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Abstract

Routine registers o�er researchers opportunities to carry out studies of covariate
e�ects on lifetimes of rare diseases otherwise infeasible because of the large
cohorts required. Familial relationships necessary for analysis of environmental
or genetic factors can be identi�ed by record linking. The vast amount of
data and clustering of related individuals pose statistical challenges. As most
statistical information is associated with the cases, an estimator based on a
sample where cases are overrepresented can drastically reduce the sample size
with only a minor loss of e�ciency.

This thesis concerns regression of clustered cohort sampled survival data within
the broad class of semiparametric transformation models. This class includes
the proportional hazards and proportional odds models as special cases. Cor-
relations within clusters are modeled by random e�ects.

We derive consistency and asymptotic normality of a weighted maximum like-
lihood estimator and provide a consistent estimator of its asymptotic variance.
A likelihood ratio test for regression coe�cients is also proposed. The method
is shown to perform well on simulated data and is illustrated by application to
a study on cardiovascular diseases among Swedish men.

Key words: Survival, transformation, clustered, likelihood, random e�ects,
case-cohort, routine register, semiparametric.
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Preface

This thesis consists of two parts. The purpose of the introductory part is to
informally introduce the topics of the second part where an article constituting
the scienti�c contribution of the thesis can be found. The introduction ends
with a short summary of the article intended to connect part one and two.
Part two aims at being self-contained in the sense that readers familiar with
nonparametric maximum likelihood in survival analysis and routine registers
can skip the introduction.
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Chapter 1

Background

1.1 Survival analysis

In survival analysis the response variable is the time T to a speci�c event.
Typically some event times are incompletely observed due to censoring. The
most commonly encountered censoring is right censoring when we only observe
an individual up to a possibly random censoring time C, i.e. we observe Y =
T ∧C and an indicator ∆ = I(Y = T ) of whether or not censoring has occurred
before the event time of interest. This may be because the subject has still to
experience the event when the study is closed or because the subject is lost for
follow-up due to other reasons. If T is the time to death from a given cause,
then death from another cause may be regarded as a censored observation.
Other types of censoring include interval censoring, left-censoring, truncation
or �ltering, see Andersen et al. (1993). Although not always necessary, we
assume that the study ends at a time τ <∞ and that all individuals still alive
at this time are censored.

It is not obvious at �rst glance how to incorporate censored observations into
inference for the distribution of T . Estimation based only on the complete data
may give biased results, so the censored observations need to be taken into
account. Modeling of the hazard rate λ, the event rate at time t conditional
on survival until time t, has proven to be highly successful for this purpose.

The hazard rate may be interpreted as the instantaneous failure rate among
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2 1. Background

those at risk and is given by

λ(t)dt = P (t ≤ T < t+ dt|T ≥ t)

= −S
′(t)dt
S(t)

= − ∂

∂t
logS(t), (1)

where S(t) = P (T > t) is the survival function of T , the probability that the
event of interest has not happened at time t. From (1), by integration and
using S(0) = 1, we see that the survival function may be calculated from the
hazard rate as

S(t) = exp
(
−
∫ t

0

λ(s)ds
)

(2)

= exp (−Λ(t)) ,

where Λ(t) =
∫ t

0
λ(s)ds is called the cumulative hazard rate up to time t. Note

that by (1) and (2), the survival function and hazard rate are alternative but
equivalent representations and both completely specify the distribution of T .

1.1.1 Regression models for failure time data

A typical goal of a survival study is to relate the e�ect of explanatory variables
on survival. It is convenient to build a regression model using the conditional
hazard rate as target function. The model can then be used to examine various
hypotheses about the impact of risk factors or estimate regression parameters
that relate to the lifetimes, taking into account that some of the lifetimes are
censored.

Semiparametric transformation models

The most popular survival model is Cox' proportional hazards model under
which the hazard rate for an individual with covariate vector X(·) takes the
form

λ(t|X(t)) = λ0(t)eβ
TX(t),

where β is a vector of unknown regression parameters and λ0 is a baseline
hazard rate describing the shape of the hazard as a function of time and that
is left unspeci�ed. The model is thus semiparametric in that the baseline
hazard rate is treated nonparametrically, while a parametric form is assumed
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for the covariate e�ect. Correspondingly, the parameter contains an in�nite
dimensional component in addition to the �nite dimensional covariate e�ect
vector of particular interest.

When the covariates are time independent, the interpretation of the β vector
is particularly easy. Assume that we observe two individuals with covariate
vectors X and X̃, respectively. Then the ratio of their hazard rates is

λ(t|X)
λ(t|X̃)

=
λ0(t) exp(βTX)
λ0(t) exp(βT X̃)

= exp(βT (X − X̃)), (3)

which is constant. Hence the name proportional hazards. The proportion (3)
is called the relative risk or hazard ratio of the two individuals. For example,
if the covariate vectors of two individuals di�er only by a binary covariate X1,
then the risk of experiencing the event for the individual with X1 = 1 relative
to the individual with X1 = 0 is exp(β1).

The Cox model has had a monumental success in applied work. In some applica-
tions, however, the proportional hazards assumption on the e�ects of covariates
may not be reasonable and there is therefore a need for alternative models. A
popular alternative is the proportional odds model that constrains the ratio of
the odds of survival associated with two sets of covariate values to be constant
over time. Consequently, the ratio of the hazards converge to one with time.
This is di�erent from the proportional hazards model that constrains the haz-
ard ratio to be constant while the odds ratio tends to zero or in�nity. Both
models are examples of semiparametric transformation models. In this broad
class the cumulative hazard of T is related to X(·) by

Λ(t|X(t)) = H

(∫ t

0

eX(s)T βdΛ0(s)
)
, (4)

where the transformation H is a strictly increasing function such that H(0) = 0
and H(∞) = ∞. The choice H(x) = x and H(x) = log(1 + x) corresponds to
the proportional hazards and proportional odds models, respectively.

One class of transformations is the Box-Cox transformations,

H(x) =
{
{(1 + x)ρ − 1}/ρ, ρ > 0.
log(1 + x), ρ = 0.

For ρ > 1 the covariate e�ects increase over time, for ρ < 1 the covariate e�ects
decrease over time. Another useful set of transformations is the logarithmic
transforms given by

H(x) =
{

log(1 + rx)/r, r > 0.
x, r = 0.
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For r > 0, the covariate e�ects always decrease over time, with a higher rate of
decrease for larger r. The choice ρ = 1 or r = 0 yields the proportional hazards
model while the choice ρ = 0 and r = 1 yields the proportional odds model.

Expression (4) can generate very general models, but this generality often comes
with a problem of a lack of transparency of the role of covariates. Except for in
special cases, it is typically di�cult to look at the expression for the cumulative
hazard and gain any intuitive insight into how covariates in�uence the hazard.

Additive models

Although not considered further in this thesis, an overview of failure time
regression is not complete without a mentioning of additive models. An alter-
native to transformation models is Aalen's model, assuming that the hazard
takes the form

λ(t|X) = β(t)TX(t),

where β(t) is a vector of regression functions describing how the covariates
a�ect the hazard rate at time t. Note that this model allows the covariate
e�ects to change with time.

The additive model measures excess risk due to covariates on an absolute scale
whereas the proportional hazards model measures additional risk in relative
terms. It is possible that the additive risk varies with time while the relative
risk is constant over time. Note that changes in absolute risk with time give
no information on changes in relative risk with time.

Martinussen and Scheike (2006, Chapter 7) describe how additive and multi-
plicative approaches can be combined to achieve �exible models. One example
is the Cox-Aalen model where the hazard takes the form

λ(t|X = (X1, X2)) =
{
β(t)TX1(t)

}
× exp(βTX2(t)),

where the covariate vector X is partitioned into the vectors X1 of additive
e�ects, and X2 that acts multiplicatively.

1.1.2 Clustered failure time data

Clustered failure time data arise when subjects are sampled in clusters so that
the failure times within the same cluster tend to be correlated. Medical exam-
ples include the onset of a genetic disease among family members with families
serving as clusters. Sometimes one would assume common distributions for all
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individuals in a cluster, while in other situations the cluster structure may be
rather complex. For instance, when considering the lifetimes of parents and
children in a family, individuals within the same cluster are not exchangeable
and we have to distinguish between levels.

There are two main approaches to modeling cluster e�ects, marginal and con-
ditional. The choice depends mainly on the purpose of the study. In marginal
models the covariate e�ects are speci�ed unconditionally and we assume that
the regression model holds marginally for each individual, but that individuals
within groups are associated. For the conditional approach we assume instead
that the model holds for each individual conditional on some unobserved e�ect,
which is modeled as random.

Marginal models

The marginal approach is well suited for the situation where one aims at esti-
mating regression e�ects on the population level, and only have to deal with
correlation to get valid standard errors to ensure correct inference. Then the
cluster structure is ignored when estimating the covariance e�ects and is only
used to derive correct standard errors. This approach is closely linked to the
generalized estimating equations methodology (Liang and Zeger, 1986).

Most marginal models do not make any assumptions regarding the dependence
structure. It can be seen as an advantage that we do not have to rely on a
speci�c structure, but on the other hand such models cannot be used for as-
sessment of dependence. It is however possible to extend the marginal models
to provide estimates of the within cluster correlation. This can be achieved
either by building a model that contains correlation as well as marginal regres-
sion parameters or by modeling the dependence of the marginals with a copula
structure estimated in a two-step procedure. A copula model assumes that the
joint survival function of failure times T1, . . . , Tm within a cluster is given by

P (T1 > t1, . . . , Tm > tm) = Cγ {S1(t1), . . . , Sm(tm)} ,

where Sj denotes the marginal survivor functions and the copula Cγ is a m-
dimensional survival function with uniform margins parameterized by γ. Dif-
ferent copulas give di�erent joint distributions but the marginals are unaltered.
A summary of marginal modeling with speci�ed correlation structure can be
found in Martinussen and Scheike (2006, Chapter 9).
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Conditional models

In conditional models dependence is modeled by introducing unobserved ran-
dom e�ects, often called frailties in the survival context, and the regression
model is assumed valid conditional on the random e�ects. This is analogous to
linear mixed models (Laird and Ware, 1982).

The simplest model is the shared frailty where all survival times that are related
have the same level of frailty attached to them, corresponding to one realization
of the frailty variable. The frailty measures the speci�c risk level for a cluster
and conditional on the frailty the survival times are independent.

More complicated dependencies can be modeled through multivariate random
e�ects with associated covariates. For example, by introducing the random
variable b and additional covariates Z(·) in the model (4), we get the model

Λ(t|Xij(t), Zij(t),bi) = H

(∫ t

0

eXij(s)T β+Zij(s)T bidΛ0(s)
)
, (5)

for the conditional cumulative hazard of individual i in cluster j.

Until recently, frailties have often been assumed to follow a Gamma distribution
with mean one and unknown variance. The choice of the gamma distribution
has been made mostly for mathematical convenience. This rather restrictive
assumption does no longer appear necessary when all details have been worked
out for a large class of distributions, including the Gaussian (Zeng and Lin,
2007, 2010).

1.1.3 Semiparametric maximum likelihood

Counting processes and martingale methods have traditionally been the main
tools when studying asymptotics in survival analysis. Let N(t) denote a generic
process counting the number of events that have occurred for some unit of
interest up to time t. We can construct a counting process per individual or
cluster and another process counting the events for all subjects under study.
The counting processes can be decomposed into a deterministic model part,
the compensator A, and a random noise part M such that

M(t) = N(t)−A(t)

is a martingale. Many interesting quantities in survival analysis, including
likelihoods and associated score functions, can be written as stochastic integrals



1.1. Survival analysis 7

of the form ∫ t

0

K(s)dM(s), (6)

where K is a predictable stochastic process. Informally, a the process K is
predictable if the value K(t) is known given the history just prior to time t.
Integrals of the form (6) are, under some conditions, themselves martingales
and asymptotic theory can often be established by Robelledo's martingale cen-
tral limit theorem (Andersen et al., 1993, p. 83). Large sample properties of
maximal partial likelihood estimators of both the covariate e�ects and the cu-
mulative baseline hazard rate in Cox's proportional hazards model were derived
along these lines by Andersen and Gill (1982).

Although appealing due to their conceptual foundation, martingale methods are
not always applicable. In particular, if the integrand in (6) is not predictable,
then the integral is not a martingale. This is the case for example if K contains
weights that depend on events that might not have occurred at time t.

Often (6) can alternatively be viewed as an empirical process and large sample
properties then follow by modern empirical process techniques (van der Vaart
and Wellner, 1996). There is a price to be paid for this however, as empirical
processes in this setting pose the strong restriction of independence of sampling
units (e.g. individuals or clusters) whereas martingales allow more complex
dependencies on the past. For example, martingale techniques can be applied
when the censoring mechanism depends on what happened previously to any
individuals or clusters, even though this set up is clearly non-i.i.d. We conclude
that none of the methods can fully replace the other. We will not pursue
the martingale track any further and refer readers to Andersen et al. (1993);
Martinussen and Scheike (2006).

The most common approach to e�cient estimation in semiparametric models is
based on modi�cations of maximum likelihood estimation. Likelihood functions
for the transformation models discussed above can be written in the generic
form as

n∏
i=1

ni∏
j=1

λ(Yij)∆ij Ω(θ,Λ)[Oi]

where θ is a �nite dimensional parameter and Ω is a functional of random pro-
cesses Oi containing information on events and covariates of the ni subjects in
cluster i. If Λ0 is known to be absolutely continuous, then, as in the case of
density estimation, very high peaks at the observations would yield an arbi-
trarily large likelihood and there is no maximizer of the likelihood. Instead we
maximize over all right continuous functions and replace λ(t) with the jump
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size at t, denoted Λ{t}. That is, we maximize

Ln(θ,Λ) =
n∏
i=1

ni∏
j=1

Λ{Yij}∆ij Ω(θ,Λ)[Oi].

The best choice among the discrete distributions are Λ that jump at the points
Yij with ∆ij = 1 only. This reduces the maximization problem to �nding the
jump sizes Λ{Yij}.

The maximizer
(θ̂n, Λ̂n) = argmaxLn(θ,Λ) (7)

is referred to as the nonparametric maximum likelihood estimate (NPLME).
Due to the complications resulting from the presence of the in�nite dimensional
parameter, what we treat as a likelihood here is not really a likelihood in
the sense of products of densities. Thus, we need to verify that the NPLME
indeed behaves like a maximum likelihood estimate, i.e. we wish to establish
consistency, asymptotically normality and e�ciency.

Murphy (1994, 1995) used empirical process theory to prove consistency, asymp-
totic normality and e�ciency for the NPMLE in the shared gamma-frailty
model without covariates. Her work was generalized to the correlated gamma-
frailty model allowing for covariates by Parner (1998). Many authors have since
used similar techniques for various models. We will brie�y outline the method
of proof. Please bear in mind that despite the common general scheme, the
technical details can be very di�erent from model to model. See Zeng and
Lin (2007, 2010) for a thorough exposition of NPLME based on inference in
semiparametric transformation models.

Consistency

Given that the model is identi�able, a Wald type argument based on comparing
the value of the likelihood at the maximum likelihood estimator and at the true
value of the parameter is a classical type of consistency proof. In the present
case this causes problems. First, Λ̂n is not assumed bounded, that is the
parameter space for Λ is not a priori known to be compact as required by a
Wald type of proof. However, one can use ideas developed in Murphy (1994)
and Parner (1998) to show that the form of the likelihood forces Λ̂n to be
bounded. Then Λ̂n is relatively compact and Helly's selection theorem implies
that, for any subsequence, we can choose a further subsequence (still denoted
n) such that Λ̂n converges to some Λ∗. We assume that θ ∈ Θ, where Θ is
compact, so that θ̂n also converges to some θ∗.
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We thus need to verify that (θ∗,Λ∗) = (θ0,Λ0). In a Wald type of proof
this is achieved by showing that the Kullback-Leibler divergence is zero and
this is only possible if (θ∗,Λ∗) = (θ0,Λ0). Again, this is not straightforward
because the likelihood at the maximum likelihood estimator, a random discrete
distribution, and at the true parameter are di�erent in character and can not
be compared directly. Instead we compare the NPLME with an intermediate
random sequence converging to the true value, (θ0, Λ̃n) where Λ̃n is discrete
and converges to Λ0. The function Λ̃n is chosen similar in structure to Λ̂n, but
also similar to Λ0. If we can show that this log-likelihood di�erence converges
to minus the Kullback-Leibler divergence we can �nish of the proof by the same
arguments as in the fully parametric scenario.

Asymptotic normality

To prove asymptotic normality of parametric maximum likelihood estimators
we usually consider a system of estimating equations of the same dimension
as the parameter. The solutions are asymptotically normal if the system is
appropriately di�erentiable. A semiparametric model would require in�nitely
many estimating equations. As shown in van der Vaart (1998, section 25.12)
and van der Vaart (1999, Lecture 10) it turns out that we can proceed much
in the same way as a �nite dimensional system, provided that we substitute
functional analysis for multivariate calculus. The system is linearized in the
estimators by a Taylor expansion around the true parameter, and the limit
distribution involves the inverse of the derivative.

In order to present van der Vaart's master theorem we �rst introduce the
following fundamental concepts from empirical process theory. Let X1, . . . , Xn

be a random sample from a probability distribution P . Given a measurable real
valued function f we write Pnf for the expectation of f under the empirical
measure and Pf for the expectation under P ,

Pnf =
1
n

n∑
i=1

f(Xi) and Pf =
∫
fdP.

The empirical process evaluated at f is de�ned as Gnf = n1/2(Pnf − Pf).
A class F of measurable real valued functions is called P -Donsker if the se-
quence of processes {Gnf : f ∈ F} converges weakly to a tight limit process
in `∞(F), the space of bounded real valued functions on F . The limit process
{Gf : f ∈ F} is a zero mean Gaussian process with covariance E[f(X)g(X)]−
E[f(X)]E[g(X)] for f, g ∈ F . G is known as the P -Brownian bridge.

Verifying that a class of functions is P -Donsker can be achieved by entropy
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calculations. Fortunately, we do not need to calculate entropy for each new
problem as there are a number of methods to determine if a class is P -Donsker
based on whether the class is built up of classes that are known to be P -
Donsker. For example, if F and G are P -Donsker, then {f ∧ g : f ∈ F , g ∈ G},
{f∨g : f ∈ F , g ∈ G} and {f+g : f ∈ F , g ∈ G} are also P -Donsker. Moreover,
if F and G are bounded P -Donsker, then {fg : f ∈ F , g ∈ G} is P -Donsker
(van der Vaart and Wellner, 1996, Section 2.10).

To set up the system of estimating equations, consider the set

H = {h = (hθ, hΛ) : hθ ∈ Rd, hΛ ∈ BV [0, τ ], ‖hθ‖+ ‖hΛ‖V ≤ 1},

where BV [0, τ ] is the class of real valued functions of bounded variation in [0, τ ]
and ‖hΛ‖V denotes the total variation of hΛ in [0, τ ]. De�ne

ψ(θ,Λ)[hθ, hΛ] = hTθ `θ(θ,Λ) + `Λ(θ,Λ)[hΛ], (8)

where lθ is the score function for θ and lΛ is a score operator for Λ. The
�nite dimensional parameter can be perturbed in the usual way and hTθ lθ is
the ordinary score function for hTθ θ treating Λ as �xed. The operator lΛ is
a little more involved. For each �xed (θ,Λ) and hΛ ∈ BV [0, τ ], lΛ(θ,Λ)[hΛ]
corresponds to the score function for the one-dimensional submodel given by
ε 7→ (θ,

∫
(1 + εhΛ)dΛ) and can be found as the directional derivative of the log

likelihood in the direction hΛ. Each choice of (hθ, hΛ) in (8) corresponds to an
estimating equation for (θ,Λ).

We identify (θ̂n−θ0, Λ̂n−Λ0) as a random element in `∞(H) by de�ning its value
at (hθ, hΛ) as hTθ (θ̂n− θ0) +

∫
hΛd(Λ̂n−Λ0). Let P0 denote the distribution of

the random processes holding information on events and covariates in a cluster.

From van der Vaart andWellner (1996, Theorem 3.3.1, Lemma 3.3.2) if (θ̂n, Λ̂n),
is consistent for (θ0,Λ0) and if

(i) Pnψ(θ̂n, Λ̂n) = oP (n−1/2) and P0ψ(θ0,Λ0) = 0,

(ii) {ψ(θ0,Λ0)h : h ∈ H} is P0-Donsker,

(iii) (θ,Λ) 7→ ψ(θ,Λ) is continuous in L2(P0) at (θ0,Λ0) uniformly in H,

(iv) The map (θ,Λ) 7→ P0ψ(θ,Λ) is Fréchet di�erentiable (van der Vaart and
Wellner, 1996, Example 3.9.2) at (θ0,Λ0) with a continuously invertible
derivative P0ψ̇0,

then
n1/2

(
(θ̂n, Λ̂n)− (θ0,Λ0)

)
L→ P0ψ̇

−1
0 Gψ(θ0,Λ0)
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in `∞(H).

When all parameters can be estimated at n1/2 rate we may treat the NPMLE
as a parametric log-likelihood with θ0 and the jump sizes of Λ0 at the ob-
served failure times as the parameters. The asymptotic covariance matrix of
the NPMLEs for these parameters can be estimated by inverting the observed
information matrix.

Pro�le likelihood

Now consider inference for the �nite dimensional parameter, θ0. Estimation of
θ0 in the semiparametric model is more taxing, meaning that the information
is worse, than under any parametric submodel. If the information for a regular
estimator is equal to the minimum of the information over all e�cient estima-
tors for all parametric submodels, then then estimator is called semiparametric
e�cient. A parametric model which achieves this minimum, if such a model
exists, is called a least favorable submodel. For a de�nition of a regular esti-
mator we refer to van der Vaart (1999, Lecture 2) and settle for claiming that
most commonly encountered estimators are regular. Nonparametric maximum
likelihood generally yields semiparametric e�cient estimators.

The semiparametric log pro�le likelihood is de�ned as the semiparametric like-
lihood but where the in�nite dimensional component is pro�led out,

pln(θ) = sup
Λ

logLn(θ,Λ). (9)

By taking the supremum in (9) in two steps, we note that the maximizer of (7)
is the �rst component of argmaxθ,Λ Ln(θ,Λ), i.e. the NPMLE of θ0.

Murphy and van der Vaart (2000) showed that under some conditions, the pro-
�le likelihood admits an expansion around the maximum likelihood estimator
θ̂n in the form

log pln(θ̃n) = log pln(θ̂n)− 1
2
n(θ̃n − θ̂n)T Ĩ(θ̃n − θ̂n)

+oP (n1/2‖θ̃n − θ̃n‖+ 1)2, (10)

where Ĩ is the e�cient information for estimating θ0, for any θ̃n
P→ θ0.

The asymptotic expansion suggests that the semiparametric pro�le likelihood
asymptotically can be treated much like an ordinary likelihood. In particular,
under some conditions the maximum pro�le likelihood estimator is consistent,
asymptotically normal and e�cient. Di�erentiation of the pro�le likelihood
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yields consistent estimators of the e�cient information matrix. A pro�le like-
lihood ratio statistic can be compared to percentiles of the χ2 distribution to
produce asymptotic hypothesis tests.

Weighted nonparametric maximum likelihood

The following development of Breslow and Wellner (2007) extend the ideas of
the previous sections to data sets sampled in two phases. Typically the �rst
phase sample contains incomplete information for a very large cohort. When
using all subjects from the phase one sample is infeasible we can choose a sub-
sample, the phase two sample, for further analysis. Based on the information
from the �rst phase we might want to overrepresent subjects believed to hold
more statistical information or otherwise ascertain enough subjects of speci�c
characteristics. In the setting with routine registers, the �rst phase typically
corresponds to the collection of the full register and the second phase to care-
fully selecting a subset from the register for further analysis.

Speci�cally, assume that the �rst phase consist of n observations. and that the
cohort is partitioned into K strata depending on information available in the
phase one sample. Let ξi = 1 indicate whether observation i was included in
the subsample of the second phase and let πi = P (ξi = 1). The probabilities
πi depend on stratum membership of observation i. Then

Pπnf =
1
n

n∑
i=1

ξi
πi
f(Xi)

is the expectation of the measurable function f under the inverse probability
weighted (IPW) empirical measure. De�ne the IPW empirical process

Gπ
n =

√
n (Pπn − P )

=
√
n(Pn − P ) +

√
n(Pπn − Pn).

From Breslow and Wellner (2007, section 4) we have that if the population
proportion of stratum k members, vk, is positive for k = 1, . . . ,K, then

Gπ
n
L→ G +

K∑
k=1

√
vk

1− pk
pk

Gk (11)

in `∞(F), where (G,G1, . . . ,GK) is a vector of independent Brownian bridge
processes, all indexed by a P -Donsker class F . Speci�cally, Gk is a Pk-Brownian
bridge process indexed by F , where Pk denotes P conditional on membership
of stratum k. Breslow and Wellner (2007, Proposition B.1) further states that
if F is P -Donsker then F is Pk-Donsker on stratum k, k = 1, . . . ,K.
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1.2 Register data

Cohort studies are usually based on detailed information gathered on a limited
number of individuals. When the disease of interest is rare, a large cohort
is required in order to accumulate su�ciently many cases for a meaningful
statistical analysis. This will usually require a long period of time and tend to
be very expensive.

The use of existing routine administrative registers in epidemiological studies
may mean considerable cuts in total research costs. In the Nordic countries
there are several registers of high quality that can be linked by the unique
personal identi�cation number assigned to each permanent resident used across
all registers.

The central population registers collect and update information received from
several di�erent sources, for example hospitals, religious communities (mar-
riages), law courts (civil marriages and divorces) and individual citizens (an-
nouncement of migration). Further, each individual can be linked to parents
and children via the national multi-generation registers.

Causes of disease can be identi�ed in the registers of disease. Examples in-
clude the national cancer registers and causes of death registers. The hospital
discharge registers are collected from all public and private hospitals, and are
based on inpatient care periods. The registers includes information on the
length of stay in the hospital, diagnoses and procedures during hospitaliza-
tion. The medical birth registers include information on mother's background,
maternal health during pregnancy and delivery, medical interventions and new-
born's outcome up to the age of seven days. Since the medical birth registers
are routinely combined with the central population registers and the cause-of-
death registers, they are complete in terms of births and deaths.

As routine registers are becoming increasingly common worldwide, the possi-
bilities to use administrative data in epidemiological research is expanding. So
is the need for statistical methods analyzing such data.

1.2.1 Cohort sampling designs

Standard use of regression models requires inclusion of covariate information
on all individuals in a cohort even when only a small fraction of these actually
experience the event of interest. As noted in the previous section, when study-
ing rare diseases the cohorts must necessarily be large and an analysis based on
the full cohort may demand unreasonable computer power resources or time.
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Thus, when working with routine register data, a study design allowing for es-
timation of covariate e�ects without having to collect all data on all members
of the cohort is desirable.

When the disease of interest is rare, the contribution of non failures (controls),
in terms of statistical power may be close to negligible compared to that of
failures. Standard case-control study designs exploit this principle e�ciently.
As most of the statistical information is contained in the cases, sampling de-
signs that include only a portion of the controls and overrepresent cases may
drastically reduce sample sizes but still be su�cient to give reliable answers
of the questions of interest. There are two important classes of case-control
sampling designs: nested case-control sampling and case-cohort sampling.

Nested case-control sampling

In a nested case-control design, one selects, whenever an event occurs, a typi-
cally small number of controls among those at risk. The set consisting of these
controls together with the case is called the sampled risk set. Covariate in-
formation is collected on the individuals in the sampled risk sets but are not
needed for the other individuals in the cohort.

The selection of controls is done independently at the di�erent event times, so
that subjects may serve as controls for multiple cases, and cases may serve as
controls for other cases that experienced an event when the case was at risk. A
crucial assumption is that at any time we do not make use of any information
on events in the future. Nested case-control sampling is a prime example of
a situation where martingale methods can not easily be replaced by empirical
process techniques. This is because the sampling probabilities at each observed
event depend on all individuals at risk and are therefore not independent.

If a surrogate measure of the exposure of main interest is available for everyone,
then this information can be incorporated into the sampling process so that
we obtain a more informative sample of controls. This strati�ed nested-case
control design is called counter-matching and is described in Langholz and
Borgan (1995).

Case cohort sampling

In a case-cohort design, covariates are obtained for individuals who experience
the event and for a subcohort of controls selected from the full cohort at the
outset of the study. In contrast to the nested-case control design we already
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from the start have information about which individuals that will become cases
and the same individuals are used as controls at all event times when they are
at risk. Thus, subjects are sampled with unequal probabilities depending on
whether or not they experience the event.

It is well known that one can improve the e�ciency of the parameter estimates
by stratifying according to the covariates of the members in the cohort. Borgan
et al. (2000) present large sample results for strati�ed case-cohort estimators
in Cox proportional hazards model. The asymptotic covariance matrix can
be split into two components; the cohort covariance matrix and a covariance
matrix due to sampling the subcohort from the full cohort.
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Chapter 2

Summary of the paper

In the second part of this thesis we propose inferential procedures that can
considerably reduce the resources needed to analyze clustered survival data
from routine registers. We sample from registers with unequal inclusion prob-
abilities in order to achieve an informative subsample of a modest size, so that
it can be analyzed with reasonable resources. The sampling is performed in
two stages and is similar to the strati�ed case-cohort design described in the
previous chapter. When considering large registers, even if the cases are small
in proportion they may be big in numbers and we might want to sample cases
as well. This is readily achieved by our design.

The weights we use depend on stratum membership and are typically not de-
termined until an individual experiences an event or is censored. Such weights
are certainly not predictable and martingales are of no help. It turns out that
the inverse probability weighted empirical process techniques of Breslow and
Wellner (2007) are exactly what we need.

We consider the general class of semiparametric transformation models with
clustering induced by random e�ects as given by (5). The regression parameters
should thus be interpreted conditional on the random e�ects. Consistency and
asymptotic normality of the nonparametric maximum likelihood estimator in
this model were derived along the lines of Section 1.1.3 by Zeng et al. (2008).
We combine the work of Zeng et al. (2008) and Breslow and Wellner (2007)
and derive similar results for estimation based on two-phase sampled data. An
asymptotic likelihood ratio test for testing hypothesized values of one or more
regression parameters is also given.

17



18 2. Summary of the paper

We suggest consistent estimators of the asymptotic variance of the IPW max-
imum likelihood estimator. The variance is the sum of two components. The
�rst component is the usual variability of an estimator based on random sam-
pling from an in�nite population whereas the second component represents the
additional variability from selecting only a subsample in the second phase.

We present an extensive simulation study to illustrate the performance of the
methods. We also apply the procedure to a data set of sibling pairs collected
from Swedish routine registers in order to study components that might e�ect
the risk of death in cardiovascular diseases.
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Abstract

Routine registers o�er possibilities to study covariate e�ects on survival

times for rare diseases otherwise unavailable because of the large cohorts

required. The vast amount of data and clustering of related individuals

pose statistical challenges. We adapt previous work on semiparametric

regression with random e�ects to a �exible cohort sampling design that

can drastically reduce the sample size needed with only a minor loss of

e�ciency. We develop weighted likelihood based inference procedures

and illustrate their applicability on both simulated and real data sets.

Key words: survival, transformation, family, random e�ects, case-

cohort, routine register, semiparametric, likelihood.

1 Introduction

The Nordic countries have a long tradition of collecting data on deaths and
diseases. There are several epidemiological registers of high quality which rou-
tinely store information on diagnoses and possible covariates, e.g. cause of
death, cancer, medical birth and hospital discharge registers. By linking reg-
isters we can obtain survival time data, including covariates, for millions of
individuals. Multi-generation registers can be used to identify familial relation-
ships needed for studying disease incidence and clustering due to environmental
factors and/or genetics. A cohort generated in this way can potentially be very
large while the proportion of cases may be relatively small for rare diseases.
The massive amount of data and the correlation of failure times among related
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individuals pose serious statistical challenges in assessment of covariate e�ects
on failure time.

Analysis based on the full cohort may be intractable due to various reasons. The
computer power and time it demands may be unreasonable, or we might want
to include additional covariates not in the register that would be impractical
to collect for all individuals. As most information is assumed to be associated
with the cases, Prentice (1986) proposed the case-cohort design where all cases
are included but only a sample of the controls. He showed that his estimator,
although based on only a fraction of the data, is almost as e�cient as one
estimated on the full cohort. Since the introduction of the case-cohort design
many authors have developed methods for analysis or proposed modi�cations,
e.g. Prentice and Self (1988), Lin and Ying (1993), Borgan et al. (2000) among
others.

There are two main approaches when modeling correlated data, namely marginal
and random e�ects models. Marginal models are used when interest is in es-
timating population average e�ects. Standard errors are typically corrected
for correlations without explicitly modeling dependencies. Marginal propor-
tional hazards models for clustered case-cohort failure time data have been
studied by e.g. Lu and Shih (2006), Lu and Wang (2002). In random e�ects
models on the other hand, both covariate e�ects and characterization of depen-
dency are concerned. The dependence structure is speci�ed by incorporating
unobserved random variables accommodating the dependence within clusters.
Copula models combine the marginal approach with a model for the depen-
dency structure. The joint survival function is modeled through the marginal
survival functions and an association parameter. Andersen (2005, 2004) con-
sidered both parametric and semiparametric estimation in copula models for
family register data. Moger et al. (2008) dealt with random e�ects models for
family register data, but considered only parametric models.

In this paper we investigate regression of sampled clustered cohort data for a
broad class of semiparametric models. In a typical scenario we sample families
and want to oversample families with at least one uncensored failure time.
Because of the large cohort sizes in register data, even when the cases are few
in proportion they can be large in numbers and it can be desirable to include
only a subsample in the analysis. Also, we might want to divide the cohort
into strata that are sampled with unequal probabilities to increase e�ciency
(cf. Borgan et al. (2000)). Our design is �exible enough to allow this.

The structure of this paper is as follows. In Section 2 we introduce the model
in detail and present the underlying assumptions. In Section 3 we develop the
estimation theory. The estimators are shown to be consistent and asymptot-
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ically normal. Consistent variance estimators are obtained and we present a
likelihood ratio test. This is followed by a numerical study in Section 4 that
reveal that the proposed estimators perform well for realistic sample sizes and
that the e�ciency loss is small compared to the computational cost of analyzing
the full cohort. In section 5 we analyze a data set on death in cardiovascular
diseases collected from Swedish routine registers. All proofs are found in the
Appendix.

2 Data structure and model assumptions

Suppose the cohort is made up of n independent clusters, each consisting of
ni, i = 1, . . . , n, study subjects, that are sampled at random from an in�nite
population. Let Xij(·) be a d1-vector of covariates and Zij(·) another set of
covariates and let Xij(t) and Zij(t) denote the corresponding histories over
[0, t]. Assume the cumulative hazard of Tij , the failure time of the jth subject
in the ith cluster, is related to Xij(·) and Zij(·) by

Λ(t|Xij(t), Zij(t),bi) = H

(∫ t

0

eXij(s)T β0+Zij(s)T bidΛ0(s)
)
, (1)

where the transformation H is a strictly increasing function such that H(0) = 0
and H(∞) =∞, β0 is an unknown vector valued regression parameter and bi
is a set of unobserved mean-zero random e�ects for the ith cluster with density
η(·, γ0) indexed by a d2-dimensional parameter γ0. The choice H(x) = x and
H(x) = log(1 + x) correspond to the proportional hazards and proportional
odds models with random e�ects, respectively.

One class of transformations is the Box-Cox transformations,

H(x) =
{
{(1 + x)ρ − 1}/ρ, ρ > 0
log(1 + x), ρ = 0 (2)

For ρ > 1 the covariate e�ects increase over time, for ρ < 1 the covariate e�ects
decrease over time. Another useful set is the logarithmic transformations given
by

H(x) =
{

log(1 + rx)/r, r > 0
x, r = 0.

For r > 0, the covariate e�ects always decrease over time, with a higher rate of
decrease for larger r. The choice ρ = 1 or r = 0 yields the proportional hazard
model while the choice ρ = 0 and r = 1 yields the proportional odds model.
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Assume Tij is right censored by the censoring time Cij so that we only observe
the censored failure time Yij = Tij ∧Cij and its corresponding indicator ∆ij =
I(Tij ≤ Cij). Let Oi denote the observations in the ith cluster,

Oi =
{

(Yij ,∆ij , Xij(Yij), Zij(Yij))
}ni

j=1
.

The model described above was studied in detail by Zeng et al. (2008). We
will adapt their �ndings to two-phase sampling, a subsampling design where
Oi is not fully observed for all n clusters and whose most basic semblance is
the classical case-cohort design.

At phase one, we observe only a coarsening of O plus auxiliary variables that
serve to determine the sampling strata. Let V ∈ V denote the variables actually
observed for everyone. Suppose V is partitioned into V = V1 ∪ . . . ∪ VK , and
that the cohort is divided correspondingly into K strata, with the ith cluster
in stratum k if Vi ∈ Vk. Let Mk denote the number of clusters in the kth
stratum. At phase two samples of size mk ≤Mk are drawn at random without
replacement from the kth stratum, with sampling for di�erent strata conducted
independently. The full covariate histories and event times are observed for
these clusters. A sequence of binary indicators {ξi}ni=1 indicates if cluster i was
selected (ξi = 1) at phase two. Let πi denote the selection probability of cluster
i. If k(i) denotes the stratum of cluster i, πi = mk(i)/Mk(i). Let P0 denote the
distribution of the variables potentially available for everyone, but in fact fully
observed only for those clusters in the phase two sample.

Note that the classical case-cohort design is a special case of two-phase sam-
pling, with phase one corresponding to observing only censoring indicators.

We impose the following regularity conditions (A2-A11 are taken from Zeng
et al. (2008); Zeng and Lin (2010)).

A1 The sampling fractions for stratum k = 1, . . . ,K, converge withmk/Mk →
pk > 0 as n→∞ and the population proportion of stratum k, vk, is pos-
itive.

A2 Conditional on Xij and Zij , the censoring time Cij is independent of the
failure time Tij and the random e�ect bi. Subjects still alive at time τ
are censored. There exists some positive constant δ0 such that

P0({ξi = 1} ∩ {Cij ≥ τ}|Xij(τ), Zij(τ))
= P0({ξi = 1} ∩ {Cij = τ}|Xij(τ), Zij(τ))
≥ δ0

almost surely.
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A3 With probability one, Xij(·) and Zij(·) are right continuous in [0, τ ] with
uniformly bounded right derivatives.

A4 Λ0(t) is a strictly increasing function in [0, τ ] and is continuously di�er-
entiable and such that Λ0(0) = 0 and Λ′0(0) > 0.

A5 θ0 = (β0, γ0) belongs to the interior of a known compact set

Θ = {θ = (β, γ) : ‖β‖ ≤ B for some constant B and

γ is in a known compact set Γ0} .

A6 The cluster size is independent of the survival and censoring variables
and max1≤i≤n ni ≤ n0 for a constant n0 almost surely.

A7 The function G(x) = 1 − exp(−H(x)) : [0,∞) 7→ [0, 1] is four times
continuously di�erentiable in [0,∞) with G(0) = 0, G′(x) > 0 and

supx≥0

∣∣∣G(k)
0 (x)

∣∣∣ <∞ for k = 1, . . . , 4.

A8 There exists a positive constant ρ0 such that

lim sup
x→∞

(1 + x)ρ0(1−G(x)) <∞

and
lim sup
x→∞

(1 + x)(ρ0+1)G′(x) <∞.

A9 The function η(b; γ) is thrice-di�erentiable with respect to γ, and for
l = 1, 2, 3,

∫
b

∣∣η(l)(b; γ)
∣∣ db is uniformly bounded for γ ∈ Γ0.

A10 For any �xed constant κ,

sup
γ∈Γ0

∫
b

eκ‖b‖
3∑
l=0

∣∣∣η(l)(b; γ)
∣∣∣ db <∞

and

sup
γ∈Γ0

∫
b

eκ‖b‖
3∑
l=1

∣∣∣∣η(l)

η
(b; γ)

∣∣∣∣ db <∞.

A11 For any pair of parameters (θ1,Λ1) and (θ2,Λ2), if with probability one,∫
b

k∏
j=1

{
G

(∫ tj

0

eXij(s)T β1+ZT
ijbdΛ1

)}
η(b; γ1)db

=
∫

b

k∏
j=1

{
G

(∫ tj

0

eXij(s)T β2+ZT
ijbdΛ2

)}
η(b; γ2)db
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for any k ∈ {1, . . . , ni} and any t1, . . . , tk ∈ [0, τ ], then θ1 = θ2 and
Λ1(t) = Λ2(t) for t ∈ [0, τ ].

A12 If Xij(t)Th1 + h(t) = 0 with probability one for some vector h1 and a
function h(t), then h1 = 0 and h(t) = 0. In addition, if there exist a
vector h2 and functions Aj(t,b), j = 1, . . . , ni such that with probability
one,

∫
b

k∏
j=1

{
G

(∫ tj

0

eXij(s)T β0+ZT
ijbdΛ0

)}

×


k∑
j=1

Aj(tj ,b) +
η′(b; γ0)Th2

η(b; γ0)

 db = 0

for any k ∈ {1, . . . , ni} and any t1, . . . , tk ∈ [0, τ ], then h2 = 0 and
Aj(t,b) = 0, j = 1, . . . , ni.

Assumptions A2-A6 are standard conditions for this kind of problem. As-
sumptions A7 and A8 that concerns the transformation are quite mild and are
satis�ed for all commonly used transformations. Zeng and Lin (2010) veri�ed
A7 and A8 for the Box-Cox and logarithmic transformations as well as for the
linear transformation model. Assumption A10 appertains to the distribution of
the random e�ects and is easily seen to be satis�ed for the Gaussian distribu-
tion. A11 and A12 ensure parameter identi�ability and non-singularity of the
Fisher information matrix. Zeng et al. (2008); Zeng and Lin (2010) discussed
these assumptions and showed that they are ful�lled when the covariates are
time independent, Zij are the same within clusters and the random e�ects are
Gaussian, provided that the covariates are linearly independent.

3 Weighted maximum likelihood estimation

If the covariate histories and event times were available for all n clusters, we
would estimate the parameters (θ0,Λ0) by maximizing the semiparametric like-
lihood

Ln(θ,Λ) =
n∏
i=1

l(θ,Λ)[Oi],
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where

l(θ,Λ)[Oi] =∫
b

ni∏
j=1

{
G′

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)
eXij(Yij)T β+Zij(Yij)T bΛ{Yij}

}∆ij

×

{
1−G

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)}1−∆ij

η(b; γ)db,

with Λ{t} denoting the jump size of Λ at time t, is the empirical likelihood
for cluster i. As the unrestricted maximum likelihood estimator does not exist
(cf. Zeng et al. (2008)), we maximize over the space of non-decreasing right
continuous functions,

Λ = {Λ : Λ a right continuous non-decreasing function in [0, τ ],
with Λ(0) = 0} .

For two-phase sampled data we propose to instead maximize the the Inverse
Probability Weighted (IPW) semiparametric likelihood, de�ned by

Lπn(θ,Λ) =
n∏
i=1

l(θ,Λ)ξi/πi [Oi], (3)

and denote the estimator

(θ̂n, Λ̂n) = argmax
θ∈Θ,Λ∈Λ

Lπn(θ,Λ).

In the Appendix we prove the following two theorems, the main �ndings of our
paper.

Theorem 1 (Existence and consistency). Under A1-A12, the IPW Maximum

Likelihood Estimate (IPWMLE) (θ̂n, Λ̂n) of (3) exists almost surely and ‖Λ̂n−
Λ0‖`∞([0,τ ])

a.s.→ 0, ‖θ̂n − θ0‖
a.s.→ 0.

Theorem 2 (Weak convergence). Under A1-A12, n1/2(θ̂n−θ0, Λ̂n−Λ0) weakly
converges to a zero-mean Gaussian process in Rd1+d2 × `∞[0, τ ].

It is essential to estimate the variance of the limit in Theorem 2. The variation
in estimating Λ0 arises from the variation in estimating the jump sizes of Λ0 at
the uncensored event times. We regard the observed weighted likelihood func-
tion as a likelihood function indexed by the parameter θ and the jump sizes
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of Λ at the Yij for which ∆ij = 1. Let Jn denote the negative Hessian matrix of
logLπn and Kn the matrix of derivatives of {log l(θ,Λ)[Oi] : ξi = 1, i = 1, . . . , n}T ,
both with respect to (θT , ~ΛT ) where the vector ~Λ denotes the jump sizes Λ{·}
at the uncensored failure times in the phase two sample, evaluated at (θ̂n, Λ̂n).

For any constant vector hθ ∈ Rd1+d2 , and any bounded function hΛ, the ith
row of the vector nKnJ−1

n hn, where hn = (hTθ ,
−−→
hΛΛT ) and

−−→
hΛΛ is hΛ(·)Λ̂n{·}

evaluated at the observed failure times, approximates the contribution from the
ith cluster to the score for estimating hTθ θ0 +

∫
hΛdΛ0. The following theorem

gives an expression for consistently estimating the limiting variance.

Theorem 3 (Asymptotic variance). The asymptotic variance of

n1/2hTθ (θ̂n − θ0) + n1/2

∫ τ

0

hΛd(Λ̂n − Λ0)

can be consistently estimated by

nhTnJ−1
n hn +

K∑
k=1

Mk

n

Mk −mk

m2
k

∑
i:Vi∈Vk,ξi=1

`i −m−1
k

∑
j:Vj∈Vk,ξj=1

`j

2

, (4)

where `i represents the row of nKnJ−1
n hn corresponding to cluster i.

The �rst term in (4) is an estimate of the variance of the estimator based on the
full cohort. The second component corresponds to the additional uncertainty
due to subsampling.

3.1 Inference for �nite dimensional parameters

Often focus is on inference for the �nite dimensional parameter θ0, while the
in�nite dimensional Λ0 is treated as nuisance. Inference can then be facilitated
conveniently by pro�le likelihood theory (Murphy and van der Vaart, 2000).

The IPW Pro�le Likelihood is de�ned as

pLπn(θ) = sup
Λ∈Λ

n∏
i=1

l(θ,Λ)ξi/πi [Oi].

By taking the supremum in two steps we observe that θ̂n, the �rst component
of the maximizer of (3), also maximizes θ 7→ pLπn(θ). Choosing hΛ equal to
zero in Theorem 2 we see that θ̂n is asymptotically normal. We have the
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following corollary to Theorem 2 that concerns the e�cient score function and
the e�cient information. For de�nitions and discussion of these concepts in
the semiparametric setting we refer to Murphy and van der Vaart (2000) or
van der Vaart (1998, 1999).

Corollary 1 (IPW Pro�le likelihood). The IPWMLE of θ0 is asymptotically
normal and has the asymptotic expansion

n1/2(θ̂n − θ0) = n−1/2Ĩ−1
n∑
i=1

ξi
πi

˜̀[Oi] + oP (1), (5)

where ˜̀ is the e�cient score and Ĩ is the e�cient information for estimating
θ0. The asymptotic variance of n

1/2(θ̂n − θ0) is

Ṽ = Ĩ−1 +
K∑
k=1

vk
1− pk
pk

Vark(Ĩ−1 ˜̀), (6)

where vk is the fraction of the population belonging to stratum k, pk the lim-
iting sampling probability for subjects in stratum k and Vark is the variance
conditional on membership in stratum k.

Equation (5) presents an alternative to Theorem 3 for estimating the asymp-
totic variance of the IPWMLE. If θ̂−in denotes the IPWMLE of θ0 leaving out
observation i, then θ̂n − θ̂−in = n−1 ξi

πi
Ĩ−1 ˜̀[Oi] + oP (1). The sample variance

of these Jackknife estimates can be used to estimate both the unconditional
and conditional variances in (6). Unfortunately, our numerical studies reveal
that this variance estimator is computationally too slow for the sample sizes
we have in mind.

Testing hypothesized values of the �nite dimensional parameters is essential
e.g. for model selection.

Theorem 4 (IPW Pro�le Likelihood Ratio). Let θ = (θ1, θ2) ∈ Rd1+d2 , where
θ2 ∈ Rr and partition Ṽ as

Ṽ =
(
Ṽ11 Ṽ12

Ṽ21 Ṽ22

)
,

where the subscripts correspond to the elements related to θ1 and θ2 in the
obvious way. Under the null hypothesis H0 : θ2 = θ20, i.e. θ ∈ Θ0 = {(θ1, θ2) ∈
Θ : θ2 = θ20}, the sequence

2 log
supθ∈Θ pL

π
n(θ)

supθ∈Θ0
pLπn(θ)
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is asymptotically distributed as λ1χ
2
1 + . . .+ λrχ

2
1, where the λs are the eigen-

values of the matrix

Ṽ
1/2
22

(
Ṽ −1

11 Ṽ21

1r×r

)T
Ĩ

(
Ṽ −1

11 Ṽ21

1r×r

)
Ṽ

1/2
22 .

Of course, we do not know the values of Ĩ and Ṽ in Theorem 4 and the result
seems at �rst to be of little practical use. From Theorem 3, we do however
have consistent estimators of both matrices. We have performed extensive sim-
ulations to investigate the validity of a test where the test statistic is compared
to a distribution where Ĩ and Ṽ are replaced by estimates. We found this pro-
cedure to yield acceptable accuracy in all of the various models we tried, see
Section 4. We have not been able to theoretically justify this.

We typically want to test H0 : θ2 = 0 against H1 : θ2 6= 0. The alternative
states that at least one of the additional covariates have an e�ect on the failure
times. Observe that according to assumption A5, θ0 must be in the interior
of Θ. Hence, we can not use the theorem for testing if the variance of one or
more random e�ects is zero. For example, consider a model with d-dimensional
normally distributed random e�ects. When the full cohort is used in analysis,
the distribution of the likelihood ratio statistic for testing if one of the random
e�ects is zero, i.e. testing if the corresponding column and row of the covariance
matrix are zero against the alternative that the matrix is positive de�nite,
follows a 50 : 50 mixture of a χ2

d−1 and a χ2
d distribution. We have yet not

found the distribution of the statistic under two-phase sampling.

The asymptotic distribution in Theorem 4 is the distribution of the quadratic
form AT ĨA, where A has a multivariate normal distribution with zero mean,
and is sometimes called a generalized χ2 distribution. Note that if Var(A) =
Ĩ−1, which it is when estimates are based on the full cohort data, the second
matrix in Theorem 4 reduce to the identity matrix so that all eigenvalues have
value one and the asymptotic distribution is the usual χ2

r distribution. Under
two-phase sampling however, the λs are greater than one, a consequence of the
additional uncertainty from discarding data.

The proofs of Corollary 1 and Theorem 4 are based on an asymptotic expansion
of the pro�le log likelihood of Murphy and van der Vaart (2000) and can be
found in Appendix A.4.



4. Simulation studies 33

3.2 Numerical methods

We have explored maximization of the IPW likelihood (3) with both an EM
algorithm similar to that suggested by Zeng and Lin (2007a) as well as with
the algorithm fminunc in the MATLAB optimization toolbox. The latter is a
subspace trust-region method based on the interior-re�ective Newton method
described in Coleman and Li (1996, 1995). Each iteration involves the ap-
proximate solution of a large linear system using the method of preconditioned
conjugate gradients. To avoid negative estimates of the jump sizes for Λ, we
used the logarithms of the jump sizes as the parameters. All programming was
done in MATLAB with parts of the code written in C. We numerically approx-
imated the integrals for the normal random e�ects by Gaussian quadratures.
After convergence, variances were estimated by the formula suggested in The-
orem 3. We also tried estimating the variances with the method suggested in
the discussion following Corollary 1. Simulations indicated that the estimates
are consistent, but the algorithm is too slow to be of practical use.

At least for larger sample sizes, the EM algorithm was observed to be much
faster than the interior-re�ective Newton method when maximizing unweighted
likelihoods. For weighted likelihoods, however, the EM algorithm appears to
come reasonably close to the maximum value in just a few iterations, but re-
quires many more rounds to actually converge. Stopping the algorithm too
early had a severe impact on the likelihood ratios, less so on parameter esti-
mates. The direct optimization on the other hand is extremely slow when the
sample size is large. In the end, we settled for an optimization procedure where
we �rst run the EM algorithm to �nd an approximate solution subsequently
�ne tuned by the subspace trust-region method.

Davies (1980) presents an algorithm for calculating the distribution of linear
combinations of χ2 random variables based on numerical inversion of the char-
acteristic function. We used the C implementation of this algorithm that can
be found on that article's author's web page to calculate the p-values of the
IPW likelihood ratio test of Theorem 4.

4 Simulation studies

To assess the performance of the proposed inferential procedures we conducted
numerical studies. We �rst considered a proportional odds model with Gaussian
random e�ects shared within pairs,

Λ(t|Xij , Zij ,bi) = log
{

1 + Λ0(t) exp(βTXij + bi)
}
, (7)



34

with Λ0(t) = t2/20000 corresponding to a Weibull distribution with scale
parameter 1/20000 and shape parameter 2; Xij = (Xij1, . . . , Xij5)T , where
Xij1 ∼ N(0, 2), Xi12 = Xi22 ∼ N(0, 1), Xi13 = Xi23 = I(N(0, 1) > 0.2),
Xi14 = Xi24 = I(N(0, 1) > 0.5), Xij5 = Xij4 +ζijI(ζij < 1.5)+1.5I(ζij > 1.5),
where ζij ∼ N(0, 1); β = (0, 0, 0, 1,−1)T and bi ∼ N(0, σ2 = 4).

Censoring times were generated from a normal distribution with mean 75 and
variance 100. All remaining subjects were censored at time τ = 100. This
corresponds to a censoring rate of approximately 94%. The starting value for
the �nite dimensional parameter was set to (0, 0, 0, 0, 0, 1) and the starting
value of the estimate of the jump size Λ{Yij} was set to one divided by the
number of subjects still at risk at time Yij .

Bias ESE SEE CP E�
m1 = M1 β1 = 0 0.015 0.047 0.051 0.946 0.889
m2 = 2M1 β2 = 0 -0.024 0.079 0.071 0.965 0.815

β3 = 0 -0.012 0.159 0.156 0.932 0.815
β4 = 1 -0.030 0.192 0.174 0.972 0.839
β5 = −1 0.012 0.090 0.079 0.975 0.918
σ2 = 4 0.086 0.626 0.579 0.930 0.995

m1 = 0.5M1 β1 = 0 0.006 0.065 0.068 0.912 0.601
m2 = 1.5M1 β2 = 0 -0.020 0.105 0.102 0.935 0.541

β3 = 0 -0.005 0.213 0.232 0.938 0.541
β4 = 1 -0.061 0.259 0.238 0.938 0.561
β5 = −1 0.005 0.123 0.126 0.978 0.629
σ2 = 4 -0.047 0.892 0.973 0.900 0.707

m1 = M1 β1 = 0 0.015 0.053 0.056 0.935 0.803
m2 = M1 β2 = 0 -0.021 0.092 0.099 0.935 0.698

β3 = 0 0.008 0.186 0.196 0.938 0.699
β4 = 1 -0.041 0.222 0.221 0.953 0.730
β5 = −1 0.013 0.097 0.097 0.970 0.848
σ2 = 4 0.079 0.631 0.588 0.930 0.989

Table 1: Bias and ESE correspond to the bias and empirical standard error
of the IPWMLE; SEE to the mean of the standard error estimates; CP to the
coverage proportion of 95% con�dence intervals; and E� to e�ciency compared
to the cohort estimator.

We simulated 1000 cohorts, each consisting of 10000 pairs. Pairs were divided
into two strata depending on whether any member experienced the event (cases)
or not (controls). On average there were 430 case pairs per cohort. We selected
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m1 of the M1 case pairs in the cohort and m2 of the control pairs into a
subcohort for analysis. Results are shown in Table 1. The bias is small in all
designs and the standard error estimates and coverage proportions are fairly
accurate, except possibly for the random e�ect component.

E�ciency was calculated from estimates of the standard deviation of the full
cohort estimators, based on the subcohorts. In the �rst design, where we
included all case pairs and twice as many control pairs into the subcohort, the
e�ciency was greater than 0.8 for all parameters even though only about 15%
of the observations were used. It is interesting to compare the second and third
designs where the size of the subcohort is the same, but the proportion of cases
is di�erent. Bias and standard error estimates agreed well, but the e�ciency
was seriously de�ated when subsampling case pairs. This is expected as the
case pairs carry most of the relevant information. The design including more
cases is clearly preferable.

As a second model we generated survival time pairs from a proportional hazards
model with bivariate normal random e�ects,

Λ(t|Xij , Zij ,bi) = Λ0(t) exp(β1Xij1 + β2Xij2 + Zijb1i + b2i),

with Λ0(t) = t/10000 corresponding to an exponential distribution with pa-
rameter 1/10000; β1 = 1, β2 = −1;(

b1i

b2i

)
∼ N

(
0,
[

1 0.5
0.5 1

])
;

Xij1 ∼ N(0, 1), Xi12 = 1, Xi22 = 0 and Zi1 = Zi2 ∼ N(0, 1).

We used the same censoring as for the proportional hazards model, now corre-
sponding to a censoring rate of approximately 95%. The starting values for the
β parameters were set zero, those pertaining to the covariance matrix of the
random e�ect to the identity matrix and the inital jump sizes were set as for the
previous model. Results are shown in Table 2. Again, the regression coe�cient
estimators were virtually unbiased and the corresponding estimated standard
errors agreed well with the emprical standard errors. The coverage proportions
also agreed with the theory. The estimates of the elements of the covariance
matrix of the random e�ects were less impressive. We note that Zeng et al.
(2005) experienced similar problems with covariance matrix estimation when
considering a proportional odds model with a bivariate normal random e�ect
but without subsampling.

To investigate the distribution of the likelihood ratio we considered testing
β1 = β2 = β3 = 0 in a proportional odds model identical to (7), exceot that
now Λ0(t) = t3/2/8000 corresponding to a censoring of 93%. All case pairs and
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Bias ESE SEE CP E�
m1 = M1 β1 = 1 -0.001 0.076 0.079 0.947 0.748
m2 = M1 β2 = −1 -0.005 0.111 0.113 0.944 0.896

σ11 = 1 0.037 0.196 0.241 0.856 0.851
σ12 = 0.5 0.013 0.113 0.119 0.929 0.758
σ22 = 1 0.069 0.512 0.483 0.987 0.774

Table 2: Bias and ESE correspond to the bias and empirical standard error
of the IPWMLE of the proportional hazards model; SEE to the mean of the
standard error estimates; CP to the coverage proportion of 95% con�dence
intervals; and E� to e�ciency compared to the cohort estimator.

twice as many controls were inculuded in the phase two sample. We calculated
p-values of the test for each of 1000 cohorts, consisting of 3500 pairs each,
based on the distribution of Theorem 4 but with Ĩ and Ṽ estimated from data.
4.8% of the p-values were bellow 0.05 and 10.51% bellow 0.1. Figure 1 shows
density estimates and a QQ-plot of the observed values of the likelihood ratio
statisics against a simulated data set of the same size from the generalized
χ2-distribution of Theorem 4 with estimated parameters.

We have investigated the distribution of the likelihood ratio statistic in numer-
ous models with various choices of Box-Cox transformations, di�erent numbers
and distributions of covariates and varying number of regression parameters set
to zero and both univariate and bivariate Gaussian random e�ects (not shown).
The conclusions are in all set ups the same as for the model described above.
We conclude that the approximation is su�ciently accurate for practical use.

5 An example

As a hands on illustration, we considered a study on cardiovascular diseases
(CVD) among Swedish men. In Sweden 30% of the premature deaths (45-64
years) among men are caused by CVD. It is well known that a family history
of CVD elevates the risk of CVD. A negative impact of social class on CVD
and death has been documented for both social class of origin and obtained
social class. A detailed description of the data set as well as references to the
litterature on social class as risk factor of CVD can be found in Tiikkaja et al.
(2010).

The phase one sample consisted of 230942 pairs, corresponding to the two oldest
brothers from families that were registered in the 1960 Swedish population



5. An example 37

Figure 1: The plot to the left shows the kernel smoothed density (as given by
the MATLAB command ksdensity) of the likelihood ratio statistic from 1000
simulations of for testing if β1 = β2 = β3 = 0 in the proportional odds model
against 1000 simulated realizations of the distribution given in Theorem 4 but
with estimated parameters. On the right hand side is a QQ-plot of the same
data set.

and housing census and where both siblings were residenting in Sweden 1990.
Sibships were identi�ed from the Swedish multi-generation register. There are
6313 deaths caused by CVD. In 106 sib-pairs both brothers died from CVD.

The covariates we considered were parental social class (1960) and own mid-
life occupational class (1990), educational level and family history of CVD. All
covariates were categorical and represented by dummy variables in our model.
Social class of origin and obtained social class were categorized as unclassi�able
(missing information or unclassi�able occupation), manual and non-manual (in-
cluding also self-employed). The highest household class was used for parental
class whereas the individual's own occupation was used for adult social class.
Educational level was grouped into unknown, primary, secondary and univer-
sity. A family history covariate indicated if any of the parents died from CVD.

We randomly split the data set and used one third of the lifetimes for model
selection and the rest for parameter estimation in the �nal model. By using dis-
junct sets we avoid problems associated with model selection when interpreting
the con�dence intervals.
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Education Primary β1 0.556 (0.031)
Secondary β2 0.186 (0.032)
Unknown β3 0.080 (0.037)

Family history CVD death β4 0.150 (0.008)

Parental class Manual β5 -0.316 (0.047)
Non-manual β6 -0.362 (0.048)

Adult class Manual β7 -0.974 (0.016)
Non-manual β8 -1.259 (0.015)

Clustering σ2 0.848 (0.024)

Table 3: Estimates in the �nal proportional hazards model. Standard errors
shown in parentheses.

From the portion of the cohort intended for model selection we selected a
subcohort consisting of all sib-pairs with at least one death due to CVD (2101
pairs) and a random sample of 1000 control pairs (1.3% of all available controls).
As a �rst model we included the covariates family history of CVD, parental and
obtained social class, and consider the class of Box-Cox transformations see (2)
with a shared univariate Gaussian random e�ect. We let ρ vary from 0 to 1 in
0.1 increments and maximized the corresponding weighted observed likelihood.
Since all models had the same number of parameters, model comparisons were
based directly on the likelihood values. It turned out that ρ = 1, corresponding
to the proportional hazards model, gave the maximal likelihood value.

Next, we investigated including additional covariates to the chosen model. The-
orem 4 was applied (again with matrices Ĩ and Ṽ estimated from data) to
evaluate the e�ect of adding the three dummies representing educational class.
The test indicated a signi�cant e�ect (p-value=0.017) and therefore we decided
to include educational class in our �nal model.

The selected model was then �tted to a subcohort of the remaining sibling
pairs. All case pairs (4145 pairs) were included in the subcohort together with
1000 randomly chosen control pairs (0.007% of the available control pairs).
Results, summarised in Table 3, show that a family history of CVD increases
the risk of death in CVD, higher education level decreases the risk, and a higher
childhood social class, as well as adult, has a negative impact on the risk of
death in CVD. The adult class seem to have a greater e�ect than childhood
class, which is in line with �ndings reported elsewhere (see Tiikkaja et al. (2010)
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and the references given there). Furthermore, there is a strong clustering e�ect
among brothers.

6 Discussion

We have extended previous results on maximum likelihood estimation in semi-
parametric transformation models for clustered failure times to two-phase sam-
pled data and rigorously derived the asymptotic properties of the estimator and
a related likelihood ratio test. A consistent estimator of the asymptotic vari-
ances was proposed. The method was veri�ed to perform well on simulated
data and illustrated on a real world data set.

The variance estimator we propose requires inversion of the full observed infor-
mation matrix, even if interest is restricted to the �nite dimensional parameter.
This is disappointing both because it requires specifying the Hessian of the log
likelihood during implementation and also, when the number of observed failure
times is large, because of problems associated with inversion of big matrices.
When inference for the Euclidean parameter is based on the whole cohort, treat-
ment of the full information matrix can elegantly be avoided by di�erentiation
of the pro�le likelihood (Zeng et al., 2008; Murphy and van der Vaart, 2000).
We have not yet been able to �nd equivalent results for two-phase sampled
data.

In some applications we may be interested in testing whether the variance of
a random e�ect is zero. The null hypothesis is then on the boundary of the
parameter space, a violation of assumption A5. We believe that the distribution
of the likelihood ratio statistic in this case is a mixture of weighted sums of χ2

1

distributions, but further work is needed to �nd the values of the weights.

Our extension can easily be adapted to the broader class of semiparametric
regression models for right censored failure time data described by Zeng and
Lin (2007a, 2010). One obvious extension would be to let the transformation
H depend on some unknown parameter estimated from data. This was consid-
ered by Zeng and Lin (2007b), and is readily achieved by modi�cations of the
assumptions similar to theirs. An extension to allow for recurrent events within
the same individual and also allowing for events of di�erent types should be
straightforward given the work of Zeng and Lin (2010).

In writing this paper we speci�cally had sampling from routine registers in
mind. The main reason for subsampling in this set up is the computational cost
associated with the large sample size, but the methods apply more generally.
In epidemiological studies the motive for subsampling may instead be the cost,
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or ethical issues, associated with measuring the covariate of actual interest.
If auxiliary variables believed to be correlated with the covariates are more
readily available, these can be used to increase statistical e�ciency, either by
calibrating the weights to cohort totals or by using these variables to estimate
the weights, see e.g. Borgan et al. (2000), Breslow and Wellner (2007, 2008)
and Breslow et al. (2009).
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A Proofs

We review some results from Breslow and Wellner (2007) that are indispensable
in the following. De�ne the IPW empirical measure of the (potentially partial)
observations from clusters O1, . . . , On, by

Pπn =
1
n

n∑
i=1

ξi
πi
δOi

where δOi
denotes the Dirac measure placing unit mass on Oi. We will use

operator notation in the following. That is, for any measurable function f [O],

Pπnf =
1
n

n∑
i=1

ξi
πi
f [Oi]

and
P0f = Ef [O1].

De�ne the IPW empirical process

Gπ
n =

√
n (Pπn − P0)

=
√
n(Pn − P0) +

√
n(Pπn − Pn).

From Breslow and Wellner (2007, Section 4) we have that if vk = P1Vk
> 0,

for k = 1, . . . ,K,

Gπ
n
L→ G +

K∑
k=1

√
vk

1− pk
pk

Gk = Gπ (8)
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on `∞(F), where (G,G1, . . . ,GK) is a vector of independent Brownian bridge
processes, all indexed by a P0-Donsker class F . Speci�cally, Gk is a P0|k-
Brownian bridge process, where P0|k(·) = E(·|V ∈ Vk) indexed by F . Breslow
and Wellner (2007, Proposition B.1) further states that if F is P0-Donsker and
vk > 0, then F is P0|k-Donsker on stratum k, k = 1, . . . ,K.

We will repeatedly make use of the following Lemma with is an IPW analog to
van der Vaart and Wellner (1996, Lemma 3.3.5) with a similar proof.

Lemma 1. For each ϑ in subset of a normed space and every h in an arbitrary
indexing set F , let x 7→ φ(ϑ)h[x] be a measurable function such that

{φ(ϑ)h− φ(ϑ0)h : ‖ϑ− ϑ0‖ < δ, h ∈ F} ,

is P -Donsker for some δ > 0 and

sup
h∈F

P {φ(ϑ)h− φ(ϑ0)h}2 → 0, as ϑ→ ϑ0.

Then if ϑ
P→ ϑ0,

‖Gπ
n {φ(ϑ)− φ(ϑ0)}‖`∞(F) = oP (1).

A.1 Proof of Theorem 1

The proof follows closely that of Zeng et al. (2008, Lemma 3, Theorem 1),
where we will replace the empirical measure by the IPW empirical measure.
The result will follow if we can verify steps (i)− (iii) below.

(i) The maximum likelihood estimate (θ̂n, Λ̂n) exists.

(ii) With probability one, limn→∞ Λ̂n(τ) <∞.

(iii) If (ii) is true, by compactness of the parameter space for θ and the Helly
selection theorem, there exists a subsequence of {n}, still denoted {n},
for which θ̂n converges to θ∗ and Λ̂n(t) a.s.→ Λ∗(t) for t ∈ [0, τ ] along
that subsequence, for some θ∗ and Λ∗. We show that any convergent
subsequence of (θ̂n, Λ̂n) must converge to (θ0,Λ0).

Proof of (i). It is su�cient to show that the jump size of Λ̂n at Yij such that
∆ij = 1 is �nite. From assumption A8, {G′(x)x}∆ij{1−G(x)}1−∆ij is bounded.
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Choosing x =
∫ Yij

0
eXij(t)T β+Zij(t)T bdΛ(t) in this expression we see that

Lπn(θ,Λ)

=
n∏
i=1

∫
b

ni∏
j=1

{
G′

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)

× eXij(Yij)T β+Zij(Yij)T bΛ{Yij}
}∆ij

×

{
1−G

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)}1−∆ij

η(b; γ)db

ξi/πi

≤
n∏
i=1

∫
b

ni∏
j=1

{
G′

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)

×
∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

}∆ij

×

{
1−G

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)}1−∆ij

η(b; γ)db

ξi/πi

= O(1).

By assumption A2, there will eventually exist some (i, j) such that Yij = τ and
ξi = 1 with probability one. That is, at least one integral in the expression

n∏
i=1

∫
b

ni∏
j=1

{
1−G

(∫ τ

0

eXij(t)T β+Zij(t)T bdΛ(t)
)}I(Yij=τ)

η(b; γ)db

ξi/πi

(9)
is present when n is large enough. Since G(∞) = 1 by A7 such an integral has
value zero if Λ has an in�nite jump size for some failure time. We conclude that
the jump sizes of Λ must be �nite. Observing that (9) is a factor in Lπn(θ,Λ),
at least asymptotically, we obtain that Lπn(θ,Λ) is bounded by a �nite constant
times

n∏
i=1

∫
b

ni∏
j=1

{
1−G

(∫ τ

0

eXij(t)T β+Zij(t)T bdΛ(t)
)}I(Yij=τ)

η(b; γ)db

ξi/πi

.

Together with assumption A5 that θ belongs to a compact set, this shows that
the maximum likelihood estimate (θ̂n, Λ̂n) exists.
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Proof of (ii). In order to show that Λ̂n(τ) is bounded uniformly for all large
n we �rst construct a step function Λn with jumps only at the Yij for which
∆ij = 1 such that Λn is close to the true function Λ0.

Consider one-dimensional submodels for Λ de�ned by the map

ε 7→ Λε =
∫

(1 + εhΛ)dΛ

where hΛ is an arbitrary nonnegative function of bounded variation. The direc-
tional derivative in the direction hΛ of the weighted log likelihood with respect
to ε evaluated at ε = 0 yields a score function for Λ. It takes the form

`Λ(θ,Λ)[hΛ][Oi] =
∂

∂ε

∣∣∣∣
ε=0

log l
(
θ,

∫
(1 + εhΛ)dΛ

)
[Oi] (10)

=
ni∑
j=1

∆ijhΛ(Yij)

+
∫

b

ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(t)T β+Zij(t)T bhΛ(t)dΛ(t)dµi(θ,Λ,b),

where

Qij(β,Λ,b) =
∆ijG

′′(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

G′(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

−
(1−∆ij)G′(

∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

1−G(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

,

dµi(θ,Λ,b) =
R1(β,Λ,b)[Oi]η(b, γ)db∫
b
R1(β,Λ,b)[Oi]η(b, γ)db

.

and

R1(β,Λ,b)[Oi] =
ni∏
j=1

{
G′

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)
eXij(Yij)T β+Zij(Yij)T b

}∆ij

×

{
1−G

(∫ Yij

0

eXij(t)T β+Zij(t)T bdΛ(t)

)}1−∆ij

.

Since the weighted log likelihood is maximized at (θ̂n, Λ̂n) over the whole model,
it is maximized at ε = 0 when evaluated on the submodel given by (θ̂n, Λ̂εn).
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Therefore Pπn`Λ(θ̂n, Λ̂n)[hΛ] = 0 for all hΛ. With the choice hΛ(u) = I{u ≤ t}
and using (10) this becomes

n∑
i=1

ξi
πi

ni∑
j=1

∆ij1(Yij ≤ t) (11)

=
∫ t

0

n∑
i=1

ξi
πi

∫
b

ni∑
j=1

I(Yij > s)Qij(β,Λ,b)

×eXij(s)T β+Zij(s)T bdµi(θ̂n, Λ̂n,b)dΛ̂n(s).

Changing the order of integration and solving for Λ̂n in (11) results in the
following expression for the IPWMLE of Λ0

Λ̂n(t) =
∫ t

0

dPπnN(s)

PπnQ(s; θ̂n, Λ̂n)
, (12)

where

Q(t; θ,Λ)[Oi] =
∫

b

ni∑
j=1

Qij(β,Λ,b)eXij(t)T β+Zij(t)T bdµi(θ,Λ,b)I(Yij > t)

and N(t)[Oi] =
∑ni

j=1 ∆ij1(Yij ≤ t) denotes the number of events in cluster i
up to time t.

We introduce the following step function, in which we have replaced estimates
of θ and Λ with the true values θ0 and Λ0 in the right hand side of expression
(10).

Λn(t) =
∫ t

0

dPπnN(s)
PπnQ(s; θ0,Λ0)

. (13)

The class {Q(t; θ0,Λ0) : t ∈ [0, τ ]} is P0-Donsker and uniformly bounded away
from zero (Zeng et al., 2008, Technical report, Appendix). Thus,

sup
t∈[0,τ ]

|(Pπn − P0)Q(t; θ0,Λ0)| a.s.→ 0

and

sup
t∈[0,τ ]

∣∣∣∣∣Λn(t)− E

[∑ni

j=1 I(Yij < t)∆ij

P0Q(t; θ0,Λ0)

]∣∣∣∣∣ a.s.→ 0.

Since from Zeng et al. (2008, Technical report, pp. 8-9)

E

ni∑
j=1

I(Yij < t)∆ij/P0Q(t; θ0,Λ0) = Λ0(t),
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Λn(t) converges to Λ0(t) uniformly in t ∈ [0, τ ] almost surely.

By the compactness of the parameter space for θ, there exists a subsequence
of {n} for which θ̂n converges to some θ∗ along that subsequence. Now choose
a further subsequence, still denoted {n}, for which θ̂n → θ∗ and such that
Λ̂n → ∞. We will work towards a contradiction by showing that the right
hand side of

0 ≤ n−1 logLπn(θ̂n, Λ̂n)− n−1 logLπn(θ0,Λn) (14)

will become negative as n→∞.

First,

n−1 logLπn(θ0,Λn)

=
1
n

n∑
i=1

ξi
πi

log
ni∏
j=1

Λn{Yij}∆ij

∫
b

R1(β0,Λn,b)[Oi]η(b; γ0)µ(b)

=
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log Λn{Yij}

+Pπn log
∫

b

R1(β0,Λn,b)η(b; γ0)µ(b)

=
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log
n−1

PπnQ(Yij ;β0, γ0,Λ0)
+O(1)

=
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log n−1

+
∫ τ

0

log
dPπnN(t)

PπnQ(t; θ0,Λ0)
+O(1)

=
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log n−1 +O(1). (15)

The boundedness (almost surely) follows from the smoothness of R1 in Λ and
the Donsker property of the classes {Q(t; θ0,Λ0) : t ∈ [0, τ ]} and {logQ(t; θ0,Λ0) :
t ∈ [0, τ ]} (Zeng et al., 2008, Technical report, Appendix).

Furthermore, Zeng et al. (2008, Lemma 1) states that∫
b

R1(β,Λ,b)[Oi]η(b; γ)db ≤ O(1)
ni∏
j=1

{1 + Λ(Yij)}−(ρ0+∆ij) (16)

for a �nite constant O(1) independent of (θ,Λ) with probability one. Using
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(16) we obtain

n−1 logLπn(θ̂n, Λ̂n) ≤ O(1) +
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log Λ̂n{Yij}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij) log{1 + Λ̂n(Yij)} (17)

Thus, (14), (15) and (17) imply

0 ≤ O(1) +
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log Λ̂n{Yij}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij) log{1 + Λ̂n(Yij)}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log n−1

= O(1) +
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ij log nΛ̂n{Yij}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij) log{1 + Λ̂n(Yij)}. (18)

We will work towards a contradiction by showing that the bound in (18) will
be negative if Λ̂n(τ) diverges to ∞. The proof is based on the now classical
partitioning idea of Murphy (1994) as used by Zeng et al. (2008). Following
Zeng et al. (2008, p. 10-11) we can choose a �nite sequence τ = s0 > s1 > s2 >
. . . sQ ≥ sQ+1 = 0 such that

1
2
E

ni∑
j=1

(ρ0 + ∆ij)I{Yij = s0} ≥ E
ni∑
j=1

∆ijI{Yij ∈ [s1, s0)} (19)

and

(1− ε)E
ni∑
j=1

(ρ0 + ∆ij)I{Yij ∈ [sq, sq−1)} ≥ E
ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)}, (20)

for q = 1, . . . , Q, where ε ∈ (0, 1) is a constant such that

ε

1− ε
<

E
∑ni

j=1 I{Yij ∈ [s1, s0)}
E
∑ni

j=1 ∆ijI{Yij ∈ [0, τ)}
.
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Because all subjects are censored at time τ so that ∆ij = 0 whenever Yij = τ
(see A2), the last two terms on the right hand side of (18) can be written

Q∑
q=0

1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)} log nΛ̂n{Yij}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

I{Yij = τ}ρ0 log{1 + Λ̂n(τ)} (21)

−
Q∑
q=0

1
n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij)I{Yij ∈ [sq+1, sq)} log{1 + Λ̂n(Yij)}

Since Λ̂n is a non-decreasing function, Λ̂n(Yij) ≥ Λ̂n(sq+1) when Yij ∈ [sq+1, sq),
and (21) is bounded by

Q∑
q=0

1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)} log nΛ̂n{Yij}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

I{Yij = τ}ρ0 log{1 + Λ̂n(τ)}

−
Q∑
q=0

1
n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij)I{Yij ∈ [sq+1, sq)} log{1 + Λ̂n(sq+1)}.

Furthermore,

1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)} log nΛ̂n{Yij}

=
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)}

×
∑n
k=1

ξk

πk

∑nk

l=1 ∆klI{Ykl ∈ [sq+1, sq)} log nΛ̂n{Ykl}∑n
k=1

ξk

πk

∑nk

l=1 ∆klI{Ykl ∈ [sq+1, sq)}

≤ 1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)}

× log

{
n

∑n
k=1

ξk

πk

∑nk

l=1 ∆klI{Ykl ∈ [sq+1, sq)}Λ̂n{Ykl}∑n
k=1

ξk

πk

∑nk

l=1 ∆klI{Ykl ∈ [sq+1, sq)}

}
(22)

where the inequality follows from Jensen's inequality. Recall that the jump
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sizes of Λ̂n are positive so that

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)}Λ̂n{Yij}

≤
n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ≤ sq}Λ̂n{Yij}

= Λ̂n(sq).

With this in mind we note that the right hand side of (22) is bounded by

1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)}

×

{
log Λ̂n(sq)− log

1
n

n∑
k=1

ξk
πk

nk∑
l=1

∆klI{Ykl ∈ [sq+1, sq)}

}

=
1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)} log Λ̂n(sq) +O(1)

Thus, right hand side of (18) is bounded from above by

O(1) +
Q∑
q=0

1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)} log{1 + Λ̂n(sq)}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

I{Yij = τ}ρ0 log{1 + Λ̂n(τ)}

−
Q∑
q=0

1
n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij)I{Yij ∈ [sq+1, sq)} log{1 + Λ̂n(sq+1)}

= O(1)− 1
2n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij)I{Yij = τ} log{1 + Λ̂n(τ)}

−

 1
2n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij)I{Yij = τ}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [s1, s0)}

 log
{

1 + Λ̂n(τ)
}
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−
Q∑
q=1

 1
n

n∑
i=1

ξi
πi

ni∑
j=1

(ρ0 + ∆ij)I{Yij ∈ [sq, sq−1)}

− 1
n

n∑
i=1

ξi
πi

ni∑
j=1

∆ijI{Yij ∈ [sq+1, sq)}

 log
{

1 + Λ̂n(sq)
}

The second term diverges to −∞ as Λ̂n(τ)→∞. The third term is negative for
large n as s1 was chosen to satisfy (19). By the selection of sq, q = 1, . . . , Q,
such that (20) is ful�lled, the last term cannot diverge to ∞. Hence, the
expression diverges to −∞. We conclude that for all n large enough, Λ̂n(τ) <
∞.

Proof of (iii). We have that

0 ≤ n−1 logLn(θ̂n, Λ̂n)− n−1 logLn(θ0,Λn)

= Pπn log
{∫

b

R1(β̂n, Λ̂n,b)η(b; γ̂n)db
}

−Pπn log
{∫

b

R1(β0,Λn,b)η(b; γ0)db
}

+n−1
n∑
i=1

ξi
πi

ni∑
j=1

∆ij log

[
Λ̂n{Yij}
Λn{Yij}

]
. (23)

We will show that the right hand side of (23) converges to

P0 log

∫
b
R1(β∗,Λ∗,b)η(b, γ∗)db

∏ni

j=1 Λ∗′(Yij)∆ij∫
b
R1(β0,Λ0,b)η(b, γ0)db

∏ni

j=1 Λ0
′(Yij)∆ij

which is the negative Kullback-Leibler information between the density for the
model (1) with parameters (θ∗,Λ∗) and at the true parameter values. This
cannot be positive and is hence zero. As a consequence∫

b

R1(β∗,Λ∗,b)η(b, γ∗)db
ni∏
j=1

Λ∗′(Yij)∆ij =

∫
b

R1(β0,Λ0,b)η(b, γ0)db
ni∏
j=1

Λ0
′(Yij)∆ij .

almost surely. The identi�ability result of Zeng et al. (2008, Lemma 2) now
implies that θ∗ = θ0 and Λ∗ = Λ0. This proves statement (iii).
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To prove convergence of the right hand side of (23) to the negative Kullback-
Leibler information, note that as Λ̂n(t) and Λn(t) both have positive jumps
at and only at the Yij for which ∆ij=1, Λ̂n(t) is absolutely continuous with
respect to Λn(t) and the construction of Λn(t) implies that

Λ̂n(t) =
∫ t

0

PπnQ(s; θ0,Λ0)

|PπnQ(s; θ̂n, Λ̂n)|
dΛn(s). (24)

We can take the absolute value because the jump sizes of Λ̂n(t) are positive,
cf. (12). From Zeng et al. (2008, Technical report, pp. 12) we have∥∥∥Q(t; θ̂n, Λ̂n)[Oi]−Q(t; θ∗,Λ∗)[Oi]

∥∥∥ (25)

≤ O(1)

‖θ̂n − θ∗‖+ ‖+
ni∑
j=1

|Λ̂n(Yij)− Λ∗(Yij)|+
∫ τ

0

|Λ̂n(t)− Λ∗(t)|

 .

From the point wise convergence of Λ̂n to Λ∗ and the dominated convergence
theorem, |Λ̂n(Yij)−Λ∗(Yij)|

a.s.→ 0 and
∫ τ

0
|Λ̂n(t)−Λ∗(t)|dt a.s.→ 0. In combination

with (25) this shows

sup
t∈[0,τ ]

∣∣∣Pπn [Q(t; θ̂n, Λ̂n)−Q(t; θ∗,Λ∗)
]∣∣∣ a.s.→ 0. (26)

Since the class {Q(t; θ0,Λ0) : t ∈ [0, τ ]} is Glivenko-Cantelli (Zeng et al., 2008,
Technical report, Appendix) we obtain

sup
t∈[0,τ ]

|(Pπn − P0)Q(t; θ0,Λ0)| a.s.→ 0. (27)

Furthermore, since the class {Q(t; θ∗,Λ∗) : t ∈ [0, τ ]} is Glivenko-Cantelli (Zeng
et al., 2008, Technical report, Appendix),

sup
t∈[0,τ ]

∣∣∣PπnQ(t; θ̂n, Λ̂n)− P0Q(θ∗,Λ∗, t)
∣∣∣ a.s.→ 0.

We wish to take limits on both sides in (24). From Zeng et al. (2008, p. 13-14)
we know that

min
t∈[0,τ ]

|P0Q(s; θ∗,Λ∗)| > 0. (28)

Thus, (28) implies that we can take limits in (24), using (26) and (27) to obtain

Λ∗(t) =
∫ τ

0

P0Q(t; θ0,Λ0)
|P0Q(t; θ∗,Λ∗)|

dΛ0(t).
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We conclude that Λ∗(t) is absolutely continuous with respect to Λ0(t) so that
Λ∗(t) is di�erentiable with respect to t and dΛ̂n(t)/dΛn(t) converges to
dΛ∗(t)/dΛn(t) uniformly in t.

From the Donsker, and thus also Glivenko-Cantelli, property of the class{∫
b

R1(β,Λ,b)η(b, γ)db : θ ∈ Θ,Λ increasing,Λ(0),Λ(τ) bounded
}

and∥∥∥∥∫
b

R1(β̂n, Λ̂n,b)[Oi]η(b, γ̂n)db−
∫

b

R1(β∗Λ∗,b)[Oi]η(b, γ∗)db
∥∥∥∥ (29)

≤ O(1)

‖θ̂n − θ∗‖+
ni∑
j=1

|Λ̂n(Yij)− Λ∗(Yij)|+
∫ τ

0

|Λ̂n(t)− Λ∗(t)|

 .

both shown in Zeng et al. (2008, Technical report, Appendix),

Pπn log
∫

b

R1(β̂n, Λ̂n,b)η(b, γ̂n)db a.s.→ P0 log
∫

b

R1(β∗,Λ∗,b)η(b, γ∗)db.

Thus,

n−1 logLn(θ̂n, Λ̂n)− n−1 logLn(β0, γ0,Λn)

→ P0 log

∫
b
R1(β∗,Λ∗,b)η(b, γ∗)db

∏ni

j=1 Λ∗′(Yij)∆ij∫
b
R1(β0,Λ0,b)η(b, γ0)db

∏ni

j=1 Λ0
′(Yij)∆ij

and the proof is complete.

We have proved steps (i)− (iii) and conclude that ‖θ̂n − θ0‖
a.s.→ and Λ̂n(t) a.s.→

Λ0(t) for t ∈ [0, τ ]. Since Λ0 is continuous in [0, τ ], the latter can be strength-
ened to uniform convergence.

A.2 Proof of Theorem 2

De�ne an δ-neighborhood Uδ of the true parameter (θ0,Λ0) as

Uδ =
{

(θ,Λ) : ‖θ − θ0‖+ ‖Λ− Λ0‖`∞[0,τ ] < δ
}
,

where ‖f‖`∞[0,τ ] = supt∈[0,τ ] |f(t)|, for a small constant δ > 0. From the

consistency of (θ̂n, Λ̂n) we conclude that for every δ > 0, (θ̂n, Λ̂n) ∈ Uδ with
probability close to one when the sample size n is large.
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Consider the set

H = {h = (hθ, hΛ) : hθ ∈ Rd1+d2 , hΛ ∈ BV [0, τ ], ‖h‖H = ‖hθ‖+ ‖hΛ‖V ≤ 1},

where ‖hΛ‖V denotes the total variation of hΛ in [0, τ ]. De�ne the map ψ :
Uδ 7→ `∞(H) by

ψ(θ,Λ)[hθ, hΛ] = hTθ `θ(θ,Λ) + `Λ(θ,Λ)[hΛ],

where lθ and lΛ[hΛ] is the score function for θ and the score operator for Λ in
the direction hΛ for a single cluster, respectively, i.e.

Pπnψ(θ,Λ)[hθ, hΛ] =

n−1 ∂

∂ε

∣∣∣∣
ε=0

log
n∏
i=1

l

(
θ + εhθ,

∫
(1 + εhΛ)dΛ

)ξi/πi

[Oi].

Speci�cally, for the ith cluster,

`θ(θ,Λ)[Oi] =
(
`β(θ,Λ)[Oi]
`γ(θ,Λ)[Oi]

)
,

where

`β(θ,Λ)[Oi] =
∑ni

j=1 {∆ijXij(Yij)

+
∫
b
Qij(β,Λ,b)

∫ Yij

0
eXij(Yij)T β+Zij(Yij)T bXij(t)dΛ(t)dµi(θ,Λ,b)

}
,

`γ(θ,Λ)[Oi] =
∫
b
η′(b; γ)/η(b; γ)dµi(θ,Λ,b)

and `Λ(θ,Λ)[hΛ] was de�ned in equation (10).

Zeng et al. (2008, Theorem 3.2) argue that by the smoothness of η(b; γ) and
G, see A7 and A9, the Fréchet di�erentiability of P0ψ(θ,Λ) at the true param-
eter values can be veri�ed directly. Let P0ψ̇0 denote the Fréchet derivative at
(θ0,Λ0).

We treat (θ − θ0,Λ − Λ0) as an element in `∞(H) by de�ning its value at
h = (hθ, hΛ) as hTθ (θ−θ0) +

∫
hΛd(Λ−Λ0). Note that in this setting P0ψ̇0 is a

map from {(θ − θ0,Λ− Λ0) : (θ,Λ) ∈ U} ∈ `∞(H) to `∞(H). Straightforward
calculations yield that

P0ψ̇0(θ − θ0,Λ− Λ0)[h] = (30)

= −(θ − θ0,Λ− Λ0)[σ0(h)]

= −σ0θ(h)T (θ − θ0)−
∫ τ

0

σ0Λ(h)d(Λ− Λ0),
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where the operator

σ0 =
(

σ0θ

σ0Λ

)
= P0

(
σ̃θ(θ0,Λ0)
σ̃Λ(θ0,Λ0)

)
: H 7→ H

is called the information operator. See Appendix A.5 for an explicit expression
of this operator.

Zeng et al. (2008) proved that σ0 is continuously invertible by showing that σ0

is one-to-one and can be written as a sum of a continuously invertible linear
operator and a compact linear operator. The invertibility then follows from
van der Vaart (1998, Theorem 25.93). From the invertibility of σ0 we have
that εH ⊂ σ(H) (Kosorok, 2008, 6.16(i)) for some positive constant ε and thus

‖P0ψ̇0(θ − θ0,Λ− Λ0)‖`∞(H)

= sup
h∈H
|(θ − θ0,Λ− Λ0)σ0(h)|

= ‖(θ − θ0,Λ− Λ0)‖`∞(σ0(H))

≥ ε‖(θ − θ0,Λ− Λ0)‖`∞(H). (31)

for (θ − θ0,Λ− Λ0) ∈ `∞(H). This shows that P0ψ̇0 is continuously invertible
on its range (Kosorok, 2008, 6.16(i)).

By the Fréchet di�erentiability of P0ψ(θ0,Λ0) and (31),∥∥∥P0ψ(θ̂n, Λ̂n)− P0ψ(θ0,Λ0)
∥∥∥
`∞(H)

=
∥∥∥P0ψ̇0(θ̂n − θ0, Λ̂n − Λ0)

∥∥∥
`∞(H)

+ oP0(‖(θ̂n − θ0, Λ̂n − Λ0)‖`∞(H))

≥ ε‖(θ̂n − θ0, Λ̂n − Λ0)‖`∞(H) + oP

(
‖(θ̂n − θ0, Λ̂n − Λ0)‖`∞(H)

)
= ‖(θ̂n − θ0, Λ̂n − Λ0)‖`∞(H) (ε+ oP0(1)) (32)

On the other hand, since by construction, Pπnψ(θ̂n, Λ̂n) = 0 and P0ψ(θ0,Λ0) = 0
in `∞(H),

n1/2
∥∥∥P0ψ(θ̂n, Λ̂n)− P0ψ(θ0,Λ0)

∥∥∥
`∞(H)

(33)

= n1/2
∥∥∥Pπnψ(θ̂n, Λ̂n)− P0ψ(θ̂n, Λ̂n)

∥∥∥
`∞(H)

≤ ‖Gπ
nψ(θ0,Λ0)‖`∞(H) +

∥∥∥Gπ
n

{
ψ(θ̂n, Λ̂n)− ψ(θ0,Λ0)

}∥∥∥
`∞(H)

.

We will show that the right hand side of (33) is bounded in probability. Since
H is a Donsker class and the functional ψ is a bounded Lipschitz functional
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with respect to H, the class G = {ψ(θ0,Λ0)h : h ∈ H} is P0-Donsker, which
implies boundedness of the �rst term.

Furthermore, from Zeng et al. (2008, p. 16), we know that

{ψ(θ,Λ)h− ψ(θ0,Λ0)h : (θ,Λ) ∈ Uδ,h ∈ H}

is P0-Donsker and that

sup
h∈H

P0 {ψ(θ,Λ)h− ψ(θ0,Λ0)h}2 → 0,

when ‖θ − θ0‖+ ‖Λ− Λ0‖`∞[0,τ ] → 0. This implies, by Lemma 1,∥∥∥Gπ
n

{
ψ(θ̂n, Λ̂n)− ψ(θ0,Λ0)

}∥∥∥
`∞(H)

= oP0(1), (34)

i.e. asymptotic negligibility of the second term.

Then, from (32) and the bounds for (33) we obtain

n1/2‖(θ̂n − θ0, Λ̂n − Λ0)‖`∞(H)

= n1/2OP0

(∥∥∥P0ψ(θ̂n, Λ̂n)− P0ψ(θ0,Λ0)
∥∥∥
`∞(H)

)
= OP0 (OP0(1) + oP0(1)) = OP0(1). (35)

For h = (hθ, hΛ) ∈ H, �xed but arbitrary,

n1/2hTθ (θ̂n − θ0) + n1/2

∫ τ

0

hΛd(Λ̂n − Λ0) (36)

= n1/2(θ̂n − θ0, Λ̂n − Λ0)[h]

= −n1/2P0ψ̇0(θ̂n − θ0, Λ̂n − Λ0)[σ−1(h)]

= −n1/2
{
P0ψ(θ̂n, Λ̂n)− P0ψ(θ0,Λ0)

}
[σ−1(h)]

+oP
(
n1/2(θ̂n − θ0, Λ̂n − Λ0)[σ−1(h)]

)
= Gπ

nψ(θ0,Λ0)[σ−1(h)] + Gπ
n

{
ψ(θ̂n, Λ̂n − ψ(θ0,Λ0))

}
[σ−1(h)] + oP0(1)

= Gπ
nψ(θ0,Λ0)[σ−1(h)] + oP0(1),

where the second equality follows from (30), the third from the Fréchet di�er-
entiability of P0ψ, the fourth from the second line in (33) and (35), and the
�fth from (34).
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The P0-Donsker property of G and the limit distribution result (8) (cf. the
discussion after (8)), implies

n1/2(θ̂n − θ0) + n1/2(Λ̂n − Λ0) L→ Gπ
nψ(θ0,Λ0)σ−1

in Rd1+d2 × `∞[0, τ ].

A.3 Proof of Theorem 3

From (36) and (8) we know that

n1/2hTθ (θ̂n − θ0) + n1/2

∫
hΛd(Λ̂n − Λ0) (37)

converges weakly to a zero mean normally distributed variable with variance

Var
(
ψ(θ0,Λ0)[σ−1

0 (h)][O]
)

+
K∑
k=1

vk
1− pk
pk

Vark
(
ψ(θ0,Λ0)[σ−1

0 (h)][O]
)

where

Vark(f) = P0|k(f⊗2)− P⊗2
0|k (f)

= P0(1Vk
(V )f⊗2)/vk − P⊗2

0 (1Vk
(V )f)/v2

k.

The �rst term in (37) corresponds to the usual variability in estimating the
parameters, assuming observations were available for all clusters. By replacing
Pn by its IPW analog Pπn in the proof of Zeng et al. (2008, Technical report,
Theorem 3.4) we see that this term can be consistently estimated by nhTnJ−1

n hn.

The second component of (37) represents additional variability due to subsam-
pling. The expression given in matrix form in the statement of the theorem
is equivalent to estimating σ0 by its empirical version, i.e. Jn, then inverting
it and plugging it into the score operator and estimating the variance of the
scores stratum wise. In order to justify the suggested procedure we need to
verify that

Pπn1Vjψ(θ̂n, Λ̂n)[σ̂−1
n (h)] P→ P01Vjψ(θ0,Λ0)[σ−1

0 (h)] (38)

and
Pπn1Vj

ψ2(θ̂n, Λ̂n)[σ̂−1
n (h)] P→ P01Vj

ψ2(θ0,Λ0)[σ−1
0 (h)] (39)

where σ̂n = Pπnσ̃(θ̂n, Λ̂n).
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In Appendix A.5 we prove that the class

{σ̃(θ,Λ)(h) : (θ,Λ) ∈ Uδ,h ∈ H}

is P0-Donsker and that σ̃ is continuous in the indexing sets by using argu-
ments similar to those in Zeng et al. (2008, Technical report, Appendix). Thus
‖(Pπn − P0)σ̃(θ,Λ)‖`∞(H) = oP0(1) for any (θ,Λ) ∈ Uδ. Because of the bound-
edness and continuity of σ̃ in (θ,Λ) (cf. Appendix A.5) we have, by dominated
convergence, that suph∈H ‖σ̂n(h)− σ0(h)‖H = oP0(1).

Since σ̂n converges to σ0 and σ0 is continuously invertible on H we have that
σ̂n is continuously invertible with probability converging to one as n→∞ (cf.
Parner (1998, Proof of Theorem 3)). For any g ∈ H we choose hn = σ̂−1

n (g).
Then,

∥∥σ̂−1
n (g)− σ−1

0 (g)
∥∥
H

=
∥∥σ−1

0 (σ0(hn))− σ−1
0 (σ̂n(hn))

∥∥
H

≤ O(1) sup
h∈H
‖σ0(h)− σ̂n(h)‖H

where the inequality follows from the continuity of σ−1
0 . We conclude that

sup
h∈H

∥∥σ̂−1
n (h)− σ−1

0 (h)
∥∥
H = oP0(1). (40)

Because H is a bounded Donsker class and the functional ψ is a bounded
Lipschitz functional with respect to H, the class {ψ(θ,Λ)h : h ∈ H}, (θ,Λ) ∈
Uδ, is a bounded P0-Donsker class. By van der Vaart and Wellner (1996,
Example 2.10.8) products of bounded Donsker classes are Donsker. Thus,

{
1Vj

ψ(θ̂n, Λ̂n)[h] : h ∈ H
}

and
{

1Vj
ψ2(θ̂n, Λ̂n)[h] : h ∈ H

}
are P0-Donsker classes and

(Pπn − P0)1Vj
ψ(θ̂n, Λ̂n)[σ̂−1(h)] a.s.→ 0 (41)

and

(Pπn − P0)1Vj
ψ2(θ̂n, Λ̂n)[σ̂−1(h)] a.s.→ 0. (42)
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The consistency result of Theorem 1, (40) and∣∣∣ψ(θ̃, Λ̃)[h̃][Oi]− ψ(θ,Λ)[h][Oi]
∣∣∣

≤ O(1)

‖h̃θ − hθ‖+ ‖θ̃n − θ‖+
ni∑
j=1

|h̃Λ(Yij)− hΛ(Yij)|

+
∫ τ

0

|h̃Λ(t)− hΛ(t)|dt+
ni∑
j=1

|Λ̃(Yij)− Λ(Yij)|+
∫ τ

0

|Λ̃(t)− Λ(t)|dt


(Zeng et al., 2008, Technical report, p. 16) shows, by dominated convergence,
that

P01Vjψ(θ̂n, Λ̂n)[σ̂−1
n (h)]→ P01Vjψ(θ0,Λ0)[σ−1

0 (h)]

and
P01Vj

ψ2(θ̂n, Λ̂n)[σ̂−1
n (h)]→ P01Vj

ψ2(θ0,Λ0)[σ−1
0 (h)].

Combining the two displays above and (41), (42), we get the desired consistency
(38) and (39).

A.4 Proof of Corollary 1 and Theorem 4

We will use minor modi�cation of Murphy and van der Vaart (2000, Theorem
1) to conclude that the weighted pro�le likelihood has a similar expansion as
the ordinary pro�le likelihood. In order to verify the conditions of Murphy
and van der Vaart (2000, Theorem 1) we construct a least favorable submodel
(van der Vaart, 1999, De�nition 9.7) for estimating θ0.

Choosing h = (ei, 0), i ∈ {1, . . . , d1 + d2}, where ei is the ith unit vector, in
(36) yields

n1/2eTi (θ̂n − θ0)
= Gπ

nψ(θ0,Λ0)[σ−1(ei, 0)] + oP0(1)
= Pπn

{
σ−1
θ (ei, 0)T `θ(θ0,Λ0) + `Λ(θ0,Λ0)[σ−1

Λ (ei, 0)]
}

+ oP0(1)

= σ−1
θ (ei, 0)Tn1/2Pπn

{
`θ(θ0,Λ0) + `Λ(θ0,Λ0)[σθ(ei, 0)σ−1

Λ (ei, 0)]
}

+ oP0(1).

We conclude that eTi θ̂n is an asymptotically linear estimator of the ith compo-
nent of θ0. Repeating this procedure d1 + d2 times to extract all components
of θ0 we get

n1/2(θ̂n − θ0)
= Ĩ−1n1/2Pπn {`θ(θ0,Λ0) + `Λ(θ0,Λ0)[h0]}+ oP0(1),
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where
Ĩ−1 =

(
σ−1
θ (e1, 0) . . . σ−1

θ (ed1+d2 , 0)
)

and

h0 = Ĩ

 σ−1
Λ (e1, 0)

...
σ−1

Λ (ed1+d2 , 0)


Thus, θ̂n is an asymptotically linear estimator for θ0 and the in�uence func-
tion ˜̀ = `θ(θ0,Λ0) + `Λ(θ0,Λ0)[h0] belongs to the space spanned by the score
functions. Consequently, h0 is the least favorable direction for estimating θ0

(van der Vaart, 1999, Section 2.2).

Our candidate for the approximately least favorable submodel is

Λξ(θ,Λ) = Λ + (ξ − θ) ◦
∫
h0dΛ, ξ ∈ Rd1+d2 ,

where ◦ represents component wise multiplication.

Murphy and van der Vaart (2000, Theorem 1) impose the following conditions.

(i) The map ξ 7→ `(ξ, θ,Λ)[O] = log l(ξ,Λξ(θ,Λ))[O] is twice continuously
di�erentiable with derivatives ˙̀, ῭, both continuous at (θ0, θ0,Λ).

(ii) There exists some neighborhood U of (θ0, θ0,Λ0) such that{
˙̀(ξ, θ,Λ) : (ξ, θ,Λ) ∈ U

}
is P0-Donsker with square integrable envelope function and{

῭(ξ, θ,Λ) : (ξ, θ,Λ) ∈ U
}

is P0-Glivenko-Cantelli and is bounded in L1(P0).

(iii) ˙̀(θ0, θ0,Λ0)[O] = ˜̀[O]

(iv) Λθ(θ,Λ) = Λ for every (θ,Λ)

(v) ‖Λ̂θ̃n
−Λ0‖`∞[0,τ ] = oP0(1) for any θ̃n

P→ θ0, where Λ̂θ = argmaxΛ L
π
n(θ,Λ)

is the maximizer of the IPW likelihood for θ �xed.

(vi) P0
˙̀(θ0, θ̃n, Λ̂θ̃n

) = oP0(n−1/2 + ‖θ̃n − θ0‖)
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Zeng et al. (2008, Technical report, Proof of Theorem 3.3) outlines how to verify
these conditions. Our development is similar but slightly more developed.

˙̀(θ̃, θ,Λ)[Oi]

=
∂

∂θ̃
log l

(
θ̃,Λθ̃(θ,Λ)

)
[Oi]

= `θ(θ̃,Λθ̃(θ,Λ))[Oi] +
ni∑
j=1

∆ijh0(Yij)
1 + (θ̃ − θ) ◦ h0(Yij)

+
∫

b

ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bh0(s)dΛ(s)µi(θ̃,Λθ̃(θ,Λ),h),

where the division in the second term on the right hand side is to be under-
stood component wise. Using the same arguments as in Appendix A.5 we can
show that ˙̀ is continuous in the �rst argument. The same is true also for
the second derivative, although the calculations are tedious. Again using ar-

guments from Appendix A.5 we can show that
{

˙̀(ξ, θ,Λ) : (ξ, θ,Λ) ∈ U
}
and{

῭(ξ, θ,Λ) : (ξ, θ,Λ) ∈ U
}

are uniformly bounded P0-Donsker classes. Thus

conditions (i)− (ii) are satis�ed.

Evaluating ˙̀(θ̃, θ,Λ) at the true parameter values yields

˙̀(θ0, θ0,Λ0)[Oi]

= `θ(θ0,Λ0)[Oi] +
ni∑
j=1

∆ijh0(Yij)

+
∫

b

ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bh0(s)dΛ(s)µi(θ̃,Λθ̃(θ,Λ),h)

= `θ(θ0,Λ0)[Oi] + `Λ(θ0,Λ0)[h0][Oi]

which is the e�cient score function for estimating θ0 and thus condition (iii)
is ful�lled.

Consider any sequence ‖θ̃n − θ0‖
P→ 0. Replacing equation (14) with 0 ≤

n−1 logLπn(θ̃n, Λ̂θ̃n
)−n−1 logLπn(θ̃n,Λn) in the proof of step (ii) of Theorem 1

we see that Λ̂θ̃n
is bounded in probability by the same arguments as in that

proof. Since

n−1 logLn(θ̂n, Λ̂n) ≤ n−1 logLn(θ̃n, Λ̂θ̃n
) ≤ n−1 logLn(θ̃n,Λn),
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we can use arguments from the proof of step (iii) of Theorem 1 to show that
Λ̂θ̃n

is uniformly consistent for Λ0, which is condition (v).

In order to prove the last condition, note that

n1/2P0

{
`Λ(θ0, Λ̂θ̃n

)− `Λ(θ0,Λ0)
}

(43)

= −n1/2
{

Pπn`Λ(θ̃n, Λ̂θ̃n
)− P0`Λ(θ0, Λ̂θ̃n

)
}

= −n1/2
{

Pπn`Λ(θ̃n, Λ̂θ̃n
)− P0`Λ(θ̃n, Λ̂θ̃n

)
}

+OP0(n1/2‖θ̃n − θ0‖)

= −n1/2 {Pπn`Λ(θ0,Λ0)− P0`Λ(θ0,Λ0)}+OP0(1 + n1/2‖θ̃n − θ0‖)
= OP0(1 + n1/2‖θ̃n − θ0‖).

For the �rst equality we used P0`Λ(θ0,Λ0) = 0, Pπn`Λ(θ̃n, Λ̂θ̃n
) = 0. The second

equality follows from the Fréchet di�erentiability of the score operator and the
invertibility of the derivative, cf. (32). The third equality is an application of
Lemma 1 of the Appendix and the last equality is due to the Donsker property
of the class G discussed in the proof of Theorem 2.

By a similar argument as for the second equality in (43), again cf. (32),∥∥∥P0

{
`Λ(θ0, Λ̂θ̃n

)− `Λ(θ0,Λ0)
}∥∥∥

`∞(H)
≥ ε sup

‖h‖V ≤1

∣∣∣∣∫ hd
(

Λ̂θ̃n
− Λ0

)∣∣∣∣
for some ε > 0. By the discussion leading to Murphy and van der Vaart (2000,
equation (16)) this implies condition (vi).

We have now veri�ed conditions (i) − (vi). Therefore we can replace Pn by
Pπn in the proof of Murphy and van der Vaart (2000, Theorem 1) and conclude
that

log pLπn(θ̃n) = log pLπn(θ0) + (θ̃n − θ0)TnPπn ˜̀

−1
2
n(θ̃n − θ0)T Ĩ(θ̃n − θ0) + oP (n1/2‖θ̃n − θ0‖+ 1)2 (44)

for any random sequence θ̃n
P→ θ0.

Having established the asymptotic expansion (44) we are prepared for the proof
of Theorem 4. Corollary 1 follow in an intermediate step. We �rst look into the
IPWMLEs under the two hypotheses. By replacing ∆n in the proof of Murphy
and van der Vaart (2000, Corollary 1) with the IPW version n1/2Pπn ˜̀we get

n1/2(θ̂n − θ0) = n−1/2Ĩ−1Pπn ˜̀+ oP0(1). (45)
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Asymptotic normality of n1/2(θ̂n − θ0) follows from (36) and (8), cf. the proof
of Theorem 2. This proves Corollary 1. From standard normal theory we know
that the maximum likelihood estimate θ̂0

n1 of θ1 conditional on θ2 = θ20 is

θ̂0
n1 = θ̂n1 + Ṽ −1

11 Ṽ21(θ̂n2 − θ20), (46)

which is also normally distributed. Let θ̂0
2 denote the maximum likelihood

estimate under the null hypothesis, that is θ̂0
n = θ20. From (46) we can write

θ̂n − θ̂0
n in terms of θ̂n2 as

θ̂n − θ̂0
n =

(
θ̂n1 − θ̂0

n1

θ̂n2 − θ̂0
n2

)
(47)

=
(
Ṽ −1

11 Ṽ21(θ̂n2 − θ20)
θ̂n2 − θ20

)
=

(
Ṽ −1

11 Ṽ21

1r×r

)
(θ̂n2 − θ20).

Inserting Pπn ˜̀= Ĩ(θ̂n − θ0) + oP0(1), known from (45), in (44) we get

log pLπn(θ̃n) = log pLπn(θ0) + n(θ̃n − θ0)T Ĩ(θ̂n − θ0) (48)

−1
2
n(θ̃n − θ0)T Ĩ(θ̃n − θ0) + oP (n1/2‖θ̃n − θ0‖+ 1)2

for any θ̃n
P→ θ0. Writing out the di�erence of expression (48) in the two points

θ̂n and θ̂0
n, we get, after canceling identical terms,

log pLπn(θ̂n)− log pLπn(θ̂0
n)

= −1
2
n(θ̂n − θ̂0

n)T Ĩ(θ̂n − θ̂0
n)

+oP0

(
(n1/2‖θ̂n − θ0‖+ 1)2 + (n1/2‖θ̂0

n − θ0‖+ 1)2
)

= −1
2
n(θ̂n − θ̂0

n)T Ĩ(θ̂n − θ̂0
n) + oP0(1), (49)

where the last equality in (49) follows since from (44), n1/2‖θ̂n − θ0‖ = OP0(1)
and similarly, n1/2‖θ̂0

n − θ0‖ = OP0(1).
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Thus,

2 log
supθ∈Θ pL

π
n(θ)

supθ∈Θ0
pLπn(θ)

(50)

= 2
(

log pLπn(θ̂n)− log pLπn(θ̂0
n)
)

= n(θ̂0
n − θ̂n)T Ĩ(θ̂0

n − θ̂n) + oP0(1)

= n1/2(θ̂n2 − θ20)T
(
Ṽ −1

11 Ṽ21

1r×r

)T
I

(
Ṽ −1

11 Ṽ21

1r×r

)
n1/2(θ̂n2 − θ20) + oP0(1).

The second equality in (50) is due to (49) and the last due to (47).

Now, there exists an orthonormal matrix O such that

Ṽ T22

(
Ṽ −1

11 Ṽ21

1r×r

)T
I

(
Ṽ −1

11 Ṽ21

1r×r

)
Ṽ22 = OAOT ,

where A = diag(λ1, . . . , λr). Since n1/2(θ̂n2 − θ20) is asymptotically zero mean
normal with covariance Ṽ21, the right hand side of (50) is asymptotically dis-
tributed as

ZTOTAOZ = ‖A1/2OZ‖2 L=
r∑
i=1

(
√
λiZi)2 =

r∑
i=1

λiZ
2
i ,

where Z = (Z1, . . . , Zr) is a vector of independent standard normal random
variables. This proves the statement of Theorem 4.

A.5 The Information operator

In this appendix we give the expression for the information operator and also
argue that the the operator forms a P0-Donsker class when indexed by Uδ×H.
We further show that the operator is continuous.

σ̃(θ,Λ)[h] =

 `ββ(θ,Λ) `βγ(θ,Λ) `Λβ(θ,Λ)
`γβ(θ,Λ) `γγ(θ,Λ) `Λγ(θ,Λ)
`βΛ(θ,Λ) `γΛ(θ,Λ) `ΛΛ(θ,Λ)

[ hθ
hΛ

]
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In order to simplify the presentation we introduce

Pij(β,Λ,b) =

∆ij

G′′′(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

G′(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

−∆ij

(
G′′(

∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

G′(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

)2

−
(1−∆ij)G′′(

∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

1−G(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

−(1−∆ij)

(
G′(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

1−G(
∫ Yij

0
eXij(s)T β+Zij(s)T bdΛ(s))

)2

The elements of the operator evaluated at the ith cluster are

`ββ(θ,Λ)[Oi] =∫
b

 ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bXij(s)dΛ(s)

⊗2

dµi(θ,Λ,b)

−

∫
b

ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bXij(s)dΛ(s)dµi(θ,Λ,b)

⊗2

+
∫

b

ni∑
j=1

Pij(β,Λ,b)

(∫ Yij

0

Xij(s)eXij(s)T β+Zij(s)T bdΛ(s)

)⊗2

dµi(θ,Λ,b)

+
∫

b

ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bX⊗2
ij (s)dΛ(s)dµi(θ,Λ,b)

`βγ(θ,Λ)[Oi] =∫
b

η′(b, γ)
η(b, γ)

ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bXT
ij(s)dΛ(s)dµi(θ,Λ,b)

−
∫

b

η′(b, γ)
η(b, γ)

dµi(θ,Λ,b)

×
∫

b

ni∑
j=1

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bXij(s)T dΛ(s)dµi(θ,Λ,b)
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`βΛ(θ,Λ)(t)[Oi] =
ni∑
j=1

{∫
b

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bXij(s)dΛ(s)

×
ni∑
k=1

Qik(β,Λ,b)eXik(t)T β+Zik(t)T bdµi(θ,Λ,b)

+
∫

b

Pij(β,Λ,b)

×
∫ Yij

0

XT
ij(s)e

Xij(s)T β+Zij(s)T bdΛ(s)eXij(t)β+Zij(t)T bdµi(θ,Λ,b)

+
∫

b

Qij(β,Λ,b)eXij(t)T β+Zij(t)T bdµi(θ,Λ,b)Xij(t)T

−
∫

b

Qij(β,Λ,b)
∫ Yij

0

eXij(s)T β+Zij(s)T bXT
ij(s)dΛ(s)dµi(θ,Λ,b)

×
∫

b

ni∑
k=1

Qik(β,Λ,b)eXik(t)T β+Zik(t)T bdµi(θ,Λ,b)

}
I(Yij > t)

`γβ(θ,Λ)[Oi] = (`βγ(θ,Λ)[Oi])T

`γγ(θ,Λ)[Oi] =
∫

b

η′′(b, γ)
η(b, γ)

dµi(θ,Λ,b)−
(∫

b

η′(b, γ)
η(b, γ)

dµi(θ,Λ,b)
)⊗2

`γΛ(θ,Λ)(t)[Oi] =
ni∑
j=1

{∫
b

Qij(β,Λ,b)eXij(t)T β+Zij(t)T b η
′T (b, γ)
η(b, γ)

dµi(θ,Λ,b)

−
∫

b

η′T (b, γ)
η(b, γ)

dµi(θ,Λ,b)

×
∫

b

Qij(β,Λ,b)eXij(t)T β+Zij(t)T bdµi(θ,Λ,b)
}
I(Yij > t)

`Λβ(θ,Λ)[hΛ](t)[Oi] =
∫

(`βΛ(θ,Λ)(t)[Oi])ThΛ(t)dΛ(t)

`Λγ(θ,Λ)[hΛ](t)[Oi] =
∫

(`γΛ(θ,Λ)(t)[Oi])ThΛ(t)dΛ(t)
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`ΛΛ(θ,Λ)[hΛ](t)[Oi] =
ni∑
j=1

∫
b

Qij(β,Λ,b)eXij(t)T β+Zij(t)T bdµi(θ,Λ,b)I(Yij > t)hΛ(t)

+
∫ τ

0

ni∑
j=1

ni∑
k=1

{∫
b

Qij(β,Λ,b)eXij(t)T β+Zij(t)T b

×Qik(β,Λ,b)eXik(s)T β+Zik(s)T bdµi(θ,Λ,b)

−
∫

b

Qij(β,Λ,b)eXij(t)T β+Zij(t)T bdµi(θ,Λ,b)

×
∫

b

Qik(β,Λ,b)eXik(s)T β+Zik(s)T bdµi(θ,Λ,b)

+
∫

b

Pij(β,Λ,b)eXij(s)T β+Zij(s)T beXij(t)T β+Zij(t)T bdµi(θ,Λ,b)
}

×I(Yik > s)hΛ(s)dΛ(s)I(Yij > t)

From Zeng et al. (2008, Technical report, Appendix) classes of the form{∫
b

f(θ,Λ)ηl(γ,b)db : l = 1, 2, θ ∈ Θ,Λ increasing,Λ(0) = 0,Λ(τ) bounded
}
,

where

|f(θ1,Λ1)[Oi]− f(θ2,Λ2)[Oi]|

≤ O(1)eM‖b‖
{
‖β1 − β2‖+

∫ τ

0

|Λ1(t)− Λ2(t)|dt

+
ni∑
j=1

|Λ1(Yij)− Λ2(Yij)|

 ,

are P0-Donsker. Note that by the arguments in Zeng et al. (2008, Technical
report, Appendix) all elements of σ̃ are built up from elements of either classes
of this type or of the type I(Yij > ·). Because of the assumptions A5, A10 and
A3 the classes of interest are bounded and bounded away from zero. Further,
{I(Yij > t) : t ∈ [0, τ ]} is of bounded variation and hence a P0-Donsker class.
Donsker properties of Donsker classes are preserved under addition and mul-
tiplication as well as division whenever the classes are bounded and bounded
away from zero (van der Vaart and Wellner, 1996, Examples 2.10.7, 2.10.10).
Thus, the class

{σ̃(hθ, hΛ)(θ,Λ) : h ∈ H, θ ∈ Θ,Λ increasing,Λ(0) = 0,Λ(τ) bounded}
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is P0-Donsker.

Also,

|σ̃(h1)(θ1,Λ1)− σ̃(h2)(θ2,Λ2)|
≤ O(1) {‖h1θ − h2θ‖+ ‖θ1 − θ2‖

+
ni∑
j=1

|h1Λ(Yij)− h2Λ(Yij)|+
∫ τ

0

|h1Λ(t)− h2Λ(t)|dt

+
ni∑
j=1

|Λ1(Yij)− Λ2(Yij)|+
∫ τ

0

|Λ1(t)− Λ2(t)|dt
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