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OSCAR MARMON

Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg

Abstract

This thesis presents various results concerning the density of rational and inte-

gral points on algebraic varieties. These results are proven with methods from

analytic number theory as well as algebraic geometry.

Using exponential sums in several variables over finite fields, we prove

upper bounds for the number of integral points of bounded height on an affine

variety. More precisely, our method is a generalization of a technique due to

Heath-Brown — a multi-dimensional version of van der Corput’s AB-process.

It yields new estimates for complete intersections of r hypersurfaces of degree

at least three in An, as well as for hypersurfaces in An of degree at least four.

We also study the so called determinant method, introduced by Bombieri

and Pila to count integral points on curves. We show how their approach may

be extended to higher-dimensional varieties to yield an alternative proof of

Heath-Brown’s Theorem 14, avoiding p-adic considerations.

Moreover, we use the determinant method to study the number of repre-

sentations of integers by diagonal forms in four variables. Heath-Brown re-

cently developed a new variant of the determinant method, adapted to count-

ing points near algebraic varieties. Extending his ideas, we prove new upper

bounds for the number of representations of an integer by a diagonal form

in four variables of degree k ≥ 8. Furthermore, we use a refined version of

the determinant method for affine surfaces, due to Salberger, to derive new

estimates for the number of representations of a positive integer as a sum of

four k-th powers of positive integers, improving upon estimates by Wisdom.

Keywords. Integral points, rational points, counting function, exponential

sums, Weyl differencing, van der Corput’s method, determinant method, sum

of k-th powers.
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Counting solutions to Diophantine equations

Oscar Marmon

1 Introduction

The study of Diophantine equations is among the oldest branches of mathe-
matics, and also one of the most intriguing. By a Diophantine equation, we
mean a polynomial equation in several variables defined over the integers. The
term Diophantine refers to the Greek mathematician Diophantus of Alexandria,
who studied such equations in the 3rd century A.D.

Thus, let f (x1, . . . , xn) be a polynomial with integer coefficients. We then
wish to study the set of solutions (x1, . . . , xn) ∈ Zn to the equation

f (x1, . . . , xn) = 0. (1)

This may be done from several different perspectives. The first question one
may ask is perhaps whether or not the Diophantine equation (1) has any solu-
tions at all. Indeed, one of the most famous theorems in mathematics, Fermat’s
Last Theorem, proven by Wiles in 1995, states that for f (x , y, z) = x n+ yn−zn,
where n ≥ 3, there are no solutions in positive integers x , y, z. Qualitative
questions of this type are often studied using algebraic methods.

Secondly, one may adapt an algorithmic perspective. To give another fa-
mous example, the tenth problem in Hilbert’s famous list from 1900 asked for
a general algorithm to determine, in a finite number of steps, the solvability of
any given Diophantine equation. It was proven by Matiyasevich in 1970 that
this problem is unsolvable.

In this thesis, we shall focus on a third problem - that of estimating the
number of solutions to Diophantine equations. Our methods are both analytic
and algebraic in nature. Much attention has been given to cases where the set
of solutions to (1) is finite. Thus, for example, if f (x , y, z) is a homogeneous
polynomial, the equation f = 0 defines an algebraic curve in the projective
plane. The celebrated theorem of Faltings states that there are only finitely
many rational points on such a curve if its genus is at least 2. In other words,
there are only finitely many solutions, with x , y, z relatively prime, to the
Diophantine equation (1) in this case.
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When the number of variables is larger, however, we often expect there
to be infinitely many solutions. Still, we want to measure the size of the
solution set in some way. One convenient way of expressing such quantitative
information is through the counting function

N( f , B) = #{x ∈ Zn; f (x1, . . . , xn) = 0, max
i
|x i| ≤ B}.

Estimates for such counting functions shall occur frequently throughout this
thesis. In order to express these estimates, it is convenient at this point to
introduce some notation.

Notation. We shall interchangeably use the notations Φ(B) ≪ Ψ(B), Φ(B) =
O(Ψ(B)) to express the fact that there is a constant c such that Φ(B) ≤ cΨ(B)
for B large enough. If c is allowed to depend on certain parameters, this is
indicated by subscripts. The notation Φ(B) ∼ Ψ(B) shall mean that

lim
B→∞
Φ(B)/Ψ(B) = 1,

and Φ(B) ≈ Ψ(B) means that Φ(B) ∼ cΨ(B) for some constant c.

1.1 A simple heuristic

Suppose that f ∈ Z[x1, . . . , xn] is a polynomial of degree d ≤ n. Then we can
argue as follows to guess the order of magnitude of N( f , B). The values f (x),
where x ∈ [−B, B]n, will be of order Bd . Thus, we might expect the probability
that f (x) vanishes for a randomly chosen x ∈ [−B, B]n to be of order B−d . As
the cube [−B, B]n contains ≈ Bn integral points, we are led to expect that

Bn−d ≪ N( f , B)≪ Bn−d . (2)

In some cases, this heuristic can be shown to give the correct answer. In
particular, the Hardy-Littlewood circle method yields accurate bounds when
n is large enough compared to d. Thus, Birch [3] has proved that for a non-
singular homogeneous polynomial f of degree d in n > (d − 1)2d variables,
we have

N( f , B) ∼ c f Bn−d

as B →∞, where the constant c f is positive if the equation f = 0 has a non-
trivial solution in R and in each p-adic field Qp.

One may apply the same heuristic arguments to systems of equations. Let
us denote the maximum norm of a point x ∈ Cn by |x| =maxi |x i|. In analogy
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with the definition of N( f , B), we define a counting function for systems of
equations:

N( f1, . . . , fr , B) = #{x ∈ Zn; f1(x) = · · ·= fr(x) = 0, |x| ≤ B}.

Given polynomials f1, . . . , fr ∈ Z[x1, . . . , x r] of degree d1, . . . , dr , respectively,
the naïve reasoning above would lead us to expect that

Bn−(d1+···+dr )≪ N( f1, . . . , fr , B)≪ Bn−(d1+···+dr ) (3)

if d1 + · · ·+ dr ≤ n.
In Section 2 we will discuss results of this thesis, providing estimates that

come quite close to the heuristic upper bounds in (2) and (3), for n of more
moderate size than required in the Hardy-Littlewood circle method.

1.2 Integral and rational points on algebraic varieties

In the language of algebraic geometry, the equation (1) defines a hypersurface
X in affine space An. The set of integral solutions to (1) may then be seen as
the intersection of X with the integral lattice Zn. In general, given any locally
closed subvariety X ⊂ An, we can study the set of integral points X (Z) =
X ∩Zn.

In this thesis, we investigate the quantitative arithmetic of algebraic vari-
eties, to use a term introduced by Browning [8]. This involves understanding
the behaviour of counting functions similar to the function N( f , B) introduced
above. Thus, let

X (Z, B) := X (Z) ∩ [−B, B]n

for any positive real number B, and define the counting function

N(X , B) := #X (Z, B).

The first simple observation one can make about the growth of N(X , B) is the
following standard result.

Proposition 1.1. Let X ⊂ An be a closed subvariety of dimension m and degree
d. Then

N(X , B) = On,d(B
m). (4)

Proof. We shall prove (4) by induction on m. If m = 0, then X consists of at
most d points, so the estimate follows. Thus, suppose that m > 0. Since X
decomposes into at most d irreducible components by Bézout’s theorem, we
may assume that X is in fact irreducible.
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Then, for some i ∈ {1, . . . , n}, X intersects any hyperplane Ha = {x i = a},
for a ∈ Q̄, properly. Thus we have

X (Z, B) ⊆
⋃

a∈Z, |a|≤B

(X ∩Ha)(Z, B),

where dim(X ∩ Ha) ≤ m − 1 and deg(X ∩ Ha) ≤ d for all a. Thus we may
conclude by induction that N(X ∩ Ha, B) = On,d(B

m−1), so that

N(X , B) =
∑

|a|≤B

N(X ∩ Ha, B)≪n,d Bm.

We shall refer to the bound given by Proposition 1.1 as the trivial estimate.
If the polynomial f is homogeneous, any multiple of a solution to (1) is

again a solution, so it is more natural to study the set of solutions (x1, . . . , xn) ∈
Zn with gcd(x1, . . . , xn) = 1. We call these solutions primitive. The primitive
solutions correspond to rational points on the projective variety X ⊂ Pn−1

defined by (1).
More precisely, consider projective space Pn over Q̄, defined as the set of

equivalence classes [x] of non-zero elements x = (x0, . . . , xn) ∈ Q̄n+1 under
the equivalence relation ∼ given by

(x0, . . . , xn)∼ (λx0, . . . ,λxn) for all λ ∈ Q̄ \ {0}.

Let Pn(Q) be the set of points x ∈ Pn for which we can find a representative
x ∈ Qn+1 such that [x] = x . If X ⊂ Pn is a locally closed subvariety, we
define X (Q) = X ∩ Pn(Q). For each rational point x ∈ X (Q), one can find a
representative x ∈ Zn+1 for x such that gcd(x0, . . . , xn) = 1. Moreover, x is
uniquely determine up to a choice of sign. We then define the height of the
rational point x ∈ Pn(Q) as

H(x) =max{|x0|, . . . , |xn|}.

The density of rational points on X is measured by the counting function

N(X , B) := {x ∈ X (Q), H(x) ≤ B}.

For any positive real number B, we also define the set

S(X , B) := {x ∈ Zn+1; [x] ∈ X (Q), H([x]) ≤ B}.
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Remark 1.1. The Möbius function µ may be used to single out the primitive
points in S(X , B), as explained in [8, §1.2]. Thus we have

N(X , B) =
1

2

∞
∑

k=1

µ(k)#S(X , k−1B) (5)

and

#S(X , B) = 2
∞
∑

k=1

N(X , k−1B). (6)

In particular, it is easy to see that if θ > 1, then N(X , B) ≪ Bθ if and only if
#S(X , B)≪ Bθ .

More generally, one may impose individual restrictions on the coordinates
x0, . . . , xn. Let B = (B0, . . . , Bn) be an (n+ 1)-tuple of positive real numbers.
Then we define

S(X ,B) = {x ∈ Zn+1; [x] ∈ X (Q), |x i| ≤ Bi, i = 0, . . . , n}.

Remark 1.2. If K is a number field, one may define the height of a point x ∈
Pn(K) represented by (x0, . . . , xn) ∈ Kn+1 as

HK(x) =
∏

v∈MK

max{‖x0‖v , . . . ,‖xn‖v},

where MK is the set of standard absolute values on K (see [18, B.1]). It follows
from the product formula [18, B.1.2] that HK(x) is independent of the choice
of representative for x . Consequently, we may define a counting function

NK(X , B) = #{x ∈ X (K); HK(x)≤ B}.

We shall mostly be interested in the case K = Q, but the conjectures we shall
describe shortly, relating geometry and arithmetic, are most conveniently for-
mulated over general number fields.

Example 1.1. It is easy to see that N(An, B) = (2⌊B⌋+ 1)n. Counting rational
points in projective space is already more subtle. By a theorem of Schanuel
[31], we have

N(Pn, B) =
2n−2

ζ(n+ 1)
Bn+1 +O(Bn(log B)bn),

where b1 = 1, bn = 0 for n ≥ 2.

For projective varieties, the trivial estimate is given by the following propo-
sition.
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Proposition 1.2. Let X ⊂ Pn be a closed subvariety of dimension m and degree
d. Then

N(X , B) = On,d(B
m+1).

Proof. This follows from Proposition 1.1 by considering the affine cone C(X ) ⊂
An+1 over X . This is a variety of dimension m+ 1 and degree d, so

N(X , B) ≤ N(C(X ), B) = On,d(B
m+1).

The trivial estimate is obviously best possible for varieties containing a
linear component defined over Q. For any irreducible variety of degree at
least 2, however, it can be improved upon. The most general result is due to
Pila [26], who proves that

N(X , B) = On,d,ǫ(B
m−1+1/d+ǫ) (7)

in the affine case, and

N(X , B) = On,d,ǫ(B
m+1/d+ǫ) (8)

in the projective case.

1.3 The relation between geometry and arithmetic

There is a general philosophy in Diophantine geometry that “geometry governs
arithmetic”. For curves, one has a very satisfactory characterization of the
density of rational points in terms of the genus, as explained in [18, Thm.
B.6.2].

Let C ⊂ Pn be a smooth curve over a number field K . If g(C) = 0 and
C(K) 6= ∅, then C is isomorphic to P1 over K , which implies that NK(C , B) ≈
B2/d , where d is the degree of C . If g(C) = 1, then C is an elliptic curve, and
by the Mordell-Weil theorem, C(K) is a finitely generated abelian group. Then
NK(C , B) ≈ (log B)r/2, where r is the rank of C(K). Finally, if g(C) ≥ 2, then
Faltings’ Theorem states that C(K) is a finite set. In other words, NK(C , B) =
O(1).

A similar characterization for higher-dimensional varieties is yet to be dis-
covered, but there are conjectures inspired by the one-dimensional case. If X
is a smooth projective variety over K , let KX be a divisor in the canonical class
(see [32, III.6.3]). The variety X is said to be of general type if KX is ample, i.e.
if some multiple nKX defines an embedding of X into some projective space.
A curve is of general type if and only if g ≥ 2 [13, Prop. IV.5.2]. Thus, in
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analogy with the case of curves, it is expected that rational points are scarce
on such varieties. Indeed the Bombieri-Lang Conjecture [18, Conj. F. 5.2.1]
states that X (K) is not Zariski dense in X if X is of general type.

At the opposite end of the spectrum, a variety X is called a Fano variety if
−KX is ample. Such varieties are believed to possess “many” rational points.
Batyrev and Manin [1] have formulated very general conjectures relating the
density of rational points on a variety X to certain geometric invariants. They
are most precise in the case of Fano varieties. For simplicity, suppose that we
have an embedding X ⊂ Pn. If X is Fano, then it is predicted that there is a
non-empty open subset U ⊆ X such that

NK(U , B)∼ cX Bα(log B)t−1 (9)

for a certain α > 0 and a certain integer t ≥ 1, possibly after replacing K by a
finite extension K ⊆ K ′. For the precise definition of α and t we refer to [1],
although a counterexample due to Batyrev and Tschinkel [2] shows that the
suggested interpretation of t is not always correct. For a further discussion
of this counterexample and its consequences, as well as the many cases for
which the conjectural asymptotic formula has been verified, one may consult
Peyre’s survey article [25]. In the following important example, however, the
invariants α and t have simple interpretations.

Example 1.2. Suppose that X = V1∩ · · · ∩Vr is an intersection of hypersurfaces
Vi ⊂ Pn−1 of degrees di, respectively, and that dim X = n − 1 − r. In this
case, we call X a complete intersection of multidegree d = (d1, . . . , dr). If X is
non-singular, then

KX = −(n− (d1 + · · ·+ dr))H,

where H is a hyperplane section. Therefore X is Fano if and only if n >
d1+ · · ·+ dr , and in this case, α = n− (d1+ · · ·+ dr). Then [1, Conj. B’] states
that

NK ′(U , B)∼ cBn−(d1+···+dr )(log B)t−1, (10)

provided U ⊂ X is a sufficiently small dense open subset, and K ′ ⊇ K is suf-
ficiently large. Moreover, it is conjectured that the integer t in (10) equals
the rank of the Picard group of X . By [12, Cor. IV. 3.2], Pic(X ) ∼= Z if X is a
complete intersection of dimension at least 3, and thus the log-factor in (10)
vanishes in this case. In particular, for a hypersurface of degree d, the con-
jectural asymptotic formula (10) is in accordance with the heuristic (2) and
Birch’s theorem.
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1.4 The dimension growth conjecture

One may also ask for a very general upper bound for the growth rate of
N(X , B), requiring as little information as possible about the variety X . In
this direction, Heath-Brown has made the following conjecture ([15] or [16,
Conj. 2]).

Conjecture 1. Let F ∈ Z[x1, . . . , xn] be an irreducible homogeneous polynomial
of degree d. Then

N(F, B)≪n,d,ǫ Bn−2+ǫ .

Using birational projections, one can show that Conjecture 1 implies the
following more general statement ([7, Conj. 2]):

Conjecture 2. Let X ⊂ Pn be an irreducible closed subvariety of dimension m
and degree d ≥ 2. Then

N(X , B)≪n,d,ǫ Bm+ǫ. (11)

We refer to this statement, or a weaker version of it where the implied
constant is allowed to depend on X , as the dimension growth conjecture.

Conjecture 2 has now been established in many cases, mainly due to Heath-
Brown, Browning and Salberger. A table summarizing the progress may be
found in Browning [8, Table 3.1]. Several different methods have been em-
ployed to treat different cases, including the approach with exponential sums
introduced in Section 2 and the determinant method of Section 3, as well
as the Hardy-Littlewood circle method. The case of cubic hypersurfaces has
turned out to be the most difficult one [8]. More precisely, the remaining
open case of the dimension growth conjecture is that of a singular hypersur-
face X ⊂ Pn of degree d = 3, where

5≤ n ≤ 5+ dim Sing X .

Example 1.3. Consider the surface X ⊂ P3 given by

x3
1 − x3

2 + x3
3 − x3

4 = 0.

Although X is irreducible, and even non-singular, it obviously contains the line
given by x1 = x2 and x3 = x4. The contribution from this line alone shows
that N(X , B)≫ B2, so this provides an example where the bound (11) is best
possible. On the other hand, the heuristic (2) suggests an estimate of order B.
Thus, we might be tempted to pursue a better bound for the dense open subset
U ⊂ X obtained by deleting all lines on X . By a recent result of Salberger [28,
Cor. 6.5], one obtains

N(U , B)≪ B
p

3(log B)4.

8



In this case, the only lines on X are those given by

xσ(1)− xσ(2) = xσ(3) − xσ(4) = 0

for some permutation σ ∈ S4.
In general, rational points on a variety X may accumulate along a certain

algebraic subset A, and it makes sense to study the density of rational points
on the open subset U = X \ A rather than on X .

1.5 Counting representations of integers as sums or differ-

ences of powers (Paper IV)

Now we shall consider a particularly well studied Diophantine equation. The
classical Waring’s problem asks for the least integer s = g(k) such that the
equation

x k
1 + · · ·+ x k

s = N , (12)

has a solution (x1, . . . , xs) ∈ Ns for any N ∈ N. In other words, we ask for the
smallest integer s such that any natural number can be represented as a sum
of s k-th powers of natural numbers.

A related question concerns the number of representations of N on the
form (12), denoted Rk,s(N). One easily deduces the bound

Rk,s(N) = Oǫ(N
(s−2)/k+ǫ). (13)

Indeed, the case s = 2, from which the general case is easily obtained by
induction, follows from well-known estimates for the divisor function.

Remark 1.3. Moreover, we trivially have

N
∑

n=1

Rk,s(n)≪ N s/k,

so one might heuristically expect that Rk,s(N) = Oǫ(N
ǫ) if s ≤ k and Rk,s(N) =

Oǫ(N
s/k−1+ǫ) if s > k. The former bound would follow from the so called

Hypothesis K of Hardy and Littlewood, stating that Rk,k(N) = O(N ǫ) for any
natural number k. For k = 3, Hypothesis K was proven to be false for k = 3
by Mahler [24], but it remains open for larger k.

In Paper IV of this thesis, we study the case s = 4. Thus, let Rk(N) :=
Rk,4(N). For sums of four cubes, Hooley [19] has proved the remarkable esti-
mate R3(N) = Oǫ(N

11/18+ǫ), using sieve methods. Wisdom [36, 37] extended
Hooley’s methods to prove that Rk(N) = Oǫ(N

11/(6k)+ǫ) for odd integers k ≥ 3.
In Paper IV, the following result is proven.
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Theorem 1.1 (Paper IV, Thm. 1.3).

Rk(N)≪k,ǫ N 1/k+2/k3/2+ǫ

for any ǫ > 0.

More generally, we consider sums of three k-th powers and an l-th power.
The results follow rather easily from recent work of Salberger [28], discussed
further in Section 3.

The main part of Paper IV is devoted to another variant of the same prob-
lem, where some of the + signs in (12) are replaced by −, and the variables
x i are allowed to be arbitrary integers. This problem was recently studied by
Heath-Brown [17] in the case s = 3. Now there may well be infinitely many
solutions, so it makes sense to study the density of solutions. Thus, for k ≥ 3
and ǫ2,ǫ3 ∈ {±1}, let R(N , B) be the number of solutions x ∈ Z3 to

x k
1 + ǫ2x k

2 + ǫ3x k
3 = N , (14)

satisfying max |x i| ≤ B. Here we have the trivial estimate (cf. (13))

R(N , B) = Oǫ(B
1+ǫ).

Call a solution special if one of the terms ±x k
i equals N . It may happen that

the contribution to R(N , B) of the special solutions is of order B. If R0(N , B)
denotes the number of non-special solutions to the equation (14) satisfying
max |x i| ≤ B, then Heath-Brown proves that

R0(N , B) = Ok(B
10/k)

if N ≪ B, and that
R0(N , B) = Oǫ(B

9/10+ǫN 1/10)

if N ≪ B3/13.
In Paper IV, we consider the case s = 4, in the following more general

setting. For a quadruple of non-zero integers (a1, a2, a3, a4) and a positive
integer N , we consider the equation

a1 x k
1 + a2 x k

2 + a3 x k
3 + a4 x k

4 = N , (15)

where x i ∈ Z. Reusing the notation above, let R(N , B) be the number of
solutions x ∈ Z4 to (15) satisfying max |x i| ≤ B. We think of N as being
considerably smaller than Bk, as opposed to in Theorem 1.1, where we had
a natural bound B = N 1/k for the height of the solutions. In this case, the
“trivial” estimate

R(N , B) = Oǫ(B
2+ǫ) (16)

10



may be deduced from known bounds for the number of solutions to Thue
equations.

As above, call a solution x to special if either ai x
k
i = N for some index

i or ai x
k
i + a j x

k
j = N for some pair of indices i, j. Again, the contribution

of the special solutions to R(N , B) may be of order B, as the example N =
1, a = (1,−1, 1, 1), x = (t , t , 0, 1) shows. However, one can show that the
contribution is at most Oǫ(BN ǫ).

IfR0(N , B) denotes the number of non-special solutions to (15) with |x i| ≤
B for all i, then the main result of Paper IV is the following.

Theorem 1.2 (Paper IV, Thm. 1.1). For any ǫ > 0 we have

R0(N , B)≪ai ,N ,ǫ B16/(3
p

3k)+ǫ(B2/
p

k + B1/
p

k+6/(k+3)). (17)

In particular, R(N , B)≪ai ,N B for k ≥ 27.

This estimate improves upon the trivial estimate (16) as soon as k ≥ 8.
There is also a version of Theorem 1.2 where the dependence on N is explicit.
The method of proof is discussed in further detail in Section 3.

Remark 1.4. In the notation used earlier, we have R(N , B) = N(X , B), where
X ⊂ An is the hypersurface given by (15), and R0(N , B) = N(U , B), where the
open subset U ⊂ X is the complement of all lines contained in X (cf. Example
1.3).

2 The method of exponential sums

As mentioned above, the Hardy-Littlewood circle method may be used to
prove asymptotic formulae for the density of solutions to Diophantine equa-
tions, provided the number of variables is large enough. The method described
in this section gives slightly weaker bounds, but is useful when the number of
variables is smaller. We begin by stating a result of Heath-Brown [15] that has
provided the inspiration for the first two papers in this thesis. By the leading
form of a polynomial, we shall mean its homogeneous part of maximal degree.

Theorem 2.1 (Heath-Brown [15, Thm. 2]). Let f ∈ Z[x1, . . . , xn], where n ≥
5, be a polynomial of degree at least 3, with leading form F. Suppose that F
defines a non-singular hypersurface in Pn−1

Q
. Then

N( f , B)≪ f Bn−3+15/(n+5).

11



Note that for cubic polynomials, this estimate approaches the upper bound
predicted by our heuristic consideration (2) and the Batyrev-Manin conjec-
tures, as n→∞. In Paper I, we prove the following generalization of Theorem
2.1 to varieties defined by several equations. Here we denote the height of a
polynomial F ∈ C[x1, . . . , xn], defined as the maximum of the absolute values
of the coefficients of F , by ‖F‖.

Theorem 2.2 (Paper I, Thm. 1.1). Let f1, . . . , fr ∈ Z[x1, . . . , xn] be polynomials
of degree at least 3 and at most d, with leading forms F1, . . . , Fr , respectively.
Suppose that F1, . . . , Fr define a non-singular complete intersection of codimen-
sion r in Pn−1

Q
. Then

N( f1, . . . , fr , B)≪n,d Bn−3r+r2 13n−5−3r
n2+4nr−n−r−r2 (log B)n/2

 

r
∑

i=1

log


Fi





!2r+1

.

Again, if d = 3, this estimate approaches the conjectural one as n→∞. In
the case r = 1, the exponent

n− 3+
13n− 8

n2 + 3n− 2

offers a slight improvement upon the exponent of Theorem 2.1, the nature of
which will be explained in §2.7. Unfortunately, this is not enough to extend
the range n ≥ 10 in which Theorem 2.1 validates Conjecture 1. In Paper II, the
aim is to improve upon the estimate in Theorem 2.1 for polynomials of higher
degree. The following is our main result.

Theorem 2.3 (Paper II, Thm. 1.2). Let f ∈ Z[x1, . . . , xn] be a polynomial of
degree d ≥ 4 with leading form F. Suppose that F defines a non-singular hyper-
surface in Pn−1

Q
. Then

N( f , B)≪n,d,ǫ Bn−4+(37n−18)/(n2+8n−4) + Bn−3+ǫ .

This estimate improves upon Theorem 2.1 as soon as d ≥ 4 and n ≥ 11.
For very large n, the results above fall in importance, in favour of the Hardy-
Littlewood circle method, at least for forms. Indeed, recall that Birch’s work
yields the bound N( f , B) ≪ Bn−4 if d = 4 and n ≥ 49. This has recently
been improved to n ≥ 41 by Browning and Heath-Brown [6]. The proofs of
Theorems 2.2 and 2.10 are discussed in §2.7-2.8.

12



2.1 Counting solutions to congruences

The method used to prove the above results starts with the trivial observation
that a solution x ∈ Zn to the equation f (x1, . . . , xn) = 0 is a fortiori a solution
to the congruence

f (x1, . . . , xn) ≡ 0 (mod q) (18)

for any integer q.
To count solutions to a polynomial congruence (18), one may use exponen-

tial sums. We adopt the standard notation e(x) := e2πi x and eq(x) := e(x/q).
If t is an integer, then we have the following identity:

q
∑

a=1

eq(at) =

(

q if q | t ,

0 otherwise.
(19)

Let R = Z/qZ, and let f ∈ R[x1, . . . , xn] be a polynomial. If N( f ) denotes the
number of solutions x ∈ Rn to the equation f (x) = 0, then we may use (19) to
obtain the formula

N( f ) =
1

q

q
∑

a=1

∑

x∈Rn

eq(a f (x)).

For a = q, the inner sum equals qn, so we get

N( f )− qn−1 =
1

q

q−1
∑

a=1

∑

x∈Rn

eq(a f (x)). (20)

Thus, we can get a bound for the deviation of N( f ) from its expected value
qn−1 by estimating the exponential sums

∑

x
eq(a f (x)).

Suppose now that q = p is a prime. Let f ∈ Fp[x1, . . . , xn] be a polynomial
of degree d, where (d, p) = 1. Suppose that the leading form F of f defines
a non-singular hypersurface in Pn−1 over Fp. Then we have Deligne’s estimate
[9, Thm. 8.4]

∑

x∈Fn
p

ep( f (x))≪n,d pn/2. (21)

An immediate corollary of (21) is that

N( f ) = pn−1 +On,d(p
n/2).

More generally, Deligne proves the following result.

Theorem 2.4 (Deligne [9, Thm. 8.1]). Let X ⊂ Pn
Fp

be a non-singular complete

intersection of dimension m = n− r and multidegree d= (d1, . . . , dr). Then

#X (Fp) = #Pm(Fp) +On,d(p
m/2).
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Remark 2.1. We have #Pm(Fp) = pm+ pm−1+ · · ·+ 1.

Theorem 2.4 and the estimate (21) are both consequences of the Weil con-
jectures, in particular the Riemann hypothesis for varieties over finite fields,
proven by Deligne in [9].

2.2 Counting solutions of bounded height to congruences

It seems desirable to extend the above results in two directions. First, one may
ask what happens for singular varieties. This question is addressed by Hooley
[20], who proves the following generalization of Theorem 2.4.

Theorem 2.5 (Hooley [20, Thm. 2]). Let X be a complete intersection in Pn
Fp

of dimension m = n − r and multidegree d, and let s be the dimension of the
singular locus of X . Then

#X (Fp) = #Pm(Fp) +On,d(p
(m+s+1)/2).

Secondly, we are interested in counting solutions of bounded height to
congruences, rather than all solutions. Indeed, if we define

N( f1, . . . , fr , B, q) = #{x ∈ Zn; fi(x)≡ 0 (modq), 1 ≤ i ≤ r, |x| ≤ B},

then we have
N( f1, . . . , fr , B)≤ N( f1, . . . , fr , B, q)

for any integer q. If B ≪ q, we may identify Z ∩ [−B, B]n with a subset of
(Z/qZ)n. It is sometimes convenient to replace the characteristic function of
the box [−B, B]n by a smooth weight function. More precisely, let W : Rn →
[0, 1] be an infinitely differentiable function, supported on [−2, 2]n. Then we
define a weighted counting function

NW ( f1, . . . , fr , B, q) =
∑

x∈Zn

q| f1(x),..., fr(x)

W

�

1

B
x

�

.

We may for example take W to be the function defined by

W (t) =
n
∏

i=1

w(t i/2), where w(t) =

(

exp(−1/(1− t2)), |t |< 1,

0, |t | ≥ 1.
(22)

It is then clear that

N( f1, . . . , fr , B, q)≪ NW ( f1, . . . , fr , B, q).

In the hypersurface case, Heath-Brown proves the following asymptotic for-
mula.

14



Theorem 2.6 (Heath-Brown [15, Thm. 3]). Let f ∈ Z[x1, . . . , xn] be a poly-
nomial of degree d ≥ 2. Let q be a prime and B ≪ q a real number. Let Zq the
hypersurface in Pn

Fq
defined by the leading form F of f . Then

NW ( f , B, q) = q−1
∑

x∈Zn

W

�

1

B
x

�

+On,d,W

�

Bs+1q(n−s−1)/2
�

,

where s is the dimension of the singular locus of Zq.

The following result of Paper I extends Theorem 2.6, and improves slightly
upon its error term. It may be viewed as a weighted, affine version of Theorem
2.5.

Theorem 2.7 (Paper I, Thm. 3.3). Let f1, . . . , fr ∈ Z[x1, . . . , xn] be polynomials
of degree at least 2 and at most d, with leading forms F1, . . . , Fr , respectively. Let
q be a prime and B a real number with 1 ≤ B≪ q. Suppose that F1, . . . , Fr define
a closed subscheme Zq ⊂ Pn−1

Fq
of codimension r. Then

NW ( f1, . . . , fr , B, q) = q−r
∑

x∈Zn

W

�

1

B
x

�

+On,d,W

�

Bs+2q(n−r−s−2)/2
�

,

where s is the dimension of the singular locus of Zq.

Remark 2.2. We have simplified the error term somewhat, by noting that the
theorem is trivially true if B≪ q1/2 (cf. Remark 3.1 in Paper II).

We shall discuss the proof of Theorem 2.7 in §2.7. In the appendix to
Paper I, Salberger proves a version of Theorem 2.7 without the smooth weight
function W , but with a slightly larger error term. To state it, we need to define
counting functions for general boxes. By a box B in Rn, we mean a product of
closed intervals. If q is a positive integer, we define

N( f1, . . . , fr ,B, q) = #{x ∈ B∩Zn; f1(x)≡ · · · ≡ fr(x) ≡ 0 (modq)}.

Theorem 2.8 (Salberger). Let f1, . . . , fr be r < n polynomials in Z[x1, . . . , xn]

with leading forms F1, . . . , Fr , respectively, of degree at least 2 and at most d. Let
q be a prime and B be a box in Rn such that each side has length at most 2B < q.
Suppose that F1, . . . , Fr define a closed subscheme Zq ⊂ Pn−1

Fq
of codimension r.

Then

N( f1, . . . , fr ,B, q) = q−r#(B∩Zn) +On,d(B
s+2q(n−r−s−2)/2(logq)n),

where s is the dimension of the singular locus of Zq.
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2.3 Weyl differencing

The method used by Heath-Brown to derive the estimate in Theorem 2.1 has
its roots in classical techniques for exponential sums in one variable. In its
original form, the idea is due to Hermann Weyl, who pioneered the use of
exponential sums in number theory, in his paper Über die Gleichverteilung von
Zahlen mod. Eins from 1916 [35]. One of the fundamental tools in this paper
is a procedure now known as “Weyl differencing”. If f : Z→ R is any function,
the idea is to bound the size of the exponential sum

S =
B
∑

x=1

e( f (x))

from above by a mean value of exponential sums involving differenced func-
tions fh(x) = f (x + h) − f (x). In case f is a polynomial, the differenced
function will be a polynomial of lower degree. To achieve this, one writes

|S|2 =
B
∑

x=1

e(− f (x))
B
∑

x ′=1

e( f (x ′))

=
∑

|h|<B

∑

1≤x≤B
1≤x+h≤B

e( f (x + h)− f (x))

=
∑

|h|<B

∑

1≤x≤B
1≤x+h≤B

e( fh(x)).

If f is a polynomial of degree d, one can iterate this procedure d−1 times, us-
ing Cauchy’s inequality, until one has exponential sums involving linear poly-
nomials. These are sums over geometric progressions, and are thus easily
estimated. For a more precise account of Weyl’s method, and applications to
the Riemann zeta function, one may consult Iwaniec & Kowalski [21, Ch. 8].

2.4 Van der Corput’s method

A refinement of Weyl’s method was devised by van der Corput [33, 34]. His
method involves two processes, now known as A and B, that may be iterated
alternatingly to produce increasingly sharper bounds for certain exponential
sums. The A-process is a refinement of the Weyl differencing described above.
Changing notation slightly, we consider a function F : Z→ C and let

S =
B
∑

x=1

F(x).
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Let χ be the characteristic function of the interval [1, B]. One then introduces
a parameter H ≤ B, and writes

HS =
H
∑

h=1

∑

x∈Z
χ(x + h)F(x + h) =

∑

x∈Z

H
∑

h=1

χ(x + h)F(x + h).

By Cauchy’s inequality we have

H2|S|2 ≤
 

B−1
∑

x=1−H

1

!

∑

x∈Z

�

�

�

�

�

H
∑

h=1

χ(x + h)F(x + h)

�

�

�

�

�

2

≤ (2B)
∑

x∈Z

∑

1≤h1 ,h2≤H

χ(x + h1)χ(x + h2)F(x + h1)F(x + h2).

A variable change furnishes

|S|2≪ BH−2
∑

|h|<H

#{(h1, h2); h1− h2 = h}
∑

1≤x≤B
1≤x+h≤B

F(x + h)F(x)

≪ BH−1
∑

|h|<H

∑

1≤x≤B
1≤x+h≤B

F(x + h)F(x).

If F(x) = e( f (x)), then F(x + h)F(x) = e( fh(x)) as defined above. The intro-
duction of the parameter H adds a new level of flexibility compared to Weyl’s
method.

Loosely speaking, the B-process in van der Corput’s method uses Poisson’s
summation formula to transform our exponential sum into another one of
shorter length, under suitable smoothness assumptions on the function f . A
thorough treatment of van der Corput’s method is given in [10].

2.5 Heath-Brown’s q-analogue

In [14] Heath-Brown introduced a q-analogue of van der Corput’s method,
applicable in the case where F is a periodic function, say F(x) = eq( f (x)) for
some function f : Z→ Z. For a suitable divisor q0 of q, we take as our starting
point the formula

HS =
H
∑

h=1

∑

x∈Z
χ(x + hq0)F(x + hq0).

In the resulting estimate

|S|2≪ BH−1
∑

|h|<H

∑

1≤x≤B
1≤x+hq0≤B

F(x + hq0)F(x),
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we have then also achieved a shortening of the period of the summand to
q/q0, which is often favourable.

2.6 A multi-dimensional q-analogue

The method developed by Heath-Brown to prove Theorem 2.1 may be viewed
as an extension of his q-analogue of van der Corput’s method to exponen-
tial sums in several variables. The idea is to bound N( f , B) from above by
NW ( f , B, m), where W is the weight function defined in (22) and m is a
composite number. More precisely, one chooses two primes p,q satisfying
p ≤ B ≤ q and puts m = pq. Here, p will play the role of the integer q0

above. Thus, one divides the sum

NW ( f , B, pq) =
∑

x∈Zn

pq| f (x)

W

�

1

B
x

�

into congruence classes (mod p);

NW ( f , B, pq) =
∑

u∈Fn
p

p| f (u)

∑

x≡u(p)
q| f (x)

W

�

1

B
x

�

.

The expected value of the inner sum is

K := p−nq−1
∑

x∈Zn

W

�

1

B
x

�

,

so one writes

NW ( f , B, pq) = K
∑

u∈Fn
p

p| f (u)

1+
∑

u∈Fn
p

p| f (u)











∑

x≡u(p)
q| f (x)

W

�

1

B
x

�

− K











≪ Bnp−1q−1 +

�

�

�

�

�

�

�

�

∑

u∈Fn
p

p| f (u)











∑

x≡u(p)
q| f (x)

W

�

1

B
x

�

− K











�

�

�

�

�

�

�

�

.

(23)

Van der Corput differencing is then applied to the rightmost sum, which leads
one to estimate counting functions for the hypersurfaces in An

Fq
defined by

differenced polynomials

f y(x) := f (x+ py)− f (x).
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To this end, one uses Theorem 2.6. Thus, geometric arguments are needed to
keep track of the quantity s appearing in Theorem 2.6, or, in other words, to
determine how singular the “differenced” hypersurfaces are.

2.7 Generalization to complete intersections (Paper I)

Let f1, . . . , fr and F1, . . . , Fr be as in the hypotheses of Theorem 2.2. As in
Heath-Brown’s proof of Theorem 2.1, we shall work with a modulus that is a
product of two primes. More precisely, if

Z = ProjZ[x1, . . . , xn]/(F1, . . . , Fr),

then the primes p and q are chosen so that 2p < 2B + 1 < q − p, and both
ZFp

and ZFq
are non-singular of codimension r. The differencing procedure

that lies at the heart of the proof of Theorem 2.2 is a rather straightforward
extension of that in [15], one major difference being that we avoid the use of
a smooth weight function. Thus, let χB be the characteristic function of the
box B = [−B, B]n. Writing

N := N( f1, . . . , fr , B, pq)

we have

N = K
∑

u∈Fn
p

p| f1(u),..., fr(u)

1+
∑

u∈Fn
p

p| f1(u),..., fr(u)











∑

x≡u(p)
q| f1(x),..., fr(x)

χB(x)− K











, (24)

where
K = p−nq−r(2B+ 1)n.

As in (23), van der Corput differencing is applied to the rightmost sum in
(24). This procedure introduces differenced polynomials f y

1 , . . . , f y
r , for y ∈ Fn

q ,
defined by

f y

i (x) := fi(x+ py)− fi(x).

Defining the boxes By :=
�

x ∈ Zn;x ∈ B,x+ py ∈ B	 ,

we are then required to estimate the sum
∑

y∈Zn∆(y), where

∆(y) = N( f y

1 , . . . , f y
r ,By, q)− q−r#(By ∩Zn).
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If the leading form of f y

i is denoted F y

i for 1≤ i ≤ r, let

Zy = ProjFq[x1, . . . , xn]/(F
y

1 , . . . , F y
r ).

(In fact, F y

i = py·∇Fi for all i, unless y= 0.) Then the estimation of
∑

∆(y) by
means of Theorem 2.8 requires uniform bounds for the dimension and degree
of the closed subset of y ∈ An such that dim Sing(Zy)≥ s, for all possible values
of s ≥−1. This problem is addressed in the geometric part of the paper.

The output of the method just described is the following asymptotic for-
mula (Paper I, Theorem 1.4):

N( f1, . . . , fr , B, pq) =
(2B + 1)n

prqr
+On,d

��

B(n+1)/2 p−r/2q(n−r−1)/4

+B(n+1)/2 p(n−2r)/2q−1/4 + Bn/2p−r/2q(n−r)/4

+Bn/2p(n−r)/2 + Bnp−(n+r−1)/2q−r + Bn−1p−r+1q−r)(logq)n/2
�

.

(25)

To deduce Theorem 2.2 from the asymptotic formula (25), we try to find
primes p and q optimizing the expression on the right hand side, and at the
same time satisfying the hypotheses that ZFp

and ZFq
be non-singular. It is only

at this point that a dependence on the height of the polynomials is introduced
into our estimates. A careful analysis using universal forms allows us to state
this dependence explicitly in Theorem 2.2.

Now we turn to Theorem 2.7. The main part of the proof concerns the
non-singular case s = −1. As in [15], we apply Poisson’s summation formula
to the counting function N( f1, . . . , fr , B, q), in a q-analogue of van der Corput’s
B-process. One is then lead to estimate exponential sums

∑

x∈Fn
q

q| f1(x),..., fr(x)

eq(a · x),

where a ∈ Fn
q . Following Luo [23], we use estimates due to Katz [22] to

bound these exponential sums. Already for hypersurfaces, this yields an im-
provement upon Heath-Brown’s approach using Deligne’s bounds. The general
case is proven by induction on s. Part of the paper is devoted to geometric con-
siderations needed in order to carry out this induction in a uniform manner.

At the end of Paper I, we sketch a proof of the following weighted version
of the asymptotic formula (25), using Theorem 2.7 in place of Theorem 2.8.

Theorem 2.9. Let W : Rn → [0, 1] be an infinitely differentiable function sup-
ported on [−2, 2]n. Let f1, . . . , fr be polynomials in Z[x1, . . . , xn] of degree at
least 3 and at most d, with leading forms F1, . . . , Fr . Let

Z = ProjZ[x1, . . . , xn]/(F1, . . . , Fr)
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and suppose that p and q are primes, with p ≤ B ≤ q, such that both ZFp
and

ZFq
are non-singular subvarieties of codimension r in Pn−1. Then we have

NW ( f1, . . . , fr , B, pq)− p−rq−r
∑

x∈Zn

W

�

1

B
x

�

≪D,n,d,C B(n+1)/2 p−r/2q(n−r−1)/4 + B(n+1)/2 p(n−2r)/2q−1/4

+ Bnp−(n+r−1)/2q−r + Bn−C/2p(C−r)/2q−r/2

for any C > 0, where D = Dn+1 is the maximum over Rn of all partial derivatives
of W of order n+ 1.

2.8 Iteration of the Heath-Brown-van der Corput method

(Paper II)

The idea behind the proof of Theorem 2.3 is to perform two iterations of the
differencing procedure introduced in [15]. To this end, we use a modulus that
is a product of three primes, m = πpq, where π, p ≤ B ≤ q. Moreover, we
revert to the use of a smooth weight function. Thus, with W the function de-
fined in (22), the heart of the proof of Theorem 2.10 is an asymptotic formula
of the type

NW ( f , B,πpq) = (πpq)−1
∑

x∈Zn

W

�

1

B
x

�

+ error terms. (26)

The primes π and p are used as parameters in the two differencing steps.
In the differencing procedure, we incorporate a refinement of Heath-Brown’s
method due to Salberger [29], allowing us to retain, throughout the differenc-
ing step, congruence conditions that were discarded in the original approach.

For any y ∈ Zn, we define the polynomial f y ∈ Z[x1, . . . , xn] by

f y(x) = f (x+ y)− f (x).

For any pair (y,z) ∈ Zn×Zn, we define the twice differenced polynomial

f y,z(x) = f (x+ y+ z)− f (x+ y)− f (x+ z) + f (x).

Furthermore, let

F y(x) = y · ∇F(x) = y1

∂ F

∂ x1

+ · · ·+ yn

∂ F

∂ xn

,

F y,z(x) = (Hess(F))y · z =
∑

1≤i, j≤n

∂ 2F

∂ x i∂ x j

yiz j.
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Note how this notation differs from that of §2.7. Ignoring the technicalities of
the differencing procedure itself, the main issue is now to estimate counting
functions for the family of “differenced” varieties defined by

f (x) = f pz(x) = f πy,pz(x) = 0.

Once more, these estimates are supplied by Theorem 2.7, successful applica-
tion of which requires knowledge of the dimension of the singular loci of the
projective subschemes

Zq,z,y = ProjFq[x1, . . . , xn]/(F, F z, F y,z)

for different determinations of y,z. This turns out to require considerable ge-
ometric machinery. In particular, although the asymptotic formula (26) holds
uniformly in f , the conditions that have to be imposed on the primes π, p, q
in order for the method to work go beyond mere good reduction of the hyper-
surface f = 0. A thorough investigation is made in order to ensure that such
primes may always be found, of a prescribed order of magnitude in relation to
B. At this point, a dependence on the height of F is unavoidable. We get the
following result.

Theorem 2.10 (Paper II, Thm. 1.1). Let f ∈ Z[x1, . . . , xn] be a polynomial
of degree d ≥ 4 with leading form F. Suppose that F defines a non-singular
hypersurface in Pn−1

Q
. Then

N( f , B)≪F Bn−4+(37n−18)/(n2+8n−4).

The uniform version, Theorem 2.3, is derived using a version of Siegel’s
lemma due to Heath-Brown [16], combined with an application of the deter-
minant method in §3, due to Browning, Heath-Brown and Salberger [7].

3 The determinant method

In this section we shall discuss another method for counting solutions to Dio-
phantine equations, investigated in Papers III and IV in this thesis. Quite con-
trary to the methods discussed above, the determinant method is most pow-
erful when the number of variables is small compared to the degree of the
equation. The method has its origins in a paper by Bombieri and Pila [4] from
1989.
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3.1 Uniform bounds for affine curves

Bombieri and Pila proved upper bounds for the number of integral points on
plane curves. If C ⊂ A2 is an irreducible algebraic curve of degree d, defined
over the integers, then their bound has the shape

N(C , B) = Od,ǫ(B
1/d+ǫ) (27)

for any ǫ > 0.
The key part of the proof of (27) is the construction of a number of auxil-

iary curves of low degree. Thus, it is proven that every point in C(Z, B) resides
on one of Od,ǫ(B

1/d+ǫ) algebraic curves of degree Od(1). To achieve this, one
divides the curve C into small arcs, where it is sufficiently smooth, and for
each such arc Γ one exhibits an algebraic curve meeting C in all the integral
points of Γ. The number of integral points on the intersection of C with this
curve is then Od(1) by Bézout’s Theorem. The existence of the auxiliary curves
is established by examining a generalized Vandermonde determinant involv-
ing monomials evaluated at integral points, a procedure similar to techniques
used in the theory of Diophantine approximation.

A notable feature of the estimate (27), which makes it useful in several
contexts, is that the bound does not depend on the coefficients of the defining
equation. Thus, for example, Pila [26] uses (27) as base for an induction
argument to prove the estimates (7) and (8) above.

3.2 Heath-Brown’s p-adic determinant method

An important milestone in the subject of quantitative arithmetic of algebraic
varieties is Heath-Brown’s paper [16] from 2002, in which the key result is a
vast generalization of the one in [4]. It is a sign of its significance that the
theorem is often referred to simply as “Theorem 14”.

Theorem 3.1 ([16, Thm. 14]). Let F ∈ Z[x1, . . . , xn] be an absolutely irre-
ducible homogeneous polynomial of degree d, defining a hypersurface X ⊂ Pn−1.
Then, for any ǫ > 0, there is a homogeneous polynomial G ∈ Z[x1, . . . , xn] \ (F)
of degree

k≪n,d,ǫ B(n−1)d−1/(n−2)+ǫ(log‖F‖)2n−3,

all of whose irreducible factors have degree On,d,ǫ(1), such that G(x) = 0 for every
x ∈ S(X , B).

Remark 3.1. Heath-Brown actually proves a more general statement, for boxes
of possibly unequal sidelength. If B = (B1, . . . , Bn), then he defines

V = B1 · · ·Bn, T =max(B f1
1 · · ·B fn

n )
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where the maximum is taken over all monomials x f1
1 · · · x fn

n that occur in F
with non-zero coefficient. The statement of the theorem above then holds
with S(X , B) replaced by S(X ,B) and

k≪n,d,ǫ

�

V d/T
�d−(n−1)/(n−2)

V ǫ(log‖F‖)2n−3.

Remark 3.2. The mild dependence on the coefficients of F in the above the-
orem may in fact be eliminated by appealing to an argument in the spirit of
Siegel’s lemma [16, Theorem 4]. The same argument appears in our Paper II
(Lemma 5.1).

Heath-Brown’s version of the determinant method is quite different from
that of Bombieri and Pila, but is based upon a variant of the same idea. Let F
be as in Theorem 3.1. We may certainly assume that F is primitive, i.e. has
coprime coefficients, so that for each prime p, the equation F(x1, . . . , xn) ≡ 0
(mod p) defines a hypersurface Xp ⊂ Pn−1

Fp
. For a prime p one then considers

a partition of S(X , B) into subsets S(X , B,ξ), where S(X , B,ξ) is the set of
x ∈ S(X , B) such that [x] reduces (mod p) to ξ ∈ Xp(Fp). For each non-
singular Fp-point ξ one gets an auxiliary polynomial, vanishing at every point
of S(X , B,ξ), by proving the vanishing of a certain determinant. In other
words, integral points are grouped together based on their p-adic distance to
each other, whereas Bombieri and Pila considered a covering of small patches
defined in the Euclidean metric. Thus we may distinguish between the “real”
determinant method of [4], and the “p-adic” determinant method developed
by Heath-Brown.

3.3 Further refinements

Several refinements of Heath-Brown’s determinant method have appeared.
Broberg [5] generalizes Theorem 14 to the case of an irreducible projective
variety of any codimension. Broberg uses graded monomial orderings to for-
mulate his result. This notion is elaborated in Paper III, Section 3. In particu-
lar, given a monomial ordering < and an irreducible projective variety X ⊆ Pn,
we associate to the pair (<, X ) an (n + 1)-tuple (a0, . . . , an) of real numbers
satisfying 0≤ ai ≤ 1 and a0+ · · ·+ an = 1. Broberg considers varieties over an
arbitrary number field K , but for simplicity we shall only state the case K =Q
here.

Theorem 3.2 ([5, Thm. 1]). Let X ⊂ Pn be an irreducible closed subvariety
of dimension m and degree d. Suppose that the ideal I ⊂ Q[x0, . . . , xn] of X
is generated by forms of degree at most δ. Let B = (B0, . . . , Bn) be an (n+ 1)-
tuple of positive real numbers, and let < be a graded monomial ordering on
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Q[x0, . . . , xn]. Then, for any ǫ > 0, there is a homogeneous polynomial G ∈
Z[x0, . . . , xn] \ I of degree

k≪n,δ,ǫ (B
a0

0 · · ·Ban
n )
(m+1)d−1/m+ǫ,

all of whose irreducible factors have degree On,δ,ǫ(1), such that G(x) = 0 for all
x ∈ S(X ,B).

Remark 3.3. The dependence on δ in the implied constants in Theorem 3.2
may be replaced by a dependence on the degree d of X , by Lemmata 1.3 and
1.4 in Salberger [30].

To understand some of the further developments, we shall have to look a
bit closer on the proof of Theorem 14. Thus, let X be a hypersurface as in
the theorem. First we note that we can easily dispose of those x ∈ S(X , B)
that correspond to singular points [x] ∈ X , incorporating among our auxiliary
forms one of the equations defining the singular locus of X . Thus it suffices to
count non-singular points. For any given prime p, however, it may happen that
a point that is non-singular over Q still reduces to a singular point on Xp. But
it is possible to find a finite set of primes P with the property that any non-
singular point x ∈ X (Q) reduces to a non-singular point ξ ∈ Xp(Fp) for some
prime p ∈ P . Heath-Brown then uses a p-adic Implicit Function Theorem to
parameterize the elements of S(X , B,ξ).

Salberger [30] endeavours to count integral points on an affine surface
X by a procedure that may be roughly described as follows. First the p-adic
determinant method is applied once to obtain a number of curves of bounded
degree on X . Then one repeats this a second time with a new prime q, to count
integral points on these curves, but retaining also the p-adic congruence con-
ditions from the first step. One is then forced to consider singular Fp-points as
well. This refinement of Heath-Brown’s determinant method is accomplished
in [30], leading to proofs of new cases of the dimension growth conjecture.

Recently, Salberger [28] has developed a new version of the p-adic deter-
minant method, where one uses congruence conditions for (almost) all primes
p simultaneously. The output is an auxiliary form whose degree is consider-
ably smaller than that given by Theorem 3.1,

k≪n,d,ǫ B
n−1

(n−2)d1/(n−2)+ǫ,

but with the serious drawback that there is no smaller upper bound for the
degrees of its irreducible factors. However, through an intricate procedure,
Salberger is able to interpolate between this result and the one obtained by
the original argument, to the effect that every point to be counted belongs
either to one of at most k hypersurfaces of bounded degree, or to one of
O(B(n−1)d−1/(n−2)+ǫ) subvarieties of codimension two.
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3.4 The basic idea

In all versions of the determinant method, the aim is to construct auxiliary
polynomials that vanish at the integral points one wishes to count. In general,
given a collection of points a1, . . . ,as ∈ Cn, one can consider the interpolation
problem of finding a polynomial of degree at most δ that vanishes at a1, . . . ,as.
This corresponds to solving a system of equations

∑

|α|≤δ
cαa

α
j = 0, j = 1, . . . , s, (28)

non-trivially in indeterminates cα, |α| ≤ δ. Here we use multi-index notation
xα = xα1

1 · · · xαn
n , and |α|= α1+ . . .+αn for α ∈ Zn

≥0. Assuming that the system
(28) is quadratic, such a non-trivial solution exists if

∆ := det
�

aαj

�

j=1,...,s
|α|≤δ

= 0.

For integral points a1, . . . ,as ∈ Zn, this holds as soon as |∆| < 1. As for an
ordinary Vandermonde determinant, one can make ∆ small by choosing the
points ai close to each other (in the Euclidean sense). Alternatively, for any
prime p, ∆ will vanish as soon as |∆| · ‖∆‖p < 1, which we may try to achieve
by choosing the points close to each other in the p-adic sense.

In our situation, it is of course essential that the auxiliary polynomial does
not vanish entirely on the variety under consideration. This may be achieved
by restricting the set of monomials xα occuring in (28) (see Paper III, §3,
where this is elaborated using monomial orderings.) The following example
illustrates the basic arguments used to estimate such a monomial determinant,
in the real setting.

Example 3.1. Let (u1, v1, w1), . . . , (us, vs, ws) be points in [−B, B]3∩Z3 satisfying
f (ui, vi, wi) = 0 for some polynomial f . For simplicity, let us assume that
(u1, v1, w1) = (0, 0, 0). Given a setM = (m1, . . . , ms) of monomials in (x , y, z)
of degree ≤ δ, define the determinant

∆0 =

�

�

�

�

�

�

�

m1(u1, v1, w1) · · · m1(us, vs, ws)
...

. . .
...

ms(u1, v1, w1) · · · ms(us, vs, ws)

�

�

�

�

�

�

�

.

It is convenient to rescale the problem. The points

(x i, yi, zi) =

�

1

B
ui,

1

B
vi,

1

B
wi

�

∈ [−1, 1]3 ∩Q3
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satisfy fB(x i, yi, zi) = 0, where fB(x , y, z) = f (Bx , B y, Bz). Suppose now that
(x i, yi, zi) all lie within a cube K ⊂ [−1, 1]3 of sidelength ρ. Suppose fur-
thermore that the subset of the hypersurface fB = 0 bounded by K can be
parameterized as z = φ(x , y), where φ has continuous partial derivatives of
any order. Now we have

∆0 = B
∑

i deg(mi)∆,

where

∆=

�

�

�

�

�

�

�

m1(x1, y1, z1) · · · m1(xs, ys, zs)
...

. . .
...

ms(x1, y1, z1) · · · ms(xs, ys, zs)

�

�

�

�

�

�

�

.

Define functions ψi(x , y) = mi(x , y,φ(x , y)) and consider the power series
expansion around (0, 0, 0)

ψi(x , y) = Pi,ν(x , y) +O(ρν+1),

where Pi,ν is a polynomial of total degree ν , say

Pi,ν(x , y) =
∑

α∈Z2

α1+α2≤ν

ci,αxα1 yα2 ,

and ν is chosen so that Pi,ν has at least s terms (including terms with vanishing
coefficient). We may then write

∆=∆′+R ,

with R of negligible size and ∆′ = det P, where

P =









P1,ν(x1, y1) · · · P1,ν(xs, ys)
...

. . .
...

Ps,ν(x1, y1) · · · Ps,ν(xs, ys)









.

A basis for the row space of P is furnished by the vectors

vα = (x
α1

1 yα2
1 · · · xα1

s yα2
s ),

where α1+α2 ≤ ν . Since, for each k, the subspace generated by {vα;α1+α2 =

k} has dimension at most k + 1, the matrix P is clearly row equivalent to a
matrix where the first row has entries of size O(1), the next two rows have
entries of size O(ρ), the next three rows have entries of size O(ρ2), and so on.
This yields the estimate

∆≪ ρ1·2+2·3+···+ν(ν+1) = ρν
3/3+O(ν2). (29)

(The implied constants, of course, depend upon the size of the partial deriva-
tives of the function φ.) It is now a matter of choosing the parameters ρ, δ
and ν optimally, in terms of B and the degree of f , to get |∆0|< 1.
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3.5 The real determinant method for higher-dimensional va-

rieties (Paper III)

In the third paper of this thesis, the real determinant method is developed
in higher dimensions. We give a new proof of a result (Paper III, Thm. 1.2)
that is essentially Theorem 3.2 above. In particular, we recover Theorem 14.
It might seem, at a first glance, that we have achieved a generalization in
allowing non-rational coefficients for the defining polynomials, but as Heath-
Brown notes [16, Cor. 1] it is easy to find auxiliary hypersurfaces for varieties
not defined over Q.

The main obstacle in generalizing the procedure of Bombieri and Pila to
higher dimensions has to do with local parameterization. In Example 3.1
above, we considered a patch of our variety parameterized by a smooth func-
tion. In other words, to carry out our estimate we had to assume that we
were in a situation where the Implicit Function Theorem could be invoked.
In particular, singular points have to be handled separately by other means.
Furthermore, the implied constants in our bounds depended on the sizes of
the partial derivatives of the implicit function. It is thus necessary to control
these derivatives to get a bound on the determinant that holds uniformly in
all patches. In [4], this is done through a rather elaborate iterative procedure,
in which patches where the derivatives oscillate are excised and reparameter-
ized.

(In the p-adic setting, there is also a version of the Implicit Function The-
orem [5, Lemma 6], allowing for parameterization of the points in a con-
gruence class S(X , B,ξ) appertaining to a non-singular point ξ ∈ Xp(Fp), by
p-adic power series.)

In Paper III, we employ a powerful result due to Gromov [11] to tackle the
parameterization problem. Let V ⊂ An

R
be an algebraic variety of dimension

m < n and degree d, and let Y = V ∩ [−1, 1]n. Then Yomdin-Gromov’s alge-
braic lemma (Lemma 4.1 in Paper III) states that for each r ∈ Z+, Y can be
parameterized by On,r,d(1) functions [−1, 1]m→ [−1, 1]n, all of whose partial
derivatives of order up to r are continuous and bounded in absolute value by
1. This lemma is an example of the theory of C k-reparameterization of semi-
algebraic sets, first introduced by Yomdin to study topological entropy (see
[38] or [39] for an account of this field of research). More generally still, a
statement of the same nature can be proven to hold for so called definable
sets in o-minimal structures. This is proven in [27], where it is used to prove
a theorem on the paucity of rational points of such sets.

From Theorem 1.2 in Paper III it is not difficult to derive an affine version,
containing the estimate (27) as a special case.
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Theorem 3.3 (Paper III, Thm. 1.1). Let X ⊂ An
R

be an irreducible closed subva-
riety of dimension m and degree d, and let I ⊂ R[x1, . . . , xn] be the ideal of X .
Then, for any ǫ > 0, there exists a polynomial g ∈ Z[x1, . . . , xn] \ I of degree

k≪n,d,ǫ Bmd−1/m+ǫ,

all of whose irreducible factors have degree On,d,ǫ(1), such that g(x) = 0 for each
x ∈ X (Z, B).

3.6 An approximative determinant method. Sums and dif-

ferences of k-th powers (Paper IV)

The fourth paper in this thesis (see also §1.5) deals with counting the number
of representations of a positive integer N by a diagonal form, that is, integral
solutions to the equation

a1 x k
1 + a2 x k

2 + a3 x k
3 + a4 x k

4 = N . (30)

In general, let F(x1, x2, x3, x4) be a non-singular homogeneous polynomial
of degree k. We want to count integral solutions to the equation

F(x1, x2, x3, x4) = N (31)

with |x i| ≤ B. As a first approach, we may apply Theorem 3.3 to the three-
dimensional affine hypersurface defined by (31), to obtain a collection of
Ok,ǫ(B

3/k1/3+ǫ) auxiliary hypersurfaces containing all points we want to count.
Suppose, however, that the positive integer N is considerably smaller than

Bk. Then a primitive integer quadruple (x1, x2, x3, x4) satisfying (31) corre-
sponds to a point in P3(Q) lying, in a certain sense, near the projective surface
defined by

F(x1, x2, x3, x4) = 0. (32)

Seeing as Theorem 3.1 would yield a collection of Ok,ǫ(B
3/
p

k) auxiliary forms
for rational points of height at most B on the surface (32), one could hope to
improve the exponent 3/k1/3 by incorporating this additional information into
the determinant method.

Such an approximative version of the determinant method was recently
developed by Heath-Brown [17] for studying the corresponding problem in
three variables, and that work provides the main ideas for our approach in
Paper IV. We prove that every solution to (31) (or indeed, to the corresponding
inequality) satisfies one of

OF,N ,ǫ(B
16/(3

p
3k)+ǫ)
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auxiliary homogeneous equations (Paper IV, Prop. 3.1). Thus we successfully
interpolate between the exponents 3/k1/3 and 3/

p
k discussed above.

In the case of a diagonal form

F(x1, x2, x3, x4) = a1 x k
1 + a2 x k

2 + a3 x k
3 + a4 x k

4,

we proceed by applying the results from [28] described above to each affine
surface

F(x1, x2, x3, x4)− N = Ai(x1, x2, x3, x4) = 0

obtained by the above procedure. Here Ai denotes an auxiliary form. The final
ingredient in our estimate for the number of representations is a lower bound
for the degrees of curves on Fermat hypersurfaces, due to Salberger [28].
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Corrections to the papers

The versions of Paper I and Paper II included in this thesis differ from the
published versions on the following points.

Paper I

In Lemma 2.9, we have added the hypothesis q ∤ (di − 1) for i = 1, . . . , r. We
have also removed an erroneous, but superfluous, assertion made in the proof
of (i).

Paper II

1. In Lemma 4.1, the notation for the “differenced” weight functions used
was not consistent with the definition in Notation 4.2. Thus, we have
changed this notation slightly throughout Lemma 4.1 and its proof.

2. In Lemma 5.1, we have added the hypothesis that the coefficients of f
be coprime, which is of course no restriction in the application of the
result.
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