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1 Introduction

The Cahn-Hilliard equation is an equation of mathematical physics which
describes the process of phase separation, by which the two components
of a binary fluid spontaneously separate and form domains pure in each
component.

In this thesis we study numerical approximation of the Cahn-Hilliard
equation. We consider both the original equation and the equation per-
turbed by noise. The stochastic Cahn-Hilliard equation also called the Cahn-
Hilliard-Cook equation. This work involves several mathematical topics:

• Semigroup theory

• Cahn-Hilliard equation

• Stochastic analysis in Hilbert space

• Finite element method

• A posteriori error analysis based on the calculus of variations

In the following we give a brief survey of these topics and finally a summary
of the appended papers.

2 Semigroup approach

Semigroup theory is the abstract study of first order ordinary differential
equations with values in Banach space, driven by linear, but possibly un-
bounded operators. This approach has a wide applications in different
branches of analysis, such as harmonic analysis, approximation theory and
many other subjects. In this section we outline the basics of the theory,
without proof. For more complete and advanced details of the theory and
its applications the partial differential equations, one may refer to Evans [8]
and Pazy [17].

Definition 2.1 (Semigroup). A family {E(t)}t≥0 of bounded linear oper-
ators from Banach space X to X is called a semigroup of bounded linear
operators if

1. E(0) = I, (identity operator)

2. E(t+ s) = E(t)E(s), ∀s, t ≥ 0. (semigroup property)

The semigroup is called strongly continuous if

lim
t→0+

E(t)x = x ∀x ∈ X.
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The infinitesimal generator of the semigroup is the linear operator G defined
by

Gx = lim
t→0+

E(t)x− x
t

,

its domain of definition D(G) being the space of all x ∈ X for which the
limit exists. The semigroup can be denoted by E(t) = etG.

A strongly continuous semigroups of bounded linear operators on X is
often called a C0 semigroup. If, moreover, ‖E(t)‖ ≤ 1 for t ≥ 0, it is called
a semigroup of contractions.

In this work we consider −∆ with the homogeneous Neumann boundary
condition as an unbounded linear operator on L2 = L2(D) with standard
scalar product 〈·, ·〉 and norm ‖·‖. It has eigenvalues {λj}∞j=0 with

0 = λ0 < λ1 ≤ · · · ≤ λj ≤ · · · ≤ λj →∞,

and corresponding orthonormal eigenfunctions {ϕj}∞j=0. The first eigenfunc-
tion ϕ0 is constant. Also we let Ḣ be the subspace of H, which is orthogonal
to the constants,

Ḣ =
{
v ∈ L2 : 〈v, 1〉 = 0

}
,

and let P be the orthogonal projection of H onto Ḣ. Define the linear
operator A = −∆ with domain of definition

D(A) =
{
v ∈ H2 ∩H :

∂v

∂n
= 0 on ∂D

}
.

By spectral theory we define Ḣs = D(As/2) with norms |v|s = ‖As/2v‖ for
real s ≥ 0. Then the semigroup e−tA

2
generated by G = −A2 can be written

as

e−tA
2
v =

∞∑
j=0

e−tλ
2
j 〈v, ϕj〉ϕj .

This is a strongly continuous semigroup. Moreover, it is analytic, meaning
that e−tA

2
can be extended to be a holomorphic function of t. This leads to

the important properties in the following lemma. For the proof and more
details about properties of semigroups we refer to [17].

Lemma 2.2. If {e−tA2}t≥0 is the semigroup generated by −A2, then the
following hold:

‖Aβe−tA
2
v‖ ≤ Ct−β/2‖v‖, t > 0, β ≥ 0,∫ t

0
‖Ae−sA

2
v‖2 ds ≤ C‖v‖2.
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3 Cahn-Hilliard equation

When a homogeneous molten binary alloy is rapidly cooled, the resulting
solid is usually found to be not homogeneous, but instead has a fine grained
structure consisting of just two materials, which differs only in the mass
fraction of the components of the alloy. The development of a fine grained
structure from a homogeneous state is referred to as spinodal decomposition.

In 1958, J. Cahn and J. Hilliard [4] derived an expression for the free
energy of a sample V of binary alloy with concentration field c(x) of one of
two species. They assumed that the free energy density depends not only on
c(x) but also on the derivative of c. The expression for the total free energy
has the form,

E = NV

∫
V

(
F (c) + κ|∇c|2

)
dV, (3.1)

where NV is the number of molecules per unit volume, F is the free energy
per molecule of an alloy of uniform composition, and κ is a material constant
which is typically very small. The function F has two wells with minima
located at the two coexistent concentration states, labeled cα and cβ > cα.

With the given average concentration τ , the equilibrium configurations
satisfy the Cahn-Hilliard equation

2κ∆c− F ′(c) = λ inV, (3.2)
∂c

∂n
= 0 on ∂V, (3.3)

where ∆ is the Laplacian, λ is a Lagrange multiplier associated with the
constraint τ , and n is the normal to ∂V . In [4], equations (3.2), (3.3)
together with the constraint are used to predict the profile and thickness of
one-dimensional transitions between concentration phases cα and cβ.

The general equation governing the evolution of a non-equilibrium state
c(x, t) is put forth in [3] and this is what is now referred to as the Cahn-
Hilliard equation

∂c

∂t
= ∇ · {M∇(F ′(c)− 2κ∆c)} inV, (3.4)

with the boundary conditions

∂c

∂n
=
∂∆c
∂n

= 0 on ∂V. (3.5)

The positive quantity M is related to the mobility of the two atomic species
which comprise the alloy.
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In the this thesis we consider the Cahn-Hilliard equation in the form

ut − ε∆w dt = 0 in D × [0, T ],
w + ∆u− f(u) = 0 in D × [0, T ],

∂u

∂n
=
∂w

∂n
= 0 on ∂D × [0, T ],

u(0) = u0 in D,

(3.6)

where ut = ∂u/∂t. The equation perturbed by noise is

du− ε∆w dt = dW in D × [0, T ],
w + ∆u− f(u) = 0 in D × [0, T ],

∂u

∂n
=
∂w

∂n
= 0 on ∂D × [0, T ],

u(0) = u0 in D,

(3.7)

where D is a bounded domain in Rd, d = 1, 2, 3 and f(s) = s3 − s.
In the sequel we will write the equation (3.6) in operator form. By

definition of D(A) and H, equation (3.6) can be written as

ut +A2u = −Af(u), t > 0,
u(0) = u0,

(3.8)

which is equivalent to the fixed point equation

u(t) = e−tA
2
u0 −

∫ t

0
e−(t−s)A2

Af(u(s)) ds.

The generator −A2 is the infinitesimal generator of an analytic semigroup
e−tA

2
on H so that

e−tA
2
v =

∞∑
j=0

e−tλ
2
j 〈v, ϕj〉ϕj =

∞∑
j=1

e−tλ
2
j 〈v, ϕj〉ϕj + 〈v, ϕ0〉ϕ0

= e−tA
2
Pv + (I − P )v.

4 Stochastic analysis in Hilbert space

In this thesis we use the stochastic integrals and its properties frequently, so
in this section we recall some definitions and theorems about stochastic inte-
grals without proof. For more details one may refer to Prévôt and Röckner
[20], Da Prato and Zabczyk [7], Klebaner [13] and Grigoriu [12].
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4.1 Wiener process

Let Q be a selfadjoint, positive semidefinite, bounded linear operator on
the Hilbert space U with Tr(Q) < ∞. Let U and H be separable Hilbert
spaces and assume that {W (t)}t∈[0,T ] is a U -valued Q-Wiener process on a
probability space (Ω,F , P ) with respect to the normal filtration {Ft}t∈[0,T ],
where T > 0 is fixed.

Definition 4.1. A U -valued stochastic process {W (t)}t≥0 is called a Q-
Wiener process if

• W (0) = 0,

• {W (t)}t≥0 has continuous paths almost surely,

• {W (t)}t≥0 has independent increments,

• The increments have a Gaussian law, that is,

P ◦ (W (t)−W (s))−1 = N(0, (t− s)Q), 0 ≤ s < t.

Let {ek}∞k=1 be an orthonormal eigenbasis for Q with corresponding
eigenvalues {γk}∞k=1. Then we define

W (t) =
∞∑
k=1

γ
1
2
k βk(t)ek,

where the βk are real valued independent Brownian motions. The series
converges in L2(Ω, H).

4.2 Stochastic integral

Definition 4.2. Let L(U,H) denote the space of bounded linear operators
U → H. An L(U,H)-valued process {Φ(t)}t∈[0,T ] is called elementary if
there exist 0 = t0 < t1 < · · · < tN = T, N ∈ N, such that

Φ(t) =
N−1∑
m=0

Φm1(tm,tm+1](t), t ∈ [0, T ],

where

• Φm: (Ω,F)→ L(U,H) is strongly Ftm measurable,

• Φm takes only a finite number of values in L(U,H).

We denote the (linear) space of elementary process by E .
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Definition 4.3 (Itô integral). For Φ ∈ E , we define the stochastic integral
by ∫ t

0
Φ dW :=

N−1∑
n=0

Φn(∆Wn(t)), t ∈ [0, T ],

where
∆Wn(t) = W (tn+1 ∧ t)−W (tn ∧ t) t ∧ s = min(t, s).

Definition 4.4 (Hilbert-Schmidt operators). An operator T ∈ L(U,H) is
Hilbert-Schmidt if

∑∞
k=1 ‖Tek‖2 < ∞ for an orthonormal basis {ek}k∈N in

U . The Hilbert-Schmidt operators form a linear space denoted by L2(U,H)
which becomes a Hilbert space with scalar product and norm

〈T, S〉HS =
∞∑
k=1

〈Tek, Sek〉H , ‖T‖HS =
( ∞∑
k=1

‖Tek‖2H
) 1

2
.

We recall that the trace of a linear operator T is

Tr(T ) =
∞∑
k=1

〈Tek, ek〉.

Consider the covariance operator Q:U → U , selfadjoint, positive semidef-
inite, bounded and linear. Also assume that W (t) is Q-Wiener process.
If

E
∫ t

0
‖T (s)Q1/2‖2HS ds <∞,

we can define the stochastic integral
∫ t

0 T (s) dW (s) as a limit in L2(Ω, H)
of integrals of elementary processes.

One important property the stochastic integral is the isometry property:

Proposition 4.5 (Isometry property).

E
∥∥∥∫ t

0
T (s) dW (s)

∥∥∥2
= E

∫ t

0
‖T (s)Q1/2‖2HS ds. (4.1)

4.3 Stochastic ordinary differential equation

Stochastic differential equations arise naturally in various engineering prob-
lems, where the effects of random noise perturbations to a system are being
considered. For example in the problem of tracking a satellite, we know
that it’s motion will obey Newton’s law to a very high degree of accuracy,
so in theory we can integrate the trajectories from the initial points. How-
ever in practice there are rather random effects which perturb the motions.
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For more details one can refer to Kuo [14], Klebaner [13] and Chung and
Williams [6] The variety of SDE to be considered here describes a diffusion
process and has the form

dXt = b(t,Xt) + σ(t,Xt) dBt, (4.2)

where bi(x, t) and σij(t, x) for 1 ≤ i ≤ d and 1 ≤ j ≤ r are Borel measurable
functions.

Definition 4.6 (Strong solution). A strong solution of the SDE (4.2) on
the given probability space (Ω,F , P ) with initial condition ξ is a process
{Xt}t≥0 which has continuous sample paths such that

• Xt is adapted to the augmented filtration generated by the Brownian
motion B and initial condition ξ, which is denoted Ft.

• P (X0 = ξ) = 1.

• For every 0 ≤ t < ∞ and for each 1 ≤ i ≤ d and 1 ≤ j ≤ r, then the
following hold almost surely∫ t

0
|bi(s,Xs)|+ σ2

ij(s,Xs)ds <∞.

• Almost surely the following holds

Xt = ξ +
∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs.

4.4 Stochastic partial differential equation

A stochastic partial differential equation (SPDE) is a partial differential
equation containing a random (noise) term. The study of SPDEs is an ex-
citing topic which brings together techniques from probability theory, func-
tional analysis, and the theory of partial differential equations.

Stochastic partial differential equations appear in several different ap-
plications: study of random evolution of systems with a spatial extension
(random interface growth, random evolution of surfaces, fluids subject to
random forcing), study of stochastic models where the state variable is infi-
nite dimensional (for example, a curve or surface), see Carmona [5], Musiela
[16], Goldys et al. [11], Goldys and Maslowski [10], Peszat and Zabczyk
[19], [18]. The solution to a stochastic partial differential equations may be
viewed in several manners. One can view a solution as a random field (set
of random variables indexed by a multidimensional parameter). In the case
where the SPDE is an evolution equation, the infinite dimensional point of
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view consists in viewing the solution at a given time as a random element
in a function space and thus view the SPDE as a stochastic evolution equa-
tion in an infinite dimensional space. In the pathwise point of view, one
tries to give a meaning to the solution for (almost) every realization of the
noise and then view the solution as a random variable on the set of (infinite
dimensional) paths thus defined.

In this section we have a short introduction to the stochastic partial
differential equations. For more details and proofs we refer to Frieler and
Knoche [9], Da Prato and Zabczyk [7] and Prévôt and Röckner [20].

Definition 4.7. Let {W (t)}t∈[0,T ] be a U -valued Q-Wiener process on the
probability space (Ω,F , P ), adapted to a normal filtration {Ft}t∈[0,T ]. The
stochastic partial differential equation (SPDE) is of the form

dX(t) = (AX(t) + f(t)) dt+ dW (t), 0 < t < T,

X(0) = ξ,
(4.3)

where the following assumptions hold:

1. A is a linear operator, generating a strongly continuous semigroup
(C0-semigroup) of bounded linear operators {E(t)}t≥0,

2. B ∈ L(U,H),

3. {f(t)}t∈[0,T ] is a predictable H-valued process with Bochner integrable
trajectories,

4. ξ is an F0-measurable H-valued random variable.

Definition 4.8 (Weak solution). An H-valued process {X(t)}t∈[0,T ] is a
weak solution of (4.3) if {X(t)}t∈[0,T ] is H-predictable, {X(t)}t∈[0,T ] has
Bochner integrable trajectories P -almost surely and

〈X(t), η〉 = 〈ξ, η〉 +
∫ t

0
(〈X(s), A∗η〉 + 〈f(s), η〉) ds

+
∫ t

0
B dW (s), P -a.s., ∀η ∈ D(A), t ∈ [0, T ].

Definition 4.9 (Mild solution). An U -valued predictable process X(t), t ∈
[0, T ], is called a mild solution of problem (4.3) if

X(t) = E(t)ξ +
∫ t

0
E(t− s)f(s) ds+

∫ t

0
E(t− s)B(X(s)) dW (s)

P -a.s. for each t ∈ [0, T ]. In particular, the appearing integrals have to be
well defined.
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Definition 4.10 (Strong solution). An H-valued process {X(t)}t∈[0,T ] is a
strong solution of (4.3) if {X(t)}t∈[0,T ] is H-predictable, X(t, ω) ∈ D(A) PT -
almost surely,

∫ T
0 ‖AX(t)‖ dt <∞ P -almost surely, and, for all t ∈ [0, T ],

X(t) = ξ +
∫ t

0
(AX(s) + f(s)) ds+

∫ t

0
B dW (s), P -a.s.

Recall that the integral
∫ t

0 B dW (s) is defined if and only if ‖B‖2HS =
Tr(BQB∗) <∞.

In a special case we have the stochastic Cahn-Hilliard equation as

dX(t) +A2X(t) dt+Af(X(t)) dt = dW (t), t > 0,
X(0) = X0,

(4.4)

where A = −∆, P is the orthogonal projection of L2 onto Ḣ. By using the
semigroup approach we can write the mild solution to the equation (4.4) as

X(t) = E(t)X0 −
∫ t

0
E(t− s)Af(X(s)) ds+

∫ t

0
E(t− s) dW (s), (4.5)

where {E(t)}t≥0 = {e−tA2}t≥0 is the semigroup generated by −A2. In this
thesis we study the equation (4.4) in linear, f ≡ 0, and nonlinear cases.

4.5 Stochastic convolution

The last term in (4.5) is a stochastic convolution

(4.6)

WA(t) =
∫ t

0
e−(t−s)A2

dW (s)

=
∫ t

0
e−(t−s)A2

PdW (s) +
∫ t

0
〈dW (s), ϕ0〉ϕ0

=
∫ t

0
e−(t−s)A2

PdW (s) + 〈W (t), ϕ0〉ϕ0.

=
∫ t

0
e−(t−s)A2

PdW (s) + (I − P )W (t).

5 Finite element method

The finite element method (FEM) is a numerical technique for finding ap-
proximate solutions of partial differential equations (PDE). In solving PDEs,
the primary challenge is to create an equation that approximates the equa-
tion to be studied, but is numerically stable, meaning that errors in the
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input data and intermediate calculations do not accumulate and cause the
resulting output to be meaningless. There are many ways of doing this, all
with advantages and disadvantages. The finite element method is a good
choice for solving partial differential equations over complicated domains.
For more details one can refer to Larsson and Thomée [15] and Thomée
[21].

In this section we study the FEM for the Cahn-Hilliard equation in
deterministic and stochastic cases.

Let {Th}h>0 denote a family of regular triangulations of D with maximal
mesh size h. Let Sh the space of continuous functions on D, which are
piecewise polynomials of degree ≤ 1 with respect to Th. Hence Sh ⊂ H1.
We also define Ṡh = PSh, that is,

Ṡh =
{
vh ∈ Sh :

∫
D
vh dx = 0

}
.

The space Ṡh is only used for the purpose of theory but not for computation.
Now we define the ”discrete Laplacian” Ah:Sh → Ṡh by

〈Ahvh, wh〉 = 〈∇vh,∇wh〉, ∀vh ∈ Sh, wh ∈ Ṡh. (5.1)

The operator Ah is selfadjoint, positive definite on Ṡh and Ah has an or-
thonormal eigenbasis {ϕh,j}Nhj=0 with corresponding eigenvalues {λh,j}Nhj=0.
We have

0 = λh,0 < λh,1 < · · · ≤ λh,j ≤ λh,Nh ,

and ϕh,0 = ϕ0 = |D|−
1
2 . Moreover we define e−tA

2
h :Sh → Sh by

e−tA
2
hvh =

Nh∑
j=0

e−tλ
2
h,j 〈vh, ϕh,j〉ϕh,j =

Nh∑
j=1

e−tλ
2
h,j 〈vh, ϕh,j〉ϕh,j + 〈vh, ϕ0〉ϕ0,

and the orthogonal projector Ph:H → Sh by

〈Phv, wh〉 = 〈v, wh〉 ∀v ∈ H, wh ∈ Sh. (5.2)

Clearly Ph: Ḣ → Ṡh and

e−tA
2
hPhv = e−tA

2
hPhPv + (I − P )v.

5.1 FEM for the deterministic Cahn-Hilliard equation

Consider the Cahn-Hilliard equation (3.6) with ε = 1

ut −∆w = 0, x ∈ D, t > 0,
w + ∆u− f(u) = 0, x ∈ D, t > 0,
∂u

∂n
= 0,

∂v

∂n
= 0, x ∈ ∂D, t > 0,

u(x, 0) = u0(x), x ∈ D.

(5.3)
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Multiply the first and the second equation of (5.3) by φ = φ(x) ∈ H1(D) =
H1 and integrate over D. Using Green’s formula gives

〈ut, φ〉+ 〈∇w,∇φ〉 = 0 ∀φ ∈ H1,

〈w, φ〉 = 〈∇u,∇φ〉+ 〈f(u), φ〉 ∀φ ∈ H1.
(5.4)

So the variational formulation is: Find u(t), w(t) ∈ H1 such that (5.4) holds
and such that u(x, 0) = u0(x) for x ∈ D.

Let Th = {K} denote a triangulation of D and let Sh denote the contin-
uous piecewise polynomial functions on Th. So the finite element problem
is: Find uh(t), wh(t) ∈ Sh such that

〈uh,t, χ〉+ 〈∇wh,∇χ〉 = 0 ∀χ ∈ Sh, t > 0,
〈wh, χ〉 = 〈∇uh,∇χ〉+ 〈f(uh), χ〉 ∀χ ∈ Sh, t > 0,
uh(0) = uh,0.

(5.5)

Then we can write the equation (5.5) as

uh,t +A2
huh +AhPhf(uh) = 0, t > 0,

uh(0) = u0,h,
(5.6)

which is equivalent to the fixed point equation

uh(t) = e−tA
2
hu0,h −

∫ t

0
e−(t−s)A2

hAhPhf(uh(s)) ds,

where

e−tA
2
hv =

∞∑
j=0

e−tλ
2
h,j 〈v, ϕh,j〉ϕh,j ,

where (λh,j , ϕh,j) are the eigenpairs of Ah.

5.2 FEM for the stochastic Cahn-Hilliard equation

Consider the equation (4.4) and assume that {Th}0<h<1 is a triangulation
with mesh size h and {Sh}0<h<1 is the set of continuous piecewise linear
functions where Sh ⊂ H1(D). Also let Ah and Ph be the same as in (5.1)
and (5.2). The finite element problem for (4.4) is:

Find Xh(t) ∈ Ṡh such that

dXh(t) +A2
hXh(t) dt+AhPhf(Xh(s)) dt = Ph dW (t),

Xh(0) = PhX0,
(5.7)
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where PhW (t) is Qh-Wiener process on Sh with Qh = PhQPh. The mild
solution is given by the equation

Xh(t) = Eh(t)PhX0−
∫ t

0
Eh(t−s)AhPhf(Xh(s)) ds+

∫ t

0
E(t−s)Ph dW (s),

where Eh(t) = e−tA
2
h . In the linear case, the finite element problem is

dXh(t) +A2
hXh(t) dt = Ph dW (t),

Xh(0) = PhX0,
(5.8)

with mild solution

Xh(t) = E(t)PhX0 +
∫ t

0
E(t− s)Ph dW (s).

Now define the stochastic convolution

WAh(t) =
∫ t

0
e−(t−s)A2

h PhdW (s)

=
∫ t

0
e−(t−s)A2

h PhPdW (s) + 〈W (t), ϕ0〉ϕ0

=
∫ t

0
e−(t−s)A2

h PhPdW (s) + (I − P )W (t).

Hence, in view of (4.6),

WAh(t)−WA(t) =
∫ t

0

(
e−(t−s)A2

hPh − e−(t−s)A2
)
P dW (s),

so that the error can be analyzed in the spaces Ḣ and Ṡh.
Let k = ∆tn, tn = nk and ∆Wn = W (tn) −W (tn−1). Also consider

∆Xh,n = Xh,n −Xh,n−1 and apply the backward Euler method to (5.8) to
get

Xh,n ∈ Sh,
∆Xh,n +A2

hXh,n∆tn = Ph∆Wn, (5.9)
Xh,0 = PhX0.

This implies
Xh,n −Xh,n−1 + kA2

hXh,n = Ph∆Wn.

If we set Ek,h = (I + kA2
h)−1 we get

(I + kA2
h)Xh,n = Ph∆Wn +Xh,n−1.
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So
Xh,n = Ek,hPh∆Wn + Ek,hXh,n−1.

We repeat it to get

Xh,n = Enk,hPhX0 +
n∑
j=1

En−j+1
k,h Ph∆Wj . (5.10)

6 A posteriori error estimate

In this section we recall some theorems and techniques for a posteriori error
estimates for the Galerkin approximation of nonlinear variational problems.
For more details and proofs, we refer to Bangerth and Rannacher [1] and
Becker and Rannacher [2].

Let A(u, ·) be a semi-linear form and J(·) an output functional, not nec-
essarily linear, defined on some function space V . Consider the variational
problem: Find u ∈ V such that

A(u;ψ) = 0 ∀ψ ∈ V, (6.1)

and the corresponding finite element problem: Find uh ∈ Vh ⊂ V such that

A(uh;ψh) = 0 ∀ψh ∈ Vh. (6.2)

Suppose that the directional derivatives of A and J up to order three exist
and denoted by

A′(u;ϕ, ·), A′′(u;ψ,ϕ, ·), A′′′(u; ξ, ψ, ϕ, ·),

and
J ′(u;ϕ), J ′′(u;ψ,ϕ), A′′(u; ξ, ψ, ϕ),

respectively for increments ϕ, ψ, ξ ∈ V . We want to estimate J(u)− J(uh).
Introduce dual variable z ∈ V and define the Lagrangian functional

L(u; z) := J(u)− J(uh),

and seek for the stationary points {u, z} ∈ V × V of L(·, ·). i.e. for all
ψ,ϕ ∈ V

L′(u; z, ϕ, ψ) = J ′(u;ϕ)−A′(u; z, ϕ)−A(u;ψ) = 0.

We quote three lemmas from [1].
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Lemma 6.1. Let L(·) be a three times differentiable functional defined on
a (real or complex) vector space X which has a stationary point x ∈ X, i.e.

L′(x; y) = 0, ∀y ∈ X,

Suppose that on a finite dimensional subspace Xh ⊂ X the corresponding
Galerkin approximation

L′(xh; yh) = 0 ∀yh ∈ Xh.

has a solution, xh ∈ Xh. Then there holds the error representation

L(x)− L(xh) =
1
2
L′(xh;x− yh) +Rh ∀yh ∈ Xh,

with a remainder term Rh, which is cubic in the error e := x− xh,

Rh :=
1
2

∫ 1

0
L′′′(xh + se; e, e, e)s(s− 1) ds.

From Lemma 6.1 we obtain the following result for the Galerkin approx-
imation of the variational equation.

Lemma 6.2. For any solutions of equations (6.1) and (6.2) we have the
error representation

J(u)− J(uh) =
1
2
ρ(uh; ez) +

1
2
ρ∗(uh; zh, eu) +R(3)

h ,

where
ρ(uh; ez) = −A′(uh; zh, ez),

ρ∗(uh; zh, eu) = J ′(uh; eu)−A′(uh; zh, eu),

with eu = u− uh, ez = z − zh and

R(3)
h =

1
2

∫ 1

0

(
J ′′′(uh + seu; eu, eu, eu)−A′′′(uh + seu; zh + sez, eu, eu, eu)

− 3A′′(uh + seu; eu, eu, ez)
)
s(s− 1) ds

The forms ρ(·, ·), ρ∗(·; ·, ·) are the residuals of (6.1) and the linearized
adjoint equation, respectively. The remainder R(3)

h is cubic in the error.
The following lemma shows that the residuals are equal up to a quadratic
remainder.
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Lemma 6.3. With the notation from above, for any ϕh, ψh ∈ Vh there holds

ρ∗(uh; zh, u− ϕh) = ρ(uh; z − ψh) + ∆ρ ∀ϕh, ψh ∈ Vh,

with

∆ρ =
∫ 1

0

(
A′′(uh + seu; eu, eu, zh + sez)− J ′′(uh + seu; eu, eu)

)
ds.

Moreover, we we have the simplified error representation

J(u)− J(uh) = ρ(uh, z − ϕh) +R(2)
h ∀ϕh ∈ Vh,

with quadratic remainder

R(2)
h =

∫ 1

0

(
A′′(uh + seu, eu, eu, z)− J ′′(uh + seu; eu, eu)

)
ds.

In Paper III we apply this methodology to a space and time discretization
of the deterministic Cahn-Hilliard equation.

7 Summary of appended papers

7.1 Paper I

In this paper we prove error bounds for the linear Cahn-Hilliard-Cook equa-
tion; that is, (3.7) with f(u) = 0. The main result is a mean square error
estimate for the finite element approximation defined in (5.8):

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ(‖X0‖L2(Ω,Ḣβ) + | log h|‖A
β−2

2 Q
1
2 ‖HS).

The proof is essentially based on applying the isometry (4.5) to

WAh(t)−WA(t) =
∫ t

0

(
e−(t−s)A2

hPh − e−(t−s)A2
)
P dW (s).

The proof is then reduced to proving bounds for the error operator Fh(t) =
Eh(t)PhP − E(t)P for the corresponding linear deterministic problem. For
this problem we show the following error bounds with optimal dependence
on the regularity of the initial value v:

‖Fh(t)v‖ ≤ Chβ|v|β, v ∈ Ḣβ,(∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2, v ∈ Ḣβ−2,
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for 1 ≤ β ≤ r, where r ≥ 2 is the order of the finite element method.
The same program is carried out for the the backward Euler method in

(5.9). The result is the error bound

‖Xh,n(t)−X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Cβ,kk

β
4

)(
‖X0‖L2(Ω,Ḣβ) + ‖A

β−2
2 Q

1
2 ‖HS

)
,

where where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

7.2 Paper II

We study the nonlinear stochastic Cahn-Hilliard equation driven by additive
colored noise (3.7). Using the framework of [7] we write this as an abstract
evolution equation of the form

dX + (A2X +Af(X)) dt = dW, t > 0; X(0) = X0, (7.1)

Our goal is to study the convergence properties of the spatially semidiscrete
finite element approximation Xh of X, which is defined by an equation of
the form

dXh + (A2
hX +AhPhf(X)) dt = PhdW, t > 0; X(0) = PhX0.

In order to do so, we need to prove existence and regularity for solutions of
(7.1).

Following the semigroup framework of [7] we write the equation (7.1) as
the integral equation (mild solution)

X(t) = e−tA
2
X0 −

∫ t

0
e−(t−s)A2

Af(X(s)) ds+
∫ t

0
e−(t−s)A2

dW (s).

This naturally splits the solution as X = Y + WA, where WA(t) is the
stochastic convolution that was studied in Paper I. The remaining part, Y ,
satisfies an evolution equation without noise, but with a random coefficient,

Ẏ +A2Y +Af(X) = 0, t > 0; Y (0) = X0.

The regularity and error analysis can now be performed on this equation.
An important step is to bound the functional

J(u) =
1
2
‖∇u‖2 +

∫
D
F (u) dx,
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where F (s) is a primitive function to f(s). For the deterministic equation
this is a Lyapunov functional, which means that it does not increase along
solution paths. For the equation which is perturbed by noise we show that

E[J(X(t))] ≤ C(t),

where C(t) grows quadratically in t. The same result holds for Xh(t). By
means of Chebyshev’s inequality we may then show that for each T > 0 and
ε ∈ (0, 1) there are KT and Ωε ⊂ Ω with P(Ωε) ≥ 1− ε and such that

‖X(t)‖2H1 + ‖Xh(t)‖2H1 ≤ ε−1KT on Ωε, t ∈ [0, T ].

These bounds are then used to control the random term f(X) and we show
the necessary regularity and the error estimate

‖Xh(t)−X(t)‖ ≤ C(ε−1KT , T )h2| log(h)| on Ωε, t ∈ [0, T ].

We thus have optimal rate of convergence on sets of probability arbitrarily
close 1, but the constant increases rapidly when ε → 0. Nevertheless, we
show that this implies strong convergence but without known rate:

max
t∈[0,T ]

(
E[‖Xh(t)−X(t)‖2]

) 1
2 → 0 as h→ 0.

7.3 Paper III

In this paper we consider the deterministic Cahn-Hilliard equation (3.6)
and we discretize it by a Galerkin finite element method, which is based on
continuous piecewise linear functions with respect to x and discontinuous
piecewise constant functions with respect to t. The numerical method is the
same as the implicit Euler time stepping combined with spatial discretization
by a standard finite element method.

We perform an a posteriori error analysis within the framework of dual
weighted residuals as in section 6. If J(u) is a given goal functional, this
results in an error estimate essentially of the form

|J(u)− J(U)| ≤
N∑
n=1

∑
K∈Tn

{
ρu,Kωu,K + ρw,Kωw,K

}
+R,

where U denotes the numerical solution and Tn is the spatial mesh at time
level tn. The terms ρu,K , ρw,K are local residuals from the first and second
equations in (3.6), respectively. The weights ωu,K , ωw,K are derived from the
solution of the linearized adjoint problem. The remainder R is quadratic in
the error.

We also derive a variant of this, where the weights are replaced by sta-
bility constants, which are obtained by proving a priori estimates for the
solution of the linearized adjoint problem.
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[20] C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial
Differential Equations, Lecture Notes in Mathematics, Springer, Berlin,
2007.

[21] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems,
second ed., Springer Series in Computational Mathematics, vol. 25,
Springer-Verlag, Berlin, 2006.

19




	Introduction
	Semigroup approach
	Cahn-Hilliard equation
	Stochastic analysis in Hilbert space
	Wiener process
	Stochastic integral
	Stochastic ordinary differential equation
	Stochastic partial differential equation
	Stochastic convolution

	Finite element method 
	FEM for the deterministic Cahn-Hilliard equation 
	FEM for the stochastic Cahn-Hilliard equation 

	A posteriori error estimate
	Summary of appended papers
	Paper I
	Paper II
	Paper III

	References

