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Intera
ting parti
le systems in varying environment, sto
hasti
 dominationin statisti
al me
hani
s and optimal pairs trading in �nan
eMar
us WarfheimerDepartment of Mathemati
al S
ien
esChalmers University of Te
hnology and University of GothenburgABSTRACTIn this thesis we �rst 
onsider the 
onta
t pro
ess in a randomly evolving environment,introdu
ed by Erik Broman. This pro
ess is a generalization of the 
onta
t pro
esswhere the re
overy rate 
an vary between two values. The rate whi
h it 
hooses isdetermined by a ba
kground pro
ess, whi
h evolves independently at different sites.We prove that survival of the pro
ess is independent of how we start the ba
kgroundpro
ess, that �nite and in�nite survival are equivalent and �nally that the pro
ess diesout at 
riti
ality.Se
ond, we 
onsider spin systems on Z whose rates are again determined by aba
kground pro
ess, whi
h is more general than that 
onsidered above. We prove that,if the ba
kground pro
ess has a unique stationary distribution and if the rates satisfy a
ertain positivity 
ondition, then there are at most two extremal stationary distributions.Third, we dis
uss various aspe
ts 
on
erning sto
hasti
 domination for the Isingand fuzzy Potts models. We begin by 
onsidering the Ising model on the homogeneoustree of degree d, Td. For given intera
tion parameters J1, J2 > 0 and external �eldh1 2 R, we 
ompute the smallest external �eld ~h su
h that the plus measure withparameters J2 and h dominates the plus measure with parameters J1 and h1 for allh � ~h. Moreover, we dis
uss 
ontinuity of ~h with respe
t to the parameters J1, J2, h1and also how the plus measures are sto
hasti
ally ordered in the intera
tion parameterfor a �xed external �eld. Next, we 
onsider the fuzzy Potts model and prove that onZdthe fuzzy Potts measures dominate the same set of produ
t measures while on Td, for
ertain parameter values, the free and minus fuzzy Potts measures dominate differentprodu
t measures.Finally, we study the problem of optimally 
losing a pair trading strategy when thedifferen
e of the underlying assets is assumed to be an Ornstein-Uhlenbe
k type pro-
ess driven by a jump-diffusion pro
ess. We prove a veri�
ation theorem and analyzea numeri
al method for the asso
iated free boundary problem. We prove rigorous errorestimates, whi
h are used to draw some 
on
lusions from numeri
al simulations.
Keywords: Intera
ting parti
le systems, 
onta
t pro
ess, randomly evolving environment, spinsystems, Ising model, fuzzy Potts model, pairs trading, optimal stopping.
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Part IINTRODUCTION





1Introdu
tionThis thesis 
onsists of three parts. Part one (the �rst two papers) 
on
erns intera
t-ing parti
le systems in a randomly evolving environment, part two (the third paper)
on
erns sto
hasti
 domination in the Ising and fuzzy Potts models and part three (thefourth paper) 
on
erns how to optimally 
lose a pair trading strategy in �nan
e. In thisintrodu
tionary 
hapter we brie�y give some ba
kgroundmaterial to all of these topi
sand at the end we give a summary of the papers in the thesis. We prefer to present mostof the material in a rather informal way; for a mathemati
ally pre
ise des
ription seethe relevant referen
es or the papers in the thesis.1.1 Intera
ting parti
le systemsThe �eld of intera
ting parti
le systems is a bran
h of probability theory. However,the motivation often 
omes from physi
al or biologi
al systems. In loose terms, onetries to formulate a mathemati
al model for obje
ts (parti
les, people, 
ars, et
) whi
hintera
t with ea
h other in a 
ertain way. One way to 
onstru
t su
h a model is to pla
eea
h obje
t at a site in a graph stru
ture and de
lare that ea
h one of them 
an be inone of a �nite number of different states. (A graph is just a �nite or 
ountable set ofverti
es equipped with a relation that de�nes whi
h verti
es are neighbors.) One thenassigns some initial 
on�guration (or distribution) and lets the system evolve a

ordingto some probabilisti
 rules. It is at this point where the intera
tions 
ome into play.Ea
h obje
t is 
hanging its state at a rate depending on the states of the other (usuallyneighboring) obje
ts as well as itself. 3



4 CHAPTER 1. INTRODUCTIONFrom a more mathemati
al point of view, intera
ting parti
le systems are a spe
ial
lass of so 
alled Markov pro
esses. Markov pro
esses have the property that giventhe present state, the future is independent of the past. Denote the set of sites andpossible states by S and A respe
tively. The state spa
e, or 
on�guration spa
e, forour Markov pro
ess is then AS . The most 
ommon situation is when A 
onsists ofonly two elements and that only one 
oordinate of the pro
ess is allowed to 
hangeat a time. Su
h pro
esses are 
alled spin systems. In this situation, the evolution isdes
ribed by a rate fun
tion, 
(x; �), x 2 S and � 2 AS , whi
h gives the rate atwhi
h the 
oordinate at x �ips when the system is in state �. Having something o

ur�at a rate 
(x; �)� means informally that the time for this to o

ur has an exponentialdistribution with mean 1=
(x; �).In this generality not mu
h 
an be said. Therefore one 
on
entrates upon spe
i�
types of models of whi
h I will name a few.The 
onta
t pro
ess on the d-dimensional latti
e Zd. This pro
ess was introdu
edby Harris [18℄ and is a model for spread of an infe
tion. The model is su
h that in-fe
ted people re
over at rate 1 and healthy people are infe
ted with a rate proportionalto the number of infe
ted neighbors. The state of the system is des
ribed by a 
on�g-uration � 2 f0; 1gZd, where �(x) = 0 represents that the individual at x is healthy and�(x) = 1 represents it is infe
ted. Also, the dynami
s are spe
i�ed by the followingrate fun
tion 
(x; �) = 8<: 1 if �(x) = 1�Xy�x �(y) if �(x) = 0;where y � x means that x and y are neighbors and � is a positive parameter 
alled theinfe
tion rate. To simplify notation, we will identify f0; 1gZd with subsets of Zd byletting � 2 f0; 1gZd 
orrespond tofx 2 Zd : �(x) = 1 g:Let �t be the state of the pro
ess at time t � 0 and denote the distribution of the pro
esswith parameter� > 0 and initial 
on�gurationA � Zd byPA� . We say that the pro
esssurvives at � if Pf0g� [ �t 6= ; for all t � 0 ℄ > 0;otherwise it is said to die out at �. One 
an show thatPf0g� [ �t 6= ; for all t � 0 ℄ = 0for small values of � and Pf0g� [ �t 6= ; for all t � 0 ℄ > 0for large values of �. The �rst 
laim follows easily by a 
omparison with a brans
hingpro
ess and the se
ond, whi
h is somewhat more dif�
ult, follows from a per
olation



1.1. INTERACTING PARTICLE SYSTEMS 5type argument. In words, when we start the pro
ess with one site infe
ted, the infe
tionwill almost surely eventually disappear for small values of � and will last forever withpositive probability for large values of �. From this, it is natural to de�ne the 
riti
alvalue: �
 := inff� : Pf0g� [ �t 6= ; for all t � 0 ℄ > 0 gand the previous statement just means that 0 < �
 <1. A mu
h harder question, andone whi
h had been open for approximately 15 years, is whether the 
onta
t pro
esssurvives or dies out at the 
riti
al value �
. A 
elebrated theorem by Bezuidenhout andGrimmett gives us the answer.Theorem 1.1.1 (Bezuidenhout and Grimmett). The 
riti
al 
onta
t pro
ess dies out.For a proof of this, see [1℄ or [33℄.

Figure 1.1: A small portion of the latti
e Z2.Remark: We 
an parameterize the 
onta
t pro
ess in an equivalent way as follows: Letthe re
overy rate be Æ > 0 and the infe
tion rate be equal to the number of infe
tedneighbors. In other words, we 
hange � to 1 and let Æ be the re
overy rate, whi
h of
ourse just 
orresponds to a time s
aling. We will denote the 
orresponding 
riti
alvalue by Æ
.The voter model on the d-dimensional latti
e Zd. This pro
ess was introdu
edindependently by Clifford and Sudbury [4℄ and by Holley and Liggett [19℄. Here, thestate of the system is des
ribed by a 
on�guration � 2 f0; 1gZd where d � 1 and thetransition me
hanism is des
ribed by saying that �(x) �ips to 1� �(x) at rate12dXy�x 1f�(y)6=�(x)g:One interpretation, made by Holley and Liggett, is to think of the sites in Zd as repre-senting voters who 
an hold either of two politi
al positions, whi
h are denoted by 0



6 CHAPTER 1. INTRODUCTIONand 1. In this representation the dynami
s of the model 
an be des
ribed as follows: Avoter waits an exponentially distributed time with mean 1 and then takes the opinionof a neighbor 
hosen at random. Clearly, if we start the pro
ess with all voters in state0 or all voters in state 1, nothing happens. In mathemati
al terms the point masses onthese two 
on�gurations are so 
alled invariant distributions, meaning that if we startthe pro
ess with su
h a distribution �, the distribution of the pro
ess at any time lateris still �. (Of 
ourse, in this 
ase they are also absorbing states.) At this point, one mayask if there are any other invariant distributions? To answer that question it turns outthat the dimension d plays a prominent role. Namely, when d � 2 there are no otherthan those two above (plus their 
onvex 
ombinations), but when d � 3 there are infa
t other ones. (To people with a little ba
kground in probability theory, this resultis intimately related to the fa
t that simple random walk is re
urrent when d � 2 andtransient when d � 3.)The sto
hasti
 Ising model on Zd. This is a model for magnetism introdu
ed byGlauber [17℄. The state spa
e of this model is f�1; 1gZd. Imagine that atoms are laidout on all of Zd and that ea
h of them either 
an have a spin (state) of +1 or �1.The resulting 
on�guration des
ribing the system is an element of f�1; 1gZd. Thedynami
s of the evolution is des
ribed by de
laring a spin �(x) at a site x to �ip to��(x) at rate exp ��Xy�x �(x)�(y)!where � is a nonnegative parameter 
alled the inverse temperature. Note that the �iprate is higher when the spin at x differs from most of its neighbors than it is when itagrees with most of them. In other words, the system prefers 
on�gurations in whi
hthe spins tend to be aligned with one another. When � = 0 it is easy to see thatthere is only one invariant distribution, namely the produ
t measure � on f�1; 1gZdwith density 12 and in addition, for any initial distribution, the distribution at time t
onverges weakly as t ! 1 to �. Su
h a pro
ess is 
alled ergodi
. In the non-ergodi
 
ase, i.e. when we have more than one invariant distribution, one says that aphase transition has o

urred and ea
h of the invariant distributions 
orresponds to adifferent �phase� of the system. The problem is to determine for whi
h 
hoi
es of �and d the pro
ess is ergodi
. If d = 1, then it turns out that the pro
ess is ergodi
 forall � but when d � 2 there is a 
riti
al value 0 < �d < 1 su
h that the pro
ess isergodi
 if � < �d and non-ergodi
 if � > �d.For further reading about intera
ting parti
le systems, there are three standard ref-eren
e books, namely Liggett [31, 33℄ and Durrett [10℄. The �rst one deals with the
onstru
tion of intera
ting parti
le systems from given rates as well as more or lessall results in the �eld until 1985. The se
ond one 
on
entrates upon three models;the 
onta
t pro
ess, the voter model and the so 
alled ex
lusion pro
ess, a model ofparti
le motion, and 
overs many of the results 
on
erning these models until 1999.The third book 
onsiders, among other things, the 
onta
t pro
ess, the voter model andsome variants thereof.



1.2. THE FERROMAGNETIC ISING AND POTTS MODELS 7In all the examples above, the dynami
s are translation invariant in the sense thatthe rates only depend on x through f�(y) : y � xg. A possible �rst extension is toallow the rates to depend on x itself. One su
h example is the so 
alled inhomogeneous
onta
t pro
ess where we are given to us a family of rates fÆxgx2Zd and from them thedynami
s of the pro
ess is as follows:
(x; �) =8<: Æx if �(x) = 1Xy�x �(y) if �(x) = 0:A further extension is to allow for more randomness in the model. For example, onepossibility is to study the above model with fÆxgx2Zd taken to be i.i.d. random vari-ables. That suggestion was made by Bramson, Durrett and S
honmann [2℄ and they
alled the resulting model the 
onta
t pro
ess in a random environment. For furtherresults 
on
erning that model see for example [26, 32, 36℄. You 
ould also extend thelast model even more by letting the re
overy rates follow some update rule. We thenarrive at the 
onta
t pro
ess in a randomly evolving environmentwhi
h was introdu
edby Broman [3℄ and whi
h we will dis
uss in more detail in Se
tion 1.4.1.1.2 The ferromagneti
 Ising and Potts modelsThe theory of Gibbs measures goes ba
k to Dobrushin [5�9℄ and Lanford and Ru-elle [28℄. It started as a bran
h of 
lassi
al statisti
al physi
s but 
an now also beviewed as a part of probability theory. From the physi
al point of view these mea-sures were proposed as a mathemati
al des
ription of an equilibrium state of a physi
alsystem whi
h 
onsists of a large number of intera
ting 
omponents. In probabilisti
terms, a Gibbs measure is just the distribution of a 
ountably in�nite family of randomvariables taking values in some (usually �nite) set whi
h admit some pres
ribed 
on-ditional probabilities. To des
ribe these 
onditional probabilities one has to spe
ify theintera
tion between the 
omponents and that is usually done by a so 
alled Hamilto-nian. For an extensive presentation of the theory of Gibbs measures we refer to [15℄and for a less extensive one, see [16℄. Instead of dis
ussing Gibbs measures in a general
ontext we will now fo
us on two spe
i�
 
hoi
es of Hamiltonians whi
h for differentreasons have attra
ted a large amount of interest during the last de
ades.The ferromagneti
 Ising model is a simpli�ed mathemati
al des
ription of a ferro-magneti
 substan
e su
h as iron, 
obalt or ni
kel. It was introdu
ed by Wilhelm Lenzin the 1920's [29℄ and �rst investigated by Ernst Ising [24℄. In the same way as for thesto
hasti
 Ising model we think of the atoms as laid out on the d-dimensional latti
eand that the spin of ea
h of them is allowed to take two possible orientations,+1 (up)and �1 (down). Moreover, there are two parameters J � 0, h 2 R in this model. The�rst one des
ribes the strength of the intera
tion between neighboring spins and these
ond the affe
t of an external �eld. For given J , h and 
on�guration � 2 f�1; 1gZd



8 CHAPTER 1. INTRODUCTIONthe Hamiltonian for this model is given by the so 
alled Ising potential:�J;hA (�) =8><>:�J�(x)�(y) if A = fx; yg, where hx; yi 2 Ed ;�h�(x) if A = fxg;0 otherwise.Here A � Zd, Ed denotes the set of edges in the d-dimensional latti
e and hx; yiis the edge 
onne
ting x and y. From this potential the Gibbs measures are de�nedas follows: A probability measure � on f�1; 1gZd is said to be a Gibbs measure (orsometimes Gibbs state) for the ferromagneti
 Ising model with parameters h 2 Rand J � 0 if it admits 
onditional probabilities su
h that for all �nite U � Zd, all� 2 f�1; 1gU and all � 2 f�1; 1gZdnU�(X(U) = � jX(Zd n U) = �)= 1ZU;�J;h exp"J Xhx;yi2Ed ;x;y2U �(x)�(y) + Xhx;yi2Ed ;x2U;y2�U �(x)�(y)!+ hXx2U �(x)#:Here ZU;�J;h is a normalizing 
onstant and �U is the outer boundary of U de�ned for-mally as �U = fx 2 Zd n U : There exists y 2 U su
h that hx; yi 2 Ed g:In words, � is a Gibbs measure for the Ising model if it has pres
ribed 
onditionaldistributions inside any �nite region given that the 
on�guration is held �xed outsideand these 
onditional distributions are given by the right hand side of the above expres-sion. A natural question from both a physi
al and mathemati
al point of view is if thisde�nition uniquely determines the Gibbs measure, or stated otherwise, is it possibleto have two different measures with the same pres
ribed 
onditional distributions? Itturns out that if d = 1 or h 6= 0 there is only one Gibbs measure but interestingly, whend � 2 and J is large enough there exists more than one Gibbs measure. When su
ha phenomena of multiple Gibbs measures o

urs one says that the system undergoes aphase transition. For a proof of the above statement as well as a survey in the study ofphase transitions for the Ising model we refer to [20℄.Although we have 
hosen to dis
uss the Ising model on the d-dimensional latti
eonly the above de�nitions make perfe
t sense for other types of graphs too. It turns outthat the question of phase transition is highly dependent on the graph stru
ture. As anexample if the underlying graph is the homogeneous tree of degree d the system 
an infa
t undergo a phase transition even when h 6= 0, see [15℄.A natural generalization of the ferromagneti
 Ising model is the (ferromagneti
)Potts model in whi
h the spins are allowed to take q � 2 (rather than just two) different



1.3. PAIRS TRADING 9states. We 
on�ne ourselves to the 
ase with no external �eld and for simpli
ity welet Zd be the underlying graph. For � 2 f1; : : : ; qgZd, the intera
tion potential for thePotts model is given by	JA(�) = (�2JIf�(x)=�(y)g if A = fx; yg, where hx; yi 2 Ed ;0 otherwise.In words, this intera
tion favors 
on�gurations where many neighboring pairs of spinsagree. In a similar way as for the Ising model we 
an de�ne the notion of Gibbsmeasures and study phase transitions et
, see [16℄ and the referen
es therein.1.3 Pairs tradingSin
e this part is relatively small we will not say mu
h about it. Pairs trading wasdeveloped at Morgan Stanley in the late 1980's, and today it is one of the most 
om-mon investment strategies in the �nan
ial industry. The idea behind pairs trading isquite intuitive: the investor �nds two assets, for whi
h the pri
es have moved togetherhistori
ally. When the pri
e spread widens, the investor takes a short position in theoutperforming asset, and a long position in the underperforming one with the hopethat the spread will 
onverge again, generating a pro�t. However, the trader should beaware of the risk of drifting. This happens when the two 
orrelated sto
k pri
es start todrift apart. Therefore, in pra
ti
e the investor typi
ally 
hooses in advan
e a stop-losslevel, whi
h 
orresponds to the level of loss above whi
h the investor will 
lose thepair trade and take the loss.For a histori
al evaluation of pairs trading see [14℄ and for books that treat theapplied aspe
ts of pairs trading we refer to [11, 38, 39℄.1.4 Summary of papers1.4.1 Paper IIn this paper we 
onsider the so 
alled 
onta
t pro
ess in a randomly evolving envi-ronment (CPREE), introdu
ed by Broman [3℄. This pro
ess is a generalization of the
onta
t pro
ess, where the re
overy rate is allowed to vary between two values, Æ0 andÆ1. (Re
all the equivalent parameterization of the 
onta
t pro
ess.) The rate whi
h is
hosen is determined by a ba
kground pro
ess, whi
h evolves independently at dif-ferent sites. To be pre
ise, we 
onsider the Markov pro
ess f(Bt; Ct)gt�0 with statespa
e f0; 1gZd � f0; 1gZd whi
h performs transitions a

ording to the following rates



10 CHAPTER 1. INTRODUCTIONat a site x 2 Zd: transition rate(0; 0)! (0; 1) Xy�xC(y)(1; 0)! (1; 1) Xy�xC(y)(0; 1)! (0; 0) Æ0(1; 1)! (1; 0) Æ1(0; 0)! (1; 0) 
p(0; 1)! (1; 1) 
p(1; 0)! (0; 0) 
(1� p)(1; 1)! (0; 1) 
(1� p)where d � 1, 
; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄. In other words, at ea
h site xindependently, fBt(x)gt�0 is a 2-state Markov 
hain with in�nitesimal matrix� �
p 
p
(1� p) �
(1� p)�whi
h in turn determines the re
overy rate of fCt(x)gt�0 in the following way. Forea
h x and t, the re
overy rate at time t and site x is Æ0 or Æ1 depending on whetherBt(x) = 0 or Bt(x) = 1. Also, the infe
tion rate is always the number of infe
tedneighbors. (A
tually Broman did this on a more general graph, but here we willonly 
onsider Zd.) Broman referred to fBtgt�0 as the ba
kground pro
ess and thewhole pro
ess f(Bt; Ct)gt�0 as the 
onta
t pro
ess in a randomly evolving environ-ment (CPREE). Let fC�;�t gt�0 denote the right marginal when the initial distributionof the whole pro
ess is � � �. Furthermore, let Pp denote the measure governing thepro
ess for the parameters p, 
, Æ0 and Æ1, where 
, Æ0 and Æ1 are 
onsidered �xed.Also, denote the produ
t measure with density q 2 [0; 1℄ by �q . Broman de�ned the
riti
al value p
 := inf np : Pp[C�p;f0gt 6= ; 8t > 0 ℄ > 0o(p
 is taken to be 1 if no p satis�es this) and proved that if Æ1 < Æ
 < Æ0 and 
 >max(2d; Æ
 � Æ1), then p
 2 (0; 1). (Re
all the de�nition of Æ
 from the remark afterTheorem 1.1.1.) At the end of his paper he asked whether the 
riti
al value is affe
tedif we vary the initial distribution of the ba
kground pro
ess. Our �rst result answersthis question. Given 
, Æ0, Æ1 > 0 with Æ1 � Æ0, q 2 [0; 1℄ and A � Zd with jAj <1,de�ne p
(q; A) := inf np : Pp[C�q ;At 6= ; 8t > 0 ℄ > 0o :Theorem 1.4.1. Given A,A0 � Zd with jAj, jA0j <1 and p, q, q0 2 [0; 1℄,Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 () Pp[C�q0 ;A0t 6= ; 8t > 0 ℄ > 0:In parti
ular, p
(q; A) is independent of both q and A.



1.4. SUMMARY OF PAPERS 11We will let p
 denote this 
ommon value. (Re
all, p
 of 
ourse depends on 
, Æ0 andÆ1.) Also, if Pp[C�q;At 6= ; 8t > 0 ℄ > 0 holds (whi
h we now know is independentof q and A), we say that fCtg survives at p; otherwise it is said to die out at p.Standard arguments yield that the limiting distribution starting from all 1's existsand we will denote the limit by ��p. This measure gives us another natural way to de�nea 
riti
al value: p0
 := inff p : ��p 6= �p � Æ; g:For general attra
tive intera
ting parti
le systems it might or might not be the 
ase thatthese two 
riti
al values 
oin
ide. However, for the ordinary 
onta
t pro
ess this isthe 
ase (due to its self-duality) and our next result shows that this is also true in oursituation.Theorem 1.4.2. fCtg survives at p if and only if ��p 6= �p � Æ;. In parti
ular p
 = p0
.Our �nal result is a generalization of Theorem 1.1.1.Theorem 1.4.3. If fCtg survives at p > 0, then there exists Æ > 0 so that it survivesat p � Æ. In parti
ular, if p
 2 (0; 1℄, then the 
riti
al 
onta
t pro
ess in a randomlyevolving environment dies out.1.4.2 Paper IIRe
all that spin systems are intera
ting parti
le systems where ea
h 
oordinate hastwo possible states and only one 
oordinate 
hanges in ea
h transition. In this paperwe 
onsider spin systems onZ in a randomly evolving environment,where the environ-ment is more general than in the previous paper. To des
ribe the pro
ess we are dealingwith in mathemati
al terms, let 
0(x; �), 
1(x; �) and b(x; �) be given rate fun
tionsand de�ne a Markov pro
ess f(�t; �t)gt�0 on f0; 1gZ� f0; 1gZwith the dynami
s ata site x spe
i�ed in the following way:transition rate(�; �)! (�; �x) 
0(x; �) if �(x) = 0(�; �)! (�; �x) 
1(x; �) if �(x) = 1(�; �)! (�x; �) b(x; �)Here, for given � 2 f0; 1gZd and x 2 Z, �x is the element in f0; 1gZde�ned by�x(y) = (�(y) if y 6= x1� �(x) if y = x:As before, the left marginal f�tgt�0 will be referred to as the ba
kground pro
ess.Furthermore, we will assume that the rate fun
tions are translation invariant, that
0(x; �) � 
1(x; �) if �(x) = 0;
1(x; �) � 
0(x; �) if �(x) = 1;(1)



12 CHAPTER 1. INTRODUCTIONthat 
0(x; �) and 
1(x; �) only depend on � through �(x � 1), �(x) and �(x + 1) andthat 
0, 
1 and b satisfy the following attra
tivity 
ondition:De�nition 1.4.1. A spin system on Zwith rate fun
tion 
(x; �) is said to be attra
tiveif whenever � � �0, 
(x; �) � 
(x; �0) if �(x) = �0(x) = 0;
(x; �) � 
(x; �0) if �(x) = �0(x) = 1:(2) (Here, � refers to the usual partial ordering on f0; 1gZ, i.e., � � �0 if and onlyif �(x) � �0(x) for all x 2 Z.) This 
ondition is exa
tly what is needed to be ableto 
ouple two 
opies, with initial 
on�gurations sto
hasti
ally ordered, so that the two
opies 
ontinue to be ordered for all times. Furthermore, note that we 
an equivalentlyview our pro
ess on f0; 1gZ�f0;1g and that the 
onditions (1) and (2) just means thatthe whole pro
ess is attra
tive on that spa
e. (De�nition 1.4.1 
an of 
ourse be gen-eralizad to f0; 1gS where S is 
ountable.) The attra
tivity 
an be used to show (viamonotoni
ity) the existen
e of two extremal stationary distributions �0 and �1 de�nedby �0 = limt!1 Æ0S(t) �1 = limt!1 Æ1S(t);where Æ0 and Æ1 denote the point masses 
orresponding to the elements � � 0 and � �1 in f0; 1gZ�f0;1g and fS(t)gt�0 denotes the semigroup asso
iated to f(�t; �t)gt�0.The main result in this paper is that, if the ba
kground pro
ess has a unique stationarydistribution and the rates 
0, 
1 satisfy a 
ertain positivity 
ondition, then �0 and �1 arethe only extremal stationary distributions for the pro
ess.To state our result we need a bit more notation. The assumptions on 
0 and 
1 implythat they together 
an be des
ribed by at most 16 different parameters. To des
ribe thevalues we will use the following notation: 
i(001) = 
i(x; �) when �(x � 1) = 0,�(x) = 0 and �(x + 1) = 1 et
. De�neC1 = f 
i(100) + 
j(110); 
i(001) + 
j(011);
i(011) + 
j(110); 
i(100) + 
j(001); i = 0; 1; j = 0; 1 gand let C = min (C1) :Moreover, let I denote the set of invariant distributions for f(�t; �t)gt�0 and let Iedenote its extreme points.Before we state our main result, we want to emphasize that the 
ase with no ba
k-ground pro
ess has been studied before by Liggett. The proof of our main result fol-lows 
losely the ideas of his proof. To state his result let 
(x; �) be a rate fun
tion for anattra
tive, translation invariant, nearest-neighbor spin system f�tgt�0 on f0; 1gZandde�ne �i = limt!1 ÆiT (t), i = 0; 1, where Æi is the point mass 
orresponding to theelement � � i in f0; 1gZand fT (t)gt�0 denotes the semigroup asso
iated to f�tgt�0.Moreover, let Je denote the extreme points of the set of stationary distributions forf�tgt�0.



1.4. SUMMARY OF PAPERS 13Theorem 1.4.4 (Liggett). Suppose(3) 
(x; �) + 
(x; �x) > 0 whenever �(x � 1) 6= �(x + 1):Then Je = f�0; �1g.For a proof, see [30℄ or [31, p. 145-152℄. In fa
t, he also proved that if 
ondition(3) fails, then Je 
ontains in�nitely many points, see [31, p. 145℄.Theorem 1.4.5. Suppose that the ba
kground pro
ess is ergodi
 and C > 0. ThenIe = f�0; �1g.Remarks:(i) From [31, p. 152℄ we get that Theorem 1.4.4 is equivalent to the statement that(3) and 
(011) + 
(110) > 0
(100) + 
(001) > 0implies Je = f�0; �1g. By letting 
 = 
0 = 
1, it is now 
lear that Theo-rem 1.4.5 
overs Theorem 1.4.4.(ii) The hypotheses in Theorem 1.4.5 are true for the CPREE studied in the �rstpaper. Indeed, if 
1 and 
2 satisfy (1) and are symmetri
 under re�e
tions, i.e.
i(100) = 
i(001)
i(110) = 
i(011); i = 0; 1then C > 0 if and only if 
0(001) > 0 and 
1(011) > 0.(iii) Note that we are not assuming independen
e or even nearest-neighbor intera
-tion between 
oordinates in the ba
kground pro
ess.1.4.3 Paper IIIIn [34℄, various results were proved 
on
erning sto
hasti
 domination (de�ned below)for the Ising model with no external �eld on Zd and on the homogeneous binary treeT2 (i.e. the unique in�nite tree where ea
h site has 3 neighbors). As an example,the following distin
tion between Zd and T2 was shown: On Zd, the plus and minusstates (to be de�ned later) dominate the same set of produ
t measures, while on T2that statement fails 
ompletely ex
ept in the 
ase when we have a unique phase. Inthis paper we study sto
hasti
 domination for the Ising model in the 
ase of nonzeroexternal �eld and also for the so 
alled fuzzy Potts model.



14 CHAPTER 1. INTRODUCTIONDe�nition 1.4.2 (Sto
hasti
 domination). Given a �nite or 
ountable set V and prob-ability measures �1, �2 on f�1; 1gV , we say that �2 dominates �1 (written �1 � �2or �2 � �1) if Z f d�1 � Z f d�2for all real-valued, 
ontinuous and in
reasing fun
tions f on f�1; 1gV .Here, in
reasing for a fun
tion f : f�1; 1gV ! R means that f(�) � f(�0)whenever � � �0. It 
an be shown that a ne
essary and suf�
ient 
ondition for twoprobability measures �1, �2 to satisfy �1 � �2 is that there exists a 
oupling mea-sure � on f�1; 1gV � f�1; 1gV with �rst and se
ond marginals equal to �1 and �2respe
tively and �( (�; �) : � � � ) = 1:(For a proof, see for example [31, p 72-74℄.) Given any set S � R and a family ofprobability measures f�sgs2S indexed by S, we will say that the map S 3 s 7! �s isin
reasing if �s1 � �s2 whenever s1 < s2.Results for the Ising modelFor the Ising model with parameters J > 0, h 2 R on a general graph of boundeddegree standard monotoni
ity arguments based on Holley's theorem (see [16℄) 
an beused to show that there exist two parti
ular Gibbs states �J;+h and �J;�h , 
alled the plusand the minus state, whi
h are extreme with respe
t to the sto
hasti
 ordering in thesense that �J;�h � � � �J;+h for any other � 2 G(J; h):(Here, G(J; h) denotes the set of Gibbs state for the Ising model with parametersJ > 0and h 2 R.) To simplify the notation, we will write �J;+ for �J;+0 and �J;� for�J;�0 . (Of 
ourse, the plus and minus state are also highly dependent on the graphG, but we suppress that in the notation.) In [34℄ the authors studied, among otherthings, sto
hasti
 domination between the plus measures f�J;+gJ>0 in the 
ase whenG = T2. For example, they showed that the map (0;1) 3 J 7! �J;+ is in
reasingwhen J > J
 and proved the existen
e of and 
omputed the smallest J > J
 su
h that�J;+ dominates �J0;+ for all 0 < J 0 � J
. (On Zd, the fa
t that �J1;+ and �J2;+ arenot sto
hasti
ally ordered when J1 6= J2 gives that su
h a J does not even exist in that
ase.) Our �rst result deals with the following question: Given J1, J2 > 0, h1 2 R,
an we �nd the smallest external �eld ~h = ~h(J1; J2; h1) with the property that �J2;+hdominates �J1;+h1 for all h � ~h? To 
larify the question a bit more, note that an easyappli
ation of Holley's theorem tells us that for �xed J > 0, the map R 3 h 7! �J;+his in
reasing. Hen
e, for given J1, J2 and h1 as above the setfh 2 R : �J2;+h � �J1;�h1 g



1.4. SUMMARY OF PAPERS 15is an in�nite interval and we want to �nd the left endpoint of that interval (possibly�1 or +1 at this stage). For a general graph of bounded degree not mu
h 
an besaid, but we have the following easy bounds on ~h.Proposition 1.4.6. Consider the Ising model on a general graph G = (V;E) ofbounded degree. De�ne~h = ~h(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;+h1 g:Then h1 �N(J1 + J2) � ~h � h1 +N jJ1 � J2j;where N = supx2V Nx andNx is the number of neighbors of the site x 2 V .We will now 
onsider the 
ase whenG = Td, the homogeneous d-ary tree, de�nedas the unique in�nite tree where ea
h site has exa
tly d + 1 � 3 neighbors. Theparameter d is �xed in all that we will do and so we suppress that in the notation.To state our results, we need to re
all some more fa
ts, all of whi
h 
an be foundin [15, p. 247-255℄. For J > 0, de�ne�J (t) = 12 log 
osh(t+ J)
osh(t� J) ; t 2 R:Given J > 0 and h 2 R, there is a one-to-one 
orresponden
e t 7! � between the realsolutions of the equation t = h+ d �J (t)and the 
ompletely homogeneous Markov 
hains in G(J; h) (see [15℄ for a de�nition).Let t�(J; h) denote the real numbers whi
h 
orrespond to the plus and minus measurerespe
tively. We will write t�(J) instead of t�(J; 0). Furthermore, leth�(J) = maxt�0 �d�J (t)� t�and denote by t�(J) the t � 0 where the fun
tion t 7! d�J (t) � t attains its uniquemaximum.Theorem 1.4.7. Consider the Ising model on Td and let J1, J2 > 0, h1 2 R be given.De�ne f�(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;�h1 gg�(J1; J2; h1) = inffh 2 R : �J2;�h � �J1;�h1 gand denote �� = ��(J1; J2; h1) = t�(J1; h1) + jJ1 � J2j. Then the following holds:(4) f�(J1; J2; h1) = (�h�(J2) if t�(J2;�h�(J2)) � �� < t�(J2)�� � d�J2(��) if �� � t�(J2) or �� < t�(J2;�h�(J2))



16 CHAPTER 1. INTRODUCTION(5) g�(J1; J2; h1) = (h�(J2) if �t�(J2) < �� � t+(J2; h�(J2))�� � d�J2(��) if �� � �t�(J2) or �� > t+(J2; h�(J2))Remark: By looking at the formulas (4) and (5), we see that there are fun
tions  ,� : (0;1)� R 7! R su
h thatf�(J1; J2; h1) =  (J2; ��(J1; J2; h1)) andg�(J1; J2; h1) = �(J2; ��(J1; J2; h1)):(Of 
ourse,  (J2; t) and �(J2; t) are just (4) and (5) with t instead of ��.) It is easy to
he
k that for �xed J2 > 0, the maps t 7!  (J2; t) and t 7! �(J2; t) are 
ontinuous.A pi
ture of these fun
tions when J2 = 2, d = 4 
an be seen in Figure 1.2.
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Figure 1.2: The fun
tions t 7!  (J2; t) and t 7! �(J2; t) in the 
ase when J2 = 2 and d = 4.Our next proposition deals with 
ontinuity properties of f� and g� with respe
t tothe parameters J1, J2 and h1. We will only dis
uss the fun
tion f+, the other ones 
anbe treated in a similar fashion.Proposition 1.4.8. Consider the Ising model on Td and re
all the notation from The-orem 1.4.7. Let a = a(J1; J2) = t�(J1;�h�(J1)) + jJ1 � J2jb = b(J1; J2) = t+(J1;�h�(J1)) + jJ1 � J2j:



1.4. SUMMARY OF PAPERS 17a) Given J1, J2 > 0, the map R 3 h1 7! f+(J1; J2; h1) is 
ontinuous ex
eptpossibly at �h�(J1) depending on J1 and J2 in the following way:If J1 � J
 or J1 = J2 then it is 
ontinuous at �h�(J1).If J1 > J
 and 0 < J2 � J
 then it is dis
ontinuous at �h�(J1).If J1, J2 > J
, J1 6= J2 then it is dis
ontinuous ex
ept whent�(J2;�h�(J2)) � a < t�(J2) andt�(J2;�h�(J2)) � b � t�(J2):b) Given J2 > 0, h1 2 R, the map (0;1) 3 J1 7! f+(J1; J2; h1) is 
ontinuousat J1 if 0 < J1 � J
 or J1 > J
 and h1 6= �h�(J1). In the 
ase whenh1 = �h�(J1) it is dis
ontinuous at J1 ex
ept whent�(J2;�h�(J2)) � a < t�(J2) and t�(J2;�h�(J2)) � b � t�(J2):
) Given J1 > 0, h1 2 R, the map (0;1) 3 J2 7! f+(J1; J2; h1) is 
ontinuousfor all J2 > 0.Our last result for the Ising model is about how the measures f�J;+h gJ>0 are or-dered with respe
t to J for �xed h 2 R.Proposition 1.4.9. Consider the Ising model on Td. The map (0;1) 3 J 7! �J;+h isin
reasing in the following 
ases: a) h � 0 and J � J
, b) h < 0 and h�(J) > �h.Results for the fuzzy Potts modelFor an in�nite 
onne
ted lo
ally �nite graph G = (V;E) it is possible by a limit-ing pro
edure to de�ne q + 1 basi
 examples of Gibbs measures for the Potts model,see [23℄ and the referen
es therein. We denote these basi
 examples by �G;iq;J , i 2f0; : : : ; qg. (The measures f�G;iq;Jgqi=1 are the analogs of the plus and minus states forthe Ising model and �G;0q;J is 
onstru
ted by taking a free boundary 
ondition outside a�nite box and letting the box grow to in�nity.) From them we 
an de�ne new obje
tsas follows: Fix i 2 f0; : : : ; qg, suppose r 2 f1; : : : ; q� 1g and pi
k a �G;iq;J -distributedrandom variableX and for x 2 V de�ne(6) Y (x) = (�1 if X(x) 2 f1; : : : ; rg1 if X(x) 2 fr + 1; : : : ; qg:We write �G;iq;J;r for the indu
ed probability measure on f�1; 1gV and 
all it the fuzzyPotts measure with parameters q, J and r.In words, the fuzzy Potts model is obtained from the ordinary q-state Potts modelby identifying r states with a fuzzy spin denoted �1 and the remaining q � r states



18 CHAPTER 1. INTRODUCTIONwith another fuzzy spin denoted 1. From this point of view, the fuzzy Potts model isone of the most basi
 examples of a so 
alled hidden Markov �eld [27℄. For earlierwork on the fuzzy Potts model, see for example [21�23, 25, 35℄.It is easy to see that when G = Zd or Td in the 
onstru
tion above it follows fromsymmetry that �G;iq;J;r = �G;jq;J;r if i; j 2 f1; : : : ; rg or i; j 2 fr + 1; : : : ; qg, i.e. whenthe Potts spins i; j map to the same fuzzy spin. For that reason, we let �G;�q;J;r := �G;1q;J;rand �G;+q;J;r := �G;qq;J;r when G = Zd or Td. (We sti
k to our earlier notation of �G;0q;J;r.)Given a �nite or 
ountable set V and p 2 [0; 1℄, let 
p denote the produ
t measureon f�1; 1gV with 
p(� : �(x) = 1) = p for all x 2 V . In [34℄, the authors provedthe following results for the Ising model. (The se
ond result was originally proved ford = 2 only but it trivially extends to all d � 2.)Proposition 1.4.10 (Liggett, Steif). Fix an integer d � 2 and 
onsider the Ising modelon Zd with parameters J > 0 and h = 0. Then for any p 2 [0; 1℄, �J;+ � 
p if andonly if �J;� � 
p.Proposition 1.4.11 (Liggett, Steif). Let d � 2 be a given integer and 
onsider theIsing model on Td with paramteters J > 0 and h = 0. Moreover, let �J;f denote theGibbs state obtained by using free boundary 
onditions. If �J;+ 6= �J;�, then thereexist 0 < p0 < p su
h that �J;+ dominates 
p but �J;f does not dominate 
p and �J;fdominates 
p0 but �J;� does not dominate 
p0 .In words, onZd the plus andminus state dominate the same set of produ
tmeasureswhile onTd that is not the 
ase ex
ept when the we have a unique phase. Our �rst resultis a generalization of Proposition 1.4.10 to the fuzzy Potts model.Proposition 1.4.12. Let d � 2 be a given integer and 
onsider the fuzzy Potts modelon Zd with parameters q � 3, J > 0 and r 2 f1; : : : ; q � 1g. Then for any k; l 2f0;�;+g and p 2 [0; 1℄, �Zd;kq;J;r � 
p if and only if �Zd;lq;J;r � 
p.In the same way as for the Ising model, we believe that Proposition 1.4.12 fails
ompletely on Td ex
ept when we have a unique phase in the Potts model. Our lastresult is in that dire
tion.Proposition 1.4.13. Let d � 2 be a given integer and 
onsider the fuzzy Potts modelon Td with parameters q � 3, J > 0 and r 2 f1; : : : ; q� 1g where e2J � q� 2. If theunderlying Gibbs measures for the Potts model satisfy �Td;1q;J 6= �Td;0q;J , then there exists0 < p < 1 su
h that �Td;0q;J;r dominates 
p but �Td;�q;J;r does not dominate 
p.1.4.4 Paper IVTo model a pair spread the authors in [12℄ suggested the so 
alled mean revertingOrnstein-Uhlenbe
k pro
ess. In this paper, we generalize the model to also in
lude



1.4. SUMMARY OF PAPERS 19possible jumps. More pre
isely, we let the differen
eU = fUtgt�0 between the assetsbe the unique solution of the sto
hasti
 differential equation(7) dUt = ��Ut dt+ � dWt + dC�;'t ; t > 0;where � > 0, � > 0, W = fWtgt�0 is a standard Brownian motion and C�;' =fC�;'t gt�0 is a 
ompound Poisson pro
ess with jump intensity � > 0 and symmetri
jump size distribution '. Moreover, the support of ' is assumed to be 
ontained in theinterval (�J; J) for some J > 0. (The solution to (7) is usually 
alled a generalizedOrnstein-Uhlenbe
k pro
ess or an Ornstein-Uhlenbe
k type pro
ess.) As dis
ussedin [12℄ there is a large risk asso
iated with a pair trading strategy. Indeed, if the marketspread 
eases to be mean reverting, the investor is exposed to substantial risk. There-fore, in pra
ti
e the investor typi
ally 
hooses in advan
e a stop-loss level a < 0, whi
h
orresponds to the level of loss above whi
h the investor will 
lose the pair trade.Given su
h a stop-loss level a < 0, de�ne(8) �a = infft � 0 : Ut � ag;the �rst hitting time of the region (�1; a℄, and the so 
alled value fun
tion(9) V (x) = sup� Ex[U�a^� ℄ x 2 R;where the supremum is taken over all stopping times with respe
t to U . (Here andin the sequel Ex means expe
ted value when U0 = x.) The major interest here is to
hara
terize V , and perhaps more importantly, to des
ribe the stopping time where thesupremum is attained. Sin
e the drift has the opposite sign as U , we have no reasonto liquidate our position as long as U is negative. On the other hand, if U is positive,then the drift is working against the investor and for large values of U the size of thedrift should over
ome the possible bene�ts from random variations. Moreover, sin
ethe jumps are assumed to be symmetri
, this indi
ates that there is a stopping barrierb > 0 with the property that we should keep our position when Ut < b and liquidate assoon as Ut � b.General optimal stopping theory (des
ribed for example in [37, Ch. 3℄) leads us tobelieve that the value fun
tion is given by V = u, where (u; b) is the solution to thefree boundary problem GUu(x) = 0; x 2 (a; b);u(x) = x; x 62 (a; b);u0(b) = 1:(10)Here GU is the in�nitesimal generator of U , whi
h is de�ned on the spa
e of twi
e
ontinuously differentiable fun
tions f : R ! R with 
ompa
t support:(11) GUf(x) = �22 f 00(x)� �xf 0(x) + � Z 1�1(f(x+ y)� f(x))'(y) dy; x 2 R:



20 CHAPTER 1. INTRODUCTIONMoreover, the stopping time where the supremum in (9) is attained should be(12) �b = infft � 0 : Ut � bg:Indeed, our �rst result is a so 
alled veri�
ation theorem.Theorem 1.4.14. Assume that (u; b) is a 
lassi
al solution to (10) witha) GUu(x) � 0 for x > b,b) u(x) � x for all x 2 R.Then u(x) = V (x) = Ex[U�a^�b ℄, for x 2 R.In the rest of the paper, we analyze the free boundary problem (10). By transform-ing to homogeneous boundary values and using the symmetry of ', we getLv(x) � Iv(x) = ��x; x 2 (a; b);v(x) = 0; x 62 (a; b);v0(b) = 0;(13)where v(x) = u(x)� x andLv(x) = � 12�2v00(x) + �xv0(x);Iv(x) = � Z 1�1 �v(x+ y)� v(x)�'(y) dy:We have not been able to give a rigorous proof of the existen
e and uniqueness ofa solution (v; b) of the free boundary value problem (13). We therefore resort to anumeri
al solution by means of the �nite element method. We begin to prove existen
eand uniqueness of solutions of the boundary value problemLv(x) � Iv(x) = ��x; x 2 (a; b);v(x) = 0; x 62 (a; b);(14)and the 
orresponding �nite element equation. Next, we de�ne the fun
tionsF (b) = v0(b); FN (b) = v0N (b); b > 0;where vN denotes the �nite element approximation of v when we use a uniform sub-division of the interval [a; b℄ 
onsisting of N number of points. Note that from themaximum prin
iple proved in [13℄, there is no restri
tion to assume that b > 0. For0 � b1 < b2, we prove the error estimatekF � FNkL1(b1;b2) � CN� 12 ; N � N0;(15)where C andN0 are 
onstants depending on a, �, �, �, b1 and b2.
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2PAPER IABSTRACTBezuidenhout and Grimmett proved that the 
riti
al 
onta
t pro
ess dies out. Here, wegeneralize the result to the so 
alled 
onta
t pro
ess in a random evolving environment(CPREE), introdu
ed by Erik Broman. This pro
ess is a generalization of the 
onta
tpro
ess where the re
overy rate 
an vary between two values. The rate whi
h it 
hoosesis determined by a ba
kground pro
ess, whi
h evolves independently at different sites.As for the 
onta
t pro
ess, we 
an similarly de�ne a 
riti
al value in terms of survivalfor this pro
ess. In this paper we prove that this de�nition is independent of how westart the ba
kground pro
ess, that �nite and in�nite survival (meaning nontrivialityof the upper invariant measure) are equivalent and �nally that the pro
ess dies out at
riti
ality.Key words and phrases: Conta
t pro
ess, varying environment.Subje
t 
lassi�
ation : 60K35.2.1 Introdu
tion and main resultsThe 
onta
t pro
ess, introdu
ed by Harris [5℄, is a simple model for the spread ofan infe
tion on a latti
e. The state at a 
ertain time is des
ribed by a 
on�guration,� 2 f0; 1gZd, where �(x) = 0 means that the individual at lo
ation x is healthy and�(x) = 1 means it is infe
ted. The model is su
h that infe
ted people re
over at rate1 and healthy people are infe
ted with a rate proportional to the number of infe
tedneighbors. In more mathemati
al language, the 
onta
t pro
ess is a Markov pro
ess,27



28 CHAPTER 2. PAPER If�tgt�0, with state spa
e f0; 1gZd where the 
on�guration 
hanges its state at sitex 2 Zd as follows:� ! �x with rate 1 if �(x) = 1� ! �x with rate �Xy�x �(y) if �(x) = 0;where y � x means that x and y are neighbors,�x(y) = (�(y) if y 6= x1� �(x) if y = xand � is a positive parameter 
alled the infe
tion rate. See the standard referen
esLiggett [7℄ and Durrett [4℄ for how these informal rates determine a Markov pro
essand for mu
h on the 
onta
t pro
ess as well as other intera
ting parti
le systems. De-note the distribution of this pro
ess when it starts with the 
on�guration � by P��. Wesay that the pro
ess dies out at � ifPf0g� [ �t = ; some t � 0 ℄ = 1;otherwise it is said to survive at �. Here, the initial 
on�guration f0g means there isa single infe
tion at the origin and the 
on�guration ; means the element in f0; 1gZd
onsisting of all zeros. (As usual, we identify f0; 1gZd with subsets of Zd.) Using aneasy monotoni
ity in �, it is natural to de�ne the 
riti
al value�
 := inff� : Pf0g� [ �t 6= ; for all t � 0 ℄ > 0 g:A fundamental �rst question 
on
erning this model is whether it survives when � islarge and whether it dies out for small values of �, i.e. whether 0 < �
 < 1, and itis not very hard to show that this indeed is the 
ase. Furthermore, sin
e the 
onta
tpro
ess is attra
tive (see Liggett [7℄ for this de�nition), we 
an de�ne�0
 := inff� : ��� 6= Æ; g;where ��� is the so 
alled upper invariantmeasure, de�ned to be the limiting distributionstarting from all 1's. A self-duality equation (see [4℄ or [7℄) easily leads to �
 = �0
.A mu
h harder question, and one whi
h had been open for approximately 15 years,is whether the 
onta
t pro
ess survives or dies out at the 
riti
al value. A 
elebratedtheorem by Bezuidenhout and Grimmett, [1℄, gives us the answer.Theorem 2.1.1 (Bezuidenhout and Grimmett). The 
riti
al 
onta
t pro
ess dies out.For a proof of this, see [1℄ or [9℄.Note that 
hanging � to 1 and the re
overy rate to Æ 
orresponds to a trivial times
aling and so the pro
ess 
ould have instead been de�ned in this way. We will denotethe 
orresponding 
riti
al value by Æ
. This should be kept in mind in what follows.



2.1. INTRODUCTION AND MAIN RESULTS 29In 1991, Bramson, Durrett and S
honmann [2℄ introdu
ed the 
onta
t pro
ess ina random environment, in whi
h the re
overy rates are taken to be independently andidenti
ally distributed random variables and then �xed in time. For further results
on
erning this model see for example, Liggett [8℄, Klein [6℄ andNewman andVol
han[11℄. Re
ently, Broman [3℄ introdu
ed another variant where the environment 
hangesin time in a simple Markovian way. More pre
isely, he 
onsidered the Markov pro
ess,f(Bt; Ct)gt�0 on f0; 1gZd � f0; 1gZd des
ribed by the following rates at a site x:transition rate(0; 0)! (0; 1) Xy�xC(y)(1; 0)! (1; 1) Xy�xC(y)(0; 1)! (0; 0) Æ0(1; 1)! (1; 0) Æ1(0; 0)! (1; 0) 
p(0; 1)! (1; 1) 
p(1; 0)! (0; 0) 
(1� p)(1; 1)! (0; 1) 
(1� p)where d � 1, 
; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄. In other words, at ea
h site xindependently, fBt(x)gt�0 is a 2-state Markov 
hain with in�nitesimal matrix� �
p 
p
(1� p) �
(1� p)�whi
h in turn determines the re
overy rate of fCt(x)gt�0 in the following way. Forea
h t, the re
overy rate at lo
ation x is Æ0 or Æ1 depending on whether Bt(x) = 0or Bt(x) = 1. In addition, the infe
tion rate is always taken to be the number of in-fe
ted neighbors. (A
tually, Broman did this on a more general graph, but here we willonly 
onsider Zd.) Broman referred to fBtgt�0 as the ba
kground pro
ess and thewhole pro
ess f(Bt; Ct)gt�0 as the 
onta
t pro
ess in a randomly evolving environ-ment (CPREE). Let fC�t gt�0 denote the right marginal where the initial distribution ofthe whole pro
ess is �. In the 
ase where � = ��� we write fC�;�t gt�0. Furthermore,let Pp denote the measure governing the pro
ess for the parameters p, 
, Æ0 and Æ1,where 
, Æ0 and Æ1 are 
onsidered �xed. Also, denote the produ
tmeasure with densityq 2 [0; 1℄ by �q. Broman de�ned the 
riti
al valuep
 := inf np : Pp[C�p;f0gt 6= ; 8t > 0 ℄ > 0o(p
 is taken to be 1 if no p satis�es this) and proved that if Æ1 < Æ
 < Æ0 and 
 >max(2d; Æ
 � Æ1), then p
 2 (0; 1). At the end of his paper he asked whether the
riti
al value is affe
ted if we vary the initial distribution of the ba
kground pro
ess.



30 CHAPTER 2. PAPER IOur �rst result answers this question. Given 
; Æ0; Æ1 > 0 with Æ1 � Æ0, q 2 [0; 1℄ andA � Zd with jAj <1, de�nep
(q; A) := inf np : Pp[C�q ;At 6= ; 8t > 0 ℄ > 0o :Theorem 2.1.2. Given A,A0 � Zd with jAj, jA0j <1 and p, q, q0 2 [0; 1℄,(1) Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 () Pp[C�q0 ;A0t 6= ; 8t > 0 ℄ > 0:In parti
ular, p
(q; A) is independent of both q and A.Wewill let p
 denote this 
ommon value. (Re
all, p
 of 
ourse depends on 
, Æ0 andÆ1.) Also, if Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 holds (whi
h we now know is independentof q and A), we say that fCtg survives at p; otherwise it is said to die out at p.Later on, we will see that the pro
ess is attra
tive. (See Proposition 2.2.1.) Thisyields that the limiting distribution starting from all 1's exists and we will denote thelimit by ��p. Also, we will refer to this measure as the upper invariant measure. Thismeasure gives us another natural way to de�ne a 
riti
al value:p0
 := inff p : ��p 6= �p � Æ; g:For general attra
tive systems it might or might not be the 
ase that these de�nitions
oin
ide. However, for the ordinary 
onta
t pro
ess, this is the 
ase (due to its self-duality) and our next result shows that this is also true in our situation.Theorem 2.1.3. fCtg survives at p if and only if ��p 6= �p � Æ;. In parti
ular p
 = p0
.Our �nal result is a generalization of Theorem 2.1.1.Theorem 2.1.4. If fCtg survives at p > 0, then there exists Æ > 0 so that it survivesat p � Æ. In parti
ular, if p
 2 (0; 1℄, then the 
riti
al 
onta
t pro
ess in a randomlyevolving environment dies out.The rest of the paper is organized as follows. In Se
tion 2, we provide some pre-liminaries, in Se
tion 3, we prove Theorems 2.1.2 and 2.1.3 and in Se
tion 4, we proveTheorem 2.1.4.2.2 Some preliminariesIn this se
tion we will present the basi
 
onstru
tion of the CPREE via a graphi
alrepresentation that is suitable for our situation. We will also prove the elementaryfa
t that the CPREE is an attra
tive pro
ess. However, we will start off with somenotation and basi
 de�nitions. When the initial distribution of the pro
ess is �, we willdenote the distribution at time t by �Sp(t), suppressing 
, Æ0 and Æ1 in the notation.



2.2. SOME PRELIMINARIES 31(Of 
ourse, � is a probability measure on f0; 1gZd � f0; 1gZd.) When � is a produ
tmeasure, � = ���, we will denote the pro
ess by f(B�t ; C�;�t )gt�0. In the 
ase where� = Æ� and � = Æ� for some �, � 2 f0; 1gZd, we write f(B�t ; C�;�t )gt�0. To simplifynotation, we freely inter
hange between talking about elements in f0; 1gZd and subsetsof Zd. For �; �0 2 f0; 1gZd we write � � �0 if �(x) � �0(x) 8x 2 Zd. Furthermore,for (�; �); (�0; �0) 2 f0; 1gZd�f0; 1gZd we write (�; �) � (�0; �0) if both � � �0 and� � �0. These relations indu
e the 
on
ept of in
reasing fun
tion in the usual way.De�nition 2.2.1. We say that a fun
tion f on f0; 1gZd (or f0; 1gZd � f0; 1gZd) isin
reasing if f(�) � f(�0) (f(�; �) � f(�0; �0)) whenever � � �0 ((�; �) � (�0; �0)).In our analysis we make extensive use of the 
on
ept of sto
hasti
 domination.De�nition 2.2.2. Given two probability measures �1 and �2 on f0; 1gZd, we say that�1 is sto
hasti
ally dominated by �2 if �1(f) � �2(f) 8 in
reasing 
ontinuous fun
-tions f and we denote this by �1 � �2. If �i is the distribution ofXi, i = 1; 2, we alsowriteX1 �D X2.It is well known (see for example [7℄) that this is equivalent to the existen
e ofrandom variablesX1; X2 on a 
ommon probability spa
e su
h thatX1 � �1,X2 � �2and X1 � X2 a.s. (The � here means distributed a

ording to.) Also, sin
e we 
anidentify f0; 1gZd�f0; 1gZd with f0; 1gZd�f0;1g we have a similar result for measureson f0; 1gZd � f0; 1gZd. (Of 
ourse, sto
hasti
 domination makes sense on any spa
eof the form f0; 1gS where S is 
ountable.)Now, we turn to the graphi
al representation from whi
h our pro
ess will be de-�ned. Let 
; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄ be given parameters. Let fejgdj=1denote the standard basis on Zd, i.e. for i, j 2 f 1; : : : ; d gej(i) = (1 if i = j0 if i 6= j:De�ne the following sto
hasti
 elements on a 
ommon probability spa
e in su
h a waythat they are independent:� M b;0!1 = fM b;0!1t gt�0, a pro
ess with state spa
e NZd where ea
h marginalindependently evolves as a Poisson pro
ess with intensity 
p. (This pro
ess will
orrespond to the 0 to 1 �ips in the ba
kground pro
ess, see below.)� M b;1!0 = fM b;1!0t gt�0, a pro
ess with state spa
e NZd where ea
h marginalindependently evolves as a Poisson pro
ess with intensity 
(1�p). (This pro
esswill 
orrespond to the 1 to 0 �ips in the ba
kground pro
ess, see below.)� NÆ1 = fN Æ1t gt�0, a pro
ess with state spa
e NZd where ea
h marginal indepen-dently evolves as a Poisson pro
ess with intensity Æ1.



32 CHAPTER 2. PAPER I� NÆ0�Æ1 = fN Æ0�Æ1t gt�0, a pro
ess with state spa
e NZd where ea
h marginalindependently evolves as a Poisson pro
ess with intensity Æ0 � Æ1.� ~N j = f ~N jt gt�0, j 2 f�e1; : : : ;�ed g, independent pro
esses with state spa
eNZd where ea
h marginal independently evolves as a Poisson pro
ess with in-tensity 1. (We think of the points in ~N j(x) as being arrows from x to x+ ej andwill 
orrespond to the potential spread of infe
tion from x to x+ ej .)For s � 0 and � 2 f0; 1gZd, we will begin to de�ne a pro
ess B�;s = fB�;st gt�swhere for ea
h x 2 Zd, B�;s(x) is a fun
tion of the arrivals of M b;0!1(x) andM b;1!0(x) in [s;1). Assume for example that �(x) = 0; the 
ase when �(x) = 1
an be handled in a similar fashion. We then de�neB�;st (x) = 0; s � t < T1B�;st (x) = 1; T1 � t < T2B�;st (x) = 0; T2 � t < T3B�;st (x) = 1; T3 � t < T4...where T1 is the �rst arrival time of M b;0!1(x) after s, T2 is the �rst arrival time ofM b;1!0(x) after T1, T3 is the �rst arrival time ofM b;0!1(x) after T2, T4 is the �rstarrival time ofM b;1!0(x) after T3 and so forth. In words, the points inM b;0!1 arethe times at whi
h the ba
kground pro
ess swit
hes to 1 (had it been in state 0) andsimilarily forM b;1!0. Note importantly, we have all the pro
esses B�;s, as � and svary, de�ned on the same probability spa
e.Given B�;s,NÆ1 andNÆ0�Æ1 , de�neX�;s = fX�;st gt�s, a point pro
ess on Zd�[s;1), in the following way:X�;s = f (x; t) 2 Zd� [s;1) : (x; t) 2 NÆ1 or(x; t) 2 N Æ0�Æ1 and B�;st (x) = 0 gIn words, for ea
h site x, we 
hoose points in [s;1) from N Æ1(x) when the ba
k-ground pro
ess is in state 1 and from the union of NÆ1(x) and N Æ0�Æ1(x) when theba
kground pro
ess is in state 0.De�nition 2.2.3. Given spa
e-time points (x; s) and (y; t) with t > s and � 2f0; 1gZd, we say that there is a �-a
tive path from (x; s) to (y; t) if there is a sequen
eof times s = s0 < s1 < : : : < sm < sm+1 = t and spa
e points x = x0, x1; : : : ;xm = y so that for i = 1; : : : ;m, there is an arrow from xi�1 to xi at time si and thereare no points inX�;s on the verti
al segments fxig � (si; si+1), i = 0; : : : ;m.Remark: Note importantly, that both B�;s and the existen
e of a �-a
tive path from(x; s) to (y; t) are measurable with respe
t to the Poisson pro
esses after time s andhen
e are independent of everything in the Poisson pro
esses up to that time. The
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ts are introdu
ed for s > 0 is that they are useful obje
ts towhi
h the original pro
ess 
an be usefully 
ompared as will be done in the proof ofTheorem 2.1.4.To de�ne the pro
ess f(B�t ; C�;�t )gt�0 for a given initial 
on�guration (�; �) 2f0; 1gZd � f0; 1gZd, we let B�t = B�;0t andC�;�t = f y 2 Zd : for some x 2 Zd with �(x) = 1,there is a �-a
tive path from (x; 0) to (y; t) g:This is our formal de�nition of the CPREE. Note as � and � vary, we have all thepro
esses f(B�t ; C�;�t )gt�0 de�ned on the same probability spa
e.Having de�ned f(Bt; Ct)gt�0 with initial 
on�guration (�; �), it is a simple matterto extend the de�nition to an arbitrary initial distribution �. Just add to our probabilityspa
e, independently of all the randomvariables already de�ned, two randomvariableson f0; 1gZd with joint distribution �. We will denote the probabilitymeasure governingall these variables by Pp, suppressing 
, Æ0 and Æ1 in the notation.The �rst easy fa
t about the CPREE we will show is that it is an attra
tive pro
ess.Proposition 2.2.1. (Bt; Ct) satis�es the attra
tivity 
ondition:(2) � � � =) �Sp(t) � �Sp(t) 8t > 0:Proof. It is standard that (2) is equivalent to (Æ� � Æ�)Sp(t) being sto
hasti
ally in-
reasing in (�; �) for all t � 0. However, it is immediate from the 
onstru
tion that if�1 � �2 and �1 � �2, then for all t � 0B�1t � B�2tand C�1;�1t � C�2;�2t :This gives the sto
hasti
 domination (with an expli
it 
oupling).2.3 Proofs of Theorems 2.1.2 and 2.1.3Re
all, given 
, Æ0, Æ1 > 0 with Æ1 � Æ0 and q 2 [0; 1℄ we have de�nedp
(q; A) := inf np : Pp[C�q;At 6= ; 8t > 0 ℄ > 0owhere A � Zd, jAj <1, and �q denotes produ
t measure with density q.Proof of Theorem 2.1.2. We will prove the statements:� For all A � Zd with jAj <1 and p, q 2 [0; 1℄,(3) Pp[C�q ;At 6= ; 8t > 0 ℄ > 0 () Pp[C�q ;f0gt 6= ; 8t > 0 ℄ > 0:



34 CHAPTER 2. PAPER I� For all p 2 [0; 1℄,(4) Pp[C;;f0gt 6= ; 8t > 0 ℄ > 0 () Pp[CZd;f0gt 6= ; 8t > 0 ℄ > 0:Combining these two will yield the statement in Theorem 2.1.2. For (3), the left im-pli
ation follows from translation invarian
e and the right impli
ation follows easilyfrom the additivity property of the pro
ess meaningC�;A[Bt = C�;At [ C�;Bt 8A;B � Zd; 8� 2 f0; 1gZd:To prove (4), observe that the right impli
ation is immediate from Proposition 2.2.1and so we assume Pp[CZd;f0gt 6= ; 8t > 0 ℄ > 0. De�ne't(x) = 1fB;t (x)=BZdt (x)g x 2 Zd; t � 0:(Re
all this is well de�ned sin
e fB;t gt�0 and fBZdt gt�0 are de�ned on the sameprobability spa
e.) Note that 't has the property that for ea
h site independently, afteran exponentially distributed time with mean 1
 , the pro
ess �ips to one and stays there.Therefore we have Pp['t(x) = 1 ℄ = 1 � e�
t. For A � Zd, de�ne f ~CAt gt�0 fromthe graphi
al representation in the same way as fC � ;At gt�0 ex
ept that all re
overiesare ignored. This is what is usually 
alled the Ri
hardson model, see Durrett [4℄.Lemma 2.3.1. Pp[ ~Cf0gt � 't ;8t � n ℄! 1 as n!1.Proof. Let In = f�n2; : : : ; n2gd and for x 2 Zd de�net(x) = inff t : x 2 ~Cf0gt g:From [4, p. 16℄, we get that there are 
onstants 
1,
2,
3 2 (0;1) su
h thatPp[ t(x) < 
1jxj1 ℄ � 
2e�
3jxj1 ;where j � j1 is the L1 norm. This easily gives us the estimatePp[ ~Cf0g
1(n+1) * In ℄ � P (n)e�
3n;where P (n) is a polynomial in n, and from the Borel Cantelli lemma we 
an 
on
lude(5) Pp[ 9N � 1 su
h that ~Cf0g
1(n+1) � In ;8n � N ℄ = 1:Furthermore, independen
e givesPp[ In � '
1n ℄ = (1� e�

1n)(2n2+1)d :
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e 1Xn=1 1� (1� e�

1n)(2n2+1)d <1;the Borel Cantelli lemma again yields(6) Pp[ 9N � 1 su
h that In � '
1n ;8n � N ℄ = 1:Combining (5) and (6), we obtainPp[ 9N � 1 su
h that ~Cf0gt � 't ;8t � N ℄ = 1;as desired.Sin
e CZd;f0gt � ~Cf0gt 8t � 0, the 
laim tells us that, with probability one, aftersome time and thereafter, the two ba
kground pro
esses in�uen
e C;;f0gt and CZd;f0gtin exa
tly the same way. Next, 
ountable additivity gives us that for some n � 1 wehave Pp[ ~Cf0gt � 't 8t � n ; CZd;f0gt 6= ; 8t > 0 ℄ > 0and then that for somem (depending on n)Pp[ ~Cf0gt � 't 8t � n ; ~Cf0gt � [�m;m℄d 8t 2 [0; n℄; CZd;f0gt 6= ; 8t > 0 ℄ > 0:Denote the previous event by A and de�ne the random setU = f (x; t) 2 [�m;m℄d � [0; n℄ : BZdt (x) = 1 gand let B = f no arrivals in NÆ0�Æ1 duringU g:It is 
lear that A \ B � fC;;f0gt 6= ; 8t > 0 gand so it remains to show that Pp[A \B ℄ > 0:However, if we 
ondition on A and U , then we will not yield any information aboutthe NÆ0�Æ1 pro
ess on U and soPp[B jA;U ℄ = e�(Æ0�Æ1)L(U)where L(U) is the �length� of U . This easily givesPp[BjA ℄ > 0and the proof is 
omplete. 2



36 CHAPTER 2. PAPER IRemark: The same argument shows that strong survival does not depend on the initialdistribution of the ba
kground pro
ess in the sense thatPp[ 0 2 C;;f0gt i.o. ℄ > 0 () Pp[ 0 2 CZd;f0gt i.o. ℄ > 0:This answers another question in [3℄.Re
all the de�nition of p0
 from the introdu
tion:p0
 := inff p : ��p 6= �p � Æ; g:Here ��p = limt!1(ÆZd � ÆZd)Sp(t). (The limit exists due to Proposition 2.2.1.) Toprove Theorem 2.1.3 we will use the next Lemma.Lemma 2.3.2. Given p; q 2 (0; 1) with q � p we havelimt!1(�q � ÆZd)Sp(t) = ��p:Proof. By simple sto
hasti
 
omparison, it is enough to 
onsider the 
ase when q = p.We begin to establish the existen
e of that limit. Sin
e �p is the stationary distributionfor the ba
kground pro
ess and the right marginal always o

upies less than or equalto the whole f0; 1gZd, we have(�p � ÆZd)Sp(t) � �p � ÆZd 8t > 0:Using attra
tiveness and the Markov property yields(�p � ÆZd)Sp(s+ t) � (�p � ÆZd)Sp(s) 8s; t > 0;and so the existen
e of the limit is 
lear frommonotoni
ity. Denote this limit by �0p andobserve it is ne
essarily stationary. It is 
lear that �0p � ��p so we are done if ��p � �0p.For this, note that attra
tiveness again gives that the map� 7! E�[f(Æt; �t)℄is in
reasing whenever f is 
ontinuous and in
reasing. Using this, and the fa
t that anystationary distribution ne
essarily has as �rst marginal �p, we 
an do the following
al
ulation for any stationary distribution � of (Bt; Ct) and f : f0; 1gZd�f0; 1gZd !R 
ontinuous and in
reasing:Z f d� = E�[f(Æt; �t)℄ � E�p�ÆZd[f(Æt; �t)℄! Z f d�0p as t!1:Hen
e, � � �0p and we are done.Proof of Theorem 2.1.3. When the initial distribution of the ba
kground pro
ess is �p,it is easy to see from the graphi
al representation that Ct is self-dual in the sense that(7) Pp[C�p;At \B 6= ; ℄ = Pp[C�p;Bt \ A 6= ; ℄ 8t > 0; A;B � Zd:



2.4. PROOF OF THEOREM 2.1.4 37If we takeA = f0g,B = Zd in this equation and let t!1 using the previous lemma,we 
an easily 
on
lude thatPp[C�p;f0gt 6= ; 8t > 0 ℄ > 0 () ��p 6= �p � Æ;and we are done. 2Remark: There is a weaker duality equation when the initial distribution of the ba
k-ground pro
ess differs from �p, but this is less natural and seems less useful.2.4 Proof of Theorem 2.1.4We now turn to the proof of Theorem 2.1.4, that the 
riti
al CPREE dies out. On
eLemma 2.4.1 below is established, the rest follows similar lines as in the proofs ofTheorem 2.1.1 
arried out in [1℄ and [9℄. Ourmain goal is to prove that if fCtg survivesat p > 0, then there is a number Æ > 0 and integers n; a su
h that(8) Pp�Æ [C;;[�n;n℄dt survives in Z� [�5a; 5a℄d�1 � [0;1) ℄ > 0:If p
 2 (0; 1℄, this will immediately implyPp
 [C;;f0gt 6= ; 8t � 0 ℄ = 0:To a
hieve (8), we begin by showing that if the CPREE survives, then it is very likelyto have survival if the initial 
on�guration is suf�
iently large even if we start with allzeros in the ba
kground pro
ess.Lemma 2.4.1. If fCtg survives at p > 0 thenlimn!1Pp[C;;[�n;n℄dt 6= ; 8t > 0 ℄ = 1:For the proof of this we use the following result.Lemma 2.4.2. For all n � 1, we havelim�!0Pp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄ = Pp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄:Proof. Fix n � 1. The probability on the left in
reases when � de
reases and so thelimit exists and is 
learly at most the right hand side. For the other inequality let Æ > 0and de�ne '�t(x) = 1fB�p��t (x)=B�pt (x)g x 2 Zd; t � 0;where �p�� and �p are 
oupled in the usual monotone way. Re
all the de�nition of 'tfrom the proof of Theorem 2.1.2 and observe that't � '�t 8t > 0; 8� > 0:



38 CHAPTER 2. PAPER IAlso, an easy modi�
ation of the proof of Lemma 2.3.1 yieldslimT!1Pp[ ~C [�n;n℄dt � 't ;8t � T ℄ = 1:(Re
all that ~CAt is the CPREE starting from the 
on�guration A but with no re
over-ies.) This allows us to 
hoose T > 0 su
h thatPp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄� Pp[ ~C [�n;n℄dt � 't ;8t � T; C�p;[�n;n℄dt 6= ; 8t > 0 ℄ + Æ:Given this T , 
hoosem � 1 su
h thatPp[ ~C [�n;n℄dt � [�m;m℄d 8 0 � t � T ℄ > 1� Æand for thatm 
hoose �0 > 0 su
h thatPp[B�p��0 = B�p0 on [�m;m℄d ℄ > 1� Æ; 8 0 < � � �0:Now sin
e f ~C [�n;n℄dt � 't ;8t � T; ~C [�n;n℄dt � [�m;m℄d 8 0 � t � T;B�p��0 = B�p0 on [�m;m℄d; C�p;[�n;n℄dt 6= ; 8t > 0 g� fC�p��;[�n;n℄dt 6= ; 8t > 0 g;we get Pp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄� Pp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄ + 3Æ;whenever 0 < � � �0 and so the proof is 
omplete.Proof of Lemma 2.4.1. Let Æ > 0. From the self-duality equation (7), Lemma 2.3.2and the easily veri�ed fa
t that the se
ond marginal of ��p gives zero measure to ;, weeasily get that there is an n � 1 su
h thatPp[C�p;[�n;n℄dt 6= ; 8t > 0 ℄ > 1� Æ:The previous lemma makes it possible to now 
hoose an � > 0 su
h thatPp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄ > 1� Æ:Denote the semigroup operator asso
iated with the ba
kground pro
ess by T (t) andnote that for � above there is a time s su
h thatÆ;T (s) � �p��:



2.4. PROOF OF THEOREM 2.1.4 39Now, let Bm;n denote the box in Zd with sidelengthmn and writeBm;n = md[i=1Ai;where ea
h Ai is a translation of the box with sidelength n and with the Ai's disjoint.Then, de�neAsm;n = fNo arrivals inNÆ1 orNÆ0�Æ1 up to time s in some Ai g:Given n and s, we 
an 
hoosem so large thatPp[Asm;n ℄ > 1� Æ:The proof is �nished by noting that monotoni
ity easily implies thatPp[C;;[�mn;mn℄dt 6= ; 8t > 0 jAsm;n ℄ � Pp[C�p��;[�n;n℄dt 6= ; 8t > 0 ℄;using the fa
t that Asm;n is independent of the ba
kground pro
ess. 2Remark: A slightly more abstra
t but 
onsiderably shorter proof of Lemma 2.4.1 isfound by Olle Häggström after submission of the paper and is as follows. For x 2 Zd,let Y ;x be the indi
ator variable for survival when the pro
ess starts with only x infe
tedand all zeros in the ba
kground pro
ess. By translation invarian
e, Pp[Y ;x = 1 ℄ isindependent of x and by Theorem 2.1.2 we know that it is positive. It follows fromthe graphi
al representation that the pro
ess fY ;x gx2Zd is ergodi
 and hen
e a.s. thereis some x for whi
h Y ;x = 1. Moreover, the event in Lemma 2.4.1 o

urs as soon assome site in [�n; n℄d has Y ;x = 1 and so the lemma follows at on
e.We have now set up the ne
essary ground work for our model in order to be ableto follow the steps in [9℄. For L � 1 and A � (�L;L)d, let LC;;At be the trun
atedpro
ess, using only ;-a
tive paths (re
all De�nition 2.2.3) whi
h stay in (�L;L)d �[0; t℄.Lemma 2.4.3. For all �nite A � Zd andN � 1, we havelimt!1 limL!1Pp[ jLC;;At j � N ℄ = Pp[C;;At 6= ; 8t > 0 ℄Proof. Fix A andN . Sin
e C;;At = 1[L=1 LC;;At ;we easily get that for �xed tPp[ jC;;At j � N ℄ = limL!1Pp[ jLC;;At j � N ℄;



40 CHAPTER 2. PAPER Iand so we are done iflimt!1Pp[ jC;;At j � N ℄ = Pp[C;;At 6= ; 8t > 0 ℄:For this, it is enough to 
he
k two things:limt!1Pp[ jC;;At j � N;C;;As = ; some s > 0 ℄ = 0limt!1Pp[ jC;;At j � N;C;;As 6= ; 8s > 0 ℄ = Pp[C;;At 6= ; 8t > 0 ℄The �rst equality follows easily by applying Fatou's Lemma. The se
ond one followsif limt!1 jC;;At j =1 a.s on fC;;At 6= ; 8t > 0 g:Assume the 
ontrary, i.e.(9) Pp[ jC;;At j does not 
onverges to in�nity, C;;As 6= ; 8s > 0 ℄ > 0:From the martingale 
onvergen
e theorem we get that(10) Pp[C;;At 6= ; 8t � s j Fs ℄! 1fC;;At 6=; 8t>0 g as s!1;where Fs is the �-algebra generated by the whole pro
ess up to time s. Equation (9)and (10) implies that with positive probability the following 
an happen:lims!1P(�s;Cs)[Ct 6= ; 8t > 0 ℄ = 19M > 0; f�igi�1 3 �1 < �2 < : : : < �i !1 ; jC�i j �M 8i:However, using elementary fa
ts about exponentially distributed variables, we getP(��i ;C�i )[Ct = ; some t > 0 ℄� P(Zd;C�i )[Ct = ; some t > 0 ℄ � � Æ1Æ0 + 
 + 2d�M 8i;whi
h yields a 
ontradi
tion and the proof is 
omplete.The next step is to take 
are of the sides of the spa
e-time box. De�neS(L; T ) = f (x; t) 2 Zd� [0; T ℄ : jxj1 = L g:Fix A � (�L;L)d and look at all points on S(L; T ) that 
an be rea
hed from A byan ;-a
tive path using verti
al segments where the spa
e 
oordinate is in (�L;L)d andinfe
tion arrows from (x; �) to (y; �) with x 2 (�L;L)d. De�ne NA; (L; T ) to be themaximum number of su
h points with the following property: If (x; t1) and (x; t2) areany two points with the same spatial 
oordinate, then jt1 � t2j � 1.



2.4. PROOF OF THEOREM 2.1.4 41Lemma 2.4.4. Assume Lj % 1 and Tj % 1. Then for any M;N � 1 and �niteA � Zd, we havelim supj!1 Pp[NA; (Lj ; Tj) �M ℄Pp[ jLjC;;ATj j � N ℄ � Pp[C;;At = ; some t > 0 ℄:Proof. The proof follows the steps of Proposition 2.8 in [9℄ with some adjustments.Let FL;T denote the �-algebra generated byM b;0!1,M b;1!0, N Æ1 , NÆ0�Æ1 and ~N j ,j 2 f�e1; : : : ;�ed g in (�L;L)d � [0; T ℄. We �rst argue thatPp[C;;At = ; some t > 0 j FL;T ℄ � � e�4dÆ1Æ0 + 
 + 2d�ka.s on fNA; (L; T ) + jLC;;AT j � k g(11)For x 2 LC;;AT there is a 
onditional probability of at leastÆ1Æ0 + 
 + 2dthat x be
omes healthy before it infe
ts any of its neighbors. So, if jLC;;AT j = m, thenthe 
onditional probability that no x 2 LC;;AT 
ontributes to survival is at least� Æ1Æ0 + 
 + 2d�m :For the sides of the box, 
onsider a time line fxg � [0; T ℄, where jxj1 = L and let(x; t1); : : : ; (x; tj)be a maximal set of points that 
an be rea
hed from A by an ;-a
tive path with theproperty that ea
h pair is separated by at least distan
e 1. LetI = j[k=1fxg � (tk � 1; tk + 1)and note that the probability that there are no arrows 
oming out from I is at least e�4dj .Furthermore, for ea
h interval of length y in the 
omplement of I in fxg� [0;1), theprobability of the event that if there is at least one arrival of the Poisson pro
esses inthe interval with the �rst one 
oming fromNÆ1 or there is no arrivals at all is�1� e�(Æ0+
+2d)y� Æ1Æ0 + 
 + 2d + e�(Æ0+
+2d)y � Æ1Æ0 + 
 + 2d:By independen
e, we get that the 
onditional probability that none of the points in thetime line fxg � [0; T ℄ 
ontributes to survival is at least� e�4dÆ1Æ0 + 
 + 2d�j :



42 CHAPTER 2. PAPER INow, 
onsidering the 
ontribution of different x's yieldsPp[C;;At = ; some t > 0 j FL;T ℄� � Æ1Æ0 + 
 + 2d�jLC;;AT j� e�4dÆ1Æ0 + 
 + 2d�NA(L;T )whi
h implies (11). For the rest of the proof, one pro
eeds exa
tly as in the se
ondhalf of Proposition 2.8 in [9, p. 48-49℄. The needed inequalityPp[NA; (L; T ) �M; jLC;;AT j � N ℄� Pp[NA; (L; T ) �M ℄Pp[ jLC;;AT j � N ℄is justi�ed by the fa
t that NA; (L; T ) and jLC;;AT j are in
reasing fun
tions of ~N j ,j 2 f�e1; : : : ;�ed g andM b;0!1, and de
reasing inNÆ1 ,NÆ0�Æ1 andM b;1!0. This
ompletes the proof.We are soon ready to state and prove the so 
alled �nite spa
e-time 
ondition.However, we �rst need two more propositions. We just state them here sin
e the proofsare exa
tly the same as for Propositions 2.6 and 2.11, pages 46-47 and 49 in [9℄.Proposition 2.4.5. For every n;N � 1 and L � n, we havePp[ jLC;;[�n;n℄dt \ [0; L)dj � N ℄ � �Pp[ jLC;;[�n;n℄dt j � 2dN ℄�2�dLet S+(L; T ) = f (x; t) 2 Zd� [0; T ℄ : x1 = L ; xi � 0; 2 � i � d gand de�ne NA;;+(L; T ) in a similar manner as NA; (L; T ) using S+(L; T ) instead ofS(L; T ).Proposition 2.4.6. For any L;M � 1, T > 0 and n < L,�Pp[N [�n;n℄d;;+ (L; T ) �M ℄�d2d � Pp[N [�n;n℄d; (L; T ) �Md2d ℄The proof of these propositions requires 
ertain random variables to be positively
orrelated. For Proposition 2.4.5, let X1 = jLC [�n;n℄dt \ [0; L)dj and X2; : : : ; X2dbe de�ned similarly with respe
t to the other orthants in Rd . The needed positive
orrelation of fXig2di=1 is justi�ed in the same way as in the end of the proof of Lemma2.4.4. Similarly justi�
ation 
an be made in the proof of Proposition 2.4.6.Theorem 2.4.7. If fCtg survives at p > 0, then it satis�es the following 
ondition:For all � > 0 there exist n;L � 1 and T > 0 su
h thatPp[ L+nC;;[�n;n℄dT+1 � x+ [�n; n℄d some x 2 [0; L)d ℄ > 1� �(12) Pp[ L+2n+1C;;[�n;n℄dt+1 � x+ [�n; n℄d some 0 � t < T;(13) some x 2 fL+ ng � [0; L)d�1 ℄ > 1� �



2.4. PROOF OF THEOREM 2.1.4 43Proof. Again, we will follow the steps in [9℄ with some modi�
ations. Let 0 < Æ < 1.We will see at the end how to 
hoose Æ for a given � > 0. Lemma 2.4.1 gives us an nsu
h that(14) Pp[C;;[�n;n℄dt 6= ; 8t > 0 ℄ > 1� Æ2:Given n, 
hooseN 0 su
h that�1�Pp[ n+1C;;f0g1 � [�n; n℄d ℄�N 0 < Æand then 
hooseN so large su
h that ifA � Zdwith jAj � N , then there existsB � Awith jBj � N 0 and jx� yj1 � 2n+ 1 8x; y 2 B; x 6= y:Let BA be a �xed (deterministi
) su
h 
hoi
e for ea
h A.In a similar fashion, 
hooseM 0 su
h that(15) (1� a)M 0 < Æ;where a = Pp[There are ;-a
tive paths from the origin to everypoint in [0; 2n℄� [�n; n℄d�1 � f1g thatstays in [0; 2n℄� [�n; n℄d�1 � [0; 1℄ ℄Then 
hooseM so large su
h that if A � Zd� [0;1) is a �nite set with jAj � M ,where the distan
e in time between points with the same spatial 
oordinate is at least1, then there exists B � A with jBj � M 0 and with the property that for ea
h pair ofpoints (x; s); (y; t) 2 B we have either(16) x = y; js� tj � 1 or jx� yj1 � 2n+ 1:Let BA be a �xed (deterministi
) su
h 
hoi
e for ea
h A.From Lemma 2.4.3, (14), the inequality 1 � Æ < 1 � Æ2 and the fa
ts that for�xed L, n and N , the map t 7! Pp[ jLC;;[�n;n℄dt j > 2dN ℄ is 
ontinuous and thatlimt!1Pp[ jLC;;[�n;n℄dt j > 2dN ℄ = 0, we 
an 
on
lude that there exist Lj % 1and Tj %1 so thatPp[ jLjC;;[�n;n℄dTj j > 2dN ℄ = 1� Æ 8 j � 1:Furthermore, Lemma 2.4.4 with M and N repla
ed by Md2d and 2dN respe
tivelyand with A = [�n; n℄d, we get that for some jPp[N [�n;n℄d; (Lj ; Tj) > Md2d ℄ > 1� Æ:



44 CHAPTER 2. PAPER ILet L = Lj and T = Tj for that spe
i�
 j and apply Propositions 2.4.5 and 2.4.6 toget Pp[ jLC;;[�n;n℄dT \ [0; L)dj > N ℄ > 1� Æ2�d(17) Pp[N [�n;n℄d;;+ (L; T ) > M ℄ > 1� Æ2�d=d:(18)To obtain (12), de�ne forB � Zd and T > 0V TB = f 9 (x; t) 2 B � fTg su
h that there are ;-a
tive paths from(x; t) to every (y; s) 2 �x+ [�n; n℄d�� fT + 1gthat stays in �x+ [�n; n℄d�� (T; T + 1℄ g;and note that[A�[0;L)df jLC;;[�n;n℄dT \ [0; L)dj > N; LC;;[�n;n℄dT \ [0; L)d = A; V TBA g� f L+nC;;[�n;n℄dT+1 � x+ [�n; n℄d some x 2 [0; L)d g:(19)Let FT be the �-algebra generated byM b;0!1, M b;1!0, NÆ1 , N Æ0�Æ1 , and ~N j , j 2f�e1; : : : ;�ed g up to time T and note that for givenA � [0; L)d with jAj � N , V TBAis independent of FT soPp[V TBA j FT ℄ = Pp[V TBA ℄� 1� �1�Pp[ n+1C;;f0g1 � [�n; n℄d ℄�N 0 > 1� Æ:By summing up overA � [0; L)d and using (17) and (19), we getPp[ L+nC;;[�n;n℄dT+1 � x+ [�n; n℄d some x 2 [0; L)d ℄> (1� Æ)(1� Æ2�d):This yields (12) when Æ is 
hosen appropriately.To obtain (13), de�ne for ea
h spa
e-time point (xi; ti) we 
ount in N [�n;n℄d;;+ (L; T )a variable ~Yi whi
h is 1 if (xi; ti) infe
ts all points in�xi + [0; 2n℄� [�n; n℄d�1�� fti + 1gusing ;-a
tive paths in�xi + [0; 2n℄� [�n; n℄d�1�� (ti; ti + 1℄only and 0 otherwise. If N [�n;n℄d;;+ (L; T ) > M , we 
an 
hooseM 0 spa
e-time pointssatisfying (16). Denote the 
orresponding variables by Yi, i = 1; : : : ;M 0. Let FL;T be



2.4. PROOF OF THEOREM 2.1.4 45as in the proof of Lemma 2.4.4 and note that 
onditioned onFL;T restri
ted to the eventfN [�n;n℄d;;+ (L; T ) > M g, theM 0 spa
e-time points are spe
i�ed and Y1; Y2; : : : ; YM 0are independent with the (
onditional) probability of Yi = 1 equal to a. This impliesthat Pp[Yi = 1 some i = 1; : : : ;M 0 j FL;T ℄ = 1� (1� a)M 0on fN [�n;n℄d;;+ (L; T ) > M g;whi
h together with (15) and (18) yieldsPp[ L+2n+1C;;[�n;n℄dt+1 � x+ [�n; n℄d some 0 � t < T;some x 2 fL+ ng � [0; L)d�1 ℄> (1� Æ)(1� Æ2�d=d):This gives (13) when Æ is 
hosen appropriately.The next part of the program is to 
arry out a 
omparisonwith oriented per
olation.For this, we start to 
ombine (12) and (13) into one.Lemma 2.4.8. If fCtg survives at p > 0, then it satis�es the following 
ondition: Forall � > 0 there exist n;L � 1 and T > 0 su
h thatPp[ 2L+3nC;;[�n;n℄dt � x+ [�n; n℄d some T � t < 2T;some x 2 [L+ n; 2L+ n℄� [0; 2L)d�1 ℄ > 1� �(20)Proof. We follow Proposition 2.20 in [9℄. Let (x; �) be the �rst (in time) spa
e-timepoint with the property appearing in the probability (13), where x is 
hoosen a

ordingto some deterministi
 ordering of Zd and restart (Bt; Ct) at time � + 1. From (12),(13) and the fa
t that these probabilities are in
reasing in the ba
kground pro
ess, itfollows thatPp[ 2L+3nC;;[�n;n℄dt � x+ [�n; n℄d some T + 1 � t < 2T + 2;some x 2 [L+ n; 2L+ n℄� [0; 2L)d�1 ℄ > (1� �)2:Repla
e T + 1 with T and the proof is 
omplete.Now we are ready for the fundamental step in the 
onstru
tion towards the 
om-parison.Lemma 2.4.9. Assume fCtg survives at p > 0 and �x � > 0. Then there exist Æ > 0,n; a; b with n < a su
h that for all (x; t) 2 [�a; a℄d � [0; b℄Pp�Æ [ 9 (y; s) 2 [a; 3a℄� [�a; a℄d�1 � [5b; 6b℄ su
h thatthere are ;-a
tive paths from (x; t) + �[�n; n℄d � f0g�to every point in (y; s) + �[�n; n℄d � f0g�that stays in [�5a; 5a℄d � [0; 6b℄ ℄ > 1� �:



46 CHAPTER 2. PAPER IProof. One 
an pro
eed exa
tly as in Proposition 2.22 in [9, p. 52-53℄ to �rst obtainthe statement with p � Æ repla
ed by p and therefore we only outline this part of theargument. The main idea is to use Lemma 2.4.8 (or a �re�e
ted� version of it) repeat-edly (between 4 to 10 times) to steer things properly so that the desired event o

urs.The existen
e of Æ > 0 is a 
onsequen
e of the fa
t that the event in question dependsonly on the graphi
al representation in [�5a; 5a℄d� [0; 6b℄ and hen
e is 
ontinuous inp. Repeated use of the previous lemma together with appropriate stopping times andmonotoni
ity in the ba
kground pro
ess yields:Lemma 2.4.10. Assume fCtg survives at p > 0 and let � > 0 and k � 1 be �xed.Then there exist Æ > 0, n; a; b with n < a su
h that the following holds: For all(x; t) 2 [�a; a℄d � [0; b℄, with Pp�Æ-probability at least 1� �, there exists a translate(y; s) + [�n; n℄d � f0g of [�n; n℄d � f0g su
h thata) (y; s) 2 ([�a; a℄ + 2ka)� [�a; a℄d�1 � [5kb; (5k + 1)b℄b) There are ;-a
tive paths from (x; t) + [�n; n℄d � f0g to everypoint in (y; s) + [�n; n℄d � f0g that stays in the regionA = k�1[j=0 ([�5a; 5a℄ + 2ja)� [�5a; 5a℄d�1 � ([0; 6b℄ + 5jb) :Our �nal step towards (8) is to use the previous lemma in a so 
alled renormal-ization argument. The set A from Lemma 2.4.10 (see Figure 2.1) and its re�e
tionwith respe
t to the t-axis will 
onsist of our building blo
ks. Given the 
onditions inLemma 2.4.10, the distan
e 
 in Figure 2.2 is well de�ned. (De�ne it to be zero if thedashed verti
al line is to the right of the left 
orner of the re
tangleR, see Figure 2.2.)It is easy to see that, if we 
hoose k > 5, 
 will be bigger than 3a, independent of thevalue of a. Fix su
h a k.Theorem 2.4.11. If fCtg survives at p > 0, then there are integers n,a and Æ > 0su
h that Pp�Æ [C;;[�n;n℄dt survives in Z� [�5a; 5a℄d�1 � [0;1) ℄ > 0Proof. The proof is a modi�
ation of Lemma 21 of [1℄. Let � > 0 be given and take� > 0 su
h that 1 � � > 1 � � and let n, a, b and Æ be as in Lemma 2.4.10. We willmake an appropriate 
hoi
e of � later. Constru
t a pro
ess Zn(i) = (Xn(i); Yn(i)),i � 0, n � 0, whereXn(i) 2 f0; 1g and Yn(i) is a point in Zd� [0;1). Yn(i) will beunde�nedwhenXn(i) = 0. Start withZ0(0) = (1; 0),X0(i) = 0, i 6= 0 and de�ne in-du
tively as follows: WithZk(i) already de�ned for i � 0, 0 � k � n letXn+1(i) = 1if for either j = i or j = i� 1 it is the 
ase that Xn(j) = 1 and there is a translationof [�n; n℄d to the shaded area (see Figure 2.3 for the shaded regions) on the top of the
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x

  5aFigure 2.1: The set A.
orresponding blo
k su
h that Yn(j)+ [�n; n℄d is 
onne
ted with ;-a
tive paths to ev-ery point in that translation. Furthermore, de�ne Yn+1(i) = (xn+1(i); tn+1(i)), wheretn+1(i) is the earliest 
enter of su
h a translation and xn+1(i) is 
hosen a

ording tosome �xed ordering ofZd. Note that ifXn(i) = 1 for in�nitely many pairs (i; n), thenC;;[�n;n℄dt survives in Z� [�5a; 5a℄d�1� [0;1) so it remains to prove that the formerhas positive probability. Let Fn be the �-algebra generating by Zk(i), where i � 0,0 � k � n and note that from Lemma 2.4.10 we getPp[Xn+1(i) = 1 j Fn ℄ > 1� � on fXn(i� 1) = 1 orXn(i) = 1 g:Also, our 
hoi
e of k and the fa
t that events that depend on disjoint parts of the graph-i
al representation are independent, we have that, 
onditioned on Fn, the 
olle
tionof variables fXn+1(i) : i � 0 g is one-dependent. Now, we are ready to makethe 
onstru
tion above for a spe
i�
 
hoi
e of �. Take 1=4 � p < 1 so large thatan oriented per
olation pro
ess, fAng, on N with parameter p survives with positiveprobability when it starts with a single infe
tion at the origin and 
hoose � su
h that1�� > 1� (1�pp)3. A result of Liggett, S
honmann and Sta
ey [10℄ (see also The-orem B26 [9℄) tells us that a one-dependent pro
ess with density 1 � � sto
hasti
ally
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RFigure 2.2: The de�nition of 
.dominates a produ
t measure with density p on N. We 
an then 
on
lude that fXngdominates fAng. This 
ompletes the proof.We end with the following question:Does the pro
ess obey a 
omplete 
onvergen
e theorem, i.e. is it the 
ase that for allp 2 [0; 1℄ and �, � 2 f0; 1gZd(Æ� � Æ�)Sp(t)! �p(�; �)��p + (1� �p(�; �))�p � Æ; as t!1;where �p(�; �) = Pp[C�;�t 6= ; 8t � 0 ℄:Contemporaneously and independently of our work, Remenik [12℄ has proved a 
om-plete 
onvergen
e theorem for the spe
ial variant when Æ0 = 1. We strongly believethat a 
omplete 
onvergen
e theorem also holds in our 
ase and plan to pursue someideas that we have.
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3PAPER IIABSTRACTWe 
onsider spin systems on Z (i.e. intera
ting parti
le systems on Z in whi
h ea
h
oordinate only has two possible values and only one 
oordinate 
hanges in ea
h tran-sition) whose rates are determined by another pro
ess, 
alled a ba
kground pro
ess.A 
anoni
al example is the 
onta
t pro
ess in randomly evolving environment, intro-du
ed and analysed by Broman and further studied by Steif and the author, where themarginals of the ba
kground pro
ess independently evolve as 2-state Markov 
hainsand determine the re
overy rates for a 
onta
t pro
ess. We prove that, if the ba
k-ground pro
ess has a unique stationary distribution and if the rates satisfy a 
ertainpositivity 
ondition, then there are at most two extremal stationary distributions. Theproof follows 
losely the ideas of Liggett's proof of a 
orresponding theorem for spinsystems on Zwithout a ba
kground pro
ess.Key words and phrases: Spin systems, varying environment.Subje
t 
lassi�
ation : 60K35.3.1 Introdu
tionThe 
onta
t pro
ess in a randomenvironment, in whi
h the rates are taken to be randomvariables and then �xed in time, has been studied the last twenty years, see for example[1, 4, 7, 8℄. However, re
ently Broman [2℄ introdu
ed a variant where the environment
hanges in time in a Markovian way. (See also [9℄ for further analysis 
on
erningthat pro
ess.) More pre
isely, he 
onsidered the Markov pro
ess f(Bt; Ct)gt�0 on53



54 CHAPTER 3. PAPER IIf0; 1gZd � f0; 1gZd des
ribed by the following rates at a site x:transition rate(0; 0)! (0; 1) Py�xC(y)(1; 0)! (1; 1) Py�xC(y)(0; 1)! (0; 0) Æ0(1; 1)! (1; 0) Æ1(0; 0)! (1; 0) 
p(0; 1)! (1; 1) 
p(1; 0)! (0; 0) 
(1� p)(1; 1)! (0; 1) 
(1� p)where 
; Æ0; Æ1 > 0 with Æ1 � Æ0 and p 2 [0; 1℄. In other words, the ba
kgroundpro
ess evolves independently for ea
h site and determines the re
overy rate for theright marginal in the following way: At a given site x and time t, the rate is Æ0 or Æ1depending on whether Bt(x) = 0 or Bt(x) = 1. Broman 
alled f(Bt; Ct)g the 
on-ta
t pro
ess in a randomly evolving environment, abbreviated CPREE. In this paper westudy pro
esses in one dimension with the same stru
ture: a ba
kground pro
ess in�u-en
ing another intera
ting parti
le system, but here both pro
esses are more general.We prove, under 
ertain 
onditions on the rates, that we have at most two extremalinvariant distributions.3.2 The model and main resultWe 
onsider the Markov pro
ess, f(�t; �t)gt�0 on f0; 1gZ� f0; 1gZdes
ribed by thefollowing rates at a site x:transition rate(�; �)! (�; �x) 
0(x; �) if �(x) = 0(�; �)! (�; �x) 
1(x; �) if �(x) = 1(�; �)! (�x; �) b(x; �)Here 
0(x; �), 
1(x; �) and b(x; �) are given rate fun
tions where the �rst two satisfy
0(x; �) � 
1(x; �) if �(x) = 0;
1(x; �) � 
0(x; �) if �(x) = 1;(1)and all three satisfy the following attra
tivity 
ondition:De�nition 3.2.1. A spin system on f0; 1gZ, with rates 
(x; �) is said to be attra
tive ifwhenever � � �0, 
(x; �) � 
(x; �0) if �(x) = �0(x) = 0;
(x; �) � 
(x; �0) if �(x) = �0(x) = 1:(2)



3.2. THE MODEL AND MAIN RESULT 55Here, � refers to the usual partial ordering on f0; 1gZ, i.e., � � �0 if and only if�(x) � �0(x) for all x 2 Z. We also assume that the rate fun
tions are translationinvariant and that the rates 
0(x; �), 
1(x; �) only depend on � throughf�(x� 1); �(x); �(x + 1)g:Moreover, to ensure that we have a well de�ned pro
ess we will assume thatXy2Z sup�2f0;1gZjb(0; �)� b(0; �y)j <1:In other words, the rates for the system are 
ompletely des
ribed by b(x; �) and the16 parameters determining 
0 and 
1. To des
ribe the values we will use the followingnotation:
i(001) = 
i(x; �) when �(x � 1) = 0; �(x) = 0 and �(x + 1) = 1:We always refer to the left marginal as the ba
kground pro
ess. Furthermore, note thatwe 
an equivalently view our pro
ess on f0; 1gZ�f0;1g and that the 
onditions (1) and(2) then mean that the whole pro
ess is attra
tive on that spa
e. (De�nition 3.2.1 
anof 
ourse be generalized to f0; 1gS where S is 
ountable.) The attra
tivity 
an be usedto show (via monotoni
ity) the existen
e of two extremal stationary distributions �0and �1 de�ned by �0 = limt!1 Æ0S(t) �1 = limt!1 Æ1S(t);where Æ0 and Æ1 denote the point masses 
orresponding to the elements � � 0 and � �1 in f0; 1gZ�f0;1g and fS(t)gt�0 denotes the semigroup asso
iated to f(�t; �t)gt�0.The main result here is that, if the ba
kground pro
ess has a unique stationary distri-bution and the rates 
0, 
1 satisfy a 
ertain positivity 
ondition, then �0 and �1 are theonly extremal stationary distributions. Let I denote the set of stationary distributionsfor the pro
ess and let Ie denote its extreme points. Furthermore, de�neC1 = f 
i(100) + 
j(110); 
i(001) + 
j(011);
i(011) + 
j(110); 
i(100) + 
j(001); i = 0; 1; j = 0; 1 gand let C = min (C1) :Before we state our main result, we want to emphasize that the 
ase with no ba
k-ground pro
ess has been studied before by Liggett. The proof of our main result fol-lows 
losely the ideas of his proof. To state his result, let 
(x; �) be a rate fun
tion foran attra
tive, translation invariant, nearest-neighbor spin system f�tgt�0 on f0; 1gZand de�ne �i = limt!1 ÆiT (t), i = 0; 1, where Æi is the point mass 
orrespondingto the element � � i in f0; 1gZ and fT (t)gt�0 denotes the semigroup asso
iated tof�tgt�0. Moreover, let Je denote the extreme points of the set of stationary distribu-tions for f�tgt�0.



56 CHAPTER 3. PAPER IITheorem 3.2.1 (Liggett). Suppose(3) 
(x; �) + 
(x; �x) > 0 whenever �(x � 1) 6= �(x + 1):Then Je = f�0; �1g.For a proof, see [5℄ or [6, p. 145-152℄. In fa
t, he also proved that if 
ondition (3)fails, then Je 
ontains in�nitely many points, see [6, p. 145℄.Theorem 3.2.2. Suppose that the ba
kground pro
ess has a unique stationary distri-bution and assume C > 0. Then Ie = f�0; �1g.Remarks:(i) From [6, p. 152℄ we get that Theorem 3.2.1 is equivalent to the statement that(3) and 
(011) + 
(110) > 0
(100) + 
(001) > 0implies Je = f�0; �1g. By letting 
 = 
0 = 
1, it is now 
lear that Theo-rem 3.2.2 
overs Theorem 3.2.1.(ii) The hypotheses in Theorem 3.2.2 are true for the CPREE des
ribed in the in-trodu
tion. Indeed, if 
0 and 
1 satisfy (1) and are symmetri
 under re�e
tions,i.e. 
i(100) = 
i(001)
i(110) = 
i(011); i = 0; 1then C > 0 if and only if 
0(001) > 0 and 
1(011) > 0.(iii) Note that we are not assuming independen
e or even nearest-neighbor intera
-tion between 
oordinates in the ba
kground pro
ess.(iv) To see that the 
on
lusion may fail if we drop the assumption about a unique sta-tionary distribution for the ba
kground pro
ess, let b(x; �), in addition to beingattra
tive and translation invariant, be nearest-neighborwith b(000) = b(111) =0 and satis�yb(x; �) + b(x; �x) > 0 whenever �(x � 1) 6= �(x + 1):Let 
0 = 
1 be the rates 
orresponding to a super
riti
al 
onta
t pro
ess on Z.Then Ie = f Æ0 � Æ0; Æ0 � ��; Æ1 � Æ0; Æ1 � �� g;where Æ0, Æ1 are the point masses 
orresponding to the elements � � 0 and � � 1in f0; 1gZrespe
tively and �� denotes the upper invariant measure for the 
onta
tpro
ess.
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kground pro
ess, but instead let 
0 = 
1 be the rates fora sub
riti
al 
onta
t pro
ess, we see that the 
ondition about a unique stationarydistribution for the ba
kground pro
ess is not ne
essary for having only twoextremal stationary distributions.(vi) To see that the 
on
lusion may fail if C = 0, let b(x; �) be a rate fun
tion su
hthat f�tgt�0 has the point mass at � � 1 as its unique stationary distribution andlet 
1 satisify 
1(001) + 
1(011) = 0:It is easy to 
he
k that for ea
h n 2 Z, Æ1 � Æ�n is an extremal stationarydistribution where �n(x) = (1 if x � n0 if x < n:A natural next step is to ask when there is a unique stationary distribution, i.e. when�0 = �1. In the 
ase of no ba
kground pro
ess, Gray proved in [3℄ that there 
an onlybe one stationary distribution provided that the rates are stri
tly positive. We 
onje
turean analogous statement in our situation.Theorem 3.2.3 (Gray). If 
(x; �) > 0 for all x 2 Z and � 2 f0; 1gZ, then �0 = �1.Conje
ture 3.2.4. Suppose that the ba
kground pro
ess has a unique stationary dis-tribution and assume that 
i(x; �) > 0 for all x, �, i = 1; 2. Then �0 = �1.The rest of the paper is organized as follows. In Se
tion 3.3 we prove Theo-rem 3.2.2 and in Se
tion 3.4 we dis
uss Conje
ture 3.2.4.3.3 Proof of Theorem 3.2.2In the proof, we make extensive use of a maximal type 
oupling whi
h we now de-s
ribe. DenoteU = f0; 1gZ; V = f (�; 
; �) 2 U3 : � � 
 � � g and W = U � V:The 
oupled pro
ess (�t; �t; 
t; �t), whi
h we now de�ne, lives onW and its �ip ratesare des
ribed as follows: First, let �ips of the type(�; �; 
; �)! (�x; �; 
; �)o

ur at rate b(x; �).Then, let the other three marginals �ip a

ording to Tables 3.1 and 3.2. Thesetables should be interpreted as follows. For example, when �t(x) = 0, �t(x) = 0,
t(x) = 0 and �t(x) = 1, �t(x) will �ip alone at rate 
0(x; �t), 
t(x) will �ip alone atrate 
0(x; 
t)� 
0(x; �t) and �t(x) and 
t(x) �ip together at rate 
0(x; �t). Note that



58 CHAPTER 3. PAPER II(0,0,0,0) (0,0,0,1) (0,0,1,1) (0,1,1,1)(0,0,0,0) � 
0(x; �) � 
0(x; 
) 
0(x; 
)� 
0(x; �) 
0(x; �)(0,0,0,1) 
0(x; �) � 
0(x; 
)� 
0(x; �) 
0(x; �)(0,0,1,1) 
0(x; �) 
0(x; 
)� 
0(x; �) � 
0(x; �)(0,1,1,1) 
0(x; �) 
0(x; 
)� 
0(x; �) 
0(x; �) � 
0(x; 
) �Table 3.1: Transition rates when the ba
kground pro
ess is in state 0.(1,0,0,0) (1,0,0,1) (1,0,1,1) (1,1,1,1)(1,0,0,0) � 
1(x; �) � 
1(x; 
) 
1(x; 
)� 
1(x; �) 
1(x; �)(1,0,0,1) 
1(x; �) � 
1(x; 
)� 
1(x; �) 
1(x; �)(1,0,1,1) 
1(x; �) 
1(x; 
)� 
1(x; �) � 
1(x; �)(1,1,1,1) 
1(x; �) 
1(x; 
)� 
1(x; �) 
1(x; �) � 
1(x; 
) �Table 3.2: Transition rates when the ba
kground pro
ess is in state 1.the pairs f(�t; �t)g, f(�t; 
t)g, f(�t; �t)g ea
h evolve as the original Markov pro
essand that the se
ond, third and fourth marginals try to �ip together as mu
h as possible.Also, observe that the ba
kground pro
ess is not allowed to �ip together with any ofthe other pro
esses.As in the proof of Theorem 3.2.1, the proof of Theorem 3.2.2 
onsists of severallemma 
on
erning 
ertain fun
tionals of the pro
ess. For m � n, let fm;n(�; �; 
; �)be the number of intervals of zeros and ones in 
 betweenm and n (in
ludingm andn), 
ounted only where � and � differ. Furthermore, letm � x1 < x2 < : : : < xk � n;be all those x's betweenm and n for whi
h �(x) = 0 and �(x) = 1. For l � 1, de�neglm;n(�; �; 
; �) = number of i su
h that i � 1, i+ l + 1 � k and
(xi) 6= 
(xi+1) = 
(xi+2) = : : : = 
(xi+l) 6= 
(xi+l+1):In other words, glm;n(�; �; 
; �) is the number of interior intervals of zeros and ones oflength l in 
 betweenm and n, 
ounted only where � and � differ. For example if,� � � 1 0 1 1 1 1 1 0 1 1 1 � � � �� � � 1 0 1 1 0 0 1 0 1 1 0 � � � 
� � � 1 0 0 0 0 0 0 0 0 0 0 � � � �� � � 1 0 1 0 0 1 1 1 0 1 1 � � � �m nthen fm;n = 4, g2m;n = 1, g3m;n = 1 and glm;n = 0 when l =2 f 2; 3 g. LetK = max�max� 
0(x; �); max� 
1(x; �)�



3.3. PROOF OF THEOREM 3.2.2 59and denote the set of stationary distributions and the generator of the 
oupled pro
essby ~I and ~
 respe
tively. Furthermore, for a given set A, denote the set of extremepoints by Ae. The �rst lemma 
on
erns 
ertain basi
 properties of fm;n and glm;n.Lemma 3.3.1.a) fm;n; glm;n are in
reasing when n in
reases orm de
reases.b) fm;n � 2 + 1Xl=1 glm;n:
) 1Xl=1 lglm;n � n�m+ 1:If � 2 ~I;d) C Z g1m;n d� � K Z [fm�1;n + fm;n+1 � 2fm;n℄ d�; form � ne) C Z gl+1m;n d� � 12Kl Z glm;n d�; form � n, l � 1:Proof. a), b) and 
) follow dire
tly from the de�nitions. For d) and e) assume � 2 ~I.Note that fm;n and glm;n are 
ylinder fun
tions so thatZ ~
fm;n d� = Z ~
glm;n d� = 0:(4)For 
ylinder fun
tion f , the generator has the form~
f(�; �; 
; �) = X(�;��;�
;��) 
(�; �; 
; �; ��; �
; ��) �f(�; ��; �
; ��)� f(�; �; 
; �)�+Xx b(x; �) (f(�x; �; 
; �)� f(�; �; 
; �))(5)where the �rst sum is over all possible transitions when the se
ond, third or fourthmarginal �ip. (Re
all that the �rst marginal is not allowed to �ip together with any ofthe others.) Here, sin
e both fm;n and glm;n do not depend on �, the se
ond sum is zero,so our task is to 
al
ulate the �rst part. For this, we follow the approa
h in [6, Lemma3.7℄. The argument given here is almost the same as in [6℄, we supply it for the sakeof 
ompleteness. Let (�; �; 
; �) be �xed and note that the only way fm;n 
an in
reasebe
ause of a �ip is if fm�1;n = fm;n + 1 or fm;n+1 = fm;n + 1. In the �rst 
ase the�ip must o

ur at x = m and in the se
ond at x = n. The rate for su
h a �ip is at mostK so the positive terms in (5) are bounded above byK [fm�1;n + fm;n+1 � 2fm;n℄ :Furthermore, there are g1m;n sites x where a �ip de
reases fm;n by two. At su
h an x,
(x) = 0 or 
(x) = 1. Assume 
(x) = 1. Then we ne
essarely have 
(x � 1) =
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(x+ 1) = �(x + 1). Therefore, the �ip rate at x be
omes
0(x; 
) + 
0(x; �) =8>>>><>>>>:
0(010) + 
0(000) if 
(x� 1) = 0, 
(x+ 1) = 0;
0(011) + 
0(001) if 
(x� 1) = 0, 
(x+ 1) = 1;
0(110) + 
0(100) if 
(x� 1) = 1, 
(x+ 1) = 0;
0(111) + 
0(101) if 
(x� 1) = 1, 
(x+ 1) = 1;when �(x) = 0 and
1(x; 
) + 
1(x; �) =8>>>><>>>>:
1(010) + 
1(000) if 
(x� 1) = 0, 
(x+ 1) = 0;
1(011) + 
1(001) if 
(x� 1) = 0, 
(x+ 1) = 1;
1(110) + 
1(100) if 
(x� 1) = 1, 
(x+ 1) = 0;
1(111) + 
1(101) if 
(x� 1) = 1, 
(x+ 1) = 1;when �(x) = 1. Also the attra
tivity 
ondition gives
i(010) � maxf 
i(011); 
i(110) g
i(101) � maxf 
i(001); 
i(100) g; i = 0; 1and so the rates above are bounded below byC=2. The same argumentworks if 
(x) =0 and so we 
an 
on
lude that the negative terms in (5) are bounded above by�Cg1m;n.We get the estimate~
fm;n � K [fm�1;n + fm;n+1 � 2fm;n℄� Cg1m;nwhi
h via (4) gives d). For e), note that glm;n 
an only de
rease via �ips at no morethan lglm;n sites or their neighbors, i.e. in total at most 3lglm;n sites. The rate for su
ha �ip is bounded by 2K and glm;n 
an at most de
rease by two. The negative termsin the generator are therefore bounded below by �12Klglm;n. Furthermore, glm;n 
anin
rease at no fewer than gl+1m;n pair of sites. These pair of sites are the endpoints of aninterval of length l+1. To get a lower bound on the �ip rate for su
h endpoints, let x <y denote su
h a pair and suppose 
(x) = 
(y) = 1. Then we have 
(x�1) = �(x�1)and 
(y+1) = �(y+1). The �ip rate at x is at least 
i(100) if 
(x�1) = �(x�1) = 1,�(x) = i and at least 
i(011) if 
(x � 1) = �(x � 1) = 0, �(x) = i. In a similarfashion, the �ip rate at y is at least 
i(001) if 
(y + 1) = �(y + 1) = 1, �(y) = i andat least 
i(110) if 
(y+1) = �(y+1) = 0, �(y) = i. In either 
ase the sum of the �iprates for the pair is always at least C. The same statement holds if 
(x) = 
(y) = 0and so we obtain that the positive terms in the generator expression are bounded belowby Cgl+1m;n. Hen
e, we get the estimate~
gm;n � Cgl+1m;n � 12Klglm;n:Equation (4) then �nally gives usC Z gl+1m;n d� � 12KlZ glm;n d�
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omplete.Denote A1 = f (�; �; 
; �) 2W : 
 � � g;A2 = f (�; �; 
; �) 2W : 
 � � g;A3 = f (�; �; 
; �) 2W nA1 [A2 : 9x 2 Z su
h that
(y) = �(y) when y � x and 
(y) = �(y) when y > x g;A4 = f (�; �; 
; �) 2W nA1 [A2 : 9x 2 Z su
h that
(y) = �(y) when y � x and 
(y) = �(y) when y > x g;Lemma 3.3.2. Assume C > 0. Thena) � 2 ~I =) � (A1 [ A2 [ A3 [A4) = 1;b) � 2 ~Ie =) � (Ai) = 1 for some i.Proof. b) follows from a) sin
e Ai is 
losed for the 
oupled pro
ess in the sense thatP(�;�;
;�)[ (�t; �t; 
t; �t) 2 Ai ℄ = 1 8t > 0whenever (�; �; 
; �) 2 Ai. To prove a), suppose � 2 ~I . Sin
e4[i=1Ai = f glm;n = 0 8m � n; l � 1 gwe obtain that(6) Z glm;nd� = 0 for allm � n, l � 1is equivalent to � (A1 [A2 [ A3 [ A4) = 1:To see that (6) holds, we pro
eed as in [6, Lemma 3.10℄. Note thatfm�1;n � fm;n + 1 and fm;n+1 � fm;n + 1and so parts d) and e) of Lemma 3.3.1 gives us(7) M = supm�n Z glm;n d� <1; 8l � 1:Let L � 1. From part b) of the same lemma, we get1n�m Z fm;n d� � 2n�m + 1n�m Z Xl�1 glm;n d�:



62 CHAPTER 3. PAPER IISplit the sum and now use part 
) of the lemma together with (7) to obtain that for anyL 1n�m Z fm;n d� � 2n�m + MLn�m + 1L �1 + 1n�m� ;and so lim supn�m!1 1n�m Z fm;n d� � 1L:Sin
e L � 1 was arbitrary we 
an 
on
lude(8) limn�m!1 1n�m Z fm;n d� = 0:Now, forN � 1, part d) of Lemma 3.3.1 gives usC 0Xm=�N+1N�1Xn=0 Z g1m;n d�� K 0Xm=�N+1N�1Xn=0 Z [fm�1;n + fm;n+1 � 2fm;n℄ d�:(9)After some 
an
ellations in the sum to the right, we get0Xm=�N+1N�1Xn=0 Z [fm�1;n + fm;n+1 � 2fm;n℄ d�� 0Xm=�N+1Z fm;N d� + N�1Xn=0 Z f�N;n d�and together with (8) and (9) we obtainlimN!1 1N2 0Xm=�N+1N�1Xn=0 Z g1m;n d� = 0:Using the monotoni
ity property of g1m;n this implies R g1m;n d� = 0 for all m � nand part e) of the lemma gives R glm;n d� = 0 for all l � 1 and we are done with theproof.We are soon ready for the proof of Theorem 3.2.2. However, in the proof we makeuse of a 5-variant 
oupling f(�t; �t; 
1;t; 
2;t; �t)g of the one used so far. This 
ouplingis also of maximal type and evolves onX = � (�; �; 
1; 
2; �) 2 U5 : � � 
1 � �; � � 
2 � �	in a way su
h that f(�t; �t; 
1;t; �t)g and f(�t; �t; 
2;t; �t)g evolve exa
tly as the pre-vious des
ribed 
oupling. We 
an therefore apply all we have done so far to ea
h of
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esses. The last tool we need is to have existen
e of an extremal stationarydistribution for the 5-variant 
oupled pro
ess, given extremal stationary distributionsfor the f(�t; �t)g pro
ess. For a sto
hasti
 variableX and a distribution �, let X � �denote that X is distributed a

ording to �. Also, let I5 denote the set of stationarydistributions for the 5-variant 
oupled pro
ess onX .Lemma 3.3.3. Given �, �0 2 Ie there exists �((�; �; 
1; 
2; �) 2 �) 2 I5e su
h that(�; �) � �0, (�; 
1) � �, (�; 
2) � �0 and (�; �) � �1.Proof. For any measure � let �ij denote the proje
tion to the ith and jth 
oordinate.Constru
t a 
oupling on (f0; 1gZ� f0; 1gZ)4 of four f�t; �tg-pro
esses su
h that theba
kground pro
esses agree as mu
h as possible as well as the right marginals. Notethat our 5-variant 
oupling above 
an be identi�ed with su
h a 
oupling started withall the ba
kground pro
esses equal. Starting the 
oupling withÆ(;;;) � �� �0 � Æ(Z;Z)and taking a suitable subsequen
e of Cesaro averages gives us a stationary distribu-tion � for the 
oupling and by proje
ting to the �rst, se
ond, fourth, sixth and eighth
oordinate we get a probability measure ~� 2 I5 with~�((�; �; 
1; 
2; �) 2 U5 : � � 
1 � �; � � 
2 � �) = 1:Here it is important to note that the setf (�1; �; �2; 
1; �3; 
2; �4; �) 2 U8 : �1 � �2 � �4; �1 � �3 � �4;� � 
1 � �; � � 
2 � �gis 
losed under the evolution of the 
oupling and that the �rst, third, �fth and seventh
oordinate are equal under �. Furthermore, it is 
lear that ~� satis�es~�12 = �0; ~�13 = � ~�14 = �0 and ~�15 = �1:De�ne B = f � 2 I5 : �12 = �0; �13 = �; �14 = �0; �15 = �1 g:B is non-empty by the above and is 
ompa
t and 
onvex. Hen
e, by the Krein-Milmantheorem, B 
an be written as the 
losed 
onvex hull of its extreme points. Therefore,sin
e B 6= ;, we have Be 6= ;. Hen
e, the proof is 
omplete if Be � I5e . Assume� 2 Be and let � = �� + (1� �)�, where 0 < � < 1 and �; � 2 I5. If �, � 2 B weget � = � = � and we are done. In order to see this, let (i; j) be one of the pairs (1; 2),(1; 3), (1; 4) or (1; 5). Sin
e �ij = ��ij + (1� �)�ij , where �ij ; �ij 2 I, and the lefthand side is an element of f�0; �; �0; �1g � Ie, we obtain�0 = �12 = �12 � = �13 = �13�0 = �14 = �14 �1 = �15 = �15and so �, � 2 B.



64 CHAPTER 3. PAPER IIProof of Theorem 3.2.2. We follow the steps in [6, Theroem 3.13℄. Let �1 2 Ie.Sin
e �0 � � � �1 for every stationary distribution �, we 
an assume �0 6= �1. Let�2 = �1 Æ ��1x , where �x is a translation by x 2 Z. Sin
e the dynami
s are translationinvariant and �1 2 Ie, we get that �2 2 Ie. Let � be an extremal stationary distributionfor the 5-variant 
oupling mentioned above with(�; �) � �0 (�; 
1) � �1(�; 
2) � �2 (�; �) � �1Su
h a measure exists by Lemma 3.3.3. Let �1 and �2 be the distributions obtainedfrom the proje
tions (�; �; 
1; 
2; �)! (�; �; 
1; �)(�; �; 
1; 
2; �)! (�; �; 
2; �)respe
tively. Sin
e �1; �2 2 ~Ie, Lemma 3.3.2 gives�1(Ai) = 1 some 1 � i � 4 and �2(Ai) = 1 some 1 � i � 4:However, 
1 and 
2 are just translations of ea
h other so there is an i su
h that�1(Ai) = �2(Ai) = 1. It follows that��(�; �; 
1; 
2; �) : Xx j
1(x)� 
2(x)j <1� = 1:Also, (
1;t; 
2;t) has the property thatP(
;
)[
1;t = 
2;t℄ = 1 and P(
1;
2)[
1;t = 
2;t℄ > 0wheneverXx j
1(x)� 
2(x)j <1 and so sin
e � is stationary, we must in fa
t have��(�; �; 
1; 
2; �) : 
1 = 
2� = 1:This implies �1 = �2, i.e. �1 is translation invariant. Therefore i equals 1 or 2 (re
all�0 6= �1). If i = 1, �1(U � (�)) = �0(U � (�)) and sin
e the ba
kground pro
ess has aunique stationary distribution we must also have �1((�)�U) = �0((�)�U). But sin
e�0 � �1 this yields �1 = �0. If i = 2 we get in a similar way that �1 = �1. 23.4 Dis
ussion of Conje
ture 3.2.4We begin by des
ribing a graphi
al representation whi
h may be useful for a possibleproof of Conje
ture 3.2.4. The representation is similar as in [3℄ and we will explain it



3.4. DISCUSSION OF CONJECTURE 3.2.4 65in a quite informalway. For simpli
ity, wewill assume that the rates for the ba
kgroundpro
ess, in addition to attra
tive and translation invariant, also are uniformly bounded.(Of 
ourse, our assumptions on 
0 and 
1 from Se
tion 3.2 imply that they are alsouniformly bounded.) For x 2 Z, de�ne�bx = sup�:�(x)=0 b(x; �) + sup�:�(x)=1 b(x; �)�
0x = sup�: �(x)=0 
0(x; �) + sup�: �(x)=1 
0(x; �)�
1x = sup�: �(x)=0 
1(x; �) + sup�: �(x)=1 
1(x; �)�
x = �
0x + �
1x:De�ne the following 
olle
tion of independent random variables on some probabilityspa
e (
;F ;P):� Bj(x) exponentially distributed with mean 1=�bx, j � 1, x 2 Z. (De�neBj(x) =1 if �bx = 0.)� Dn(x) uniformly distributed on [0;�bx℄, n � 1, x 2 Z.� Sj(x) exponentially distributed with mean 1=�
x, j � 1, x 2 Z.� U0n(x) uniformly distributed on [0; �
0x℄, n � 1, x 2 Z.� U1n(x) uniformly distributed on [0; �
1x℄, n � 1, x 2 Z.Moreover, for n � 1 and x 2 Z de�neCn(x) = nXj=1Bj(x) and Tn(x) = nXj=1 Sj(x):For a given initial 
on�guration � 2 f0; 1gZ, de�ne a pro
ess f��t gt�0 from fCn(x)gand fDn(x)g as follows:� ��0 = �,� ��s (x) �ips from 0 to 1 iff ��s�(x) = 0 and there exists an n � 1 su
h thats = Cn(x) andDn(x) � �bx � b(x; ��s�),� ��s (x) �ips from 1 to 0 iff ��s�(x) = 1 and there exists an n � 1 su
h thats = Cn(x) andDn(x) < b(x; ��s�).By an approximation pro
edure, it is possible to prove that there exists a pro
ess withthose properties and that su
h a pro
ess has �ip rates b(x; �).Given �,� 2 f0; 1gZ, we now de�ne a pro
ess f��;�t gt�0 from f��t g, fTn(x)g,fU0n(x)g and fU1n(x)g in the following way:



66 CHAPTER 3. PAPER II� ��;�0 = �,� if ��s (x) = 0, then ��;�s (x) �ips from 0 to 1 iff ��;�s� (x) = 0 and there exists ann � 1 su
h that s = Tn(x) and U0n(x) � �
0x � �
0x�
x 
0(x; ��;�s� ) and ��;�s (x) �ipsfrom 1 to 0 iff ��;�s� (x) = 1 and there exists an n � 1 su
h that s = Tn(x) andU0n(x) < �
0x�
x 
0(x; ��;�s� ),� if ��s (x) = 1, then ��;�s (x) �ips from 0 to 1 iff ��;�s� (x) = 0 and there exists ann � 1 su
h that s = Tn(x) and U1n(x) � �
1x � �
1x�
x 
1(x; ��;�s� ) and ��;�s (x) �ipsfrom 1 to 0 iff ��;�s� (x) = 1 and there exists an n � 1 su
h that s = Tn(x) andU1n(x) < �
1x�
x 
1(x; ��;�s� ).It is 
lear that the pro
ess f(��t ; ��;�t )g has the 
orre
t �ip rates. Moreover, the graph-i
al representation gives us a 
oupling for all possible initial states and this 
ouplingis exa
tly the maximal type 
oupling used in Se
tion 3.3. If we want to start the pro-
ess at a random state with distribution �, we just add, independent of everything else,two random variables with joint distribution �. We then write f��1t ; ��1;�2t g where �idenotes the ith marginal of �.A possible proof of Conje
ture 3.2.4 may be based on the following lemma.Lemma 3.4.1. If(10) lim infk!1 lim inft!1 P h ��;;t (x) = ��;Zt (x); �k � x � k i > 0for all � 2 f0; 1gZ, then �0 = �1.Proof. From Lemma 3.3.3 (or more pre
isely from the version of it with three pro-
esses) there exists a probability measure 
 on� (�; �; �) 2 U3 : � � �	whi
h is stationary for f(�t; �t; �tgt�0 and satis�es
12 = �0; 
13 = �1 and 
1 = �;where � is the unique stationary distribution for the ba
kground pro
ess. (Here, weuse the same notation as in Lemma 3.3.3.) Our goal is to show that
 (� = �) = 1:For given k � 1 and t � 0, we get
 (�(x) = �(x); �k � x � k) = 
 (� = �)+P [ ��;
2t (x) = ��;
3t (x); �k � x � k j ��;
20 6= ��;
30 ℄ (1� 
 (� = �)) :(11)



3.4. DISCUSSION OF CONJECTURE 3.2.4 67Here, we have used that 
 is stationary and the fa
t thatP [ ��;
2t (x) = ��;
3t (x); �k � x � k j ��;
20 = ��;
30 ℄ = 1:From the inequalities ��;;t � ��;
2t � ��;
3t � ��;Zt ; t � 0;we get, P [ ��;
2t (x) = ��;
3t (x); �k � x � k j ��;
20 6= ��;
30 ℄� P h ��;;t (x) = ��;Zt (x); �k � x � k j ��;
20 6= ��;
30 i :(12)Moreover, from the graphi
al representation, we get that the eventsf ��;;t (x) = ��;Zt (x); �k � x � k g and f ��;
20 6= ��;
30 gare 
onditionally independent given the initial state of the ba
kground pro
ess and sowe 
an writeP h ��;;t (x) = ��;Zt (x); �k � x � k; ��;
20 6= ��;
30 iZ P h ��;;t (x) = ��;Zt (x); �k � x � k j��0 = � i 
 (� 6= � j�) d�(�):(13)Now, let us assume that 
 (� 6= �) > 0:Then 
 (� 6= � j�) > 0:on a set of positive �-measure. By using (10), (13) together with Fatou's Lemma andthen (12), we 
an 
on
lude thatlim infk!1 lim inft!1 P [ ��;
2t (x) = ��;
3t (x); �k � x � k j ��;
20 6= ��;
30 ℄ > 0:However, by taking limits in (11) we arrive at a 
ontradi
tion and so we are done withthe proof.The question now is if it is possible to prove (10). A natural �rst try is to �x theinitial state of the ba
kground pro
ess and then pro
eed as in [3, p. 393℄ and de�neso 
alled left and right edge pro
esses. The properties on p. 394 and Proposition 2on p. 395 are then easily veri�ed. For the 
orrelation property between the left andright edge pro
esses, we 
an use [6, Ch. II, Corollary 2.21℄ and sin
e the Lemma inthe proof of [3, Theorem 1℄ relies on the properties on [3, p. 394℄, it may be possible toprove a version of it for our pro
ess. Having su

eeded so far, there is some hard workleft whi
h we at the moment are not able to de
ide on if it is possible to do somethingsimilar or not. The only thing we 
an say is that the argument given in [3, p. 399-403℄is based on a very similar 
onstru
tion as we have and if all the preliminary work gothrough, then there may be a quite good 
han
e to get a full proof of Conje
ture 3.2.4.
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4PAPER IIIABSTRACTWe dis
uss various aspe
ts 
on
erning sto
hasti
 domination for the Ising model andthe fuzzy Potts model. We begin by 
onsidering the Ising model on the homogeneoustree of degree d, Td. For given intera
tion parameters J1, J2 > 0 and external �eldh1 2 R, we 
ompute the smallest external �eld ~h su
h that the plus measure withparameters J2 and h dominates the plus measure with parameters J1 and h1 for allh � ~h. Moreover, we dis
uss 
ontinuity of ~h with respe
t to the three parametersJ1, J2, h and also how the plus measures are sto
hasti
ally ordered in the intera
tionparameter for a �xed external �eld. Next, we 
onsider the fuzzy Potts model and provethat on Zd the fuzzy Potts measures dominate the same set of produ
t measures whileon Td, for 
ertain parameter values, the free and minus fuzzy Potts measures dominatedifferent produ
tmeasures. For the Ising model, Liggett and Steif proved that onZd theplus measures dominate the same set of produ
t measures while on T2 that statementfails 
ompletely ex
ept when there is a unique phase.Key words and phrases: Sto
hasti
 domination, Ising model, fuzzy Potts model.Subje
t 
lassi�
ation : 60K35.4.1 Introdu
tion and main resultsThe 
on
ept of sto
hasti
 domination has played an important role in probability the-ory over the last 
ouple of de
ades, for example in intera
ting parti
le systems and71



72 CHAPTER 4. PAPER IIIstatisti
al me
hani
s. In [13℄, various results were proved 
on
erning sto
hasti
 domi-nation for the Ising model with no external �eld onZd and on the homogeneous binarytree T2 (i.e. the unique in�nite tree where ea
h site has 3 neighbors). As an example,the following distin
tion between Zd and T2 was shown: On Zd, the plus and minusstates dominate the same set of produ
t measures, while on T2 that statement fails
ompletely ex
ept in the 
ase when we have a unique phase. In this paper we studysto
hasti
 domination for the Ising model in the 
ase of nonzero external �eld and alsofor the so 
alled fuzzy Potts model.Let V be a �nite or 
ountable set and equip the spa
e f�1; 1gV with the followingnatural partial order: For �, �0 2 f�1; 1gV , we write � � �0 if �(x) � �0(x) for allx 2 V . Moreover, whenever we need a topology on f�1; 1gV we will use the produ
ttopology. We say that a fun
tion f : f�1; 1gV ! R is in
reasing if f(�) � f(�0)whenever � � �0. We will use the following usual de�nition of sto
hasti
 domination.De�nition 4.1.1 (Sto
hasti
 domination). Given a �nite or 
ountable set V and prob-ability measures �1, �2 on f�1; 1gV , we say that �2 dominates �1 (written �1 � �2or �2 � �1) if Z f d�1 � Z f d�2for all real-valued, 
ontinuous and in
reasing fun
tions f on f�1; 1gV .It is well known that a ne
essary and suf�
ient 
ondition for two probability mea-sures �1, �2 to satisfy �1 � �2 is that there exists a 
ouplingmeasure � on f�1; 1gV �f�1; 1gV with �rst and se
ond marginals equal to �1 and �2 respe
tively and�( (�; �) : � � � ) = 1:(For a proof, see for example [12, p. 72-74℄.) Given any set S � R and a family ofprobability measures f�sgs2S indexed by S, we will say that the map S 3 s 7! �s isin
reasing if �s1 � �s2 whenever s1 < s2.4.1.1 The Ising modelThe ferromagneti
 Ising model is a well studied obje
t in both physi
s and probabilitytheory. For a given in�nite, lo
ally �nite (i.e. ea
h vertex has a �nite number of neigh-bors), 
onne
ted graphG = (V;E), it is de�ned from the nearest-neighbor potential�J;hA (�) = 8><>:�J�(x)�(y) if A = fx; yg, with hx; yi 2 E;�h�(x) if A = fxg;0 otherwisewhere A � V , � 2 f�1; 1gV , J > 0, h 2 R are two parameters 
alled the 
ouplingstrength and the external �eld respe
tively and hx; yi denotes the edge 
onne
ting x



4.1. INTRODUCTION AND MAIN RESULTS 73and y. A probability measure � on f�1; 1gV is said to be a Gibbs measure (or some-times Gibbs state) for the ferromagneti
 Ising model with parametersh 2 R and J > 0if it admits 
onditional probabilities su
h that for all �nite U � V , all � 2 f�1; 1gUand all � 2 f�1; 1gV nU�(X(U) = � jX(V n U) = �)= 1ZU;�J;h exp"J Xhx;yi2E;x;y2U �(x)�(y) + Xhx;yi2E;x2U;y2�U �(x)�(y)!+ hXx2U �(x)#where ZU;�J;h is a normalizing 
onstant and�U = fx 2 V n U : 9y 2 U su
h that hx; yi 2 E g:For given J > 0 and h 2 R, we will denote the set of Gibbs measures with parametersJ and h by G(J; h) and we say that a phase transition o

urs if jG(J; h)j > 1, i.e.if there exist more than one Gibbs state. (From the general theory des
ribed in [2℄or [12℄, G(J; h) is always nonempty.) At this stage one 
an ask, for �xed h 2 R, is itthe 
ase that the existen
e of multiple Gibbs states is in
reasing in J? When h = 0 it ispossible from the so 
alled random-
luster representation of the Ising model to show apositive answer to the last question (see [5℄ for the 
ase whenG = Zd and [7℄ for moregeneral G). However, when h 6= 0 there are graphs where the above monontoni
ityproperty no longer holds, see [15℄ for an example of a relatively simple su
h graph.Furthermore, still for �xed J > 0, h 2 R, standard monotoni
ity arguments 
anbe used to show that there exists two parti
ular Gibbs states �J;+h , �J;�h , 
alled the plusand the minus state, whi
h are extreme with respe
t to the sto
hasti
 ordering in thesense that(1) �J;�h � � � �J;+h for any other � 2 G(J; h):To simplify the notation, we will write �J;+ for �J;+0 and �J;� for �J;�0 . (Of 
ourse,most of the things we have de�ned so far are also highly dependent on the graph G,but we suppress that in the notation.)In [13℄ the authors studied, among other things, sto
hasti
 domination between theplus measures f�J;+gJ>0 in the 
ase whenG = T2. For example, they showed that themap (0;1) 3 J 7! �J;+ is in
reasing when J > J
 and proved the existen
e of and
omputed the smallest J > J
 su
h that �J;+ dominates �J0;+ for all 0 < J 0 � J
.(On Zd, the fa
t that �J1;+ and �J2;+ are not sto
hasti
ally ordered when J1 6= J2gives that su
h a J does not even exist in that 
ase.) Our �rst result deals with thefollowing question: Given J1, J2 > 0, h1 2 R, 
an we �nd the smallest external�eld ~h = ~h(J1; J2; h1) with the property that �J2;+h dominates �J1;+h1 for all h � ~h?



74 CHAPTER 4. PAPER IIITo 
larify the question a bit more, note that an easy appli
ation of Holley's theorem(see [3℄) tells us that for �xed J > 0, the map R 3 h 7! �J;+h is in
reasing. Hen
e, forgiven J1, J2 and h1 as above the setfh 2 R : �J2;+h � �J1;�h1 gis an in�nite interval and we want to �nd the left endpoint of that interval (possibly�1 or +1 at this stage). For a general graph not mu
h 
an be said, but we have thefollowing easy bounds on ~h when G is of bounded degree.Proposition 4.1.1. Consider the Ising model on a general graph G = (V;E) ofbounded degree. De�ne~h = ~h(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;+h1 g:Then h1 �N(J1 + J2) � ~h � h1 +N jJ1 � J2j;where N = supx2V Nx andNx is the number of neighbors of the site x 2 V .For the Ising model, we will now 
onsider the 
ase when G = Td, the homo-geneous d-ary tree, de�ned as the unique in�nite tree where ea
h site has exa
tlyd + 1 � 3 neighbors. The parameter d is �xed in all that we will do and so wesuppress that in the notation. For this parti
ular graph it is well known that for givenh 2 R, the existen
e of multiple Gibbs states is in
reasing in J and so as a 
onse-quen
e there exists a 
riti
al value J
(h) 2 [0;1℄ su
h that when J < J
(h) we havea unique Gibbs state whereas for J > J
(h) there are more than one Gibbs states. Infa
t, mu
h more 
an be shown in this 
ase. As an example it is possible to derive anexpli
it expression for the phase transition regionf (J; h) 2 R2 : jG(J; h)j > 1 g;in parti
ular one 
an see that J
(h) 2 (0;1) for all h 2 R. Moreover,J
 := J
(0) = ar

oth d = 12 log d+ 1d� 1 ;see [2℄ for more details. (Here and in the sequel, := will mean de�nition.)To state our results for the Ising model on Td, we need to re
all some more fa
ts,all of whi
h 
an be found in [2, p. 247-255℄. To begin, we just state what we need verybrie�y and later on we will give some more details. Given J > 0 and h 2 R, there is aone-to-one 
orresponden
e t 7! � between the real solutions of a 
ertain equation (see(7) and the fun
tion �J in (6) below) and the 
ompletely homogeneousMarkov 
hainsin G(J; h) (to be de�ned in Se
tion 4.2). Let t�(J; h) denote the real numbers whi
h
orrespond to the plus and minus measure respe
tively. (It is easy to see that the plus



4.1. INTRODUCTION AND MAIN RESULTS 75and minus states are 
ompletely homogeneous Markov 
hains, see Se
tion 4.2.) Wewill write t�(J) instead of t�(J; 0). Furthermore, leth�(J) = maxt�0 �d�J (t)� t�and denote by t�(J) the t � 0 where the fun
tion t 7! d�J (t) � t attains its uniquemaximum. In [2℄, expli
it expressions for both h� and t� are derived:h�(J) = 8<:0 if J � J
d ar
tanh�d tanh(J)�1d 
oth(J)�1�1=2 � ar
tanh� d�
oth(J)d�tanh(J)�1=2 if J > J
t�(J) = 8<:0 if J � J
ar
tanh� d�
oth(J)d�tanh(J)�1=2 if J > J
In parti
ular one 
an see that both h� and t� are 
ontinuous fun
tions of J and by
omputing derivatives one 
an show that they are stri
tly in
reasing for J > J
.PSfrag repla
ements
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Figure 4.1: The fun
tions h� and t� in the 
ase when d = 4.Theorem 4.1.2. Consider the Ising model on Td and let J1, J2 > 0, h1 2 R be given.De�ne f�(J1; J2; h1) = inffh 2 R : �J2;+h � �J1;�h1 gg�(J1; J2; h1) = inffh 2 R : �J2;�h � �J1;�h1 g



76 CHAPTER 4. PAPER IIIand denote �� = ��(J1; J2; h1) = t�(J1; h1) + jJ1 � J2j. Then the following holds:(2) f�(J1; J2; h1) = (�h�(J2) if t�(J2;�h�(J2)) � �� < t�(J2)�� � d�J2(��) if �� � t�(J2) or �� < t�(J2;�h�(J2))(3) g�(J1; J2; h1) = (h�(J2) if � t�(J2) < �� � t+(J2; h�(J2))�� � d�J2(��) if �� � �t�(J2) or �� > t+(J2; h�(J2))Remarks:(i) Note that if 0 < J2 � J
, then h�(J2) = 0 andt�(J2;�h�(J2)) = t�(J2) = t+(J2; h�(J2)) = 0and hen
e the �rst interval disappears in the formulas and we simply getf�(J1; J2; h1) = g�(J1; J2; h1)= ��(J1; J2; h1)� d�J2(��(J1; J2; h1)):(ii) By looking at the formulas (2) and (3), we see that there are fun
tions  , � :(0;1)� R 7! R su
h thatf�(J1; J2; h1) =  (J2; ��(J1; J2; h1)) andg�(J1; J2; h1) = �(J2; ��(J1; J2; h1)):(Of 
ourse,  (J2; t) and �(J2; t) are just (2) and (3) with t instead of ��.) It iseasy to 
he
k that for �xed J2 > 0, the maps t 7!  (J2; t) and t 7! �(J2; t)are 
ontinuous. A pi
ture of these fun
tions when J2 = 2, d = 4 
an be seen inFigure 4.2.(iii) It is not hard to see by dire
t 
omputations that f+ satis�es the bounds in Propo-sition 4.1.1. We will indi
ate how this 
an be done after the proof of Theorem4.1.2.(iv) We will see in the proof that ift�(J2;�h�(J2)) � ��(J1; J2; h1) < t�(J2);then fh 2 R : �J2;+h � �J1;�h1 g = [�h�(J2);1);and if �t�(J2) < ��(J1; J2; h1) � t+(J2; h�(J2)), thenfh 2 R : �J2;�h � �J1;�h1 g = (h�(J2);1):Hen
e in the �rst 
ase the left endpoint belongs to the interval, while in these
ond 
ase it does not.
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Figure 4.2: The fun
tions t 7!  (J2; t) and t 7! �(J2; t) in the 
ase when J2 = 2 and d = 4.Our next proposition deals with 
ontinuity properties of f� and g� with respe
t to theparameters J1, J2 and h1. We will only dis
uss the fun
tion f+, the other ones 
an betreated in a similar fashion.Proposition 4.1.3. Consider the Ising model on Td and re
all the notation from The-orem 4.1.2. Let a = a(J1; J2) = t�(J1;�h�(J1)) + jJ1 � J2jb = b(J1; J2) = t+(J1;�h�(J1)) + jJ1 � J2ja) Given J1, J2 > 0, the map R 3 h1 7! f+(J1; J2; h1) is 
ontinuous ex
eptpossibly at �h�(J1) depending on J1 and J2 in the following way:If J1 � J
 or J1 = J2 then it is 
ontinuous at �h�(J1).If J1 > J
 and 0 < J2 � J
 then it is dis
ontinuous at �h�(J1).If J1, J2 > J
, J1 6= J2 then it is dis
ontinuous ex
ept whent�(J2;�h�(J2)) � a < t�(J2) and t�(J2;�h�(J2)) � b � t�(J2):b) Given J2 > 0, h1 2 R, the map (0;1) 3 J1 7! f+(J1; J2; h1) is 
ontinuousat J1 if 0 < J1 � J
 or J1 > J
 and h1 6= �h�(J1). In the 
ase when



78 CHAPTER 4. PAPER IIIh1 = �h�(J1) it is dis
ontinuous at J1 ex
ept whent�(J2;�h�(J2)) � a < t�(J2) and t�(J2;�h�(J2)) � b � t�(J2):
) Given J1 > 0, h1 2 R, the map (0;1) 3 J2 7! f+(J1; J2; h1) is 
ontinuousfor all J2 > 0.We 
on
lude this se
tion with a result about how the measures f�J;+h gJ>0 areordered with respe
t to J for �xed h 2 R.Proposition 4.1.4. Consider the Ising model on Td. The map (0;1) 3 J 7! �J;+h isin
reasing in the following 
ases: a) h � 0 and J � J
, b) h < 0 and h�(J) > �h.4.1.2 The fuzzy Potts modelNext, we 
onsider the so 
alled fuzzy Potts model. To de�ne the model, we �rst needto de�ne the perhaps more familiar Potts model. Let G = (V;E) be an in�nite lo
ally�nite graph and suppose that q � 3 is an integer. Let U be a �nite subset of V and
onsider the �nite graph H with vertex set U and edge set 
onsisting of those edgeshx; yi 2 E with x; y 2 U . In this way, we say that the graph H is indu
ed by U .The �nite volume Gibbs measure for the q-state Potts model at inverse temperatureJ � 0 with free boundary 
ondition is de�ned to be the probability measure �Hq;J onf1; 2; : : : ; qgU whi
h to ea
h element � assigns probability�Hq;J (�) = 1ZHq;J exp�2J Xhx;yi2E;x;y2U If�(x)=�(y)g�;where ZHq;J is a normalizing 
onstant.Now, suppose r 2 f1; : : : ; q � 1g and pi
k a �Hq;J - distributed obje
t X and forx 2 U let(4) Y (x) = (�1 if X(x) 2 f1; : : : ; rg1 if X(x) 2 fr + 1; : : : ; qg:We write �Hq;J;r for the resulting probability measure on f�1; 1gU and 
all it the �nitevolume fuzzy Potts measure on H with free boundary 
ondition and parameters q, Jand r.We also need to 
onsider the 
ase when we have a boundary 
ondition. For �-nite U � V , 
onsider the graph H indu
ed by the vertex set U [ �U and let � 2f1; : : : ; qgV nU . The �nite volume Gibbs measure for the q-state Potts model at inversetemperature J � 0 with boundary 
ondition � is de�ned to be the probability measure
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h to ea
h element assigns probability�H;�q;J (�) = 1ZH;�q;J exp 2J Xhx;yi2E;x;y2U If�(x)=�(y)g+ 2J Xhx;yi2E;x2U;y2�U If�(x)=�(y)g!;whereZH;�q;J is a normalizing 
onstant. In the 
ase when � � i for some i 2 f1; : : : ; qg,we repla
e � with i in the notation.Furthermore, we introdu
e the notion of in�nite volume Gibbs measure for thePotts model. A probability measure � on f1; : : : ; qgV is said to be an in�nite volumeGibbs measure for the q-state Potts model on G at inverse temperature J � 0, if itadmits 
onditional probabilities su
h that for all �nite U � V , all � 2 f1; : : : ; qgUand all � 2 f1; : : : ; qgV nU�(X(U) = � jX(V n U) = �) = �H;�q;J (�)whereH is the graph indu
ed by U [�U . Let fVngn�1 be a sequen
e of �nite subsetsof V su
h that Vn � Vn+1 for all n, V = Sn�1 Vn and for ea
h n, denote by Gn theindu
ed graph by Vn [ �Vn. Furthermore, for ea
h i 2 f1; : : : ; qg, extend �Gn;iq;J (anduse the same notation for the extension) to a probability measure on f1; : : : ; qgV byassigning with probability one the spin value i outside Vn. It is well known (and inde-pendent of the sequen
e fVng) that there for ea
h spin i 2 f1; : : : ; qg exists a in�nitevolume Gibbs measure �G;iq;J whi
h is the weak limit as n ! 1 of the 
orrespondingmeasures �Gn;iq;J . Moreover, there exists another in�nite volume Gibbs measure de-noted �G;0q;J whi
h is the limit of �Gnq;J in the sense that the probabilities on 
ylinder sets
onverge. The existen
e of the above limits as well as the independen
e of the 
hoi
eof the sequen
e fVng when 
onstru
ting them follows from the work of Aizenman etal. [1℄.Given the in�nite volume Gibbs measures f�G;iq;J gi2f0;:::;qg, we de�ne the 
orre-sponding in�nite volume fuzzy Potts measures f�G;iq;J;rgi2f0;:::;qg using (4).In words, the fuzzy Potts model 
an be thought of arising from the ordinary q-statePotts model by looking at a pair of glasses that prevents from distinguishing some ofthe spin values. From this point of view, the fuzzy Potts model is one of the most basi
examples of a so 
alled hidden Markov �eld [11℄. For earlier work on the fuzzy Pottsmodel, see for example [6, 8�10, 14℄.Given a �nite or 
ountable set V and p 2 [0; 1℄, let 
p denote the produ
t measureon f�1; 1gV with 
p(� : �(x) = 1) = p for all x 2 V . In [13℄ the authors provedthe following results for the Ising model. (The se
ond result was originally proved ford = 2 only but it trivially extends to all d � 2.)



80 CHAPTER 4. PAPER IIIProposition 4.1.5 (Liggett, Steif). Fix an integer d � 2 and 
onsider the Ising modelon Zd with parameters J > 0 and h = 0. Then for any p 2 [0; 1℄, �J;+ � 
p if andonly if �J;� � 
p.Proposition 4.1.6 (Liggett, Steif). Let d � 2 be a given integer and 
onsider the Isingmodel on Td with paramteters J > 0 and h = 0. Moreover, let �J;f denote the Gibbsstate obtained by using free boundary 
onditions. If �J;+ 6= �J;�, then there exist0 < p0 < p su
h that �J;+ dominates 
p but �J;f does not dominate 
p and �J;fdominates 
p0 but �J;� does not dominate 
p0 .In words, onZd the plus andminus state dominate the same set of produ
tmeasureswhile on Td that is not the 
ase ex
ept when the we have a unique phase.To state our next results we will take a 
loser look at the 
onstru
tion of the in�nitevolume fuzzy Potts measures whenG = Zd orG = Td. In those 
ases it follows fromsymmetry that �G;iq;J;r = �G;jq;J;r if i; j 2 f1; : : : ; rg or i; j 2 fr + 1; : : : ; qg, i.e. whenthe Potts spins i; j map to the same fuzzy spin. For that reason, we let �G;�q;J;r := �G;1q;J;rand �G;+q;J;r := �G;qq;J;r when G = Zd or Td. (Of 
ourse, we sti
k to our earlier notationof �G;0q;J;r.) Our �rst result is a generalization of Proposition 4.1.5 to the fuzzy Pottsmodel.Proposition 4.1.7. Let d � 2 be a given integer and 
onsider the fuzzy Potts modelon Zd with parameters q � 3, J > 0 and r 2 f1; : : : ; q � 1g. Then for any k; l 2f0;�;+g and p 2 [0; 1℄, �Zd;kq;J;r � 
p if and only if �Zd;lq;J;r � 
p.In the same way as for the Ising model, we believe that Proposition 4.1.7 fails
ompletely on Td ex
ept when we have a unique phase in the Potts model. Our lastresult is in that dire
tion.Proposition 4.1.8. Let d � 2 be a given integer and 
onsider the fuzzy Potts model onTd with parameters q � 3, J > 0 and r 2 f1; : : : ; q � 1g where e2J � q � 2. If theunderlying Gibbs measures for the Potts model satisfy �Td;1q;J 6= �Td;0q;J , then there exists0 < p < 1 su
h that �Td;0q;J;r dominates 
p but �Td;�q;J;r does not dominate 
p.4.2 ProofsWe start to re
all some fa
ts from [2℄ 
on
erning the notion of 
ompletely homoge-neous Markov 
hains on Td. Denote the vertex set and the edge set of Td with V (Td)and E(Td) respe
tively. Given a dire
ted edge hx; yi 2 E(Td) de�ne the �past� sitesby ℄�1; hx; yi[= f z 2 V (Td) : z is 
loser to x than to y g:ForA � V (Td) denote byFA the �-algebra generated by the spins inA. A probabilitymeasure � on f�1; 1gV (Td) is 
alled a Markov 
hain if�( �(y) = 1 j F℄�1;hx;yi[ ) = �( �(y) = 1 j Ffxg ) �-a.s.



4.2. PROOFS 81for all hx; yi 2 E(Td). Furthermore, a Markov 
hain � is 
alled 
ompletely homoge-neous with transition matrix P = fP (i; j) : i; j 2 f �1; 1g g if(5) �( �(y) = u j Ffxg ) = P (�(x); u) �-a.s.for all hx; yi 2 E(Td) and u 2 f�1; 1g. Observe that su
h a P ne
essarily is asto
hasti
 matrix and if it in addition is irredu
ible denote its stationary distributionby �. In that situation, we get for ea
h �nite 
onne
ted set C � V (Td), z 2 C and� 2 f�1; 1gC that �(� = �) = �(�(z)) Yhx;yi2DP (�(x); �(y))where D is the set of dire
ted edges hx; yi, where x; y 2 C and x is 
loser to z thany is. In parti
ular, it follows that every 
ompletely homogeneous Markov 
hain whi
harise from an irredu
ible sto
hasti
 matrix is invariant under all graph automorphisms.Next, we give a short summary from [2℄ of the Ising model on Td. For J > 0,de�ne(6) �J (t) = 12 log 
osh(t+ J)
osh(t� J) ; t 2 R:The fun
tion �J is trivially seen to be odd. Moreover, �J is 
on
ave on [0;1), in-
reasing and bounded. (In fa
t, �J (t) ! J as t ! 1.) Furthermore, there is a one-to-one 
orresponden
e t 7! �t between the 
ompletely homogeneous Markov 
hainsin G(J; h) and the numbers t 2 R satisfying the equation(7) t = h+ d �J (t):In addition, the transition matrix Pt of �t is given by(8) �Pt(�1;�1) Pt(�1; 1)Pt(1;�1) Pt(1; 1) � =  eJ�t2 
osh(J�t) et�J2 
osh(J�t)e�J�t2 
osh(J+t) eJ+t2 
osh(J+t)! :Given h 2 R and J > 0 the �xed point equation (7) has one, two or three solutions. Infa
t Lemma 4.2.1 below tells us exa
tly when the different situations o

ur. The largestsolution, denoted t+(J; h), 
orresponds to the plus measure �J;+h and the smallest,denoted t�(J; h), to the minus measure �J;�h . To see why the last statement is true,let �� = �t�(J;h) and note that Lemma 4.2.2 from Se
tion 4.2.2 implies that �� �� � �+ for any � 2 G(J; h) whi
h is also a 
ompletely homogeneous Markov 
hainon Td. Moreover, equation (1) implies that �J;�h � �� � �J;+h and so �� = �J;�hwill follow if �J;�h are 
ompletely homogeneous Markov 
hains. To see that, note thatequation (1) also implies that �J;�h are extremal in G(J; h) whi
h in turn (see Theorem12.6 in [2℄) gives us that they are Markov 
hains on Td. Finally, from the fa
t that�J;�h are invariant under all graph automorphisms on Td, we obtain the 
ompletelyhomogeneous property (5).



82 CHAPTER 4. PAPER III
PSfrag repla
ements

t

t 7! h+ d�J (t)

-20 -10 0 10 20-20
-10
0
10
20

Figure 4.3: A pi
ture of the �xed point equation (7) when d = 5, h = 8 and J = 3=2. In thisparti
ular 
ase we have a unique solution.Lemma 4.2.1 (Georgii). The �xed point equation (7) hasa) a unique solution when jhj > h�(J) or h = h�(J) = 0,b) two distin
t solutions t�(J; h) < t+(J; h) when jhj = h�(J) > 0,
) three distin
t solutions t�(J; h) < t0(J; h) < t+(J; h) when jhj < h�(J).4.2.1 Proof of Proposition 4.1.1For the upper bound, just invoke Proposition 4:16 in [3℄ whi
h gives us that �J2;+h ��J1;+h1 if h � h1 +N jJ1 � J2j.For the lower bound, we argue by 
ontradi
tion as follows. Assume~h < h1 �N(J1 + J2)and pi
k h0 su
h that(9) ~h < h0 < h1 �N(J1 + J2):The right inequality of (9) is equivalent to2(h0 +NJ2) < 2(h1 �NJ1)
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Figure 4.4: A pi
ture of the �xed point equation (7) when d = 5, h = 0 and J = 3=2.and so we 
an pi
k 0 < p1 < p2 < 1 su
h that2(h0 +NJ2) < log( p11� p1 ) < log( p21� p2 ) < 2(h1 �NJ1):By using the last inequalities together with Proposition 4.16 in [3℄, we 
an 
on
ludethat �J2;+h0 � 
p1�J1;+h1 � 
p2 :Sin
e p1 < p2 this tells us that �J2;+h0 � �J1;+h1 . On the other hand we have h0 > ~hwhi
h by de�nition of ~h implies that �J2;+h0 � �J1;+h1 . Hen
e, we get a 
ontradi
tionand the proof is 
omplete. 24.2.2 Proof of Theorem 4.1.2We will make use of the following lemma from [13℄ 
on
erning sto
hasti
 dominationfor 
ompletely homogeneous Markov 
hains on Td.



84 CHAPTER 4. PAPER IIILemma 4.2.2 (Liggett, Steif). Given two 2-state transition matri
es P and Q, let�P and �Q denote the 
orresponding 
ompletely homogeneous Markov 
hains on Td.Then �P dominates �Q if and only if P (�1; 1) � Q(�1; 1) and P (1; 1) � Q(1; 1).Proof of Theorem 4.1.2. To prove (2), let J1, J2 > 0 and h1 2 R be given and notethat we get from Lemma 4.2.2 and equation (8) that �J2;+h � �J1;�h1 if and only ifet+(J2;h)�J22 
osh(t+(J2; h)� J2) � et�(J1;h1)�J12 
osh(t�(J1; h1)� J1)and et+(J2;h)+J22 
osh(t+(J2; h) + J2) � et�(J1;h1)+J12 
osh(t�(J1; h1) + J1) :Sin
e the map R 3 x 7! ex2 
osh(x) is stri
tly in
reasing this is equivalent tot+(J2; h) � t�(J1; h1) + J2 � J1and t+(J2; h) � t�(J1; h1) + J1 � J2whi
h in turn is equivalent to(10) t+(J2; h) � t�(J1; h1) + jJ1 � J2j = ��(J1; J2; h1);and so we want to 
ompute the smallest h 2 R su
h that (10) holds. Note that sin
ethe map h 7! t+(J2; h) is stri
tly in
reasing and t+(J2; h)! �1 as h! �1 therealways exists su
h an h 2 R. If �� � t�(J2) or �� < t�(J2;�h�(J2)), then theequation h+ d�J2(��) = ��is equivalent to t+(J2; h) = ��and so in that 
ase the smallest h 2 R su
h that (10) holds is equal to�� � d�J2(��):If t�(J2;�h�(J2)) � �� < t�(J2), then sin
e t+(J2; h) � t�(J2) whenever h ��h�(J2) and t+(J2; h) < t�(J2;�h�(J2)) whenever h < �h�(J2), we have in this
ase that fh 2 R : �J2;+h � �J1;�h1 g = [�h�(J2);1);and so the h we are looking for is given by �h�(J2).For (3), we note as above that �J2;�h � �J1;�h1 if and only if(11) t�(J2; h) � ��(J1; J2; h1):



4.2. PROOFS 85If �� � �t�(J2) or �� > t+(J2; h�(J2)) then we 
an pro
eed exa
tly as in the �rst
ase above. If �t�(J2) < �� � t+(J2; h�(J2)), then t�(J2; h) < �� wheneverh � h�(J2) and t�(J2; h) > �� whenever h > h�(J2) and so in that 
ase we havefh 2 R : �J2;�h � �J1;�h1 g = (h�(J2);1);whi
h yields (3) and the proof is 
omplete. 2We will now indi
ate how to 
ompute the bounds in Proposition 4.1.1 in the spe
ial
ase when G = Td. By looking at the formula for f+ and using the de�nition of h�we get that f+(J1; J2; h1) � �+(J1; J2; h1)� d�J2(�+(J1; J2; h1)):Substituting �+ and using the bounds�J � �J (t) � J for all t 2 R we get the upperbound in Proposition 4.1.1 withN = d+ 1. For the lower bound, �rst note that�+ � d�J2(�+) = h1 + d��J1(t+(J1; h1))� �J2(t+(J1; h1))�+ jJ1 � J2j� h1 � (d+ 1)(J1 + J2):Moreover it is easy to 
he
k that�h�(J2) � h1 � (d+ 1)(J1 + J2)when t�(J2;�h�(J2)) � �+ � t�(J2) = t+(J2;�h�(J2))and so the lower bound follows at on
e.4.2.3 Proof of Proposition 4.1.3Beforewe prove anythingwewould like to re
all the fa
t that we 
an write (see Remark(ii) after Theorem 4.1.2)f+(J1; J2; h1) =  (J2; �+(J1; J2; h1)) J1; J2 > 0; h1 2 R;where �+(J1; J2; h1) = t+(J1; h1) + jJ1 � J2jand the map t 7!  (J2; t) is 
ontinuous (see Figure 4.2 for a pi
ture). In the rest ofthe proof, we will use this fa
t without further noti�
ation. For example, the aboveimmediately gives that h1 7! f+(J1; J2; h1) is 
ontinuous at a point h1 2 R if h1 7!t+(J1; h1) is so.Proof of Proposition 4.1.3. We will only prove part a) and 
). The proof of part b)follows the same type of argument as the proof of part a).



86 CHAPTER 4. PAPER IIITo provepart a), we start to argue that for given J1 > 0 the map h1 7! t+(J1; h1) isright-
ontinuous at every point h1 2 R. To see that, take a sequen
e of reals fhng su
hthat hn # h1 as n ! 1 and note that sin
e the map h1 7! t+(J1; h1) is in
reasing,the sequen
e ft+(J1; hn)g 
onverges to a limit ~t with ~t � t+(J1; h1). Moreover, bytaking the limit in the �xed point equation we see that(12) ~t = h1 + d�J1(~t)and sin
e t+(J1; h1) is the largest number satisfying (12) we get ~t = t+(J1; h1).Next, assume h1 6= �h�(J1) and hn " h1 as n ! 1. As before, the limit offt+(J1; hn)g exists, denote it by T . The number T will again satisfy (12). By 
onsid-ering different 
ases des
ribed in Figure 4.5, we easily 
on
lude that T = t+(J1; h1).Hen
e, the fun
tion h1 7! t+(J1; h1) is 
ontinuous for all h1 6= �h�(J) and so weget that h1 7! f+(J1; J2; h1) is also 
ontinuous for all h1 6= �h�(J1).Now assume h1 = �h�(J1). By 
onsidering sequen
es hn # �h�(J1) and hn "�h�(J1) we 
an similarly as above see that�+(J1; J2;�h�(J1)+) : = limh#�h�(J1) �+(J1; J2; h) = t+(J1;�h�(J1)) + jJ1 � J2j�+(J1; J2;�h�(J1)�) : = limh"�h�(J1) �+(J1; J2; h) = t�(J1;�h�(J1)) + jJ1 � J2jand so�+(J1; J2;�h�(J1)+) = �+(J1; J2;�h�(J1)�) () h�(J1) = 0:Sin
e h�(J1) = 0 if and only if 0 < J1 � J
 the 
ontinuity of h1 7! f+(J1; J2; h1) at�h�(J1) follows at on
e in that 
ase. If J1 = J2, then�+(J1; J2;�h�(J1)+) = t+(J2;�h�(J2))�+(J1; J2;�h�(J1)�) = t�(J2;�h�(J2))and sin
e  (J2; t+(J2;�h�(J2))) =  (J2; t�(J2;�h�(J2)));the 
ontinuity is 
lear also in that 
ase. If J1 > J
 and 0 < J2 � J
, then�+(J1; J2;�h�(J1)+) 6= �+(J1; J2;�h�(J1)�)and the map t 7!  (J2; t) be
omes stri
tly in
reasing, hen
e h1 7! f+(J1; J2; h1) isdis
ontinuous at �h�(J1). For the 
ase when J1 > J
, J2 > J
, J1 6= J2 just notethat h1 7! f+(J1; J2; h1) is 
ontinuous at �h�(J1) if and only if a and b (de�ned inthe statement of the proposition) are in the �at region in the upper graph of Figure 4.2.To prove part 
) we take a 
loser look at the map (J2; t) 7!  (J2; t). By de�nition,this map is (J2; t) = (�h�(J2) if t�(J2;�h�(J2)) � t < t�(J2)t� d�J2(t) if t � t�(J2) or t < t�(J2;�h�(J2)):
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Figure 4.5: A pi
ture of the different 
ases in the �xed point equation that 
an o

ur whenh1 6= �h�(J1). Here, d = 4 and J1 = 3.From the 
ontinuity of t 7!  (J2; t) for �xed J2 and the fa
ts that J2 7! t�(J2),J2 7! t�(J2;�h�(J2)), J2 7! �h�(J2) and (J2; t) 7! t� d�J2(t) are all 
ontinuous,we get that  is (jointly) 
ontinuous and so the result follows. 24.2.4 Proof of Proposition 4.1.4To prove the statement, we will show that the inequality(13) ��J t+(J; h) � 1



88 CHAPTER 4. PAPER IIIholds if a) h � 0 and J � J
 or b) h < 0 and h�(J) > �h. By integrating equation(13) the statement follows. The proof of equation (13) will be an easy modi�
ation ofthe proof of Lemma 5.2 in [13℄. The proof is quite short and so we give a full proofhere, even though it is more or less the same as the proof in [13℄.Write �(J; t) for �J (t) and use subs
ripts to denote partial derivatives. By differ-entiating the relation h+ d �(J; t+(J; h)) = t+(J; h)with respe
t to J and solving, we get��J t+(J; h) = d �1(J; t+(J; h))1� d �2(J; t+(J; h)) :To get the left hand side bigger or equal to one, we need(14) d �2(J; t+(J; h)) < 1and(15) �1(J; t+(J; h)) + �2(J; t+(J; h)) � 1d :The �rst inequality is immediate sin
e in the 
ases a) and b) above, the fun
tion t 7!h+ d �(J; t) 
rosses the line t 7! t from above to below. For (15), note that�1(J; t) = 12� tanh(J + t)� tanh(J � t)��2(J; t) = 12� tanh(J + t) + tanh(J � t)�and so �1(J; t) + �2(J; t) = tanh(J + t);whi
h yields that �1 + �2 is in
reasing in both variables. Moreover, sin
e tanh(J
) =1d (see [2℄), we get �1(J
; 0) + �2(J
; 0) = 1dand so(16) �1(J; t) + �2(J; t) � 1d if J � J
, t � 0.To 
omplete the proof, observe that in the 
ases a) and b), we have J � J
 andt+(J; h) � 0. 2



4.2. PROOFS 894.2.5 Proof of Proposition 4.1.7In the proof we will use the following results from [13℄ 
on
erning domination ofprodu
t measures.De�nition 4.2.1 (Downward FKG, Liggett, Steif). Given a �nite or 
ountable setV , a measure � on f�1; 1gV is 
alled downward FKG if for any �nite A � V , the
onditional measure �( � j � � 0 on A ) has positive 
orrelations.Here, as usual, positive 
orrelations is de�ned as follows:De�nition 4.2.2 (Positive 
orrelations). A probability measure � on f�1; 1gV whereV is a �nite or 
ountable set is said to have positive 
orrelations ifZ fg d� � Z f d� Z g d�for all real-valued, 
ontinuous and in
reasing fun
tions f; g on f�1; 1gV .Theorem 4.2.3 (Liggett, Steif). Let � be a translation invariant measure onf�1; 1gZd whi
h also is downward FKG and let p 2 [0; 1℄. Then the following areequivalent:a) � � 
p.b) lim supn!1 �( � � �1 on [1; n℄d )1=nd � 1� p.Remarks:(i) In parti
ular, Theorem 4.2.3 gives us that if two translation invariant, downwardFKG measures have the same above limsup, then they dominate the same set ofprodu
t measures.(ii) In [13℄, it is a third 
ondition in Theorem 4.2.3 whi
h we will not use and so wesimply omit it.Before we state the next lemma we need to re
all the following de�nition.De�nition 4.2.3 (FKG latti
e 
ondition). Suppose V is a �nite set and let � be aprobability measure on f�1; 1gV whi
h assigns positive probabilty to ea
h element.For �, � 2 f�1; 1gV de�ne � _ � and � ^ � by(� _ �)(x) = max(�(x); �(x)); (� ^ �)(x) = min(�(x); �(x)); x 2 V:We say that � satis�es the FKG latti
e 
ondition if�(� ^ �)�(� _ �) � �(�)�(�)for all �, � 2 f�1; 1gV



90 CHAPTER 4. PAPER IIIGiven a measure � on f�1; 1gZd we will denote its proje
tion on f�1; 1gT for�nite T � Zd by �T .Lemma 4.2.4. The measures �Zd;�q;J;r are FKG in the sense that �Zd;�T;q;J;r satis�es theFKG latti
e 
ondtion for ea
h �nite T � Zd.Proof. Forn � 2, let�n = f�n; : : : ; ngd and denote the �nite volume Potts measureson f�1; 1g�n with boundary 
ondition � � 1 and � � q by �n;1q;J and �n;qq;J . Further-more, let �n;�q;J;r and �n;+q;J;r denote the 
orresponding fuzzy Potts measures. Given the
onvergen
e in the Potts model, it is 
lear that �n;�T;q;J;r 
onverges weakly to �Zd;�T;q;J;ras n ! 1 for ea
h �nite T � Zd. Sin
e the FKG latti
e 
ondition is 
losed undertaking proje
tions (see [4, p. 28℄) and weak limits we are done if we 
an show that�n;�q;J;r satis�es the FKG latti
e 
ondition for ea
h n � 2. In [6℄ it is proved that foran arbitrary �nite graph G = (V;E) the �nite volume fuzzy Potts measure with freeboundary 
ondition and parameters q, J , r is monotone in the sense that(17) �Gq;J;r(Y (x) = 1 jY (V n fxg) = �) � �Gq;J;r(Y (x) = 1 jY (V n fxg) = �0)for all x 2 V and �, �0 2 f�1; 1gV nfxg with � � �0. We 
laim that it is possibleto modify the argument given there to prove that �n;�q;J;r are monotone for ea
h n � 2.(Re
all from [4℄ the fa
t that if V is �nite and � is a probabilty measure on f�1; 1gVthat assigns positive probabilty to ea
h element, then monotone is equivalent to theFKG latti
e 
ondition.) The proof of (17) is quite involved. However, the 
hangesneeded to prove our 
laim are quite straightforward and so we will only give an outlinefor how that 
an be done. Furthermore, we will only 
onsider the minus 
ase, the plus
ase is similar.By 
onsidering a sequen
e � = �1 � �2 � � � � � �m = �0 where �i and �i+1differ only at a single vertex, it is easy to see that it is enough to prove that for all x,y 2 �n and � 2 f�1; 1g�nnfx;yg we have�n;�q;J;r(Y (x) = 1; Y (y) = 1 jY (�n n fx; yg) = �)� �n;�q;J;r(Y (x) = 1 jY (�n n fx; yg) = �)� �n;�q;J;r(Y (y) = 1 jY (�n n fx; yg) = �):(18)Fix n � 2, x, y and � as above. We will �rst 
onsider the 
ase when x and y arenot neighbors. At the end we will see how to modify the argument to work whenx, y are neighbors as well. De�ne V� = fz 2 �n n fx; yg : �(z) = �1g andV+ = fz 2 �n n fx; yg : �(z) = 1g. Furthermore, denote by En the set of edgeshu; vi with either u, v 2 �n or u 2 �n, v 2 ��n and let P denote the probabilitymeasure on W = f1; : : : ; qg�n[��n � f0; 1gEn whi
h to ea
h site u 2 �n [ ��n
hooses a spin value uniformly from f1; : : : ; qg, to ea
h edge hu; vi assigns value 1 or0with probabilities p and 1�p respe
tively and whi
h does those things independently



4.2. PROOFS 91for all sites and edges. De�ne the following events onWA = f(�; �) : (�(u)� �(v))�(e) = 0; 8e = hu; vi 2 En g;B = f(�; �) : �(z) 2 f1; : : : ; rg 8z 2 V�; �(z) 2 fr + 1; : : : ; qg 8z 2 V+g;C = f(�; �) : �(z) = 1; 8z 2 ��n g;and let P0 and P00 be the probability measures on f1; : : : ; qg�n � f0; 1gEn obtainedfromP by 
onditioning on A \C and A \B \C respe
tively. (P0 is usually referredto as the Edward-Sokal 
oupling, see [3℄.) It is well known (and easy to 
he
k) that thespin marginal of P0 is �n;1q;J and that the edge marginal is the so 
alled random-
lustermeasure de�ned as the probability measure on f0; 1gEn whi
h to ea
h � 2 f0; 1gEnassigns probability proportional toqk(�) Ye2En p�(e)(1� p)1��(e);where k(�) is the number of 
onne
ted 
omponents in � not rea
hing ��n. In a similarway it is possible (by 
ounting) to 
ompute the spin and edge marginal of P00: Thespin marginal �00 is simply �n;1q;J 
onditioned on B and the edge marginal �00 assignsprobability to a 
on�guration � 2 f0; 1gEn proportional to1Drk0(�)(q � r)k1(�)qkx(�)+ky(�) Ye2En p�(e)(1� p)1��(e);where k0(�) is the number of 
lusters interse
ting V� but not rea
hing ��n, k1(�) isthe number of 
lusters interse
ting V+, kx(�) (resp ky(�)) is 1 if x (resp y) is in asingleton 
onne
ted 
omponent and 0 otherwise and D is the event that no 
onne
ted
omponent in � interse
ts both V� and V+. Observe that (18) is the same as�00(X(x) 2 fr + 1; : : : ; qg; X(y) 2 fr + 1; : : : ; qg)� �00(X(x) 2 fr + 1; : : : ; qg)�00(X(y) 2 fr + 1; : : : ; qg):(19)An important feature of the 
oupling P00 is that it gives a way to obtain a spin 
on�g-urationX 2 f1; : : : ; qg�n distributed as �00:1. Pi
k an edge 
on�guration � a

ording to �00.2. Assign X = 1 to the 
onne
ted 
omponents of � that interse
t ��n and denotethe union of those 
omponents by ~C.3. Assign independently spins to a 
onne
ted 
omponent C 6= ~C of � where thespin is taken a

ording to the uniform distribution onf1; : : : ; rg if C interse
ts V�,fr + 1; : : : ; qg if C interse
ts V+,f1; : : : ; qg if C is a singleton vertex x or y.



92 CHAPTER 4. PAPER IIIBy de�ning the fun
tions fx, fy : f0; 1gEn ! R asfx(�) =8><>:0; if Cx = ~C or Cx interse
ts V�,q�rq ; if Cx is a singleton,1; otherwise,where Cx is the 
onne
ted 
omponent of � 
ontaining x (fy de�ned analogously), wesee as in [6℄ that (19) follows if(20) Z fxfy d�00 � Z fx d�00 Z fy d�00:The signi�
an
e of fx and fy is that fx(�) is the 
onditional probability that X(x) 2fr+1; : : : ; qg given � and similarly for fy, and that the eventsX(x) 2 fr+1; : : : ; qgand X(y) 2 fr + 1; : : : ; qg are 
onditionally independent given �. With all this setupdone it is a simple task to see that to prove (20)we 
an pro
eed exa
tly as in [6, p. 1154-1155℄.To take 
are of the 
ase when x and y are neighbors, observe that everything wehave done so far also works for the graph with one edge deleted, i.e. the graph withvertex set �n and edge set En n fhx; yig. Hen
e we 
an get (19) for that graph.However the observation in [6, 1156℄ gives us (19) even in the 
ase when we reinsertthe edge hx; yi.Proof of Proposition 4.1.7. Let k, l 2 f0;�;+g be given and let An = [1; n℄d, n � 2.We are done if there exists 0 < 
 < 1 (independent of k, l and n) su
h that�Zd;kq;J;r( � � �1 on An ) � 
j�Anj�Zd;lq;J;r( � � �1 on An ) for all n.As for the Ising model, it is well known that the in�nite volume Potts measures satisfythe so 
alled uniform nonnull property (sometimes 
alled uniform �nite energy prop-erty), whi
h means that for some 
 > 0, the 
onditional probability of having a 
ertainspin at a given site given everything else is at least 
. (See for example [8℄ for a morepre
ise de�nition.) We get for arbitrary � 2 f1; : : : ; qg�An(21) �Zd;kq;J;r( � � �1 on [1; n℄d ) � 
j�Anj�An;�q;J (Y � �1 on An ):Sin
e �Zd;lq;J;r( � � �1 on [1; n℄d ) 
an be written as a 
onvex 
ombination of the termsin the far right side of (21) the result follows at on
e. 24.2.6 Proof of Proposition 4.1.8Let � denote the root of Td and let Vn be the set of all sites in Td with distan
e atmost n from �. If x is on the unique self-avoiding path from � to y, we say that y is



4.2. PROOFS 93a des
endant of x. Given x 2 Td, let Sx denote the set of verti
es of all des
endantsof x (in
luding x). Moreover, let Tx denote the subtree of Td whose vertex set is Sxand edge set 
onsisting of all edges hu; vi 2 E(Td) with u, v 2 Sx. In the proof ofProposition 4.1.8, we will use the following Lemma from [13℄:Proposition 4.2.5 (Liggett, Steif). Let p 2 [0; 1℄, fP (i; j) : i; j 2 f �1; 1g g be atransition matrix for an irredu
ible 2-state Markov 
hain with P (�1; 1) � P (1; 1)and let � be the distribution of the 
orresponding 
ompletely homogeneous Markov
hain on Td. Then the following are equivalent:a) � � 
p.b) lim supn!1 �( � � �1 on Vn )1=jVnj � 1� p.
) P (�1; 1) � p.Proof of Proposition 4.1.8. Fix J > 0, q � 3 and r 2 f1; : : : ; q�1gwith e2J � q�2.In [9℄, it is proved that �Td;0q;J;r is a 
ompletely homogeneousMarkov 
hain on Td for allvalues of the parameters with transition matrix e2J+r�1e2J+q�1 q�re2J+q�1re2J+q�1 e2J+q�r�1e2J+q�1 ! :Hen
e, from Proposition 4.2.5 we get that �Td;0q;J;r � 
p if and only if(22) p � q � re2J + q � 1 :Furthermore, in [9, p. 10℄ the authors also derive the transition matrix for �Td;1q;J fromwhi
h we 
an 
ompute the following:�Td;�q;J;r ( � � �1 on Vn ) � rXi=1 �Td;1q;J (X � i on Vn )= bb+ q � 1 � 
e2J
e2J + q � 1�jVnj�1+ r � 1b+ q � 1 � e2J
+ e2J + q � 2�jVnj�1where b = �Td;1q;J (X(�) = 1 )�Td;1q;J (X(�) = 2 )
 = �Tx;1q;J (X(x) = 1 )�Tx;1q;J (X(x) = 2 ) ; x 6= �:



94 CHAPTER 4. PAPER III(Of 
ourse, homogeneity gives that the last quotient is independent of x.) We get thatlim supn!1 �Td;�q;J;r ( � � �1 on Vn )1=jVnj� 
e2J
e2J + q � 1 + e2J
+ e2J + q � 2 :(23)Now, assume that the underlying Gibbs measures for the Potts model satisfy �Td;1q;J 6=�Td;0q;J . It is known [1℄ that this is equivalent to having�Td;1q;J (X(x) = 1 ) > 1q ; 8x 2 Td:In [9℄, the authors observed that if a = �Td;1q;J (X(�) = 1 ), then from symmetry reasonsb = (q � 1)a1� a :Hen
e, if a > 1q we get b > 1. Moreover, from the re
ursion formula in [9, p. 9℄ weobtain(24) b = (
e2J + q � 1)d+1(
+ e2J + q � 2)d+1 :It is easy to see from (24) that if b > 1 then 
 > 1. Hen
e, we 
an 
hoose p 2 (0; 1)su
h that(25) q � r
e2J + q � 1 < p � q � re2J + q � 1 :Moreover, an easy 
al
ulation gives us that
e2J
e2J + q � 1 + e2J
+ e2J + q � 2 � 
e2J + q � 2
e2J + q � 1and sin
e 1� p < 
e2J + r � 1
e2J + q � 1 � 
e2J + q � 2
e2J + q � 1we get from (23) lim supn!1 �Td;�q;J;r ( � � �1 on Vn )1=jVnj > 1� p:It is now 
lear that for p as in (25) we have that �Td;0q;J;r dominates 
p but �Td;�q;J;r does notdominate 
p. 2Remark: By deriving the transition matrix for �Td;qq;J it is probably possible to provethat there exists p 2 (0; 1) su
h that �Td;0q;J;r dominates 
p but �Td;+q;J;r does not dominate
p.
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turesWe end with the following 
onje
tures 
on
erning the fuzzy Potts model. The 
orre-sponding statements for the Ising model are proved in [13℄.Conje
ture 4.3.1. Let q � 3, r 2 f1; : : : ; q�1g and 
onsider the fuzzy Potts model onZd. If J1, J2 > 0 with J1 6= J2, then �Zd;+q;J1;r and �Zd;+q;J2;r are not sto
hasti
ally ordered.Conje
ture 4.3.2. Let q � 3, r 2 f1; : : : ; q � 1g and 
onsider the fuzzy Potts modelon Zd. If 0 < J1 < J2, thensupf p 2 [0; 1℄ : �Zd;+q;J1;r � 
p g > supf p 2 [0; 1℄ : �Zd;+q;J2;r � 
p g:Conje
ture 4.3.3. Let J > 0, q � 3, r 2 f1; : : : ; q � 1g and 
onsider the fuzzy Pottsmodel on Td. De�ne the sets:D+ = f p 2 [0; 1℄ : �Zd;+q;J;r � 
p g;D� = f p 2 [0; 1℄ : �Zd;�q;J;r � 
p g;D0 = f p 2 [0; 1℄ : �Zd;0q;J;r � 
p g;(26)If the underlying Gibbs measures for the Potts model satisfy �Td;1q;J 6= �Td;0q;J , then thesets in (26) are all different from ea
h other.Conje
ture 4.3.4. Let q � 3, r 2 f1; : : : ; q � 1g and 
onsider the fuzzy Potts modelon Td. Denote the 
riti
al value 
orresponding to non-uniqueness of Gibbs states forthe Potts model by J
. If J
 < J1 < J2 then �Td;+q;J1;r � �Td;+q;J2;r.Remark: If J1 < J2 < J
, then�Td;+q;J1;r( �(x) = 1 ) = �Td;+q;J2;r( �(x) = 1 ) = q � rqand so in that 
ase, �Td;+q;J1;r and �Td;+q;J2;r 
an not be sto
hasti
ally ordered.A
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5PAPER IVABSTRACTA pair trade is a portfolio 
onsisting of a long position in one asset and a short posi-tion in another, and it is a widely applied investment strategy in the �nan
ial industry.Re
ently, Ekström, Lindberg and Tysk studied the problem of optimally 
losing a pairtrading strategy when the differen
e of the two assets is modelled by an Ornstein-Uhlenbe
k pro
ess. In this paper we study the same problem, but the model is gener-alized to also in
lude jumps. More pre
isely we assume that the above differen
e isan Ornstein-Uhlenbe
k type pro
ess, driven by a Lévy pro
ess of �nite a
tivity. Weprove a veri�
ation theorem and analyze a numeri
al method for the asso
iated freeboundary problem. We prove rigorous error estimates, whi
h are used to draw some
on
lusions from numeri
al simulations.Key words and phrases: Pairs trading, Ornstein-Uhlenbe
k type pro
ess, �nite elementmethod, error estimate.Subje
t 
lassi�
ation : 91B28, 65N30, 45J05.5.1 Introdu
tionA portfolio whi
h 
onsists of a positive position in one asset, and a negative position inanother is 
alled a pair trade. Pairs trading was developed at Morgan Stanley in the late1980's, and today it is one of the most 
ommon investment strategies in the �nan
ialindustry. The idea behind pairs trading is quite intuitive: the investor �nds two assets,for whi
h the pri
es have moved together histori
ally. When the pri
e spread widens,99



100 CHAPTER 5. PAPER IVthe investor takes a short position in the outperforming asset, and a long position inthe underperforming one with the hope that the spread will 
onverge again, generatinga pro�t. A main advantage of pairs trading is that the short position 
an, in prin
iple,remove any exposure to market risk. For a histori
al evaluation of pairs trading werefer to [6℄.To model the pair spread the authors in [3℄ proposed a mean reverting GaussianMarkov 
hain whi
h they 
onsidered to be observed in Gaussian noise. Re
ently, in[2℄ the authors suggested the 
ontinuous time analogue, the so 
alled mean revertingOrnstein-Uhlenbe
k pro
ess. In this paper we generalize the model of the spread toalso in
lude possible jumps. Let (
;F ;P) be a 
omplete probability spa
e where thefollowing pro
esses are de�ned in su
h a way that they are independent:� A standard Brownian motionW = fWtgt�0.� A Possion pro
essN� = fN�t gt�0 with intensity � > 0.� A sequen
e of independent random variables fX'k g1k=1 with 
ommon 
ontinu-ous symmetri
 density '. Moreover, the support of ' is 
ontained in the interval(�J; J) for some J > 0.De�ne the 
ompound Poisson pro
ess C�;' = fC�;'t gt�0 in the usual way asC�;'t = N�tXk=1X'kand denote the �ltration generated byW , C�;' and the null sets of F by F = fFtgt�0.It is well known that this �ltration satis�es the usual hypotheses (see for example [10℄).From now on, when we say that a pro
ess is a martingale, submartingale or super-martingale we mean that this is with respe
t to F.Let the differen
e U = fUtgt�0 between the assets be the unique solution of thesto
hasti
 differential equation(1) dUt = ��Ut dt+ � dWt + dC�;'t ; t > 0;where � > 0, � > 0. (The solution of equation (1) is usually 
alled a generalizedOrnstein-Uhlenbe
k pro
ess or an Ornstein-Uhlenbe
k type pro
ess.) Sometimes wewill denote the driving Lévy pro
ess in (1) by Z�;�;', i.e.Z�;�;'t = �Wt + C�;'t ; t � 0:As dis
ussed in [2℄, there is a large risk asso
iated with a pair trading strategy. Indeed,if the market spread 
eases to be mean reverting, the investor is exposed to substantialrisk. Therefore, in pra
ti
e the investor typi
ally 
hooses in advan
e a stop-loss levela < 0, whi
h 
orresponds to the level of loss above whi
h the investor will 
lose thepair trade. For a given stop-loss level a < 0 de�ne(2) �a = infft � 0 : Ut � ag;



5.1. INTRODUCTION 101the �rst hitting time of the region (�1; a℄, and the so 
alled value fun
tion(3) V (x) = sup� Ex[U�a^� ℄ x 2 R;where the supremum is taken over all stopping times with respe
t to U . (Here andin the sequel Ex means expe
ted value when U0 = x.) The major interest here is to
hara
terize V , and perhaps more importantly, to des
ribe the stopping time where thesupremum is attained. Sin
e the drift has the opposite sign as U , we have no reasonto liquidate our position as long as U is negative. On the other hand, if U is positive,then the drift is working against the investor and for large values of U the size of thedrift should over
ome the possible bene�ts from random variations. Moreover, sin
ethe jumps are assumed to be symmetri
, this indi
ates that there is a stopping barrierb > 0 with the property that we should keep our position when Ut < b and liquidateas soon as Ut � b. We note that we 
annot be sure to 
lose the pair trade at anyof the boundaries a or b, be
ause the spread 
an exhibit jumps. This was not the 
asein [2℄ and it is the major reason for the additional dif�
ulties en
ountered in the presentpaper.General optimal stopping theory (des
ribed for example in [9, Ch. 3℄) leads us tobelieve that the value fun
tion is given by V = u, where (u; b) is the solution of thefree boundary problem GUu(x) = 0; x 2 (a; b);u(x) = x; x 62 (a; b);u0(b) = 1:(4)Here GU is the in�nitesimal generator of U , whi
h is de�ned on the spa
e of twi
e
ontinuously differentiable fun
tions f : R ! R with 
ompa
t support:(5) GUf(x) = �22 f 00(x)� �xf 0(x) + � Z 1�1(f(x+ y)� f(x))'(y) dy; x 2 R:Moreover, the stopping time where the supremum in (3) is attained should be(6) �b = infft � 0 : Ut � bg:Indeed, our �rst result is a so 
alled veri�
ation theorem.Theorem 5.1.1. Assume that (u; b) is a 
lassi
al solution of (4) witha) GUu(x) � 0, for x > b,b) u(x) � x, for x 2 R.Then u(x) = V (x) = Ex[U�a^�b ℄, for x 2 R, where V is given by (3).



102 CHAPTER 5. PAPER IVRemark: As seen from the assumptions on ', we are assuming that the absolute valueof the jumps of the pro
ess fUtg�0 are bounded. The reason is that on the �nan
ialmarket, an asset 
annot jump to arbitrarily large levels. If nothing else, the jumps arebounded by all the money in the world.The rest of the paper is organized as follows. In Se
tion 5.2 we prove Theorem5.1.1 and in Se
tion 5.3 we dis
uss a numeri
al solution of the free boundary problem(4). We also present strong eviden
e for the existen
e and uniqueness of a solution of(4).5.2 Proof of Theorem 5.1.1Before we start to prove Theorem 5.1.1 we need to re
all some fa
ts. From the generaltheory in [5℄ we get that the boundary value problemGUu(x) = 0; x 2 (a; b);u(x) = x; x 62 (a; b);(7)has a unique 
lassi
al solution and that su
h a solution belongs to the spa
eC2(R n fa; bg) \ C1(R n fa; bg) \ C(R):Moreover, the �nite left and right limits of u0 and u00 exist at a and b. Although thesefa
ts follow from [5℄, we present in Theorem 5.3.1 a self-
ontained proof for the sim-pler situation that we 
onsider here. Hen
e, if (u; b) is a 
lassi
al solution of (4), thenne
essarily u 2 C2(R n fa; bg) \ C1(R n fag) \ C(R)with �nite left and right limits of u0 and u00 everywhere. Furthermore, re
all a general-ized version of It�'s formula for 
onvex fun
tions (see for example [10, Ch. 4℄):Theorem 5.2.1 (Meyer-It� formula). Let X = fXtg�0 be a semimartingale and letf be the differen
e of two 
onvex fun
tions. Thenf(Xt) = f(X0) + Z t0+D�f(Xs�) dXs+ X0<s�t �f(Xs)� f(Xs�)�D�f(Xs�)�Xs�+ 12 Z 1�1 Lyt (X) d�(y);where D�f is the left derivative of f , � is a signed measure whi
h is the se
ondgeneralized derivative of f and fLat (X)gt�0 is the lo
al time pro
ess of X at a.



5.2. PROOF OF THEOREM 5.1.1 103Due to the regularity of u it 
an be written as a differen
e of two 
onvex fun
tions(see Problem 6:24 in [7, Ch. 3℄). Moreover, the se
ond derivative measure � of u
an be split into two parts � = �
 + �d, where the 
ontinuous part �
 is given byd�
 = u00 dx and the dis
rete part �d = Æa is a point mass at a. Here, u00(x) denotesthe se
ond derivative of u at x ex
ept at the points a and b, where it denotes the rightse
ond derivative (whi
h we know is �nite). By Corollary 1 of the Meyer-It� formulain [10℄, we 
an now write12 Z 1�1 Lyt (U) d�(y) = 12 Z t0 u00(Us�) d[U;U ℄
s + 12Lat (U)�u0(a+)� u0(a�)�= �22 Z t0 u00(Us�) ds+ 12Lat (U)�u0(a+)� u0(a�)�;(8)where [U;U ℄
 denotes the 
ontinuous part of the quadrati
 variation [U;U ℄.Furthermore, by using (1) and the 
ompensated Poisson randommeasure~NZ(dt; dy) = NZ(dt; dy) � � dt '(y) dy;whereNZ denotes the jump measure asso
iated with Z�;�;', we getZ t0+D�u(Us�) dUs + X0<s�t �u(Us)� u(Us�)�D�u(Us�)�Us�= �� Z t0 Us�D�u(Us�) ds+ � Z t0 D�u(Us�) dWs+ Z t0+ ZR �u(Us� + y)� u(Us�)� ~NZ(ds; dy)+ � Z t0 ZR �u(Us� + y)� u(Us�)�'(y) dy ds:(9)
Summing up, we now have for t � 0u(Ut) = u(U0) + Z t0 ��22 u00(Us�)� �Us�D�u(Us�)� ds+ � Z t0 ZR �u(Us� + y)� u(Us�)�'(y) dy ds+ 12Lat (U)�u0(a+)� u0(a�)�+Mt;(10)whereMt = � Z t0 D�u(Us�) dWs + Z t0+ ZR �u(Us� + y)� u(Us�)� ~NZ(ds; dy):Sin
e u is Lips
hitz, has a bounded left derivative and sin
e the jumps density 'has a�nite swe get that fMtgt�0 is a martingale.



104 CHAPTER 5. PAPER IVLemma 5.2.2. Assume a 2 R and U0 > a. Then a.s. La�a^t(U) = 0 for all t � 0.Proof. Fix a 2 R and assume U0 > a. Sin
e the lo
al time pro
ess fLat gt�0 is
ontinuous in t it is enough to prove that for �xed t � 0 we have La�a^t(U) = 0 a.s.From [10, p. 217℄, we get that12La�a^t(U) = (U�a^t � a)� � X0<s��a^t 1fUs�>ag(Us � a)�+ Z �a^t0+ 1fUs��ag dUs � X0<s��a^t 1fUs��ag(Us � a)+:Futhermore, from the fa
t that Us > a for all 0 < s < �a ^ t, we get that Us� � a forall 0 < s < �a ^ t and from the left 
ontinuity of Us�, we 
an 
on
lude that we alsohave U�a^t� � a. From that and by splitting the integral and the sum, we obtain12La�a^t(U) = 1fU�a^t�=ag(U�a^t � a)� + 1fU�a^t�=ag(U�a^t � a)� 1fU�a^t�=ag(U�a^t � a)+ + Z �a^t�0+ 1fUs�=ag dUs� X0<s<�a^t 1fUs�=ag(Us � a)+= Z �a^t�0+ 1fUs�=ag dUs � X0<s<�a^t 1fUs�=ag(Us � a)+:From the observation that if Us� = a for some 0 < s < �a ^ t, then s is a jump timeand the jump must be in the up dire
tion, we 
on
lude that the right hand side of thelast expression is zero and so we are done.Remark: In a similar way one 
an show that, if a < U0 < b, thenLa�a^�b^t(U) = 0 and Lb�a^�b^t(U) = 0 for t � 0:Proof of Theorem 5.1.1. Sin
e u(x) = V (x) = Ex[U�a^�b ℄ = x, when x � a, we 
anassume that x > a. De�ne Yt = u(U�a^t), t � 0. By using (10), Lemma 5.2.2, theexpression (5) for the generator of U , and (4), we getYt = u(x)� Z �a^t0 �Us�1fUs��bg ds+ � Z �a^t0 ZR �u(Us� + y)� u(Us�)�'(y)1fUs��bg dy ds+M�a^t:(11)Property a) and the martingale property of fM�a^tg give that fYtgt�0 is a super-martingale. Furthermore, from property b) we get that Yt � U�a^t, for t � 0, andsin
e(12) U�a^t � a� J; t � 0;
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an apply the optional sampling theorem (see [7℄) and obtainEx[U�a^� ℄ � Ex[Y� ℄ � Ex[Y0℄ = u(x);where � is an arbitrary stopping time with respe
t to U . Hen
e, V (x) � u(x) forx > a. In parti
ular, if x � b then x � V (x) � u(x) = x and so u(x) = V (x) =Ex[U�a^�b ℄ when x � b.For the 
ase when a < x < b, note that from (11) we get for t � 0 thatY�b^t =M�a^�b^t + u(x)and sin
e a� J � Y�b^t � b+ J; t � 0;the optional sampling theorem applies again and we obtain u(x) = Ex[Y�b ℄. Finally,the fa
t that Y�b = U�a^�b gives us u(x) = Ex[U�a^�b ℄ � V (x) and the proof is
omplete. 25.3 Numeri
al solution of the equation (4)We have not been able to give a rigorous proof of the existen
e and uniqueness of thesolution (u; b) of the free boundary value problem (4). We therefore resort to a nu-meri
al solution by means of the �nite element method. However, at the end of thisse
tion we will show that we have strong 
omputational eviden
e for both existen
eand uniqueness for (4). In order to a
hieve this we �rst show rigorous existen
e andregularity results for the boundary value problem (7) and rigorous 
onvergen
e esti-mates with expli
it 
onstants for the �nite element approximation.5.3.1 The boundary value problemWe begin by transforming the free boundary value problem (4) to a problem with ho-mogeneous boundary values. Set v(x) = u(x) � x and use R1�1 y'(y) dy = 0 toget � 12�2v00(x) + �xv0(x)�� Z 1�1 �v(x+ y)� v(x)�'(y) dy = ��x; x 2 (a; b);v(x) = 0; x 62 (a; b);v0(b) = 0:(13)Introdu
ing the operatorsLv(x) = � 12�2v00(x) + �xv0(x);Iv(x) = � Z 1�1 �v(x+ y)� v(x)�'(y) dy;



106 CHAPTER 5. PAPER IVour approa
h will be to �rst solve the boundary value problemLv � Iv = f; x 2 (a; b);v(x) = 0; x 62 (a; b);(14)with f(x) = ��x, and then for �xed a < 0 �nd b > a su
h that v0(b) = 0.To solve (14) we follow a standard approa
h based on a weak formulation andFredholm's alternative. We denote by (�; �) and k � k the standard s
alar produ
t andnorm in L2(a; b), and we denote byHk(a; b) andH10 (a; b) = fv 2 H1(a; b) : v(a) =v(b) = 0g the standard Sobolev spa
es. We denote the derivative Dv = dv=dx. We
hoose v 7! kDvk to be the norm inH10 (a; b), whi
h is equivalent to the standardH1-norm. We extend fun
tions v 2 L2(a; b) by zero outside (a; b) so that Iv is properlyde�ned. We de�ne bilinear formsAL(u; v) = Z ba � 12�2u0(x)v0(x) + �xu0(x)v(x)� dx; u; v 2 H10 (a; b);AI(u; v) = Z ba Iu(x)v(x) dx; u; v 2 L2(a; b)A(u; v) = AL(u; v)�AI(u; v):(15)Sin
e R1�1 '(y) dy = 1, '(�y) = '(y), and v(x) = 0 for x 62 (a; b), we also haveIv(x) = � Z ba '(x� y)v(y) dy � �v(x); v 2 L2(a; b):(16)The 
onvolution operator I1v(x) = R1�1 '(x � y)v(y) dy is bounded in L2(a; b)with 
onstant 
 = R1�1 '(y) dy = 1 by Young's inequality. Hen
e,kIvk � 2�kvk; v 2 L2(a; b);(17) kDIvk � 2�kDvk; v 2 H10 (a; b);(18)and �AI(v; v) � ��kvk2 � kI1vkkvk� � 0; v 2 L2(a; b):Hen
e, jA(u; v)j � 12�2kDukkDvk+ �max(jaj; jbj)kDukkvk+ 2�kukkvk� 
1kDukkDvk; u; v 2 H10 (a; b);
1 = 12�2 + 
2(�max(jaj; jbj) + 2�
2);where we also used Poin
aré's inequalitykvk � 
2kDvk; v 2 H10 (a; b); 
2 = (b� a)=�:(19)



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 107By integration by parts we obtainAL(v; v) = 12�2kDvk2 � 12�kvk2; v 2 H10 (a; b);so that A(�; �) is bounded and 
oer
ive onH10 (a; b):jA(u; v)j � 
1kDukkDvk; u; v 2 H10 (a; b);(20) A(v; v) � 12�2kDvk2 � 12�kvk2; v 2 H10 (a; b):(21)We say that v 2 H10 (a; b) is a weak solution of (14) ifA(v; �) = (f; �) 8� 2 H10 (a; b):(22)We also use the adjoint problem: �nd w 2 H10 (a; b) su
h thatA(�;w) = (�; g) 8� 2 H10 (a; b):(23)The strong form is (note that I is self-adjoint in L2(a; b))L�w(x) � Iw(x) = g(x); x 2 (a; b);w(x) = 0; x 62 (a; b);(24)where L�w(x) = � 12�2w00(x) � �xw0(x)� �w(x):We may now prove the existen
e and uniqueness of a 
lassi
al solution of (14). Inprin
iple this follows from the general theory in [5℄, but we present a self-
ontainedproof, with expli
it 
onstants, for the simpler situation that we 
onsider here. Thetheorem also provides results ne
essary for the analysis of the �nite element method.Theorem 5.3.1. The boundary value problem (14) has a unique weak solution v 2H10 (a; b) for every f 2 L2(a; b). The solution belongs to H2(a; b) and there is a
onstant 
3 su
h that kD2vk � 
3kfk:(25)Moreover, if f(x) = ��x, then the solution is 
lassi
al, v 2 C2([a; b℄). Similarly, theadjoint problem (24) has a unique weak solution w 2 H10 (a; b) for ea
h g 2 L2(a; b),whi
h belongs to H2(a; b) and kD2wk � 
3kgk:(26)Proof. The proof is a standard argument as presented, for example, in [4, Ch. 6℄ forellipti
 PDEs. The only differen
e is that that the lowest order term inA(�; �) is de�nedby means of an integral operator, but the 
ru
ial properties (20), (21) are the same.



108 CHAPTER 5. PAPER IVWe �rst show that weak solutions are regular. We use a regularity result for ellipti
problems (see [4, p. 323℄): If v is a weak solution ofLv(x) = g(x); x 2 (a; b); v(a) = v(b) = 0;and if g 2 Hk(a; b) for some k � 0, then v 2 Hk+2(a; b). A weak solution v 2H10 (a; b) of (14) satis�es this with g = f + Iv, where by (17), (18) Iv 2 H1(a; b).For f 2 L2(a; b) we 
on
lude that v 2 H2(a; b). If f 2 H1(a; b), then we havev 2 H3(a; b) and by Sobolev's inbedding v 2 C2([a; b℄). In parti
ular, a weak solutionis 
lassi
al when f(x) = 0 and f(x) = ��x. Analogous regularity results hold forthe adjoint problem.Now we 
an prove existen
e. LetA�(u; v) = A(u; v) + 12�(u; v):By the Lax-Milgram lemma we know that the shifted problemA�(u; �) = (g; �) 8� 2 H10 (a; b);has a unique solution u 2 H10 (a; b) for ea
h g 2 L2(a; b). This de�nes the boundedlinear operator A�1� : L2(a; b) ! H10 (a; b) by u = A�1� g. The equation (22) is nowequivalent to v = A�1� f + 12�A�1� v;or v �Kv = h, where h = A�1� f and whereK = 12�A�1� : L2(a; b)! L2(a; b) is a
ompa
t operator, be
auseH10 (a; b) is 
ompa
tly inbedded in L2(a; b).By the Fredholm alternative we know that the latter equation is uniquely solvablefor every h 2 L2(a; b) if and only if the 
orresponding homogeneous equation hasno non-trivial solution. But a non-trivial solution of v � Kv = 0 would be a weaksolution, and hen
e a 
lassi
al solution, of (14) with f = 0.Then we 
an apply the maximum prin
iple for 
lassi
al solutions of (14), see [5,Theorem 3.1.3℄. It says that if a 
lassi
al fun
tion satis�es (L � I)u � 0 in (a; b),then max[a;b℄ u = maxRn(a;b)u. (The maximum prin
iple for the integro-differentialequation is proved in the same way as for the differential equation after noting that�Iu(x0) � 0 if u has a maximum at x0.) We 
on
lude that that the homogeneousequation has no non-trivial solution and therefore (14) has a unique weak solution forevery f 2 L2(a; b). By the Fredholm theory the adjoint problem (24) is then alsouniquely solvable for all g 2 L2(a; b).Finally, we prove the bounds (25) and (26). Let v = A�1f and w = (A�)�1gdenote the solution operators of (14) and (24), respe
tively.Let f 2 H10 (a; b). Then v = A�1f is 
lassi
al and the maximum prin
iple giveskvkL1(a;b) � 
4kfkL1(a;b):(27)
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ompute the expli
it 
onstant we brie�y re
all the proof. Let�(x) = (e
(b�a) � e
(x�a); x � b;0; x � b;where 
 > 0 is 
hosen so that that A� � 1 in (a; b). Then u(x) = kfkL1(a;b)�(x)satis�es Au � kfkL1(a;b) � f = Av in (a; b) and u � 0 = v outside (a; b), sothat the maximum prin
iple gives max[a;b℄(v � u) = maxRn(a;b)(v � u) = 0, thatis, u � v in [a; b℄. Hen
e v � k�kL1(a;b)kfkL1(a;b) in [a; b℄. The lower boundv � �k�kL1(a;b)kfkL1(a;b) is obtained in a similar way and so we getkvkL1(a;b) � k�kL1(a;b)kfkL1(a;b) � e
(b�a)kfkL1(a;b):To determine 
, let x 2 (a; b) and 
ompute�I�(x) = �e
(x�a) Z b�x�1 (e
y � 1)'(y) dy+ �(e
(b�a) � e
(x�a)) Z 1b�x '(y) dy� ��e
(x�a) Z 1�1 '(y) dy = ��e
(x�a):Hen
e, A�(x) � ( 12�2
2 � �b
 � �)e
(x�a) � 1; x 2 (a; b);if 12�2
2 � �b
 � � � 1, that is, if
 = 
̂ = �b�2 +r2(�+ 1)�2 :Then we 
on
lude that (27) holds with 
4 = e
̂(b�a).Hen
e, sin
e kvk � (b � a) 12 kvkL1(a;b) and kfkL1(a;b) � (b � a) 12 kDfk, weobtain the boundkvk = kA�1fk � 
5kDfk 8f 2 H10 (a; b); 
5 = (b� a)
4:By duality we 
on
ludek(A�1)�kB(L2;H�1) = kA�1kB(H10 ;L2) � 
5:Hen
e kwkH�1 = k(A�)�1gkH�1 = k(A�1)�gkH�1 � 
5kgk 8g 2 L2(a; b);(28)



110 CHAPTER 5. PAPER IVwhereH�1(a; b) = (H10 (a; b))� andkwkH�1 = sup�2H10 (�;w)kD�k :Re
all that v 7! kDvk is the 
hosen norm in H10 (a; b). By using � = w 2 H10 (a; b)here we obtain kwk2 � kwkH�1kDwk:(29)We take � = w in the adjoint equation (23) and use 
oer
ivity (21), the inequality2ab � �a2 + ��1b2, and (29) to get12�2kDwk2 � A(w;w) + 12�kwk2 � kgkkwk+ 12�kwk2� 12��1kgk2 + �kwk2 � 12��1kgk2 + �kwkH�1kDwk� 12��1kgk2 + �2��2kwk2H�1 + 14�2kDwk2:With (28) this leads tokDwk2 � 2��2��1kgk2 + 4��4��2kwk2H�1� (2��2��1 + 4��4��2
25)kgk2and with Poin
aré's inequality (19),kwk � 
2kDwk � 
2(2��2��1 + 4��4��2
25) 12 kgk:Hen
e k(A�)�1gk = kwk � 
6kgk 8g 2 L2(a; b);
6 = 
2(2��2��1 + 4��4��2
25) 12 :(30)By duality in L2 we also havekvk = kA�1fk � 
6kfk 8f 2 L2(a; b):(31)In order to boundD2v we re
all that v 2 H2(a; b). Hen
e it satis�es (14) strongly, sothat with (17) we obtain12�2kD2vk � �kxDvk+ kIvk+ kfk� �max(jaj; jbj)kDvk+ 2�kvk+ kfk� �max(jaj; jbj)kD2vk 12 kvk 12 + 2�kvk+ kfk� 14�2kD2vk+ (2�+ ��2�2max(jaj; jbj)2)kvk+ kfk:
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e, kD2vk � 
7kfk+ 
8kvk;
7 = 4��2; 
8 = 4��2(2�+ �+ ��2�2max(jaj; jbj)2):In the last step we repla
ed 2� by 2� + � in 
8, so that the same result holds also forthe adjoint equation (24). Using also (30) and (31) we �nally 
on
ludekD2vk � 
3kfk; kD2wk � 
3kgk;
3 = 
7 + 
6
8:This 
ompletes the proof.5.3.2 The �nite element methodThe �nite element method is based on a family of subdivisions Th of the interval [a; b℄parametrized by the maximal mesh size h. Ea
h mesh is of the formTh : a = x0 < x1 < � � � < xj�1 < xj < � � � < xN = b; h = maxj=1;:::;N(xj � xj�1):We introdu
e the spa
e Vh � H10 (a; b) 
onsisting of all 
ontinuous fun
tions thatredu
e to pie
ewise polynomials of degree� 1 with respe
t to Th. See [8, Ch. 5℄ or [1,Ch. 1℄. Then there is an interpolator Ih : C([a; b℄) ! Vh su
h that Ihu(xj) = u(xj),j = 1; : : : ; N , andkD(u� Ihu)kLp(a;b) � h 12+ 1p kD2uk; u 2 H2(a; b) \H10 (a; b); p = 2;1:(32)To prove this we use the identityD(u� Ihu)(x) = h�1j Z xjxj�1 �u0(x)� u0(y)� dy = h�1j Z xjxj�1 Z xy u00(z) dz dy;for x 2 (xj�1; xj) and with hj = xj � xj�1, whi
h yieldsjD(u� Ihu)(x)j � h 12j kD2ukL2(xj�1;xj) � h 12 kD2uk; x 2 (xj�1; xj):This proves the 
ase p =1 and for p = 2 we havekD(u� Ihu)k2 � NXj=1 h2jkD2uk2L2(xj�1;xj) � h2kD2uk2:The �nite element problem is based on the weak formulation in (22): �nd vh 2 Vhsu
h that A(vh; �h) = (f; �h) 8�h 2 Vh;(33)where A(�; �) is de�ned in (15) with the integral operator 
omputed as in (16). In thefollowing theorem we prove 
onvergen
e estimates with expli
it 
onstants.



112 CHAPTER 5. PAPER IVTheorem 5.3.2. Let v be the solution of (14) as in Theorem 5.3.1. There is h0 =�=(2 12� 12 
1
3) su
h that, for h � h0, (33) has a unique solution vh 2 Vh andkv � vhk � 4
21
23��2h2kfk; kD(v � vh)k � 4
1
3��2hkfk:(34)Proof. We adapt an argument from [11℄. Let e = v � vh denote the error. By subtra
-tion of (33) and (22) with � = �h 2 Vh � H10 (a; b) we getA(e; �h) = 0 8�h 2 Vh:(35)Consider the adjoint problem (23) with g = e and solution w = (A�)�1e. With � = ethis yields kek2 = A(e; w) = A(e; w � Ihw) � 
1kDekkD(w � Ihw)k� 
1kDekhkD2wk � 
1
3hkDekkek:Here we used (35), (20), (32), and (26). We 
on
ludekek � 
1
3hkDek:(36)In view of (35) we have A(e; e) = A(e; v � vh) = A(e; v), so that by (21) and(36), 12�2kDek2 � A(e; e) + 12�kek2 = A(e; v) + 12�kek2� 
1kDekkDvk+ 12�
21
23h2kDek2:(37)Hen
e, for h � h0 suf�
iently small (h20 = �2=(2�
21
23)), we havekDek � 
9kDvk; 
9 = 4
1��2:Now if f = 0 in (22) and (33), then v = 0 by uniqueness, and hen
e e = 0, so thatvh = 0. This means that we have uniqueness for the �nite element problem (33). Butthis is an equation in a �nite dimensional spa
e so existen
e also follows. Therefore,(33) has a unique solution for all f 2 L2(a; b) if h � h0.In order to prove the error estimate (34) we return to (37) but use A(e; e) =A(e; v � vh) = A(e; v � Ihv) instead:12�2kDek2 � A(e; e) + 12�kek2 = A(e; v � Ihv) + 12�kek2� 
1kDekkD(v � Ihv)k+ 12�
21
23h2kDek2;and 
on
lude, for h � h0,kDek � 
9kD(v � Ihv)k; 
9 = 4
1��2:Hen
e, by (32), (25), and (36),kDek � 
9hkD2vk � 
9
3hkfk = 4
1
3��2hkfk;kek � 
1
3hkDek � 4
21
23��2h2kfk;whi
h is (34).



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 113We �nish by proving the pointwise 
onvergen
e of the derivative.Corollary 5.3.3. Assume that ea
h �nite element mesh Th is uniform, that is, xj �xj�1 = h for j = 1; : : : ; N . Then, for h � h0 as in Theorem 5.3.2, we havejv0(b)� v0h(b)j � 
10h 12 kfk; 
10 = 2 + 4
1
3��2:Proof. We use the inverse inequalitykD�hkL1(a;b) � h� 12 kD�hk; �h 2 Vh:To prove this we note thatD�h(x) = h�1 Z xjxj�1 D�h(y) dy; x 2 (xj�1; xj); h = xj � xj�1;whi
h yieldsjD�h(x)j � h� 12 kD�hkL2(xj�1;xj) � h� 12 kD�hk; x 2 (xj�1; xj):Hen
e, by (32) and (34),kDekL1(a;b) � kD(v � Ihv)kL1(a;b) + kD(Ihv � vh)kL1(a;b)� kD(v � Ihv)kL1(a;b) + h� 12 kD(Ihv � vh)k� kD(v � Ihv)kL1(a;b) + h� 12 kD(Ihv � v)k+ h� 12 kD(v � vh)k� 2h 12 kD2vk+ h� 12 kD(v � vh)k � (2 + 4
1
3��2)h 12 kfk:Therefore jv0(b)� v0h(b)j � (2 + 4
1
3��2)h 12 kfk:In parti
ular, with f(x) = ��x, Corollary 5.3.3 givesjv0(b)� v0h(b)j � 
11h 12 ; 
11 = 
10�rb3 � a33 :(38)Given numeri
al values for the parameters a; b; �; �; � we may now 
ompute nu-meri
al values for h0 and 
11. Alternatively, we may 
on
lude that there are uniformbounds h0 � ĥ0, 
11 � 
̂11 for b 2 [b1; b2℄ and with the other parameters �xed.



114 CHAPTER 5. PAPER IV5.3.3 The free boundary value problemWe use uniformmeshes Th withxj � xj�1 = h = b� aN ; j = 1; : : : ; N:Sin
e we want to vary b, we parametrize byN instead of h. Let f(x) = ��x, �x a < 0and let v, vN denote the solutions of (22) and (33) for b > a. De�ne the fun
tionsF (b) = v0(b); FN (b) = v0N (b):From (38), we get for a < b1 < b2kF � FNkL1(b1;b2) � 
̂12N� 12 ; N � N̂0;
̂12 = 
̂11(b2 � a) 12 ; N̂0 = b2 � aĥ0 :(39)By writing down the matrix equation for solving the �nite element problem (33), it iseasy to see that, for �xed N , the fun
tion b 7! FN (b) is 
ontinuous on (a;1). From(39) we 
on
lude that b 7! F (b) is also 
ontinuous on (a;1). Moreover, by a dire
t
onsequen
e of the strong maximum prin
iple and the Hopf boundary point prin
iplefor our equation (see [5, Theorem 3.1.4-3.1.5℄), we get the following:Lemma 5.3.4. If a < b � 0, then F (b) < 0. In parti
ular, if (u; b) is a solution to thefree boundary problem (4), then b > 0.We believe that there exists a unique b > 0 su
h that F (b) = 0. We are not able toprovide a rigorous proof of this, but numeri
al simulations present strong eviden
e inthe following way. Assign numeri
al values to the parameters a; �; �; � and �x a jumpdensity '. In all our 
omputations, we took ' to be the trun
ated normal distributionwith mean zero, varian
e 
 > 0 and support [�J; J ℄, i.e.'(y) = 8><>: e� y22
2
p2� (2�(J=
)� 1) if � J < y < J;0 otherwise,where �(x) = 1p2� Z x�1 e�y22 dy; x 2 R:From 
omputations of the boundary value problem (33) (see Figures 5.1 and 5.2), we
an �nd 0 � b1 < b2 and ~N � N̂0 su
h thatF ~N (b1) � �12 ; F ~N (b2) � 12 ; and 
̂12 ~N� 12 < 14 :



REFERENCES 115(The 1=2 and 1=4 may vary if we 
hange the parameters.) From (39), we 
an then
on
lude that F (b1) < 0; F (b2) > 0;FN (b1) < 0; FN (b2) > 0 for all N � ~N .Hen
e, there exists b 2 (b1; b2) su
h that F (b) = 0 and for ea
h N � ~N there existsbN 2 (b1; b2) su
h that FN (bN ) = 0. Moreover, (39) gives us thatlimN!1F (bN ) = 0:Of 
ourse, we 
annot 
on
lude that b is unique and bN ! b as N ! 1. However,Figure 5.1 suggests that b is unique and from 
omputations with in
reasingN , it seemslike bN 
onverges, see Table 5.1.We now dis
uss whether the properties a) and b) in the statement of Theorem 5.1.1hold for a solution (u; b) of (4). We have no rigorous proof, but 
omputational evi-den
e. The properties a) and b) boil down to� Z ba v(y)'(y � x) dy � �x; for x > b;(40)and v � 0 respe
tively, where (v; b) solves (13). We believe that v � 0 holds forall values of the parameters, but 
omputations suggests that (40) may fail for 
ertainparameter values, typi
ally when � is small and � is three or four times larger than �.See Figures 5.3 and 5.4, where we 
he
k (40) for (vN ; bN) instead of (v; b).N bN2000 0.05729394000 0.05727436000 0.05726788000 0.0572653Table 5.1: a = �0:1, � = 10, � = 0:2, � = �20:005 , 
 = 0:02 and J = 0:05.
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Figure 5.3: A simulation of (40) when a = �0:1, � = 30, � = 0:2, � = �20:005 , 
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