when considered all the PCBs. But it is not as good for

the last percentage from optimal solution. This can be seen in Figure 18 to Figure 21.

For the case with PCB-1 it is clear that the cost function fails to model the small

difference in the production time caused by the changes in the feeder assignment. Two

hypotheses why these errors occur success themselves. The first is that the simplified

placement order has not been good. The actual placements order differs much from the

simplified. The information of the actual placements is not considered in model. The

second hypothesis is that the cost function is omits some important time factors that

affects the production time. However, if we look the best solutions found by our

optimizer their real production time may be worse than those of some other not as good

solutions. This mirrors in accuracy of our model.

One problem in generating placement order is the big variation of the production time,

because one feeder assignment could give results that differ up to 7%. Therefore it is

important that the placement order optimization is run several times in order to find the

best solution when the product is used in real industrial production environment.

It was observed the approach of the present study that (splitting the problem and

applying well known algorithm) produces better solutions than the industrial solution.

The approach has lowered the production time by 1.67% with GAU. It also showed up

that there is more space to explore the solution method for revolver head machines and

in this way lowers the production time. With a better algorithm and cost function there

is a possibility to lower the production time to 5% below current average production

time in Valor’s software. It was also shown that even though GA with PMX crossover

solved the optimizing problem subject to the cost function equally well as with Uniform

crossover, the feeder setup from GAU had better feeder assignment structures that allow

better placement orders and production times. The random based algorithm was the

second best algorithm according to the production time and this algorithm does not need

a tuning or local search step. Therefore, solutions from this algorithm have more parts

by random and are not tuned for matching the cost function. Because of this, one can

draw conclusion that the cost function is not perfect for the placement order because the

random algorithm sometime beats the local search algorithm.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 40

6 Conclusions

This thesis has proposed and evaluated different algorithms and heuristics for the feeder

assignment problem. The results show that the algorithms are capable to produce good

results that are near optimal subject to the cost function. The algorithms also found

solutions that are better than the exiting algorithm in Valor’s software. The algorithms

are almost equally well to solve the task compared to each other. The random based

algorithm is a little bite worse than the others but the inaccurately of the cost function

makes the final results similar. The crossover function for the genetic algorithm affects

the algorithms performance and for this model the Uniform crossover gives slightly

better results.

The expected improvements in the local search algorithm for extending the

neighborhood didn’t appear. In the end it didn’t matter too much which algorithm one

used, they all give almost the same result. Therefore, the task to get better production

times is to improve the cost function. This approach with the current cost function gives

a slightly better result than Valor’s software but as has been seen previous the

improvements could be around 5%.

How big the real improvements are on the production floor is hard to predict, because

the placement order optimization solve the problem with some percentage difference.

Further, the production simulation that is used in Valor’s software also has some

percentage difference to the real production time by the machine. Therefore it is not

possible to say that the production is improved in the factories.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 41

7 Future Work

As mention earlier the cost function needs more research. Is it possible to define a good

cost function without solving the placement ordering or is it possible to solve the

placement order in the same procedure as solving the feeder assignment problem? One

interested idea is to solve the placement order problem first with all parts pickup

position in the middle of the feeder bank and then after the placement order has been

solved to spread the parts out in the feeder bank. The placement order affects the final

production time and it omission will never give good solution. Therefore this part needs

to be understood and researched more.

The pick-up time in feeder slots, the rotating of revolver head and preparing a new

component in the feeder slot are sometimes done simultaneously in a machine. This and

other complex movements need to be modeled more exactly in order to improve the

cost function.

For the local search algorithm it has been proven that they are affected by the initial

solution. Therefore a future work is to come up with a good initial solution to the feeder

assignment problem.

Future work with heuristic algorithms can involve a doing some more precalculations

on where the parts should be in the feeder banks. Instead of just packing the

components also move them as a group up and down the feeder bank.

The generic algorithms have been tested with implementation of a local search step, but

this has not showed better results. Therefore future work would be to improve and

research on how to implement local search steps to the generic algorithms for better

results.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 42

8 References

1. Volgenant, A and de Waal, A. A heuristic for multiple-feeder PCB manufacturing.

s.l. : Journal of the Operational Research Society 57, pp. 1134–1141, 2006.

2. Grunow, M, et al. Operations planning for collect-and-place machines in PCB

assembly. s.l. : Computers & Industrial Engineering 47, pp 409–429, 2004.

3. Ayob, M, Cowling, P and Kendal, G. Optimisation for Surface Mount Placement

Machines. s.l. : Proceedings of the IEEE ICIT’02, Bangkok, 11-14 Dec, pp 498-503, ,

2002.

4. Leipälä, Timo, Johnsson, Mika and Nevalainen, Olli. Determining the Manual

Setting Order ofComponent on PCB Boards. s.l. : Journal of Manufactoring Systems

Vol. 15 / No. 3 pp 155-163, 1996.

5. Ayob, Masri. Optimization of Surface Mount Device Placement Machine in Printed

Circuit Board Assembly. s.l. : University of Nottingham, 2005.

6. Johnsson, M and Smed, J. Observations on PCB Assembly Optimization. s.l. :

Electronic Packaging & Production, Vol. 41, No. 5, pp. 38–42, 2001.

7. Smed, Jouni, et al. Job Grouping Surface Mounted Component Printing. s.l. :

Robotics and Computer Integrated Manufacturing, Vol 15, No. 1, pp 39-49, 1999.

8. Johnsson, Mika. Operational and tactical level optimization in printed circuit board

assembly. s.l. : Turku Center for Computer Science, 1999.

9. Valor Computerized Systems. Valor Computerized Systems. [Online]

http://www.valor.com.

10. Universial Instruments. Genesis Platform. [Online] [Cited: September 2, 2009.]

http://www3.uic.com/wcms/WCMS2.nsf/index/Products_17.html.

11. Kleinberg, Jon and Tardos, Éva. Algorithm Design. s.l. : Pearson Education Inc,

pp 661-671, 2006.

12. Metropolis, N., et al. Equation os state calculations by fast computing machines.

s.l. : J. Chem. Phys. 21, 1087-1092, 1953.

13. Kittel, Charles and Kroemer, Herbert. Thermal Physics, 2nd ed. s.l. : Freeman &

Co.: New York, 1980.

14. Mitchell, Tom M. Machine learning. s.l. : McGraw Hill, 1997.

15. Holland, J.H. Adaptation in natural and artigicial systems. s.l. : University of

Michigan Press, 1975.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 43

16. Ho, W. and Ji, P. A genetic algorithm to optimise the component placement

process. s.l. : Int J Adv Manuf Technol, pp 1397–1401, 2005.

17. Yang, Jiaping and Soh, Chee Kiong. Structural Optimization by Genetic

Algorithms with Tournament Selection. s.l. : Journal of computing in civil engineering,

pp 195-200, 1997.

18. Goldberg, D.E. and Lingle, R. Alleles, Loci, and the Traveling Salesman Problem.

s.l. : Proc. of the 1st Int. Conf. on Genetic Algorithms, pp 154-159, 1985.

19. Janlert, Lars-Erik. Nationalencyklopedin. [Online] [Cited: September 7, 2009.]

http://www.ne.se/lang/heuristik.

20. Schrijver, Alexander. On the history of combinatorial optimization (till 1960).

Handbook of Discrete Optimization, pp 1-68. 2005.

21. Kallio, Kai. Joustavan ladontakoneen suoritusajan arvioinnista. s.l. : Turun

Yliopisto, 2008.

22. Office of Naval Research, National Science Foundation and Georgia Tech.

Traveling Salesman Problem. [Online] School of Industrial and Systems Engineering at

Georgia Tech, August 8, 1991. http://www.tsp.gatech.edu.

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 44

Appendix 1: Algorithms

Randomized algorithm

Set BestSolution to

While time left

 Create a randomized feeder assignment F

 Pack F by moving parts toward center of feeder bank so that there is no empty

 feeder slot between parts

 If F has lower cost than BestSolution

 Update BestSolution to F

End

Return BestSolution

Local Search

Set BestSolution to

While time left

 Create a randomized feeder assignment F

 Repeat

 For every feeder slot

 Swap feeder slot with every other feeder slot

 If swap lower the cost

 Keep it and update F

 Else

 Undo swap

 Until no improvements has been done to F

 If F has lower cost than BestSolution

 Update BestSolution to F

End

Return BestSolution

Local Search Extended

Set BestSolution to

While time left

 Create a randomized feeder assignment F

 Repeat

 Repeat

 For every feeder slot

 Swap feeder slot with every other feeder slot

 If swap lower the cost

 Keep it and update F

 Else

 Undo swap

 Until no improvements has been done to F

 For every feeder slot, P

 For value 2 to the length of feeder bank, L

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 45

 Invert the span of feeder slot from P and length L

 If swap lower the cost

 Keep it and update F

 Else

 Undo Swap

 End for

 End for

 Until no improvements has been done to F

 If F has lower cost than BestSolution

 Update BestSolution to F

End

Return BestSolution

Genetic Algorithm
Initializes random generated chromosome until the population limit are reach

For a number of generation

 Pre-calculate Ranked roulette wheel

 For a number of new chromosomes

 Select two parents using Ranked Roulette Wheel

 Let the two parents breed a new chromosome thru crossover

 Mutate the new chromosome

 Find worst chromosome in population

 If worst chromosome is worse than new chromosome

 Replace chromosome with the new one

 End for

End for

Return best chromosome in population

Genetic Algorithm – Ranked Roulette Wheel pre calculation
Set r to one

Set n to number of chromosome in population

Loop n times

 Find worst chromosome what don’t have be ranked

 Set chromosomes rank to 2*r/(n*(n+1))

 Increase r by one

End

Genetic Algorithm – Ranked Roulette Wheel selection
Set Rand to a random floating number between 0 and 1

For every chromosome, C, in population

 If Rand is lower than the sum of every chromosome’s rank so far

 Return C and break

End for

Genetic Algorithm – PMX crossover

Set Conflicts to

CHALMERS, Optimization of the feeder assignment for PCB assembly machines,

Master Thesis 2009: 46

Set Child to

Randomly select a span of genes from P1 and copy them directly to the Child.

Note the indexes of the segment

Looking in the same segment positions in P2, select each value that hasn't

already been copied to the child.

For each of these values (a):

 (i) Note the index of this value in P2. Locate the value, V, from P1 in this

 same position.

 Locate this same value in P2

 If the index of this value in P2 is part of the original span

 If this value have been visit before

 Add (a) to Conflicts

 Else

 Go to step i. using one of the values from the index position by random

 Else

 Insert (a) value into Child in this position.

End for

Copy any remaining positions from P2 to Child.

For every components in Conflicts

 Add component at a empty feeder slot by random in Child

Return Child

Genetic Algorithm – Uniform crossover
Set P1 and P2 to two different parent chromosomes by Ranked Roulette Wheel

Set Child to

Set Conflicts to

For every component, C

 Set P to one of P1 and P2 by random

 Find C’s position in P

 If that position is empty in Child

 Add C to Child by position in P

 Else

 Add C to Conflicts

End

For every components in Conflicts

 Add component at a empty feeder slot by random

Return Child

	Abstract
	Sammanfattning
	Content
	Preface
	Abbreviations and definitions
	Abbreviations
	Definitions

	List of Figures, Tables and Equations
	List of Figures
	List of Tables
	List of Equations

	1 Introduction
	1.1 Background
	1.1.1 Machine Classification
	1.1.2 PCB assembly problem

	1.2 Purpose
	1.3 Delimitations
	1.4 Local Search
	1.5 Genetic Algorithms
	1.5.1 Fitness function
	1.5.2 Initialization
	1.5.3 Parent selection
	1.5.4 Crossover function
	1.5.5 Mutation
	1.5.6 Survival

	1.6 Heuristic

	2 The Traveling salesman problem transformation
	2.1 General TSP
	2.2 Placement TSP
	2.3 Feeder bank assignment

	3 Methods
	3.1 Internal structure
	/3.2 Time factors
	3.3 Cost function for evaluating feeder assignments
	3.4 Revolver setup
	3.5 Algorithms
	3.5.1 Randomized
	3.5.2 Local Search
	3.5.3 Genetic Algorithm

	3.6 Lower bound
	3.7 Test data

	4 Results
	4.1 Performance of the algorithms subject to the cost function
	4.2 Relation between cost function and production time
	4.3 Performance of the algorithms to solve the whole problem

	5 Discussion
	6 Conclusions
	7 Future Work
	8 References
	Appendix 1: Algorithms
	Randomized algorithm
	Local Search
	Local Search Extended
	Genetic Algorithm
	Genetic Algorithm – Ranked Roulette Wheel pre calculation
	Genetic Algorithm – Ranked Roulette Wheel selection
	Genetic Algorithm – PMX crossover
	Genetic Algorithm – Uniform crossover

