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Abstract

Approximate boundary conditions for an infinite elastic layer immersed in a fluid

are derived. By using series expansions in the thickness coordinate of the plate fields,

the displacements fields are eliminated adopting the three-dimensional equations of

motion. The sums and differences of the boundary pressure fields and their normal

derivatives are related through a set of approximate boundary conditions; one sym-

metric and one antisymmetric. These equations involve powers in the layer thickness

together with partial derivatives with respect to time as well as the spatial variables

in the plate plane. The approximate boundary conditions can be truncated to an

arbitrary order, and explicit relations are presented including terms of order five.

Comparisons are made with effective boundary conditions using classical plate the-

ories. The numerical examples involve reflection and transmission of plane waves

incident on the plate at different angles, as well as the pressure fields due to a line

force. Three fluid loading cases are studied: modest, heavy and light loadings. The

results using truncated approximate boundary conditions are compared to exact and

classical plate solutions. The examples show that the accuracies of the power series

approximations of order three and higher are very good in the frequency interval

considered.

PACS numbers: 43.20.Gp, 43.20.Tb, 43.40.Rj.
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I INTRODUCTION

It is a well-known fact that interfaces between bodies and surfaces of bodies exhibit prop-

erties that may be strikingly different from those of the bulk of their interiors. Indeed,

surface physics as well as the physics of thin films are distinct branches of physics, studied

in their own right. In applied mechanics, there are quite a number of situations where

properties of thin interface layers must be analyzed. One example of such is scattering of

waves from structural elements, where the thickness of the element in question is small in

comparison with the wavelengths involved. Here, the elementary theories for membranes,

shells and plates are often applicable. Besides these classical structural elements, there

are other approximate theories that model various kinds of thin layers. As these theories

may greatly simplify the analysis, thin layer theories have been studied extensively in the

literature.

The effects from thin layers on the surroundings may be studied using approximate

(effective) boundary and interface conditions. Such methods have been used in many ar-

eas, for instance acoustics [1], electromagnetics [2] and elastodynamics [1, 3, 4, 5]. Matrix

formulations are adopted in Refs. 3 and 4, where the matrix elements are asymptotically

expanded in the layer thickness. Elimination of the internal fields using series expansions

together with boundary and interface conditions are used in Refs. 1 and 2 . Another series

expansion approach is presented by Johansson and Niklasson [5], where methods for ob-

taining approximate boundary conditions to an (in principle) arbitrary order are presented.

A somewhat different technique is adopted in the present paper, using systematic series
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expansions in the thickness coordinate. In spite of the seemingly different approaches used

in the papers cited above, the various techniques are actually closely related.

In the work by Bövik [1], various combinations of surrounding media and interface

materials are treated. The approach allows for the thin layer to have a fairly general

curved shape in three dimensions, albeit with a constant thickness. The method used is a

systematic elimination of the internal fields, and the layer is replaced by a single curved

mathematical surface of discontinuity for the field variables in the surrounding media. The

discontinuities are specified in such a manner that the influence of the layer is reproduced to

within terms of second order in the thickness. However, the work by Bövik does not cover

all combinations that may in practice occur. In fact, the case of an elastic layer immersed in

a (non-viscous) fluid is not covered (while some apparently more complex cases are). The

reason for these lacunae are stated by Bövik to be the fact that the rational elimination

process that is used, breaks down when there are more degrees of freedom in the layer than

in the surrounding medium.

The case of a planar thin elastic layer immersed in a fluid has been studied by many

authors. In most works, the layer is modelled using the classical plate theories due to

Kirchhoff [6] or Mindlin [7]. Various sorts of higher order plate theories may also be ap-

plicable in this context [8, 9, 10, 11]. In the present paper the approximate boundary

conditions are obtained by adopting a series expansion technique previously used in the

derivation of higher order plate equations by Losin.[12, 13] The apparent restriction that

hampered the elimination process used by Bövik is thus lifted, with a refinement of the

method to include higher order terms. The present approach resembles the procedures

3



employed in Ref. 5, which in turn is based on the higher order plate equation deriva-

tion presented by Boström et al.[14]. Hence, by generalizing the techniques adopted by

Losin,[12, 13] the structural form of the approximate boundary conditions to an arbitrary

order are obtained. Explicit expressions including terms up to order five in the thickness

are presented and compared to corresponding expressions using classical plate theories. In

order to illustrate the results using different theories, numerical examples are presented

for three fluid loading cases. In the first examples, acoustic reflection from and transmis-

sion through an infinite elastic layer for plane waves are studied. This subject has been

investigated by many authors.[6, 15, 16, 17, 18] The next examples consider the pressure

fields on the plate surfaces due to either symmetric or antisymmetric harmonic line forces.

Sound radiation by plates excited locally by forces is an important problem of structural

acoustics, extensively studied in the literature [6, 19, 20, 21, 22, 23].

II GOVERNING EQUATIONS

Consider a plate of thickness h, bounded by the two planes z = ±h/2. The plate is

surrounded by a linear non-viscous fluid with density ρf . The plate is homogeneous,

isotropic and linearly elastic with density ρ and Lamé constants λ and µ. The three-

dimensional equations of motion in the plate for the displacement components u, v and w

4



are

(λ+ µ)(∂2
xu+ ∂2

xyv + ∂2
xzw) + µ(∂2

xu+ ∂2
yu+ ∂2

zu) = ρ∂2
t u, (1)

(λ+ µ)(∂2
xyu+ ∂2

yv + ∂2
yzw) + µ(∂2

xv + ∂2
yv + ∂2

zv) = ρ∂2
t v, (2)

(λ+ µ)(∂2
xzu+ ∂2

yzv + ∂2
zw) + µ(∂2

xw + ∂2
yw + ∂2

zw) = ρ∂2
tw. (3)

Partial derivatives are expressed in accordance with ∂x = ∂/∂x etc.. Stress continuity at

z = ±h/2 gives the boundary conditions (following Hooke’s law)

µ
(
∂zu+ ∂xw

)
= 0, (4)

µ
(
∂zv + ∂yw

)
= 0, (5)

λ
(
∂xu+ ∂yv

)
+ (λ+ 2µ)∂zw = −p + F. (6)

The pressure from the surrounding fluid is denoted p, while F is due to additive distributed

forces at the boundaries acting outward in the normal direction. Vertical displacement

continuity at z = ±h/2 together with the momentum equation for the fluid gives the

additional boundary condition

∂2
tw = −∂zp/ρf . (7)

The main objective is to eliminate the plate fields u, v and w in the equations above

so as to obtain approximate differential equations in terms of the fluid pressure p and

its normal derivative ∂zp at the boundaries. This is accomplished by first performing a

power series expansion in the thickness coordinate h of the left hand sides of the boundary

conditions (4)–(7). These expansions are then combined with the equations of motion

(1)–(3) to give the desired result.
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So, for the elimination process, it is convenient to proceed in terms of the differences and

sums of the boundary conditions, as is done by Losin [12, 13]. The boundary conditions

(4)–(7) may thus be rewritten using ∆f = f(x, y, h/2, t) − f(x, y,−h/2, t) and Σf =

f(x, y, h/2, t)+ f(x, y,−h/2, t), where f is any of the boundary fields. For the plate fields,

the sums and differences can be expanded in power series according to Maclaurin’s formula

∆f = 2
n−1∑

j=0

∂2j+1
z f0

(2j + 1)!

(
h

2

)2j+1

+O
(
h2n+1

)
, (8)

Σf = 2

n−1∑

j=0

∂2j
z f0
(2j)!

(
h

2

)2j

+O
(
h2n
)
, (9)

where ∂m
z f0 =

(
∂m
z f(x, y, z, t)

)
|z=0.

The various plate fields present on the left hand sides of the boundary conditions may

be expanded in such a way, which for Eq. (6) gives

∆p−∆F =
n−1∑

j=0

A1,j ∂
2j+1
z u0 +A2,j ∂

2j+1
z v0 +A3,j ∂

2j+2
z w0 +O

(
h2n+1

)
, (10)

Σp− ΣF =

n−1∑

j=0

A4,j ∂
2j
z u0 +A5,j ∂

2j
z v0 +A6,j ∂

2j+1
z w0 +O

(
h2n
)
, (11)

while Eq. (7) becomes

∆∂zp =

n−1∑

j=0

A7,j ∂
2j+1
z w0 +O

(
h2n+1

)
, (12)

Σ∂zp =
n−1∑

j=0

A8,j ∂
2j
z w0 +O

(
h2n
)
. (13)

The operators Ai,j involve powers of the plate thickness as well as possible time derivatives

and spatial derivatives in the (xy)-plane. When studying the differential orders ∂z in Eqs.

(10)–(13), it is seen that both ∆p and Σ∂zp involve even orders acting on w0 while ∆p
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involves odd orders acting on both u0 and v0. The opposite case holds for Σp and ∆∂zp. It

is therefore possible to obtain two separate relations between these fields; an antisymmetric

case relating ∆p and Σ∂zp and a symmetric case relating Σp and ∆∂zp. Both cases may

be treated similarly. For the antisymmetric case, Eqs. (10) and (13) consist of 3n + 3

unknowns (∆p,Σ∂zp, ∂zu0, ..., ∂
2n−1
z u0, ∂zv0, ..., ∂

2n−1
z v0, w0, ..., ∂

2n
z w0), so it is clear that 3n

additional equations are needed in order to obtain a relation between ∆p and Σ∂zp. The

boundary conditions (4) and (5) can be expanded using either Eq. (8) or Eq. (9). For the

antisymmetric case, equation (9) is to be used, giving

0 =

n−1∑

j=0

B1,j ∂
2j+1
z u0 + B2,j ∂

2j
z w0 +O

(
h2n
)
, (14)

0 =
n−1∑

j=0

B1,j ∂
2j+1
z v0 + B3,j ∂

2j
z w0 +O

(
h2n
)
, (15)

where the operators Bi,j involve powers of the plate thickness as well as spatial derivatives

in the (xy)-plane. The last 3n−2 equations are obtained by using the differential equations

(1)–(3) for the midplane fields u0, v0 and w0. Both Eqs. (1) and (2) involve solely even

differential orders ∂z on u0 and v0 and odd orders on w0, while the opposite situation holds

for (3). Differentiating Eqs. (1) and (2) an odd number of times with respect to z renders

2n − 2 more equations. The last n equations are obtained by using Eq. (3) and its even

derivatives with respect to z.

Hence, it is possible to solve the two separate linear systems for the antisymmetric and
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symmetric cases, respectively, giving

(
n−1∑

j=0

h2j∂2
t C1,j

)
(∆p−∆F ) =

(
n∑

j=1

h2j−1C2,j
)
Σ∂zp +O

(
h2n
)
, (16)

(
n∑

j=1

h2j∂2
t C3,j

)
(Σp− ΣF ) =

(
n∑

j=1

h2j−1C4,j
)
∆∂zp+O

(
h2n
)
. (17)

The differential operators Ci,j involve ∇2p
s ∂2j−2p

t for p = 0, ..., j with ∇2
s = ∂2

x + ∂2
y . Thus,

their highest order purely spatial derivatives are ∇2j
s , and their highest order purely time

derivatives are ∂2j
t .

As the series expansion may be derived to any order, the accuracy of the solution can

be made as good as one wishes [28]. The more terms involved in the series, the better

approximation for shorter waves. However, the main interest in the results is perhaps

to study expansions using a few terms, which corresponds to long wavelength and low

frequency approximations.

Presenting the explicit relations for the antisymmetric case, Eq. (16) gives up to order

h5

ρf
ρ

∂2
t

c2s

{
1 +

1

2

(
h

2

)2 [
−2∇2

s + (1 + γ)
∂2
t

c2s

]

+
1

24

(
h

2

)4 [
8∇4

s − 8(1 + γ)∇2
s

∂2
t

c2s
+ (1 + 6γ + γ2)

∂4
t

c4s

]}
(∆p−∆F )

=

{
h

2

∂2
t

c2s
+

1

6

(
h

2

)3 [
8(1− γ)∇4

s − 4(3− 2γ)∇2
s

∂2
t

c2s
+ (3 + γ)

∂4
t

c4s

]

+
1

120

(
h

2

)5 [
−32(1− γ)∇6

s + 16(4− 2γ − γ2)∇4
s

∂2
t

c2s

− 4(9 + 3γ − 4γ2)∇2
s

∂4
t

c4s
+ (5 + 10γ + γ2)

∂6
t

c6s

]}
Σ∂zp.

(18)
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In the symmetric case, Eq. (17) gives up to order h5

ρf
ρ

∂2
t

c2s

(
−∇2

s + γ
∂2
t

c2s

){
h

2
+

1

6

(
h

2

)3 [
−2∇2

s + (1 + γ)
∂2
t

c2s

]

+
1

360

(
h

2

)5 [
4∇2

s − (1 + 3γ)
∂2
t

c2s

] [
4∇2

s − (3 + γ)
∂2
t

c2s

]}
(Σp− ΣF )

=

{[
−4(1− γ)∇2

s +
∂2
t

c2s

]
+

1

6

(
h

2

)2 [
8(1− γ)∇4

s − 4(2− γ2)∇2
s

∂2
t

c2s
+ (1 + 3γ)

∂4
t

c4s

]

+
1

120

(
h

2

)4 [
−32(1− γ)∇6

s + 16(3− 2γ2)∇4
s

∂2
t

c2s

− 4(4 + 10γ − 5γ2 − γ3)∇2
s

∂4
t

c4s
+ (1 + 10γ + 5γ2)

∂6
t

c6s

]}
∆∂zp.

(19)

In these equations, cs =
√

µ/ρ is the transverse wave speed and γ = µ/(λ + 2µ) is

the squared quotient between the transverse and the longitudinal wave speeds. Note the

factorized differential operator on the left hand side of Eq. (19). One consequence of

this operator is that when
(
−∇2

s + γ
∂2

t

c2s

)
(Σp − ΣF ) = 0, the normal motion of the plate

boundaries is purely antisymmetric as ∆∂zp = 0. Speaking in terms of plane time-harmonic

waves, this occurs when the horizontal phase speed in the fluid is equal to the longitudinal

wave speed in the elastic layer. The same result is obtained using exact theory, so the

factorization of the operator probably holds to arbitrary order.

Asymptotic expansions for plates without surrounding fluids have been studied by Losin

[12, 13] and Boström et al.[14] In the works by Losin, where no boundary forces are included,

the right hand sides of Eqs. (18) and (19) can be identified. Boström et al. investigated

the antisymmetric case including boundary forces, and the result may be shown to be in

line with Eq. (18).

It is instructive to compare these asymptotic equations with the results from classical
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plate theory. For the antisymmetric case, the most simple approximation is to study the

motion of a perfectly limp layer, giving

ρf
ρ
(∆p−∆F ) =

h

2
Σ∂zp. (20)

This result is found in Eq. (18) when terms up to order h are included. A more refined

theory that includes plate bending is the classic Kirchhoff equation, which in this context

is written

ρf
ρ

∂2
t

c2s
(∆p−∆F ) =

{
h

2

∂2
t

c2s
+

1

6

(
h

2

)3 [
8(1− γ)∇4

s

]
}
Σ∂zp. (21)

Hence, an extra term involving h3 is added when compared to Eq. (20) due to the influence

of the bending stiffness. It is clear from Eq. (18) that the Kirchhoff equation does not

include the terms of order h2 on the left hand side and only the first term of the h3-terms

on the right hand side. Turning into the Mindlin theory which includes both shear effects

and rotary inertia, the equation becomes

ρf
ρ

∂2
t

c2s

{
1 +

1

2

(
h

2

)2 [
− 8

3κ
(1− γ)∇2

s +
2

3κ

∂2
t

c2s

]}
(∆p−∆F )

=

{
h

2

∂2
t

c2s
+

1

6

(
h

2

)3 [
8(1− γ)∇4

s − (2 +
8

κ
(1− γ))∇2

s

∂2
t

c2s
+

2

κ

∂4
t

c4s

]}
Σ∂zp.

(22)

This equation involves various terms of order h2 and h3 of which the coefficients differ

from the corresponding terms presented in Eq. (18). Here κ is the much debated shear

coefficient which is an adjustment coefficient not appearing in Eq. (18). In the numerical

examples presented below, κ is chosen as κ = 5/(6− ν) in accordance with Ref. 14, where

ν is the Poisson ratio.

In the symmetric case, the most simple approximation is to consider a layer in gener-
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alized plane stress giving

ρf
ρ

∂2
t

c2s

{
h

2

[
−∇2

s + γ
∂2
t

c2s

]}
(Σp− ΣF ) =

[
−4(1− γ)∇2

s +
∂2
t

c2s

]
∆∂zp, (23)

which is just Eq. (19) up to order h. A higher order plate theory is due to Kane and

Mindlin [24] which in this case becomes

ρf
ρ

∂2
t

c2s

{
h

2

[
−∇2

s + γ
∂2
t

c2s

]}
(Σp− ΣF )

=

{[
−4κ2(1− γ)∇2

s + κ2∂
2
t

c2s

]
+

1

6

(
h

2

)2 [
2∇4

s − 2(1 + γ)∇2
s

∂2
t

c2s
+ 2γ

∂4
t

c4s

]}
∆∂zp.

(24)

This equation involves terms up to order h2, but the coefficients of the differential operators

on the right hand side are different from the corresponding terms given in Eq. (19).

III NUMERICAL CALCULATIONS OF TRANSMIS-

SION AND REFLECTION

To validate the various approximate equations presented above, the reflection from and

transmission through the plate may be considered for F = 0. The wave propagation in the

fluid medium is here assumed to follow the simple wave equation

∇2p = ∂2
t p/c

2
f , (25)

where cf is the wave speed and ∇2 = ∂2
x+∂2

y +∂2
z . Consider z < −h/2 and let plane waves

propagate in the (xz)-plane towards z = −h/2, giving rise to reflected and transmitted
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plane waves. Thus, the incident, reflected and transmitted waves may be expressed as

pi = ei(kf (ζx+
√

1−ζ2z)−ωt) z < −h/2,

pr = Rei(kf (ζx−
√

1−ζ2z)−ωt) z < −h/2,

pt = T ei(kf (ζx+
√

1−ζ2z)−ωt) z > h/2,

where kf = ω/cf and ζ = sinφ; φ being the angle measured from the normal to the plate

boundaries.

It is now straightforward to solve for R and T using either the exact three-dimensional

equations of motion (1)–(3) with pertinent boundary conditions, or the asymptotic equa-

tions (18) and (19). As the loading is such that purely antisymmetric or symmetric modes

will not be generated in the general case, the equations (18) and (19) are solved as a system.

Only odd order expansions in the plate thickness are here of interest. The reason for this

is that the quotient between the differences and the sums of the pressure fields p and ∂zp

are seen to be of order h. Hence, in Eqs. (18) and (19), every thickness order term on the

left hand side is to be paired to a corresponding term on the right hand side for a correct

truncation. The numerical results involve solutions based on the asymptotic h, h3 and

h5 expansions, respectively. The range of applicability for each truncation level is hereby

clearly visible. When performing comparisons to classical plate theories, mainly solutions

involving Kirchhoff theory (21) and Mindlin theory (22) are presented. These equations

have been used extensively in the literature and are suitable for comparisons since the

antisymmetric motions are prevailing in most of the examples presented below. When the

influence from the symmetric motions is pronounced, numerical results are explicitly given
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using classical theories covering both antisymmetric and symmetric motions. Note that in

all the various plate equations that are studied, R2 + T 2 = 1 as no losses are incorporated

in the models.

It is convenient to introduce various non-dimensional parameters, besides γ, that appear

in the equations:

α = ρf/ρ, β = c2f/c
2
s, Ω = ksh, (26)

where ks = ω/cs.

III.1 Aluminum-Water

Consider a case of modest loading, where an aluminum plate is surrounded by water. Here,

the various non-dimensional parameters become α ≈ 0.37, β ≈ 0.23 and γ ≈ 0.25.

Using exact theory, the transmission coefficient modulus is displayed in a 3D-plot Fig.

1(a). The figure shows the dependence of |T | upon the frequency Ω and the angle of

incidence, displayed through ζ . These results are to be compared to the asymptotic h, h3

and h5 expansions as well as the classical Kirchhoff and Mindlin theories. Fig. 1(b) shows

the modulus of T when the angle of incidence is φ = 45◦. The result using the h5 expansion

is almost indistinguishable from the exact result over a large frequency interval. Mindlin

and the h3 results are of the same accuracy even though the former is somewhat better for

lower frequencies, while the Kirchhoff theory is clearly inferior. The simple h expansion is

valid for low frequencies only. It completely misses the total transmission effect due to the

flexural motion (closely related to the zeroth antisymmetric Lamb mode for a free plate)
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as expected. Note that the total transmission for the Kirchhoff and Mindlin theories occur

when the horizontal wave number in the fluid, kfζ , is equal to the plate wavenumber for

a free plate. This behavior does not appear for the exact and asymptotic theories in the

general case.

The dependence of |T | upon the angle of incidence is presented in Fig. 1(c) for the

frequency Ω = 0.5. The accuracy of the different approximations show a similar behavior

as in Fig. 1(b). Note the rapid transition of the transmission coefficient from zero to unity

around ζ ≈ 0.28, that is φ ≈ 16◦. This is associated with the first compressional mode

(closely related to the zeroth symmetric Lamb mode for a free plate). The phenomenon is

not captured by the Kirchhoff and Mindlin theories since they do not take symmetric mo-

tion into account. Another minor incorrectness with the Kirchhoff and Mindlin equations

is that |T | = 1 for the grazing angle, ζ = 1. The exact and asymptotic equations predict

that the transmission modulus falls quickly to zero as ζ approaches unity. This behavior

is also illustrated in Fig. 1(d) where the curves of total transmission are displayed. The

curve related to the loci of the lowest flexural mode show once again that the Kirchhoff

theory is inferior to the other higher order theories. Hence, the Kirchhoff equation is here

not that well suited when predicting total transmission. The curve related to the lowest

compressional mode shows very little frequency dependency. Here, the various asymptotic

curves are indistinguishable from the exact curve. Moreover, there exists a curve just below

ζ = 1 due to the h expansion.

In order to perceive the range of accuracy for the different theories, the contour lines

for one percent relative error in the transmission modulus are displayed in Fig. 2. The
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different theories involving terms of order h3, that is Kirchhoff, Mindlin and asymptotic h3

expansions, are presented in Fig. 2(a). The latter theory is seen to be within the error limit

over a larger frequency interval, especially for φ < 30◦. In Fig. 2(b) similar contours for

the asymptotic h, h3 and h5 theories are depicted, showing the range improvement using

higher order theories. Considering an explicit example using a two mm thick aluminum

plate immersed in water, the h theory applies within the error limit for frequencies up to

around 25 kHz, while the h3 theory is valid up to 0.1 MHz and h5 theory up to 0.17 MHz.

In all the examples presented above, the comparisons are made with the purely antisym-

metric classical plate equations due to Kirchhoff or Mindlin. As the asymptotic equations

involve both symmetric and antisymmetric motions, the flexural plate equations can be

combined with the classical symmetrical plate equations as well. Two different combina-

tions are considered here; the Kirchhoff equation (21) together with the generalized plane

stress equation (23), (K-GPS), as well as the Mindlin equation (22) together with the equa-

tion due to Kane and Mindlin (24), (M-KM). The main reason for choosing the M-KM

solution is that it is based on refined antisymmetric and symmetric theories when compared

to K-GPS; thus resembling the asymptotic h3 to a greater extent. Several authors have

studied the effects of various such combined equations.[15, 17, 25, 26] The equations derived

by Lyamshev[25] are, after corrections, in line with the K-GPS relations. Freedman[15]

adopted the generalized plane stress equation together with the Mindlin equation. How-

ever, some of his results exhibit some peculiar behavior not appearing when implemented

here. The influence of the symmetric parts in both the K-GPS and the M-KM theories are

best appreciated when compared to the results displayed in Fig. 1(c). First, both the com-
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bined classical theories feature the rapid transition of the transmission coefficient around

ζ ≈ 0.28 due to the compressional mode, as expected. Second, the transmission modulus

tends abruptly to zero as ζ approaches unity in both cases. Otherwise, there are small

discrepancies between the combined theories (K-GPS and M-KM) and the corresponding

antisymmetric theories (Kirchhoff and Mindlin) in this case.

III.2 Polyethylene-Water

In this section a light solid is immersed in water. The solid parameters are those of

polyethylene, which represents a typical plastic material. The amplitudes are assumed to

be low, so that elastic theory is applicable. The system is an example of heavy loading,

where the non-dimensional parameters become α ≈ 1.03, β ≈ 0.71 and γ ≈ 0.25.

The exact transmission coefficient modulus is displayed in Fig. 3(a). It is seen that the

transmission through the plate is pronounced for a large interval of both the frequency and

the angle of incidence, compared to the aluminum-water case Fig. 1(a). This is due to the

similarities in the plate and fluid impedances in this heavy loading example. When dis-

playing the frequency dependence of the transmission coefficient modulus for the different

approximate theories, it is seen that for most of the angles of incidence the classical plate

equations reproduce the behavior less correctly than the asymptotic expansions, including

the simple h expansion. This indicates that the symmetric motion is of importance in this

frequency interval. In the case of small angles of incidence, the classical theories are rather

good as is shown in Fig. 3(b) when φ = 15◦. The plot displays the discrepancy of the
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asymptotic expansions as the frequency increases. Note the total reflection according to

the h3 theory, which is at a lower frequency than according to exact theory; Ω ≈ 1.76. The

accuracies of the classical and asymptotic theories are clearly visible in Fig. 3(c) where the

angle of incidence is varied for Ω = 1. The classical theories fail to illustrate the behavior

of the transmission coefficient for most ζ . There exists a rapid transition of |T | from zero

to unity around ζ ≈ 0.5 (φ ≈ 30◦) which corresponds to the lowest compressional mode.

This behavior was also present in the aluminum-water case Fig. 1(c), where the relation

to the zeroth symmetric Lamb mode was stated. However, total transmission occurs at

ζ ≈ 0.8, which is not that close to the corresponding zeroth order antisymmetric Lamb

mode for a free plate. In this case, neither the symmetric nor the antisymmetric part of the

motion is prevailing [16]. This is easily seen by analyzing the equations for the asymptotic

h expansion, which solution is surprisingly accurate. Similar results are also clearly visible

in Fig. 3(d), where the Kirchhoff and Mindlin plate theories obviously differ from the rest.

Hence, comparisons to the free plate Lamb modes are of less importance in this heavy

loading example, as expected [18].

As in the aluminum-water case, contour lines are displayed in Fig. 4. The results using

Kirchhoff, Mindlin and asymptotic h3 expansions are presented in Fig. 4(a), showing the

superiority of the latter theory. Here, the lines corresponding to the classical theories are

mostly on top of each other. The various asymptotic expansions are displayed in Fig.

4(b). The accuracies are quite good for all the expansions, beside around ζ = 0.5 where

the relative errors become pronounced due to the transition from T = 0.

Due to the importance of the symmetric motion in this heavy loading case, it is in-
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teresting to study the combined classical theories according to K-GPS and M-KM. When

compared to the results presented in Fig. 3(c), both K-GPS and M-KM are considerably

better than the classical antisymmetrical plate theories. The accuracies are displayed in

Fig. 5(a), where the absolute values of the error in the transmission coefficient modulus,

|∆|T ||, are plotted. As in the aluminum-water case, the combined classical theories render

more or less the correct behavior around the transition point ζ ≈ 0.5 as well as near ζ = 1.

The contour lines for the three theories of order h3, that is K-GPS, M-KM and asymptotic

h3, are given in Fig. 5(b). The improvement using the combined classical theories are

clearly visible when compared to Fig. 4(a). However, Fig. 5 show that the the asymptotic

h3 and h5 expansions are, in most cases, the best approximations.

III.3 Steel-Air

The last example considers a case of light fluid loading, a steel plate in air. The non-

dimensional parameters are α ≈ 1.66× 10−4, β ≈ 0.011 and γ ≈ 0.33.

The pronounced impedance mismatch causes the plate to act as a sound barrier (|T | ≈

0) for most combinations of Ω and ζ . The transmission coefficient tends to unity for those

(Ω, ζ) which are close to the solutions of the dispersion relation for a free plate. In Fig. 6(a)

the exact value of log |T | is plotted for some different angles of incidence, resembling the

results presented in the aluminum-water case Fig. 1(a). The behavior of the transmission

coefficient using the different plate equations is displayed in Fig. 6(b) for φ = 10◦. As

in the aluminum-water case, the h5 expansion result is very close to the exact one, while
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the h expansion does not include the flexural mode. Fig. 6(c) shows the very sharp

transition of the transmission coefficient from zero to unity for the compressional mode

around φ = 3.6◦, which is not included in the Kirchhoff and Mindlin theories. The curves

for total transmission are presented in Fig. 6(d) similar to Fig. 1(d).

IV NUMERICAL CALCULATIONS FOR A LINE

LOADING

To further evaluate the asymptotic equations, the pressure fields on the plate boundaries

due to applied forces are calculated. As the fluid-plate responses from time harmonic line

forces have been studied by many authors [19, 20, 21, 22, 23], such problems are addressed

here. The line forces are modelled according to ∆F = Faδ(x)e
−iωt in the antisymmetric

case and ΣF = Fsδ(x)e
−iωt in the symmetric case. Each case is studied separately. As the

problems become y independent, this coordinate is suppressed throughout. The problems

are solved by applying the Fourier transform in the x-coordinate. If the fluid is assumed

to follow the wave equation (25), the transformed pressure fields are given by

p̂+ = p+ei(kz−ωt), z > h/2, (27)

p̂− = p−ei(−kz−ωt), z < −h/2, (28)

where k =
√

k2
f − q2; q being the transform variable. In the antisymmetric case p− = −p+

while in the symmetric case p− = p+. Thus, it is clear that Eqs. (27) and (28) can be
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combined to give

∆p̂(q) = p̂a(q), Σ∂z p̂(q) = ik(q)p̂a(q), (29)

Σp̂(q) = p̂s(q), ∆∂z p̂(q) = ik(q)p̂s(q). (30)

By using the relations in (29) and (30), it is straightforward to relate pa to Fa as well as ps

to Fs in the approximate boundary conditions (18)–(24). The transformed pressure fields

at the boundaries can in each such case be expressed on the form

p̂a,s(q) =
Na,s(q)

Na,s(q) + k(q)Da,s(q)
Fa,s. (31)

The various functions Na,s and Da,s involve polynomials in q2. The numerators are recog-

nized as the dispersion equations for fluid loaded plates, while the functions Da,s appear

when studying the dispersion relations for the corresponding free plates. For the exact

theory, separate antisymmetric and symmetric modes are easily obtained [27]. The pres-

sure relations may still be written on the form of Eq. (31). Here Na,s and Da,s are even

functions in q, including trigonometric functions. The functions Da,s are then recognized

as the Rayleigh-Lamb frequency equations. It is instructive to note that the numerator

and denominator of Eq. (31) in the exact cases may be expanded in the layer thickness

coordinate h, giving the same quotients as for the asymptotic plate equations discussed

above, see further Losin [28].

By using the inversion formula, the pressure fields pa,s(x) are obtained from p̂a,s(q) in

Eq. (31) for each plate theory. The integrals are rewritten as cosine transforms, since the

integrands are even in q. Analytical solution of these integrals are complicated to evaluate,
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even for the lowest order case. Therefore, they are computed numerically. The contour of

integration is deformed into the fourth quadrant due to the poles and branch points on the

real axis.

The numerical results Figs. 7–8 show the plate boundary pressure as a function of the

distance from the line force. Only the pressure component in phase with the line force is

presented. All three fluid loading situations are studied for both the antisymmetric and

the symmetric cases. In order to easily distinguish between the results using various plate

theories, the chosen frequency is quite high, ksh = 1. In Fig. 7, the antisymmetric motions

for the different theories are displayed. The lowest order h theory is not included here, as

this simple approximation completely fails to predict the plate and fluid behavior in this

loading case. From the figures, it is clear that the Kirchhoff theory is less accurate than the

other more refined theories at this frequency level, as expected. The accuracies using the

Mindlin equation and the asymptotic h3 equation are of the same order. The results using

the h5 theory are very close to the exact curves. The corresponding symmetric cases are

plotted in Fig. 8. Here, the curves using the approximate equations comprise the classic

Kane-Mindlin equation as well as the three different asymptotic equations. It is seen from

these results that the relations between the plate and fluid parameters influence the wave

lengths in a more pronounced way than in the antisymmetric cases. In the modest and

heavy loading cases, Figs. 8(a)–8(b), the asymptotic theories are superior to the Kane-

Mindlin theory. Since this relation holds even for the h theory, this is an unexpected

outcome. However, for even higher frequencies, the results due to Kane-Mindlin are better

than the asymptotic h theory. The different approximate equations behave quite poorly
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in the steel-air case, Fig. 8(c), especially close to x = 0. This is probably due to the

unphysical behavior of these approximate equations near a symmetric point load for a free

plate, rendering infinite displacements.

V CONCLUSIONS

In this paper the derivation of approximate boundary conditions for an elastic layer im-

mersed in a fluid is presented. Starting from the three-dimensional equations of motion, the

boundary conditions are stated in terms of the plate fields together with the pressure field

and its normal derivative. By expressing the sums and differences of the boundary condi-

tions, the terms involving the plate fields are expanded in Maclaurin’s series in the plate

thickness. In order to eliminate the plate fields (and their normal derivatives), the three-

dimensional equations of motion (and normal derivatives thereof) are adopted. This gives

two different linear systems; one antisymmetric involving ∆p and Σ∂zp and one symmetric

involving Σp and ∆∂zp. The operators relating ∆p to Σ∂zp and Σp to ∆∂zp, respectively,

are expressed in terms of time derivatives, spatial derivatives in the layer plane and power

series in the plate thickness. These equations can be truncated to any desired order, and

the explicit relations up to and including order five are presented. Comparisons are made

with different classic plate theories. Especially, the often used antisymmetric equations

due to Kirchhoff and Mindlin are here of interest.

In the numerical results, both the reflection and transmission from plane waves as

well as the boundary pressure fields from line forces are studied. The results using exact
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three-dimensional theory, classical flexural equations (e.g. Kirchhoff, Mindlin) as well as

asymptotic expansions (h, h3, h5) are compared. Three different cases are studied: modest

loading (aluminum-water), heavy loading (polyethylene-water) and light loading (steel-

air). In the planar scattering problems, the classical flexural theories are rather good for

modest and light loading as the antisymmetric motion is prevailing. However, in the heavy

loading example, the importance of including compressional motion is obvious. Taking all

the three loading cases into consideration, the asymptotic h3 and h5 expansions theories

give more satisfying results than the different classic theories. In the line loading cases,

purely antisymmetric and symmetric motions are examined separately. The accuracies of

the Kirchhoff theory in the antisymmetric case is inferior to the other theories of order three

(Mindlin and asymptotic h3), which in turn are inferior to the asymptotic h5 solutions. In

the symmetric case, all the displayed results are here of the same order.
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Figure 1: Aluminum-Water. —— exact, — — h5, −−− h3, · · · h, − ·− Kirchhoff, − · ·−

Mindlin.
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Figure 2: Aluminum-Water. — — h5, −−− h3, · · · h, − · − Kirchhoff, − · ·− Mindlin.
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Figure 3: Polyethylene-Water. —— exact, — — h5, − − − h3, · · · h, − · − Kirchhoff,

− · ·− Mindlin.
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Figure 4: Polyethylene-Water. — — h5, −−− h3, · · · h, −·− Kirchhoff, −· ·− Mindlin.
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Figure 5: Polyethylene-Water. — — h5, −−− h3, − · − K-GPS, − · ·− M-KM.
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Figure 6: Steel-Air. —— exact, — — h5, −−− h3, · · · h, −·− Kirchhoff, −· ·− Mindlin.

32



0 2 4 6 8 10 12 14 16 18 20
 -0.5

 -0.4

 -0.3

 -0.2

 -0.1

0

0.1

0.2

0.3

0.4

ksx

p a
/(
F
a
k
s
)

(a) Aluminum-Water.

0 2 4 6 8 10 12 14 16 18 20
 -0.8

 -0.6

 -0.4

 -0.2

0

0.2

0.4

0.6

0.8

ksx

p a
/(
F
a
k
s
)

(b) Polyethylene-Water.

0 2 4 6 8 10 12 14 16 18 20
 -5

 -4

 -3

 -2

 -1

0

1

2

3

4
x 10

�-5

ksx

p a
/(
F
a
k
s
)

(c) Steel-Air.

Figure 7: Antisymmetric plate boundary pressure pa/(Faks) as a function of distance ksx

for ksh = 1. —— exact, — — h5, −−− h3, − · − Kirchhoff, − · ·− Mindlin.
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Figure 8: Symmetric plate boundary pressure ps/(Fsks) as a function of distance ksx for

ksh = 1. —— exact, — — h5, −−− h3, · · · h, − · ·− Kane-Mindlin.
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