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Interating partile systems in varying environment, stohasti dominationin statistial mehanis and optimal pairs trading in �naneMarus WarfheimerDepartment of Mathematial SienesChalmers University of Tehnology and University of GothenburgABSTRACTIn this thesis we �rst onsider the ontat proess in a randomly evolving environment,introdued by Erik Broman. This proess is a generalization of the ontat proesswhere the reovery rate an vary between two values. The rate whih it hooses isdetermined by a bakground proess, whih evolves independently at different sites.We prove that survival of the proess is independent of how we start the bakgroundproess, that �nite and in�nite survival are equivalent and �nally that the proess diesout at ritiality.Seond, we onsider spin systems on Z whose rates are again determined by abakground proess, whih is more general than that onsidered above. We prove that,if the bakground proess has a unique stationary distribution and if the rates satisfy aertain positivity ondition, then there are at most two extremal stationary distributions.Third, we disuss various aspets onerning stohasti domination for the Isingand fuzzy Potts models. We begin by onsidering the Ising model on the homogeneoustree of degree d, Td. For given interation parameters J1, J2 > 0 and external �eldh1 2 R, we ompute the smallest external �eld ~h suh that the plus measure withparameters J2 and h dominates the plus measure with parameters J1 and h1 for allh � ~h. Moreover, we disuss ontinuity of ~h with respet to the parameters J1, J2, h1and also how the plus measures are stohastially ordered in the interation parameterfor a �xed external �eld. Next, we onsider the fuzzy Potts model and prove that onZdthe fuzzy Potts measures dominate the same set of produt measures while on Td, forertain parameter values, the free and minus fuzzy Potts measures dominate differentprodut measures.Finally, we study the problem of optimally losing a pair trading strategy when thedifferene of the underlying assets is assumed to be an Ornstein-Uhlenbek type pro-ess driven by a jump-diffusion proess. We prove a veri�ation theorem and analyzea numerial method for the assoiated free boundary problem. We prove rigorous errorestimates, whih are used to draw some onlusions from numerial simulations.
Keywords: Interating partile systems, ontat proess, randomly evolving environment, spinsystems, Ising model, fuzzy Potts model, pairs trading, optimal stopping.
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Part IINTRODUCTION





1IntrodutionThis thesis onsists of three parts. Part one (the �rst two papers) onerns interat-ing partile systems in a randomly evolving environment, part two (the third paper)onerns stohasti domination in the Ising and fuzzy Potts models and part three (thefourth paper) onerns how to optimally lose a pair trading strategy in �nane. In thisintrodutionary hapter we brie�y give some bakgroundmaterial to all of these topisand at the end we give a summary of the papers in the thesis. We prefer to present mostof the material in a rather informal way; for a mathematially preise desription seethe relevant referenes or the papers in the thesis.1.1 Interating partile systemsThe �eld of interating partile systems is a branh of probability theory. However,the motivation often omes from physial or biologial systems. In loose terms, onetries to formulate a mathematial model for objets (partiles, people, ars, et) whihinterat with eah other in a ertain way. One way to onstrut suh a model is to plaeeah objet at a site in a graph struture and delare that eah one of them an be inone of a �nite number of different states. (A graph is just a �nite or ountable set ofverties equipped with a relation that de�nes whih verties are neighbors.) One thenassigns some initial on�guration (or distribution) and lets the system evolve aordingto some probabilisti rules. It is at this point where the interations ome into play.Eah objet is hanging its state at a rate depending on the states of the other (usuallyneighboring) objets as well as itself. 3



4 CHAPTER 1. INTRODUCTIONFrom a more mathematial point of view, interating partile systems are a speiallass of so alled Markov proesses. Markov proesses have the property that giventhe present state, the future is independent of the past. Denote the set of sites andpossible states by S and A respetively. The state spae, or on�guration spae, forour Markov proess is then AS . The most ommon situation is when A onsists ofonly two elements and that only one oordinate of the proess is allowed to hangeat a time. Suh proesses are alled spin systems. In this situation, the evolution isdesribed by a rate funtion, (x; �), x 2 S and � 2 AS , whih gives the rate atwhih the oordinate at x �ips when the system is in state �. Having something our�at a rate (x; �)� means informally that the time for this to our has an exponentialdistribution with mean 1=(x; �).In this generality not muh an be said. Therefore one onentrates upon spei�types of models of whih I will name a few.The ontat proess on the d-dimensional lattie Zd. This proess was introduedby Harris [18℄ and is a model for spread of an infetion. The model is suh that in-feted people reover at rate 1 and healthy people are infeted with a rate proportionalto the number of infeted neighbors. The state of the system is desribed by a on�g-uration � 2 f0; 1gZd, where �(x) = 0 represents that the individual at x is healthy and�(x) = 1 represents it is infeted. Also, the dynamis are spei�ed by the followingrate funtion (x; �) = 8<: 1 if �(x) = 1�Xy�x �(y) if �(x) = 0;where y � x means that x and y are neighbors and � is a positive parameter alled theinfetion rate. To simplify notation, we will identify f0; 1gZd with subsets of Zd byletting � 2 f0; 1gZd orrespond tofx 2 Zd : �(x) = 1 g:Let �t be the state of the proess at time t � 0 and denote the distribution of the proesswith parameter� > 0 and initial on�gurationA � Zd byPA� . We say that the proesssurvives at � if Pf0g� [ �t 6= ; for all t � 0 ℄ > 0;otherwise it is said to die out at �. One an show thatPf0g� [ �t 6= ; for all t � 0 ℄ = 0for small values of � and Pf0g� [ �t 6= ; for all t � 0 ℄ > 0for large values of �. The �rst laim follows easily by a omparison with a branshingproess and the seond, whih is somewhat more dif�ult, follows from a perolation



1.1. INTERACTING PARTICLE SYSTEMS 5type argument. In words, when we start the proess with one site infeted, the infetionwill almost surely eventually disappear for small values of � and will last forever withpositive probability for large values of �. From this, it is natural to de�ne the ritialvalue: � := inff� : Pf0g� [ �t 6= ; for all t � 0 ℄ > 0 gand the previous statement just means that 0 < � <1. A muh harder question, andone whih had been open for approximately 15 years, is whether the ontat proesssurvives or dies out at the ritial value �. A elebrated theorem by Bezuidenhout andGrimmett gives us the answer.Theorem 1.1.1 (Bezuidenhout and Grimmett). The ritial ontat proess dies out.For a proof of this, see [1℄ or [33℄.

Figure 1.1: A small portion of the lattie Z2.Remark: We an parameterize the ontat proess in an equivalent way as follows: Letthe reovery rate be Æ > 0 and the infetion rate be equal to the number of infetedneighbors. In other words, we hange � to 1 and let Æ be the reovery rate, whih ofourse just orresponds to a time saling. We will denote the orresponding ritialvalue by Æ.The voter model on the d-dimensional lattie Zd. This proess was introduedindependently by Clifford and Sudbury [4℄ and by Holley and Liggett [19℄. Here, thestate of the system is desribed by a on�guration � 2 f0; 1gZd where d � 1 and thetransition mehanism is desribed by saying that �(x) �ips to 1� �(x) at rate12dXy�x 1f�(y)6=�(x)g:One interpretation, made by Holley and Liggett, is to think of the sites in Zd as repre-senting voters who an hold either of two politial positions, whih are denoted by 0



6 CHAPTER 1. INTRODUCTIONand 1. In this representation the dynamis of the model an be desribed as follows: Avoter waits an exponentially distributed time with mean 1 and then takes the opinionof a neighbor hosen at random. Clearly, if we start the proess with all voters in state0 or all voters in state 1, nothing happens. In mathematial terms the point masses onthese two on�gurations are so alled invariant distributions, meaning that if we startthe proess with suh a distribution �, the distribution of the proess at any time lateris still �. (Of ourse, in this ase they are also absorbing states.) At this point, one mayask if there are any other invariant distributions? To answer that question it turns outthat the dimension d plays a prominent role. Namely, when d � 2 there are no otherthan those two above (plus their onvex ombinations), but when d � 3 there are infat other ones. (To people with a little bakground in probability theory, this resultis intimately related to the fat that simple random walk is reurrent when d � 2 andtransient when d � 3.)The stohasti Ising model on Zd. This is a model for magnetism introdued byGlauber [17℄. The state spae of this model is f�1; 1gZd. Imagine that atoms are laidout on all of Zd and that eah of them either an have a spin (state) of +1 or �1.The resulting on�guration desribing the system is an element of f�1; 1gZd. Thedynamis of the evolution is desribed by delaring a spin �(x) at a site x to �ip to��(x) at rate exp ��Xy�x �(x)�(y)!where � is a nonnegative parameter alled the inverse temperature. Note that the �iprate is higher when the spin at x differs from most of its neighbors than it is when itagrees with most of them. In other words, the system prefers on�gurations in whihthe spins tend to be aligned with one another. When � = 0 it is easy to see thatthere is only one invariant distribution, namely the produt measure � on f�1; 1gZdwith density 12 and in addition, for any initial distribution, the distribution at time tonverges weakly as t ! 1 to �. Suh a proess is alled ergodi. In the non-ergodi ase, i.e. when we have more than one invariant distribution, one says that aphase transition has ourred and eah of the invariant distributions orresponds to adifferent �phase� of the system. The problem is to determine for whih hoies of �and d the proess is ergodi. If d = 1, then it turns out that the proess is ergodi forall � but when d � 2 there is a ritial value 0 < �d < 1 suh that the proess isergodi if � < �d and non-ergodi if � > �d.For further reading about interating partile systems, there are three standard ref-erene books, namely Liggett [31, 33℄ and Durrett [10℄. The �rst one deals with theonstrution of interating partile systems from given rates as well as more or lessall results in the �eld until 1985. The seond one onentrates upon three models;the ontat proess, the voter model and the so alled exlusion proess, a model ofpartile motion, and overs many of the results onerning these models until 1999.The third book onsiders, among other things, the ontat proess, the voter model andsome variants thereof.



1.2. THE FERROMAGNETIC ISING AND POTTS MODELS 7In all the examples above, the dynamis are translation invariant in the sense thatthe rates only depend on x through f�(y) : y � xg. A possible �rst extension is toallow the rates to depend on x itself. One suh example is the so alled inhomogeneousontat proess where we are given to us a family of rates fÆxgx2Zd and from them thedynamis of the proess is as follows:(x; �) =8<: Æx if �(x) = 1Xy�x �(y) if �(x) = 0:A further extension is to allow for more randomness in the model. For example, onepossibility is to study the above model with fÆxgx2Zd taken to be i.i.d. random vari-ables. That suggestion was made by Bramson, Durrett and Shonmann [2℄ and theyalled the resulting model the ontat proess in a random environment. For furtherresults onerning that model see for example [26, 32, 36℄. You ould also extend thelast model even more by letting the reovery rates follow some update rule. We thenarrive at the ontat proess in a randomly evolving environmentwhih was introduedby Broman [3℄ and whih we will disuss in more detail in Setion 1.4.1.1.2 The ferromagneti Ising and Potts modelsThe theory of Gibbs measures goes bak to Dobrushin [5�9℄ and Lanford and Ru-elle [28℄. It started as a branh of lassial statistial physis but an now also beviewed as a part of probability theory. From the physial point of view these mea-sures were proposed as a mathematial desription of an equilibrium state of a physialsystem whih onsists of a large number of interating omponents. In probabilistiterms, a Gibbs measure is just the distribution of a ountably in�nite family of randomvariables taking values in some (usually �nite) set whih admit some presribed on-ditional probabilities. To desribe these onditional probabilities one has to speify theinteration between the omponents and that is usually done by a so alled Hamilto-nian. For an extensive presentation of the theory of Gibbs measures we refer to [15℄and for a less extensive one, see [16℄. Instead of disussing Gibbs measures in a generalontext we will now fous on two spei� hoies of Hamiltonians whih for differentreasons have attrated a large amount of interest during the last deades.The ferromagneti Ising model is a simpli�ed mathematial desription of a ferro-magneti substane suh as iron, obalt or nikel. It was introdued by Wilhelm Lenzin the 1920's [29℄ and �rst investigated by Ernst Ising [24℄. In the same way as for thestohasti Ising model we think of the atoms as laid out on the d-dimensional lattieand that the spin of eah of them is allowed to take two possible orientations,+1 (up)and �1 (down). Moreover, there are two parameters J � 0, h 2 R in this model. The�rst one desribes the strength of the interation between neighboring spins and theseond the affet of an external �eld. For given J , h and on�guration � 2 f�1; 1gZd



8 CHAPTER 1. INTRODUCTIONthe Hamiltonian for this model is given by the so alled Ising potential:�J;hA (�) =8><>:�J�(x)�(y) if A = fx; yg, where hx; yi 2 Ed ;�h�(x) if A = fxg;0 otherwise.Here A � Zd, Ed denotes the set of edges in the d-dimensional lattie and hx; yiis the edge onneting x and y. From this potential the Gibbs measures are de�nedas follows: A probability measure � on f�1; 1gZd is said to be a Gibbs measure (orsometimes Gibbs state) for the ferromagneti Ising model with parameters h 2 Rand J � 0 if it admits onditional probabilities suh that for all �nite U � Zd, all� 2 f�1; 1gU and all � 2 f�1; 1gZdnU�(X(U) = � jX(Zd n U) = �)= 1ZU;�J;h exp"J Xhx;yi2Ed ;x;y2U �(x)�(y) + Xhx;yi2Ed ;x2U;y2�U �(x)�(y)!+ hXx2U �(x)#:Here ZU;�J;h is a normalizing onstant and �U is the outer boundary of U de�ned for-mally as �U = fx 2 Zd n U : There exists y 2 U suh that hx; yi 2 Ed g:In words, � is a Gibbs measure for the Ising model if it has presribed onditionaldistributions inside any �nite region given that the on�guration is held �xed outsideand these onditional distributions are given by the right hand side of the above expres-sion. A natural question from both a physial and mathematial point of view is if thisde�nition uniquely determines the Gibbs measure, or stated otherwise, is it possibleto have two different measures with the same presribed onditional distributions? Itturns out that if d = 1 or h 6= 0 there is only one Gibbs measure but interestingly, whend � 2 and J is large enough there exists more than one Gibbs measure. When suha phenomena of multiple Gibbs measures ours one says that the system undergoes aphase transition. For a proof of the above statement as well as a survey in the study ofphase transitions for the Ising model we refer to [20℄.Although we have hosen to disuss the Ising model on the d-dimensional lattieonly the above de�nitions make perfet sense for other types of graphs too. It turns outthat the question of phase transition is highly dependent on the graph struture. As anexample if the underlying graph is the homogeneous tree of degree d the system an infat undergo a phase transition even when h 6= 0, see [15℄.A natural generalization of the ferromagneti Ising model is the (ferromagneti)Potts model in whih the spins are allowed to take q � 2 (rather than just two) different



1.3. PAIRS TRADING 9states. We on�ne ourselves to the ase with no external �eld and for simpliity welet Zd be the underlying graph. For � 2 f1; : : : ; qgZd, the interation potential for thePotts model is given by	JA(�) = (�2JIf�(x)=�(y)g if A = fx; yg, where hx; yi 2 Ed ;0 otherwise.In words, this interation favors on�gurations where many neighboring pairs of spinsagree. In a similar way as for the Ising model we an de�ne the notion of Gibbsmeasures and study phase transitions et, see [16℄ and the referenes therein.1.3 Pairs tradingSine this part is relatively small we will not say muh about it. Pairs trading wasdeveloped at Morgan Stanley in the late 1980's, and today it is one of the most om-mon investment strategies in the �nanial industry. The idea behind pairs trading isquite intuitive: the investor �nds two assets, for whih the pries have moved togetherhistorially. When the prie spread widens, the investor takes a short position in theoutperforming asset, and a long position in the underperforming one with the hopethat the spread will onverge again, generating a pro�t. However, the trader should beaware of the risk of drifting. This happens when the two orrelated stok pries start todrift apart. Therefore, in pratie the investor typially hooses in advane a stop-losslevel, whih orresponds to the level of loss above whih the investor will lose thepair trade and take the loss.For a historial evaluation of pairs trading see [14℄ and for books that treat theapplied aspets of pairs trading we refer to [11, 38, 39℄.1.4 Summary of papers1.4.1 Paper IIn this paper we onsider the so alled ontat proess in a randomly evolving envi-ronment (CPREE), introdued by Broman [3℄. This proess is a generalization of theontat proess, where the reovery rate is allowed to vary between two values, Æ0 andÆ1. (Reall the equivalent parameterization of the ontat proess.) The rate whih ishosen is determined by a bakground proess, whih evolves independently at dif-ferent sites. To be preise, we onsider the Markov proess f(Bt; Ct)gt�0 with statespae f0; 1gZd � f0; 1gZd whih performs transitions aording to the following rates



10 CHAPTER 1. INTRODUCTIONat a site x 2 Zd: transition rate(0; 0)! (0; 1) Xy�xC(y)(1; 0)! (1; 1) Xy�xC(y)(0; 1)! (0; 0) Æ0(1; 1)! (1; 0) Æ1(0; 0)! (1; 0) p(0; 1)! (1; 1) p(1; 0)! (0; 0) (1� p)(1; 1)! (0; 1) (1� p)where d � 1, ; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄. In other words, at eah site xindependently, fBt(x)gt�0 is a 2-state Markov hain with in�nitesimal matrix� �p p(1� p) �(1� p)�whih in turn determines the reovery rate of fCt(x)gt�0 in the following way. Foreah x and t, the reovery rate at time t and site x is Æ0 or Æ1 depending on whetherBt(x) = 0 or Bt(x) = 1. Also, the infetion rate is always the number of infetedneighbors. (Atually Broman did this on a more general graph, but here we willonly onsider Zd.) Broman referred to fBtgt�0 as the bakground proess and thewhole proess f(Bt; Ct)gt�0 as the ontat proess in a randomly evolving environ-ment (CPREE). Let fC�;�t gt�0 denote the right marginal when the initial distributionof the whole proess is � � �. Furthermore, let Pp denote the measure governing theproess for the parameters p, , Æ0 and Æ1, where , Æ0 and Æ1 are onsidered �xed.Also, denote the produt measure with density q 2 [0; 1℄ by �q . Broman de�ned theritial value p := inf np : Pp[C�p;f0gt 6= ; 8t > 0 ℄ > 0o(p is taken to be 1 if no p satis�es this) and proved that if Æ1 < Æ < Æ0 and  >max(2d; Æ � Æ1), then p 2 (0; 1). (Reall the de�nition of Æ from the remark afterTheorem 1.1.1.) At the end of his paper he asked whether the ritial value is affetedif we vary the initial distribution of the bakground proess. Our �rst result answersthis question. Given , Æ0, Æ1 > 0 with Æ1 � Æ0, q 2 [0; 1℄ and A � Zd with jAj <1,de�ne p(q; A) := inf np : Pp[C�q ;At 6= ; 8t > 0 ℄ > 0o :Theorem 1.4.1. Given A,A0 � Zd with jAj, jA0j <1 and p, q, q0 2 [0; 1℄,Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 () Pp[C�q0 ;A0t 6= ; 8t > 0 ℄ > 0:In partiular, p(q; A) is independent of both q and A.



1.4. SUMMARY OF PAPERS 11We will let p denote this ommon value. (Reall, p of ourse depends on , Æ0 andÆ1.) Also, if Pp[C�q;At 6= ; 8t > 0 ℄ > 0 holds (whih we now know is independentof q and A), we say that fCtg survives at p; otherwise it is said to die out at p.Standard arguments yield that the limiting distribution starting from all 1's existsand we will denote the limit by ��p. This measure gives us another natural way to de�nea ritial value: p0 := inff p : ��p 6= �p � Æ; g:For general attrative interating partile systems it might or might not be the ase thatthese two ritial values oinide. However, for the ordinary ontat proess this isthe ase (due to its self-duality) and our next result shows that this is also true in oursituation.Theorem 1.4.2. fCtg survives at p if and only if ��p 6= �p � Æ;. In partiular p = p0.Our �nal result is a generalization of Theorem 1.1.1.Theorem 1.4.3. If fCtg survives at p > 0, then there exists Æ > 0 so that it survivesat p � Æ. In partiular, if p 2 (0; 1℄, then the ritial ontat proess in a randomlyevolving environment dies out.1.4.2 Paper IIReall that spin systems are interating partile systems where eah oordinate hastwo possible states and only one oordinate hanges in eah transition. In this paperwe onsider spin systems onZ in a randomly evolving environment,where the environ-ment is more general than in the previous paper. To desribe the proess we are dealingwith in mathematial terms, let 0(x; �), 1(x; �) and b(x; �) be given rate funtionsand de�ne a Markov proess f(�t; �t)gt�0 on f0; 1gZ� f0; 1gZwith the dynamis ata site x spei�ed in the following way:transition rate(�; �)! (�; �x) 0(x; �) if �(x) = 0(�; �)! (�; �x) 1(x; �) if �(x) = 1(�; �)! (�x; �) b(x; �)Here, for given � 2 f0; 1gZd and x 2 Z, �x is the element in f0; 1gZde�ned by�x(y) = (�(y) if y 6= x1� �(x) if y = x:As before, the left marginal f�tgt�0 will be referred to as the bakground proess.Furthermore, we will assume that the rate funtions are translation invariant, that0(x; �) � 1(x; �) if �(x) = 0;1(x; �) � 0(x; �) if �(x) = 1;(1)



12 CHAPTER 1. INTRODUCTIONthat 0(x; �) and 1(x; �) only depend on � through �(x � 1), �(x) and �(x + 1) andthat 0, 1 and b satisfy the following attrativity ondition:De�nition 1.4.1. A spin system on Zwith rate funtion (x; �) is said to be attrativeif whenever � � �0, (x; �) � (x; �0) if �(x) = �0(x) = 0;(x; �) � (x; �0) if �(x) = �0(x) = 1:(2) (Here, � refers to the usual partial ordering on f0; 1gZ, i.e., � � �0 if and onlyif �(x) � �0(x) for all x 2 Z.) This ondition is exatly what is needed to be ableto ouple two opies, with initial on�gurations stohastially ordered, so that the twoopies ontinue to be ordered for all times. Furthermore, note that we an equivalentlyview our proess on f0; 1gZ�f0;1g and that the onditions (1) and (2) just means thatthe whole proess is attrative on that spae. (De�nition 1.4.1 an of ourse be gen-eralizad to f0; 1gS where S is ountable.) The attrativity an be used to show (viamonotoniity) the existene of two extremal stationary distributions �0 and �1 de�nedby �0 = limt!1 Æ0S(t) �1 = limt!1 Æ1S(t);where Æ0 and Æ1 denote the point masses orresponding to the elements � � 0 and � �1 in f0; 1gZ�f0;1g and fS(t)gt�0 denotes the semigroup assoiated to f(�t; �t)gt�0.The main result in this paper is that, if the bakground proess has a unique stationarydistribution and the rates 0, 1 satisfy a ertain positivity ondition, then �0 and �1 arethe only extremal stationary distributions for the proess.To state our result we need a bit more notation. The assumptions on 0 and 1 implythat they together an be desribed by at most 16 different parameters. To desribe thevalues we will use the following notation: i(001) = i(x; �) when �(x � 1) = 0,�(x) = 0 and �(x + 1) = 1 et. De�neC1 = f i(100) + j(110); i(001) + j(011);i(011) + j(110); i(100) + j(001); i = 0; 1; j = 0; 1 gand let C = min (C1) :Moreover, let I denote the set of invariant distributions for f(�t; �t)gt�0 and let Iedenote its extreme points.Before we state our main result, we want to emphasize that the ase with no bak-ground proess has been studied before by Liggett. The proof of our main result fol-lows losely the ideas of his proof. To state his result let (x; �) be a rate funtion for anattrative, translation invariant, nearest-neighbor spin system f�tgt�0 on f0; 1gZandde�ne �i = limt!1 ÆiT (t), i = 0; 1, where Æi is the point mass orresponding to theelement � � i in f0; 1gZand fT (t)gt�0 denotes the semigroup assoiated to f�tgt�0.Moreover, let Je denote the extreme points of the set of stationary distributions forf�tgt�0.



1.4. SUMMARY OF PAPERS 13Theorem 1.4.4 (Liggett). Suppose(3) (x; �) + (x; �x) > 0 whenever �(x � 1) 6= �(x + 1):Then Je = f�0; �1g.For a proof, see [30℄ or [31, p. 145-152℄. In fat, he also proved that if ondition(3) fails, then Je ontains in�nitely many points, see [31, p. 145℄.Theorem 1.4.5. Suppose that the bakground proess is ergodi and C > 0. ThenIe = f�0; �1g.Remarks:(i) From [31, p. 152℄ we get that Theorem 1.4.4 is equivalent to the statement that(3) and (011) + (110) > 0(100) + (001) > 0implies Je = f�0; �1g. By letting  = 0 = 1, it is now lear that Theo-rem 1.4.5 overs Theorem 1.4.4.(ii) The hypotheses in Theorem 1.4.5 are true for the CPREE studied in the �rstpaper. Indeed, if 1 and 2 satisfy (1) and are symmetri under re�etions, i.e.i(100) = i(001)i(110) = i(011); i = 0; 1then C > 0 if and only if 0(001) > 0 and 1(011) > 0.(iii) Note that we are not assuming independene or even nearest-neighbor intera-tion between oordinates in the bakground proess.1.4.3 Paper IIIIn [34℄, various results were proved onerning stohasti domination (de�ned below)for the Ising model with no external �eld on Zd and on the homogeneous binary treeT2 (i.e. the unique in�nite tree where eah site has 3 neighbors). As an example,the following distintion between Zd and T2 was shown: On Zd, the plus and minusstates (to be de�ned later) dominate the same set of produt measures, while on T2that statement fails ompletely exept in the ase when we have a unique phase. Inthis paper we study stohasti domination for the Ising model in the ase of nonzeroexternal �eld and also for the so alled fuzzy Potts model.



14 CHAPTER 1. INTRODUCTIONDe�nition 1.4.2 (Stohasti domination). Given a �nite or ountable set V and prob-ability measures �1, �2 on f�1; 1gV , we say that �2 dominates �1 (written �1 � �2or �2 � �1) if Z f d�1 � Z f d�2for all real-valued, ontinuous and inreasing funtions f on f�1; 1gV .Here, inreasing for a funtion f : f�1; 1gV ! R means that f(�) � f(�0)whenever � � �0. It an be shown that a neessary and suf�ient ondition for twoprobability measures �1, �2 to satisfy �1 � �2 is that there exists a oupling mea-sure � on f�1; 1gV � f�1; 1gV with �rst and seond marginals equal to �1 and �2respetively and �( (�; �) : � � � ) = 1:(For a proof, see for example [31, p 72-74℄.) Given any set S � R and a family ofprobability measures f�sgs2S indexed by S, we will say that the map S 3 s 7! �s isinreasing if �s1 � �s2 whenever s1 < s2.Results for the Ising modelFor the Ising model with parameters J > 0, h 2 R on a general graph of boundeddegree standard monotoniity arguments based on Holley's theorem (see [16℄) an beused to show that there exist two partiular Gibbs states �J;+h and �J;�h , alled the plusand the minus state, whih are extreme with respet to the stohasti ordering in thesense that �J;�h � � � �J;+h for any other � 2 G(J; h):(Here, G(J; h) denotes the set of Gibbs state for the Ising model with parametersJ > 0and h 2 R.) To simplify the notation, we will write �J;+ for �J;+0 and �J;� for�J;�0 . (Of ourse, the plus and minus state are also highly dependent on the graphG, but we suppress that in the notation.) In [34℄ the authors studied, among otherthings, stohasti domination between the plus measures f�J;+gJ>0 in the ase whenG = T2. For example, they showed that the map (0;1) 3 J 7! �J;+ is inreasingwhen J > J and proved the existene of and omputed the smallest J > J suh that�J;+ dominates �J0;+ for all 0 < J 0 � J. (On Zd, the fat that �J1;+ and �J2;+ arenot stohastially ordered when J1 6= J2 gives that suh a J does not even exist in thatase.) Our �rst result deals with the following question: Given J1, J2 > 0, h1 2 R,an we �nd the smallest external �eld ~h = ~h(J1; J2; h1) with the property that �J2;+hdominates �J1;+h1 for all h � ~h? To larify the question a bit more, note that an easyappliation of Holley's theorem tells us that for �xed J > 0, the map R 3 h 7! �J;+his inreasing. Hene, for given J1, J2 and h1 as above the setfh 2 R : �J2;+h � �J1;�h1 g



1.4. SUMMARY OF PAPERS 15is an in�nite interval and we want to �nd the left endpoint of that interval (possibly�1 or +1 at this stage). For a general graph of bounded degree not muh an besaid, but we have the following easy bounds on ~h.Proposition 1.4.6. Consider the Ising model on a general graph G = (V;E) ofbounded degree. De�ne~h = ~h(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;+h1 g:Then h1 �N(J1 + J2) � ~h � h1 +N jJ1 � J2j;where N = supx2V Nx andNx is the number of neighbors of the site x 2 V .We will now onsider the ase whenG = Td, the homogeneous d-ary tree, de�nedas the unique in�nite tree where eah site has exatly d + 1 � 3 neighbors. Theparameter d is �xed in all that we will do and so we suppress that in the notation.To state our results, we need to reall some more fats, all of whih an be foundin [15, p. 247-255℄. For J > 0, de�ne�J (t) = 12 log osh(t+ J)osh(t� J) ; t 2 R:Given J > 0 and h 2 R, there is a one-to-one orrespondene t 7! � between the realsolutions of the equation t = h+ d �J (t)and the ompletely homogeneous Markov hains in G(J; h) (see [15℄ for a de�nition).Let t�(J; h) denote the real numbers whih orrespond to the plus and minus measurerespetively. We will write t�(J) instead of t�(J; 0). Furthermore, leth�(J) = maxt�0 �d�J (t)� t�and denote by t�(J) the t � 0 where the funtion t 7! d�J (t) � t attains its uniquemaximum.Theorem 1.4.7. Consider the Ising model on Td and let J1, J2 > 0, h1 2 R be given.De�ne f�(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;�h1 gg�(J1; J2; h1) = inffh 2 R : �J2;�h � �J1;�h1 gand denote �� = ��(J1; J2; h1) = t�(J1; h1) + jJ1 � J2j. Then the following holds:(4) f�(J1; J2; h1) = (�h�(J2) if t�(J2;�h�(J2)) � �� < t�(J2)�� � d�J2(��) if �� � t�(J2) or �� < t�(J2;�h�(J2))



16 CHAPTER 1. INTRODUCTION(5) g�(J1; J2; h1) = (h�(J2) if �t�(J2) < �� � t+(J2; h�(J2))�� � d�J2(��) if �� � �t�(J2) or �� > t+(J2; h�(J2))Remark: By looking at the formulas (4) and (5), we see that there are funtions  ,� : (0;1)� R 7! R suh thatf�(J1; J2; h1) =  (J2; ��(J1; J2; h1)) andg�(J1; J2; h1) = �(J2; ��(J1; J2; h1)):(Of ourse,  (J2; t) and �(J2; t) are just (4) and (5) with t instead of ��.) It is easy tohek that for �xed J2 > 0, the maps t 7!  (J2; t) and t 7! �(J2; t) are ontinuous.A piture of these funtions when J2 = 2, d = 4 an be seen in Figure 1.2.
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Figure 1.2: The funtions t 7!  (J2; t) and t 7! �(J2; t) in the ase when J2 = 2 and d = 4.Our next proposition deals with ontinuity properties of f� and g� with respet tothe parameters J1, J2 and h1. We will only disuss the funtion f+, the other ones anbe treated in a similar fashion.Proposition 1.4.8. Consider the Ising model on Td and reall the notation from The-orem 1.4.7. Let a = a(J1; J2) = t�(J1;�h�(J1)) + jJ1 � J2jb = b(J1; J2) = t+(J1;�h�(J1)) + jJ1 � J2j:



1.4. SUMMARY OF PAPERS 17a) Given J1, J2 > 0, the map R 3 h1 7! f+(J1; J2; h1) is ontinuous exeptpossibly at �h�(J1) depending on J1 and J2 in the following way:If J1 � J or J1 = J2 then it is ontinuous at �h�(J1).If J1 > J and 0 < J2 � J then it is disontinuous at �h�(J1).If J1, J2 > J, J1 6= J2 then it is disontinuous exept whent�(J2;�h�(J2)) � a < t�(J2) andt�(J2;�h�(J2)) � b � t�(J2):b) Given J2 > 0, h1 2 R, the map (0;1) 3 J1 7! f+(J1; J2; h1) is ontinuousat J1 if 0 < J1 � J or J1 > J and h1 6= �h�(J1). In the ase whenh1 = �h�(J1) it is disontinuous at J1 exept whent�(J2;�h�(J2)) � a < t�(J2) and t�(J2;�h�(J2)) � b � t�(J2):) Given J1 > 0, h1 2 R, the map (0;1) 3 J2 7! f+(J1; J2; h1) is ontinuousfor all J2 > 0.Our last result for the Ising model is about how the measures f�J;+h gJ>0 are or-dered with respet to J for �xed h 2 R.Proposition 1.4.9. Consider the Ising model on Td. The map (0;1) 3 J 7! �J;+h isinreasing in the following ases: a) h � 0 and J � J, b) h < 0 and h�(J) > �h.Results for the fuzzy Potts modelFor an in�nite onneted loally �nite graph G = (V;E) it is possible by a limit-ing proedure to de�ne q + 1 basi examples of Gibbs measures for the Potts model,see [23℄ and the referenes therein. We denote these basi examples by �G;iq;J , i 2f0; : : : ; qg. (The measures f�G;iq;Jgqi=1 are the analogs of the plus and minus states forthe Ising model and �G;0q;J is onstruted by taking a free boundary ondition outside a�nite box and letting the box grow to in�nity.) From them we an de�ne new objetsas follows: Fix i 2 f0; : : : ; qg, suppose r 2 f1; : : : ; q� 1g and pik a �G;iq;J -distributedrandom variableX and for x 2 V de�ne(6) Y (x) = (�1 if X(x) 2 f1; : : : ; rg1 if X(x) 2 fr + 1; : : : ; qg:We write �G;iq;J;r for the indued probability measure on f�1; 1gV and all it the fuzzyPotts measure with parameters q, J and r.In words, the fuzzy Potts model is obtained from the ordinary q-state Potts modelby identifying r states with a fuzzy spin denoted �1 and the remaining q � r states



18 CHAPTER 1. INTRODUCTIONwith another fuzzy spin denoted 1. From this point of view, the fuzzy Potts model isone of the most basi examples of a so alled hidden Markov �eld [27℄. For earlierwork on the fuzzy Potts model, see for example [21�23, 25, 35℄.It is easy to see that when G = Zd or Td in the onstrution above it follows fromsymmetry that �G;iq;J;r = �G;jq;J;r if i; j 2 f1; : : : ; rg or i; j 2 fr + 1; : : : ; qg, i.e. whenthe Potts spins i; j map to the same fuzzy spin. For that reason, we let �G;�q;J;r := �G;1q;J;rand �G;+q;J;r := �G;qq;J;r when G = Zd or Td. (We stik to our earlier notation of �G;0q;J;r.)Given a �nite or ountable set V and p 2 [0; 1℄, let p denote the produt measureon f�1; 1gV with p(� : �(x) = 1) = p for all x 2 V . In [34℄, the authors provedthe following results for the Ising model. (The seond result was originally proved ford = 2 only but it trivially extends to all d � 2.)Proposition 1.4.10 (Liggett, Steif). Fix an integer d � 2 and onsider the Ising modelon Zd with parameters J > 0 and h = 0. Then for any p 2 [0; 1℄, �J;+ � p if andonly if �J;� � p.Proposition 1.4.11 (Liggett, Steif). Let d � 2 be a given integer and onsider theIsing model on Td with paramteters J > 0 and h = 0. Moreover, let �J;f denote theGibbs state obtained by using free boundary onditions. If �J;+ 6= �J;�, then thereexist 0 < p0 < p suh that �J;+ dominates p but �J;f does not dominate p and �J;fdominates p0 but �J;� does not dominate p0 .In words, onZd the plus andminus state dominate the same set of produtmeasureswhile onTd that is not the ase exept when the we have a unique phase. Our �rst resultis a generalization of Proposition 1.4.10 to the fuzzy Potts model.Proposition 1.4.12. Let d � 2 be a given integer and onsider the fuzzy Potts modelon Zd with parameters q � 3, J > 0 and r 2 f1; : : : ; q � 1g. Then for any k; l 2f0;�;+g and p 2 [0; 1℄, �Zd;kq;J;r � p if and only if �Zd;lq;J;r � p.In the same way as for the Ising model, we believe that Proposition 1.4.12 failsompletely on Td exept when we have a unique phase in the Potts model. Our lastresult is in that diretion.Proposition 1.4.13. Let d � 2 be a given integer and onsider the fuzzy Potts modelon Td with parameters q � 3, J > 0 and r 2 f1; : : : ; q� 1g where e2J � q� 2. If theunderlying Gibbs measures for the Potts model satisfy �Td;1q;J 6= �Td;0q;J , then there exists0 < p < 1 suh that �Td;0q;J;r dominates p but �Td;�q;J;r does not dominate p.1.4.4 Paper IVTo model a pair spread the authors in [12℄ suggested the so alled mean revertingOrnstein-Uhlenbek proess. In this paper, we generalize the model to also inlude



1.4. SUMMARY OF PAPERS 19possible jumps. More preisely, we let the differeneU = fUtgt�0 between the assetsbe the unique solution of the stohasti differential equation(7) dUt = ��Ut dt+ � dWt + dC�;'t ; t > 0;where � > 0, � > 0, W = fWtgt�0 is a standard Brownian motion and C�;' =fC�;'t gt�0 is a ompound Poisson proess with jump intensity � > 0 and symmetrijump size distribution '. Moreover, the support of ' is assumed to be ontained in theinterval (�J; J) for some J > 0. (The solution to (7) is usually alled a generalizedOrnstein-Uhlenbek proess or an Ornstein-Uhlenbek type proess.) As disussedin [12℄ there is a large risk assoiated with a pair trading strategy. Indeed, if the marketspread eases to be mean reverting, the investor is exposed to substantial risk. There-fore, in pratie the investor typially hooses in advane a stop-loss level a < 0, whihorresponds to the level of loss above whih the investor will lose the pair trade.Given suh a stop-loss level a < 0, de�ne(8) �a = infft � 0 : Ut � ag;the �rst hitting time of the region (�1; a℄, and the so alled value funtion(9) V (x) = sup� Ex[U�a^� ℄ x 2 R;where the supremum is taken over all stopping times with respet to U . (Here andin the sequel Ex means expeted value when U0 = x.) The major interest here is toharaterize V , and perhaps more importantly, to desribe the stopping time where thesupremum is attained. Sine the drift has the opposite sign as U , we have no reasonto liquidate our position as long as U is negative. On the other hand, if U is positive,then the drift is working against the investor and for large values of U the size of thedrift should overome the possible bene�ts from random variations. Moreover, sinethe jumps are assumed to be symmetri, this indiates that there is a stopping barrierb > 0 with the property that we should keep our position when Ut < b and liquidate assoon as Ut � b.General optimal stopping theory (desribed for example in [37, Ch. 3℄) leads us tobelieve that the value funtion is given by V = u, where (u; b) is the solution to thefree boundary problem GUu(x) = 0; x 2 (a; b);u(x) = x; x 62 (a; b);u0(b) = 1:(10)Here GU is the in�nitesimal generator of U , whih is de�ned on the spae of twieontinuously differentiable funtions f : R ! R with ompat support:(11) GUf(x) = �22 f 00(x)� �xf 0(x) + � Z 1�1(f(x+ y)� f(x))'(y) dy; x 2 R:



20 CHAPTER 1. INTRODUCTIONMoreover, the stopping time where the supremum in (9) is attained should be(12) �b = infft � 0 : Ut � bg:Indeed, our �rst result is a so alled veri�ation theorem.Theorem 1.4.14. Assume that (u; b) is a lassial solution to (10) witha) GUu(x) � 0 for x > b,b) u(x) � x for all x 2 R.Then u(x) = V (x) = Ex[U�a^�b ℄, for x 2 R.In the rest of the paper, we analyze the free boundary problem (10). By transform-ing to homogeneous boundary values and using the symmetry of ', we getLv(x) � Iv(x) = ��x; x 2 (a; b);v(x) = 0; x 62 (a; b);v0(b) = 0;(13)where v(x) = u(x)� x andLv(x) = � 12�2v00(x) + �xv0(x);Iv(x) = � Z 1�1 �v(x+ y)� v(x)�'(y) dy:We have not been able to give a rigorous proof of the existene and uniqueness ofa solution (v; b) of the free boundary value problem (13). We therefore resort to anumerial solution by means of the �nite element method. We begin to prove existeneand uniqueness of solutions of the boundary value problemLv(x) � Iv(x) = ��x; x 2 (a; b);v(x) = 0; x 62 (a; b);(14)and the orresponding �nite element equation. Next, we de�ne the funtionsF (b) = v0(b); FN (b) = v0N (b); b > 0;where vN denotes the �nite element approximation of v when we use a uniform sub-division of the interval [a; b℄ onsisting of N number of points. Note that from themaximum priniple proved in [13℄, there is no restrition to assume that b > 0. For0 � b1 < b2, we prove the error estimatekF � FNkL1(b1;b2) � CN� 12 ; N � N0;(15)where C andN0 are onstants depending on a, �, �, �, b1 and b2.
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2PAPER IABSTRACTBezuidenhout and Grimmett proved that the ritial ontat proess dies out. Here, wegeneralize the result to the so alled ontat proess in a random evolving environment(CPREE), introdued by Erik Broman. This proess is a generalization of the ontatproess where the reovery rate an vary between two values. The rate whih it hoosesis determined by a bakground proess, whih evolves independently at different sites.As for the ontat proess, we an similarly de�ne a ritial value in terms of survivalfor this proess. In this paper we prove that this de�nition is independent of how westart the bakground proess, that �nite and in�nite survival (meaning nontrivialityof the upper invariant measure) are equivalent and �nally that the proess dies out atritiality.Key words and phrases: Contat proess, varying environment.Subjet lassi�ation : 60K35.2.1 Introdution and main resultsThe ontat proess, introdued by Harris [5℄, is a simple model for the spread ofan infetion on a lattie. The state at a ertain time is desribed by a on�guration,� 2 f0; 1gZd, where �(x) = 0 means that the individual at loation x is healthy and�(x) = 1 means it is infeted. The model is suh that infeted people reover at rate1 and healthy people are infeted with a rate proportional to the number of infetedneighbors. In more mathematial language, the ontat proess is a Markov proess,27



28 CHAPTER 2. PAPER If�tgt�0, with state spae f0; 1gZd where the on�guration hanges its state at sitex 2 Zd as follows:� ! �x with rate 1 if �(x) = 1� ! �x with rate �Xy�x �(y) if �(x) = 0;where y � x means that x and y are neighbors,�x(y) = (�(y) if y 6= x1� �(x) if y = xand � is a positive parameter alled the infetion rate. See the standard referenesLiggett [7℄ and Durrett [4℄ for how these informal rates determine a Markov proessand for muh on the ontat proess as well as other interating partile systems. De-note the distribution of this proess when it starts with the on�guration � by P��. Wesay that the proess dies out at � ifPf0g� [ �t = ; some t � 0 ℄ = 1;otherwise it is said to survive at �. Here, the initial on�guration f0g means there isa single infetion at the origin and the on�guration ; means the element in f0; 1gZdonsisting of all zeros. (As usual, we identify f0; 1gZd with subsets of Zd.) Using aneasy monotoniity in �, it is natural to de�ne the ritial value� := inff� : Pf0g� [ �t 6= ; for all t � 0 ℄ > 0 g:A fundamental �rst question onerning this model is whether it survives when � islarge and whether it dies out for small values of �, i.e. whether 0 < � < 1, and itis not very hard to show that this indeed is the ase. Furthermore, sine the ontatproess is attrative (see Liggett [7℄ for this de�nition), we an de�ne�0 := inff� : ��� 6= Æ; g;where ��� is the so alled upper invariantmeasure, de�ned to be the limiting distributionstarting from all 1's. A self-duality equation (see [4℄ or [7℄) easily leads to � = �0.A muh harder question, and one whih had been open for approximately 15 years,is whether the ontat proess survives or dies out at the ritial value. A elebratedtheorem by Bezuidenhout and Grimmett, [1℄, gives us the answer.Theorem 2.1.1 (Bezuidenhout and Grimmett). The ritial ontat proess dies out.For a proof of this, see [1℄ or [9℄.Note that hanging � to 1 and the reovery rate to Æ orresponds to a trivial timesaling and so the proess ould have instead been de�ned in this way. We will denotethe orresponding ritial value by Æ. This should be kept in mind in what follows.



2.1. INTRODUCTION AND MAIN RESULTS 29In 1991, Bramson, Durrett and Shonmann [2℄ introdued the ontat proess ina random environment, in whih the reovery rates are taken to be independently andidentially distributed random variables and then �xed in time. For further resultsonerning this model see for example, Liggett [8℄, Klein [6℄ andNewman andVolhan[11℄. Reently, Broman [3℄ introdued another variant where the environment hangesin time in a simple Markovian way. More preisely, he onsidered the Markov proess,f(Bt; Ct)gt�0 on f0; 1gZd � f0; 1gZd desribed by the following rates at a site x:transition rate(0; 0)! (0; 1) Xy�xC(y)(1; 0)! (1; 1) Xy�xC(y)(0; 1)! (0; 0) Æ0(1; 1)! (1; 0) Æ1(0; 0)! (1; 0) p(0; 1)! (1; 1) p(1; 0)! (0; 0) (1� p)(1; 1)! (0; 1) (1� p)where d � 1, ; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄. In other words, at eah site xindependently, fBt(x)gt�0 is a 2-state Markov hain with in�nitesimal matrix� �p p(1� p) �(1� p)�whih in turn determines the reovery rate of fCt(x)gt�0 in the following way. Foreah t, the reovery rate at loation x is Æ0 or Æ1 depending on whether Bt(x) = 0or Bt(x) = 1. In addition, the infetion rate is always taken to be the number of in-feted neighbors. (Atually, Broman did this on a more general graph, but here we willonly onsider Zd.) Broman referred to fBtgt�0 as the bakground proess and thewhole proess f(Bt; Ct)gt�0 as the ontat proess in a randomly evolving environ-ment (CPREE). Let fC�t gt�0 denote the right marginal where the initial distribution ofthe whole proess is �. In the ase where � = ��� we write fC�;�t gt�0. Furthermore,let Pp denote the measure governing the proess for the parameters p, , Æ0 and Æ1,where , Æ0 and Æ1 are onsidered �xed. Also, denote the produtmeasure with densityq 2 [0; 1℄ by �q. Broman de�ned the ritial valuep := inf np : Pp[C�p;f0gt 6= ; 8t > 0 ℄ > 0o(p is taken to be 1 if no p satis�es this) and proved that if Æ1 < Æ < Æ0 and  >max(2d; Æ � Æ1), then p 2 (0; 1). At the end of his paper he asked whether theritial value is affeted if we vary the initial distribution of the bakground proess.



30 CHAPTER 2. PAPER IOur �rst result answers this question. Given ; Æ0; Æ1 > 0 with Æ1 � Æ0, q 2 [0; 1℄ andA � Zd with jAj <1, de�nep(q; A) := inf np : Pp[C�q ;At 6= ; 8t > 0 ℄ > 0o :Theorem 2.1.2. Given A,A0 � Zd with jAj, jA0j <1 and p, q, q0 2 [0; 1℄,(1) Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 () Pp[C�q0 ;A0t 6= ; 8t > 0 ℄ > 0:In partiular, p(q; A) is independent of both q and A.Wewill let p denote this ommon value. (Reall, p of ourse depends on , Æ0 andÆ1.) Also, if Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 holds (whih we now know is independentof q and A), we say that fCtg survives at p; otherwise it is said to die out at p.Later on, we will see that the proess is attrative. (See Proposition 2.2.1.) Thisyields that the limiting distribution starting from all 1's exists and we will denote thelimit by ��p. Also, we will refer to this measure as the upper invariant measure. Thismeasure gives us another natural way to de�ne a ritial value:p0 := inff p : ��p 6= �p � Æ; g:For general attrative systems it might or might not be the ase that these de�nitionsoinide. However, for the ordinary ontat proess, this is the ase (due to its self-duality) and our next result shows that this is also true in our situation.Theorem 2.1.3. fCtg survives at p if and only if ��p 6= �p � Æ;. In partiular p = p0.Our �nal result is a generalization of Theorem 2.1.1.Theorem 2.1.4. If fCtg survives at p > 0, then there exists Æ > 0 so that it survivesat p � Æ. In partiular, if p 2 (0; 1℄, then the ritial ontat proess in a randomlyevolving environment dies out.The rest of the paper is organized as follows. In Setion 2, we provide some pre-liminaries, in Setion 3, we prove Theorems 2.1.2 and 2.1.3 and in Setion 4, we proveTheorem 2.1.4.2.2 Some preliminariesIn this setion we will present the basi onstrution of the CPREE via a graphialrepresentation that is suitable for our situation. We will also prove the elementaryfat that the CPREE is an attrative proess. However, we will start off with somenotation and basi de�nitions. When the initial distribution of the proess is �, we willdenote the distribution at time t by �Sp(t), suppressing , Æ0 and Æ1 in the notation.



2.2. SOME PRELIMINARIES 31(Of ourse, � is a probability measure on f0; 1gZd � f0; 1gZd.) When � is a produtmeasure, � = ���, we will denote the proess by f(B�t ; C�;�t )gt�0. In the ase where� = Æ� and � = Æ� for some �, � 2 f0; 1gZd, we write f(B�t ; C�;�t )gt�0. To simplifynotation, we freely interhange between talking about elements in f0; 1gZd and subsetsof Zd. For �; �0 2 f0; 1gZd we write � � �0 if �(x) � �0(x) 8x 2 Zd. Furthermore,for (�; �); (�0; �0) 2 f0; 1gZd�f0; 1gZd we write (�; �) � (�0; �0) if both � � �0 and� � �0. These relations indue the onept of inreasing funtion in the usual way.De�nition 2.2.1. We say that a funtion f on f0; 1gZd (or f0; 1gZd � f0; 1gZd) isinreasing if f(�) � f(�0) (f(�; �) � f(�0; �0)) whenever � � �0 ((�; �) � (�0; �0)).In our analysis we make extensive use of the onept of stohasti domination.De�nition 2.2.2. Given two probability measures �1 and �2 on f0; 1gZd, we say that�1 is stohastially dominated by �2 if �1(f) � �2(f) 8 inreasing ontinuous fun-tions f and we denote this by �1 � �2. If �i is the distribution ofXi, i = 1; 2, we alsowriteX1 �D X2.It is well known (see for example [7℄) that this is equivalent to the existene ofrandom variablesX1; X2 on a ommon probability spae suh thatX1 � �1,X2 � �2and X1 � X2 a.s. (The � here means distributed aording to.) Also, sine we anidentify f0; 1gZd�f0; 1gZd with f0; 1gZd�f0;1g we have a similar result for measureson f0; 1gZd � f0; 1gZd. (Of ourse, stohasti domination makes sense on any spaeof the form f0; 1gS where S is ountable.)Now, we turn to the graphial representation from whih our proess will be de-�ned. Let ; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄ be given parameters. Let fejgdj=1denote the standard basis on Zd, i.e. for i, j 2 f 1; : : : ; d gej(i) = (1 if i = j0 if i 6= j:De�ne the following stohasti elements on a ommon probability spae in suh a waythat they are independent:� M b;0!1 = fM b;0!1t gt�0, a proess with state spae NZd where eah marginalindependently evolves as a Poisson proess with intensity p. (This proess willorrespond to the 0 to 1 �ips in the bakground proess, see below.)� M b;1!0 = fM b;1!0t gt�0, a proess with state spae NZd where eah marginalindependently evolves as a Poisson proess with intensity (1�p). (This proesswill orrespond to the 1 to 0 �ips in the bakground proess, see below.)� NÆ1 = fN Æ1t gt�0, a proess with state spae NZd where eah marginal indepen-dently evolves as a Poisson proess with intensity Æ1.



32 CHAPTER 2. PAPER I� NÆ0�Æ1 = fN Æ0�Æ1t gt�0, a proess with state spae NZd where eah marginalindependently evolves as a Poisson proess with intensity Æ0 � Æ1.� ~N j = f ~N jt gt�0, j 2 f�e1; : : : ;�ed g, independent proesses with state spaeNZd where eah marginal independently evolves as a Poisson proess with in-tensity 1. (We think of the points in ~N j(x) as being arrows from x to x+ ej andwill orrespond to the potential spread of infetion from x to x+ ej .)For s � 0 and � 2 f0; 1gZd, we will begin to de�ne a proess B�;s = fB�;st gt�swhere for eah x 2 Zd, B�;s(x) is a funtion of the arrivals of M b;0!1(x) andM b;1!0(x) in [s;1). Assume for example that �(x) = 0; the ase when �(x) = 1an be handled in a similar fashion. We then de�neB�;st (x) = 0; s � t < T1B�;st (x) = 1; T1 � t < T2B�;st (x) = 0; T2 � t < T3B�;st (x) = 1; T3 � t < T4...where T1 is the �rst arrival time of M b;0!1(x) after s, T2 is the �rst arrival time ofM b;1!0(x) after T1, T3 is the �rst arrival time ofM b;0!1(x) after T2, T4 is the �rstarrival time ofM b;1!0(x) after T3 and so forth. In words, the points inM b;0!1 arethe times at whih the bakground proess swithes to 1 (had it been in state 0) andsimilarily forM b;1!0. Note importantly, we have all the proesses B�;s, as � and svary, de�ned on the same probability spae.Given B�;s,NÆ1 andNÆ0�Æ1 , de�neX�;s = fX�;st gt�s, a point proess on Zd�[s;1), in the following way:X�;s = f (x; t) 2 Zd� [s;1) : (x; t) 2 NÆ1 or(x; t) 2 N Æ0�Æ1 and B�;st (x) = 0 gIn words, for eah site x, we hoose points in [s;1) from N Æ1(x) when the bak-ground proess is in state 1 and from the union of NÆ1(x) and N Æ0�Æ1(x) when thebakground proess is in state 0.De�nition 2.2.3. Given spae-time points (x; s) and (y; t) with t > s and � 2f0; 1gZd, we say that there is a �-ative path from (x; s) to (y; t) if there is a sequeneof times s = s0 < s1 < : : : < sm < sm+1 = t and spae points x = x0, x1; : : : ;xm = y so that for i = 1; : : : ;m, there is an arrow from xi�1 to xi at time si and thereare no points inX�;s on the vertial segments fxig � (si; si+1), i = 0; : : : ;m.Remark: Note importantly, that both B�;s and the existene of a �-ative path from(x; s) to (y; t) are measurable with respet to the Poisson proesses after time s andhene are independent of everything in the Poisson proesses up to that time. The



2.3. PROOFS OF THEOREMS 2.1.2 AND 2.1.3 33reason that these objets are introdued for s > 0 is that they are useful objets towhih the original proess an be usefully ompared as will be done in the proof ofTheorem 2.1.4.To de�ne the proess f(B�t ; C�;�t )gt�0 for a given initial on�guration (�; �) 2f0; 1gZd � f0; 1gZd, we let B�t = B�;0t andC�;�t = f y 2 Zd : for some x 2 Zd with �(x) = 1,there is a �-ative path from (x; 0) to (y; t) g:This is our formal de�nition of the CPREE. Note as � and � vary, we have all theproesses f(B�t ; C�;�t )gt�0 de�ned on the same probability spae.Having de�ned f(Bt; Ct)gt�0 with initial on�guration (�; �), it is a simple matterto extend the de�nition to an arbitrary initial distribution �. Just add to our probabilityspae, independently of all the randomvariables already de�ned, two randomvariableson f0; 1gZd with joint distribution �. We will denote the probabilitymeasure governingall these variables by Pp, suppressing , Æ0 and Æ1 in the notation.The �rst easy fat about the CPREE we will show is that it is an attrative proess.Proposition 2.2.1. (Bt; Ct) satis�es the attrativity ondition:(2) � � � =) �Sp(t) � �Sp(t) 8t > 0:Proof. It is standard that (2) is equivalent to (Æ� � Æ�)Sp(t) being stohastially in-reasing in (�; �) for all t � 0. However, it is immediate from the onstrution that if�1 � �2 and �1 � �2, then for all t � 0B�1t � B�2tand C�1;�1t � C�2;�2t :This gives the stohasti domination (with an expliit oupling).2.3 Proofs of Theorems 2.1.2 and 2.1.3Reall, given , Æ0, Æ1 > 0 with Æ1 � Æ0 and q 2 [0; 1℄ we have de�nedp(q; A) := inf np : Pp[C�q;At 6= ; 8t > 0 ℄ > 0owhere A � Zd, jAj <1, and �q denotes produt measure with density q.Proof of Theorem 2.1.2. We will prove the statements:� For all A � Zd with jAj <1 and p, q 2 [0; 1℄,(3) Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 () Pp[C�q ;f0gt 6= ; 8t > 0 ℄ > 0:



34 CHAPTER 2. PAPER I� For all p 2 [0; 1℄,(4) Pp[C;;f0gt 6= ; 8t > 0 ℄ > 0 () Pp[CZd;f0gt 6= ; 8t > 0 ℄ > 0:Combining these two will yield the statement in Theorem 2.1.2. For (3), the left im-pliation follows from translation invariane and the right impliation follows easilyfrom the additivity property of the proess meaningC�;A[Bt = C�;At [ C�;Bt 8A;B � Zd; 8� 2 f0; 1gZd:To prove (4), observe that the right impliation is immediate from Proposition 2.2.1and so we assume Pp[CZd;f0gt 6= ; 8t > 0 ℄ > 0. De�ne't(x) = 1fB;t (x)=BZdt (x)g x 2 Zd; t � 0:(Reall this is well de�ned sine fB;t gt�0 and fBZdt gt�0 are de�ned on the sameprobability spae.) Note that 't has the property that for eah site independently, afteran exponentially distributed time with mean 1 , the proess �ips to one and stays there.Therefore we have Pp['t(x) = 1 ℄ = 1 � e�t. For A � Zd, de�ne f ~CAt gt�0 fromthe graphial representation in the same way as fC � ;At gt�0 exept that all reoveriesare ignored. This is what is usually alled the Rihardson model, see Durrett [4℄.Lemma 2.3.1. Pp[ ~Cf0gt � 't ;8t � n ℄! 1 as n!1.Proof. Let In = f�n2; : : : ; n2gd and for x 2 Zd de�net(x) = inff t : x 2 ~Cf0gt g:From [4, p. 16℄, we get that there are onstants 1,2,3 2 (0;1) suh thatPp[ t(x) < 1jxj1 ℄ � 2e�3jxj1 ;where j � j1 is the L1 norm. This easily gives us the estimatePp[ ~Cf0g1(n+1) * In ℄ � P (n)e�3n;where P (n) is a polynomial in n, and from the Borel Cantelli lemma we an onlude(5) Pp[ 9N � 1 suh that ~Cf0g1(n+1) � In ;8n � N ℄ = 1:Furthermore, independene givesPp[ In � '1n ℄ = (1� e�1n)(2n2+1)d :



2.3. PROOFS OF THEOREMS 2.1.2 AND 2.1.3 35and sine 1Xn=1 1� (1� e�1n)(2n2+1)d <1;the Borel Cantelli lemma again yields(6) Pp[ 9N � 1 suh that In � '1n ;8n � N ℄ = 1:Combining (5) and (6), we obtainPp[ 9N � 1 suh that ~Cf0gt � 't ;8t � N ℄ = 1;as desired.Sine CZd;f0gt � ~Cf0gt 8t � 0, the laim tells us that, with probability one, aftersome time and thereafter, the two bakground proesses in�uene C;;f0gt and CZd;f0gtin exatly the same way. Next, ountable additivity gives us that for some n � 1 wehave Pp[ ~Cf0gt � 't 8t � n ; CZd;f0gt 6= ; 8t > 0 ℄ > 0and then that for somem (depending on n)Pp[ ~Cf0gt � 't 8t � n ; ~Cf0gt � [�m;m℄d 8t 2 [0; n℄; CZd;f0gt 6= ; 8t > 0 ℄ > 0:Denote the previous event by A and de�ne the random setU = f (x; t) 2 [�m;m℄d � [0; n℄ : BZdt (x) = 1 gand let B = f no arrivals in NÆ0�Æ1 duringU g:It is lear that A \ B � fC;;f0gt 6= ; 8t > 0 gand so it remains to show that Pp[A \B ℄ > 0:However, if we ondition on A and U , then we will not yield any information aboutthe NÆ0�Æ1 proess on U and soPp[B jA;U ℄ = e�(Æ0�Æ1)L(U)where L(U) is the �length� of U . This easily givesPp[BjA ℄ > 0and the proof is omplete. 2



36 CHAPTER 2. PAPER IRemark: The same argument shows that strong survival does not depend on the initialdistribution of the bakground proess in the sense thatPp[ 0 2 C;;f0gt i.o. ℄ > 0 () Pp[ 0 2 CZd;f0gt i.o. ℄ > 0:This answers another question in [3℄.Reall the de�nition of p0 from the introdution:p0 := inff p : ��p 6= �p � Æ; g:Here ��p = limt!1(ÆZd � ÆZd)Sp(t). (The limit exists due to Proposition 2.2.1.) Toprove Theorem 2.1.3 we will use the next Lemma.Lemma 2.3.2. Given p; q 2 (0; 1) with q � p we havelimt!1(�q � ÆZd)Sp(t) = ��p:Proof. By simple stohasti omparison, it is enough to onsider the ase when q = p.We begin to establish the existene of that limit. Sine �p is the stationary distributionfor the bakground proess and the right marginal always oupies less than or equalto the whole f0; 1gZd, we have(�p � ÆZd)Sp(t) � �p � ÆZd 8t > 0:Using attrativeness and the Markov property yields(�p � ÆZd)Sp(s+ t) � (�p � ÆZd)Sp(s) 8s; t > 0;and so the existene of the limit is lear frommonotoniity. Denote this limit by �0p andobserve it is neessarily stationary. It is lear that �0p � ��p so we are done if ��p � �0p.For this, note that attrativeness again gives that the map� 7! E�[f(Æt; �t)℄is inreasing whenever f is ontinuous and inreasing. Using this, and the fat that anystationary distribution neessarily has as �rst marginal �p, we an do the followingalulation for any stationary distribution � of (Bt; Ct) and f : f0; 1gZd�f0; 1gZd !R ontinuous and inreasing:Z f d� = E�[f(Æt; �t)℄ � E�p�ÆZd[f(Æt; �t)℄! Z f d�0p as t!1:Hene, � � �0p and we are done.Proof of Theorem 2.1.3. When the initial distribution of the bakground proess is �p,it is easy to see from the graphial representation that Ct is self-dual in the sense that(7) Pp[C�p;At \B 6= ; ℄ = Pp[C�p;Bt \ A 6= ; ℄ 8t > 0; A;B � Zd:



2.4. PROOF OF THEOREM 2.1.4 37If we takeA = f0g,B = Zd in this equation and let t!1 using the previous lemma,we an easily onlude thatPp[C�p;f0gt 6= ; 8t > 0 ℄ > 0 () ��p 6= �p � Æ;and we are done. 2Remark: There is a weaker duality equation when the initial distribution of the bak-ground proess differs from �p, but this is less natural and seems less useful.2.4 Proof of Theorem 2.1.4We now turn to the proof of Theorem 2.1.4, that the ritial CPREE dies out. OneLemma 2.4.1 below is established, the rest follows similar lines as in the proofs ofTheorem 2.1.1 arried out in [1℄ and [9℄. Ourmain goal is to prove that if fCtg survivesat p > 0, then there is a number Æ > 0 and integers n; a suh that(8) Pp�Æ [C;;[�n;n℄dt survives in Z� [�5a; 5a℄d�1 � [0;1) ℄ > 0:If p 2 (0; 1℄, this will immediately implyPp [C;;f0gt 6= ; 8t � 0 ℄ = 0:To ahieve (8), we begin by showing that if the CPREE survives, then it is very likelyto have survival if the initial on�guration is suf�iently large even if we start with allzeros in the bakground proess.Lemma 2.4.1. If fCtg survives at p > 0 thenlimn!1Pp[C;;[�n;n℄dt 6= ; 8t > 0 ℄ = 1:For the proof of this we use the following result.Lemma 2.4.2. For all n � 1, we havelim�!0Pp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄ = Pp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄:Proof. Fix n � 1. The probability on the left inreases when � dereases and so thelimit exists and is learly at most the right hand side. For the other inequality let Æ > 0and de�ne '�t(x) = 1fB�p��t (x)=B�pt (x)g x 2 Zd; t � 0;where �p�� and �p are oupled in the usual monotone way. Reall the de�nition of 'tfrom the proof of Theorem 2.1.2 and observe that't � '�t 8t > 0; 8� > 0:



38 CHAPTER 2. PAPER IAlso, an easy modi�ation of the proof of Lemma 2.3.1 yieldslimT!1Pp[ ~C [�n;n℄dt � 't ;8t � T ℄ = 1:(Reall that ~CAt is the CPREE starting from the on�guration A but with no reover-ies.) This allows us to hoose T > 0 suh thatPp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄� Pp[ ~C [�n;n℄dt � 't ;8t � T; C�p;[�n;n℄dt 6= ; 8t > 0 ℄ + Æ:Given this T , hoosem � 1 suh thatPp[ ~C [�n;n℄dt � [�m;m℄d 8 0 � t � T ℄ > 1� Æand for thatm hoose �0 > 0 suh thatPp[B�p��0 = B�p0 on [�m;m℄d ℄ > 1� Æ; 8 0 < � � �0:Now sine f ~C [�n;n℄dt � 't ;8t � T; ~C [�n;n℄dt � [�m;m℄d 8 0 � t � T;B�p��0 = B�p0 on [�m;m℄d; C�p;[�n;n℄dt 6= ; 8t > 0 g� fC�p��;[�n;n℄dt 6= ; 8t > 0 g;we get Pp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄� Pp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄ + 3Æ;whenever 0 < � � �0 and so the proof is omplete.Proof of Lemma 2.4.1. Let Æ > 0. From the self-duality equation (7), Lemma 2.3.2and the easily veri�ed fat that the seond marginal of ��p gives zero measure to ;, weeasily get that there is an n � 1 suh thatPp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄ > 1� Æ:The previous lemma makes it possible to now hoose an � > 0 suh thatPp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄ > 1� Æ:Denote the semigroup operator assoiated with the bakground proess by T (t) andnote that for � above there is a time s suh thatÆ;T (s) � �p��:



2.4. PROOF OF THEOREM 2.1.4 39Now, let Bm;n denote the box in Zd with sidelengthmn and writeBm;n = md[i=1Ai;where eah Ai is a translation of the box with sidelength n and with the Ai's disjoint.Then, de�neAsm;n = fNo arrivals inNÆ1 orNÆ0�Æ1 up to time s in some Ai g:Given n and s, we an hoosem so large thatPp[Asm;n ℄ > 1� Æ:The proof is �nished by noting that monotoniity easily implies thatPp[C;;[�mn;mn℄dt 6= ; 8t > 0 jAsm;n ℄ � Pp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄;using the fat that Asm;n is independent of the bakground proess. 2Remark: A slightly more abstrat but onsiderably shorter proof of Lemma 2.4.1 isfound by Olle Häggström after submission of the paper and is as follows. For x 2 Zd,let Y ;x be the indiator variable for survival when the proess starts with only x infetedand all zeros in the bakground proess. By translation invariane, Pp[Y ;x = 1 ℄ isindependent of x and by Theorem 2.1.2 we know that it is positive. It follows fromthe graphial representation that the proess fY ;x gx2Zd is ergodi and hene a.s. thereis some x for whih Y ;x = 1. Moreover, the event in Lemma 2.4.1 ours as soon assome site in [�n; n℄d has Y ;x = 1 and so the lemma follows at one.We have now set up the neessary ground work for our model in order to be ableto follow the steps in [9℄. For L � 1 and A � (�L;L)d, let LC;;At be the trunatedproess, using only ;-ative paths (reall De�nition 2.2.3) whih stay in (�L;L)d �[0; t℄.Lemma 2.4.3. For all �nite A � Zd andN � 1, we havelimt!1 limL!1Pp[ jLC;;At j � N ℄ = Pp[C;;At 6= ; 8t > 0 ℄Proof. Fix A andN . Sine C;;At = 1[L=1 LC;;At ;we easily get that for �xed tPp[ jC;;At j � N ℄ = limL!1Pp[ jLC;;At j � N ℄;



40 CHAPTER 2. PAPER Iand so we are done iflimt!1Pp[ jC;;At j � N ℄ = Pp[C;;At 6= ; 8t > 0 ℄:For this, it is enough to hek two things:limt!1Pp[ jC;;At j � N;C;;As = ; some s > 0 ℄ = 0limt!1Pp[ jC;;At j � N;C;;As 6= ; 8s > 0 ℄ = Pp[C;;At 6= ; 8t > 0 ℄The �rst equality follows easily by applying Fatou's Lemma. The seond one followsif limt!1 jC;;At j =1 a.s on fC;;At 6= ; 8t > 0 g:Assume the ontrary, i.e.(9) Pp[ jC;;At j does not onverges to in�nity, C;;As 6= ; 8s > 0 ℄ > 0:From the martingale onvergene theorem we get that(10) Pp[C;;At 6= ; 8t � s j Fs ℄! 1fC;;At 6=; 8t>0 g as s!1;where Fs is the �-algebra generated by the whole proess up to time s. Equation (9)and (10) implies that with positive probability the following an happen:lims!1P(�s;Cs)[Ct 6= ; 8t > 0 ℄ = 19M > 0; f�igi�1 3 �1 < �2 < : : : < �i !1 ; jC�i j �M 8i:However, using elementary fats about exponentially distributed variables, we getP(��i ;C�i )[Ct = ; some t > 0 ℄� P(Zd;C�i )[Ct = ; some t > 0 ℄ � � Æ1Æ0 +  + 2d�M 8i;whih yields a ontradition and the proof is omplete.The next step is to take are of the sides of the spae-time box. De�neS(L; T ) = f (x; t) 2 Zd� [0; T ℄ : jxj1 = L g:Fix A � (�L;L)d and look at all points on S(L; T ) that an be reahed from A byan ;-ative path using vertial segments where the spae oordinate is in (�L;L)d andinfetion arrows from (x; �) to (y; �) with x 2 (�L;L)d. De�ne NA; (L; T ) to be themaximum number of suh points with the following property: If (x; t1) and (x; t2) areany two points with the same spatial oordinate, then jt1 � t2j � 1.



2.4. PROOF OF THEOREM 2.1.4 41Lemma 2.4.4. Assume Lj % 1 and Tj % 1. Then for any M;N � 1 and �niteA � Zd, we havelim supj!1 Pp[NA; (Lj ; Tj) �M ℄Pp[ jLjC;;ATj j � N ℄ � Pp[C;;At = ; some t > 0 ℄:Proof. The proof follows the steps of Proposition 2.8 in [9℄ with some adjustments.Let FL;T denote the �-algebra generated byM b;0!1,M b;1!0, N Æ1 , NÆ0�Æ1 and ~N j ,j 2 f�e1; : : : ;�ed g in (�L;L)d � [0; T ℄. We �rst argue thatPp[C;;At = ; some t > 0 j FL;T ℄ � � e�4dÆ1Æ0 +  + 2d�ka.s on fNA; (L; T ) + jLC;;AT j � k g(11)For x 2 LC;;AT there is a onditional probability of at leastÆ1Æ0 +  + 2dthat x beomes healthy before it infets any of its neighbors. So, if jLC;;AT j = m, thenthe onditional probability that no x 2 LC;;AT ontributes to survival is at least� Æ1Æ0 +  + 2d�m :For the sides of the box, onsider a time line fxg � [0; T ℄, where jxj1 = L and let(x; t1); : : : ; (x; tj)be a maximal set of points that an be reahed from A by an ;-ative path with theproperty that eah pair is separated by at least distane 1. LetI = j[k=1fxg � (tk � 1; tk + 1)and note that the probability that there are no arrows oming out from I is at least e�4dj .Furthermore, for eah interval of length y in the omplement of I in fxg� [0;1), theprobability of the event that if there is at least one arrival of the Poisson proesses inthe interval with the �rst one oming fromNÆ1 or there is no arrivals at all is�1� e�(Æ0++2d)y� Æ1Æ0 +  + 2d + e�(Æ0++2d)y � Æ1Æ0 +  + 2d:By independene, we get that the onditional probability that none of the points in thetime line fxg � [0; T ℄ ontributes to survival is at least� e�4dÆ1Æ0 +  + 2d�j :



42 CHAPTER 2. PAPER INow, onsidering the ontribution of different x's yieldsPp[C;;At = ; some t > 0 j FL;T ℄� � Æ1Æ0 +  + 2d�jLC;;AT j� e�4dÆ1Æ0 +  + 2d�NA(L;T )whih implies (11). For the rest of the proof, one proeeds exatly as in the seondhalf of Proposition 2.8 in [9, p. 48-49℄. The needed inequalityPp[NA; (L; T ) �M; jLC;;AT j � N ℄� Pp[NA; (L; T ) �M ℄Pp[ jLC;;AT j � N ℄is justi�ed by the fat that NA; (L; T ) and jLC;;AT j are inreasing funtions of ~N j ,j 2 f�e1; : : : ;�ed g andM b;0!1, and dereasing inNÆ1 ,NÆ0�Æ1 andM b;1!0. Thisompletes the proof.We are soon ready to state and prove the so alled �nite spae-time ondition.However, we �rst need two more propositions. We just state them here sine the proofsare exatly the same as for Propositions 2.6 and 2.11, pages 46-47 and 49 in [9℄.Proposition 2.4.5. For every n;N � 1 and L � n, we havePp[ jLC;;[�n;n℄dt \ [0; L)dj � N ℄ � �Pp[ jLC;;[�n;n℄dt j � 2dN ℄�2�dLet S+(L; T ) = f (x; t) 2 Zd� [0; T ℄ : x1 = L ; xi � 0; 2 � i � d gand de�ne NA;;+(L; T ) in a similar manner as NA; (L; T ) using S+(L; T ) instead ofS(L; T ).Proposition 2.4.6. For any L;M � 1, T > 0 and n < L,�Pp[N [�n;n℄d;;+ (L; T ) �M ℄�d2d � Pp[N [�n;n℄d; (L; T ) �Md2d ℄The proof of these propositions requires ertain random variables to be positivelyorrelated. For Proposition 2.4.5, let X1 = jLC [�n;n℄dt \ [0; L)dj and X2; : : : ; X2dbe de�ned similarly with respet to the other orthants in Rd . The needed positiveorrelation of fXig2di=1 is justi�ed in the same way as in the end of the proof of Lemma2.4.4. Similarly justi�ation an be made in the proof of Proposition 2.4.6.Theorem 2.4.7. If fCtg survives at p > 0, then it satis�es the following ondition:For all � > 0 there exist n;L � 1 and T > 0 suh thatPp[ L+nC;;[�n;n℄dT+1 � x+ [�n; n℄d some x 2 [0; L)d ℄ > 1� �(12) Pp[ L+2n+1C;;[�n;n℄dt+1 � x+ [�n; n℄d some 0 � t < T;(13) some x 2 fL+ ng � [0; L)d�1 ℄ > 1� �



2.4. PROOF OF THEOREM 2.1.4 43Proof. Again, we will follow the steps in [9℄ with some modi�ations. Let 0 < Æ < 1.We will see at the end how to hoose Æ for a given � > 0. Lemma 2.4.1 gives us an nsuh that(14) Pp[C;;[�n;n℄dt 6= ; 8t > 0 ℄ > 1� Æ2:Given n, hooseN 0 suh that�1�Pp[ n+1C;;f0g1 � [�n; n℄d ℄�N 0 < Æand then hooseN so large suh that ifA � Zdwith jAj � N , then there existsB � Awith jBj � N 0 and jx� yj1 � 2n+ 1 8x; y 2 B; x 6= y:Let BA be a �xed (deterministi) suh hoie for eah A.In a similar fashion, hooseM 0 suh that(15) (1� a)M 0 < Æ;where a = Pp[There are ;-ative paths from the origin to everypoint in [0; 2n℄� [�n; n℄d�1 � f1g thatstays in [0; 2n℄� [�n; n℄d�1 � [0; 1℄ ℄Then hooseM so large suh that if A � Zd� [0;1) is a �nite set with jAj � M ,where the distane in time between points with the same spatial oordinate is at least1, then there exists B � A with jBj � M 0 and with the property that for eah pair ofpoints (x; s); (y; t) 2 B we have either(16) x = y; js� tj � 1 or jx� yj1 � 2n+ 1:Let BA be a �xed (deterministi) suh hoie for eah A.From Lemma 2.4.3, (14), the inequality 1 � Æ < 1 � Æ2 and the fats that for�xed L, n and N , the map t 7! Pp[ jLC;;[�n;n℄dt j > 2dN ℄ is ontinuous and thatlimt!1Pp[ jLC;;[�n;n℄dt j > 2dN ℄ = 0, we an onlude that there exist Lj % 1and Tj %1 so thatPp[ jLjC;;[�n;n℄dTj j > 2dN ℄ = 1� Æ 8 j � 1:Furthermore, Lemma 2.4.4 with M and N replaed by Md2d and 2dN respetivelyand with A = [�n; n℄d, we get that for some jPp[N [�n;n℄d; (Lj ; Tj) > Md2d ℄ > 1� Æ:



44 CHAPTER 2. PAPER ILet L = Lj and T = Tj for that spei� j and apply Propositions 2.4.5 and 2.4.6 toget Pp[ jLC;;[�n;n℄dT \ [0; L)dj > N ℄ > 1� Æ2�d(17) Pp[N [�n;n℄d;;+ (L; T ) > M ℄ > 1� Æ2�d=d:(18)To obtain (12), de�ne forB � Zd and T > 0V TB = f 9 (x; t) 2 B � fTg suh that there are ;-ative paths from(x; t) to every (y; s) 2 �x+ [�n; n℄d�� fT + 1gthat stays in �x+ [�n; n℄d�� (T; T + 1℄ g;and note that[A�[0;L)df jLC;;[�n;n℄dT \ [0; L)dj > N; LC;;[�n;n℄dT \ [0; L)d = A; V TBA g� f L+nC;;[�n;n℄dT+1 � x+ [�n; n℄d some x 2 [0; L)d g:(19)Let FT be the �-algebra generated byM b;0!1, M b;1!0, NÆ1 , N Æ0�Æ1 , and ~N j , j 2f�e1; : : : ;�ed g up to time T and note that for givenA � [0; L)d with jAj � N , V TBAis independent of FT soPp[V TBA j FT ℄ = Pp[V TBA ℄� 1� �1�Pp[ n+1C;;f0g1 � [�n; n℄d ℄�N 0 > 1� Æ:By summing up overA � [0; L)d and using (17) and (19), we getPp[ L+nC;;[�n;n℄dT+1 � x+ [�n; n℄d some x 2 [0; L)d ℄> (1� Æ)(1� Æ2�d):This yields (12) when Æ is hosen appropriately.To obtain (13), de�ne for eah spae-time point (xi; ti) we ount in N [�n;n℄d;;+ (L; T )a variable ~Yi whih is 1 if (xi; ti) infets all points in�xi + [0; 2n℄� [�n; n℄d�1�� fti + 1gusing ;-ative paths in�xi + [0; 2n℄� [�n; n℄d�1�� (ti; ti + 1℄only and 0 otherwise. If N [�n;n℄d;;+ (L; T ) > M , we an hooseM 0 spae-time pointssatisfying (16). Denote the orresponding variables by Yi, i = 1; : : : ;M 0. Let FL;T be



2.4. PROOF OF THEOREM 2.1.4 45as in the proof of Lemma 2.4.4 and note that onditioned onFL;T restrited to the eventfN [�n;n℄d;;+ (L; T ) > M g, theM 0 spae-time points are spei�ed and Y1; Y2; : : : ; YM 0are independent with the (onditional) probability of Yi = 1 equal to a. This impliesthat Pp[Yi = 1 some i = 1; : : : ;M 0 j FL;T ℄ = 1� (1� a)M 0on fN [�n;n℄d;;+ (L; T ) > M g;whih together with (15) and (18) yieldsPp[ L+2n+1C;;[�n;n℄dt+1 � x+ [�n; n℄d some 0 � t < T;some x 2 fL+ ng � [0; L)d�1 ℄> (1� Æ)(1� Æ2�d=d):This gives (13) when Æ is hosen appropriately.The next part of the program is to arry out a omparisonwith oriented perolation.For this, we start to ombine (12) and (13) into one.Lemma 2.4.8. If fCtg survives at p > 0, then it satis�es the following ondition: Forall � > 0 there exist n;L � 1 and T > 0 suh thatPp[ 2L+3nC;;[�n;n℄dt � x+ [�n; n℄d some T � t < 2T;some x 2 [L+ n; 2L+ n℄� [0; 2L)d�1 ℄ > 1� �(20)Proof. We follow Proposition 2.20 in [9℄. Let (x; �) be the �rst (in time) spae-timepoint with the property appearing in the probability (13), where x is hoosen aordingto some deterministi ordering of Zd and restart (Bt; Ct) at time � + 1. From (12),(13) and the fat that these probabilities are inreasing in the bakground proess, itfollows thatPp[ 2L+3nC;;[�n;n℄dt � x+ [�n; n℄d some T + 1 � t < 2T + 2;some x 2 [L+ n; 2L+ n℄� [0; 2L)d�1 ℄ > (1� �)2:Replae T + 1 with T and the proof is omplete.Now we are ready for the fundamental step in the onstrution towards the om-parison.Lemma 2.4.9. Assume fCtg survives at p > 0 and �x � > 0. Then there exist Æ > 0,n; a; b with n < a suh that for all (x; t) 2 [�a; a℄d � [0; b℄Pp�Æ [ 9 (y; s) 2 [a; 3a℄� [�a; a℄d�1 � [5b; 6b℄ suh thatthere are ;-ative paths from (x; t) + �[�n; n℄d � f0g�to every point in (y; s) + �[�n; n℄d � f0g�that stays in [�5a; 5a℄d � [0; 6b℄ ℄ > 1� �:



46 CHAPTER 2. PAPER IProof. One an proeed exatly as in Proposition 2.22 in [9, p. 52-53℄ to �rst obtainthe statement with p � Æ replaed by p and therefore we only outline this part of theargument. The main idea is to use Lemma 2.4.8 (or a �re�eted� version of it) repeat-edly (between 4 to 10 times) to steer things properly so that the desired event ours.The existene of Æ > 0 is a onsequene of the fat that the event in question dependsonly on the graphial representation in [�5a; 5a℄d� [0; 6b℄ and hene is ontinuous inp. Repeated use of the previous lemma together with appropriate stopping times andmonotoniity in the bakground proess yields:Lemma 2.4.10. Assume fCtg survives at p > 0 and let � > 0 and k � 1 be �xed.Then there exist Æ > 0, n; a; b with n < a suh that the following holds: For all(x; t) 2 [�a; a℄d � [0; b℄, with Pp�Æ-probability at least 1� �, there exists a translate(y; s) + [�n; n℄d � f0g of [�n; n℄d � f0g suh thata) (y; s) 2 ([�a; a℄ + 2ka)� [�a; a℄d�1 � [5kb; (5k + 1)b℄b) There are ;-ative paths from (x; t) + [�n; n℄d � f0g to everypoint in (y; s) + [�n; n℄d � f0g that stays in the regionA = k�1[j=0 ([�5a; 5a℄ + 2ja)� [�5a; 5a℄d�1 � ([0; 6b℄ + 5jb) :Our �nal step towards (8) is to use the previous lemma in a so alled renormal-ization argument. The set A from Lemma 2.4.10 (see Figure 2.1) and its re�etionwith respet to the t-axis will onsist of our building bloks. Given the onditions inLemma 2.4.10, the distane  in Figure 2.2 is well de�ned. (De�ne it to be zero if thedashed vertial line is to the right of the left orner of the retangleR, see Figure 2.2.)It is easy to see that, if we hoose k > 5,  will be bigger than 3a, independent of thevalue of a. Fix suh a k.Theorem 2.4.11. If fCtg survives at p > 0, then there are integers n,a and Æ > 0suh that Pp�Æ [C;;[�n;n℄dt survives in Z� [�5a; 5a℄d�1 � [0;1) ℄ > 0Proof. The proof is a modi�ation of Lemma 21 of [1℄. Let � > 0 be given and take� > 0 suh that 1 � � > 1 � � and let n, a, b and Æ be as in Lemma 2.4.10. We willmake an appropriate hoie of � later. Construt a proess Zn(i) = (Xn(i); Yn(i)),i � 0, n � 0, whereXn(i) 2 f0; 1g and Yn(i) is a point in Zd� [0;1). Yn(i) will beunde�nedwhenXn(i) = 0. Start withZ0(0) = (1; 0),X0(i) = 0, i 6= 0 and de�ne in-dutively as follows: WithZk(i) already de�ned for i � 0, 0 � k � n letXn+1(i) = 1if for either j = i or j = i� 1 it is the ase that Xn(j) = 1 and there is a translationof [�n; n℄d to the shaded area (see Figure 2.3 for the shaded regions) on the top of the
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  5aFigure 2.1: The set A.orresponding blok suh that Yn(j)+ [�n; n℄d is onneted with ;-ative paths to ev-ery point in that translation. Furthermore, de�ne Yn+1(i) = (xn+1(i); tn+1(i)), wheretn+1(i) is the earliest enter of suh a translation and xn+1(i) is hosen aording tosome �xed ordering ofZd. Note that ifXn(i) = 1 for in�nitely many pairs (i; n), thenC;;[�n;n℄dt survives in Z� [�5a; 5a℄d�1� [0;1) so it remains to prove that the formerhas positive probability. Let Fn be the �-algebra generating by Zk(i), where i � 0,0 � k � n and note that from Lemma 2.4.10 we getPp[Xn+1(i) = 1 j Fn ℄ > 1� � on fXn(i� 1) = 1 orXn(i) = 1 g:Also, our hoie of k and the fat that events that depend on disjoint parts of the graph-ial representation are independent, we have that, onditioned on Fn, the olletionof variables fXn+1(i) : i � 0 g is one-dependent. Now, we are ready to makethe onstrution above for a spei� hoie of �. Take 1=4 � p < 1 so large thatan oriented perolation proess, fAng, on N with parameter p survives with positiveprobability when it starts with a single infetion at the origin and hoose � suh that1�� > 1� (1�pp)3. A result of Liggett, Shonmann and Staey [10℄ (see also The-orem B26 [9℄) tells us that a one-dependent proess with density 1 � � stohastially
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RFigure 2.2: The de�nition of .dominates a produt measure with density p on N. We an then onlude that fXngdominates fAng. This ompletes the proof.We end with the following question:Does the proess obey a omplete onvergene theorem, i.e. is it the ase that for allp 2 [0; 1℄ and �, � 2 f0; 1gZd(Æ� � Æ�)Sp(t)! �p(�; �)��p + (1� �p(�; �))�p � Æ; as t!1;where �p(�; �) = Pp[C�;�t 6= ; 8t � 0 ℄:Contemporaneously and independently of our work, Remenik [12℄ has proved a om-plete onvergene theorem for the speial variant when Æ0 = 1. We strongly believethat a omplete onvergene theorem also holds in our ase and plan to pursue someideas that we have.
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PAPER IIAttrative nearest-neighbor spin systems on the integers ina randomly evolving environmentMarus Warfheimer





3PAPER IIABSTRACTWe onsider spin systems on Z (i.e. interating partile systems on Z in whih eahoordinate only has two possible values and only one oordinate hanges in eah tran-sition) whose rates are determined by another proess, alled a bakground proess.A anonial example is the ontat proess in randomly evolving environment, intro-dued and analysed by Broman and further studied by Steif and the author, where themarginals of the bakground proess independently evolve as 2-state Markov hainsand determine the reovery rates for a ontat proess. We prove that, if the bak-ground proess has a unique stationary distribution and if the rates satisfy a ertainpositivity ondition, then there are at most two extremal stationary distributions. Theproof follows losely the ideas of Liggett's proof of a orresponding theorem for spinsystems on Zwithout a bakground proess.Key words and phrases: Spin systems, varying environment.Subjet lassi�ation : 60K35.3.1 IntrodutionThe ontat proess in a randomenvironment, in whih the rates are taken to be randomvariables and then �xed in time, has been studied the last twenty years, see for example[1, 4, 7, 8℄. However, reently Broman [2℄ introdued a variant where the environmenthanges in time in a Markovian way. (See also [9℄ for further analysis onerningthat proess.) More preisely, he onsidered the Markov proess f(Bt; Ct)gt�0 on53



54 CHAPTER 3. PAPER IIf0; 1gZd � f0; 1gZd desribed by the following rates at a site x:transition rate(0; 0)! (0; 1) Py�xC(y)(1; 0)! (1; 1) Py�xC(y)(0; 1)! (0; 0) Æ0(1; 1)! (1; 0) Æ1(0; 0)! (1; 0) p(0; 1)! (1; 1) p(1; 0)! (0; 0) (1� p)(1; 1)! (0; 1) (1� p)where ; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄. In other words, the bakgroundproess evolves independently for eah site and determines the reovery rate for theright marginal in the following way: At a given site x and time t, the rate is Æ0 or Æ1depending on whether Bt(x) = 0 or Bt(x) = 1. Broman alled f(Bt; Ct)g the on-tat proess in a randomly evolving environment, abbreviated CPREE. In this paper westudy proesses in one dimension with the same struture: a bakground proess in�u-ening another interating partile system, but here both proesses are more general.We prove, under ertain onditions on the rates, that we have at most two extremalinvariant distributions.3.2 The model and main resultWe onsider the Markov proess, f(�t; �t)gt�0 on f0; 1gZ� f0; 1gZdesribed by thefollowing rates at a site x:transition rate(�; �)! (�; �x) 0(x; �) if �(x) = 0(�; �)! (�; �x) 1(x; �) if �(x) = 1(�; �)! (�x; �) b(x; �)Here 0(x; �), 1(x; �) and b(x; �) are given rate funtions where the �rst two satisfy0(x; �) � 1(x; �) if �(x) = 0;1(x; �) � 0(x; �) if �(x) = 1;(1)and all three satisfy the following attrativity ondition:De�nition 3.2.1. A spin system on f0; 1gZ, with rates (x; �) is said to be attrative ifwhenever � � �0, (x; �) � (x; �0) if �(x) = �0(x) = 0;(x; �) � (x; �0) if �(x) = �0(x) = 1:(2)



3.2. THE MODEL AND MAIN RESULT 55Here, � refers to the usual partial ordering on f0; 1gZ, i.e., � � �0 if and only if�(x) � �0(x) for all x 2 Z. We also assume that the rate funtions are translationinvariant and that the rates 0(x; �), 1(x; �) only depend on � throughf�(x� 1); �(x); �(x + 1)g:Moreover, to ensure that we have a well de�ned proess we will assume thatXy2Z sup�2f0;1gZjb(0; �)� b(0; �y)j <1:In other words, the rates for the system are ompletely desribed by b(x; �) and the16 parameters determining 0 and 1. To desribe the values we will use the followingnotation:i(001) = i(x; �) when �(x � 1) = 0; �(x) = 0 and �(x + 1) = 1:We always refer to the left marginal as the bakground proess. Furthermore, note thatwe an equivalently view our proess on f0; 1gZ�f0;1g and that the onditions (1) and(2) then mean that the whole proess is attrative on that spae. (De�nition 3.2.1 anof ourse be generalized to f0; 1gS where S is ountable.) The attrativity an be usedto show (via monotoniity) the existene of two extremal stationary distributions �0and �1 de�ned by �0 = limt!1 Æ0S(t) �1 = limt!1 Æ1S(t);where Æ0 and Æ1 denote the point masses orresponding to the elements � � 0 and � �1 in f0; 1gZ�f0;1g and fS(t)gt�0 denotes the semigroup assoiated to f(�t; �t)gt�0.The main result here is that, if the bakground proess has a unique stationary distri-bution and the rates 0, 1 satisfy a ertain positivity ondition, then �0 and �1 are theonly extremal stationary distributions. Let I denote the set of stationary distributionsfor the proess and let Ie denote its extreme points. Furthermore, de�neC1 = f i(100) + j(110); i(001) + j(011);i(011) + j(110); i(100) + j(001); i = 0; 1; j = 0; 1 gand let C = min (C1) :Before we state our main result, we want to emphasize that the ase with no bak-ground proess has been studied before by Liggett. The proof of our main result fol-lows losely the ideas of his proof. To state his result, let (x; �) be a rate funtion foran attrative, translation invariant, nearest-neighbor spin system f�tgt�0 on f0; 1gZand de�ne �i = limt!1 ÆiT (t), i = 0; 1, where Æi is the point mass orrespondingto the element � � i in f0; 1gZ and fT (t)gt�0 denotes the semigroup assoiated tof�tgt�0. Moreover, let Je denote the extreme points of the set of stationary distribu-tions for f�tgt�0.



56 CHAPTER 3. PAPER IITheorem 3.2.1 (Liggett). Suppose(3) (x; �) + (x; �x) > 0 whenever �(x � 1) 6= �(x + 1):Then Je = f�0; �1g.For a proof, see [5℄ or [6, p. 145-152℄. In fat, he also proved that if ondition (3)fails, then Je ontains in�nitely many points, see [6, p. 145℄.Theorem 3.2.2. Suppose that the bakground proess has a unique stationary distri-bution and assume C > 0. Then Ie = f�0; �1g.Remarks:(i) From [6, p. 152℄ we get that Theorem 3.2.1 is equivalent to the statement that(3) and (011) + (110) > 0(100) + (001) > 0implies Je = f�0; �1g. By letting  = 0 = 1, it is now lear that Theo-rem 3.2.2 overs Theorem 3.2.1.(ii) The hypotheses in Theorem 3.2.2 are true for the CPREE desribed in the in-trodution. Indeed, if 0 and 1 satisfy (1) and are symmetri under re�etions,i.e. i(100) = i(001)i(110) = i(011); i = 0; 1then C > 0 if and only if 0(001) > 0 and 1(011) > 0.(iii) Note that we are not assuming independene or even nearest-neighbor intera-tion between oordinates in the bakground proess.(iv) To see that the onlusion may fail if we drop the assumption about a unique sta-tionary distribution for the bakground proess, let b(x; �), in addition to beingattrative and translation invariant, be nearest-neighborwith b(000) = b(111) =0 and satis�yb(x; �) + b(x; �x) > 0 whenever �(x � 1) 6= �(x + 1):Let 0 = 1 be the rates orresponding to a superritial ontat proess on Z.Then Ie = f Æ0 � Æ0; Æ0 � ��; Æ1 � Æ0; Æ1 � �� g;where Æ0, Æ1 are the point masses orresponding to the elements � � 0 and � � 1in f0; 1gZrespetively and �� denotes the upper invariant measure for the ontatproess.



3.3. PROOF OF THEOREM 3.2.2 57(v) If we take the same bakground proess, but instead let 0 = 1 be the rates fora subritial ontat proess, we see that the ondition about a unique stationarydistribution for the bakground proess is not neessary for having only twoextremal stationary distributions.(vi) To see that the onlusion may fail if C = 0, let b(x; �) be a rate funtion suhthat f�tgt�0 has the point mass at � � 1 as its unique stationary distribution andlet 1 satisify 1(001) + 1(011) = 0:It is easy to hek that for eah n 2 Z, Æ1 � Æ�n is an extremal stationarydistribution where �n(x) = (1 if x � n0 if x < n:A natural next step is to ask when there is a unique stationary distribution, i.e. when�0 = �1. In the ase of no bakground proess, Gray proved in [3℄ that there an onlybe one stationary distribution provided that the rates are stritly positive. We onjeturean analogous statement in our situation.Theorem 3.2.3 (Gray). If (x; �) > 0 for all x 2 Z and � 2 f0; 1gZ, then �0 = �1.Conjeture 3.2.4. Suppose that the bakground proess has a unique stationary dis-tribution and assume that i(x; �) > 0 for all x, �, i = 1; 2. Then �0 = �1.The rest of the paper is organized as follows. In Setion 3.3 we prove Theo-rem 3.2.2 and in Setion 3.4 we disuss Conjeture 3.2.4.3.3 Proof of Theorem 3.2.2In the proof, we make extensive use of a maximal type oupling whih we now de-sribe. DenoteU = f0; 1gZ; V = f (�; ; �) 2 U3 : � �  � � g and W = U � V:The oupled proess (�t; �t; t; �t), whih we now de�ne, lives onW and its �ip ratesare desribed as follows: First, let �ips of the type(�; �; ; �)! (�x; �; ; �)our at rate b(x; �).Then, let the other three marginals �ip aording to Tables 3.1 and 3.2. Thesetables should be interpreted as follows. For example, when �t(x) = 0, �t(x) = 0,t(x) = 0 and �t(x) = 1, �t(x) will �ip alone at rate 0(x; �t), t(x) will �ip alone atrate 0(x; t)� 0(x; �t) and �t(x) and t(x) �ip together at rate 0(x; �t). Note that



58 CHAPTER 3. PAPER II(0,0,0,0) (0,0,0,1) (0,0,1,1) (0,1,1,1)(0,0,0,0) � 0(x; �) � 0(x; ) 0(x; )� 0(x; �) 0(x; �)(0,0,0,1) 0(x; �) � 0(x; )� 0(x; �) 0(x; �)(0,0,1,1) 0(x; �) 0(x; )� 0(x; �) � 0(x; �)(0,1,1,1) 0(x; �) 0(x; )� 0(x; �) 0(x; �) � 0(x; ) �Table 3.1: Transition rates when the bakground proess is in state 0.(1,0,0,0) (1,0,0,1) (1,0,1,1) (1,1,1,1)(1,0,0,0) � 1(x; �) � 1(x; ) 1(x; )� 1(x; �) 1(x; �)(1,0,0,1) 1(x; �) � 1(x; )� 1(x; �) 1(x; �)(1,0,1,1) 1(x; �) 1(x; )� 1(x; �) � 1(x; �)(1,1,1,1) 1(x; �) 1(x; )� 1(x; �) 1(x; �) � 1(x; ) �Table 3.2: Transition rates when the bakground proess is in state 1.the pairs f(�t; �t)g, f(�t; t)g, f(�t; �t)g eah evolve as the original Markov proessand that the seond, third and fourth marginals try to �ip together as muh as possible.Also, observe that the bakground proess is not allowed to �ip together with any ofthe other proesses.As in the proof of Theorem 3.2.1, the proof of Theorem 3.2.2 onsists of severallemma onerning ertain funtionals of the proess. For m � n, let fm;n(�; �; ; �)be the number of intervals of zeros and ones in  betweenm and n (inludingm andn), ounted only where � and � differ. Furthermore, letm � x1 < x2 < : : : < xk � n;be all those x's betweenm and n for whih �(x) = 0 and �(x) = 1. For l � 1, de�neglm;n(�; �; ; �) = number of i suh that i � 1, i+ l + 1 � k and(xi) 6= (xi+1) = (xi+2) = : : : = (xi+l) 6= (xi+l+1):In other words, glm;n(�; �; ; �) is the number of interior intervals of zeros and ones oflength l in  betweenm and n, ounted only where � and � differ. For example if,� � � 1 0 1 1 1 1 1 0 1 1 1 � � � �� � � 1 0 1 1 0 0 1 0 1 1 0 � � � � � � 1 0 0 0 0 0 0 0 0 0 0 � � � �� � � 1 0 1 0 0 1 1 1 0 1 1 � � � �m nthen fm;n = 4, g2m;n = 1, g3m;n = 1 and glm;n = 0 when l =2 f 2; 3 g. LetK = max�max� 0(x; �); max� 1(x; �)�



3.3. PROOF OF THEOREM 3.2.2 59and denote the set of stationary distributions and the generator of the oupled proessby ~I and ~
 respetively. Furthermore, for a given set A, denote the set of extremepoints by Ae. The �rst lemma onerns ertain basi properties of fm;n and glm;n.Lemma 3.3.1.a) fm;n; glm;n are inreasing when n inreases orm dereases.b) fm;n � 2 + 1Xl=1 glm;n:) 1Xl=1 lglm;n � n�m+ 1:If � 2 ~I;d) C Z g1m;n d� � K Z [fm�1;n + fm;n+1 � 2fm;n℄ d�; form � ne) C Z gl+1m;n d� � 12Kl Z glm;n d�; form � n, l � 1:Proof. a), b) and ) follow diretly from the de�nitions. For d) and e) assume � 2 ~I.Note that fm;n and glm;n are ylinder funtions so thatZ ~
fm;n d� = Z ~
glm;n d� = 0:(4)For ylinder funtion f , the generator has the form~
f(�; �; ; �) = X(�;��;�;��) (�; �; ; �; ��; �; ��) �f(�; ��; �; ��)� f(�; �; ; �)�+Xx b(x; �) (f(�x; �; ; �)� f(�; �; ; �))(5)where the �rst sum is over all possible transitions when the seond, third or fourthmarginal �ip. (Reall that the �rst marginal is not allowed to �ip together with any ofthe others.) Here, sine both fm;n and glm;n do not depend on �, the seond sum is zero,so our task is to alulate the �rst part. For this, we follow the approah in [6, Lemma3.7℄. The argument given here is almost the same as in [6℄, we supply it for the sakeof ompleteness. Let (�; �; ; �) be �xed and note that the only way fm;n an inreasebeause of a �ip is if fm�1;n = fm;n + 1 or fm;n+1 = fm;n + 1. In the �rst ase the�ip must our at x = m and in the seond at x = n. The rate for suh a �ip is at mostK so the positive terms in (5) are bounded above byK [fm�1;n + fm;n+1 � 2fm;n℄ :Furthermore, there are g1m;n sites x where a �ip dereases fm;n by two. At suh an x,(x) = 0 or (x) = 1. Assume (x) = 1. Then we neessarely have (x � 1) =



60 CHAPTER 3. PAPER II�(x � 1) and (x+ 1) = �(x + 1). Therefore, the �ip rate at x beomes0(x; ) + 0(x; �) =8>>>><>>>>:0(010) + 0(000) if (x� 1) = 0, (x+ 1) = 0;0(011) + 0(001) if (x� 1) = 0, (x+ 1) = 1;0(110) + 0(100) if (x� 1) = 1, (x+ 1) = 0;0(111) + 0(101) if (x� 1) = 1, (x+ 1) = 1;when �(x) = 0 and1(x; ) + 1(x; �) =8>>>><>>>>:1(010) + 1(000) if (x� 1) = 0, (x+ 1) = 0;1(011) + 1(001) if (x� 1) = 0, (x+ 1) = 1;1(110) + 1(100) if (x� 1) = 1, (x+ 1) = 0;1(111) + 1(101) if (x� 1) = 1, (x+ 1) = 1;when �(x) = 1. Also the attrativity ondition givesi(010) � maxf i(011); i(110) gi(101) � maxf i(001); i(100) g; i = 0; 1and so the rates above are bounded below byC=2. The same argumentworks if (x) =0 and so we an onlude that the negative terms in (5) are bounded above by�Cg1m;n.We get the estimate~
fm;n � K [fm�1;n + fm;n+1 � 2fm;n℄� Cg1m;nwhih via (4) gives d). For e), note that glm;n an only derease via �ips at no morethan lglm;n sites or their neighbors, i.e. in total at most 3lglm;n sites. The rate for suha �ip is bounded by 2K and glm;n an at most derease by two. The negative termsin the generator are therefore bounded below by �12Klglm;n. Furthermore, glm;n aninrease at no fewer than gl+1m;n pair of sites. These pair of sites are the endpoints of aninterval of length l+1. To get a lower bound on the �ip rate for suh endpoints, let x <y denote suh a pair and suppose (x) = (y) = 1. Then we have (x�1) = �(x�1)and (y+1) = �(y+1). The �ip rate at x is at least i(100) if (x�1) = �(x�1) = 1,�(x) = i and at least i(011) if (x � 1) = �(x � 1) = 0, �(x) = i. In a similarfashion, the �ip rate at y is at least i(001) if (y + 1) = �(y + 1) = 1, �(y) = i andat least i(110) if (y+1) = �(y+1) = 0, �(y) = i. In either ase the sum of the �iprates for the pair is always at least C. The same statement holds if (x) = (y) = 0and so we obtain that the positive terms in the generator expression are bounded belowby Cgl+1m;n. Hene, we get the estimate~
gm;n � Cgl+1m;n � 12Klglm;n:Equation (4) then �nally gives usC Z gl+1m;n d� � 12KlZ glm;n d�



3.3. PROOF OF THEOREM 3.2.2 61and the proof is omplete.Denote A1 = f (�; �; ; �) 2W :  � � g;A2 = f (�; �; ; �) 2W :  � � g;A3 = f (�; �; ; �) 2W nA1 [A2 : 9x 2 Z suh that(y) = �(y) when y � x and (y) = �(y) when y > x g;A4 = f (�; �; ; �) 2W nA1 [A2 : 9x 2 Z suh that(y) = �(y) when y � x and (y) = �(y) when y > x g;Lemma 3.3.2. Assume C > 0. Thena) � 2 ~I =) � (A1 [ A2 [ A3 [A4) = 1;b) � 2 ~Ie =) � (Ai) = 1 for some i.Proof. b) follows from a) sine Ai is losed for the oupled proess in the sense thatP(�;�;;�)[ (�t; �t; t; �t) 2 Ai ℄ = 1 8t > 0whenever (�; �; ; �) 2 Ai. To prove a), suppose � 2 ~I . Sine4[i=1Ai = f glm;n = 0 8m � n; l � 1 gwe obtain that(6) Z glm;nd� = 0 for allm � n, l � 1is equivalent to � (A1 [A2 [ A3 [ A4) = 1:To see that (6) holds, we proeed as in [6, Lemma 3.10℄. Note thatfm�1;n � fm;n + 1 and fm;n+1 � fm;n + 1and so parts d) and e) of Lemma 3.3.1 gives us(7) M = supm�n Z glm;n d� <1; 8l � 1:Let L � 1. From part b) of the same lemma, we get1n�m Z fm;n d� � 2n�m + 1n�m Z Xl�1 glm;n d�:



62 CHAPTER 3. PAPER IISplit the sum and now use part ) of the lemma together with (7) to obtain that for anyL 1n�m Z fm;n d� � 2n�m + MLn�m + 1L �1 + 1n�m� ;and so lim supn�m!1 1n�m Z fm;n d� � 1L:Sine L � 1 was arbitrary we an onlude(8) limn�m!1 1n�m Z fm;n d� = 0:Now, forN � 1, part d) of Lemma 3.3.1 gives usC 0Xm=�N+1N�1Xn=0 Z g1m;n d�� K 0Xm=�N+1N�1Xn=0 Z [fm�1;n + fm;n+1 � 2fm;n℄ d�:(9)After some anellations in the sum to the right, we get0Xm=�N+1N�1Xn=0 Z [fm�1;n + fm;n+1 � 2fm;n℄ d�� 0Xm=�N+1Z fm;N d� + N�1Xn=0 Z f�N;n d�and together with (8) and (9) we obtainlimN!1 1N2 0Xm=�N+1N�1Xn=0 Z g1m;n d� = 0:Using the monotoniity property of g1m;n this implies R g1m;n d� = 0 for all m � nand part e) of the lemma gives R glm;n d� = 0 for all l � 1 and we are done with theproof.We are soon ready for the proof of Theorem 3.2.2. However, in the proof we makeuse of a 5-variant oupling f(�t; �t; 1;t; 2;t; �t)g of the one used so far. This ouplingis also of maximal type and evolves onX = � (�; �; 1; 2; �) 2 U5 : � � 1 � �; � � 2 � �	in a way suh that f(�t; �t; 1;t; �t)g and f(�t; �t; 2;t; �t)g evolve exatly as the pre-vious desribed oupling. We an therefore apply all we have done so far to eah of



3.3. PROOF OF THEOREM 3.2.2 63these proesses. The last tool we need is to have existene of an extremal stationarydistribution for the 5-variant oupled proess, given extremal stationary distributionsfor the f(�t; �t)g proess. For a stohasti variableX and a distribution �, let X � �denote that X is distributed aording to �. Also, let I5 denote the set of stationarydistributions for the 5-variant oupled proess onX .Lemma 3.3.3. Given �, �0 2 Ie there exists �((�; �; 1; 2; �) 2 �) 2 I5e suh that(�; �) � �0, (�; 1) � �, (�; 2) � �0 and (�; �) � �1.Proof. For any measure � let �ij denote the projetion to the ith and jth oordinate.Construt a oupling on (f0; 1gZ� f0; 1gZ)4 of four f�t; �tg-proesses suh that thebakground proesses agree as muh as possible as well as the right marginals. Notethat our 5-variant oupling above an be identi�ed with suh a oupling started withall the bakground proesses equal. Starting the oupling withÆ(;;;) � �� �0 � Æ(Z;Z)and taking a suitable subsequene of Cesaro averages gives us a stationary distribu-tion � for the oupling and by projeting to the �rst, seond, fourth, sixth and eighthoordinate we get a probability measure ~� 2 I5 with~�((�; �; 1; 2; �) 2 U5 : � � 1 � �; � � 2 � �) = 1:Here it is important to note that the setf (�1; �; �2; 1; �3; 2; �4; �) 2 U8 : �1 � �2 � �4; �1 � �3 � �4;� � 1 � �; � � 2 � �gis losed under the evolution of the oupling and that the �rst, third, �fth and seventhoordinate are equal under �. Furthermore, it is lear that ~� satis�es~�12 = �0; ~�13 = � ~�14 = �0 and ~�15 = �1:De�ne B = f � 2 I5 : �12 = �0; �13 = �; �14 = �0; �15 = �1 g:B is non-empty by the above and is ompat and onvex. Hene, by the Krein-Milmantheorem, B an be written as the losed onvex hull of its extreme points. Therefore,sine B 6= ;, we have Be 6= ;. Hene, the proof is omplete if Be � I5e . Assume� 2 Be and let � = �� + (1� �)�, where 0 < � < 1 and �; � 2 I5. If �, � 2 B weget � = � = � and we are done. In order to see this, let (i; j) be one of the pairs (1; 2),(1; 3), (1; 4) or (1; 5). Sine �ij = ��ij + (1� �)�ij , where �ij ; �ij 2 I, and the lefthand side is an element of f�0; �; �0; �1g � Ie, we obtain�0 = �12 = �12 � = �13 = �13�0 = �14 = �14 �1 = �15 = �15and so �, � 2 B.



64 CHAPTER 3. PAPER IIProof of Theorem 3.2.2. We follow the steps in [6, Theroem 3.13℄. Let �1 2 Ie.Sine �0 � � � �1 for every stationary distribution �, we an assume �0 6= �1. Let�2 = �1 Æ ��1x , where �x is a translation by x 2 Z. Sine the dynamis are translationinvariant and �1 2 Ie, we get that �2 2 Ie. Let � be an extremal stationary distributionfor the 5-variant oupling mentioned above with(�; �) � �0 (�; 1) � �1(�; 2) � �2 (�; �) � �1Suh a measure exists by Lemma 3.3.3. Let �1 and �2 be the distributions obtainedfrom the projetions (�; �; 1; 2; �)! (�; �; 1; �)(�; �; 1; 2; �)! (�; �; 2; �)respetively. Sine �1; �2 2 ~Ie, Lemma 3.3.2 gives�1(Ai) = 1 some 1 � i � 4 and �2(Ai) = 1 some 1 � i � 4:However, 1 and 2 are just translations of eah other so there is an i suh that�1(Ai) = �2(Ai) = 1. It follows that��(�; �; 1; 2; �) : Xx j1(x)� 2(x)j <1� = 1:Also, (1;t; 2;t) has the property thatP(;)[1;t = 2;t℄ = 1 and P(1;2)[1;t = 2;t℄ > 0wheneverXx j1(x)� 2(x)j <1 and so sine � is stationary, we must in fat have��(�; �; 1; 2; �) : 1 = 2� = 1:This implies �1 = �2, i.e. �1 is translation invariant. Therefore i equals 1 or 2 (reall�0 6= �1). If i = 1, �1(U � (�)) = �0(U � (�)) and sine the bakground proess has aunique stationary distribution we must also have �1((�)�U) = �0((�)�U). But sine�0 � �1 this yields �1 = �0. If i = 2 we get in a similar way that �1 = �1. 23.4 Disussion of Conjeture 3.2.4We begin by desribing a graphial representation whih may be useful for a possibleproof of Conjeture 3.2.4. The representation is similar as in [3℄ and we will explain it



3.4. DISCUSSION OF CONJECTURE 3.2.4 65in a quite informalway. For simpliity, wewill assume that the rates for the bakgroundproess, in addition to attrative and translation invariant, also are uniformly bounded.(Of ourse, our assumptions on 0 and 1 from Setion 3.2 imply that they are alsouniformly bounded.) For x 2 Z, de�ne�bx = sup�:�(x)=0 b(x; �) + sup�:�(x)=1 b(x; �)�0x = sup�: �(x)=0 0(x; �) + sup�: �(x)=1 0(x; �)�1x = sup�: �(x)=0 1(x; �) + sup�: �(x)=1 1(x; �)�x = �0x + �1x:De�ne the following olletion of independent random variables on some probabilityspae (
;F ;P):� Bj(x) exponentially distributed with mean 1=�bx, j � 1, x 2 Z. (De�neBj(x) =1 if �bx = 0.)� Dn(x) uniformly distributed on [0;�bx℄, n � 1, x 2 Z.� Sj(x) exponentially distributed with mean 1=�x, j � 1, x 2 Z.� U0n(x) uniformly distributed on [0; �0x℄, n � 1, x 2 Z.� U1n(x) uniformly distributed on [0; �1x℄, n � 1, x 2 Z.Moreover, for n � 1 and x 2 Z de�neCn(x) = nXj=1Bj(x) and Tn(x) = nXj=1 Sj(x):For a given initial on�guration � 2 f0; 1gZ, de�ne a proess f��t gt�0 from fCn(x)gand fDn(x)g as follows:� ��0 = �,� ��s (x) �ips from 0 to 1 iff ��s�(x) = 0 and there exists an n � 1 suh thats = Cn(x) andDn(x) � �bx � b(x; ��s�),� ��s (x) �ips from 1 to 0 iff ��s�(x) = 1 and there exists an n � 1 suh thats = Cn(x) andDn(x) < b(x; ��s�).By an approximation proedure, it is possible to prove that there exists a proess withthose properties and that suh a proess has �ip rates b(x; �).Given �,� 2 f0; 1gZ, we now de�ne a proess f��;�t gt�0 from f��t g, fTn(x)g,fU0n(x)g and fU1n(x)g in the following way:



66 CHAPTER 3. PAPER II� ��;�0 = �,� if ��s (x) = 0, then ��;�s (x) �ips from 0 to 1 iff ��;�s� (x) = 0 and there exists ann � 1 suh that s = Tn(x) and U0n(x) � �0x � �0x�x 0(x; ��;�s� ) and ��;�s (x) �ipsfrom 1 to 0 iff ��;�s� (x) = 1 and there exists an n � 1 suh that s = Tn(x) andU0n(x) < �0x�x 0(x; ��;�s� ),� if ��s (x) = 1, then ��;�s (x) �ips from 0 to 1 iff ��;�s� (x) = 0 and there exists ann � 1 suh that s = Tn(x) and U1n(x) � �1x � �1x�x 1(x; ��;�s� ) and ��;�s (x) �ipsfrom 1 to 0 iff ��;�s� (x) = 1 and there exists an n � 1 suh that s = Tn(x) andU1n(x) < �1x�x 1(x; ��;�s� ).It is lear that the proess f(��t ; ��;�t )g has the orret �ip rates. Moreover, the graph-ial representation gives us a oupling for all possible initial states and this ouplingis exatly the maximal type oupling used in Setion 3.3. If we want to start the pro-ess at a random state with distribution �, we just add, independent of everything else,two random variables with joint distribution �. We then write f��1t ; ��1;�2t g where �idenotes the ith marginal of �.A possible proof of Conjeture 3.2.4 may be based on the following lemma.Lemma 3.4.1. If(10) lim infk!1 lim inft!1 P h ��;;t (x) = ��;Zt (x); �k � x � k i > 0for all � 2 f0; 1gZ, then �0 = �1.Proof. From Lemma 3.3.3 (or more preisely from the version of it with three pro-esses) there exists a probability measure  on� (�; �; �) 2 U3 : � � �	whih is stationary for f(�t; �t; �tgt�0 and satis�es12 = �0; 13 = �1 and 1 = �;where � is the unique stationary distribution for the bakground proess. (Here, weuse the same notation as in Lemma 3.3.3.) Our goal is to show that (� = �) = 1:For given k � 1 and t � 0, we get (�(x) = �(x); �k � x � k) =  (� = �)+P [ ��;2t (x) = ��;3t (x); �k � x � k j ��;20 6= ��;30 ℄ (1�  (� = �)) :(11)



3.4. DISCUSSION OF CONJECTURE 3.2.4 67Here, we have used that  is stationary and the fat thatP [ ��;2t (x) = ��;3t (x); �k � x � k j ��;20 = ��;30 ℄ = 1:From the inequalities ��;;t � ��;2t � ��;3t � ��;Zt ; t � 0;we get, P [ ��;2t (x) = ��;3t (x); �k � x � k j ��;20 6= ��;30 ℄� P h ��;;t (x) = ��;Zt (x); �k � x � k j ��;20 6= ��;30 i :(12)Moreover, from the graphial representation, we get that the eventsf ��;;t (x) = ��;Zt (x); �k � x � k g and f ��;20 6= ��;30 gare onditionally independent given the initial state of the bakground proess and sowe an writeP h ��;;t (x) = ��;Zt (x); �k � x � k; ��;20 6= ��;30 iZ P h ��;;t (x) = ��;Zt (x); �k � x � k j��0 = � i  (� 6= � j�) d�(�):(13)Now, let us assume that  (� 6= �) > 0:Then  (� 6= � j�) > 0:on a set of positive �-measure. By using (10), (13) together with Fatou's Lemma andthen (12), we an onlude thatlim infk!1 lim inft!1 P [ ��;2t (x) = ��;3t (x); �k � x � k j ��;20 6= ��;30 ℄ > 0:However, by taking limits in (11) we arrive at a ontradition and so we are done withthe proof.The question now is if it is possible to prove (10). A natural �rst try is to �x theinitial state of the bakground proess and then proeed as in [3, p. 393℄ and de�neso alled left and right edge proesses. The properties on p. 394 and Proposition 2on p. 395 are then easily veri�ed. For the orrelation property between the left andright edge proesses, we an use [6, Ch. II, Corollary 2.21℄ and sine the Lemma inthe proof of [3, Theorem 1℄ relies on the properties on [3, p. 394℄, it may be possible toprove a version of it for our proess. Having sueeded so far, there is some hard workleft whih we at the moment are not able to deide on if it is possible to do somethingsimilar or not. The only thing we an say is that the argument given in [3, p. 399-403℄is based on a very similar onstrution as we have and if all the preliminary work gothrough, then there may be a quite good hane to get a full proof of Conjeture 3.2.4.
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4PAPER IIIABSTRACTWe disuss various aspets onerning stohasti domination for the Ising model andthe fuzzy Potts model. We begin by onsidering the Ising model on the homogeneoustree of degree d, Td. For given interation parameters J1, J2 > 0 and external �eldh1 2 R, we ompute the smallest external �eld ~h suh that the plus measure withparameters J2 and h dominates the plus measure with parameters J1 and h1 for allh � ~h. Moreover, we disuss ontinuity of ~h with respet to the three parametersJ1, J2, h and also how the plus measures are stohastially ordered in the interationparameter for a �xed external �eld. Next, we onsider the fuzzy Potts model and provethat on Zd the fuzzy Potts measures dominate the same set of produt measures whileon Td, for ertain parameter values, the free and minus fuzzy Potts measures dominatedifferent produtmeasures. For the Ising model, Liggett and Steif proved that onZd theplus measures dominate the same set of produt measures while on T2 that statementfails ompletely exept when there is a unique phase.Key words and phrases: Stohasti domination, Ising model, fuzzy Potts model.Subjet lassi�ation : 60K35.4.1 Introdution and main resultsThe onept of stohasti domination has played an important role in probability the-ory over the last ouple of deades, for example in interating partile systems and71



72 CHAPTER 4. PAPER IIIstatistial mehanis. In [13℄, various results were proved onerning stohasti domi-nation for the Ising model with no external �eld onZd and on the homogeneous binarytree T2 (i.e. the unique in�nite tree where eah site has 3 neighbors). As an example,the following distintion between Zd and T2 was shown: On Zd, the plus and minusstates dominate the same set of produt measures, while on T2 that statement failsompletely exept in the ase when we have a unique phase. In this paper we studystohasti domination for the Ising model in the ase of nonzero external �eld and alsofor the so alled fuzzy Potts model.Let V be a �nite or ountable set and equip the spae f�1; 1gV with the followingnatural partial order: For �, �0 2 f�1; 1gV , we write � � �0 if �(x) � �0(x) for allx 2 V . Moreover, whenever we need a topology on f�1; 1gV we will use the produttopology. We say that a funtion f : f�1; 1gV ! R is inreasing if f(�) � f(�0)whenever � � �0. We will use the following usual de�nition of stohasti domination.De�nition 4.1.1 (Stohasti domination). Given a �nite or ountable set V and prob-ability measures �1, �2 on f�1; 1gV , we say that �2 dominates �1 (written �1 � �2or �2 � �1) if Z f d�1 � Z f d�2for all real-valued, ontinuous and inreasing funtions f on f�1; 1gV .It is well known that a neessary and suf�ient ondition for two probability mea-sures �1, �2 to satisfy �1 � �2 is that there exists a ouplingmeasure � on f�1; 1gV �f�1; 1gV with �rst and seond marginals equal to �1 and �2 respetively and�( (�; �) : � � � ) = 1:(For a proof, see for example [12, p. 72-74℄.) Given any set S � R and a family ofprobability measures f�sgs2S indexed by S, we will say that the map S 3 s 7! �s isinreasing if �s1 � �s2 whenever s1 < s2.4.1.1 The Ising modelThe ferromagneti Ising model is a well studied objet in both physis and probabilitytheory. For a given in�nite, loally �nite (i.e. eah vertex has a �nite number of neigh-bors), onneted graphG = (V;E), it is de�ned from the nearest-neighbor potential�J;hA (�) = 8><>:�J�(x)�(y) if A = fx; yg, with hx; yi 2 E;�h�(x) if A = fxg;0 otherwisewhere A � V , � 2 f�1; 1gV , J > 0, h 2 R are two parameters alled the ouplingstrength and the external �eld respetively and hx; yi denotes the edge onneting x



4.1. INTRODUCTION AND MAIN RESULTS 73and y. A probability measure � on f�1; 1gV is said to be a Gibbs measure (or some-times Gibbs state) for the ferromagneti Ising model with parametersh 2 R and J > 0if it admits onditional probabilities suh that for all �nite U � V , all � 2 f�1; 1gUand all � 2 f�1; 1gV nU�(X(U) = � jX(V n U) = �)= 1ZU;�J;h exp"J Xhx;yi2E;x;y2U �(x)�(y) + Xhx;yi2E;x2U;y2�U �(x)�(y)!+ hXx2U �(x)#where ZU;�J;h is a normalizing onstant and�U = fx 2 V n U : 9y 2 U suh that hx; yi 2 E g:For given J > 0 and h 2 R, we will denote the set of Gibbs measures with parametersJ and h by G(J; h) and we say that a phase transition ours if jG(J; h)j > 1, i.e.if there exist more than one Gibbs state. (From the general theory desribed in [2℄or [12℄, G(J; h) is always nonempty.) At this stage one an ask, for �xed h 2 R, is itthe ase that the existene of multiple Gibbs states is inreasing in J? When h = 0 it ispossible from the so alled random-luster representation of the Ising model to show apositive answer to the last question (see [5℄ for the ase whenG = Zd and [7℄ for moregeneral G). However, when h 6= 0 there are graphs where the above monontoniityproperty no longer holds, see [15℄ for an example of a relatively simple suh graph.Furthermore, still for �xed J > 0, h 2 R, standard monotoniity arguments anbe used to show that there exists two partiular Gibbs states �J;+h , �J;�h , alled the plusand the minus state, whih are extreme with respet to the stohasti ordering in thesense that(1) �J;�h � � � �J;+h for any other � 2 G(J; h):To simplify the notation, we will write �J;+ for �J;+0 and �J;� for �J;�0 . (Of ourse,most of the things we have de�ned so far are also highly dependent on the graph G,but we suppress that in the notation.)In [13℄ the authors studied, among other things, stohasti domination between theplus measures f�J;+gJ>0 in the ase whenG = T2. For example, they showed that themap (0;1) 3 J 7! �J;+ is inreasing when J > J and proved the existene of andomputed the smallest J > J suh that �J;+ dominates �J0;+ for all 0 < J 0 � J.(On Zd, the fat that �J1;+ and �J2;+ are not stohastially ordered when J1 6= J2gives that suh a J does not even exist in that ase.) Our �rst result deals with thefollowing question: Given J1, J2 > 0, h1 2 R, an we �nd the smallest external�eld ~h = ~h(J1; J2; h1) with the property that �J2;+h dominates �J1;+h1 for all h � ~h?



74 CHAPTER 4. PAPER IIITo larify the question a bit more, note that an easy appliation of Holley's theorem(see [3℄) tells us that for �xed J > 0, the map R 3 h 7! �J;+h is inreasing. Hene, forgiven J1, J2 and h1 as above the setfh 2 R : �J2;+h � �J1;�h1 gis an in�nite interval and we want to �nd the left endpoint of that interval (possibly�1 or +1 at this stage). For a general graph not muh an be said, but we have thefollowing easy bounds on ~h when G is of bounded degree.Proposition 4.1.1. Consider the Ising model on a general graph G = (V;E) ofbounded degree. De�ne~h = ~h(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;+h1 g:Then h1 �N(J1 + J2) � ~h � h1 +N jJ1 � J2j;where N = supx2V Nx andNx is the number of neighbors of the site x 2 V .For the Ising model, we will now onsider the ase when G = Td, the homo-geneous d-ary tree, de�ned as the unique in�nite tree where eah site has exatlyd + 1 � 3 neighbors. The parameter d is �xed in all that we will do and so wesuppress that in the notation. For this partiular graph it is well known that for givenh 2 R, the existene of multiple Gibbs states is inreasing in J and so as a onse-quene there exists a ritial value J(h) 2 [0;1℄ suh that when J < J(h) we havea unique Gibbs state whereas for J > J(h) there are more than one Gibbs states. Infat, muh more an be shown in this ase. As an example it is possible to derive anexpliit expression for the phase transition regionf (J; h) 2 R2 : jG(J; h)j > 1 g;in partiular one an see that J(h) 2 (0;1) for all h 2 R. Moreover,J := J(0) = aroth d = 12 log d+ 1d� 1 ;see [2℄ for more details. (Here and in the sequel, := will mean de�nition.)To state our results for the Ising model on Td, we need to reall some more fats,all of whih an be found in [2, p. 247-255℄. To begin, we just state what we need verybrie�y and later on we will give some more details. Given J > 0 and h 2 R, there is aone-to-one orrespondene t 7! � between the real solutions of a ertain equation (see(7) and the funtion �J in (6) below) and the ompletely homogeneousMarkov hainsin G(J; h) (to be de�ned in Setion 4.2). Let t�(J; h) denote the real numbers whihorrespond to the plus and minus measure respetively. (It is easy to see that the plus



4.1. INTRODUCTION AND MAIN RESULTS 75and minus states are ompletely homogeneous Markov hains, see Setion 4.2.) Wewill write t�(J) instead of t�(J; 0). Furthermore, leth�(J) = maxt�0 �d�J (t)� t�and denote by t�(J) the t � 0 where the funtion t 7! d�J (t) � t attains its uniquemaximum. In [2℄, expliit expressions for both h� and t� are derived:h�(J) = 8<:0 if J � Jd artanh�d tanh(J)�1d oth(J)�1�1=2 � artanh� d�oth(J)d�tanh(J)�1=2 if J > Jt�(J) = 8<:0 if J � Jartanh� d�oth(J)d�tanh(J)�1=2 if J > JIn partiular one an see that both h� and t� are ontinuous funtions of J and byomputing derivatives one an show that they are stritly inreasing for J > J.PSfrag replaements
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Figure 4.1: The funtions h� and t� in the ase when d = 4.Theorem 4.1.2. Consider the Ising model on Td and let J1, J2 > 0, h1 2 R be given.De�ne f�(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;�h1 gg�(J1; J2; h1) = inffh 2 R : �J2;�h � �J1;�h1 g



76 CHAPTER 4. PAPER IIIand denote �� = ��(J1; J2; h1) = t�(J1; h1) + jJ1 � J2j. Then the following holds:(2) f�(J1; J2; h1) = (�h�(J2) if t�(J2;�h�(J2)) � �� < t�(J2)�� � d�J2(��) if �� � t�(J2) or �� < t�(J2;�h�(J2))(3) g�(J1; J2; h1) = (h�(J2) if � t�(J2) < �� � t+(J2; h�(J2))�� � d�J2(��) if �� � �t�(J2) or �� > t+(J2; h�(J2))Remarks:(i) Note that if 0 < J2 � J, then h�(J2) = 0 andt�(J2;�h�(J2)) = t�(J2) = t+(J2; h�(J2)) = 0and hene the �rst interval disappears in the formulas and we simply getf�(J1; J2; h1) = g�(J1; J2; h1)= ��(J1; J2; h1)� d�J2(��(J1; J2; h1)):(ii) By looking at the formulas (2) and (3), we see that there are funtions  , � :(0;1)� R 7! R suh thatf�(J1; J2; h1) =  (J2; ��(J1; J2; h1)) andg�(J1; J2; h1) = �(J2; ��(J1; J2; h1)):(Of ourse,  (J2; t) and �(J2; t) are just (2) and (3) with t instead of ��.) It iseasy to hek that for �xed J2 > 0, the maps t 7!  (J2; t) and t 7! �(J2; t)are ontinuous. A piture of these funtions when J2 = 2, d = 4 an be seen inFigure 4.2.(iii) It is not hard to see by diret omputations that f+ satis�es the bounds in Propo-sition 4.1.1. We will indiate how this an be done after the proof of Theorem4.1.2.(iv) We will see in the proof that ift�(J2;�h�(J2)) � ��(J1; J2; h1) < t�(J2);then fh 2 R : �J2;+h � �J1;�h1 g = [�h�(J2);1);and if �t�(J2) < ��(J1; J2; h1) � t+(J2; h�(J2)), thenfh 2 R : �J2;�h � �J1;�h1 g = (h�(J2);1):Hene in the �rst ase the left endpoint belongs to the interval, while in theseond ase it does not.
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Figure 4.2: The funtions t 7!  (J2; t) and t 7! �(J2; t) in the ase when J2 = 2 and d = 4.Our next proposition deals with ontinuity properties of f� and g� with respet to theparameters J1, J2 and h1. We will only disuss the funtion f+, the other ones an betreated in a similar fashion.Proposition 4.1.3. Consider the Ising model on Td and reall the notation from The-orem 4.1.2. Let a = a(J1; J2) = t�(J1;�h�(J1)) + jJ1 � J2jb = b(J1; J2) = t+(J1;�h�(J1)) + jJ1 � J2ja) Given J1, J2 > 0, the map R 3 h1 7! f+(J1; J2; h1) is ontinuous exeptpossibly at �h�(J1) depending on J1 and J2 in the following way:If J1 � J or J1 = J2 then it is ontinuous at �h�(J1).If J1 > J and 0 < J2 � J then it is disontinuous at �h�(J1).If J1, J2 > J, J1 6= J2 then it is disontinuous exept whent�(J2;�h�(J2)) � a < t�(J2) and t�(J2;�h�(J2)) � b � t�(J2):b) Given J2 > 0, h1 2 R, the map (0;1) 3 J1 7! f+(J1; J2; h1) is ontinuousat J1 if 0 < J1 � J or J1 > J and h1 6= �h�(J1). In the ase when



78 CHAPTER 4. PAPER IIIh1 = �h�(J1) it is disontinuous at J1 exept whent�(J2;�h�(J2)) � a < t�(J2) and t�(J2;�h�(J2)) � b � t�(J2):) Given J1 > 0, h1 2 R, the map (0;1) 3 J2 7! f+(J1; J2; h1) is ontinuousfor all J2 > 0.We onlude this setion with a result about how the measures f�J;+h gJ>0 areordered with respet to J for �xed h 2 R.Proposition 4.1.4. Consider the Ising model on Td. The map (0;1) 3 J 7! �J;+h isinreasing in the following ases: a) h � 0 and J � J, b) h < 0 and h�(J) > �h.4.1.2 The fuzzy Potts modelNext, we onsider the so alled fuzzy Potts model. To de�ne the model, we �rst needto de�ne the perhaps more familiar Potts model. Let G = (V;E) be an in�nite loally�nite graph and suppose that q � 3 is an integer. Let U be a �nite subset of V andonsider the �nite graph H with vertex set U and edge set onsisting of those edgeshx; yi 2 E with x; y 2 U . In this way, we say that the graph H is indued by U .The �nite volume Gibbs measure for the q-state Potts model at inverse temperatureJ � 0 with free boundary ondition is de�ned to be the probability measure �Hq;J onf1; 2; : : : ; qgU whih to eah element � assigns probability�Hq;J (�) = 1ZHq;J exp�2J Xhx;yi2E;x;y2U If�(x)=�(y)g�;where ZHq;J is a normalizing onstant.Now, suppose r 2 f1; : : : ; q � 1g and pik a �Hq;J - distributed objet X and forx 2 U let(4) Y (x) = (�1 if X(x) 2 f1; : : : ; rg1 if X(x) 2 fr + 1; : : : ; qg:We write �Hq;J;r for the resulting probability measure on f�1; 1gU and all it the �nitevolume fuzzy Potts measure on H with free boundary ondition and parameters q, Jand r.We also need to onsider the ase when we have a boundary ondition. For �-nite U � V , onsider the graph H indued by the vertex set U [ �U and let � 2f1; : : : ; qgV nU . The �nite volume Gibbs measure for the q-state Potts model at inversetemperature J � 0 with boundary ondition � is de�ned to be the probability measure



4.1. INTRODUCTION AND MAIN RESULTS 79on f1; : : : ; qgU whih to eah element assigns probability�H;�q;J (�) = 1ZH;�q;J exp 2J Xhx;yi2E;x;y2U If�(x)=�(y)g+ 2J Xhx;yi2E;x2U;y2�U If�(x)=�(y)g!;whereZH;�q;J is a normalizing onstant. In the ase when � � i for some i 2 f1; : : : ; qg,we replae � with i in the notation.Furthermore, we introdue the notion of in�nite volume Gibbs measure for thePotts model. A probability measure � on f1; : : : ; qgV is said to be an in�nite volumeGibbs measure for the q-state Potts model on G at inverse temperature J � 0, if itadmits onditional probabilities suh that for all �nite U � V , all � 2 f1; : : : ; qgUand all � 2 f1; : : : ; qgV nU�(X(U) = � jX(V n U) = �) = �H;�q;J (�)whereH is the graph indued by U [�U . Let fVngn�1 be a sequene of �nite subsetsof V suh that Vn � Vn+1 for all n, V = Sn�1 Vn and for eah n, denote by Gn theindued graph by Vn [ �Vn. Furthermore, for eah i 2 f1; : : : ; qg, extend �Gn;iq;J (anduse the same notation for the extension) to a probability measure on f1; : : : ; qgV byassigning with probability one the spin value i outside Vn. It is well known (and inde-pendent of the sequene fVng) that there for eah spin i 2 f1; : : : ; qg exists a in�nitevolume Gibbs measure �G;iq;J whih is the weak limit as n ! 1 of the orrespondingmeasures �Gn;iq;J . Moreover, there exists another in�nite volume Gibbs measure de-noted �G;0q;J whih is the limit of �Gnq;J in the sense that the probabilities on ylinder setsonverge. The existene of the above limits as well as the independene of the hoieof the sequene fVng when onstruting them follows from the work of Aizenman etal. [1℄.Given the in�nite volume Gibbs measures f�G;iq;J gi2f0;:::;qg, we de�ne the orre-sponding in�nite volume fuzzy Potts measures f�G;iq;J;rgi2f0;:::;qg using (4).In words, the fuzzy Potts model an be thought of arising from the ordinary q-statePotts model by looking at a pair of glasses that prevents from distinguishing some ofthe spin values. From this point of view, the fuzzy Potts model is one of the most basiexamples of a so alled hidden Markov �eld [11℄. For earlier work on the fuzzy Pottsmodel, see for example [6, 8�10, 14℄.Given a �nite or ountable set V and p 2 [0; 1℄, let p denote the produt measureon f�1; 1gV with p(� : �(x) = 1) = p for all x 2 V . In [13℄ the authors provedthe following results for the Ising model. (The seond result was originally proved ford = 2 only but it trivially extends to all d � 2.)



80 CHAPTER 4. PAPER IIIProposition 4.1.5 (Liggett, Steif). Fix an integer d � 2 and onsider the Ising modelon Zd with parameters J > 0 and h = 0. Then for any p 2 [0; 1℄, �J;+ � p if andonly if �J;� � p.Proposition 4.1.6 (Liggett, Steif). Let d � 2 be a given integer and onsider the Isingmodel on Td with paramteters J > 0 and h = 0. Moreover, let �J;f denote the Gibbsstate obtained by using free boundary onditions. If �J;+ 6= �J;�, then there exist0 < p0 < p suh that �J;+ dominates p but �J;f does not dominate p and �J;fdominates p0 but �J;� does not dominate p0 .In words, onZd the plus andminus state dominate the same set of produtmeasureswhile on Td that is not the ase exept when the we have a unique phase.To state our next results we will take a loser look at the onstrution of the in�nitevolume fuzzy Potts measures whenG = Zd orG = Td. In those ases it follows fromsymmetry that �G;iq;J;r = �G;jq;J;r if i; j 2 f1; : : : ; rg or i; j 2 fr + 1; : : : ; qg, i.e. whenthe Potts spins i; j map to the same fuzzy spin. For that reason, we let �G;�q;J;r := �G;1q;J;rand �G;+q;J;r := �G;qq;J;r when G = Zd or Td. (Of ourse, we stik to our earlier notationof �G;0q;J;r.) Our �rst result is a generalization of Proposition 4.1.5 to the fuzzy Pottsmodel.Proposition 4.1.7. Let d � 2 be a given integer and onsider the fuzzy Potts modelon Zd with parameters q � 3, J > 0 and r 2 f1; : : : ; q � 1g. Then for any k; l 2f0;�;+g and p 2 [0; 1℄, �Zd;kq;J;r � p if and only if �Zd;lq;J;r � p.In the same way as for the Ising model, we believe that Proposition 4.1.7 failsompletely on Td exept when we have a unique phase in the Potts model. Our lastresult is in that diretion.Proposition 4.1.8. Let d � 2 be a given integer and onsider the fuzzy Potts model onTd with parameters q � 3, J > 0 and r 2 f1; : : : ; q � 1g where e2J � q � 2. If theunderlying Gibbs measures for the Potts model satisfy �Td;1q;J 6= �Td;0q;J , then there exists0 < p < 1 suh that �Td;0q;J;r dominates p but �Td;�q;J;r does not dominate p.4.2 ProofsWe start to reall some fats from [2℄ onerning the notion of ompletely homoge-neous Markov hains on Td. Denote the vertex set and the edge set of Td with V (Td)and E(Td) respetively. Given a direted edge hx; yi 2 E(Td) de�ne the �past� sitesby ℄�1; hx; yi[= f z 2 V (Td) : z is loser to x than to y g:ForA � V (Td) denote byFA the �-algebra generated by the spins inA. A probabilitymeasure � on f�1; 1gV (Td) is alled a Markov hain if�( �(y) = 1 j F℄�1;hx;yi[ ) = �( �(y) = 1 j Ffxg ) �-a.s.



4.2. PROOFS 81for all hx; yi 2 E(Td). Furthermore, a Markov hain � is alled ompletely homoge-neous with transition matrix P = fP (i; j) : i; j 2 f �1; 1g g if(5) �( �(y) = u j Ffxg ) = P (�(x); u) �-a.s.for all hx; yi 2 E(Td) and u 2 f�1; 1g. Observe that suh a P neessarily is astohasti matrix and if it in addition is irreduible denote its stationary distributionby �. In that situation, we get for eah �nite onneted set C � V (Td), z 2 C and� 2 f�1; 1gC that �(� = �) = �(�(z)) Yhx;yi2DP (�(x); �(y))where D is the set of direted edges hx; yi, where x; y 2 C and x is loser to z thany is. In partiular, it follows that every ompletely homogeneous Markov hain whiharise from an irreduible stohasti matrix is invariant under all graph automorphisms.Next, we give a short summary from [2℄ of the Ising model on Td. For J > 0,de�ne(6) �J (t) = 12 log osh(t+ J)osh(t� J) ; t 2 R:The funtion �J is trivially seen to be odd. Moreover, �J is onave on [0;1), in-reasing and bounded. (In fat, �J (t) ! J as t ! 1.) Furthermore, there is a one-to-one orrespondene t 7! �t between the ompletely homogeneous Markov hainsin G(J; h) and the numbers t 2 R satisfying the equation(7) t = h+ d �J (t):In addition, the transition matrix Pt of �t is given by(8) �Pt(�1;�1) Pt(�1; 1)Pt(1;�1) Pt(1; 1) � =  eJ�t2 osh(J�t) et�J2 osh(J�t)e�J�t2 osh(J+t) eJ+t2 osh(J+t)! :Given h 2 R and J > 0 the �xed point equation (7) has one, two or three solutions. Infat Lemma 4.2.1 below tells us exatly when the different situations our. The largestsolution, denoted t+(J; h), orresponds to the plus measure �J;+h and the smallest,denoted t�(J; h), to the minus measure �J;�h . To see why the last statement is true,let �� = �t�(J;h) and note that Lemma 4.2.2 from Setion 4.2.2 implies that �� �� � �+ for any � 2 G(J; h) whih is also a ompletely homogeneous Markov hainon Td. Moreover, equation (1) implies that �J;�h � �� � �J;+h and so �� = �J;�hwill follow if �J;�h are ompletely homogeneous Markov hains. To see that, note thatequation (1) also implies that �J;�h are extremal in G(J; h) whih in turn (see Theorem12.6 in [2℄) gives us that they are Markov hains on Td. Finally, from the fat that�J;�h are invariant under all graph automorphisms on Td, we obtain the ompletelyhomogeneous property (5).
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Figure 4.3: A piture of the �xed point equation (7) when d = 5, h = 8 and J = 3=2. In thispartiular ase we have a unique solution.Lemma 4.2.1 (Georgii). The �xed point equation (7) hasa) a unique solution when jhj > h�(J) or h = h�(J) = 0,b) two distint solutions t�(J; h) < t+(J; h) when jhj = h�(J) > 0,) three distint solutions t�(J; h) < t0(J; h) < t+(J; h) when jhj < h�(J).4.2.1 Proof of Proposition 4.1.1For the upper bound, just invoke Proposition 4:16 in [3℄ whih gives us that �J2;+h ��J1;+h1 if h � h1 +N jJ1 � J2j.For the lower bound, we argue by ontradition as follows. Assume~h < h1 �N(J1 + J2)and pik h0 suh that(9) ~h < h0 < h1 �N(J1 + J2):The right inequality of (9) is equivalent to2(h0 +NJ2) < 2(h1 �NJ1)
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Figure 4.4: A piture of the �xed point equation (7) when d = 5, h = 0 and J = 3=2.and so we an pik 0 < p1 < p2 < 1 suh that2(h0 +NJ2) < log( p11� p1 ) < log( p21� p2 ) < 2(h1 �NJ1):By using the last inequalities together with Proposition 4.16 in [3℄, we an onludethat �J2;+h0 � p1�J1;+h1 � p2 :Sine p1 < p2 this tells us that �J2;+h0 � �J1;+h1 . On the other hand we have h0 > ~hwhih by de�nition of ~h implies that �J2;+h0 � �J1;+h1 . Hene, we get a ontraditionand the proof is omplete. 24.2.2 Proof of Theorem 4.1.2We will make use of the following lemma from [13℄ onerning stohasti dominationfor ompletely homogeneous Markov hains on Td.



84 CHAPTER 4. PAPER IIILemma 4.2.2 (Liggett, Steif). Given two 2-state transition matries P and Q, let�P and �Q denote the orresponding ompletely homogeneous Markov hains on Td.Then �P dominates �Q if and only if P (�1; 1) � Q(�1; 1) and P (1; 1) � Q(1; 1).Proof of Theorem 4.1.2. To prove (2), let J1, J2 > 0 and h1 2 R be given and notethat we get from Lemma 4.2.2 and equation (8) that �J2;+h � �J1;�h1 if and only ifet+(J2;h)�J22 osh(t+(J2; h)� J2) � et�(J1;h1)�J12 osh(t�(J1; h1)� J1)and et+(J2;h)+J22 osh(t+(J2; h) + J2) � et�(J1;h1)+J12 osh(t�(J1; h1) + J1) :Sine the map R 3 x 7! ex2 osh(x) is stritly inreasing this is equivalent tot+(J2; h) � t�(J1; h1) + J2 � J1and t+(J2; h) � t�(J1; h1) + J1 � J2whih in turn is equivalent to(10) t+(J2; h) � t�(J1; h1) + jJ1 � J2j = ��(J1; J2; h1);and so we want to ompute the smallest h 2 R suh that (10) holds. Note that sinethe map h 7! t+(J2; h) is stritly inreasing and t+(J2; h)! �1 as h! �1 therealways exists suh an h 2 R. If �� � t�(J2) or �� < t�(J2;�h�(J2)), then theequation h+ d�J2(��) = ��is equivalent to t+(J2; h) = ��and so in that ase the smallest h 2 R suh that (10) holds is equal to�� � d�J2(��):If t�(J2;�h�(J2)) � �� < t�(J2), then sine t+(J2; h) � t�(J2) whenever h ��h�(J2) and t+(J2; h) < t�(J2;�h�(J2)) whenever h < �h�(J2), we have in thisase that fh 2 R : �J2;+h � �J1;�h1 g = [�h�(J2);1);and so the h we are looking for is given by �h�(J2).For (3), we note as above that �J2;�h � �J1;�h1 if and only if(11) t�(J2; h) � ��(J1; J2; h1):



4.2. PROOFS 85If �� � �t�(J2) or �� > t+(J2; h�(J2)) then we an proeed exatly as in the �rstase above. If �t�(J2) < �� � t+(J2; h�(J2)), then t�(J2; h) < �� wheneverh � h�(J2) and t�(J2; h) > �� whenever h > h�(J2) and so in that ase we havefh 2 R : �J2;�h � �J1;�h1 g = (h�(J2);1);whih yields (3) and the proof is omplete. 2We will now indiate how to ompute the bounds in Proposition 4.1.1 in the speialase when G = Td. By looking at the formula for f+ and using the de�nition of h�we get that f+(J1; J2; h1) � �+(J1; J2; h1)� d�J2(�+(J1; J2; h1)):Substituting �+ and using the bounds�J � �J (t) � J for all t 2 R we get the upperbound in Proposition 4.1.1 withN = d+ 1. For the lower bound, �rst note that�+ � d�J2(�+) = h1 + d��J1(t+(J1; h1))� �J2(t+(J1; h1))�+ jJ1 � J2j� h1 � (d+ 1)(J1 + J2):Moreover it is easy to hek that�h�(J2) � h1 � (d+ 1)(J1 + J2)when t�(J2;�h�(J2)) � �+ � t�(J2) = t+(J2;�h�(J2))and so the lower bound follows at one.4.2.3 Proof of Proposition 4.1.3Beforewe prove anythingwewould like to reall the fat that we an write (see Remark(ii) after Theorem 4.1.2)f+(J1; J2; h1) =  (J2; �+(J1; J2; h1)) J1; J2 > 0; h1 2 R;where �+(J1; J2; h1) = t+(J1; h1) + jJ1 � J2jand the map t 7!  (J2; t) is ontinuous (see Figure 4.2 for a piture). In the rest ofthe proof, we will use this fat without further noti�ation. For example, the aboveimmediately gives that h1 7! f+(J1; J2; h1) is ontinuous at a point h1 2 R if h1 7!t+(J1; h1) is so.Proof of Proposition 4.1.3. We will only prove part a) and ). The proof of part b)follows the same type of argument as the proof of part a).



86 CHAPTER 4. PAPER IIITo provepart a), we start to argue that for given J1 > 0 the map h1 7! t+(J1; h1) isright-ontinuous at every point h1 2 R. To see that, take a sequene of reals fhng suhthat hn # h1 as n ! 1 and note that sine the map h1 7! t+(J1; h1) is inreasing,the sequene ft+(J1; hn)g onverges to a limit ~t with ~t � t+(J1; h1). Moreover, bytaking the limit in the �xed point equation we see that(12) ~t = h1 + d�J1(~t)and sine t+(J1; h1) is the largest number satisfying (12) we get ~t = t+(J1; h1).Next, assume h1 6= �h�(J1) and hn " h1 as n ! 1. As before, the limit offt+(J1; hn)g exists, denote it by T . The number T will again satisfy (12). By onsid-ering different ases desribed in Figure 4.5, we easily onlude that T = t+(J1; h1).Hene, the funtion h1 7! t+(J1; h1) is ontinuous for all h1 6= �h�(J) and so weget that h1 7! f+(J1; J2; h1) is also ontinuous for all h1 6= �h�(J1).Now assume h1 = �h�(J1). By onsidering sequenes hn # �h�(J1) and hn "�h�(J1) we an similarly as above see that�+(J1; J2;�h�(J1)+) : = limh#�h�(J1) �+(J1; J2; h) = t+(J1;�h�(J1)) + jJ1 � J2j�+(J1; J2;�h�(J1)�) : = limh"�h�(J1) �+(J1; J2; h) = t�(J1;�h�(J1)) + jJ1 � J2jand so�+(J1; J2;�h�(J1)+) = �+(J1; J2;�h�(J1)�) () h�(J1) = 0:Sine h�(J1) = 0 if and only if 0 < J1 � J the ontinuity of h1 7! f+(J1; J2; h1) at�h�(J1) follows at one in that ase. If J1 = J2, then�+(J1; J2;�h�(J1)+) = t+(J2;�h�(J2))�+(J1; J2;�h�(J1)�) = t�(J2;�h�(J2))and sine  (J2; t+(J2;�h�(J2))) =  (J2; t�(J2;�h�(J2)));the ontinuity is lear also in that ase. If J1 > J and 0 < J2 � J, then�+(J1; J2;�h�(J1)+) 6= �+(J1; J2;�h�(J1)�)and the map t 7!  (J2; t) beomes stritly inreasing, hene h1 7! f+(J1; J2; h1) isdisontinuous at �h�(J1). For the ase when J1 > J, J2 > J, J1 6= J2 just notethat h1 7! f+(J1; J2; h1) is ontinuous at �h�(J1) if and only if a and b (de�ned inthe statement of the proposition) are in the �at region in the upper graph of Figure 4.2.To prove part ) we take a loser look at the map (J2; t) 7!  (J2; t). By de�nition,this map is (J2; t) = (�h�(J2) if t�(J2;�h�(J2)) � t < t�(J2)t� d�J2(t) if t � t�(J2) or t < t�(J2;�h�(J2)):
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Figure 4.5: A piture of the different ases in the �xed point equation that an our whenh1 6= �h�(J1). Here, d = 4 and J1 = 3.From the ontinuity of t 7!  (J2; t) for �xed J2 and the fats that J2 7! t�(J2),J2 7! t�(J2;�h�(J2)), J2 7! �h�(J2) and (J2; t) 7! t� d�J2(t) are all ontinuous,we get that  is (jointly) ontinuous and so the result follows. 24.2.4 Proof of Proposition 4.1.4To prove the statement, we will show that the inequality(13) ��J t+(J; h) � 1



88 CHAPTER 4. PAPER IIIholds if a) h � 0 and J � J or b) h < 0 and h�(J) > �h. By integrating equation(13) the statement follows. The proof of equation (13) will be an easy modi�ation ofthe proof of Lemma 5.2 in [13℄. The proof is quite short and so we give a full proofhere, even though it is more or less the same as the proof in [13℄.Write �(J; t) for �J (t) and use subsripts to denote partial derivatives. By differ-entiating the relation h+ d �(J; t+(J; h)) = t+(J; h)with respet to J and solving, we get��J t+(J; h) = d �1(J; t+(J; h))1� d �2(J; t+(J; h)) :To get the left hand side bigger or equal to one, we need(14) d �2(J; t+(J; h)) < 1and(15) �1(J; t+(J; h)) + �2(J; t+(J; h)) � 1d :The �rst inequality is immediate sine in the ases a) and b) above, the funtion t 7!h+ d �(J; t) rosses the line t 7! t from above to below. For (15), note that�1(J; t) = 12� tanh(J + t)� tanh(J � t)��2(J; t) = 12� tanh(J + t) + tanh(J � t)�and so �1(J; t) + �2(J; t) = tanh(J + t);whih yields that �1 + �2 is inreasing in both variables. Moreover, sine tanh(J) =1d (see [2℄), we get �1(J; 0) + �2(J; 0) = 1dand so(16) �1(J; t) + �2(J; t) � 1d if J � J, t � 0.To omplete the proof, observe that in the ases a) and b), we have J � J andt+(J; h) � 0. 2



4.2. PROOFS 894.2.5 Proof of Proposition 4.1.7In the proof we will use the following results from [13℄ onerning domination ofprodut measures.De�nition 4.2.1 (Downward FKG, Liggett, Steif). Given a �nite or ountable setV , a measure � on f�1; 1gV is alled downward FKG if for any �nite A � V , theonditional measure �( � j � � 0 on A ) has positive orrelations.Here, as usual, positive orrelations is de�ned as follows:De�nition 4.2.2 (Positive orrelations). A probability measure � on f�1; 1gV whereV is a �nite or ountable set is said to have positive orrelations ifZ fg d� � Z f d� Z g d�for all real-valued, ontinuous and inreasing funtions f; g on f�1; 1gV .Theorem 4.2.3 (Liggett, Steif). Let � be a translation invariant measure onf�1; 1gZd whih also is downward FKG and let p 2 [0; 1℄. Then the following areequivalent:a) � � p.b) lim supn!1 �( � � �1 on [1; n℄d )1=nd � 1� p.Remarks:(i) In partiular, Theorem 4.2.3 gives us that if two translation invariant, downwardFKG measures have the same above limsup, then they dominate the same set ofprodut measures.(ii) In [13℄, it is a third ondition in Theorem 4.2.3 whih we will not use and so wesimply omit it.Before we state the next lemma we need to reall the following de�nition.De�nition 4.2.3 (FKG lattie ondition). Suppose V is a �nite set and let � be aprobability measure on f�1; 1gV whih assigns positive probabilty to eah element.For �, � 2 f�1; 1gV de�ne � _ � and � ^ � by(� _ �)(x) = max(�(x); �(x)); (� ^ �)(x) = min(�(x); �(x)); x 2 V:We say that � satis�es the FKG lattie ondition if�(� ^ �)�(� _ �) � �(�)�(�)for all �, � 2 f�1; 1gV



90 CHAPTER 4. PAPER IIIGiven a measure � on f�1; 1gZd we will denote its projetion on f�1; 1gT for�nite T � Zd by �T .Lemma 4.2.4. The measures �Zd;�q;J;r are FKG in the sense that �Zd;�T;q;J;r satis�es theFKG lattie ondtion for eah �nite T � Zd.Proof. Forn � 2, let�n = f�n; : : : ; ngd and denote the �nite volume Potts measureson f�1; 1g�n with boundary ondition � � 1 and � � q by �n;1q;J and �n;qq;J . Further-more, let �n;�q;J;r and �n;+q;J;r denote the orresponding fuzzy Potts measures. Given theonvergene in the Potts model, it is lear that �n;�T;q;J;r onverges weakly to �Zd;�T;q;J;ras n ! 1 for eah �nite T � Zd. Sine the FKG lattie ondition is losed undertaking projetions (see [4, p. 28℄) and weak limits we are done if we an show that�n;�q;J;r satis�es the FKG lattie ondition for eah n � 2. In [6℄ it is proved that foran arbitrary �nite graph G = (V;E) the �nite volume fuzzy Potts measure with freeboundary ondition and parameters q, J , r is monotone in the sense that(17) �Gq;J;r(Y (x) = 1 jY (V n fxg) = �) � �Gq;J;r(Y (x) = 1 jY (V n fxg) = �0)for all x 2 V and �, �0 2 f�1; 1gV nfxg with � � �0. We laim that it is possibleto modify the argument given there to prove that �n;�q;J;r are monotone for eah n � 2.(Reall from [4℄ the fat that if V is �nite and � is a probabilty measure on f�1; 1gVthat assigns positive probabilty to eah element, then monotone is equivalent to theFKG lattie ondition.) The proof of (17) is quite involved. However, the hangesneeded to prove our laim are quite straightforward and so we will only give an outlinefor how that an be done. Furthermore, we will only onsider the minus ase, the plusase is similar.By onsidering a sequene � = �1 � �2 � � � � � �m = �0 where �i and �i+1differ only at a single vertex, it is easy to see that it is enough to prove that for all x,y 2 �n and � 2 f�1; 1g�nnfx;yg we have�n;�q;J;r(Y (x) = 1; Y (y) = 1 jY (�n n fx; yg) = �)� �n;�q;J;r(Y (x) = 1 jY (�n n fx; yg) = �)� �n;�q;J;r(Y (y) = 1 jY (�n n fx; yg) = �):(18)Fix n � 2, x, y and � as above. We will �rst onsider the ase when x and y arenot neighbors. At the end we will see how to modify the argument to work whenx, y are neighbors as well. De�ne V� = fz 2 �n n fx; yg : �(z) = �1g andV+ = fz 2 �n n fx; yg : �(z) = 1g. Furthermore, denote by En the set of edgeshu; vi with either u, v 2 �n or u 2 �n, v 2 ��n and let P denote the probabilitymeasure on W = f1; : : : ; qg�n[��n � f0; 1gEn whih to eah site u 2 �n [ ��nhooses a spin value uniformly from f1; : : : ; qg, to eah edge hu; vi assigns value 1 or0with probabilities p and 1�p respetively and whih does those things independently



4.2. PROOFS 91for all sites and edges. De�ne the following events onWA = f(�; �) : (�(u)� �(v))�(e) = 0; 8e = hu; vi 2 En g;B = f(�; �) : �(z) 2 f1; : : : ; rg 8z 2 V�; �(z) 2 fr + 1; : : : ; qg 8z 2 V+g;C = f(�; �) : �(z) = 1; 8z 2 ��n g;and let P0 and P00 be the probability measures on f1; : : : ; qg�n � f0; 1gEn obtainedfromP by onditioning on A \C and A \B \C respetively. (P0 is usually referredto as the Edward-Sokal oupling, see [3℄.) It is well known (and easy to hek) that thespin marginal of P0 is �n;1q;J and that the edge marginal is the so alled random-lustermeasure de�ned as the probability measure on f0; 1gEn whih to eah � 2 f0; 1gEnassigns probability proportional toqk(�) Ye2En p�(e)(1� p)1��(e);where k(�) is the number of onneted omponents in � not reahing ��n. In a similarway it is possible (by ounting) to ompute the spin and edge marginal of P00: Thespin marginal �00 is simply �n;1q;J onditioned on B and the edge marginal �00 assignsprobability to a on�guration � 2 f0; 1gEn proportional to1Drk0(�)(q � r)k1(�)qkx(�)+ky(�) Ye2En p�(e)(1� p)1��(e);where k0(�) is the number of lusters interseting V� but not reahing ��n, k1(�) isthe number of lusters interseting V+, kx(�) (resp ky(�)) is 1 if x (resp y) is in asingleton onneted omponent and 0 otherwise and D is the event that no onnetedomponent in � intersets both V� and V+. Observe that (18) is the same as�00(X(x) 2 fr + 1; : : : ; qg; X(y) 2 fr + 1; : : : ; qg)� �00(X(x) 2 fr + 1; : : : ; qg)�00(X(y) 2 fr + 1; : : : ; qg):(19)An important feature of the oupling P00 is that it gives a way to obtain a spin on�g-urationX 2 f1; : : : ; qg�n distributed as �00:1. Pik an edge on�guration � aording to �00.2. Assign X = 1 to the onneted omponents of � that interset ��n and denotethe union of those omponents by ~C.3. Assign independently spins to a onneted omponent C 6= ~C of � where thespin is taken aording to the uniform distribution onf1; : : : ; rg if C intersets V�,fr + 1; : : : ; qg if C intersets V+,f1; : : : ; qg if C is a singleton vertex x or y.



92 CHAPTER 4. PAPER IIIBy de�ning the funtions fx, fy : f0; 1gEn ! R asfx(�) =8><>:0; if Cx = ~C or Cx intersets V�,q�rq ; if Cx is a singleton,1; otherwise,where Cx is the onneted omponent of � ontaining x (fy de�ned analogously), wesee as in [6℄ that (19) follows if(20) Z fxfy d�00 � Z fx d�00 Z fy d�00:The signi�ane of fx and fy is that fx(�) is the onditional probability that X(x) 2fr+1; : : : ; qg given � and similarly for fy, and that the eventsX(x) 2 fr+1; : : : ; qgand X(y) 2 fr + 1; : : : ; qg are onditionally independent given �. With all this setupdone it is a simple task to see that to prove (20)we an proeed exatly as in [6, p. 1154-1155℄.To take are of the ase when x and y are neighbors, observe that everything wehave done so far also works for the graph with one edge deleted, i.e. the graph withvertex set �n and edge set En n fhx; yig. Hene we an get (19) for that graph.However the observation in [6, 1156℄ gives us (19) even in the ase when we reinsertthe edge hx; yi.Proof of Proposition 4.1.7. Let k, l 2 f0;�;+g be given and let An = [1; n℄d, n � 2.We are done if there exists 0 <  < 1 (independent of k, l and n) suh that�Zd;kq;J;r( � � �1 on An ) � j�Anj�Zd;lq;J;r( � � �1 on An ) for all n.As for the Ising model, it is well known that the in�nite volume Potts measures satisfythe so alled uniform nonnull property (sometimes alled uniform �nite energy prop-erty), whih means that for some  > 0, the onditional probability of having a ertainspin at a given site given everything else is at least . (See for example [8℄ for a morepreise de�nition.) We get for arbitrary � 2 f1; : : : ; qg�An(21) �Zd;kq;J;r( � � �1 on [1; n℄d ) � j�Anj�An;�q;J (Y � �1 on An ):Sine �Zd;lq;J;r( � � �1 on [1; n℄d ) an be written as a onvex ombination of the termsin the far right side of (21) the result follows at one. 24.2.6 Proof of Proposition 4.1.8Let � denote the root of Td and let Vn be the set of all sites in Td with distane atmost n from �. If x is on the unique self-avoiding path from � to y, we say that y is



4.2. PROOFS 93a desendant of x. Given x 2 Td, let Sx denote the set of verties of all desendantsof x (inluding x). Moreover, let Tx denote the subtree of Td whose vertex set is Sxand edge set onsisting of all edges hu; vi 2 E(Td) with u, v 2 Sx. In the proof ofProposition 4.1.8, we will use the following Lemma from [13℄:Proposition 4.2.5 (Liggett, Steif). Let p 2 [0; 1℄, fP (i; j) : i; j 2 f �1; 1g g be atransition matrix for an irreduible 2-state Markov hain with P (�1; 1) � P (1; 1)and let � be the distribution of the orresponding ompletely homogeneous Markovhain on Td. Then the following are equivalent:a) � � p.b) lim supn!1 �( � � �1 on Vn )1=jVnj � 1� p.) P (�1; 1) � p.Proof of Proposition 4.1.8. Fix J > 0, q � 3 and r 2 f1; : : : ; q�1gwith e2J � q�2.In [9℄, it is proved that �Td;0q;J;r is a ompletely homogeneousMarkov hain on Td for allvalues of the parameters with transition matrix e2J+r�1e2J+q�1 q�re2J+q�1re2J+q�1 e2J+q�r�1e2J+q�1 ! :Hene, from Proposition 4.2.5 we get that �Td;0q;J;r � p if and only if(22) p � q � re2J + q � 1 :Furthermore, in [9, p. 10℄ the authors also derive the transition matrix for �Td;1q;J fromwhih we an ompute the following:�Td;�q;J;r ( � � �1 on Vn ) � rXi=1 �Td;1q;J (X � i on Vn )= bb+ q � 1 � e2Je2J + q � 1�jVnj�1+ r � 1b+ q � 1 � e2J+ e2J + q � 2�jVnj�1where b = �Td;1q;J (X(�) = 1 )�Td;1q;J (X(�) = 2 ) = �Tx;1q;J (X(x) = 1 )�Tx;1q;J (X(x) = 2 ) ; x 6= �:



94 CHAPTER 4. PAPER III(Of ourse, homogeneity gives that the last quotient is independent of x.) We get thatlim supn!1 �Td;�q;J;r ( � � �1 on Vn )1=jVnj� e2Je2J + q � 1 + e2J+ e2J + q � 2 :(23)Now, assume that the underlying Gibbs measures for the Potts model satisfy �Td;1q;J 6=�Td;0q;J . It is known [1℄ that this is equivalent to having�Td;1q;J (X(x) = 1 ) > 1q ; 8x 2 Td:In [9℄, the authors observed that if a = �Td;1q;J (X(�) = 1 ), then from symmetry reasonsb = (q � 1)a1� a :Hene, if a > 1q we get b > 1. Moreover, from the reursion formula in [9, p. 9℄ weobtain(24) b = (e2J + q � 1)d+1(+ e2J + q � 2)d+1 :It is easy to see from (24) that if b > 1 then  > 1. Hene, we an hoose p 2 (0; 1)suh that(25) q � re2J + q � 1 < p � q � re2J + q � 1 :Moreover, an easy alulation gives us thate2Je2J + q � 1 + e2J+ e2J + q � 2 � e2J + q � 2e2J + q � 1and sine 1� p < e2J + r � 1e2J + q � 1 � e2J + q � 2e2J + q � 1we get from (23) lim supn!1 �Td;�q;J;r ( � � �1 on Vn )1=jVnj > 1� p:It is now lear that for p as in (25) we have that �Td;0q;J;r dominates p but �Td;�q;J;r does notdominate p. 2Remark: By deriving the transition matrix for �Td;qq;J it is probably possible to provethat there exists p 2 (0; 1) suh that �Td;0q;J;r dominates p but �Td;+q;J;r does not dominatep.



4.3. CONJECTURES 954.3 ConjeturesWe end with the following onjetures onerning the fuzzy Potts model. The orre-sponding statements for the Ising model are proved in [13℄.Conjeture 4.3.1. Let q � 3, r 2 f1; : : : ; q�1g and onsider the fuzzy Potts model onZd. If J1, J2 > 0 with J1 6= J2, then �Zd;+q;J1;r and �Zd;+q;J2;r are not stohastially ordered.Conjeture 4.3.2. Let q � 3, r 2 f1; : : : ; q � 1g and onsider the fuzzy Potts modelon Zd. If 0 < J1 < J2, thensupf p 2 [0; 1℄ : �Zd;+q;J1;r � p g > supf p 2 [0; 1℄ : �Zd;+q;J2;r � p g:Conjeture 4.3.3. Let J > 0, q � 3, r 2 f1; : : : ; q � 1g and onsider the fuzzy Pottsmodel on Td. De�ne the sets:D+ = f p 2 [0; 1℄ : �Zd;+q;J;r � p g;D� = f p 2 [0; 1℄ : �Zd;�q;J;r � p g;D0 = f p 2 [0; 1℄ : �Zd;0q;J;r � p g;(26)If the underlying Gibbs measures for the Potts model satisfy �Td;1q;J 6= �Td;0q;J , then thesets in (26) are all different from eah other.Conjeture 4.3.4. Let q � 3, r 2 f1; : : : ; q � 1g and onsider the fuzzy Potts modelon Td. Denote the ritial value orresponding to non-uniqueness of Gibbs states forthe Potts model by J. If J < J1 < J2 then �Td;+q;J1;r � �Td;+q;J2;r.Remark: If J1 < J2 < J, then�Td;+q;J1;r( �(x) = 1 ) = �Td;+q;J2;r( �(x) = 1 ) = q � rqand so in that ase, �Td;+q;J1;r and �Td;+q;J2;r an not be stohastially ordered.AknowledgementThe author wants to thank Jeffrey Steif for presenting the problems, a areful readingof the manusript and for valuable omments and disussions.Referenes[1℄ M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Disontinuity of the magneti-zation in one-dimensional 1=jx � yj2 Ising and Potts models, J. Statist. Phys. 50 (1988),1�40.
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PAPER IV
Optimal losing of a pair trade with a modelontaining jumpsStig Larsson, Carl Lindberg and Marus Warfheimer





5PAPER IVABSTRACTA pair trade is a portfolio onsisting of a long position in one asset and a short posi-tion in another, and it is a widely applied investment strategy in the �nanial industry.Reently, Ekström, Lindberg and Tysk studied the problem of optimally losing a pairtrading strategy when the differene of the two assets is modelled by an Ornstein-Uhlenbek proess. In this paper we study the same problem, but the model is gener-alized to also inlude jumps. More preisely we assume that the above differene isan Ornstein-Uhlenbek type proess, driven by a Lévy proess of �nite ativity. Weprove a veri�ation theorem and analyze a numerial method for the assoiated freeboundary problem. We prove rigorous error estimates, whih are used to draw someonlusions from numerial simulations.Key words and phrases: Pairs trading, Ornstein-Uhlenbek type proess, �nite elementmethod, error estimate.Subjet lassi�ation : 91B28, 65N30, 45J05.5.1 IntrodutionA portfolio whih onsists of a positive position in one asset, and a negative position inanother is alled a pair trade. Pairs trading was developed at Morgan Stanley in the late1980's, and today it is one of the most ommon investment strategies in the �nanialindustry. The idea behind pairs trading is quite intuitive: the investor �nds two assets,for whih the pries have moved together historially. When the prie spread widens,99



100 CHAPTER 5. PAPER IVthe investor takes a short position in the outperforming asset, and a long position inthe underperforming one with the hope that the spread will onverge again, generatinga pro�t. A main advantage of pairs trading is that the short position an, in priniple,remove any exposure to market risk. For a historial evaluation of pairs trading werefer to [6℄.To model the pair spread the authors in [3℄ proposed a mean reverting GaussianMarkov hain whih they onsidered to be observed in Gaussian noise. Reently, in[2℄ the authors suggested the ontinuous time analogue, the so alled mean revertingOrnstein-Uhlenbek proess. In this paper we generalize the model of the spread toalso inlude possible jumps. Let (
;F ;P) be a omplete probability spae where thefollowing proesses are de�ned in suh a way that they are independent:� A standard Brownian motionW = fWtgt�0.� A Possion proessN� = fN�t gt�0 with intensity � > 0.� A sequene of independent random variables fX'k g1k=1 with ommon ontinu-ous symmetri density '. Moreover, the support of ' is ontained in the interval(�J; J) for some J > 0.De�ne the ompound Poisson proess C�;' = fC�;'t gt�0 in the usual way asC�;'t = N�tXk=1X'kand denote the �ltration generated byW , C�;' and the null sets of F by F = fFtgt�0.It is well known that this �ltration satis�es the usual hypotheses (see for example [10℄).From now on, when we say that a proess is a martingale, submartingale or super-martingale we mean that this is with respet to F.Let the differene U = fUtgt�0 between the assets be the unique solution of thestohasti differential equation(1) dUt = ��Ut dt+ � dWt + dC�;'t ; t > 0;where � > 0, � > 0. (The solution of equation (1) is usually alled a generalizedOrnstein-Uhlenbek proess or an Ornstein-Uhlenbek type proess.) Sometimes wewill denote the driving Lévy proess in (1) by Z�;�;', i.e.Z�;�;'t = �Wt + C�;'t ; t � 0:As disussed in [2℄, there is a large risk assoiated with a pair trading strategy. Indeed,if the market spread eases to be mean reverting, the investor is exposed to substantialrisk. Therefore, in pratie the investor typially hooses in advane a stop-loss levela < 0, whih orresponds to the level of loss above whih the investor will lose thepair trade. For a given stop-loss level a < 0 de�ne(2) �a = infft � 0 : Ut � ag;



5.1. INTRODUCTION 101the �rst hitting time of the region (�1; a℄, and the so alled value funtion(3) V (x) = sup� Ex[U�a^� ℄ x 2 R;where the supremum is taken over all stopping times with respet to U . (Here andin the sequel Ex means expeted value when U0 = x.) The major interest here is toharaterize V , and perhaps more importantly, to desribe the stopping time where thesupremum is attained. Sine the drift has the opposite sign as U , we have no reasonto liquidate our position as long as U is negative. On the other hand, if U is positive,then the drift is working against the investor and for large values of U the size of thedrift should overome the possible bene�ts from random variations. Moreover, sinethe jumps are assumed to be symmetri, this indiates that there is a stopping barrierb > 0 with the property that we should keep our position when Ut < b and liquidateas soon as Ut � b. We note that we annot be sure to lose the pair trade at anyof the boundaries a or b, beause the spread an exhibit jumps. This was not the asein [2℄ and it is the major reason for the additional dif�ulties enountered in the presentpaper.General optimal stopping theory (desribed for example in [9, Ch. 3℄) leads us tobelieve that the value funtion is given by V = u, where (u; b) is the solution of thefree boundary problem GUu(x) = 0; x 2 (a; b);u(x) = x; x 62 (a; b);u0(b) = 1:(4)Here GU is the in�nitesimal generator of U , whih is de�ned on the spae of twieontinuously differentiable funtions f : R ! R with ompat support:(5) GUf(x) = �22 f 00(x)� �xf 0(x) + � Z 1�1(f(x+ y)� f(x))'(y) dy; x 2 R:Moreover, the stopping time where the supremum in (3) is attained should be(6) �b = infft � 0 : Ut � bg:Indeed, our �rst result is a so alled veri�ation theorem.Theorem 5.1.1. Assume that (u; b) is a lassial solution of (4) witha) GUu(x) � 0, for x > b,b) u(x) � x, for x 2 R.Then u(x) = V (x) = Ex[U�a^�b ℄, for x 2 R, where V is given by (3).



102 CHAPTER 5. PAPER IVRemark: As seen from the assumptions on ', we are assuming that the absolute valueof the jumps of the proess fUtg�0 are bounded. The reason is that on the �nanialmarket, an asset annot jump to arbitrarily large levels. If nothing else, the jumps arebounded by all the money in the world.The rest of the paper is organized as follows. In Setion 5.2 we prove Theorem5.1.1 and in Setion 5.3 we disuss a numerial solution of the free boundary problem(4). We also present strong evidene for the existene and uniqueness of a solution of(4).5.2 Proof of Theorem 5.1.1Before we start to prove Theorem 5.1.1 we need to reall some fats. From the generaltheory in [5℄ we get that the boundary value problemGUu(x) = 0; x 2 (a; b);u(x) = x; x 62 (a; b);(7)has a unique lassial solution and that suh a solution belongs to the spaeC2(R n fa; bg) \ C1(R n fa; bg) \ C(R):Moreover, the �nite left and right limits of u0 and u00 exist at a and b. Although thesefats follow from [5℄, we present in Theorem 5.3.1 a self-ontained proof for the sim-pler situation that we onsider here. Hene, if (u; b) is a lassial solution of (4), thenneessarily u 2 C2(R n fa; bg) \ C1(R n fag) \ C(R)with �nite left and right limits of u0 and u00 everywhere. Furthermore, reall a general-ized version of It�'s formula for onvex funtions (see for example [10, Ch. 4℄):Theorem 5.2.1 (Meyer-It� formula). Let X = fXtg�0 be a semimartingale and letf be the differene of two onvex funtions. Thenf(Xt) = f(X0) + Z t0+D�f(Xs�) dXs+ X0<s�t �f(Xs)� f(Xs�)�D�f(Xs�)�Xs�+ 12 Z 1�1 Lyt (X) d�(y);where D�f is the left derivative of f , � is a signed measure whih is the seondgeneralized derivative of f and fLat (X)gt�0 is the loal time proess of X at a.



5.2. PROOF OF THEOREM 5.1.1 103Due to the regularity of u it an be written as a differene of two onvex funtions(see Problem 6:24 in [7, Ch. 3℄). Moreover, the seond derivative measure � of uan be split into two parts � = � + �d, where the ontinuous part � is given byd� = u00 dx and the disrete part �d = Æa is a point mass at a. Here, u00(x) denotesthe seond derivative of u at x exept at the points a and b, where it denotes the rightseond derivative (whih we know is �nite). By Corollary 1 of the Meyer-It� formulain [10℄, we an now write12 Z 1�1 Lyt (U) d�(y) = 12 Z t0 u00(Us�) d[U;U ℄s + 12Lat (U)�u0(a+)� u0(a�)�= �22 Z t0 u00(Us�) ds+ 12Lat (U)�u0(a+)� u0(a�)�;(8)where [U;U ℄ denotes the ontinuous part of the quadrati variation [U;U ℄.Furthermore, by using (1) and the ompensated Poisson randommeasure~NZ(dt; dy) = NZ(dt; dy) � � dt '(y) dy;whereNZ denotes the jump measure assoiated with Z�;�;', we getZ t0+D�u(Us�) dUs + X0<s�t �u(Us)� u(Us�)�D�u(Us�)�Us�= �� Z t0 Us�D�u(Us�) ds+ � Z t0 D�u(Us�) dWs+ Z t0+ ZR �u(Us� + y)� u(Us�)� ~NZ(ds; dy)+ � Z t0 ZR �u(Us� + y)� u(Us�)�'(y) dy ds:(9)
Summing up, we now have for t � 0u(Ut) = u(U0) + Z t0 ��22 u00(Us�)� �Us�D�u(Us�)� ds+ � Z t0 ZR �u(Us� + y)� u(Us�)�'(y) dy ds+ 12Lat (U)�u0(a+)� u0(a�)�+Mt;(10)whereMt = � Z t0 D�u(Us�) dWs + Z t0+ ZR �u(Us� + y)� u(Us�)� ~NZ(ds; dy):Sine u is Lipshitz, has a bounded left derivative and sine the jumps density 'has a�nite swe get that fMtgt�0 is a martingale.



104 CHAPTER 5. PAPER IVLemma 5.2.2. Assume a 2 R and U0 > a. Then a.s. La�a^t(U) = 0 for all t � 0.Proof. Fix a 2 R and assume U0 > a. Sine the loal time proess fLat gt�0 isontinuous in t it is enough to prove that for �xed t � 0 we have La�a^t(U) = 0 a.s.From [10, p. 217℄, we get that12La�a^t(U) = (U�a^t � a)� � X0<s��a^t 1fUs�>ag(Us � a)�+ Z �a^t0+ 1fUs��ag dUs � X0<s��a^t 1fUs��ag(Us � a)+:Futhermore, from the fat that Us > a for all 0 < s < �a ^ t, we get that Us� � a forall 0 < s < �a ^ t and from the left ontinuity of Us�, we an onlude that we alsohave U�a^t� � a. From that and by splitting the integral and the sum, we obtain12La�a^t(U) = 1fU�a^t�=ag(U�a^t � a)� + 1fU�a^t�=ag(U�a^t � a)� 1fU�a^t�=ag(U�a^t � a)+ + Z �a^t�0+ 1fUs�=ag dUs� X0<s<�a^t 1fUs�=ag(Us � a)+= Z �a^t�0+ 1fUs�=ag dUs � X0<s<�a^t 1fUs�=ag(Us � a)+:From the observation that if Us� = a for some 0 < s < �a ^ t, then s is a jump timeand the jump must be in the up diretion, we onlude that the right hand side of thelast expression is zero and so we are done.Remark: In a similar way one an show that, if a < U0 < b, thenLa�a^�b^t(U) = 0 and Lb�a^�b^t(U) = 0 for t � 0:Proof of Theorem 5.1.1. Sine u(x) = V (x) = Ex[U�a^�b ℄ = x, when x � a, we anassume that x > a. De�ne Yt = u(U�a^t), t � 0. By using (10), Lemma 5.2.2, theexpression (5) for the generator of U , and (4), we getYt = u(x)� Z �a^t0 �Us�1fUs��bg ds+ � Z �a^t0 ZR �u(Us� + y)� u(Us�)�'(y)1fUs��bg dy ds+M�a^t:(11)Property a) and the martingale property of fM�a^tg give that fYtgt�0 is a super-martingale. Furthermore, from property b) we get that Yt � U�a^t, for t � 0, andsine(12) U�a^t � a� J; t � 0;



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 105we an apply the optional sampling theorem (see [7℄) and obtainEx[U�a^� ℄ � Ex[Y� ℄ � Ex[Y0℄ = u(x);where � is an arbitrary stopping time with respet to U . Hene, V (x) � u(x) forx > a. In partiular, if x � b then x � V (x) � u(x) = x and so u(x) = V (x) =Ex[U�a^�b ℄ when x � b.For the ase when a < x < b, note that from (11) we get for t � 0 thatY�b^t =M�a^�b^t + u(x)and sine a� J � Y�b^t � b+ J; t � 0;the optional sampling theorem applies again and we obtain u(x) = Ex[Y�b ℄. Finally,the fat that Y�b = U�a^�b gives us u(x) = Ex[U�a^�b ℄ � V (x) and the proof isomplete. 25.3 Numerial solution of the equation (4)We have not been able to give a rigorous proof of the existene and uniqueness of thesolution (u; b) of the free boundary value problem (4). We therefore resort to a nu-merial solution by means of the �nite element method. However, at the end of thissetion we will show that we have strong omputational evidene for both existeneand uniqueness for (4). In order to ahieve this we �rst show rigorous existene andregularity results for the boundary value problem (7) and rigorous onvergene esti-mates with expliit onstants for the �nite element approximation.5.3.1 The boundary value problemWe begin by transforming the free boundary value problem (4) to a problem with ho-mogeneous boundary values. Set v(x) = u(x) � x and use R1�1 y'(y) dy = 0 toget � 12�2v00(x) + �xv0(x)�� Z 1�1 �v(x+ y)� v(x)�'(y) dy = ��x; x 2 (a; b);v(x) = 0; x 62 (a; b);v0(b) = 0:(13)Introduing the operatorsLv(x) = � 12�2v00(x) + �xv0(x);Iv(x) = � Z 1�1 �v(x+ y)� v(x)�'(y) dy;



106 CHAPTER 5. PAPER IVour approah will be to �rst solve the boundary value problemLv � Iv = f; x 2 (a; b);v(x) = 0; x 62 (a; b);(14)with f(x) = ��x, and then for �xed a < 0 �nd b > a suh that v0(b) = 0.To solve (14) we follow a standard approah based on a weak formulation andFredholm's alternative. We denote by (�; �) and k � k the standard salar produt andnorm in L2(a; b), and we denote byHk(a; b) andH10 (a; b) = fv 2 H1(a; b) : v(a) =v(b) = 0g the standard Sobolev spaes. We denote the derivative Dv = dv=dx. Wehoose v 7! kDvk to be the norm inH10 (a; b), whih is equivalent to the standardH1-norm. We extend funtions v 2 L2(a; b) by zero outside (a; b) so that Iv is properlyde�ned. We de�ne bilinear formsAL(u; v) = Z ba � 12�2u0(x)v0(x) + �xu0(x)v(x)� dx; u; v 2 H10 (a; b);AI(u; v) = Z ba Iu(x)v(x) dx; u; v 2 L2(a; b)A(u; v) = AL(u; v)�AI(u; v):(15)Sine R1�1 '(y) dy = 1, '(�y) = '(y), and v(x) = 0 for x 62 (a; b), we also haveIv(x) = � Z ba '(x� y)v(y) dy � �v(x); v 2 L2(a; b):(16)The onvolution operator I1v(x) = R1�1 '(x � y)v(y) dy is bounded in L2(a; b)with onstant  = R1�1 '(y) dy = 1 by Young's inequality. Hene,kIvk � 2�kvk; v 2 L2(a; b);(17) kDIvk � 2�kDvk; v 2 H10 (a; b);(18)and �AI(v; v) � ��kvk2 � kI1vkkvk� � 0; v 2 L2(a; b):Hene, jA(u; v)j � 12�2kDukkDvk+ �max(jaj; jbj)kDukkvk+ 2�kukkvk� 1kDukkDvk; u; v 2 H10 (a; b);1 = 12�2 + 2(�max(jaj; jbj) + 2�2);where we also used Poinaré's inequalitykvk � 2kDvk; v 2 H10 (a; b); 2 = (b� a)=�:(19)



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 107By integration by parts we obtainAL(v; v) = 12�2kDvk2 � 12�kvk2; v 2 H10 (a; b);so that A(�; �) is bounded and oerive onH10 (a; b):jA(u; v)j � 1kDukkDvk; u; v 2 H10 (a; b);(20) A(v; v) � 12�2kDvk2 � 12�kvk2; v 2 H10 (a; b):(21)We say that v 2 H10 (a; b) is a weak solution of (14) ifA(v; �) = (f; �) 8� 2 H10 (a; b):(22)We also use the adjoint problem: �nd w 2 H10 (a; b) suh thatA(�;w) = (�; g) 8� 2 H10 (a; b):(23)The strong form is (note that I is self-adjoint in L2(a; b))L�w(x) � Iw(x) = g(x); x 2 (a; b);w(x) = 0; x 62 (a; b);(24)where L�w(x) = � 12�2w00(x) � �xw0(x)� �w(x):We may now prove the existene and uniqueness of a lassial solution of (14). Inpriniple this follows from the general theory in [5℄, but we present a self-ontainedproof, with expliit onstants, for the simpler situation that we onsider here. Thetheorem also provides results neessary for the analysis of the �nite element method.Theorem 5.3.1. The boundary value problem (14) has a unique weak solution v 2H10 (a; b) for every f 2 L2(a; b). The solution belongs to H2(a; b) and there is aonstant 3 suh that kD2vk � 3kfk:(25)Moreover, if f(x) = ��x, then the solution is lassial, v 2 C2([a; b℄). Similarly, theadjoint problem (24) has a unique weak solution w 2 H10 (a; b) for eah g 2 L2(a; b),whih belongs to H2(a; b) and kD2wk � 3kgk:(26)Proof. The proof is a standard argument as presented, for example, in [4, Ch. 6℄ forellipti PDEs. The only differene is that that the lowest order term inA(�; �) is de�nedby means of an integral operator, but the ruial properties (20), (21) are the same.



108 CHAPTER 5. PAPER IVWe �rst show that weak solutions are regular. We use a regularity result for elliptiproblems (see [4, p. 323℄): If v is a weak solution ofLv(x) = g(x); x 2 (a; b); v(a) = v(b) = 0;and if g 2 Hk(a; b) for some k � 0, then v 2 Hk+2(a; b). A weak solution v 2H10 (a; b) of (14) satis�es this with g = f + Iv, where by (17), (18) Iv 2 H1(a; b).For f 2 L2(a; b) we onlude that v 2 H2(a; b). If f 2 H1(a; b), then we havev 2 H3(a; b) and by Sobolev's inbedding v 2 C2([a; b℄). In partiular, a weak solutionis lassial when f(x) = 0 and f(x) = ��x. Analogous regularity results hold forthe adjoint problem.Now we an prove existene. LetA�(u; v) = A(u; v) + 12�(u; v):By the Lax-Milgram lemma we know that the shifted problemA�(u; �) = (g; �) 8� 2 H10 (a; b);has a unique solution u 2 H10 (a; b) for eah g 2 L2(a; b). This de�nes the boundedlinear operator A�1� : L2(a; b) ! H10 (a; b) by u = A�1� g. The equation (22) is nowequivalent to v = A�1� f + 12�A�1� v;or v �Kv = h, where h = A�1� f and whereK = 12�A�1� : L2(a; b)! L2(a; b) is aompat operator, beauseH10 (a; b) is ompatly inbedded in L2(a; b).By the Fredholm alternative we know that the latter equation is uniquely solvablefor every h 2 L2(a; b) if and only if the orresponding homogeneous equation hasno non-trivial solution. But a non-trivial solution of v � Kv = 0 would be a weaksolution, and hene a lassial solution, of (14) with f = 0.Then we an apply the maximum priniple for lassial solutions of (14), see [5,Theorem 3.1.3℄. It says that if a lassial funtion satis�es (L � I)u � 0 in (a; b),then max[a;b℄ u = maxRn(a;b)u. (The maximum priniple for the integro-differentialequation is proved in the same way as for the differential equation after noting that�Iu(x0) � 0 if u has a maximum at x0.) We onlude that that the homogeneousequation has no non-trivial solution and therefore (14) has a unique weak solution forevery f 2 L2(a; b). By the Fredholm theory the adjoint problem (24) is then alsouniquely solvable for all g 2 L2(a; b).Finally, we prove the bounds (25) and (26). Let v = A�1f and w = (A�)�1gdenote the solution operators of (14) and (24), respetively.Let f 2 H10 (a; b). Then v = A�1f is lassial and the maximum priniple giveskvkL1(a;b) � 4kfkL1(a;b):(27)



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 109In order to ompute the expliit onstant we brie�y reall the proof. Let�(x) = (e(b�a) � e(x�a); x � b;0; x � b;where  > 0 is hosen so that that A� � 1 in (a; b). Then u(x) = kfkL1(a;b)�(x)satis�es Au � kfkL1(a;b) � f = Av in (a; b) and u � 0 = v outside (a; b), sothat the maximum priniple gives max[a;b℄(v � u) = maxRn(a;b)(v � u) = 0, thatis, u � v in [a; b℄. Hene v � k�kL1(a;b)kfkL1(a;b) in [a; b℄. The lower boundv � �k�kL1(a;b)kfkL1(a;b) is obtained in a similar way and so we getkvkL1(a;b) � k�kL1(a;b)kfkL1(a;b) � e(b�a)kfkL1(a;b):To determine , let x 2 (a; b) and ompute�I�(x) = �e(x�a) Z b�x�1 (ey � 1)'(y) dy+ �(e(b�a) � e(x�a)) Z 1b�x '(y) dy� ��e(x�a) Z 1�1 '(y) dy = ��e(x�a):Hene, A�(x) � ( 12�22 � �b � �)e(x�a) � 1; x 2 (a; b);if 12�22 � �b � � � 1, that is, if = ̂ = �b�2 +r2(�+ 1)�2 :Then we onlude that (27) holds with 4 = ê(b�a).Hene, sine kvk � (b � a) 12 kvkL1(a;b) and kfkL1(a;b) � (b � a) 12 kDfk, weobtain the boundkvk = kA�1fk � 5kDfk 8f 2 H10 (a; b); 5 = (b� a)4:By duality we onludek(A�1)�kB(L2;H�1) = kA�1kB(H10 ;L2) � 5:Hene kwkH�1 = k(A�)�1gkH�1 = k(A�1)�gkH�1 � 5kgk 8g 2 L2(a; b);(28)



110 CHAPTER 5. PAPER IVwhereH�1(a; b) = (H10 (a; b))� andkwkH�1 = sup�2H10 (�;w)kD�k :Reall that v 7! kDvk is the hosen norm in H10 (a; b). By using � = w 2 H10 (a; b)here we obtain kwk2 � kwkH�1kDwk:(29)We take � = w in the adjoint equation (23) and use oerivity (21), the inequality2ab � �a2 + ��1b2, and (29) to get12�2kDwk2 � A(w;w) + 12�kwk2 � kgkkwk+ 12�kwk2� 12��1kgk2 + �kwk2 � 12��1kgk2 + �kwkH�1kDwk� 12��1kgk2 + �2��2kwk2H�1 + 14�2kDwk2:With (28) this leads tokDwk2 � 2��2��1kgk2 + 4��4��2kwk2H�1� (2��2��1 + 4��4��225)kgk2and with Poinaré's inequality (19),kwk � 2kDwk � 2(2��2��1 + 4��4��225) 12 kgk:Hene k(A�)�1gk = kwk � 6kgk 8g 2 L2(a; b);6 = 2(2��2��1 + 4��4��225) 12 :(30)By duality in L2 we also havekvk = kA�1fk � 6kfk 8f 2 L2(a; b):(31)In order to boundD2v we reall that v 2 H2(a; b). Hene it satis�es (14) strongly, sothat with (17) we obtain12�2kD2vk � �kxDvk+ kIvk+ kfk� �max(jaj; jbj)kDvk+ 2�kvk+ kfk� �max(jaj; jbj)kD2vk 12 kvk 12 + 2�kvk+ kfk� 14�2kD2vk+ (2�+ ��2�2max(jaj; jbj)2)kvk+ kfk:



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 111Hene, kD2vk � 7kfk+ 8kvk;7 = 4��2; 8 = 4��2(2�+ �+ ��2�2max(jaj; jbj)2):In the last step we replaed 2� by 2� + � in 8, so that the same result holds also forthe adjoint equation (24). Using also (30) and (31) we �nally onludekD2vk � 3kfk; kD2wk � 3kgk;3 = 7 + 68:This ompletes the proof.5.3.2 The �nite element methodThe �nite element method is based on a family of subdivisions Th of the interval [a; b℄parametrized by the maximal mesh size h. Eah mesh is of the formTh : a = x0 < x1 < � � � < xj�1 < xj < � � � < xN = b; h = maxj=1;:::;N(xj � xj�1):We introdue the spae Vh � H10 (a; b) onsisting of all ontinuous funtions thatredue to pieewise polynomials of degree� 1 with respet to Th. See [8, Ch. 5℄ or [1,Ch. 1℄. Then there is an interpolator Ih : C([a; b℄) ! Vh suh that Ihu(xj) = u(xj),j = 1; : : : ; N , andkD(u� Ihu)kLp(a;b) � h 12+ 1p kD2uk; u 2 H2(a; b) \H10 (a; b); p = 2;1:(32)To prove this we use the identityD(u� Ihu)(x) = h�1j Z xjxj�1 �u0(x)� u0(y)� dy = h�1j Z xjxj�1 Z xy u00(z) dz dy;for x 2 (xj�1; xj) and with hj = xj � xj�1, whih yieldsjD(u� Ihu)(x)j � h 12j kD2ukL2(xj�1;xj) � h 12 kD2uk; x 2 (xj�1; xj):This proves the ase p =1 and for p = 2 we havekD(u� Ihu)k2 � NXj=1 h2jkD2uk2L2(xj�1;xj) � h2kD2uk2:The �nite element problem is based on the weak formulation in (22): �nd vh 2 Vhsuh that A(vh; �h) = (f; �h) 8�h 2 Vh;(33)where A(�; �) is de�ned in (15) with the integral operator omputed as in (16). In thefollowing theorem we prove onvergene estimates with expliit onstants.



112 CHAPTER 5. PAPER IVTheorem 5.3.2. Let v be the solution of (14) as in Theorem 5.3.1. There is h0 =�=(2 12� 12 13) suh that, for h � h0, (33) has a unique solution vh 2 Vh andkv � vhk � 42123��2h2kfk; kD(v � vh)k � 413��2hkfk:(34)Proof. We adapt an argument from [11℄. Let e = v � vh denote the error. By subtra-tion of (33) and (22) with � = �h 2 Vh � H10 (a; b) we getA(e; �h) = 0 8�h 2 Vh:(35)Consider the adjoint problem (23) with g = e and solution w = (A�)�1e. With � = ethis yields kek2 = A(e; w) = A(e; w � Ihw) � 1kDekkD(w � Ihw)k� 1kDekhkD2wk � 13hkDekkek:Here we used (35), (20), (32), and (26). We onludekek � 13hkDek:(36)In view of (35) we have A(e; e) = A(e; v � vh) = A(e; v), so that by (21) and(36), 12�2kDek2 � A(e; e) + 12�kek2 = A(e; v) + 12�kek2� 1kDekkDvk+ 12�2123h2kDek2:(37)Hene, for h � h0 suf�iently small (h20 = �2=(2�2123)), we havekDek � 9kDvk; 9 = 41��2:Now if f = 0 in (22) and (33), then v = 0 by uniqueness, and hene e = 0, so thatvh = 0. This means that we have uniqueness for the �nite element problem (33). Butthis is an equation in a �nite dimensional spae so existene also follows. Therefore,(33) has a unique solution for all f 2 L2(a; b) if h � h0.In order to prove the error estimate (34) we return to (37) but use A(e; e) =A(e; v � vh) = A(e; v � Ihv) instead:12�2kDek2 � A(e; e) + 12�kek2 = A(e; v � Ihv) + 12�kek2� 1kDekkD(v � Ihv)k+ 12�2123h2kDek2;and onlude, for h � h0,kDek � 9kD(v � Ihv)k; 9 = 41��2:Hene, by (32), (25), and (36),kDek � 9hkD2vk � 93hkfk = 413��2hkfk;kek � 13hkDek � 42123��2h2kfk;whih is (34).



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 113We �nish by proving the pointwise onvergene of the derivative.Corollary 5.3.3. Assume that eah �nite element mesh Th is uniform, that is, xj �xj�1 = h for j = 1; : : : ; N . Then, for h � h0 as in Theorem 5.3.2, we havejv0(b)� v0h(b)j � 10h 12 kfk; 10 = 2 + 413��2:Proof. We use the inverse inequalitykD�hkL1(a;b) � h� 12 kD�hk; �h 2 Vh:To prove this we note thatD�h(x) = h�1 Z xjxj�1 D�h(y) dy; x 2 (xj�1; xj); h = xj � xj�1;whih yieldsjD�h(x)j � h� 12 kD�hkL2(xj�1;xj) � h� 12 kD�hk; x 2 (xj�1; xj):Hene, by (32) and (34),kDekL1(a;b) � kD(v � Ihv)kL1(a;b) + kD(Ihv � vh)kL1(a;b)� kD(v � Ihv)kL1(a;b) + h� 12 kD(Ihv � vh)k� kD(v � Ihv)kL1(a;b) + h� 12 kD(Ihv � v)k+ h� 12 kD(v � vh)k� 2h 12 kD2vk+ h� 12 kD(v � vh)k � (2 + 413��2)h 12 kfk:Therefore jv0(b)� v0h(b)j � (2 + 413��2)h 12 kfk:In partiular, with f(x) = ��x, Corollary 5.3.3 givesjv0(b)� v0h(b)j � 11h 12 ; 11 = 10�rb3 � a33 :(38)Given numerial values for the parameters a; b; �; �; � we may now ompute nu-merial values for h0 and 11. Alternatively, we may onlude that there are uniformbounds h0 � ĥ0, 11 � ̂11 for b 2 [b1; b2℄ and with the other parameters �xed.



114 CHAPTER 5. PAPER IV5.3.3 The free boundary value problemWe use uniformmeshes Th withxj � xj�1 = h = b� aN ; j = 1; : : : ; N:Sine we want to vary b, we parametrize byN instead of h. Let f(x) = ��x, �x a < 0and let v, vN denote the solutions of (22) and (33) for b > a. De�ne the funtionsF (b) = v0(b); FN (b) = v0N (b):From (38), we get for a < b1 < b2kF � FNkL1(b1;b2) � ̂12N� 12 ; N � N̂0;̂12 = ̂11(b2 � a) 12 ; N̂0 = b2 � aĥ0 :(39)By writing down the matrix equation for solving the �nite element problem (33), it iseasy to see that, for �xed N , the funtion b 7! FN (b) is ontinuous on (a;1). From(39) we onlude that b 7! F (b) is also ontinuous on (a;1). Moreover, by a diretonsequene of the strong maximum priniple and the Hopf boundary point priniplefor our equation (see [5, Theorem 3.1.4-3.1.5℄), we get the following:Lemma 5.3.4. If a < b � 0, then F (b) < 0. In partiular, if (u; b) is a solution to thefree boundary problem (4), then b > 0.We believe that there exists a unique b > 0 suh that F (b) = 0. We are not able toprovide a rigorous proof of this, but numerial simulations present strong evidene inthe following way. Assign numerial values to the parameters a; �; �; � and �x a jumpdensity '. In all our omputations, we took ' to be the trunated normal distributionwith mean zero, variane  > 0 and support [�J; J ℄, i.e.'(y) = 8><>: e� y222p2� (2�(J=)� 1) if � J < y < J;0 otherwise,where �(x) = 1p2� Z x�1 e�y22 dy; x 2 R:From omputations of the boundary value problem (33) (see Figures 5.1 and 5.2), wean �nd 0 � b1 < b2 and ~N � N̂0 suh thatF ~N (b1) � �12 ; F ~N (b2) � 12 ; and ̂12 ~N� 12 < 14 :



REFERENCES 115(The 1=2 and 1=4 may vary if we hange the parameters.) From (39), we an thenonlude that F (b1) < 0; F (b2) > 0;FN (b1) < 0; FN (b2) > 0 for all N � ~N .Hene, there exists b 2 (b1; b2) suh that F (b) = 0 and for eah N � ~N there existsbN 2 (b1; b2) suh that FN (bN ) = 0. Moreover, (39) gives us thatlimN!1F (bN ) = 0:Of ourse, we annot onlude that b is unique and bN ! b as N ! 1. However,Figure 5.1 suggests that b is unique and from omputations with inreasingN , it seemslike bN onverges, see Table 5.1.We now disuss whether the properties a) and b) in the statement of Theorem 5.1.1hold for a solution (u; b) of (4). We have no rigorous proof, but omputational evi-dene. The properties a) and b) boil down to� Z ba v(y)'(y � x) dy � �x; for x > b;(40)and v � 0 respetively, where (v; b) solves (13). We believe that v � 0 holds forall values of the parameters, but omputations suggests that (40) may fail for ertainparameter values, typially when � is small and � is three or four times larger than �.See Figures 5.3 and 5.4, where we hek (40) for (vN ; bN) instead of (v; b).N bN2000 0.05729394000 0.05727436000 0.05726788000 0.0572653Table 5.1: a = �0:1, � = 10, � = 0:2, � = �20:005 ,  = 0:02 and J = 0:05.
Referenes[1℄ S. C. Brenner and L. R. Sott, The Mathematial Theory of Finite Element Methods,Springer, 2008.[2℄ E. Ekström, C. Lindberg, and J. Tysk, Optimal liquidation of a pair trade, to appear.[3℄ R. Elliot, J. van der Hoek, and W. Malolm, Pairs trading, Quant. Finane 5 (2005), 271�276.
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Figure 5.2: The solution (vN ; bN ) when a = �0:1, � = 10, � = 0:2, � = �20:005 ,  = 0:02and J = 0:05.
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Figure 5.3: A simulation of (40) when a = �0:1, � = 30, � = 0:2, � = �20:005 ,  = 0:02 andJ = 0:05. The ondition fails.
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Figure 5.4: A simulation of (40) when a = �0:1, � = 10, � = 0:2, � = �20:005 ,  = 0:02 andJ = 0:05. The ondition holds.


