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Abstract 
In common engineering applications such as fast equilibrium reactions, catalysis, adsorption 
and evaporation the solution of systems of stiff ordinary differential equations is of key 
importance. In an attempt to solve such systems of equations encountered in CFD applications 
a standalone software module, Stiff ODE Suite, was developed and coupled to the commercial 
CFD code FLUENT v12.1, Ansys inc. The functionality of the hybrid software package was 
validated for usage in common engineering applications. 
 
The Stiff ODE Suite software package is based on an adaptive time step maximum fifth order 
Backwards Differential Formulation. Said algorithm introduces a validated and versatile stiff 
and non-stiff ODE solver potentially outperforming MATLABs ODE15s. Functioning as a 
standalone module the Stiff ODE Suite is however best applied in a hybrid scheme with 
FLUENT v12.1 or other compatible CFD codes. Such hybrid couplings vastly increase the 
applicability of otherwise limited CFD codes.    
 
The Stiff ODE Suite was used to with satisfactory accuracy predict solution pH in 
neutralization of hydrochloric acid using a sodium carbonate solution. The water auto 
proteolysis is an extremely fast equilibrium reaction posing a significant challenge to any 
chemical reaction engineering solver. The Stiff ODE Suite also enabled the simulation of 
rapid humidification of dry heated air using a water droplet jet in a pipe segment. In this 
simulation the Stiff ODE Suite proved capable of coupling fast mass and heat transfer 
between phases in multiphase applications.  
 
By introduction of the Stiff ODE Suite the CFD engineer is able to use much larger time steps 
in transient simulations than the time scale of the stiff system of ODEs governing the solution. 
In addition the software module largely extends the applicability of FLUENT v12.1 since the 
user is no longer limited to what can be described using the graphical user inter phase. 
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1. Introduction 
 

1.1 Background 
Most phenomena in nature are mathematically governed by differential equations of some 
form. In reaction engineering and catalysis the governing equations frequently encountered 
are autonomous ordinary differential equations on the form presented in equation 1.1. 
 

 ),(yfy =&   ,)( 00 yty =  NRy
r

∈  

 
Numerous systems of ordinary differential equations, ODEs, can be found which are stiff in 
nature meaning that the system is governed by time scales of vastly different sizes. To 
exemplify the problem formulation assume the existence of a system of equations on the form 
presented in equation 1.2. 
 

 ,kyy =&   ,)( 00 yty =  NRy
r

∈  

  
With 10 =)(ty  and 00 =t  the solution to equation 1.2 is ktey = . In figure 1.1 and 1.2 the 

solution to equation 1.2 with k=1 and k=5000 respectively is shown. 

 
 
 
 
Already at moderate values of k the solution to the simple system 1.2 depicts rapid growth. At 
k=5000 machine precision is lost and the solution grows rapidly towards infinity. In naturally 
occurring systems such as liquid phase chemical equilibria or fast evaporation sequences it is 
not uncommon to encounter k=1020 which hence introduces numerical issues in modelling 
engineering applications and especially in CFD simulations. 
 
The commercial CFD software FLUENT v12.1 uses either explicit or simple implicit 
algorithms when solving stiff systems of ODEs. Using explicit algorithms is a time 
consuming ordeal whereas the simple implicit algorithm has been shown to converge slowly 
and inefficiently and with systems of considerable stiffness the simulation has a tendency to 
crash altogether. 
 

(1. 
 (1) 

(1. 
 (2) 

Figure 1.1 tey =  Figure 1.2 tey 5000=  
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1.2 Objective and method 
 
The objective of the thesis is to produce a reliable methodology to solving stiff systems of 
ODEs in the FLUENT v12.1 framework and then to evaluate the applicability of the 
methodology in said framework. In order to be practically useful the methodology needs to 
take advantage of the benefits of multi processing as introduced by modern day cluster 
computers. The methodology also needs to be computationally efficient and problem 
adaptable.  
 
The proposed methodology to solving stiff and non-stiff systems of ODEs in the FLUENT 
v12.1 framework is the Stiff ODE Suite. This stand alone module is based on a commonly 
available solution algorithm and written in the programming language C. By using the 
benefits of the FLUENT source code the Stiff ODE Suite can be used in any CFD problem 
formulation only limited to what can be described using ordinary differential equations. The 
applicability of the inter software coupling is tested in modelling extremely fast equilibrium 
reactions when neutralizing strong hydrochloric acid using a sodium carbonate solution. 
Furthermore the ability to model the previously troublesome area of fast transient evaporation 
sequences is tested in simulating humidification of dry heated air using a water droplet jet. 
 

1.3 Thesis outline 
 

The thesis is essentially divided into two parts. In part one fundamental theory needed to 
grasp used concepts and notations is outlined along with the problem formulations used to 
evaluate the applicability of the Stiff ODE Suite. In chapter 2 basic theory behind 
Computational Fluid Dynamics is presented along with turbulence modelling and the 
Eulerian-Lagrangian approach to multi phase flows. Furthermore the mathematical algorithm 
used in the Stiff ODE Suite is outlined. In chapter 3.1 the Stiff ODE Suite is evaluated for 
simulation of fast equilibrium reactions more specifically neutralization of hydrochloric acid 
using a sodium carbonate solution. Chapter 3.2 covers the simulation and problem 
formulation behind fast evaporation sequences exemplified in humidification of dry heated air 
using a water droplet jet. 
 
In part two results from performed simulations are presented along with a detailed discussion 
on interesting phenomena and the performance of the Stiff ODE Suite. Specifically chapter 4 
presents a short description of characteristic graphical results obtained from the simulations 
whereas chapter 5 is dedicated to discussing the thesis results.   
 
 



7 
 

PART I 
 

2. Theory 
 

2.1 Eulerian-Lagrangian Particle Tracking 
 
The Eulerian-Lagrangian framework otherwise known as the Discrete Particle Model or 
Discrete Element Model treats individual particles or clouds of particles as isolated entities 
being tracked using the fundamental theory behind Newtons´ second law of motion. In 
essence this means that the entity, cloud or particle is tracked by solving equation 2.1.  
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In equation 2.1 only the most commonly applicable forces are outlined leaving the interested 
reader to refer to Crowe et al for additional information. The Eulerian-Lagrangian framework 
is the least simplified theoretical approach to multiphase flows limited only by the applied 
turbulence model and the description of applicable forces. In theory it is possible to track 
irregularly shaped objects of any material with vastly different sizes flowing in any geometry 
modelling, amongst other things, collisions, coalescence and droplet breakup. There is 
however a trade off between computational accuracy and computational time and in the 
specific problem formulation in section 3.2 several simplifications have been made. 
 
In section 3.2 the Eulerian-Lagrangian framework is used tracking computational parcels 
(particle clouds) instead of individual particles. This approach can be used assuming 
 

• All particles in a parcel are identical and only reside in one computational cell 
• The volume fraction of particles is small enough to be neglected, <10% 
• Particles colliding is a very rare event hence being neglected 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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Tracking computational parcels is hence a very powerful method able of economically 
predicting exchange of mass, heat and momentum between the carrier phase and the discrete 
phase. [1] 

2.1.1 Discrete Random Walk 
In the Discrete Random Walk approach to modelling subgrid scale turbulent dispersion of 
particles the following assumptions are made. Subgrid turbulence, as in the case of using 
DRW in a LES approach, can be regarded as Gaussian distributed random fluctuations with 
an eddy life time .eτ  It should be noted that the LES approach resolves the large scale 

turbulent fluctuations leaving only the subgrid fluctuations to be taken into account in the 
DRW modelling. 
 
The random velocity fluctuations are calculated according to equation 2.9. In the LES 
approach to subgrid turbulence the subgrid turbulent kinetic energy is calculated according to 

( )2250 jjsubgrid uuk −= .  and hence random subgrid components are generated using equation 

2.9.  
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k
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The particle is affected by the additional random component calculated in equation 2.9 for the 
duration of the smaller of a) the turbulent eddy life time and b) the time it takes for the 
particle to transverse the eddy. This is what is essentially shown in equation 2.10. 
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In this context Le denotes the subgrid eddy length scale resolved in the LES approach. pτ  is 

the particle relaxation time scale. CL is the integral time scale constant set by the user. An 
interesting feature of equation 2.10 is that FLUENT uses the residence time of a fluid element 
in the computational cell as an approximation of the LES subgrid eddy lifetime. [2] A better 
approximation would clearly be to model said timescale but since 80% of the turbulent kinetic 
energy is resolved directly in the LES approach the subgrid approximation in equation 2.10 
only accounts for a small part of the particle random movement. Equation 2.10 hence seems 
viable. 

2.1.2 Transient particle tracking in FLUENT 
Internally in FLUENT there are essentially three methods of tracking particles in the Eulerian-
Lagrangian framework. The most applicable and commonly used approach is to transiently 
track particles moving through a transiently resolved carrier phase. There is however the 
option to transiently track particles moving through a steady state flow field. Furthermore 
there is also the option to track particles in a steady state mode moving through a steady state 
flow field. This chapter will be devoted to describing the least simplified method being the 
transient approach where time resolved particles move through an unsteady flow field.  
 

(2.9) 

(2.10) 
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Fundamentally the FLUENT iteration sequence in the Eulerian-Lagrangian framework is 
subdivided into two regimes being a) carrier phase iterations and b) particle updating 
sequence. During the particle updating sequence the particles are tracked individually by time 
of birth. This essentially means that when a particle is born at an injection nozzle per say the 
particle is given a unique identification number resulting in particles with a long residence 
time having a lower identification number than the particles with a shorter residence time. 
When the particle updating sequence is commenced the particle with the lowest identification 
number will be tracked through the carrier phase solving equation 2.1 using preferably an 
implicit Runge-Kutta or trapezodial formulation with a user adaptable particle time step. 
Regardless of the user specified time step the particle will never move through more than one 
cell per particle time step. If the user defined particle time step is too large FLUENT will 
automatically decrease it in order for each particle to be updated in every cell along its 
trajectory. Once the particle has been tracked a sufficient number of steps the carrier phase 
time step is reached and the next particle in terms of identification number is tracked. 
 
In each cell along the trajectory of the particle the tracking sequence is temporarily halted and 
a set of predefined functions are executed. In effect this means that amongst other things inter 
phase mass and heat equations can be solved in each cell along the particle trajectory. The 
exchange of heat and mass between particles and the carrier phase are essentially solved in the 
same manner as chemical reactions ie FLUENT resolves heat and mass transfer rates and 
assumes these transfer rates to be constant during the time step at hand. This particular 
solution method is fast and easily implemented but useless when dealing with stiff physical 
systems. Experience shows that when simulating unsteady fast evaporation of water droplets 
FLUENTs internal models will predict cell temperatures below the condensation temperature 
of air. 
 
Another drawback with the internal models in FLUENT particle tracking framework is the 
manner in which the cell properties are updated. In the vicinity of the injection nozzle the very 
same computational cell will witness multiple particles passing through during one carrier 
phase time step. The first in the sequence of particles to pass through the cell will correctly 
experience prevailing cell conditions in the evaporation sequence. The cell properties will 
however not be updated until the end of the particle tracking sequence leaving particle two to 
pass through the cell to experience the exact same conditions as particle one. This is a 
fundamentally erroneous description of the events occurring on a cell level disabling the 
transient solution of important properties such as particle-cell equilibrium. 
 
Discussing this fundamental problem with the FLUENT source code developers did however 
shed some light on the issue. The internal particle tracking algorithm was originally 
developed for steady state simulation purposes which in a sense explains the lack of 
applicability in transient simulations. It should however be noted that inter phase mass 
transfer of species with a lower heat of vaporization than water are inherently easier to 
model.[2]  
 

2.1.3 Rosin-Rammler particle distribution 
A commonly used particle distribution in modelling droplet sprays is the Rosin-Rammler size 
distribution. Equation 2.11 outlines the mass fraction of droplets with diameter greater than 
diameter d . 
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In equation 2.11 d  is the particle mean diameter whereas n is a model specific size 
distribution parameter best determined from experimental data. [2] 
 

 

(2.11) 
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2.2 Basic theory of Computational Fluid Dynamics 
 

The following section is not intended to fully cover the fundamental theory of fluid 
mechanics. Instead the intention is to present short review of the fundamental concepts behind 
Computational Fluid Dynamics. Instead the reader is assumed to have an appropriate 
academic background in the field or is referred to Andersson et al and Welty et al. 
 
The general transport equation of a scalar, vector or tensor is presented in continuous form in 
equation 2.12 and in discretized form in equation 2.13. 
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CV denotes the discretized control volume and CS the area surrounding said control volume. 
Equation 2.12 can be extended into the Navier Stokes equations by setting ii Uρφ =  and 
specifying the source term )(φS  yielding equation 2.14. 
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The discretized form of the Navier Stokes equations along with the equation of continuity 
outlined in equation 2.15 form the basis of any Computational Fluid Dynamics simulation. 
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Setting C=φ  in equation 2.12 yields the species transport equation 2.16 whilst setting 

TC pρφ =  yields the temperature equation 2.17. [3] 
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In the Eulerian-Lagrangian approach to multiphase flow outlined in section 2.1 the equation 
of motion, the species transport equation and the equation of continuity are augmented with 
an additional source term resulting from the inter phase transport of momentum and mass 
outlined in equation 2.18-2.20. 
 

(2.12) 
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(2.17) 
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Equation 2.18 through 2.20 are valid under the assumption of negligible particle volume 
fraction as imposed by tracking computational parcels. [1] 
 

(2.18) 

(2.19) 

(2.20) 
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2.3 Turbulence modelling 
 

However theoretically possible the direct numerical solution (DNS) to the Navier Stokes 
equations 2.14 resolving mixing down to Kolmogorov scale is still practically impossible in 
engineering applications. Instead turbulence- and closure models have been mathematically 
developed, implemented and tested in order to increase the modelling possibilities in CFD. 
 

2.3.1 Reynolds Averaged Navier Stokes equations (RA NS) 
Modelling turbulence using Reynolds Averaged Navier Stokes equations implies the 
fundamental assumption of averaging pressure and velocity. The Reynolds decomposition 
reduces the instantaneous variable into a time averaged mean and a fluctuating component 
according to equation 2.21 and 2.22. The timescale on which the averaging is performed is 
deduced from local flow variables. 
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Inserting the Reynolds averaged values into Navier Stokes equation 2.14 and assuming 
incompressible Newtonian flow yields equation 2.23. 
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Rearranging and defining the Reynolds stress tensor jiij uuρτ −=  equation 2.23 evolves 

into the Reynolds Averaged Navier Stokes equations (RANS) outlines in equation 2.24. 
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The Reynolds stresses represent the average momentum flux due to velocity fluctuations and 
introduce a viable coupling between the mean velocity field and the fluctuating component. In 
all RANS turbulence models the main closure problem arises in introducing the Reynolds 
stresses and hence has to be modelled. 
 
A large portion of the RANS turbulence models proposed are turbulent viscosity models 
relying on the existence of turbulent viscosity. The principal assumption is that of isotropic 
turbulence implying that the flow is statistically unchanged if all positions are shifted by the 
same displacement and invariant under rotation. Furthermore a major assumption lies within 
the Boussinesq approximation outlined in equation 2.25. The Boussinesq approximation 
essentially states that the Reynolds Stresses are proportional to the mean velocity gradients 
implying and fundamentally assuming that turbulent momentum flux can be modelled as 
diffusion transport due to local mean velocity gradients.  
 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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With the introduction of the turbulent viscosity yet another closure problem arises and closed 
differently in various turbulent viscosity models. All models however use local appropriate 
length and velocity scales to calculate the turbulent viscosity. With the assumptions 
introduced in the Boussinesq approximation and with the introduction of the turbulent 
viscosity the RANS equation can be extended into equation 2.26. 
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In equation 2.26 the turbulent kinetic energy k has been introduced according to equation 
2.27. 
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The Realizable k-epsilon model is a two equation model based on the standard k-epsilon 
model with the additional advantage of being most suitable for flows including streamline 
curvature and rotation. Specifically the Realizable k-epsilon model augments the Boussinesq 
approximation in modelling the Reynolds stresses as shown in equation 2.28. 
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With the final formulation of the RANS equation in 2.26 three parameters need be modelled 
to fully close the Realizable k-epsilon model. In equation 2.29 through 2.31 turbulent 
viscosity, turbulent kinetic energy and turbulent energy dissipation are modelled. [3] 
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2.3.2 Large Eddy Simulation  
Turbulent flows are characterized by turbulent eddies on a wide range of length and time 
scales. The smallest eddies are responsible for viscous dissipation of turbulent energy on a 
length scale below which no turbulence can exist (Kolmogorov scale). The largest eddies 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 
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however contain most of the total turbulent energy and are typically on a length scale 
characterized by the mean flow. In order to fully and accurately describe the turbulent flow 
behaviour the entire spectrum of turbulent scales has to be modelled ie performing a Direct 
Numerical Simulation. Time is however finite and in engineering applications it is with the 
computational power of today seldom or never feasible to perform exact unsimplified 
simulations. Instead a method where the large eddies are directly resolved whereas the eddies 
on the smallest of length scales are modelled has been proposed in the Large Eddy Simulation 
(LES) framework. 
 
The LES formulation hence has an increased ab initio predictive power compared to RANS 
but is still inferior to DNS. Practical experience from experiments and a large amount of 
simulations has shown that momentum, mass and energy are mostly transported by large 
eddies. Large eddies also tend to be more problem dependent largely affecting the overall 
simulation result. Small eddies on the other hand tend to be less dependent on geometry, more 
isotropic and it has been shown to be easier to find a universal turbulence model for small 
eddies compared to large ones. All these characteristics favour the formulation of the LES 
turbulence model but it should be firmly noted that the predictive power of LES does not 
come for free. A very fine grid has to be used at the same time as a considerable amount of 
computational power has to be used in order to simulate a sufficient time span as to resolve 
reliable flow statistics. This makes LES several orders of magnitude more expensive than 
RANS.  
 
The governing equations in LES are obtained by filtering the Navier Stokes equations 
effectively filtering out eddies whose scale are smaller than either the computational grid or 
the filter width. In equation 2.32 the implicit filtration as imposed by the discretization of a 
continuous domain is shown. This should be compared with the filtering operator shown in 
equation 2.33-2.34. 
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The filtered Navier Stokes equations thereby obtained are along with the continuity equation 
outlined in equation 2.35 and 2.36. 
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The stress tensor due to molecular viscosity,ijσ , and the subgrid scale stress tensor, ijτ , are 

hence introduced and defined in equation 2.37 and 2.38 respectively.  
 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
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The subgrid stress tensor as introduced by the filtering operation needs closing. In the LES 
framework this is done using the Boussinesq approximation resulting in a subgrid stress 
tensor formulation as shown in equation 2.39.  
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Assuming the applicability of the Boussninesq approximation inherently introduces the 
concept of turbulent viscosity used at turbulent length scales below the filtering width. The 
LES framework allows for several methods of approximating the turbulent viscosity of which 
the perhaps most commonly used is the Smagorinsky-Lilly model. In the Smagorinsky-Lilly 
model the turbulent viscosity is modelled as shown in equation 2.41 through 2.44.  
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LS denoted the mixing length of subgrid scales, κ  the von Kármán constant, CS the 
Smagorinsky constant and ∆  the characteristic cell length. The obvious shortcoming of this 
model is the existence of the universal Smagorinsky constant which has to be adapted to the 
problem at hand which reduces the ab initio predictable power of the Smagorinsky-Lilly 
subgrid model. For common engineering applications however a value of 0.17 has been 
suggested and shown to predict isotropic subgrid turbulence with acceptable accuracy.  
 
There other approaches to modeling the LES subgrid turbulence. Two worth mentioning are 
the Dynamic Smagorinsky-Lilly Model and the Dynamic Kinetic Energy Subgrid Scale 
Model. In the Dynamic Smagorinsky-Lilly Model the Smagorinsky constant Cs is calculated 
from the resolved scales of motion. In the Dynamic Kinetic Energy Subgrid Scale Model the 
subgrid turbulent kinetic energy is modeled similarly to what is done in the standard k-epsilon 
model. The Dynamic Kinetic Energy Subgrid Scale Model is hence a fundamentally more 
sound description of the subgrid fluid motion. [2]    
  

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 
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2.4 Boundary conditions 
 
In solving the discretized and closed versions of the Navier Stokes equations as shown in 
section 2.3.1 and 2.3.2 boundary conditions are required. The full description of all boundary 
conditions used in the simulations would substantially lengthen the report whereby only the 
most problem specific boundary condition formulations are shown. The interested reader is 
referred either to FLUENT v12.1 manual or any available CFD literature.  
 

2.4.1 A common approach to inlet turbulence 
In the best of worlds the boundary is specified far from the region of interest hence having a 
limited effect on the flow field turbulent properties. In the real world however the geometry is 
limited as to reduce the computational cost and hence the boundary will affect the global 
solution within the domain. A manner in which to artificially model turbulence at the inlet has 
been proposed using data from experiments and the methodology is outlined in equations 2.45 
through 2.48. 
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In this context I denotes the inlet turbulent intensity and l the turbulent length scale. It should 
however be noted that this methodology is valid at high Reynolds numbers and should 
furthermore not be regarded as an exact approach but merely as a rule of thumb. [3] 
 

2.4.2 Particle wall film model in FLUENT 
In an attempt to improve the internal particle tracking models in FLUENT additional 
boundary conditions than the sometimes unphysical models escape, trap and reflect have 
lately been proposed. The latest in the field is the introduction of the FLUENT wall film 
model. This model mimics the interaction possibilities as a particle or droplet hits a wall. With 
that being said the model was according to FLUENT core team developers originally 
proposed for use in fuel sprays impinging the inside of a cylinder and should hence be used 
with great caution when applied elsewhere. The general recommendation is always to 
construct a user specified particle boundary condition that mimics the physics in the problem 
at hand.  
 
The FLUENT internal wall film model can be sub divided into four parts. In the first step the 
interaction between the particle and the wall boundary is mimicked. In the second part the 
particle stuck on the wall is tracked governed by film variables being calculated in the third 
step. The forth step describes the coupling with the gaseous phase surrounding the wall film. 
In the mathematical description of these steps a few fundamental assumptions have been 
made. The wall film is assumed to be thinner than 500 microns resulting in a linear velocity 

(2.45) 

(2.46) 

(2.47) 

(2.48) 
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profile in the film. Furthermore and most importantly the temperature in the film is assumed 
to vary slowly resulting in a non stiff evaporation sequence. This is by far the most limiting 
assumption in the wall film model. In addition the temperature of the film is assumed never to 
exceed the boiling temperature. The in depth mathematical formulation of the particle wall 
film model is to be found in the FLUENT v12.1 manual and the specifics is beyond the scope 
of this report. The reader should however note the fundamental assumption of a non stiff 
evaporation sequence essentially meaning that the externally used time step in FLUENT is 
sufficiently small to correctly resolve the mass transfer. [2] 
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2.5 Stiff ODE Suite mathematical formulation 
 
The system of equations solvable in the Stiff ODE Suite framework is presented on a general 
form in equation 2.49. 
 

 ),,( tyfy =&   ,)( 00 yty =  NRy
r

∈  

 
However not restricted to autonomous problem formulations the Stiff ODE Suite gains 
additional numerical precision by assuming time independency resulting in the code itself 
being optimized according to equation 2.50. Note the differences in the formulation of the 
derivatives. As most conceivable real physical systems are autonomous this limitation results 
in numerical gains with no obvious drawbacks.  
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In order to solve the system of equations in equation 2.50 a general algorithm  is needed. The 
Stiff ODE Solver is based on a variable order Backwards Differential Formulation (BDF) 
similar to the algorithm used in ODE15s in MATLAB. Equation 2.51 outlines the BDF 
formulation. 
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For stiff systems of equations, which essentially is why Stiff ODE Suite was constructed to 
begin with, qK =1  and 02 =K . q denotes the order of the BDF formulation and varies 
between 1 and 5 depending on system characteristics. In each time step the non linear system 
of equations outlined in equation 2.53 and 2.54 are constructed and solved. 
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In solving this system of equations the Stiff ODE Suite uses a Newton iteration scheme 
outlined in equation 2.55.  
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The algorithm itself, originally proposed by Bill Gear, is advanced and regarded as one of the 
most versatile solution strategies to stiff systems of ordinary differential equations available. 
The solution methodology is to initially decompose the integration time [0,T] into non 

(2. 
 (49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 
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equidistant time steps shown in equation 2.52. On each time step equation 2.51 inserted into 
2.53 essentially forms an independently solvable predictor equation shown in 2.59. 
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Using the approximate solution pny  at time nt as an initial guess in iterating equation 2.55 

results in the real intermediate solution ny  at time nt . With both solutions available a local 
truncated error can be constructed and compared to a predefined user specified value. In the 
case of too large an error the algorithm will as a first measure if possible increase the order of 
the BDF formulation. Secondly it will decrease the internal time step and the solution 
procedure is repeated. The interested reader is referred to the thorough work of Stabrowski for 
a full description of the BDF based algorithm. 
 
Summing up the algorithm the Stiff ODE Suite supplies a versatile solution strategy via 
automatically adapted time steps, an economical solution methodology via problem specific 
BDF order and a most importantly reliable performance comparable with or better than 
ODE15s. It should be noted that considerable effort has been put into validating the 
functionality of the standalone solver as introduced by the Stiff ODE Suite. No discrepancies 
in the algorithm or code have yet been found. [4] 

(2.59) 
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2.6 Coupling the Stiff ODE Suite to FLUENT 
 
In the coupling of the Stiff ODE Suite to FLUENT some fundamental assumptions need to be 
made. Solving the system of ODEs outlined in figure 2.1, as any system of ODEs, requires a 
dimension over which to integrate. In the case of reaction rates defined in units of [kmol/m3s] 
the obvious choice of characteristic dimension is time. Since differential equations commonly 
encountered in real life are autonomous the start time can always be specified as 0=startτ  

whereas the relative final time finalτ  needs to be accurately specified. In essence this means 

that the parameter of importance is τ∆  after which a solution to the system of ODEs is 
required. The existence of τ∆  however raises the question of what said parameter actually 
implies.  
 
In a transient simulation the answer is straightforward as the solution progresses with a user 
specified or machine calculated time step. However in a segregated steady state simulation the 
concept of time step is undefined. This poses a dilemma as problem formulations where 
transients are unimportant are most efficiently solved using a steady state formulation. This is 
illustrated in the simulation of fast equilibrium reactions where a quasi steady state approach 
is developed and used. Theoretically the pressure based coupled solver could be used in 
steady state simulations. The coupled solver actually uses an internal time step calculated 
using, amongst other parameters, the cell Courant to progress towards a final steady state 
solution. At steady state the time dependent solution satisfies nn φφ =+1  where n is the time 
step at hand. Further details are given in section 5.1. 
 
With the time step or the lack thereof determined the actual theory behind the FLUENT – 
Stiff ODE Suite coupling can be outlined. Theoretically a control volume in the 
computational domain can be regarded as a small semi-continuous batch reactor governed by 
equation 2.60. 
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Additional information on the terms in the equation outlined above is to be found in section 
2.2. In this case the term of interest is the source term ΦS  as it describes generation and decay 
of a species Φ  due to chemical reactions or any other physical event.  
 
The proposed method behind the Stiff ODE Suite is both versatile and stable and uses the 
large benefits of linearizing the source term on the time step at hand. In figure 2.1 an arbitrary 
system reaching equilibrium on a very small time scale is illustrated. 
 

(2. 
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Figure 2.1 Characteristic behavior of a rapidly equilibrated system 

 
As seen in figure 2.1 the equilibrium is reached on a scale of nano seconds. Without using the 
Stiff ODE Suite this means that FLUENT needs to progress with a time step of equivalent 
size in order to resolve the extremely rapid change occurring on this time scale. In addition 
experience shows that even at a time step of this magnitude the solution will tend to be 
unstable. Using the Stiff ODE Suite makes it possible to resolve the source term ΦS and the 

simulation can hence progress with a time step determined by the flow instead of the fast 
reactions in the system. Characteristically the flow time step is in the vicinity of 1ms rather 
than 1ns giving a hint of the computational benefits of using the Stiff ODE Suite. 

finalτ  
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3. Evaluation of the Stiff ODE Suite 
 

The Stiff ODE Suite on its own is a powerful tool in solving very stiff systems of ordinary 
differential equations. This does, however, not validate the use of the Stiff ODE Suite in 
engineering applications. In order to test the functionality and versatility of the Stiff ODE 
Suite – FLUENT coupling two vastly different cases were studied. The first case involved 
resolving chemical reaction and mixing between a strong acid and a buffering base in a pipe 
segment. The extreme reaction rates observed in liquid systems involving fast equilibrium 
reactions form a very stiff system of ODEs previously unsolvable using FLUENT. In the 
second case fast evaporation of a water droplet jet was studied. With water droplet sizes in the 
range of micro meters entering heated dry air extreme evaporation rates are expected 
vouching for a stiff system previously unsolved in a transient simulation using FLUENT. 

3.1 Fast equilibrium reactions 
 
Fast equilibrium reactions are a common occurrence in everyday chemical engineering being 
found in everything from combustion engineering and catalysis to simple liquid phase 
reactions such as water auto proteolysis. The last example is an interesting problem as the 
equilibrium between oxonium ions and hydroxide ions is a seemingly instantaneous reaction 
with theoretical reaction rate constants reaching beyond conceivable numbers. With this in 
mind it is academically appealing to be able to resolve something as simple as pH when 
neutralizing a strong acid using a buffering base.  

3.1.1 Simulation setup 
In the quasi-steady state simulation of neutralizing a strong acid using a buffering base 
hydrochloric acid is injected through a nozzle into a buffering sodium carbonate solution 
flowing in a pipe segment outlined in figure 3.1. The hydrochloric acid is injected as a 2M 
water solution at 0.15 kg/s whereas the sodium carbonate, also a 2M water solution, is 
injected at the far higher rate of 15.7 kg/s through the respective inlets. The mass flow rate of 
the sodium carbonate has been adjusted as to ascertain a Reynolds number of roughly 100 000 
in the main bulk. The reactions occurring within the pipe segment are assumed to be 
isothermal setting the simulation temperature to 25oC. The assumption of isothermal reactions 
is valid since the reaction rates, as indicated below in section 3.1.4, are already set to extreme 
values removing the necessity of further increasing the reaction rates with temperature.  
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Figure 3.1 Pipe segment used in neutralization of hydrochloric acid using a sodium carbonate solution. In 
the figure A denotes the acid inlet. B denotes the sodium carbonate solution inlet. C is the geometry outlet. 
   
The three dimensional computational domain measures 1.15m in length and 0.7m in width 
with a pipe diameter of 0.2m. The geometry and mesh were constructed using the powerful 
tools available in ANSA computer software. The mesh in all contains 1.8M cells, which is a 
sizeable value taking the geometry into account, with a considerable refinement close to the 
pipe centre axis. This refinement enables the simulation to resolve large species gradients 
resulting from large changes in the solution pH. Effects on the simulation resulting from large 
intra cell gradients are discussed in detail in section 5.1.  
 
In the simulation a quasi steady simulation was preferred over a steady state simulation. This 
means that a converged flow field was obtained by first running a steady state simulation after 
which a few 0.001s time steps were taken in transient mode. For illustrative purposes a full 
transient simulation was also performed using a 0.01s time step which is considerably longer 
than the time scale of any reactions occurring within the system.  

3.1.2 Model description 
In the case of fast equilibrium reactions in a quasi-steady simulation a truthful description of 
the mixing within the system is of importance to the final results. As outlined in section 2.3.1 
the Realizable k-epsilon model uses a formulation involving the turbulent kinetic energy to 
describe convective mixing even though the turbulence model by definition does not resolve 
the transient turbulent eddies. The simplicity and robustness of this general turbulence model 
combined with the fact that the overall simulation aim is to prove the applicability of the Stiff 
ODE Suite – FLUENT coupling makes the Realizable k-epsilon model with standard wall 
functions the turbulence model of choice. The effect of mixing on the final result is discussed 
in detail in section 5.1.  

3.1.3 Boundary conditions 
Using the k-epsilon model, unlike the LES model, enables a robust method of specifying inlet 
turbulent properties using the analogies outlined in section 2.4.1. At the sodium carbonate 
inlet a turbulent intensity of 3.7% and a turbulent length scale of 0.014m are specified 
whereas the corresponding characteristics at the acid inlet are 4% and 0.0035m respectively. 
The turbulent properties of the inlet are of great importance since the very region of interest, 

A 

B 

C 
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ie where the strong acid meets the buffering base, is situated some 10 cm downstream from 
the inlet. In order to somewhat reduce the influence of the boundary conditions at the acid 
inlet the injector, referring to figure 3.1, has been hollowed out leaving a short distance from 
the actual inlet to the region where the hydrochloric acid meets the sodium carbonate.   
 
At the outlet a pressure outflow is specified setting a constant pressure over the entire surface 
of the outlet. The boundary condition specified at the pipe wall is no slip as imposed by using 
standard wall functions. 

3.1.4 Reaction kinetics 
The reaction kinetics in the hydrochloric acid – sodium carbonate system is of key importance 
since the very aim is to resolve the fast equilibrium in said reactions. The series of reactions 
are described as outlined in table 3.1 with the corresponding reaction rates shown in table 3.2. 
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Table 3.1 Reaction stoichiometry  
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Table 3.2 Reaction rates  
 

The reaction constants have deliberately been set extremely large as to construct a very stiff 
system of ODEs presenting a considerable challenge to any reaction kinetics solver. It should 
however be noted that the actual equilibrium between the species is preserved at real values. 
Appendix A contains a full derivation of the reaction rates proposed in table 3.2. To model 
diffusion transport in the reacting solution a characteristic two component diffusion 
coefficient of 10-9 m2/s was set to approximate diffusion of dilute species in a water solution. 
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3.2 Humidifying dry air using a water droplet jet 
 
Spray evaporation is an intriguing phenomenon frequently used in modern day industrial 
applications. Common applications include fuel injection into pistons and burners as well as 
the simple need of humid air in air conditioning apparatus. In all of these cases the 
evaporation sequence of the injected droplets is a key issue since the gas phase fuel is the 
reacting phase in the pistons and burners and in the case of humid air the water vapour is the 
final goal.  

3.2.1 Simulation setup 
In the transient simulation of humidification of dry heated air using a water droplet jet a pipe 
segment with a water droplet injector was used. The geometry is shown in figure 3.2. In this 
setup dry air heated to 300oC is injected in the highlighted section at a velocity of 10 m/s. 
Water droplets at 50oC are injected as a cone shaped spray at a velocity of 100 m/s from the 
injection nozzle. The relatively high droplet temperature was chosen as to avoid the issue of 
droplets being cooled below the freezing point of water – an effect arising from rapid fluid 
acceleration discussed in detail in section 5.2. Mass flow rates in the system were chosen to 
obtain moist air at 150oC once all the water droplets had been evaporated and the system fully 
mixed. 
 

 
Figure 1.2 Pipe bend used in evaporation simulations. A denotes the droplet injector nozzle. B is the 
heated air inlet whereas C shows the pipe segment outlet. 
 
The three dimensional computational domain measures roughly 1.8m in length and 1m in 
width with the pipe diameter spanning 0.4m. In order to minimize the chance of spray 
particles residing in the same cell a very fine mesh was constructed consisting mostly of 
extruded tetrahedral elements with a considerable refinement along the pipe centre axis. A 
characteristic cross section is shown in figure 3.3. The mesh grid is stepwise coarsened 
towards the pipe wall resulting in a mesh containing roughly 2 million cells. 
 

A 

B 

C 
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Figure 3.3 Characteristic pipe cross section mesh structure 
 
The particles are injected at a cone angle of 20o. To study the influence of different particle 
distributions on the overall performance of the air humidification two different Rosin-
Rammler particle distributions were simulated whilst keeping all other parameters constant. 
Figure 3.4 depicts the particle distribution in the different cases. 
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Figure 3.4 Injected droplet size distributions 
 
The transient simulation was performed using an FLUENT external time step of 1ms. This is 
a very large time step considering what would have to be used had the Stiff ODE Suite not 
been available. Section 2.6 contains the theory behind the immense computational benefits 
using the Stiff ODE Suite in transient simulations. 

3.2.2 Model description 
In modelling the spray a two way coupled Eulerian-Lagrangian approach, described in section 
2.1, was adopted. To enable tracking of a large amount of particles individual droplets of 
identical size are lumped together to form a cloud which from here on will be referred to as “a 
particle”. As described in section 2.1 parcel tracking imposes certain simulation specific 
restrictions which have to be taken into account when setting up the simulation. In addition 
the following reasonable assumptions are made. The droplets are assumed to be small and 

mµ     

4 cm 
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dispersed enough to neglect droplet break up and collision but large enough for Brownian 
motion to be negligible. Furthermore the particles are assumed to have zero rotational velocity 
setting the Magnus Force to zero. With water droplets being the dispersed phase and air being 

the continuous phase the ratio 
p

f

ρ
ρ

 is very small hence the added mass-, history- and pressure 

force can be neglected. The significant forces acting on the particles will hence be drag and 
buoyancy. Section 2.1 outlines the relevant forces. 
 
The phenomenon of fast evaporation is by definition less dependent on subgrid mixing 
compared to the governing physics of fast equilibrium reactions. In the case of a fast reaction 
sequence species will react in a wave front which, in order to realistically describe the system, 
has to be resolved. This in turn gives rise to the need of a very dense computational mesh 
resolving even the smallest scales of mixing (Kolmogorov scale). With a particle cloud by 
definition covering the entire computational cell the assumption of a cloud average seeing a 
local cell average is likely masked by fundamental assumption of the existence of the cloud 
itself. However in order to resolve large scale transient mixing realistically a compressible 
LES turbulence model was used to solve the transport equations in the fluid. The theory 
behind the LES formulation is outlined in section 2.3.2. In LES the large scale turbulent 
eddies are resolved leaving the small scale turbulent eddies to be modelled. In essence this 
means that large eddies resolved in a LES model will influence the movement of particles due 
mainly to drag. The small scale fluctuations important for small scale particle movement 
however remain unmodelled. Without any further description of this small scale movement 
particles would seemingly behave predictable in a large scale structured manner. To avoid this 
somewhat unphysical behaviour a DRW model is introduced as outlined in section 2.1.1. To 
put the theory into context the DRW model introduces a random component to the local fluid 
velocity artificially modelling the influence of small scale turbulence. 
 

3.2.3 Boundary conditions 
In the pipe segment shown in figure 3.2 there is an apparent risk of unevaporated particles 
impinging the wall. The particle-wall interaction is an interesting topic calling for a master 
thesis on its own to be truthfully predicted. As the aim of the simulation was to resolve fast 
evaporation in the fluid bulk the near wall behaviour was not of primary concern and was 
hence modelled using FLUENTs internal wall-film model. This model is briefly discussed in 
section 2.4.2 and the interested reader is referred to section 5.2 for a discussion on the 
behaviour of said model. 
 
Using the LES turbulence model affects the manner in which boundary conditions are 
applicable. Ideally the inflow is situated at a position far upstream to the position of interest as 
to allow the velocity fluctuations to develop into fully turbulent flow. In reality however and 
especially when the turbulent characteristics of the flow is not the main scope of the 
simulation the inflow is situated closer to the inlet. There is still the possibility of using a 
velocity inlet boundary condition and algebraically specify random movement at the inlet but 
this setting has been shown to be numerically unstable compared to the mass flow inlet 
boundary condition. Instead the inlet was set as a mass flow inlet with a specified mass flow 
leaving no room to specify inlet turbulent properties. In order to stabilize the solution and 
allow for turbulent flow to develop close to the injection nozzle a time span of 0.7s was 
simulated whilst not injecting the water droplet jet. This is an equivalent of five times the 
mean residence time of a fluid element in the pipe segment leaving more than enough time for 
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the solution to stabilize and hence create a fully turbulent flow downstream of the injection 
nozzle. 
 
At the outflow a constant pressure outlet is specified and any backflow occurring through 
outflow turbulence is assumed to consist of dry heated air. At the walls in the pipe bend a no 
slip boundary condition is specified. In order to fully resolve the near wall turbulent 
generation in LES a much finer mesh grid would have to have been used. However, as the 
turbulent properties are not the main scope of the simulation computational speed is gained by 
this slight simplification. As per solving the energy equation the walls are assumed to be 
adiabatic. 

3.2.4 Evaporation Kinetics 
The physics behind an evaporating particle cloud residing in a computational cell is somewhat 
complicated. As evaporation of water is an energy demanding endothermic process the system 
is largely governed by the availability of heat in the computational cell. As section 5.2 reveals 
the evaporation process is mass transfer limited at large droplet sizes. Overall the evaporation 
is a parallel process consisting of transport of heat from the cell bulk fluid to the particle 
followed by evaporation of water by diffusion and convection at the particle surface. The 
evaporated mass hence results in a reduction of heat in the particle as well a reduction of the 
particle diameter. In the odd event of recondensation the heat is added to the particle and the 
particle diameter is inherently increased. In the evaporation sequence the formed water vapour 
forms a film surrounding the particles which is then transported by forced convection into the 
cell bulk. Heat is hence withdrawn from the cell bulk to heat the water vapour to the resulting 
cell temperature. This is mathematically described as a series of six coupled autonomous 
ordinary differential equations shown below. 
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Equation 3.8 is a reformulation of evaporation and condensation of water in terms of gas 
phase water vapour concentration for which a full derivation is available in Appendix B. 
Furthermore equation 3.6 is a rewritten expression for the change in particle diameter coupled 
to the actual loss in particle mass. The interested reader is yet again referred to Appendix B.  
 
To close the stated system of equations knowledge of the external heat and mass transfer 
coefficients h and k is needed. These are obtained using semi empirical correlations evaluated 
at local cell properties using equation 3.10 – 3.13.  
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(3.6) 

(3.7) 

(3.8) 

(3.9) 
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Additional material data are appended in Appendix B. [5] 

(3.10) 

(3.11) 

(3.12) 

(3.13) 



31 
 

PART II 
 

4. Results  

4.1 Fast equilibrium reactions 
 

In the neutralization of a strong hydrochloric acid solution by use of a sodium carbonate 
solution a key parameter in validating the strength of the Stiff ODE Suite – FLUENT 
coupling is the reliability of pH prediction. pH is determined by the water auto proteolysis 
which by definition is an extremely fast reaction rendering this equilibrium reaction 
fundamentally difficult to describe using any chemical reaction solver. In figure 4.1 the pH of 
the quasi steady state simulation at the pipe entrance as calculated using the Stiff ODE Suite 
is shown.  

 
Figure 4.1 Contours of pH at pipe inlet 
 
Figure 4.1 depicts a distinct neutralization wave front between the strong acid inlet and the 
main high pH sodium carbonate solution. In the wake of the acid inlet the pH is lowered 
considerably giving rise to the equilibrium formation of HCO3

-. Due to the buffering 
capabilities of the sodium carbonate solution the HCO3

- ion is favoured in regions of low pH. 
The concentration of HCO3

- is shown in figure 4.2. Note that all eight modelled species are 
present at prevailing system equilibrium. However not important to the main scope of the 
simulation the contour plots of said species are excluded from the report.  
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Figure 4.2 Mass fraction of HCO3- at pipe inlet 
 
An interesting measure on the quality of the solution is resulting simulation value of the water 
auto proteolysis equilibrium constant which at equilibrium is Kw=10-14. In figure 4.3 a 2D 
cross section of the only region of erroneously predicted values of Kw is shown. It however 
goes to show that almost the entire region outlined in figure 4.3 is falsely predicted by less 
than a factor 100 with only a few computational cells close to the solid nozzle head being 
falsely predicted with simulation values of Kw far from the true value.  
 

 
Figure 4.3 Contours of Kw in the vicinity of the acid inlet nozzle. 1ms time step 
 
Figure 4.4 and figure 4.5 depict the pH wave front and the reaction rate of H3O

+ ions 
respectively in the region shown in figure 4.3. These figures are most relevant for a further 
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discussion on the reason behind the erroneously predicted values of Kw. A detailed discussion 
is to be found in section 5.1. In order to give a complete picture of the domain in the vicinity 
of the acid inlet nozzle the computational grid is included in the figures.  
  

 
Figure 4.4 Contours of pH. Close up at reaction wave front 
 

 
Figure 4.5 H3O

+ reaction rate [kmol/m3] 
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4.2 Humidifying dry air using a water droplet jet 
 
In the transient simulations of air humidification using a water droplet jet two size 
distributions were simulated under otherwise identical physical conditions. In figure 4.6 and 
4.7 the vastly different sequences of events are shown. Figure 4.6 depicts the larger droplets 
in the spray surviving the harsh conditions in the pipe bend finally striking the pipe wall 
creating a wall film and a mist of reflected droplets. The particles, in figure 4.6 coloured by 
temperature, form a cold core in the jet surrounded by sparsely spaced particles with 
temperatures reaching and surpassing the temperature of the surrounding fluid. Figure 4.6 b 
and c reveal the turbulent properties of the flow affecting the particle movement in the pipe 
bend forming a chaotic tip of the jet.  

 
 
In the simulation of the smaller droplets however the sequence of events are quite different. It 
is again empathized that both simulations are performed using identical mass flow rates of 
water. Figure 4.7 depicts the water jet propagating through the heated air keeping the 
temporarily surviving droplets at a low temperature. Furthermore no droplets impinge with 
the wall but are instead instantaneously evaporated as they move into a region of higher 
temperature. It should be noted that the characteristics of figure 4.7 b) and c) represent a 
simulation steady state prevailing even as the simulation progresses past 0.15s and onwards. 
Again the tip of the jet is governed by seemingly chaotic movement as imposed by the LES 
resolved turbulent eddies close to the pipe bend.  
 

a
) 

b
) 

c
) 
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Figure 4.6 Particles coloured by temperature. Solution at times a) 0.01s b) 0.04s c) 0.07s 
d) Size distribution of injected droplets 
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In figure 4.8 the initial flow field used in both water jet simulations is shown. As proven in 
section 2.3.2 the LES framework fundamentally enables the resolution of transient turbulent 
eddies. Figure 4.8 depicts the formation of such eddies at several positions in the pipe 
segment with a notable concentration in the wake caused by the separation at the 90o bend. 
The droplet injection nozzle itself causes a wake to be formed with induced chaotic behaviour 
in the mean flow towards the pipe bend.  
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Figure 4.7 Particles coloured by temperature. Solution at times a) 0.01s b) 0.04s c) 0.07s  
d) Size distribution of injected droplets 
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Figure 4.8 Converged LES velocity field [m/s]. Solution at time 0.7s without the injection of droplets 
 
Figure 4.9 depicts the molar concentration of water vapour in the fluid bulk as produced by 
the evaporation in the smaller droplets shown in figure 4.7 d). The water vapour concentration 
is notably high down stream close to the injection nozzle proving that a substantial part of the 
total system evaporation takes place immediately following the injection of the droplets. 
Injection of the larger droplets, depicted in figure 4.6 d), results in a similar characteristic 
water vapour concentration plot.  
 

 
Figure 4.9 Molar concentration of water vapour [kmol/m3]. Solution at time 0.15s with droplet size 1-10 
micro meter 
 
Figure 4.10 through 4.12 illustrate the fluid bulk temperature, the wall film height being 
formed after the pipe bend and the water vapour source term respectively. These are supplied 
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as a basis of further discussion to be found in section 5.2. Notable in figure 4.10 however is 
the jet core temperature at certain positions being ~25K lower than the temperature of the 
initially injected droplets. Most of the jet core however pertains the initial droplet temperature 
of 325K. 

 
Figure 4.10 Temperature profile in fluid bulk [K].  Solution at time 0.15s with droplet size 1-10 micro 
meter 
 

 
Figure 4.11 Artificial wall film height [m] Figure 4.12 Water vapour source term [kg/m3s] 
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5. Discussion 

5.1 Fast equilibrium reactions 
 

In the simulation of neutralization of hydrochloric acid using a sodium carbonate solution a 
region of inferior predictability was discovered and shown in figure 4.3. The phenomenon 
itself was initially assumed to be an artefact stemming from unconverged simulations but 
regardless of any measure to increase convergence the issue remained. Instead the intriguing 
phenomenon is due to the ratio between system mixing and reaction rate. Examining figure 
4.4 in detail reveals that the solution pH varies between -0.3 and 12.1 over a mere 8 
computational cells. A characteristic length scale of 8 cells in the region of interest is 0.01m 
over which the concentration of H3O

+ ions essentially changes from 2M to 0M. With a local 
effective diffusivity of size ~10-5-10-4 m2/s taking both diffusion transport and convective 
transport, through mean flow and modelled turbulent eddies, into account the inter cell 
transport is characterized by equation 5.1. 
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In forming equation 5.1 it has been assumed that the computational cells in the region can be 
regarded as perfect cubes with a characteristic region specific volume of 391071 m−⋅. . The 
calculated size range is not in any way an exact measure but a hint on the inter cell transport 
of H3O

+ ions in the region. Comparing the inter cell transport to the reaction rate in the region 
depicted in figure 4.5 spanning [0.05,43] kmol/m3s the Dahmköhler number 

mixing of rate

reaction of rate

reactions chemicalfor   timetypical

mixing of  timetypical
Da ∝=  turns out to be in the vicinity of 

unity. It can be shown that this is the case in the entire region outlined in figure 4.4. With a 
Dahmköhler number close to unity, more precisely put not in the region of Da<<1 or Da>>1, 
the system mixing becomes a key parameter in determining the chemical reaction rates and 
the assumption of a cell being treated as a semi continuous batch reactor according to section 
3.1.5 no longer holds.  
 
Numerically the issue of falsely predicted values of Kw stems from the manner in which 
FLUENT iterates. In regions of high values of pH at the edge of the neutralization wave front 
the concentration of H3O

+ will be very small with values essentially in the region of ~10-12 
kmol/m3 hence giving extremely small reaction rates of said ion. The transport of the H3O

+ 
ions to the cell will however be much larger as predicted by equation 5.1. In the iteration 
sequence FLUENT will hence compare two quantities, reaction rate and inter cell transport, of 
vastly different sizes. The result is that a “converged” solution is obtained with values of 
[H3O

+] at ~10-9 kmol/m3 because the reaction source term exemplified below is approximately 
zero compared to the inter cell transport of ~1.7 kmol/m3s.  
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Hence Kw will be erroneously computed by a factor of 1000. 
 
 141192

3 10101010]][[ −−−−+− =<<=⋅= wKOHOH   

 
The issue can be resolved in a few different ways. First and foremost if the actual resolution 
of the computationally intensive wave front is not the scope of the simulation but instead the 
solution pH at a position further downstream the erroneous zone can be completely 
disregarded. The global mass in the system is maintained and as soon as a fluid element 
moves away from the wave front the equilibrium will instantaneously be corrected. Another 
remedy in which the wave front itself can be predicted is to use the measure of [OH- ] in 
regions of high pH and [H3O

+] in regions of low pH. Using these measured values to calculate 
pH will give a less numerically distorted result. This method does however not resolve the 
region where pH is close to 7 where both concentrations will be equally distorted. Instead in 
order to fully describe the system the grid cell size needs refinement down towards DNS 
level. This is fundamentally the only truthful way to describe the system mixing including all 
relevant stages ie inertial-convective-, viscous-convective- and viscous-diffusive mixing. 
With the time span available such a simulation is however hopelessly unpractical. 
 
In a quasi steady state simulation the time step could be decreased towards the characteristic 
time of the actual reactions occurring in the system. This would, in accordance with equation 
5.2, increase the source term hence reducing the numerical issues at hand. When using a time 
step of 1ns the region of falsely predicted values of Kw is largely reduced. Figure 5.1 depicts 
the erroneously predicted region. The characteristically edged form of the contour in figure 
5.1 proves that a further grid refinement at the acid inlet would increase resolution of Kw. The 
fundamental error of falsely predicted system mixing however remains. Using these 
extremely short time steps made possible in a quasi steady state simulation is furthermore not 
feasible in the transient framework since the real world simulation time would be 
uneconomical at best. 
 

 
Figure 2 Contours of Kw in the vicinity of the acid inlet nozzle. 1ns time step 
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Using the pressure based coupled steady state solver in FLUENT however opens up a new 
realm of simulation possibilities. In this approach the solution is internally progressed towards 
a steady state using a time step back calculated from amongst other things the local Courant 
number. Fundamentally the pressure based coupled solver approach avoids problems with 
main flow changes due to the sudden change in chemical reactions possibly encountered when 
switching from a steady state to a transient solver. Equations 5.3 through 5.9 reveal the 
procedure of calculating the local time step. [2] 
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5.2 Humidifying dry heated air using a water droplet jet 
 

In simulating the humidification of dry heated air using a water droplet jet several interesting 
phenomena were discovered and studied.  
 
When injecting droplets of the size distribution outlined in figure 4.6 d) particle parcels 
containing few but large droplets m)19( µ>  to a great extent survive long enough in the high 
temperature domain in order to eventually impinge the pipe wall. At the same time almost no 
parcels with diameter m10µ  survive past the first section following the injection nozzle. The 
reason fundamentally lies in the evaporation rate as described by equation 3.9. Examining 
said equation noting that 1−∝ partdk  and 2

partpart dA ∝  reveals that partpart dm ∝& . Forming the 

life expectancy of a droplet in the system 
part

part
life m

m
&

=τ and noting that 3
partpart dm ∝  reveals 

2
partlife d∝τ . This hence explains the over representation of large droplets in the pipe bend. A 

droplet of size m20µ simply has a 100 times longer life expectancy than a droplet of 
size m2µ . Each particle parcel with droplets in the size range m19µ> however due to limited 
size distribution mass contains less than 10 droplets each resulting in a slight visual 
misrepresentation in figure 4.6. In said figure it looks like a large portion of the droplets 
impinge the wall whereas in reality only a small portion of the total droplet mass escapes 
evaporation. This is reflected in the extremely thin wall film having been formed in figure 
4.11.    
 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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Continuing the discussion regarding mass transfer from the droplets to the surrounding fluid 
the formulation in equation 3.6 is empathized. Said equation states that the change in droplet 
diameter is proportional to the transferred mass but inversely proportional to the square of the 
droplet diameter. The formulation is hence by definition stiff since the rate of change in 
droplet diameter rapidly progresses towards infinity as the droplet diameter is increased. This 
gives rise to the question why the droplet diameter is the parameter of choice and not the 
droplet mass which would result in a mathematically much less complex system since there 
would be no tendency towards division by zero. To be able to answer this question one needs 
to realize the manner in which a particle exists in FLUENT. From the time the particle parcel 
is born at the injection nozzle till it dies due to evaporation it contains a constant number of 
droplets. The parameter instead being changed due to evaporation is the particle diameter 
which will decrease to 1nm at which time the particle is considered fully evaporated. Just 
before being fully evaporated the droplet mass will hence be in the vicinity of 10-25kg at 
which time the evaporation rate is of the same numerical order. By subtraction the removed 
mass might be close enough to the droplet mass that the resulting mass is either positive or 
negative ~10-60kg. This machine precision induced numerical issue gives rise to an oscillatory 
Stiff ODE Suite solution behaviour which will significantly add to the computational cost. 
Instead the much larger parameter droplet diameter is modelled giving rise to a stiff system of 
ODEs easily solvable using the Stiff ODE Suite.    

 
In simulating the droplet jets a sub cooling effect of the jet core was noticed. This effect stems 
from the acceleration of the fluid caused by the rapid transfer of momentum from the injected 
particles hence an interesting effect arising from the two way coupled multiphase system. 

Examining the energy equation 2.17 the term 
j

j

x

U
P

δ
δ

 acts either as a sink or a source 

depending on if the fluid is accelerated or decelerated. It should be noted that the simulation 

was performed using a compressible formulation of the fluid density hence 0≠
j

j

x

U

δ
δ

 is 

possible. Running a short trial simulation with a incompressible fluid density formulation 
removed the temperature effect hence proving the hypothesis. The sub cooling of the jet core 
was the main reason why the droplet inlet temperature had to be chosen arbitrary high ie 
325K. By doing so the simulation ran no risk of unphysically predicting droplet temperatures 
below the freezing point of water in which case the enthalpy of melting would have to have 
been added.   
 
In the evaporation simulations the near wall region is somewhat falsely predicted the reason 
for this being the need of a very fine computational grid close to the wall in order to resolve 
large gradients. The goal of the simulation is however to resolve bulk evaporation which 
renders the near wall fluid region less important. The savings in terms of computational cost 
is however greatly reduced by the reduction of computational cells. In all the mesh contains 
roughly 2 million cells which, considering the geometric dimensions of the domain, is a very 
fine mesh leaving only the near wall domain unresolved. 
 
The near wall region using the particle distribution outlined in figure 4.6 d) is however of 
interest to the particle description. As covered in the theory section the FLUENT internal wall 
film model was used however augmented with a slight modification. In order to avoid the 
limited applicability of the FLUENT internal evaporation models the Stiff ODE Suite was 
used to describe evaporation from the pipe walls. By doing so droplets can be evaporated at 
an arbitrary rapid rate at temperatures far above the boiling temperature of water. Figure 4.12 
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depicts the source terms of water vapour close to the wall as generated by evaporation. The 
wall film model description of the formation and movement of the wall film and the 
probability of droplet reflection and wall separation is however kept unaugmented. Using the 
Stiff ODE Suite evaporation formulation in the entire interior domain of the pipe segment 
however imposes an error on the description of evaporation from the wall. Since the Stiff 
ODE Suite evaporation formulation, according to equation 3.4 to 3.9, assumes droplet 
evaporation the formation of a wall film is neglected and instead wall particles are treated as 
any other particles in the domain. Film evaporation assuming an adiabatic surface is 
inherently slower than the evaporation of dispersed droplets causing the augmented film 
model to somewhat over estimate the mass transfer from the wall. Since the large droplets 
impinging the wall are already subjects to slow evaporation the global time frame of the 
simulation reduces the effect of the overestimated evaporation rate. It should be noted that the 
internal FLUENT evaporation model from a wall film, with the assumptions outlined in the 
theory section, is a vastly simplified approach best used with fuel sprays in vertical cylinders 
as originally intended.  
 
Further work needs to be done implementing a general wall film model into FLUENT. The 
mathematical description of the formation and movement of a wall film is beyond the scope 
of this discussion but a general basis for further work is hereby presented. By coupling the 
Discrete Phase Model with the Volume Of Fluid model it is theoretically possible to form a 
wall film whilst still tracking particles in the fluid bulk. In this approach the Stiff ODE Suite 
is well suited for describing evaporation and condensation to/from the VOF modelled wall 
film. 
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6. Conclusion 
 
Stiff systems of autonomous ordinary differential equations, typically on the form 

1   >>=′ kkyy , are a common occurrence in nature being found in fast equilibrium reactions, 
catalysis, evaporation and incineration. In an attempt to solve stiff systems of ODEs 
encountered in CFD applications the software package Stiff ODE Suite was developed, 
coupled to FLUENT v12.1 and validated. 
 
The Stiff ODE Suite is based on a variable order Backwards Differential Formulation 
algorithm with adaptive time stepping capabilities. The algorithm introduces a versatile stiff 
or non-stiff ODE solver with numerical performance comparable to MATLABs ODE15s. The 
Stiff ODE Suite functions as a standalone module and in coupling it to FLUENT it vastly 
increases said software´s applicability. The coupling also makes use of the benefits introduced 
by multi processing – an advantage of great use in modern day multi million mesh grids.  
 
The Stiff ODE Suite was used to resolve fast equilibrium reactions in FLUENT where 
neutralization of hydrochloric acid using a sodium carbonate water solution in a pipe segment 
was simulated. In using the Stiff ODE Suite the extremely fast water auto proteolysis was 
predicted with acceptable accuracy hence enabling the resolution of the mixed solution pH. 
Furthermore the Stiff ODE Suite enabled the simulation of rapid humidification of dry heated 
air using a water droplet jet in a pipe segment. In the simulations two way coupled 
momentum, mass and heat transfer was successfully modelled realistically predicting the 
evaporation time of water droplets. 
 
Fundamentally the introduction of the Stiff ODE Suite enables the CFD engineer to use time 
steps much larger than the time scale of the stiff system of ODEs needing to be solved. It also 
extends the applicability of FLUENT since the user is no longer limited to the descriptive 
capabilities of the graphical user interface. Concluding imperfect or faulty FLUENT internal 
models can be augmented and changed to better suite the problem formulation at hand.  
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APPENDIX A – Determining reaction kinetics  
 
With reference to the reaction rates shown in table 3.1 and 3.2 the generation and decay of 
each component can be expressed as shown in equations A.1 through A.8. 
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In all instances of the derivation of the reaction rates the fastest step in the equilibrium is set 
to 2010=k  yielding extremely fast equilibrium reactions. The slower reaction constant is 
derived by back calculating from the actual equilibrium which results in expressions for all 
rate constants according to equation A.9 through A.20. [7] 
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APPENDIX B – Determining evaporation kinetics 

Derivation of equation 3.8 
 
Derived from fundamental kinetic gas theory condensation of water in terms of water film 
pressure can be expressed according to equation B.1 to B.4. [BB BENGT Reference] 
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Also derived from kinetic gas theory evaporation of water can be described according to 
equation B.5 and B.6 [BB BENGT Reference] 
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Expanding equation B.1 and expressing OHP

2
 in terms of an ideal gas renders equation B.7. 
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In studying the growth and decay of a particle water vapour film due to evaporation and 
condensation equation B.7 is formed. In equation B.8 it has been assumed that the volume of 
the water vapour film is an equivalent of 1% of the particle volume. The assumption is in 
essence unimportant since the inverse of the particle diameter, shown in equation B.8, will 

cause afilm to grow rapidly causing adding stiffness to 
dt

dCi .  
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In terms of kmol/m3s equation B.7 is rewritten and the final formulation is produced in 
equation B.9. 
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Derivation of equation 3.6 
 
The change in diameter of a particle with constant density due to the change in mass is 
expressed in equations B.10-B.11. 
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Additional property data 
The following section contains additional material data entered to augment FLUENT default 
values.  
 
The diffusion coefficient of the water vapour air system was set according to Bolz and Tuve. 
In equation B.12 the temperature is specified in Kelvin. [6] 
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