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Abstract — Most area-defense formulations follow
from the assumption that threats must first be identified
and then neutralized. This is reasonable, but inherent
to it is a process of labeling: threat A must be identi-
fied and then threat B, and then action must be taken.
This manuscript begins from the assumption that such
labeling (A & B) is irrelevant. The problem naturally
devolves to one of Random Finite Set (RFS) estima-
tion: we show that by eschewing any concern of target
label we relax the estimation procedure, and it is perhaps
not surprising that by such a removal of constraint (of
labeling) performance (in terms of localization) is en-
hanced. A suitable measure for the estimation of unla-
beled objects is the Mean OSPA (MOSPA). We derive a
general algorithm which provided the optimal estimator
which minimize the MOSPA. We call such an estimator
a Minimum MOSPA (MMOSPA) estimator.

Keywords: MSE, OSPA, Miss-distance, target track-
ing.

1 Introduction

The Mean Squared Error (MSE) has long been the
dominant quantitative performance metric in the field
of signal processing. For the traditional multi-target
tracking algorithms, the aim is to minimize the MSE
between target truths and the corresponding track es-
timates. The MSE is the nearly ubiquitous preference
of design engineers seeking to optimize signal process-
ing algorithms. For example, in the Joint Probabilistic
Data Association (JPDA) filter [5], the Minimum MSE
(MMSE) — the posterior mean — of the state of the
targets can be written in a nice recursive way.

For the problem of tracking the unordered set of tar-
gets, that is when the target labels are irrelevant, such
a measure is not suitable, so another metric is required.
In this article, we propose to use the Optimal Subpat-
tern Assignment (OSPA) metric [3]. To describe the
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problem of tracking an unordered set of targets, a Ran-
dom Finite Set (RFS) description of the target states
is suitable. An RFS, which is a part of the Finite Set
Statistics (FISST) framework [4], is a set with a ran-
dom number of elements and where each element is a
random entity. Two popular algorithms, namely the
Probability Hypothesis Density (PHD) and the Cardi-
nalized PHD (CPHD) filters [6-9], have been derived
in the FISST framework.

The MOSPA metric has been recently used as a mea-
sure to evaluate the performance of some multitarget
tracking algorithms. But the following question arises:
How should we (and, indeed, should we) design a new
class of estimators oriented to the MOSPA? This ques-
tion is the concern of this article. To the best of our
knowledge, theoretical results on how to obtain Mini-
mum Mean OSPA (MMOSPA) estimates are still miss-
ing.

The SJPDA filter [10] is an adjusted version of the
JPDA filter, designed to perform well according to the
OSPA measure. The SJPDA exploits the fact that
many ordered densities are equivalent from an RFS
perspective. The set of densities which are equivalent
is called an RFS family and the idea in the SJPDA
is find a density in the family which is approximately
Gaussian. In a related fashion, the MMOSPA estimates
desired here are obtained as the mean of a particular
density within the same family. To simplify the presen-
tation we limit our discussions to static problems, but
we hope to report results for dynamic situations soon.

In this paper we derive a general algorithm which
provides the MMOSPA estimates for an arbitrary, but
known, number of targets. In particular we will give
an explicit algorithm for the two target case, here cast
as the problem of a hunter shooting birds. In Figure
1 two unfortunate birds are depicted and the aim of
the hunter is to shoot both birds without regard for
which is struck first and which second. To evaluate the
quality of the hunter’s ability we pick a measure that
captures the hunter’s chances to shoot both birds. In
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Figure 1: Shooting two birds with two bullets.

the left area of Figure 1, the MMSE estimates of the
two birds locations are sought to minimize the squared
error (SE), whereas in the right area of Figure 1 the
two unlabeled estimates (MMOSPA estimates) of the
two birds locations are are sought via a metric that
ignores bird labeling, i.e., the MOSPA. We remark the
fact that in the second case, in order to have a smaller
metric D, we have to relax the problem by discarding
the identity of the birds estimates.

The remainder of the paper is organized as follows. In
Section 2 we formalize our problem and provide some of
motivations for it and in Section 3 we briefly introduce
the concept of ordered densities. Section 4 contains
our main theoretical contributions and also provides a
general algorithm to find the MMOSPA estimates. Our
theoretical findings are validated through simulated ex-
amples in Section 5 and, finally, in Section 6 we sum-
marize.

2 Problem Formulation

In this article we study the problem of static esti-
mation of an arbitrary, but known, number of targets
without concern regarding their identities. We intro-
duce the random set of targets

X = {x(l),x(z),...,x(")}, (1)

where x(?) is the state vector of target number i, which
we assume does not include a target identity label, and
where n is the number of targets in the scene. What
we seek is an estimate X of the set of targets which
minimizes the MOSPA (Mean OSPA) measure, defined
later. We call such an estimate a Minimum MOSPA
(MMOSPA) estimate.

Now, a common measure in the literature is the
squared error (SE)

SE(X, [x(1)7 e ,x(”)])

_ l((;((l) NC) O X<n>)2), @)

To evaluate the measure, we need estimates of the states
of target 1, 2, and so on, i.e., of the labeled targets.

Since this paper is about describing where there are
targets, rather than where a target with a certain label
is, the squared error is not a good measure. We note
for example in the two-bird case, that if the identities of
the birds have been exchanged, the squared error can
be very large, even though there might be two accu-
rate estimates available, i.e., even though (V) ~ x(?)
and x® ~ x(. Clearly, the SE is not a good choice
since we seek a measure that can capture the quality of
estimates of the set of birds (targets).

Several multi-target performance measures have been
proposed in the literature. The first attempt to a multi-
target performance measure was given in [1]. There, an
optimal assignment is performed to find the best asso-
ciation of state estimates and true-target states. The
cost function is arbitrary, and could for example be the
squared distance. The attempt is creative and original,
but ultimately suffers from the lack of mathematical
underpinnings available at the time.

The first rigorous theory of multi-object distances
was given in [2]. The measure, which is based on the op-
timal assignment approach, is called the Optimal Mass
Transfer (OMAT) metric. When the number of targets
is known, the OMAT metric is identical to the optimal
assignment procedure. The OMAT has a number of
weaknesses, discussed in [3]. The major weaknesses ap-
pear when the number of targets is not known and the
estimated number is not always equal to the true num-
ber. To remedy the shortcomings, a new metric, called
the Optimal Subpattern Assignment (OSPA) metric,
was proposed in [3]. Since OSPA is an intuitively ap-
pealing measure, and has received much attention of
late, we are using it as the basis measure for the prob-
lem. As the number of targets is assumed known, we
will only present OSPA for a known number of targets;
for a full description, see [3].

Let X be the set of true target states and X be the set
of target estimates, both with n elements. The OSPA
measure Jz(f) is then defined as

n l/p
3(e) (¢ 1 : c i) om(i
dé)(X,X) = ( (mln d@(x % ())p>> .

n \ m€ll,
(3)

i=1
Here, d©)(x,%) £ min(c,d(x,%)) is the distance d be-
tween x and x, cut-off at c. Further, II,, is the set of
all possible permutations of X. The notation x™(*) de-
scribes the i permutation (re-ordering) of the vector
xX. In this article, we let d be the Euclidean distance,
we use a quadratic measure (p = 2) and ¢ = oo, (the
number of estimated targets is equal to the number of
true targets). Through the minimization, the measure
performs an optimal assignment of target estimates to
true target states, possibly cut-off at c¢. A consequence
of knowing the number of targets and using ¢ = oo
is that the OSPA, OMAT and optimal assignment ap-
proach all reduce to the same thing.



To obtain a measure for which we can define an op-
timal multi-object estimator, we average over the den-
sity p(X) which gives us a definition of the mean OSPA
(MOSPA) measure

MOSPAL? (X, p(X)) £ Eyx) {d}}. (4)

The density p(X) should be thought of as the posterior
density!. Throughout the paper we will use the nota-
tion MOSPA(X, p(X)) to denote the MOSPA metric.
An optimal estimator, in the MOSPA sense, is an esti-
mator which minimizes the MOSPA measure. Such an
estimator is referred to as a minimum MOSPA (MMO-
SPA) estimator?.

2.1 Motivation of the problem

The problem that we study in this paper is that of
estimating an unordered set of targets, for which the
MMOSPA estimator is optimal (in the MOSPA sense).
There are many problems where the ordering of the tar-
gets is not of interest. That is, to solve those problems,
it is not required to estimate the identities of the tar-
gets, but only to estimate the set of targets. We here
give some examples of when minimizing MOSPA pro-
vides a solution which is more reasonable than what
is obtained when minimizing the Mean Square Error
(MSE), using an ordered density.

A first application when MOSPA is reasonable is in
radar cueing, i.e., for the problem of steering a radar
sensor to areas of high target existence probability. In
such cases, there is no interest in which target is which,
but the question of where there are targets is very im-
portant. Another example is found in the automotive
industry: in collision avoidance systems, it is not of in-
terest to know which car is which, the goal is to avoid all
cars. As a further example: in some NATO maritime
surveillance actions it is important to send helicopters
as close as possible to a set of vessels with anomalous
behavior without concern of knowing which anomalous
vessel is which.

3 Ordered densities

An RFS, which is part of the FISST framework [4],
is a set with a random number of elements and where
each element is a random quantity. Here the only as-
pect to FISST that is key to our findings is given by the
relation between an RFS density and an ordered den-
sity. For n targets, the relation between an RF'S density
f({x1,...,xn}) and an ordered density p(x1,...,X;,) is

f({xl,...7xn}):Zp(m—(xl,...,xn)). (5)
i=1

LAny practical setting would involve measurements. If we
denote these by Z, p(X) should be replaced be p(X|Z). However,
for notation we exclude Z from our presentation.

2Note that the relation between OSPA, MOSPA and MMO-
SPA is analogous to that between the familiar acronyms SE, MSE
and MMSE.

With m;(x1,...,X,) we denote the permutation of the
index set {1,...,n} on the vector (x1,...,X,); for in-
stance, for n = 2 we use m(x1,%X2) = (x1,%2) and

m2(X1,X2) = (X2,%1). Using (5), we can calculate the
RF'S density from an ordered density. One important
consequence of this relation is described in the following
proposition.

Proposition 1 Forn > 1, the mapping from densities
of ordered state vectors, p;(X1,...,Xn), to RFS densi-
ties, f({x1,...,Xn}), is many-to-one.

The relevance of this proposition is related to the fact
that all such densities should result in the same RFS
state estimates.

Definition 1 When two labeled densities,
p1(X1,...,X,) and pa(X1,...,Xn), correspond to
the same RFS density we say that they belong to the
same RFS family.

That is, using (5), we obtain the same RFS density
regardless if p1(x1,...,X,) or pa(X1,...,X,) is used in
the calculation.

4 Computing MMOSPA
mates

In this section we present our main contributions.
The key results from a theoretical perspective are sum-
marized in Theorems 1 and 2 in Section 4.1. Details
regarding how to evaluate the estimators are given in
Section 4.2 and 4.3.

4.1 Relation between MOSPA and
MSE

In the multi-target state estimation the usual defini-
tion for the MSE is

esti-

MSE(x%, p(x)) = % / (Zd(fq,xz')> p(x)dx, (6)
=1

where the averaging is with respect to one particular
ordered density. In an analogous way, we have that
MOSPA, from (4), can be expressed as

MOSPA( () = [ ik xpx)dx. (1)

where the averaging is with respect to an ordered den-
sity p(x) within the RFS family. The following lemma
shows that all ordered densities within the same RFS
family yield the same MOSPA.

Lemma 1 For any ordered density p(x) within the
same RFS family, it holds that MOSPA(%X,p(x)) does
not depend on the particular choice of p(x).



Proof of Lemma 1 By letting

= {x : %Zd(f{i,xi) = CZZ(QC)()AQ X)} ) (8)

we have that:

/ 49 (%, x)p(x) dx = /Am 49 (%, x)p(x) dx

= dl(x,x mi(x)) dx
/A(ﬁ) ©) (%, %) S p(ms(x))

i=1

- / 49 (%, %) £ ({x}) dx
A(x)

which is the same for all ordered densities p(x), within
the same RFS family.

From the definitions of MSE and MOSPA, and from
the fact that = >°7" | d(%;,x;) > aNZZ(,C) (%,x), it follows
that MSE(x, p( )) > MOSPA(x,p(x)) = MOSPA(x).
The notation MOSPA(X) is introduced to stress that
the evaluation of MOSPA is independent of the ordered
density p(x) (as long as it is in the same RFS family).

The following theorem shows an important relation
between the MSE and the MOSPA.

Theorem 1 For any given X, there exists exactly one
ordered density p(x) within the RFS family, such that

p(x)) =

Proof of Theorem 1 Let us define

Ho0) = {(J)‘({Xl,...,xn})

For this density p(x), it now holds that

MSE(%, MOSPA(%). (10)

if x € A(X)

otherwise.

(11)

SRS

MSE5x)) = [ 13l x)i(x) dx

1 n
— d(%;,%;)p(x) dx
/xeA(sc) n ;

= dl) (%, x)p(x) dx
xEA(X)
= MOSPA(x), (12)
In order to conclude the proof we need to show that
the ordered density p(x) is unique. Let us suppose that
there exists a different ordered density q(x) such that
MSE(x,p(x)) —

MSE(%,q(x)) = 0. (13)

Now, let us consider

MSE(x, p(x)) —

L[S
/A(X)de“xz ({x}) - a(x)] dx
DI
/A(x S (i) | F(Ex)) — ) —

im1 =2

MSE(%, q(x))

—q(x)] dx

(%4, m5(x4))q(m;(x)) dx

n!

q(m;(x))

=0

+o Z / e 2 05 3) = 30y x) i
X)i=1
- S (s 30) 3 e ) i 30 dx
A(R) j=2 i=1
<0 for each j

where 7;(x;) denotes the change of the target index
from i to j. For instance, when n = 2, m(x1) = x1,
m1(X2) = Xa, ma(X1) = X2 and ma(X2) = Xa.

The main result of the paper is described by the next
theorem.

Theorem 2 The expression of the MMOSPA-estimate
KMMOSPA s given by
&MI\/IOSPA — Eﬁ(x){x}~ (14)
Proof of Theorem 2 To show that it leads to a con-
tradiction, suppose X # X where X = Eyx{x}. As
always, X = Ejx){x} is the MMSE estimate, i.e., it is
the unique minimum to MSE(X, p(x)). The assumption
that x # X therefore gives that
MSE(%, 5(x)) < MSE(%, () =
of (15) and from the fact
> MOSPA(x), it follows that
MOSPA(x) < MSE(%k,p(x)) < MSEXx,p(x)) =
MOSPA(x). This is clearly a contradiction, since X is
assumed to have optimal MOSPA performance. Hence,
we must have XMMOSFA = Fr  {x}.

Theorem 2 states an important analogy between
the MMSE estimator and the MMOSPA estimator:

MOSPA(%).  (15)

AS a consequence
that MSE(%,p(x))

dx



the MMOSPA estimator of the target states is still
expressed as the conditional expectation of the tar-
get states, but the integration is carried out with re-
spect to a special ordered density p(x). An important
consequence is that the problem of minimizing MO-
SPA is equivalent 3 to the problem of minimizing the
sum of the trace of the posterior covariances, that is
L5 tr{P"}, where P’ is the posterior covariance
of target ¢ given the density p(x). This result shows
that the switching criterion used in the SJPDA algo-
rithm [10], is optimal in the MOSPA sense.

The following example illustrates the importance of
the density p(x) and its impact on the MMOSPA esti-
mates.

Example 1 Suppose that x1 and xo are independently
distributed states of target 1 and target 2 such that

z1 ~N(z1;0,1)

xo ~ N(22;1,1) (17)
where N (z; 1, o) denotes the Gaussian distribution with
mean u and standard deviation o. In Figure 2 the joint
distribution of the targets state is depicted and it easily
follows from the definition of MMSE that

PMSE =, x) {21} =0

FyMIE =B, x) {22} =1 (18)
. 1 _=f 1 _ (@p-1)?
where the density p(x) = =€ 7 e The

MMOSPA estimates are computed using equation (14)
where the density p(x) is depicted in Figure 3. We have
that

MMOSPA _ _ (—0.1996
* = Eaoo {x) = ( 1.1996 (19)

We note that the MMOSPA estimates xMMOSPA gre
unlabeled, revealing the fact that the estimator pro-
vides a lower error between the joint estimate and the
joint target (target 1 and target 2), at the price of losing
the identities of the same estimates.

4.2 A General MMOSPA Algorithm

Based on Theorem 2, we propose an iterative opti-
mization algorithm.

1. Initiate with i = 1 and let x)/MOSPA — Epx) {x}
where pg(x) represents an ordered density within
the RFS; for instance x)/M95P4 could be the
MMSE estimates.

3The following result
1 n
MSE (%, 5(x)) = -~ > te{P}. (16)
t=1

follows from the definition of P?, [5].

X2

-3 -2 -1 0 1 2 3

Figure 2: Joint distribution of the target states corre-
sponding to a particular ordered density.

P21, 22)

X2

Figure 3: Density p(x) given by the equation (11).



2. Set A(XMMOSPA) ysing the following equation

AM]V[OSPA _
Xi—1,5 7Xi) -

1 n
A(AiWMOSPA EZ

d(@)(

MMOSPA,X)} , (20)

11]

3. Select p;(x) as

N X1,...,Xn if x € A(XMMOSPA
oy = {70 (%] )
0 otherwise.
(21)
4. Compute
AMMOSPA pl(x {X} (22)

5. If xMMOSPA ~ gMMOSPA o stop. Otherwise,

setz—z+1andgobackto2

The algorithm is essentially straightforward. How-
ever to implement it we need the ability to calculate the
expected values with respect to the densities p;(x) as in
equation (22). It appears complicated to find analyti-
cal expressions for those expected values in the general
case. In the following subsection we presents an an-
alytical expression for the MMOSPA estimates in the
two-Gaussian-target case. In future work we intend to
study the convergence of the iterative optimization al-
gorithm and to suggest some numerical approximations
for the computation of the MMOSPA estimates in the
general case.

4.3 Two Gaussian targets

It appears difficult to find analytical expressions for
the MMOSPA expression, given by Eq. (14), for any
choice of the joint density p(x). However, in most
multi-target tracking applications, the posterior den-
sity is described as a weighted sum of Gaussian densi-
ties [5]. In this section we provide an analytical solution
for xMMOSPA for the two-target case when the targets
are independent and Gaussian. More specifically, let

x — (Xl) and x = ()fl) be the states and the esti-
X9 X2

mates of the two targets, respectively. The dimension-
ality of targets state is m, that is X? =(Zj1,.., Tjm),
for j = 1,2. For the two target case, the expression for
A(x) reduces to:

A%) = {x : % > (i xi) = 4 (x, x)}

= {x (% — %1)T (x1 — %) < o} . (23)
Let us also introduce the matrix B:
-1,, I,
o

where we denote with I,,, the identity matrix with di-
mension m X m. We can rewrite A(X) in matrix form
as follows:

A(x) = {x :x'Bx < 0} . (25)

For the two target case we have that the RFS density
can be represented by:

f({x1,%2})

where
_ (M1 D)
Hi2 <N2> y M2y (H1>

P, O Py, O
P = (0 ! P2) Py = (02 P1> ,

SMMOSPA

= N (Xa Hi2, P12) + N (Xv M1, P21) (26)

and where X} can be written as:

s MMOSPA
Es 0 {x}

=/ X (i P
)A{(J)\/II\/IOSPATBXSO

TN (%5 pgy, Po1)] dx (27)
The evaluation of equation (27) requires the derivation
of the following general integral:

[ Ve P)ix (28)
xTBx<0

The expression of the closed form solution of the above
integral is derived in the appendix.

5 Evaluations

In this section we validate our theoretical findings us-
ing an example. Consider a scenario where we have two
Gaussian independently distributed targets; the proba-
bility of detection is one for both targets (Pd = 1), and
we have received two detections (here we assume the
absence of clutter). The prior information about the
target locations is given by the following densities:

= N(z1;0,1)
=N(z2;1,1) (29)
After collecting the two measurements we are not able
to solve the ambiguity of their origin (measurement ori-
gin uncertainty), that is, to know which measurement
comes from which target. We assume a Gaussian model
for the measurement, that is
Z=X+WwW (30)
with w ~ N(w;0,0,). Now we can write down the
joint target density conditioned on the measurements
as a weighted sum of Gaussian densities where each
weight represents a particular global data association
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Figure 4: MOSPA performance of the MMOSPA esti-
mator vs MMSE estimator. Here we used 1000 Monte
Carlo trials.

probability [5]. Such a Gaussian mixture represents
one particular ordered density within the RFS family

p(z1,22|2) = P(Hy)p(z1, 22| Hi; 2)
+ P(Ha)p(x1, 22|Ho; 2)

where P(H;) and P(Hs) are the global data association
probabilities and p(z1, x| H;;2) is the joint Gaussian
density. The MMSE estimates is then computed in the
following way:

(31)

B = Ep oy ala) {21}
23"ME = By, szl {22} )

whereas the MMOSPA estimates are expressed as

iJV[MOSPA _ Eﬁ(zl,x2|z) {X} (33)

and where the above expectation can be computed us-
ing the closed form solution derived in the previous
subsection. In Figure 4, the MOSPA for the MMO-
SPA estimator and the MMSE estimator are plotted
versus the measurement noise. Clearly the MMOSPA
estimator outperforms the MMSE estimator. A more
interesting result is visualized in Figure 5, where the
“kill probability” for the two targets is plotted versus
the measurement noise for the MMOSPA and MMSE
estimators, respectively. The kill probability is defined
as the probability that the estimates of the target loca-
tions are within a ball of radius € centered around the
true target locations

Brin(%,€) = P(||x = x| < ¢) (34)

This metric is very useful in the context of Anti-Ballistic
Missiles (ABM) systems where the targets are the en-
emy missiles and the goal of the countermeasure sys-
tems is to try protect, without concern for which mis-
sile is the threat. As we can see from Figure 5, the
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Figure 5: Kill probability Py;;(%,€) for the MMOSPA
and the MMSE estimators, respectively. Here we used
1000 Monte Carlo trials and € = 1.

use of the MMOSPA estimator increases the chance to
destroy both the targets.

6 Conclusions

Motivated by an interest to estimate a set of objects
without regard to labeling, we have developed a formu-
lation of the standard MMSE estimation problem that
is label-free: a solution that reports that target 2 is close
to the location of target 1 and vice versa® is not penal-
ized relative to one that correctly labels the objects. We
derived a general algorithm which provides the MMO-
SPA estimates for an arbitrary, but known, number of
targets. Estimation in this framework amounts to min-
imization with fewer constraints, and it is thence per-
haps unsurprising that improved performance is possi-
ble even adopting standard metrics such as (unlabeled)
MSE. What perhaps *is* surprising is the magnitude
of the improvement.

A Appendix

Here we want to find a closed form solution of follow-
ing integral:
/ xN (x; p, P) dx (35)
*TBx<0

Changing variable inside the integral, that is y =
A~Y2UT (x — p), we have that:

/ xN (x; p, P) dx
KTBx<0

UA2y + u) % N (y:0,1)dy
(36)

/:2TBUA1/2y+5cTBp,§O (

4 Actually in our formulation there is no notion of “target 1”
at all.



where U is the rotation matrix whose columns are
the eigenvectors which are obtained by the eigende-
composition of P and A is the diagonal matrix of
the eigenvalues, that is P = UAU?. Let us define
a’ = x"BUA'Y? and b = —x"Bp. We now introduce
a new change of variable z = Ay, with A being an or-
thogonal matrix whose first row is equal to |\aTT|\ and the
remaining orthogonal to each other. Thus, we have

/ (UA1/2y + u) N (y;0,1)dy
XTBUAY2y+%xTBu<0

_ / (UAY2ATs + ) N (2:0,T) do
aT ATz<b

b b
Tal TaT
:UAI/Qﬁ/ TN (7;0,1)dT + p

— 00

b2
T 2fa)? b
= -UA2 2" +”(1+erf( >)
lall vor 2 lall v2
(37)

where erf (t) is the error function defined by

erf(t) = % fot e~ dr.
Thus, we have:

/ xN (x; p, P) dx
*TBx<0

b2

_ _ypz 2 e u( ( b ))
lal var T2 \"Tave
(38)
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