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ABSTRACT

In this thesis we first consider the contact process in a randomly evolving environment,
introduced by Erik Broman. This process is a generalization of the contact process
where the recovery rate can vary between two values. The rate which it chooses is
determined by a background process, which evolves independently at different sites.
We prove that survival of the process is independent of how we start the background
process, that finite and infinite survival are equivalent and finally that the process dies
out at criticality.

Second, we consider spin systems on Z whose rates are again determined by a
background process, which is more general than that considered above. We prove that,
if the background process has a unique stationary distribution and if the rates satisfy a
certain positivity condition, then there are at most two extremal stationary distributions.

Third, we discuss various aspects concerning stochastic domination for the Ising
and fuzzy Potts models. We begin by considering the Ising model on the homogeneous
tree of degree d, T?. For given interaction parameters Ji, J> > 0 and external field
h1 € R, we compute the smallest external field h such that the plus measure with
parameters Jo and h dominates the plus measure with parameters .J; and h; for all
h > h. Moreover, we discuss continuity of h with respect to the parameters Jy, Js, hy
and also how the plus measures are stochastically ordered in the interaction parameter
for a fixed external field. Next, we consider the fuzzy Potts model and prove that on Z?
the fuzzy Potts measures dominate the same set of product measures while on T?, for
certain parameter values, the free and minus fuzzy Potts measures dominate different
product measures.

Finally, we study the problem of optimally closing a pair trading strategy when the
difference of the underlying assets is assumed to be an Ornstein-Uhlenbeck type pro-
cess driven by a jump-diffusion process. We prove a verification theorem and analyze
a numerical method for the associated free boundary problem. We prove rigorous error
estimates, which are used to draw some conclusions from numerical simulations.

Keywords: Interacting particle systems, contact process, randomly evolving environment, spin
systems, Ising model, fuzzy Potts model, pairs trading, optimal stopping.
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Introduction

This thesis consists of three parts. Part one (the first two papers) concerns interact-
ing particle systems in a randomly evolving environment, part two (the third paper)
concerns stochastic domination in the Ising and fuzzy Potts models and part three (the
fourth paper) concerns how to optimally close a pair trading strategy in finance. In this
introductionary chapter we briefly give some background material to all of these topics
and at the end we give a summary of the papers in the thesis. We prefer to present most
of the material in a rather informal way; for a mathematically precise description see
the relevant references or the papers in the thesis.

1.1 Interacting particle systems

The field of interacting particle systems is a branch of probability theory. However,
the motivation often comes from physical or biological systems. In loose terms, one
tries to formulate a mathematical model for objects (particles, people, cars, etc) which
interact with each other in a certain way. One way to construct such a model is to place
each object at a site in a graph structure and declare that each one of them can be in
one of a finite number of different states. (A graph is just a finite or countable set of
vertices equipped with a relation that defines which vertices are neighbors.) One then
assigns some initial configuration (or distribution) and lets the system evolve according
to some probabilistic rules. It is at this point where the interactions come into play.
Each object is changing its state at a rate depending on the states of the other (usually
neighboring) objects as well as itself.
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From a more mathematical point of view, interacting particle systems are a special
class of so called Markov processes. Markov processes have the property that given
the present state, the future is independent of the past. Denote the set of sites and
possible states by S and A respectively. The state space, or configuration space, for
our Markov process is then A°. The most common situation is when A consists of
only two elements and that only one coordinate of the process is allowed to change
at a time. Such processes are called spin systems. In this situation, the evolution is
described by a rate function, ¢(z,7), * € S and n € A, which gives the rate at
which the coordinate at = flips when the system is in state 1. Having something occur
“at a rate ¢(z,n)” means informally that the time for this to occur has an exponential
distribution with mean 1/¢(x, n).

In this generality not much can be said. Therefore one concentrates upon specific
types of models of which I will name a few.

The contact process on the d-dimensional lattice 7.%. This process was introduced
by Harris [18] and is a model for spread of an infection. The model is such that in-
fected people recover at rate 1 and healthy people are infected with a rate proportional
to the number of infected neighbors. The state of the system is described by a config-
uration n) € {0, I}Zd, where n(x) = 0 represents that the individual at x is healthy and
n(z) = 1 represents it is infected. Also, the dynamics are specified by the following
rate function

ifn(x)

1 —1
c(z,m) =4 XY nly) ifn(z) =0,

y~z

where y ~ = means that  and y are neighbors and A is a positgve parameter called the
infection rate. To simplify notation, we will identify {0, 1}%>" with subsets of Z¢ by
letting n € {0, 1}2” correspond to

{ze7?: nlz)=1}.

Let n; be the state of the process at time ¢ > 0 and denote the distribution of the process
with parameter A > 0 and initial configuration A C Z%by Pf. We say that the process
survives at \ if

P [, £ 0 forall t > 0] > 0;

otherwise it is said to die out at . One can show that
P # P forallt > 0] =0
for small values of A and
Py, £ 0forall t > 0] >0

for large values of A. The first claim follows easily by a comparison with a bransching
process and the second, which is somewhat more difficult, follows from a percolation
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type argument. In words, when we start the process with one site infected, the infection
will almost surely eventually disappear for small values of A and will last forever with
positive probability for large values of A. From this, it is natural to define the critical
value:

Ao :=inf{X: P [n, £ 0 forall £ >0]>0}

and the previous statement just means that 0 < A\, < oco. A much harder question, and
one which had been open for approximately 15 years, is whether the contact process
survives or dies out at the critical value A.. A celebrated theorem by Bezuidenhout and
Grimmett gives us the answer.

Theorem 1.1.1 (Bezuidenhout and Grimmett). The critical contact process dies out.

For a proof of this, see [1] or [33].

e 6 6 6 o o o o o o o o o
e 6 6 6 o o o o o o o o o
e 6 6 6 o6 o o6 o o6 o o o o
e 6 6 6 o o o6 o o o o o o
e 6 6 6 o o6 o6 o o6 o o o o
e 6 6 6 o o6 o6 o o o o o o
e 6 6 6 o o6 o6 o o o o o o
® 6 6 6 o o o o o o o o o
Figure 1.1: A small portion of the lattice 7.%.

Remark: We can parameterize the contact process in an equivalent way as follows: Let
the recovery rate be § > 0 and the infection rate be equal to the number of infected
neighbors. In other words, we change A to 1 and let § be the recovery rate, which of
course just corresponds to a time scaling. We will denote the corresponding critical
value by ..

The voter model on the d-dimensional lattice 7Z.%. This process was introduced
independently by Clifford and Sudbury [4] and by Holley and Liggett [19]. Here, the
state of the system is described by a configuration n € {0, 1}Zd where d > 1 and the
transition mechanism is described by saying that ny(z) flips to 1 — n(x) at rate

1
57 2 Lntwza(-
y~w

One interpretation, made by Holley and Liggett, is to think of the sites in Z? as repre-
senting voters who can hold either of two political positions, which are denoted by 0
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and 1. In this representation the dynamics of the model can be described as follows: A
voter waits an exponentially distributed time with mean 1 and then takes the opinion
of a neighbor chosen at random. Clearly, if we start the process with all voters in state
0 or all voters in state 1, nothing happens. In mathematical terms the point masses on
these two configurations are so called invariant distributions, meaning that if we start
the process with such a distribution p, the distribution of the process at any time later
is still i (Of course, in this case they are also absorbing states.) At this point, one may
ask if there are any other invariant distributions? To answer that question it turns out
that the dimension d plays a prominent role. Namely, when d < 2 there are no other
than those two above (plus their convex combinations), but when d > 3 there are in
fact other ones. (To people with a little background in probability theory, this result
is intimately related to the fact that simple random walk is recurrent when d < 2 and
transient when d > 3.)

The stochastic Ising model on 7. This is a model for magnetism introduced by
Glauber [17]. The state space of this model is {—1, 1}Zd. Imagine that atoms are laid
out on all of Z% and that each of them either can have a spin (state) of +1 or —1.
The resulting configuration describing the system is an element of {—1, 1}Zd. The
dynamics of the evolution is described by declaring a spin () at a site z to flip to

—n(z) at rate
exp <—B > n(w)n(y)>

Yy~
where 3 is a nonnegative parameter called the inverse temperature. Note that the flip
rate is higher when the spin at x differs from most of its neighbors than it is when it
agrees with most of them. In other words, the system prefers configurations in which
the spins tend to be aligned with one another. When 3 = 0 it is easy to see that
there is only one invariant distribution, namely the product measure p on {—1, 1}Zd
with density % and in addition, for any initial distribution, the distribution at time ¢
converges weakly as ¢ — oo to u. Such a process is called ergodic. In the non-
ergodic case, i.e. when we have more than one invariant distribution, one says that a
phase transition has occurred and each of the invariant distributions corresponds to a
different “phase” of the system. The problem is to determine for which choices of /3
and d the process is ergodic. If d = 1, then it turns out that the process is ergodic for
all B but when d > 2 there is a critical value 0 < ; < oo such that the process is
ergodic if § < B4 and non-ergodic if 5 > (.

For further reading about interacting particle systems, there are three standard ref-
erence books, namely Liggett [31, 33] and Durrett [10]. The first one deals with the
construction of interacting particle systems from given rates as well as more or less
all results in the field until 1985. The second one concentrates upon three models;
the contact process, the voter model and the so called exclusion process, a model of
particle motion, and covers many of the results concerning these models until 1999.
The third book considers, among other things, the contact process, the voter model and
some variants thereof.
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In all the examples above, the dynamics are translation invariant in the sense that
the rates only depend on z through {n(y) : y ~ x}. A possible first extension is to
allow the rates to depend on z itself. One such example is the so called inhomogeneous
contact process where we are given to us a family of rates {0, } ,cz« and from them the
dynamics of the process is as follows:

Oz ifn(z) =1
c(z,m) = Z n(y) ifn(xz) =0.

A further extension is to allow for more randomness in the model. For example, one
possibility is to study the above model with {d,},cza taken to be i.i.d. random vari-
ables. That suggestion was made by Bramson, Durrett and Schonmann [2] and they
called the resulting model the contact process in a random environment. For further
results concerning that model see for example [26, 32, 36]. You could also extend the
last model even more by letting the recovery rates follow some update rule. We then
arrive at the contact process in a randomly evolving environment which was introduced
by Broman [3] and which we will discuss in more detail in Section 1.4.1.

1.2 The ferromagnetic Ising and Potts models

The theory of Gibbs measures goes back to Dobrushin [5-9] and Lanford and Ru-
elle [28]. It started as a branch of classical statistical physics but can now also be
viewed as a part of probability theory. From the physical point of view these mea-
sures were proposed as a mathematical description of an equilibrium state of a physical
system which consists of a large number of interacting components. In probabilistic
terms, a Gibbs measure is just the distribution of a countably infinite family of random
variables taking values in some (usually finite) set which admit some prescribed con-
ditional probabilities. To describe these conditional probabilities one has to specify the
interaction between the components and that is usually done by a so called Hamilto-
nian. For an extensive presentation of the theory of Gibbs measures we refer to [15]
and for a less extensive one, see [16]. Instead of discussing Gibbs measures in a general
context we will now focus on two specific choices of Hamiltonians which for different
reasons have attracted a large amount of interest during the last decades.

The ferromagnetic Ising model is a simplified mathematical description of a ferro-
magnetic substance such as iron, cobalt or nickel. It was introduced by Wilhelm Lenz
in the 1920°s [29] and first investigated by Ernst Ising [24]. In the same way as for the
stochastic Ising model we think of the atoms as laid out on the d-dimensional lattice
and that the spin of each of them is allowed to take two possible orientations, +1 (up)
and —1 (down). Moreover, there are two parameters .JJ > 0, h € R in this model. The
first one describes the strength of the interaction between neighboring spins and the
second the affect of an external field. For given .J, h and configuration o € {—1, 1}Zd
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the Hamiltonian for this model is given by the so called Ising potential:

~Jo(z)o(y) if A= {x,y}, where (z,y) € E¢,
3%"(0) = { —ho(z) if A={x},

0 otherwise.

Here A C 7% E? denotes the set of edges in the d-dimensional lattice and (z,y)
is the edge connecting x and y. From this potential the Gibbs measures are defined
as follows: A probability measure y on {—1, I}Zd is said to be a Gibbs measure (or
sometimes Gibbs state) for the ferromagnetic Ising model with parameters h € R
and J > 0 if it admits conditional dprobabilities such that for all finite U C Z¢, all
o€ {-1,1}" andall n € {-1,1}2\V

WX (U) =0 | X(2Z\U) =n)

1
= —7 exp J< Z o(z)o(y) + Z g(;g)n(y)>
J,h (z,y)€Ed ,z,ycU (z,y)EE* ,z€U,ycdU
+h Z U(m)] .
zelU

Here Z?,:’ is a normalizing constant and QU is the outer boundary of U defined for-
mally as

QU = {x € Z4\ U : There exists y € U such that (z,y) € E? }.

In words, p is a Gibbs measure for the Ising model if it has prescribed conditional
distributions inside any finite region given that the configuration is held fixed outside
and these conditional distributions are given by the right hand side of the above expres-
sion. A natural question from both a physical and mathematical point of view is if this
definition uniquely determines the Gibbs measure, or stated otherwise, is it possible
to have two different measures with the same prescribed conditional distributions? It
turns out that if = 1 or A # 0 there is only one Gibbs measure but interestingly, when
d > 2 and J is large enough there exists more than one Gibbs measure. When such
a phenomena of multiple Gibbs measures occurs one says that the system undergoes a
phase transition. For a proof of the above statement as well as a survey in the study of
phase transitions for the Ising model we refer to [20].

Although we have chosen to discuss the Ising model on the d-dimensional lattice
only the above definitions make perfect sense for other types of graphs too. It turns out
that the question of phase transition is highly dependent on the graph structure. As an
example if the underlying graph is the homogeneous tree of degree d the system can in
fact undergo a phase transition even when h # 0, see [15].

A natural generalization of the ferromagnetic Ising model is the (ferromagnetic)
Potts model in which the spins are allowed to take ¢ > 2 (rather than just two) different
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states. We confine ourselves to the case with no extdemal field and for simplicity we
let Z < be the underlying graph. For o € {1,...,q}?", the interaction potential for the
Potts model is given by

\If:{‘(a) _ —2JI{U(x):g(y)} if A= {x,y}, where (x,y) S Ed,
0 otherwise.

In words, this interaction favors configurations where many neighboring pairs of spins
agree. In a similar way as for the Ising model we can define the notion of Gibbs
measures and study phase transitions etc, see [16] and the references therein.

1.3 Pairs trading

Since this part is relatively small we will not say much about it. Pairs trading was
developed at Morgan Stanley in the late 1980’s, and today it is one of the most com-
mon investment strategies in the financial industry. The idea behind pairs trading is
quite intuitive: the investor finds two assets, for which the prices have moved together
historically. When the price spread widens, the investor takes a short position in the
outperforming asset, and a long position in the underperforming one with the hope
that the spread will converge again, generating a profit. However, the trader should be
aware of the risk of drifting. This happens when the two correlated stock prices start to
drift apart. Therefore, in practice the investor typically chooses in advance a stop-loss
level, which corresponds to the level of loss above which the investor will close the
pair trade and take the loss.

For a historical evaluation of pairs trading see [14] and for books that treat the
applied aspects of pairs trading we refer to [11, 38, 39].

1.4 Summary of papers

1.4.1 Paperl

In this paper we consider the so called contact process in a randomly evolving envi-
ronment (CPREE), introduced by Broman [3]. This process is a generalization of the
contact process, where the recovery rate is allowed to vary between two values, dy and
01. (Recall the equivalent parameterization of the contact process.) The rate which is
chosen is determined by a background process, which evolves independently at dif-
ferent sites. To be precise, we consider the Markov process { (B, Ct) }+>0 with state

space {0, I}Zd x {0, 1}Zd which performs transitions according to the following rates
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atasite z € Z%

transition rate
(0,0) = (0,1) > C)
(1,0) = (1,1) > C)
(0,1) = (0,0) 5
(1,1) — (1,0) 01

(0,0) = (1,0) P

(0,1) = (1,1) P

(L 0) — (an) 7(1 _p)
(L 1) - (07 1) 7(1 _p)

where d > 1, v, 80,01 > 0 with §; < §p and p € [0, 1]. In other words, at each site x
independently, { B¢(z) }+>0 is a 2-state Markov chain with infinitesimal matrix

< —p 7P )

v(1-p) —(1-p)

which in turn determines the recovery rate of {C¢(z)}:>¢ in the following way. For
each z and ¢, the recovery rate at time ¢ and site z is dp or §; depending on whether
Bi(z) = 0 or B;(z) = 1. Also, the infection rate is always the number of infected
neighbors. (Actually Broman did this on a more general graph, but here we will
only consider Z%) Broman referred to {Bi}+>0 as the background process and the
whole process {(By, C¢) }+>0 as the contact process in a randomly evolving environ-
ment (CPREE). Let {C}"" };>( denote the right marginal when the initial distribution
of the whole process is p x v. Furthermore, let P,, denote the measure governing the
process for the parameters p, v, dg and d;, where 7, dg and d; are considered fixed.
Also, denote the product measure with density ¢ € [0, 1] by m,. Broman defined the

critical value
pe := inf {p : Pp[C'er’{O} £(0Vt>0] > 0}

(pe is taken to be 1 if no p satisfies this) and proved that if 6; < d. < &g and v >
max(2d,d. — 01), then p. € (0,1). (Recall the definition of §. from the remark after
Theorem 1.1.1.) At the end of his paper he asked whether the critical value is affected
if we vary the initial distribution of the background process. Our first result answers
this question. Given v, dg, 0; > 0 with &; < &g, ¢ € [0,1] and A C Z? with |A| < oo,
define
pe(q, A) := inf {p : P,,[C’ZFWA #£0Yt>0] > 0} .
Theorem 1.4.1. Given A, A’ C Z4 with |A|, |A’| < co and p, q, ¢' € [0,1],
Ty VA

P ICT" £0Vt>0]>0 << P[CI"" £0Vt>0]>0.

In particular, p.(q, A) is independent of both q and A.
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We will let p. denote this common value. (Recall, p. of course depends on v, §p and
01.) Also, if P,[ C’Zr"’A # OVt > 0] > 0 holds (which we now know is independent
of g and A), we say that {C}} survives at p; otherwise it is said to die out at p.

Standard arguments yield that the limiting distribution starting from all 1’s exists
and we will denote the limit by #7,. This measure gives us another natural way to define
a critical value:

p.:=inf{p: v, #m x & }.
For general attractive interacting particle systems it might or might not be the case that
these two critical values coincide. However, for the ordinary contact process this is
the case (due to its self-duality) and our next result shows that this is also true in our
situation.

Theorem 1.4.2. {C,} survives at p if and only if v, # m, X 0g. In particular p. = p,.
Our final result is a generalization of Theorem 1.1.1.

Theorem 1.4.3. If {C,} survives at p > 0, then there exists 0 > 0 so that it survives
at p — 6. In particular, if p. € (0, 1), then the critical contact process in a randomly
evolving environment dies out.

1.4.2 Paper Il

Recall that spin systems are interacting particle systems where each coordinate has
two possible states and only one coordinate changes in each transition. In this paper
we consider spin systems on Z in a randomly evolving environment, where the environ-
ment is more general than in the previous paper. To describe the process we are dealing
with in mathematical terms, let co(x,n), ¢1(z,n) and b(z,n) be given rate functions
and define a Markov process {(8¢,m:) }+>0 on {0, 1}% x {0, 1}% with the dynamics at
a site x specified in the following way:

transition rate

(B,m) — (B,nz) co(x,n) if B(z)
(B,m) — (B,nz) ci(z,m) if B(x)
(B,m) = (Bz,n) b(x, 3)

Here, for given n € {0,1}2" and z € 7, n, is the element in {0, 1}” defined by

ne(y) = {n(y) ify #a

0
1

1—n(z) ify=uz.

As before, the left marginal {f;};>¢ will be referred to as the background process.
Furthermore, we will assume that the rate functions are translation invariant, that

co(z,n) < cifw,m) i n(z) =0,

1
M e1@,m) < colayn) i (@) =1,
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that ¢o(x,n) and ¢; (x,n) only depend on n through n(xz — 1), n(x) and p(xz + 1) and
that cg, ¢ and b satisfy the following attractivity condition:

Definition 1.4.1. A spin system on Z with rate function c(z,n) is said to be attractive
if whenevern < 7/,

() =0,
@) 4

c(z,n) <clz,n') if nlz)=1n'(z
c(z,n) > clz,n') if n(z)=7n'(z)

(Here, < refers to the usual partial ordering on {0, 1}%, i.e., n < n' if and only
if n(z) < n'(x) forall x € Z.) This condition is exactly what is needed to be able
to couple two copies, with initial configurations stochastically ordered, so that the two
copies continue to be ordered for all times. Furthermore, note that we can equivalently
view our process on {0, 1}ZX{0’1} and that the conditions (1) and (2) just means that
the whole process is attractive on that space. (Definition 1.4.1 can of course be gen-
eralizad to {0,1}% where S is countable.) The attractivity can be used to show (via
monotonicity) the existence of two extremal stationary distributions vy and v; defined
by

vy = tliglo 505(t) vy = tliglo 51 S(t),

where dp and §; denote the point masses corresponding to the elements 7 = 0 and n =
Lin {0,1}%2*{%1} and {S(#)}+>0 denotes the semigroup associated to { (B¢, 1) }i>0-
The main result in this paper is that, if the background process has a unique stationary
distribution and the rates ¢y, c; satisfy a certain positivity condition, then v, and v, are
the only extremal stationary distributions for the process.

To state our result we need a bit more notation. The assumptions on ¢q and ¢; imply
that they together can be described by at most 16 different parameters. To describe the
values we will use the following notation: ¢;(001) = ¢;(z,n) when n(z — 1) = 0,
n(z) =0and n(x + 1) = 1 etc. Define

Cy = {01(100) + Cj(llO), 01(001) + Cj(Oll),
Ci(011) + Cj(llO), ci(IOO) + Cj(OOl), 1=0,1,5 =0, 1}

and let
C =min (C).

Moreover, let 7 denote the set of invariant distributions for {(3:,1:) }+>0 and let Z,
denote its extreme points.

Before we state our main result, we want to emphasize that the case with no back-
ground process has been studied before by Liggett. The proof of our main result fol-
lows closely the ideas of his proof. To state his result let ¢(z, ) be a rate function for an
attractive, translation invariant, nearest-neighbor spin system {1; };>o on {0,1}” and
define p; = lim;_, 0;T(t), 1 = 0, 1, where §; is the point mass corresponding to the
element n = i in {0, 1} and {T'(t) }+>0 denotes the semigroup associated to {7 }+>0.
Moreover, let J. denote the extreme points of the set of stationary distributions for

{ﬂt}tzo-
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Theorem 1.4.4 (Liggett). Suppose
3) c(x,n) + c(x,n.) >0 whenever n(x —1) #n(x +1).

Then Je = {40, 1 }-

For a proof, see [30] or [31, p. 145-152]. In fact, he also proved that if condition
(3) fails, then 7, contains infinitely many points, see [31, p. 145].

Theorem 1.4.5. Suppose that the background process is ergodic and C > 0. Then
Ie = {V07 141 }

Remarks:

(1) From [31, p. 152] we get that Theorem 1.4.4 is equivalent to the statement that
(3) and

c(011) 4 ¢(110) > 0
¢(100) + ¢(001) > 0

implies J. = {uo,u1}. By letting ¢ = ¢y = ¢y, it is now clear that Theo-
rem 1.4.5 covers Theorem 1.4.4.

(i) The hypotheses in Theorem 1.4.5 are true for the CPREE studied in the first
paper. Indeed, if ¢; and ¢, satisfy (1) and are symmetric under reflections, i.e.

¢;(100) = ¢;(001)
¢;(110) = ¢;(011), i =0,1

then C' > 0 if and only if ¢g(001) > 0 and ¢; (011) > 0.

(iii) Note that we are not assuming independence or even nearest-neighbor interac-
tion between coordinates in the background process.

1.4.3 Paper III

In [34], various results were proved concerning stochastic domination (defined below)
for the Ising model with no external field on Z? and on the homogeneous binary tree
T2 (i.e. the unique infinite tree where each site has 3 neighbors). As an example,
the following distinction between 7% and T? was shown: On Z4, the plus and minus
states (to be defined later) dominate the same set of product measures, while on T2
that statement fails completely except in the case when we have a unique phase. In
this paper we study stochastic domination for the Ising model in the case of nonzero
external field and also for the so called fuzzy Potts model.
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Definition 1.4.2 (Stochastic domination). Given a finite or countable set V' and prob-
ability measures g1, g2 on {—1,1}", we say that y» dominates 1y (written p; < 1o

or fiy > puy) if
/fdul S/fduz

for all real-valued, continuous and increasing functions f on {—1,1}".

Here, increasing for a function f : {—1,1}" — R means that f(n) < f(n)
whenever n < 1. It can be shown that a necessary and sufficient condition for two
probability measures pu1, po to satisfy u; < po is that there exists a coupling mea-
sure v on {—1,1}V x {—1,1}" with first and second marginals equal to j; and
respectively and

v((n,§):n<&) =1

(For a proof, see for example [31, p 72-74].) Given any set S C R and a family of
probability measures {15 }ses indexed by S, we will say that the map S 3 s + s is
increasing if s, < pg, whenever s; < ss.

Results for the Ising model

For the Ising model with parameters J > 0, h € R on a general graph of bounded
degree standard monotonicity arguments based on Holley’s theorem (see [16]) can be
used to show that there exist two particular Gibbs states ,ui"'r and ui’_, called the plus
and the minus state, which are extreme with respect to the stochastic ordering in the
sense that

< p <t forany other i € G(J,h).

(Here, G(J, h) denotes the set of Gibbs state for the Ising model with parameters .J > 0
and h € R.) To simplify the notation, we will write u”* for ug7+ and p”>~ for
,ug’_. (Of course, the plus and minus state are also highly dependent on the graph
G, but we suppress that in the notation.) In [34] the authors studied, among other
things, stochastic domination between the plus measures {177} 7 in the case when
G = T?. For example, they showed that the map (0,00) > J ~ p’>% is increasing
when J > J. and proved the existence of and computed the smallest .J > .J. such that
p”+ dominates p7 + forall 0 < J' < J.. (On Z%, the fact that 7*F and p/>+ are
not stochastically ordered when .J; # .J, gives that such a J does not even exist in that
case.) Our first result deals with the following question: Given Jy, J> > 0, hy € R,
can we find the smallest external field i = E(Jl, Ja, hy) with the property that ui2’+
dominates uii* forall h > h? To clarify the question a bit more, note that an easy

application of Holley’s theorem tells us that for fixed .J > 0, the map R > h ui’+
is increasing. Hence, for given .J1, J> and h; as above the set

J, Ji+
{hER:Nh2+ZNhi }
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is an infinite interval and we want to find the left endpoint of that interval (possibly
—oo or +oo at this stage). For a general graph of bounded degree not much can be
said, but we have the following easy bounds on h.

Proposition 1.4.6. Consider the Ising model on a general graph G = (V,E) of
bounded degree. Define

h=h(J1, Jo;h) =inf{h € R: pp>" > v},

Then ~
hi —N(J1+J2) < h<h +N|J1 —J2|,
where N = sup N, and N, is the number of neighbors of the site x € V.
zeV
We will now consider the case when G' = T¢, the homogeneous d-ary tree, defined
as the unique infinite tree where each site has exactly d + 1 > 3 neighbors. The
parameter d is fixed in all that we will do and so we suppress that in the notation.
To state our results, we need to recall some more facts, all of which can be found
in [15, p. 247-255]. For J > 0, define
1. cosh(t+J)
t)=-log———— "2 teR
bs(t) 2 8 cosh(t — .J)
Given J > O and h € R, there is a one-to-one correspondence ¢ — p between the real

solutions of the equation
t=h+de¢s(t)

and the completely homogeneous Markov chains in G(J, h) (see [15] for a definition).
Let ¢ (J, h) denote the real numbers which correspond to the plus and minus measure
respectively. We will write ¢4 (.J) instead of ¢ (.J, 0). Furthermore, let

W*(J) = max (dé,(t) — 1)

and denote by ¢t*(.J) the ¢ > 0 where the function ¢ > d ¢;(t) — ¢ attains its unique
maximum.

Theorem 1.4.7. Consider the Ising model on T% and let Jy, Jo > 0, hy € R be given.
Define

fe(Ji, Jo,hy) = inf{h € R: pp>* > /‘i?i}
ge(J1, Jo,hn) = inf{h € R: >~ > '“gi’i }
and denote T+ = 7+ (J1, Jo, h1) = t+(J1,h1) + |Ji — Ja|. Then the following holds:

—h*(J2) ift_(Jo,—h*(J2)) < 1 < t*(J2)

@) fe(J1,J2,h1) = {Ti C b (re) e > (R) or e <t (Jos—h*(J))
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h*(Jz) l‘f—t*(Jz) <13 < t+(.]2,h*(.]2))

(5) g+(Ji, 2, ha) = {Ti_d%(&) e < —t*(Ja) or 7s > by (Jos B*(J2))

Remark: By looking at the formulas (4) and (5), we see that there are functions ),
0 : (0,00) x R + R such that

fﬂz(JlaJQahl):¢(J27sz(l]1al]2ahl)) and
g:l:(Jla J27h1) = 9(J27Tﬂ:(*]17 J27h1))-

(Of course, 1(J2,t) and 6(J2, t) are just (4) and (5) with ¢ instead of 7.) It is easy to
check that for fixed Jo > 0, the maps ¢t — v(Jo,t) and ¢t — 6(J>,t) are continuous.
A picture of these functions when .J, = 2, d = 4 can be seen in Figure 1.2.

t— TZJ(JQ,t)

t— o(Jz,t)

-20 -10 0 10 20

Figure 1.2: The functions t — ¢ (Jz,t) and t — 6(J2,t) in the case when J> = 2 and d = 4.

Our next proposition deals with continuity properties of f+ and g4 with respect to
the parameters .J1, J> and hy. We will only discuss the function f., the other ones can
be treated in a similar fashion.

Proposition 1.4.8. Consider the Ising model on T and recall the notation from The-
orem 1.4.7. Let

a = a(Jl, Jg)
b=b(J1,J5)

t—(Ji,=h"(J1)) + |J1 — Jo
t+(J1, —h*(Jl)) + |J1 — J2|
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a) Given Jy, Jy > 0, the map R > hy — fi(J1,J2, h1) is continuous except
possibly at —h*(J1) depending on Jy and Jy in the following way:

If J1 < J.or Jy = Jy then it is continuous at —h*(Jp).
If 1 > J.and 0 < Jo < J. then it is discontinuous at —h*(.Jy).
If Jv, Jo > J., J1 # Jo then it is discontinuous except when

t,(.]g, —h*(J2)) S a < t*(.]g) and
t—(Jo, —h*(J2)) < b < t°(J2).

b) Given Jo > 0, hy € R, the map (0,00) > J1 — f+(J1, ]2, h1) is continuous
at Jy if 0 < J; < J.orJy > J.and hy # —h*(J1). In the case when
hy = —h*(Jy) it is discontinuous at J, except when

t,(.]g, —h*(J2)) S a < t*(.]g) and t,(.]g, —h*(Jz)) S b S t*(.]g).

¢) Given J; > 0, hy € R, the map (0,00) > Jo — fi(J1,J2, h1) is continuous
forall Jo > 0.

Our last result for the Ising model is about how the measures {,ui*} J>0 are or-
dered with respect to .J for fixed h € R.

Proposition 1.4.9. Consider the Ising model on T%. The map (0,00) > .J ui’+ is
increasing in the following cases: a) h > 0 and J > J., b) h < 0 and h*(J) > —h.

Results for the fuzzy Potts model

For an infinite connected locally finite graph G = (V| E) it is possible by a limit-
ing procedure to define ¢ + 1 basic examples of Gibbs measures for the Potts model,
see [23] and the references therein. We denote these basic examples by 71'5:;, i€

{0,...,¢}. (The measures {ﬂ'qG’Ji}?:l are the analogs of the plus and minus states for

the Ising model and wf:,o is constructed by taking a free boundary condition outside a

finite box and letting the box grow to infinity.) From them we can define new objects
as follows: Fixi € {0,...,q}, supposer € {1,...,q— 1} and pick a Wij—distributed
random variable X and for x € V define

(6) Y(:U) _ -1 ifX(CU) S {1,...,7“}
1 if X(z)e{r+1,...,q}.

We write z/f’f , for the induced probability measure on {1, 1}V and call it the fuzzy
Potts measure with parameters ¢, .JJ and r.
In words, the fuzzy Potts model is obtained from the ordinary g-state Potts model

by identifying r states with a fuzzy spin denoted —1 and the remaining g — r states
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with another fuzzy spin denoted 1. From this point of view, the fuzzy Potts model is
one of the most basic examples of a so called hidden Markov field [27]. For earlier
work on the fuzzy Potts model, see for example [21-23, 25, 35].

It is easy to see that when G = Z% or T¢ in the construction above it follows from

symmetry that z/gj;r = chf’j;r ifi,j e {1,....r}ori,j € {r+1,...,q},i.c. when

. .. : G’f p— G’l
the Potts spins ¢, j map to the same fuzzy spin. For that reason, we let v, = v
G+ ._ G _ 7d d ; ; ; G0
and Vorw ==V 5 when G = Z“ or T%. (We stick to our earlier notation of Vg )

Given a finite or countable set V and p € [0, 1], let y, denote the product measure
on {—1,1}V with v,(n : n(z) = 1) = pforall z € V. In [34], the authors proved
the following results for the Ising model. (The second result was originally proved for
d = 2 only but it trivially extends to all d > 2.)

Proposition 1.4.10 (Liggett, Steif). Fix an integer d > 2 and consider the Ising model
on 7. with parameters J > 0 and h = 0. Then for any p € [0,1], p’* >, if and

only if />~ > .

Proposition 1.4.11 (Liggett, Steif). Ler d > 2 be a given integer and consider the
Ising model on T¢ with paramteters J > 0 and h = 0. Moreover, let u”>' denote the
Gibbs state obtained by using free boundary conditions. If p>+ # p’=, then there
exist 0 < p' < p such that p>+ dominates Yp but wh ! does not dominate Yp and uhf
dominates v,y but u>~ does not dominate vy, .

In words, on Z? the plus and minus state dominate the same set of product measures
while on T that is not the case except when the we have a unique phase. Our first result
is a generalization of Proposition 1.4.10 to the fuzzy Potts model.

Proposition 1.4.12. Let d > 2 be a given integer and consider the fuzzy Potts model
on 7% with parameters ¢ > 3, J > 0O andr € {1,...,q — 1}. Then for any k,l €

{0,—,+}andp € [0,1], 1/?31; > v, if and only ifz/qz’il;,lr > Yp.
In the same way as for the Ising model, we believe that Proposition 1.4.12 fails

completely on T? except when we have a unique phase in the Potts model. Our last
result is in that direction.

Proposition 1.4.13. Let d > 2 be a given integer and consider the fuzzy Potts model

on T with parameters ¢ > 3, J > 0andr € {1,...,q— 1} where e*) > q— 2. If the
d d
underlying Gibbs measures for the Potts model satisfy W;T’ J’l #* 71'3: J’O, then there exists

d d
0 < p < 1 such that 1/; J”?q dominates vy, but V;T, J.r. does not dominate .

1.4.4 PaperlV

To model a pair spread the authors in [12] suggested the so called mean reverting
Ornstein-Uhlenbeck process. In this paper, we generalize the model to also include
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possible jumps. More precisely, we let the difference U = {U; }+>0 between the assets
be the unique solution of the stochastic differential equation

(7) dUy = —pUy dt + o dW; +dCM°, >0,

where p > 0, 0 > 0, W = {W;};>0 is a standard Brownian motion and cre =
{C’t)"“"}tzo is a compound Poisson process with jump intensity A > 0 and symmetric
jump size distribution . Moreover, the support of ¢ is assumed to be contained in the
interval (—.J, J) for some J > 0. (The solution to (7) is usually called a generalized
Ornstein-Uhlenbeck process or an Ornstein-Uhlenbeck type process.) As discussed
in [12] there is a large risk associated with a pair trading strategy. Indeed, if the market
spread ceases to be mean reverting, the investor is exposed to substantial risk. There-
fore, in practice the investor typically chooses in advance a stop-loss level a < 0, which
corresponds to the level of loss above which the investor will close the pair trade.
Given such a stop-loss level a < 0, define

(8) T =inf{t > 0: Uy < a},
the first hitting time of the region (—00, a], and the so called value function

9 V(I) = sup Ez[UTa/\T] T e ]Ra

where the supremum is taken over all stopping times with respect to U. (Here and
in the sequel E, means expected value when Uy = z.) The major interest here is to
characterize V', and perhaps more importantly, to describe the stopping time where the
supremum is attained. Since the drift has the opposite sign as U, we have no reason
to liquidate our position as long as U is negative. On the other hand, if U is positive,
then the drift is working against the investor and for large values of U the size of the
drift should overcome the possible benefits from random variations. Moreover, since
the jumps are assumed to be symmetric, this indicates that there is a stopping barrier
b > 0 with the property that we should keep our position when U; < b and liquidate as
soon as U; > b.

General optimal stopping theory (described for example in [37, Ch. 3]) leads us to
believe that the value function is given by V' = u, where (u, b) is the solution to the
free boundary problem

Gou(z) =0, z € (a,b),
(10) u(r) =z, z¢(a,b),
u'(b) = 1.

Here G is the infinitesimal generator of U, which is defined on the space of twice
continuously differentiable functions f : R — R with compact support:

(oo}

(A1) Guf@) = 51w - e f @ A [ (i) = f)et) dy, 7€

— 00
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Moreover, the stopping time where the supremum in (9) is attained should be
(12) 7, = inf{t > 0: U; > b}.
Indeed, our first result is a so called verification theorem.
Theorem 1.4.14. Assume that (u,b) is a classical solution to (10) with
a) Guu(z) <0 forxz > b,
b) u(x) > x forallz € R
Then u(z) =V (z) = Eu[Ur,pr, ), forz € R

In the rest of the paper, we analyze the free boundary problem (10). By transform-
ing to homogeneous boundary values and using the symmetry of ¢, we get

Lv(x) — Tv(x) = —pz, =z € (a,b),
(13) U(I) =Y T ¢ (aab)a

where v(z) = u(x) — x and
Lo(z) = =00 () + pav'(z),

o) =2 [ (ol +9) = v@)elw) dy.

— 00

We have not been able to give a rigorous proof of the existence and uniqueness of
a solution (v,b) of the free boundary value problem (13). We therefore resort to a
numerical solution by means of the finite element method. We begin to prove existence
and uniqueness of solutions of the boundary value problem

Lv(x) — Tv(x) = —pz, =z € (a,b),
U(I) =0, T ¢ (aab)a

and the corresponding finite element equation. Next, we define the functions

(14)

F(b) =v'(b), Fn(b) =vy(b), b>0,

where vy denotes the finite element approximation of v when we use a uniform sub-
division of the interval [a, b] consisting of N number of points. Note that from the
maximum principle proved in [13], there is no restriction to assume that b > 0. For
0 < by < bs, we prove the error estimate

(15) ||F_FN||Lm(b1,b2) < CN7%7 NZN07

where C' and Ny are constants depending on a, A, p, o, by and bs.
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From (15) and simulations we present strong evidence that there exists a unique

b > 0 such that F'(b) = 0, that there for N large exists unique by such that Fy (by) =
0 and that

lim bN =b.
N—00

Finally, we do simulations to discuss the properties a) and b) from Theorem 1.4.14.
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ABSTRACT

Bezuidenhout and Grimmett proved that the critical contact process dies out. Here, we
generalize the result to the so called contact process in a random evolving environment
(CPREE), introduced by Erik Broman. This process is a generalization of the contact
process where the recovery rate can vary between two values. The rate which it chooses
is determined by a background process, which evolves independently at different sites.
As for the contact process, we can similarly define a critical value in terms of survival
for this process. In this paper we prove that this definition is independent of how we
start the background process, that finite and infinite survival (meaning nontriviality
of the upper invariant measure) are equivalent and finally that the process dies out at
criticality.

Key words and phrases: Contact process, varying environment.
Subject classification : 60K35.

2.1 Introduction and main results

The contact process, introduced by Harris [5], is a simple model for the spread of
an infection on a lattice. The state at a certain time is described by a configuration,
n € {0,1}%", where n(z) = 0 means that the individual at location z is healthy and
n(xz) = 1 means it is infected. The model is such that infected people recover at rate
1 and healthy people are infected with a rate proportional to the number of infected
neighbors. In more mathematical language, the contact process is a Markov process,

27
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{nt}+>0, with state space {0, I}Zd where the configuration changes its state at site
r € Z% as follows:

7= N with rate 1 if n(z) =1
7= N with rate A Z n(y) if n(z) =0,

Y~z

where y ~ = means that x and y are neighbors,

_ ) ify #z
e (y) = {1 C@) ity =z

and X is a positive parameter called the infection rate. See the standard references
Liggett [7] and Durrett [4] for how these informal rates determine a Markov process
and for much on the contact process as well as other interacting particle systems. De-
note the distribution of this process when it starts with the configuration by P7. We
say that the process dies out at \ if

Pio}[nt =(somet > 0] =1;

otherwise it is said to survive at A. Here, the initial configuration {0} means there is
a single infection at the origin and the configuration () means the element in {0, 1}Zd
consisting of all zeros. (As usual, we identify {0, I}Zd with subsets of Z%.) Using an
easy monotonicity in J, it is natural to define the critical value

A :=inf{X: Py, £ 0 forallt >0]>0}.

A fundamental first question concerning this model is whether it survives when A is
large and whether it dies out for small values of ), i.e. whether 0 < A, < o0, and it
is not very hard to show that this indeed is the case. Furthermore, since the contact
process is attractive (see Liggett [7] for this definition), we can define

No:=inf{\: 7\ # dp },

where 7, is the so called upper invariant measure, defined to be the limiting distribution
starting from all 1’s. A self-duality equation (see [4] or [7]) easily leads to A, = A..
A much harder question, and one which had been open for approximately 15 years,
is whether the contact process survives or dies out at the critical value. A celebrated
theorem by Bezuidenhout and Grimmett, [1], gives us the answer.

Theorem 2.1.1 (Bezuidenhout and Grimmett). The critical contact process dies out.

For a proof of this, see [1] or [9].

Note that changing X to 1 and the recovery rate to d corresponds to a trivial time
scaling and so the process could have instead been defined in this way. We will denote
the corresponding critical value by d.. This should be kept in mind in what follows.
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In 1991, Bramson, Durrett and Schonmann [2] introduced the contact process in
a random environment, in which the recovery rates are taken to be independently and
identically distributed random variables and then fixed in time. For further results
concerning this model see for example, Liggett [8], Klein [6] and Newman and Volchan
[11]. Recently, Broman [3] introduced another variant where the environment changes
in time in a simple Markovian way. More precisely, he considered the Markov process,
{(Bt, Ct) }+>0 on {0, I}Zd x {0, I}Zd described by the following rates at a site x:

transition rate
(0,0) = (0,1) > Cl)
(1,0) = (1,1) > Cly)
(0,1) = (0,0) 5o
(1,1) = (1,0) 51

(0,0) — (1,0) P

(0,1) = (1,1) P

(1,0) — (0,0) y(1—p)
(1,1) = (0,1) ¥(1—p)

where d > 1, v, 80,01 > 0 with §; < g and p € [0, 1]. In other words, at each site x
independently, { B;(z) }+>0 is a 2-state Markov chain with infinitesimal matrix

( —p P )

1(l=p) —v(1-p)

which in turn determines the recovery rate of {C¢(z)}:>o in the following way. For
each ¢, the recovery rate at location x is dy or §; depending on whether B;(z) = 0
or By(xz) = 1. In addition, the infection rate is always taken to be the number of in-
fected neighbors. (Actually, Broman did this on a more general graph, but here we will
only consider Z%) Broman referred to {B4}+>0 as the background process and the
whole process { (B, C¢)}+>o0 as the contact process in a randomly evolving environ-
ment (CPREE). Let {C{ };>¢ denote the right marginal where the initial distribution of
the whole process is p. In the case where p = p x v we write {C}"" };>¢. Furthermore,
let P, denote the measure governing the process for the parameters p, vy, 6y and d;,
where 7, g and §; are considered fixed. Also, denote the product measure with density
q € [0,1] by m,. Broman defined the critical value

pe := inf {p: Pp[CZTp’{O} # 0Vt >0] > 0}
(pe is taken to be 1 if no p satisfies this) and proved that if §; < §. < &g and v >

max(2d,d. — d1), then p. € (0,1). At the end of his paper he asked whether the
critical value is affected if we vary the initial distribution of the background process.
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Our first result answers this question. Given 7, dp, 1 > 0 with 6; < dp, ¢ € [0,1] and
A C Z%with |A| < oo, define

pe(gq, A) := inf {p: P,[CT" £ 0Vt >0] > 0}.

>

Theorem 2.1.2. Given A, A’ C Z% with |A

Al <ocoandp, q, ¢ €10,1],

(1) PO £0Vt>0]>0 <= P[C"" £0vt>0]>0.
In particular, p.(q, A) is independent of both q and A.

We will let p. denote this common value. (Recall, p. of course depends on v, §g and
d1.) Also, if P,[ C’Zr"’A # OVt > 0] > 0 holds (which we now know is independent
of g and A), we say that {C}} survives at p; otherwise it is said to die out at p.

Later on, we will see that the process is attractive. (See Proposition 2.2.1.) This
yields that the limiting distribution starting from all 1’s exists and we will denote the
limit by 77,. Also, we will refer to this measure as the upper invariant measure. This
measure gives us another natural way to define a critical value:

pl.=inf{p: v, #m, x & }.

For general attractive systems it might or might not be the case that these definitions
coincide. However, for the ordinary contact process, this is the case (due to its self-
duality) and our next result shows that this is also true in our situation.

Theorem 2.1.3. {C,} survives at p if and only if v, # 7, X 0y. In particular p. = p.
Our final result is a generalization of Theorem 2.1.1.

Theorem 2.1.4. [f {C}} survives at p > 0, then there exists § > 0 so that it survives
at p — 0. In particular, if p. € (0,1], then the critical contact process in a randomly
evolving environment dies out.

The rest of the paper is organized as follows. In Section 2, we provide some pre-
liminaries, in Section 3, we prove Theorems 2.1.2 and 2.1.3 and in Section 4, we prove
Theorem 2.1.4.

2.2 Some preliminaries

In this section we will present the basic construction of the CPREE via a graphical
representation that is suitable for our situation. We will also prove the elementary
fact that the CPREE is an attractive process. However, we will start off with some
notation and basic definitions. When the initial distribution of the process is p, we will
denote the distribution at time ¢ by pSy,(¢), suppressing 7, o and d; in the notation.
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(Of course, p is a probability measure on {0, I}Zd x {0, I}Zd.) When p is a product
measure, p = p X v, we will denote the process by {(B}', C}"") }+>0. In the case where
p = 0g and v = 6, for some 3, n € {0, I}Zd, we write {(B?, C’f’")}tzg. To simplify
notation, we freely interchange between talking about elements in {0, 1 }Zd and subsets
of Z2. Forn,n' € {0, 1}Zd we write n < 7 if n(z) < n'(z) Vz € Z% Furthermore,
for (8,1), (8',1') € {0, 1} x {0, 1}%" we write (8,7) < (8',7') if both 8 < §' and
n < n'. These relations induce the concept of increasing function in the usual way.

Definition 2.2.1. We say that a function f on {0, I}Zd (or {0, I}Zd x {0, I}Zd) is
increasing if f(n) < f(n') (f(8,m) < f(8',n")) whenevern < ' ((8,n) < (8',7')).

In our analysis we make extensive use of the concept of stochastic domination.

Definition 2.2.2. Given two probability measures 1 and p2 on {0, 1}Zd, we say that
1 is stochastically dominated by po if 1 (f) < po(f) V increasing continuous func-
tions f and we denote this by uq < . If p; is the distribution of X;, i = 1,2, we also
write X1 <p Xos.

It is well known (see for example [7]) that this is equivalent to the existence of
random variables X7, X5 on acommon probability space such that X1 ~ p1, Xo ~ o
and X; < X5 a.s. (The ~ here means distributed according to.) Also, since we can
identify {0, 1}%" x {0,1}%" with {0, 1}%"*{%:1} we have a similar result for measures
on {0, I}Zd x {0, I}Zd. (Of course, stochastic domination makes sense on any space
of the form {0, 1} where S is countable.)

Now, we turn to the graphical representation from which our process will be de-
fined. Let vy, dp, 01 > 0 with §; < dp and p € [0, 1] be given parameters. Let {e; }?:1
denote the standard basis on Z%, i.e.fori,j € {1,...,d}

. 1 ifi=y
ej(i) = o
0 ifi#j.

Define the following stochastic elements on a common probability space in such a way
that they are independent:

— MPO=1 = (P01, 0, a process with state space N2 where each marginal
independently evolves as a Poisson process with intensity yp. (This process will
correspond to the O to 1 flips in the background process, see below.)

- MbI=0 = {Mtb71_>0}t20, a process with state space NZ” where each marginal
independently evolves as a Poisson process with intensity (1 —p). (This process
will correspond to the 1 to O flips in the background process, see below.)

~ N% = {N} }+>0, a process with state space N * where cach marginal indepen-
dently evolves as a Poisson process with intensity ¢ .
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- . a .
— Noo=01 = {Nt‘s0 o }+>0, a process with state space N2* where each marginal
independently evolves as a Poisson process with intensity dg — 6 .

- Ni = {J\_ff}tzo,j € {£e,...,*eq }, independent processes with state space
NZ“ where each marginal independently evolves as a Poisson process with in-
tensity 1. (We think of the points in N7 (z) as being arrows from z to = + ej and
will correspond to the potential spread of infection from z to x + e;.)

For s > 0 and 8 € {0, I}Zd, we will begin to define a process B%* = {Bf’s}tZs
where for each z € Z% B%3(z) is a function of the arrivals of M"°~!(z) and
M"129(z) in [s,00). Assume for example that 3(x) = 0; the case when 3(z) = 1
can be handled in a similar fashion. We then define

B> (z) =0, s<t<T,
B (z) =1, Ty <t<T
B> (z) =0, Ty, <t < Ts
B (x)

=1, T;<t<T,

where T} is the first arrival time of M/?:0—1 (z) after s, T» is the first arrival time of
MP1=0(z) after Ty, Ty is the first arrival time of M*0~1(x) after Ty, Ty is the first
arrival time of M"!~%(z) after T3 and so forth. In words, the points in M %! are
the times at which the background process switches to 1 (had it been in state 0) and
similarily for M/*'=°. Note importantly, we have all the processes B?+*, as /3 and s
vary, defined on the same probability space.

Given B%*, N%t and N9 91 define X7** = {X}*};5,, a point process on Z x
[s,00), in the following way:

X5 = {(x,t) € Z9x [5,00) : (x,t) € N or
(z,t) € N % and BP*(z) =0}
In words, for each site 2, we choose points in [s, 00) from N (z) when the back-

ground process is in state 1 and from the union of N%!(z) and N% 1 (z) when the
background process is in state 0.

Definition 2.2.3. Given space-time points (z,s) and (y,¢) with ¢ > s and § €
{0, 1}Zd, we say that there is a F-active path from (z, s) to (y, t) if there is a sequence

of times s = sp < s1 < ... < Sy < Sm+1 = t and space points * = xg, 1, -- .,
T, =y sothatfor: = 1,...,m, there is an arrow from x;_ to x; at time s; and there
are no points in X%>* on the vertical segments {z;} % (s;,5;4+1),4=0,...,m.

Remark: Note importantly, that both B%>* and the existence of a 3-active path from
(z,s) to (y,t) are measurable with respect to the Poisson processes after time s and
hence are independent of everything in the Poisson processes up to that time. The
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reason that these objects are introduced for s > 0 is that they are useful objects to
which the original process can be usefully compared as will be done in the proof of
Theorem 2.1.4.

To define the process {(B},C")};>o for a given initial configuration (3,7) €

{0,1}%" x {0,1}*, we let BY = B® and

CP" = {yez?: forsomex € Z% with n(z) =1,
there is a S-active path from (z,0) to (y, t) }.

This is our formal definition of the CPREE. Note as # and 7 vary, we have all the
processes {(BY, C/ "M }4>0 defined on the same probability space.

Having defined {(B;, C}) }+>0 with initial configuration (3, 1), it is a simple matter
to extend the definition to an arbitrary initial distribution p. Just add to our probability
space, independently of all the random variables already defined, two random variables
on {0, 1}%" with joint distribution p. We will denote the probability measure governing
all these variables by P,,, suppressing 7y, dy and d; in the notation.

The first easy fact about the CPREE we will show is that it is an attractive process.

Proposition 2.2.1. (B, C}) satisfies the attractivity condition:
(2) p<o = pSpt) <aSy(t) Vi>O0.

Proof. 1t is standard that (2) is equivalent to (g % d,)S,(t) being stochastically in-
creasing in (f,n) forall ¢ > 0. However, it is immediate from the construction that if
B1 < Bz and 1y < 1o, then forall ¢ > 0

Btﬁl < Btﬁz
and
Ctﬁl,m < OtBZ’nZ.
This gives the stochastic domination (with an explicit coupling). |

2.3 Proofs of Theorems 2.1.2 and 2.1.3
Recall, given v, dg, 61 > 0 with §; < dg and ¢ € [0, 1] we have defined
. T, A
pe(q, A) = inf {p PO £ V> 0] > 0}

where A C Z%, |A| < oo, and 7, denotes product measure with density q.
Proof of Theorem 2.1.2. We will prove the statements:
— Forall A C Z?with |A| < co and p, ¢ € [0, 1],

B3) PCT" #£0¥t>0]>0 <<= PCr 29vt>0]>0.
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— Forallp € [0,1],
@ PO 2gvi>0]>0 <« P07 £pvi>0]> 0.

Combining these two will yield the statement in Theorem 2.1.2. For (3), the left im-
plication follows from translation invariance and the right implication follows easily
from the additivity property of the process meaning

CPAYE = cfA PP vA, B Cz? v € {0,1}%.

To prove (4), observe that the right implication is immediate from Proposition 2.2.1
d
and so we assume P,[ C O £ gyt > 0] > 0. Define

or(x) = I{B?(z):B%d(z)} reZ%t>0.

(Recall this is well defined since {B?};>o and {BtZd}tZO are defined on the same
probability space.) Note that ; has the property that for each site independently, after
an exponentially distributed time with mean %, the process flips to one and stays there.

Therefore we have Pp[p;(z) = 1] = 1 — e~ For A C 74, define {C{};>¢ from
the graphical representation in the same way as {C, 7A}t20 except that all recoveries
are ignored. This is what is usually called the Richardson model, see Durrett [4].

Lemma 2.3.1. Pp[é't{o} Coi,Vt>n]— lasn — oo
Proof. LetI, = {—n? ..., n*}? and for x € Z“ define
t(x) =inf{t: x e C{™ }.
From [4, p. 16], we get that there are constants ¢y,c2,¢3 € (0, 00) such that
P,[t(z) < ¢1|2]00 | < coe 8Tl
where | - | is the L® norm. This easily gives us the estimate

Pp[éj?(}n+1) ,@ I,] < P(n)e™ ",

where P(n) is a polynomial in n, and from the Borel Cantelli lemma we can conclude

5) P,[3IN > 1such that éj?(}nﬂ) CI,,Vn>N]=1.

Furthermore, independence gives

Pp[I'n, C @cln] — (1 _ e—’761n)(2n2+1)d-
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and since -

Z 1—(1- 6_761”)(2”2+1)d < 00,

n=1
the Borel Cantelli lemma again yields
(6) P,[3N > 1suchthatI, C ¢en,Vn > N]=1.
Combining (5) and (6), we obtain

P,[3N > 1suchthat C{% C o, Wt >N] =1,

as desired. O

d ~
Since C’tZ A0} C Ct{o} V¢ > 0, the claim tells us that, with probability one, after

some time and thereafter, the two background processes influence Ctm 1% and CtZ %10}
in exactly the same way. Next, countable additivity gives us that for some n > 1 we
have ,

P,ICI Covt>n, CE M £9vi>0]>0

and then that for some m (depending on n)
P,[C% C oVt >n, O C [—m,m]2Vt € [0,n], €2 £ 0Vt > 0] > 0.
Denote the previous event by A and define the random set
d z?
U={(z,t) € [-m,m]* x[0,n]: By (z)=1}

and let
B = {no arrivals in N% % during U }.

It is clear that
ANBC{c™™ 2pvt >0}

and so it remains to show that
P,JANB]>0.

However, if we condition on A and U, then we will not yield any information about
the N% =91 process on U and so

P,[B|4,U] = e (L)
where L(U) is the “length” of U. This easily gives
P,[B|A]>0

and the proof is complete. O
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Remark: The same argument shows that strong survival does not depend on the initial
distribution of the background process in the sense that

P,0eC®@io]>0 < P,0ec”%io]>o0.

This answers another question in [3].
Recall the definition of p/, from the introduction:

pl=inf{p: v, #m, x & }.

Here 7, = lim;_, o0 (074 X 074)S,(t). (The limit exists due to Proposition 2.2.1.) To
prove Theorem 2.1.3 we will use the next Lemma.

Lemma 2.3.2. Given p,q € (0,1) with ¢ > p we have
tlirglo(wq X 074)Sp(t) = Up.

Proof. By simple stochastic comparison, it is enough to consider the case when ¢ = p.
‘We begin to establish the existence of that limit. Since 7, is the stationary distribution
for the background process and the right marginal always occupies less than or equal
to the whole {0, I}Zd, we have

(7Tp X (szd)sp(t) < Tp X (Szd vt > 0.
Using attractiveness and the Markov property yields
(mp X 074)Sp(s +t) < (mp X 074)Sp(s) Vs, t >0,

and so the existence of the limit is clear from monotonicity. Denote this limit by v, and
observe it is necessarily stationary. It is clear that v, < 7, so we are done if 7, < v},
For this, note that attractiveness again gives that the map

= BRI (86, m0)]

is increasing whenever f is continuous and increasing. Using this, and the fact that any
stationary distribution necessarily has as first marginal 7,, we can do the following

calculation for any stationary distribution p of (B, Cy) and f : {0, I}Zd x {0, I}Zd —
R continuous and increasing:

[ Fdn =11 m) < Bl @] - [ ), ast .

Hence, 1 < v, and we are done. (|

Proof of Theorem 2.1.3. When the initial distribution of the background process is 7,
it is easy to see from the graphical representation that C; is self-dual in the sense that

7 PCT NB#0]=P,[C7"PnA#£0] V>0, A,BC 7L
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If we take A = {0}, B = Z%in this equation and let # — oo using the previous lemma,
we can easily conclude that

P,,[OZT"’{O} £Z0Yt>0]>0 <= D, #m Xy
and we are done. O

Remark: There is a weaker duality equation when the initial distribution of the back-
ground process differs from m,, but this is less natural and seems less useful.

2.4 Proof of Theorem 2.1.4

We now turn to the proof of Theorem 2.1.4, that the critical CPREE dies out. Once
Lemma 2.4.1 below is established, the rest follows similar lines as in the proofs of
Theorem 2.1.1 carried out in [1] and [9]. Our main goal is to prove that if {C} } survives
at p > 0, then there is a number § > 0 and integers n, a such that

(8) Pp,(;[C't@’[*n’n]d survives in Z x [—5a, 5a]~" x [0,00)] > 0.
If p. € (0, 1], this will immediately imply
P, [CH 29w > 0] =0.

To achieve (8), we begin by showing that if the CPREE survives, then it is very likely
to have survival if the initial configuration is sufficiently large even if we start with all
zeros in the background process.

Lemma 2.4.1. If {C;} survives at p > 0 then

lim P,[CY" " £ g > 0] =1.

n—oo

For the proof of this we use the following result.

Lemma 2.4.2. Foralln > 1, we have
lim P, [ €71 2 0% > 0] = P, [O7 T £ 0 > 0],

Proof. Fix n > 1. The probability on the left increases when e decreases and so the
limit exists and is clearly at most the right hand side. For the other inequality let § > 0
and define

€ _ d
1(7) = Lipro—c()—prr(eyy TELL 20,

where m,_. and 7, are coupled in the usual monotone way. Recall the definition of ¢,
from the proof of Theorem 2.1.2 and observe that

wr C; Vt>0, Ve> 0.
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Also, an easy modification of the proof of Lemma 2.3.1 yields

lim P,[C """ Cpp V> T] =1

T—o00

(Recall that C~’tA is the CPREE starting from the configuration A but with no recover-
ies.) This allows us to choose 7" > 0 such that

P, L gy > 0]
<P, (G C gy vt > T, P Lo > 0]+ 6.
Given this T', choose m > 1 such that
P CI " Clem,mliV0<t<T]>1-6
and for that m choose €3 > 0 such that

P,[B;" ° = By* on [—m,m]?]>1-6, V0 <e<e.

Now since
(G C oy e > T, G C [mm,m] VO <t < T,
Bﬂ'p_e _ Bﬂ'p d 7Tp7[_n7n]d
5" ~° = By on [-m,m]%, C] A0Vt >0}

c{or= 2 gve > 0},

we get
—n,n d
P, £ vt > 0]
7rp_57[—n7n]d
<P,[C # 0Vt > 0]+ 36,

whenever 0 < € < €y and so the proof is complete. (|

Proof of Lemma 2.4.1. Let 0 > 0. From the self-duality equation (7), Lemma 2.3.2
and the easily verified fact that the second marginal of 7, gives zero measure to (), we
easily get that there is an n > 1 such that

d
PO £ gy > 0] > 1 6.
The previous lemma makes it possible to now choose an € > 0 such that
d
Pl 2w s 0] > 16

Denote the semigroup operator associated with the background process by T'(¢) and
note that for € above there is a time s such that

09T (8) > Mp—e.
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Now, let B,, ,, denote the box in 7.4 with sidelength mn and write

where each A; is a translation of the box with sidelength n and with the A;’s disjoint.
Then, define

A7, » = { Noarrivals in N? or N% =% yp to time s in some A; }.
Given n and s, we can choose m so large that
P,[A7, ] >1-0.
The proof is finished by noting that monotonicity easily implies that

d —n.n d
P Ll 2 gy s 0] A5, 1> PO 2 gve > 0],
using the fact that A7, ,, is independent of the background process. O

Remark: A slightly more abstract but considerably shorter proof of Lemma 2.4.1 is
found by Olle Hiiggstrom after submission of the paper and is as follows. For 2 € Z4,
let Yz‘z’ be the indicator variable for survival when the process starts with only x infected
and all zeros in the background process. By translation invariance, P,[Y,? = 1] is
independent of x and by Theorem 2.1.2 we know that it is positive. It follows from
the graphical representation that the process {me}mezd is ergodic and hence a.s. there
is some 2 for which Y9 = 1. Moreover, the event in Lemma 2.4.1 occurs as soon as
some site in [—n, n]? has Y = 1 and so the lemma follows at once.

We have now set up the necessary ground work for our model in order to be able
to follow the steps in [9]. For L > 1 and A C (=L, L)4, let LC?’A be the truncated
process, using only (-active paths (recall Definition 2.2.3) which stay in (=L, L) x
[0, ¢].

Lemma 2.4.3. For all finite A C Z% and N > 1, we have

lim lim P,[|,C"4| > N]=P,[C"* £ 0Vt > 0]

t—00 L—00

Proof. Fix A and N. Since

(o]
0,4 0,4
et =) wept,
L=1

we easily get that for fixed ¢

0,A . 0,A
PPHCt | > N] :th})oPpHLct | > N],
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and so we are done if
lim P,[|CP4 > N =P,[CP* £ 0Vt > 0].
t—o00
For this, it is enough to check two things:
lim Pp[|Ct0’A| > N,0%* =0 somes >0]=0
t—o00

lim P,[|ICP4 > N,CP4 £ 0Vs > 0] =P,[CO* £ 0Vt > 0]

The first equality follows easily by applying Fatou’s Lemma. The second one follows
g tlir£10|0?’A|:m a.s on {C’?’A#@Vt>0}.

Assume the contrary, i.e.

) P,[ |C?4| does not converges to infinity, C®* # (Vs > 0] > 0.

From the martingale convergence theorem we get that

0,A
(10) P,[C, #@Vt28|75]—>1{og,A¢QVt>0} as s — 00,

where F; is the og-algebra generated by the whole process up to time s. Equation (9)
and (10) implies that with positive probability the following can happen:

lim PPCI[C, £Vt >0] =1
§—>00
IM >0, {Ti}izl O << ...<Ti—)oo,|C',.l.| < M Vi.
However, using elementary facts about exponentially distributed variables, we get

PW:Cm)[ ¢y = some t > 0]

5 M
> P(Z{C,—i) — > 1 .
[C; = somet>0] ST 2d Vi,

which yields a contradiction and the proof is complete. O

The next step is to take care of the sides of the space-time box. Define
S(L,T)={(z,t) € A, [0,T]: || = L}.

Fix A C (=L, L)? and look at all points on S(L,T) that can be reached from A by
an (-active path using vertical segments where the space coordinate is in (— L, L)% and
infection arrows from (z,) to (y,-) with z € (—L, L)?. Define Né“(L,T) to be the
maximum number of such points with the following property: If (z, ¢1) and (z, t2) are
any two points with the same spatial coordinate, then |¢; — to| > 1.
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Lemma 2.4.4. Assume L; /* oo and T; /* co. Then for any M, N > 1 and finite
A C 7% we have

limsup P,[ Ng'(L;, Tj) < M]P,[|1,C%* < N1 < P,[CP* = 0 some t > 0],
j—o0o ’
Proof. The proof follows the steps of Proposition 2.8 in [9] with some adjustments.
Let 7, denote the o-algebra generated by M*0=1, 0120 N1 NOo—01 and N7,
j€{+er,...,+eq}in (=L, L)% x [0, T]. We first argue that

0,A e 44§, g
PP[Ct7 = @ some t > 0|.7:L7T] Z (m)

as on {Né“(L,T)-I—|LC’?JA|§k}

(1D

For x € LC’?JA there is a conditional probability of at least
4l
(5() + v+ 2d

that 2 becomes healthy before it infects any of its neighbors. So, if | LC?,’A| = m, then
the conditional probability that no xz € LC?,’A contributes to survival is at least

(vm)
do +v+2d '

For the sides of the box, consider a time line {z} x [0, T], where |z|~ = L and let

(I‘,tl),...,(l‘,t]’)

be a maximal set of points that can be reached from A by an (-active path with the
property that each pair is separated by at least distance 1. Let

I = O{:U}X (ty — 1,tp + 1)
k=1

and note that the probability that there are no arrows coming out from I is at least e ~*%

Furthermore, for each interval of length y in the complement of 7 in {z} X [0, c0), the
probability of the event that if there is at least one arrival of the Poisson processes in
the interval with the first one coming from N9 or there is no arrivals at all is

(1 _ e%mwzd)y) U B S P U B
do+v+2d do +7v+2d

By independence, we get that the conditional probability that none of the points in the
time line {z} x [0, T'] contributes to survival is at least

674d§1 J
((50 +v+ 2d> )
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Now, considering the contribution of different 2’s yields

P,,[C’?’A =(somet>0|FLr]

5 LTt gty \NHET)
> - - -
_<6o+’y+2d> (60+7+2d>

which implies (11). For the rest of the proof, one proceeds exactly as in the second
half of Proposition 2.8 in [9, p. 48-49]. The needed inequality

P,[ NG (L, T) < M,|,C3"| < N]
> Py NG (L,T) < MIP,[[.C5"| < N]
is justified by the fact that N*(L,T) and | LC’%A| are increasing functions of N7,

j€{+e,...,+ey} and M>O~1 and decreasing in N1, N% =91 and M1 ~0 This
completes the proof. O

We are soon ready to state and prove the so called finite space-time condition.
However, we first need two more propositions. We just state them here since the proofs
are exactly the same as for Propositions 2.6 and 2.11, pages 46-47 and 49 in [9].

Proposition 2.4.5. For everyn, N > 1 and L > n, we have

0, —n,n d @, —n,n d 2_d
P, A [0, D) < N < (Pl < 21N))
Let
S (L, T)={(x,t) € 2% [0,T]: 2y =L,2; >0,2<i<d}

grzid;f;ne NQ’{}+(L, T) in a similar manner as Nj'(L,T) using Sy (L, T) instead of

Proposition 2.4.6. Forany L,M > 1,T > 0andn < L,

[—n n]d d2* [—n n]d d
(P NG (L, T) < MT)T <P [NG(L,T) < Ma2?)

The proof of these propositions requires certain random variables to be positively
d
correlated. For Proposition 2.4.5, let X; = |LC’£7"’"] N[0, L)% and Xs, ..., Xoa
be defined similarlydwith respect to the other orthants in R?. The needed positive
correlation of {X;}7_, is justified in the same way as in the end of the proof of Lemma
2.4 4. Similarly justification can be made in the proof of Proposition 2.4.6.

Theorem 2.4.7. If {C}} survives at p > 0, then it satisfies the following condition:
For all € > 0O there exist n, L > 1 and T > 0 such that

d
(12) Pp[L+an)~’j_;n7n] D z+[-n,n]somex €[0,L)!]>1—¢
d
(13) Pp[LHnHC&[l_n’n] D z+[-n,n]?some0 <t <T,

somex € {L+n} x[0,L)7 1] >1—¢
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Proof. Again, we will follow the steps in [9] with some modifications. Let0 < ¢ < 1.
We will see at the end how to choose ¢ for a given € > 0. Lemma 2.4.1 gives us an n
such that

(14) P,COm L gt 0] > 1 - 62

Given n, choose N’ such that

’

N
(1=PplaniCP D [=nn]")) " <6
and then choose N so large such thatif A C Z% with |A| > N, then there exists B C A
with |B| > N’ and
|t —ylw >2n+1 Va,y€ B, x#y.

Let B4 be a fixed (deterministic) such choice for each A.
In a similar fashion, choose M’ such that

(15) (1—a)MI < 0,
where
a = P,[ There are 0-active paths from the origin to every
point in [0,2n] x [-n,n]?"! x {1} that
stays in [0, 2n] x [-n,n]¢"" x [0,1]]
Then choose M so large such thatif A C Z% x [0, 00) is a finite set with |[A] > M,
where the distance in time between points with the same spatial coordinate is at least

1, then there exists B C A with |B| > M’ and with the property that for each pair of
points (z, s), (y,t) € B we have either

(16) z=y, |s—t|>1 or |z — y|loo > 2n+ 1.

Let B4 be a fixed (deterministic) such choice for each A.
From Lemma 2.4.3, (14), the inequality 1 — § < 1 — §2 and the facts that for
d
fixed L, n and N, the map ¢t — P,[|,CP ™" > 24N is continuous and that

lim—s oo Py |LC',?’[_n7n]d| > 2¢N'] = 0, we can conclude that there exist L; /* 0o
and T; oo so that

(Z”[*n’n]d d — _ .
Py[l,C7, |>2'N]=1-¢ Vj>1.

Furthermore, Lemma 2.4.4 with M and N replaced by Md2? and 2?N respectively
and with A = [—n,n]?, we get that for some j

P, [N (L, 1) > Md2?] > 1 -6
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Let L = L; and T' = T} for that specific j and apply Propositions 2.4.5 and 2.4.6 to
get

(17) P, C2 N A0, 1) > N) > 1- 62"
(18) PN, T) > M) > 1 -2,
To obtain (12), define for B C Z%and T > 0

VE = {3 (x,t) € B x {T} such that there are (-active paths from
(z,t) to every (y,5) € (z + [-n,n]?) x {T + 1}
that stays in (2 + [-n,n]?) x (T,T + 1]},

and note that

—n.nl? —n,n]?
U {12t o0y > N, .o 00,0yt = A, VE )
(19) AClo,L)d

C{ LenC2™™" 5 2 4 [—n,m]? some 2 € [0, L) }.

Let Fr be the o-algebra generated by Mb0—=1 Af6:1-0 No1 Ndo—81 and Ni| j €
{+e1,...,£eq } up to time T and note that for given A C [0, L)? with [A| > N,V
is independent of Fr so

Py [V, | Fr] =Py[Vz,]
> 1= (1= Pyl 2 mnn))” > 16
By summing up over A C [0, L)? and using (17) and (19), we get
P,,[L+n0?1’r1n’n]d D z + [-n,n]? some z € [0,L)¢]
> (1=06)(1—62").

This yields (12) when § is chosen appropriately.

To obtain (13), define for each space-time point (z;, t;) we count in Né;f’"]d (L, T)

a variable Y; which is 1 if (z;, ¢;) infects all points in
(zi +[0,2n] x [-n,n]*"") x {t; + 1}
using P-active paths in

(zi +[0,2n] x [-n,n]"" 1) x (t;,t; + 1]

d
only and O otherwise. If Nq[ff nl (L, T) > M, we can choose M’ space-time points
satisfying (16). Denote the corresponding variables by Y;,i = 1,..., M'. Let Fr 1 be
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as in the proof of Lemma 2.4.4 and note that conditioned on F7, 7 restricted to the event

{ Nq[j_f’n]d (L,T) > M }, the M' space-time points are specified and Y7,Y5, ..., Yap

are independent with the (conditional) probability of Y; = 1 equal to a. This implies
that

P,[V;=1somei=1,... M |Frr]=1-(1-a)"
on {N{(L,T) > MY,
which together with (15) and (18) yields

—n,n]?

Pp[L+2n+1C?i[1 D x+ [—n,n]d some 0 <t<T,
some z € {L +n} x[0,L)" ]
> (1—8)(1— 82 "/,
This gives (13) when § is chosen appropriately. |
The next part of the program is to carry out a comparison with oriented percolation.
For this, we start to combine (12) and (13) into one.
Lemma 2.4.8. If {C}} survives at p > 0, then it satisfies the following condition: For
all € > 0 there existn, L. > 1 and T > 0 such that
20) Pp[2L+3nC?’[7n’n]d D x4+ [-n,n]? some T <t < 2T,
some x € [L+n,2L +n] x[0,20L) 1] >1—¢

Proof. We follow Proposition 2.20 in [9]. Let (z,7) be the first (in time) space-time
point with the property appearing in the probability (13), where x is choosen according
to some deterministic ordering of Z? and restart (B, C;) at time 7 + 1. From (12),
(13) and the fact that these probabilities are increasing in the background process, it
follows that

d
PoloranCl ™™ D w4 [—n 0] some T +1 < t < 2T +2,

some z € [L +n,2L 4+ n] x [0,2L)771] > (1 — €)%

Replace T' + 1 with T" and the proof is complete. O

Now we are ready for the fundamental step in the construction towards the com-
parison.

Lemma 2.4.9. Assume {C}} survives at p > 0 and fix e > 0. Then there exist § > 0,
n,a,bwithn < a such that for all (x,t) € [—a,a]? x [0,b]

P,_;[3(y,s) € [a,3a] x [~a,a]*™" x [5b, 6b] such that
there are B-active paths from (z,t) + ([-n,n]* x {0})
to every point in (y, s) + ([—n,n]d X {0})
that stays in [—5a, 5a]? x [0,6b]] > 1 — €.
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Proof. One can proceed exactly as in Proposition 2.22 in [9, p. 52-53] to first obtain
the statement with p — § replaced by p and therefore we only outline this part of the
argument. The main idea is to use Lemma 2.4.8 (or a “reflected” version of it) repeat-
edly (between 4 to 10 times) to steer things properly so that the desired event occurs.
The existence of & > 0 is a consequence of the fact that the event in question depends
only on the graphical representation in [—5a, 5a]¢ x [0, 6b] and hence is continuous in
p. [l

Repeated use of the previous lemma together with appropriate stopping times and
monotonicity in the background process yields:

Lemma 2.4.10. Assume {C,} survives atp > 0 and let ¢ > 0 and k > 1 be fixed.
Then there exist 6 > 0, n,a,b with n < a such that the following holds: For all
(z,t) € [—a,a]? x [0,b], with P,_s-probability at least 1 — €, there exists a translate
(y,5) + [-n,n]? x {0} of [-n,n]¢ x {0} such that

a) (4,5) € ([—a,a) + 2ka) x [—a, al"~" x [5kb, (5K + 1)}]
b) There are B-active paths from (x,t) + [—n,n]? x {0} t0 every

point in (y, s) + [—n,n]? x {0} that stays in the region
k—1

A= | ] ([-5a,5a] + 2ja) x [-5a,5a]*~" x ([0, 6b] + 55b) .
=0

Our final step towards (8) is to use the previous lemma in a so called renormal-
ization argument. The set A from Lemma 2.4.10 (see Figure 2.1) and its reflection
with respect to the ¢-axis will consist of our building blocks. Given the conditions in
Lemma 2.4.10, the distance ¢ in Figure 2.2 is well defined. (Define it to be zero if the
dashed vertical line is to the right of the left corner of the rectangle R, see Figure 2.2.)
It is casy to see that, if we choose k& > 5, ¢ will be bigger than 3a, independent of the
value of a. Fix such a k.

Theorem 2.4.11. If {C}} survives at p > 0, then there are integers n,a and 6 > 0
such that

P 0,[—n,n]¢ . . . d—1
p—s Cy survives in 7 X [—5a,5a]”"" x [0,00)] >0

Proof. The proof is a modification of Lemma 21 of [1]. Let n > 0 be given and take
€ > Osuchthat1l —e > 1 —nandletn, a, band  be as in Lemma 2.4.10. We will
make an appropriate choice of i later. Construct a process Z, (i) = (X, (7), Yn(7)),
i >0,n >0, where X, (i) € {0,1} and Y,,(4) is a point in Z? x [0, 00). Yy, (i) will be
undefined when X, () = 0. Start with Zy(0) = (1,0), Xo(7) = 0, % # 0 and define in-
ductively as follows: With Z(4) already defined fori > 0,0 < k < nlet X,11(i) =1
if for either j = 4 or j = ¢ — 1 it is the case that X,(j) = 1 and there is a translation
of [-n,n]? to the shaded area (see Figure 2.3 for the shaded regions) on the top of the
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6b
5b t
X

Figure 2.1: The set A.

—5a 5a

corresponding block such that Yy, (j) 4+ [—n, n]¢ is connected with §-active paths to ev-
ery point in that translation. Furthermore, define Y,,11(¢) = (2,41 (%), tn+1(7)), where
tn+1(7) is the earliest center of such a translation and z,,41(7) is chosen according to
some fixed ordering of Z“. Note that if X,,(i) = 1 for infinitely many pairs (i,7n), then

d
C’,?’[_n’n] survives in Z x [—5a, 5a]? "1 x [0, 00) so it remains to prove that the former
has positive probability. Let F,, be the o-algebra generating by Zj, (i), where i > 0,
0 < k < n and note that from Lemma 2.4.10 we get

P [Xp1()=1|F]>1-n on {X,(i—1)=TlorX,(i)=1}.

Also, our choice of k and the fact that events that depend on disjoint parts of the graph-
ical representation are independent, we have that, conditioned on F,,, the collection
of variables { X,,11(i) : ¢ > 0} is one-dependent. Now, we are ready to make
the construction above for a specific choice of . Take 1/4 < p < 1 so large that
an oriented percolation process, {4, }, on N with parameter p survives with positive
probability when it starts with a single infection at the origin and choose 7 such that
1-p>1-—(1- \/;5)3 A result of Liggett, Schonmann and Stacey [10] (see also The-
orem B26 [9]) tells us that a one-dependent process with density 1 — 7 stochastically
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6b
5b Lo __

—5a 5a -

Figure 2.2: The definition of c.

dominates a product measure with density p on N. We can then conclude that {X,}
dominates {4, }. This completes the proof. O

We end with the following question:

Does the process obey a congplete convergence theorem, i.e. is it the case that for all
p€[0,1]and 3,7 € {0,1}*

(05 x 0y)Sp(t) = ap(B,mvp + (1 — ap(B,n))mp X by ast — oo,

where
ap(B,m) = P,[CP" £Vt >0].

Contemporaneously and independently of our work, Remenik [12] has proved a com-
plete convergence theorem for the special variant when §o = co. We strongly believe
that a complete convergence theorem also holds in our case and plan to pursue some
ideas that we have.
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origin

Figure 2.3: Our building block A together with its reflection are translated in the x1 and t
direction. The shaded regions indicate where the paths start and stop in the definition of Z,,.
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ABSTRACT

We consider spin systems on 7Z (i.e. interacting particle systems on Z in which each
coordinate only has two possible values and only one coordinate changes in each tran-
sition) whose rates are determined by another process, called a background process.
A canonical example is the contact process in randomly evolving environment, intro-
duced and analysed by Broman and further studied by Steif and the author, where the
marginals of the background process independently evolve as 2-state Markov chains
and determine the recovery rates for a contact process. We prove that, if the back-
ground process has a unique stationary distribution and if the rates satisfy a certain
positivity condition, then there are at most two extremal stationary distributions. The
proof follows closely the ideas of Liggett’s proof of a corresponding theorem for spin
systems on Z without a background process.

Key words and phrases: Spin systems, varying environment.
Subject classification : 60K35.

3.1 Introduction

The contact process in a random environment, in which the rates are taken to be random
variables and then fixed in time, has been studied the last twenty years, see for example
[1,4,7, 8]. However, recently Broman [2] introduced a variant where the environment
changes in time in a Markovian way. (See also [9] for further analysis concerning
that process.) More precisely, he considered the Markov process {(B;, C¢)}¢>0 on

53
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{0, I}Zd x {0, I}Zd described by the following rates at a site x:

transition rate
(0,0) = (0,1) D ya CY)
(1,0) = (1,1) y~z C(Y)
(07 1) — (07 0) 60
(171) — (170) 61
(0,0) = (1,0) P
(0,1) = (1,1) P
(150) — (an) 7(1 _p)
(151) — (071) 7(1 _p)
where v, 09,91 > 0 with §; < dg and p € [0,1]. In other words, the background

process evolves independently for each site and determines the recovery rate for the
right marginal in the following way: At a given site 2 and time ¢, the rate is dg or &;
depending on whether By(z) = 0 or B¢(z) = 1. Broman called {(B;, C;)} the con-
tact process in a randomly evolving environment, abbreviated CPREE. In this paper we
study processes in one dimension with the same structure: a background process influ-
encing another interacting particle system, but here both processes are more general.
We prove, under certain conditions on the rates, that we have at most two extremal
invariant distributions.

3.2 The model and main result

We consider the Markov process, { (B¢, n¢) }+>0 on {0, 1}7 x {0, 1} described by the
following rates at a site x:

transition rate
(67 ) (B$7 ) b(:ﬂ,ﬂ)

—~~

Here ¢o(x,7), ¢1(x,n) and b(x, B) are given rate functions where the first two satisfy

CO(%’?) < Cl(%n) if n(‘r) =0,
cl(man) S 00(35777) if 77(35) = 1a

and all three satisfy the following attractivity condition:

H

Definition 3.2.1. A spin system on {0, 1}Z, with rates c(z, ) is said to be attractive if
whenevern <1/,

c(a,n’) if n(x) =

) < n
@ (o) > o) it nlz) = () = 1.
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Here, < refers to the usual partial ordering on {0, 1}%, i.e., < ' if and only if
n(z) < n'(z) forall z € Z. We also assume that the rate functions are translation
invariant and that the rates co(, ), ¢1 (x,n) only depend on n through

{n(z —1),n(x),n(x +1)}.

Moreover, to ensure that we have a well defined process we will assume that

In other words, the rates for the system are completely described by b(x, 3) and the
16 parameters determining ¢y and c¢;. To describe the values we will use the following
notation:

¢i(001) = ¢;(z,n) when n(z—1)=0,n(x) =0 and n(z +1) = 1.

We always refer to the left marginal as the background process. Furthermore, note that
we can equivalently view our process on {0, 1}%2*{%1} and that the conditions (1) and
(2) then mean that the whole process is attractive on that space. (Definition 3.2.1 can
of course be generalized to {0, 1}° where S is countable.) The attractivity can be used
to show (via monotonicity) the existence of two extremal stationary distributions v
and v; defined by
vy = tlirgo (505()5) v = tlirgo (515()5),

where §p and §; denote the point masses corresponding to the elements ) = 0 and =
Lin {0, 1}7*{%!} and {S(t)};>0 denotes the semigroup associated to {(8;,7:) }i>0-
The main result here is that, if the background process has a unique stationary distri-
bution and the rates cp, ¢1 satisfy a certain positivity condition, then vy and v; are the
only extremal stationary distributions. Let Z denote the set of stationary distributions
for the process and let Z, denote its extreme points. Furthermore, define

Ci = {02(100) + Cj(].].O), 02(001) + Cj(O].].),
ci(011) + ¢;(110), ¢;(100) + ¢;(001), i = 0,1, j = 0,1}

and let
C =min (Cy).

Before we state our main result, we want to emphasize that the case with no back-
ground process has been studied before by Liggett. The proof of our main result fol-
lows closely the ideas of his proof. To state his result, let ¢(x,n) be a rate function for
an attractive, translation invariant, nearest-neighbor spin system {1;};>o on {0,1}”
and define pu; = lim;_,o 6;T(t), i = 0,1, where §; is the point mass corresponding
to the element 7 = 4 in {0,1}” and {T'(t)}:>0 denotes the semigroup associated to
{nt}tzo- Moreover, let 7. denote the extreme points of the set of stationary distribu-
tions for {n; }+>o.
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Theorem 3.2.1 (Liggett). Suppose
3) c(z,n) + c(x,n.) >0 whenever n(x —1) #n(z+1).

Then J. = {po, 11 }-

For a proof, see [5] or [6, p. 145-152]. In fact, he also proved that if condition (3)
fails, then 7. contains infinitely many points, see [6, p. 145].

Theorem 3.2.2. Suppose that the background process has a unique stationary distri-
bution and assume C' > 0. Then I, = {vgy,v1 }.

Remarks:

(i) From [6, p. 152] we get that Theorem 3.2.1 is equivalent to the statement that
(3) and
¢(011) 4+ ¢(110) > 0
¢(100) 4 ¢(001) > 0

implies J. = {uo,u1}. By letting ¢ = ¢y = ¢y, it is now clear that Theo-
rem 3.2.2 covers Theorem 3.2.1.

(i) The hypotheses in Theorem 3.2.2 are true for the CPREE described in the in-
troduction. Indeed, if ¢y and ¢; satisfy (1) and are symmetric under reflections,
i.e.

¢;(100) = ¢;(001)
¢;(110) = ¢;(011), i=0,1

then C' > 0 if and only if ¢o(001) > 0 and ¢; (011) > 0.

(iii) Note that we are not assuming independence or even nearest-neighbor interac-
tion between coordinates in the background process.

(iv) To see that the conclusion may fail if we drop the assumption about a unique sta-
tionary distribution for the background process, let b(z, 3), in addition to being
attractive and translation invariant, be nearest-neighbor with 5(000) = b(111) =
0 and satisfiy

b(x,B) + b(x,B:) >0 whenever Bz —1)# B(z+1).

Let ¢ = c; be the rates corresponding to a supercritical contact process on Z.
Then
Ie Z{(SO X(S(),(SO X v, (51 X(S(), (51 XI?},

where dg, §; are the point masses corresponding to the elements) = Oandn = 1
in {0, 1}Z respectively and 7 denotes the upper invariant measure for the contact
process.
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(v) If we take the same background process, but instead let co = ¢; be the rates for
a subcritical contact process, we see that the condition about a unique stationary
distribution for the background process is not necessary for having only two
extremal stationary distributions.

(vi) To see that the conclusion may fail if C' = 0, let b(z, /5) be a rate function such
that {3; }+>0 has the point mass at 3 = 1 as its unique stationary distribution and
let ¢; satisify

It is easy to check that for each n € Z, 01 X d,~ is an extremal stationary

distribution where
n 1 ifz>n
n"(z) =

0 ifz<n.

A natural next step is to ask when there is a unique stationary distribution, i.e. when
vp = vy. In the case of no background process, Gray proved in [3] that there can only
be one stationary distribution provided that the rates are strictly positive. We conjecture
an analogous statement in our situation.

Theorem 3.2.3 (Gray). If c(z,n) > 0forall x € Z andn € {0,1}%, then po = 1.

Conjecture 3.2.4. Suppose that the background process has a unique stationary dis-
tribution and assume that c;(x,n) > 0 for all x, n, i = 1,2. Then vy = vy.

The rest of the paper is organized as follows. In Section 3.3 we prove Theo-
rem 3.2.2 and in Section 3.4 we discuss Conjecture 3.2.4.

3.3 Proof of Theorem 3.2.2

In the proof, we make extensive use of a maximal type coupling which we now de-
scribe. Denote

U={0,1}", V={(n7,0eU?:n<y<¢} and W=UxV.

The coupled process (5, nt, Vi, & ), which we now define, lives on W and its flip rates
are described as follows: First, let flips of the type

Bsm,7,6) = (Baym, 7€)

occur at rate b(x, 3).

Then, let the other three marginals flip according to Tables 3.1 and 3.2. These
tables should be interpreted as follows. For example, when 8;(z) = 0, n:(z) = 0,
ve(xz) = 0and & (z) = 1, &(x) will flip alone at rate co(z, &), ¢ (z) will flip alone at
rate co(x, ) — co(x,n:) and n;(x) and v, () flip together at rate ¢o(x, 1;). Note that
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(0,0,0,0) (0,0,0,1) 0,0,1,1) ,1,1,1)
(0,0,0,0) - co(z,§) = co(,7) | colz,y) —colz,n) | colx,n)
(0,0,0,1) | co(z,§) - co(r,7) —co(z,n) | colw,n)
0,0,1,1) | co(x,8) | co(x,7) — co(x,§) - co(w,n)

O11LD | co@,8) | colx,7) = co(x,§) | co(®,n) — colx, ) -

Table 3.1: Transition rates when the background process is in state 0.

(1,0,0,0) (1,0,0,1) (1,0,1,1) (1,1,1,1)
(1,0,0,0) - cr(z,8) —ei(z,y) | ez, y) —ei(z,n) | er(z,n)
(1,0,0,1) | ei(x,6) - a(@,y) —alzn) | al@n)
(1,0,LL1) | e1(2,8) | er(z,y) —a(x,§) - ci(w,n)
(LLLD | er(x,8) | er(z,y) —er(x,€) | ei(z,n) —ei(z,v) -

Table 3.2: Transition rates when the background process is in state 1.

the pairs {(B¢,m:) }s {(Be, i)} {(Bt, &)} each evolve as the original Markov process
and that the second, third and fourth marginals try to flip together as much as possible.
Also, observe that the background process is not allowed to flip together with any of
the other processes.

As in the proof of Theorem 3.2.1, the proof of Theorem 3.2.2 consists of several
lemma concerning certain functionals of the process. For m < n, let f, »(8,1,7, &)
be the number of intervals of zeros and ones in 7y between m and n (including m and
n), counted only where 7 and £ differ. Furthermore, let

m<z <z <...<x <1,
be all those z’s between m and n for which n(z) = 0 and {(x) = 1. For [ > 1, define
9o (B,1,7,€) = number of ¢ such that i > 1,4+ 1+ 1 < k and
V(@i) #V(@ig1) = V(@it2) = ... = v(@itt) # V(Titi41)-

In other words, gﬁn’n (B,m,7, &) is the number of interior intervals of zeros and ones of
length [ in v between m and n, counted only where n and ¢ differ. For example if,

1 0111110111 ---[¢
1 01 1001O0110 -1y
100 0 0 O0O0OO0O0OO0O0 i
1 0100111011 B8
m n

then frn =4,92, ,=1,g5 ,=1andgl,  =0whenl ¢ {23} Let

K = max <max co(z,m), maxcy (x,n))
7 7
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and denote the set of stationary distributions and the generator of the coupled process
by Z and 2 respectively. Furthermore, for a given set A, denote the set of extreme
points by A,. The first lemma concerns certain basic properties of f,, ,, and gfn’n.

Lemma 3.3.1.

a) fm.ns g,ln,n are increasing when n increases or m decreases.

b) fn 24 Ghone
=1

o0
c) Zlgfmn <n—m+1.
=1

Ifrel,
d) C/g}nm dv < K/[fm_l,n + fnt+1 — 2fmon] dv, form <n

e)C/gf,ﬁzdllg12Kl/gfn7nd1/,form§n,l21.

Proof. a), b) and c) follow directly from the definitions. For d) and e) assume v € 7I.
Note that f,, , and gﬁn’n are cylinder functions so that

4) / Qo dv = / Qg dv = 0.
For cylinder function f, the generator has the form

Qf(ﬂ)n)’)/)f): Z c(ﬁ)n)’y)f)ﬁ)’?)f_)(f(ﬂ)ﬁ)’?)f_)_f(/87n777f))
(5) (B,7,7:8)

+ Zb(maﬁ) (f(ﬁxﬂ?a%f) - f(ana’%g))

where the first sum is over all possible transitions when the second, third or fourth
marginal flip. (Recall that the first marginal is not allowed to flip together with any of
the others.) Here, since both f,, ,, and gﬁmn donotdepend on /3, the second sum is zero,
so our task is to calculate the first part. For this, we follow the approach in [6, Lemma
3.7]. The argument given here is almost the same as in [6], we supply it for the sake
of completeness. Let (3,1, 7, ) be fixed and note that the only way f, ,, can increase
because of a flip is if fr,—1,n, = fiun + 100 frnp1 = fim,n + 1. In the first case the
flip must occur at = m and in the second at = n. The rate for such a flip is at most
K so the positive terms in (5) are bounded above by

K [fmfl,n + fm,nJrl - 2fm,n] .

Furthermore, there are g}nm sites = where a flip decreases f,, », by two. At such an z,
~v(x) = 0 or y(x) = 1. Assume v(z) = 1. Then we necessarely have v(z — 1) =
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n(xz — 1) and vy(x + 1) = n(x + 1). Therefore, the flip rate at 2 becomes

c0(010) + ¢(000) ify(zx —1) =0,vy(z+1) =0,
(2.7) + o) = co(011) 4+ ¢(001) if y(z — 1) =0, v(x + 1) =1,
COMBT TR = (110) + ¢(100) if y(z — 1) = 1, v(z + 1) = 0,
[ co(111) + ¢(101) ify(z — 1) = 1, y(z +1) = 1,

when (z) = 0 and
(¢1(010) + ¢1(000) if y(z — 1) =0, v(z + 1) = 0,
(2.7) + 1 (2.) = ¢1(011) + ¢, (001) ify(x —1)=0,vy(z+1) =1,
AETANENZ 0 (110) + ¢0(100) ify(z — 1) = 1, v(z + 1) = 0,
c1(111) + ¢, (101) ify(z —1) =1, v(z + 1) = L,

when (x) = 1. Also the attractivity condition gives

¢i(010) > max{ ¢;(011), ¢;(110) }
¢;i(101) > max{ ¢;(001), ¢;(100) }, i=0,1

and so the rates above are bounded below by C'/2. The same argument works if y(z) =
0 and so we can conclude that the negative terms in (5) are bounded above by —C g}n’n.
We get the estimate

Qfm,n S K [fm—l,n + .fm,n+1 - 2fm,n] - Og}n,n

which via (4) gives d). For e), note that gﬁmn can only decrease via flips at no more
than lgﬁnm sites or their neighbors, i.e. in total at most 3/ g,ln,n sites. The rate for such
a flip is bounded by 2K and ginm can at most decrease by two. The negative terms
in the generator are therefore bounded below by —12K1 gﬁn - Furthermore, gﬁn , can
increase at no fewer than gl"r1 pair of sites. These pair of sites are the endpoints of an
interval of length [ + 1. To get a lower bound on the flip rate for such endpoints, let z <
y denote such a pair and suppose y(z) = v(y) = 1. Then we have y(z—1) = n(z—1)
andy(y+1) = n(y+1). The flip rate at = is at least ¢; (100) if y(z—1) = p(z—1) = 1,
B(x) = i and at least ¢;(011) if y(z — 1) = p(x — 1) = 0, B(x) = i. In a similar
fashion, the flip rate at y is at least ¢;(001) if y(y + 1) = n(y + 1) =1, B(y) = i and
atleast ¢;(110) if y(y +1) = n(y +1) = 0, B(y) = i. In either case the sum of the flip
rates for the pair is always at least C. The same statement holds if y(z) = y(y) = 0
and so we obtain that the positive terms in the generator expression are bounded below
by C ng Hence, we get the estimate

Qg > Cghth, — 12K1g), .

Equation (4) then finally gives us

C/gij;dy< 12Kl/gmn
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and the proof is complete. |

Denote

{(B;n,7,8) eW: y=n},
{Bm,1,8) eW: y=¢£Y,
{(B,n,7,6) € W\ A U Az : Iz € Z such that

v(y) = n(y) wheny <z and y(y) = {(y) wheny > = },
Ay ={(B,n,v,§) e W\ A U A, : Iz € Z such that

v(y) = &(y) wheny <z and y(y) = n(y) wheny >z },
Lemma 3.3.2. Assume C > 0. Then

aAvel = v(AUAUA3UAy)=1
hvel, = v(A;) =1 forsomei.
Proof. b) follows from a) since A; is closed for the coupled process in the sense that
P(ﬁ’nmé)[ (Bt,nta%,ft) € Az] =1 Vt > 0
whenever (3,1,7, &) € A;. To prove a), suppose v € Z. Since
4
UAi:{gﬁn’n:0Vm§n,l21}
i=1

we obtain that

(6) / L dv=0forallm <n,l>1

gm,n

is equivalent to
I/(A1 UAQUAgUA4) =1

To see that (6) holds, we proceed as in [6, Lemma 3.10]. Note that
fm—Ln S fm7n +1 and .fm,n+1 S fm7n +1

and so parts d) and e) of Lemma 3.3.1 gives us

(7) M = sup /gfn,ndu < oo, VI>1.

m<n

Let L > 1. From part b) of the same lemma, we get

fmndV<

n —
>1
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Split the sum and now use part ¢) of the lemma together with (7) to obtain that for any

L
1 2 ML 1 1
/fm,ndl/g + +_<1+ >7
n—m n—m mn-—m L n—m

and so
1

1
lim sup /fmm dv < —.
n—m—oo . — M L

Since L > 1 was arbitrary we can conclude

®) lim 1 /fm’n dv = 0.

n—m—oo N, — M
Now, for N > 1, part d) of Lemma 3.3.1 gives us
0 N-1
¢ Y Y [ohi

m=—N+1 n=0

€)

0

N—-1
<K Z Z /[fm—Ln + fm7n+1 - 2fm7n] dv.

m=—N+1 n=0
After some cancellations in the sum to the right, we get

0

N—-1
Z Z /[fm—Ln + fm7n+1 - 2fm7n] dv

m=—N+1 n=0
0 N-1
< Z /fm,NdV"'Z/f—deV
m=—N+1 n=0
and together with (8) and (9) we obtain
1 0 N-1
. 1 _
dnoys X% [dua=o
m=—N+1 n=0

Using the monotonicity property of g}n’n this implies fg}nn dv = 0forallm <n
and part e) of the lemma gives [ gfn,n dv = 0 foralll > 1 and we are done with the
proof. (|

We are soon ready for the proof of Theorem 3.2.2. However, in the proof we make
use of a 5-variant coupling {( 8¢, 0, V1.4, V2.1, &) } of the one used so far. This coupling
is also of maximal type and evolves on

X ={Bmm,7, el :n<m <&En<y <€

in a way such that {(8;, e, 1,6, &)} and {(Be, me, v2,0, &) } evolve exactly as the pre-
vious described coupling. We can therefore apply all we have done so far to each of



3.3. PROOF OF THEOREM 3.2.2 63

these processes. The last tool we need is to have existence of an extremal stationary
distribution for the 5-variant coupled process, given extremal stationary distributions
for the {(ft, )} process. For a stochastic variable X and a distribution p, let X ~
denote that X is distributed according to u. Also, let Z° denote the set of stationary
distributions for the 5-variant coupled process on X.

Lemma 3.3.3. Given y, i/ € I, there exists v((3,1,71,72,€) € -) € I2 such that
(6777) ~ Vo, (67’71) ~ (ﬁa’)/?) ~ :U‘I and (675) ~ V.

Proof. For any measure p let p;; denote the projection to the ith and jth coordinate.
Construct a coupling on ({0, 1}% x {0, 1}%)* of four {3, n; }-processes such that the
background processes agree as much as possible as well as the right marginals. Note
that our 5-variant coupling above can be identified with such a coupling started with
all the background processes equal. Starting the coupling with

d(0,0) X X [ X 87,7

and taking a suitable subsequence of Cesaro averages gives us a stationary distribu-
tion p for the coupling and by projecting to the first, second, fourth, sixth and eighth
coordinate we get a probability measure 7 € Z° with

7(B.n,m,72,6) €V i p<y <EN< <=1

Here it is important to note that the set

{(Bla”aﬁ?a’ylaﬁiia’}?aﬁ‘lag) € U8 : Bl S /82 S /84a Bl S /83 S B4a
n<m<&En<y <&

is closed under the evolution of the coupling and that the first, third, fifth and seventh
coordinate are equal under p. Furthermore, it is clear that ¥ satisfies

~ ~ ~ 1 ~
Uig =vy, viz=p vu=p and U5 =vy.
Define
5 . _ _ _ _
B:{VEZ.1/12—1/0,1113—,[,&,1/14—,[,&,1/15—7/1}.

B is non-empty by the above and is compact and convex. Hence, by the Krein-Milman
theorem, BB can be written as the closed convex hull of its extreme points. Therefore,
since B # (), we have B. # (. Hence, the proof is complete if B, C Z7. Assume
veBeandlety = ap+ (1 — a)o, where0 < a < land p,o € I°. If p, 0 € B we
get v = p = o and we are done. In order to see this, let (i, j) be one of the pairs (1, 2),
(1,3), (1,4) or (1, 5). Since v;; = ap;j + (1 — a)o;;, where p;;, 0 € Z, and the left
hand side is an element of {vg, u, u', 1 } C Z., we obtain

Vg = P12 = 012 n=p13 = 013
!
W = pP1ra =014 V1 = P15 =015

and so p, o € B. |
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Proof of Theorem 3.2.2.  We follow the steps in [6, Theroem 3.13]. Let p; € Z,.
Since vy < pu < v for every stationary distribution 1, we can assume vy # vy. Let
pa = pu1 o 071, where 6, is a translation by # € Z. Since the dynamics are translation
invariantand 1 € Z,, we get that us € Z,. Let p be an extremal stationary distribution
for the 5-variant coupling mentioned above with

(B,m) ~ vo (B,m1) ~
(ﬂ772)NM2 (ﬂaf)'\"yl

Such a measure exists by Lemma 3.3.3. Let p; and p» be the distributions obtained
from the projections

(577777177275) — (577777175)
(Ban571572a£) — (6’7777275)

respectively. Since p1, p2 € 7., Lemma 3.3.2 gives
p1(A;))=1 somel<i<4 and p2(4;) =1 somel <i<4.

However, 7, and v, are just translations of each other so there is an ¢ such that
P1 (Az) = pP2 (Az) = 1. It follows that

p((ﬁ,n,%,%,f) : ZI%(JJ) — Ya(z)| < oo) =1

Also, (y1,t,72,¢) has the property that

POy ;=99 =1 and P2 [y, =95,]>0

whenever Z |71 () — v2(2)| < 0o and so since p is stationary, we must in fact have
T

P((ﬁan,%ﬁz,f) Dy = 72) =1.

This implies g3 = o, i.e. pp is translation invariant. Therefore ¢ equals 1 or 2 (recall
vo Zv1). Ifi =1, uy (U % (+)) = vo(U x (+)) and since the background process has a
unique stationary distribution we must also have 1 ((-) X U) = vy((-) x U). But since
vy < pq this yields 1 = vy. If « = 2 we get in a similar way that y; = v;. O

3.4 Discussion of Conjecture 3.2.4

We begin by describing a graphical representation which may be useful for a possible
proof of Conjecture 3.2.4. The representation is similar as in [3] and we will explain it
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in a quite informal way. For simplicity, we will assume that the rates for the background
process, in addition to attractive and translation invariant, also are uniformly bounded.
(Of course, our assumptions on cg and ¢; from Section 3.2 imply that they are also
uniformly bounded.) For z € 7Z, define

b, = sup b(z,8)+ sup b(z,p)

B:B(z)=0 B:B(z)=1

52: sup co(z,n) + sup co(z,n)
n:n(z)=0 n:n(z)=1

cy= sup ci(z,n)+ sup c(z,n)
n:n(z)=0 n:n(z)=1

=0 , =1
Cy = Cp + Cy.

Define the following collection of independent random variables on some probability
space (2, F,P):

— Bj(z) exponentially distributed with mean 1/b,, j > 1, z € Z. (Define
Bj(z) = 00 if by = 0.)

— D,,(z) uniformly distributed on [0,b,],n > 1,z € Z.
— S;(z) exponentially distributed with mean 1/¢,, j > 1,z € Z.

U? () uniformly distributed on [0,&%], n > 1,z € Z.

T

— U}(x) uniformly distributed on [0,¢], n > 1,z € Z.

Moreover, forn > 1 and z € 7Z define

n n

Chn(z) = ZB]'(CU) and Ty,(z) = ZS]'(CU).

Jj=1 Jj=1

For a given initial configuration 3 € {0, 1}%, define a process {ﬁtﬁ}tzo from {C)p(z)}
and {D,(z)} as follows:

- /85 = Bs
— B8(z) flips from 0 to 1 iff 87 (z) = 0 and there exists an n > 1 such that
s = Cy(z) and Dy (x) > b, — b(x, B2 ),

— B5(z) flips from 1 to 0 iff 87 _(z) = 1 and there exists an n > 1 such that
s = Cy(z) and Dy, (z) < b(z, 7).

By an approximation procedure, it is possible to prove that there exists a process with
those properties and that such a process has flip rates b(z, 3).

Given 3,7 € {0,1}%, we now define a process {nf”’}tzo from {87}, {Tn(z)},
{U2(z)} and {U}(z)} in the following way:
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— g =,
— if 88(z) = 0, then 2 (z) flips from 0 to 1 iff 7" (z) = 0 and there exists an
~0
n > 1 such that s = Ty, (z) and U2 (z) > & — ;—:co(m,nf’_") and 27 (z) flips

from 1 to O iff nf’_" (z) = 1 and there exists an n. > 1 such that s = T},(x) and
20
Un(w) < & co(z,n2),

— if 858(z) = 1, then 2 (z) flips from 0 to 1 iff 7" (z) = 0 and there exists an
=1
n > 1such that s = Ty (z) and Uy (z) > ¢, — 321 (z,n2") and n?(z) fips
from 1 to O iff nf’_" (z) = 1 and there exists an n. > 1 such that s = T},(x) and
El
Un(x) < e,
It is clear that the process {(3”,77"")} has the correct flip rates. Moreover, the graph-
ical representation gives us a coupling for all possible initial states and this coupling
is exactly the maximal type coupling used in Section 3.3. If we want to start the pro-
cess at a random state with distribution p, we just add, independent of everything else,
two random variables with joint distribution p. We then write {3/, n/**"?} where p;
denotes the ith marginal of p.
A possible proof of Conjecture 3.2.4 may be based on the following lemma.

Lemma 3.4.1. If

(10) lim inf lim inf P [nf70(m) =P (2), ~k <z < k] >0
o0

k—oo t—
forall B € {0,1}%, then vy = vy.

Proof. From Lemma 3.3.3 (or more precisely from the version of it with three pro-
cesses) there exists a probability measure v on

{(Bn&elU?: n<g}
which is stationary for {(8¢, n¢, & }+>0 and satisfies
Y2 = Vo, Yz=v1 and 7y = p,

where g is the unique stationary distribution for the background process. (Here, we
use the same notation as in Lemma 3.3.3.) Our goal is to show that

For given £ > 1 and ¢ > 0, we get

(n(z) =&(x), -k <z <k)=7(n=¢)

v
(n
+P [0 (@) = nf" " (2), —k <@ <k[ng* £ 1L -y (=€)
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Here, we have used that -y is stationary and the fact that
Pn/ (@) =n/"(2), -k <2 <k[ny™ =ny""]=1.
From the inequalities
i < < <P >0,
we get,
P [/ (z) = 5" (2), —~k <z <k[ng"* £ ]

(12)
> P | (z) = P (@), —k <@ <k|gh"? # 776“73] :

Moreover, from the graphical representation, we get that the events

{(nf(z) = nf"™(z), -k <z <k} and {nf"° #yh™}

are conditionally independent given the initial state of the background process and so
we can write

P [0 O(x) = nf"(@), =k <@ <k, 0l £ |
(13)
P[00 =i, k< < K18 = 8] 00 £ €16) du(s).

Now, let us assume that

y(n#¢&) >0.
Then
v(m#&|B) > 0.

on a set of positive g-measure. By using (10), (13) together with Fatou’s Lemma and
then (12), we can conclude that
lim inf lim inf P [0t (z) =i (z), -k <2 <k|ny" #£nf7]>0.
—00

k—o00

However, by taking limits in (11) we arrive at a contradiction and so we are done with
the proof. |

The question now is if it is possible to prove (10). A natural first try is to fix the
initial state of the background process and then proceed as in [3, p. 393] and define
so called left and right edge processes. The properties on p. 394 and Proposition 2
on p. 395 are then easily verified. For the correlation property between the left and
right edge processes, we can use [6, Ch. II, Corollary 2.21] and since the Lemma in
the proof of [3, Theorem 1] relies on the properties on [3, p. 394], it may be possible to
prove a version of it for our process. Having succeeded so far, there is some hard work
left which we at the moment are not able to decide on if it is possible to do something
similar or not. The only thing we can say is that the argument given in [3, p. 399-403]
is based on a very similar construction as we have and if all the preliminary work go
through, then there may be a quite good chance to get a full proof of Conjecture 3.2.4.
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ABSTRACT

We discuss various aspects concerning stochastic domination for the Ising model and
the fuzzy Potts model. We begin by considering the Ising model on the homogeneous
tree of degree d, T?. For given interaction parameters Ji, J> > 0 and external field
hy € R, we compute the smallest external field h such that the plus measure with
parameters J> and h dominates the plus measure with parameters J; and hy for all
h > h. Moreover, we discuss continuity of h with respect to the three parameters
J1, Jo, h and also how the plus measures are stochastically ordered in the interaction
parameter for a fixed external field. Next, we consider the fuzzy Potts model and prove
that on Z¢ the fuzzy Potts measures dominate the same set of product measures while
on T, for certain parameter values, the free and minus fuzzy Potts measures dominate
different product measures. For the Ising model, Liggett and Steif proved that on Z ¢ the
plus measures dominate the same set of product measures while on T? that statement
fails completely except when there is a unique phase.

Key words and phrases: Stochastic domination, Ising model, fuzzy Potts model.
Subject classification : 60K35.

4.1 Introduction and main results

The concept of stochastic domination has played an important role in probability the-
ory over the last couple of decades, for example in interacting particle systems and

71
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statistical mechanics. In [13], various results were proved concerning stochastic domi-
nation for the Ising model with no external field on Z% and on the homogeneous binary
tree T2 (i.e. the unique infinite tree where each site has 3 neighbors). As an example,
the following distinction between 7% and T? was shown: On Z¢, the plus and minus
states dominate the same set of product measures, while on T2 that statement fails
completely except in the case when we have a unique phase. In this paper we study
stochastic domination for the Ising model in the case of nonzero external field and also
for the so called fuzzy Potts model.

Let V be a finite or countable set and equip the space {—1,1}" with the following
natural partial order: Forn, o' € {—1,1}V, we write n < " if n(z) < n'(z) for all
x € V. Moreover, whenever we need a topology on {—1,1}" we will use the product
topology. We say that a function f : {—1,1}" — R is increasing if f(n) < f(n)
whenever n < n’. We will use the following usual definition of stochastic domination.

Definition 4.1.1 (Stochastic domination). Given a finite or countable set V' and prob-
ability measures ju1, p2 on {—1,1}V, we say that j» dominates y; (written g1y < o

or 1y > pup) if
/fdul S/fduz

for all real-valued, continuous and increasing functions f on {—1,1}".

It is well known that a necessary and sufficient condition for two probability mea-
sures i1, f12 to satisfy p11 < o is that there exists a coupling measure v on {—1,1}V x
{—1,1}V with first and second marginals equal to j; and ps respectively and

v((m§:n<g) =1

(For a proof, see for example [12, p. 72-74].) Given any set S C R and a family of
probability measures { s} scs indexed by S, we will say that the map S 3 s — s is
increasing if ps, < ps, whenever s; < sa.

4.1.1 The Ising model

The ferromagnetic Ising model is a well studied object in both physics and probability
theory. For a given infinite, locally finite (i.e. each vertex has a finite number of neigh-
bors), connected graph G = (V, E), it is defined from the nearest-neighbor potential

—Jn(z)n(y) if A= {z,y}, with (z,y) € E,
%" (n) = { —h(x) if A = {z},

0 otherwise

where A C V,n € {~1,1}V,J > 0, h € R are two parameters called the coupling
strength and the external field respectively and (z,y) denotes the edge connecting x
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and y. A probability measure p on {—1,1}" is said to be a Gibbs measure (or some-
times Gibbs state) for the ferromagnetic Ising model with parameters h € R and J > 0
if it admits conditional probabilities such that for all finite U C V, all 0 € {—1,1}V
andalln € {—1,1}V\U

wX(U) = o[ X(V\U) =n)

= lef,n exp [J( Z o(z)o(y) + Z U(@n@))

Jh (z,y)€E,2,yeU (x,y)€E,2cU,ycdU

+h Yy a(x)]

zeU

where ZSI;Z is a normalizing constant and
OU ={x eV \U:3ye U such that (z,y) € E }.

For given J > 0 and h € R, we will denote the set of Gibbs measures with parameters
J and h by G(.J,h) and we say that a phase transition occurs if |G(.J,h)| > 1, i.e.
if there exist more than one Gibbs state. (From the general theory described in [2]
or [12], G(J, h) is always nonempty.) At this stage one can ask, for fixed h € R, is it
the case that the existence of multiple Gibbs states is increasing in .J? When h = 0 it is
possible from the so called random-cluster representation of the Ising model to show a
positive answer to the last question (see [5] for the case when G = 7% and [7] for more
general GG). However, when h # 0 there are graphs where the above monontonicity
property no longer holds, see [15] for an example of a relatively simple such graph.

Furthermore, still for fixed J > 0, h € R, standard monotonicity arguments can
be used to show that there exists two particular Gibbs states ,ui*, ,ui’* , called the plus
and the minus state, which are extreme with respect to the stochastic ordering in the
sense that

(1) ui’7 <u< ,ui’+ for any other u € G(J, h).

To simplify the notation, we will write p”>* for ug’+ and p”>~ for ug’f. (Of course,
most of the things we have defined so far are also highly dependent on the graph G,
but we suppress that in the notation.)

In [13] the authors studied, among other things, stochastic domination between the
plus measures {7+ } 750 in the case when G = T2, For example, they showed that the
map (0,00) 3 J — p?F is increasing when .J > .J. and proved the existence of and
computed the smallest .J > .J. such that >+ dominates ,uJ”JF forall 0 < .J' < J..
(On Z%, the fact that 7+ and p”/>F are not stochastically ordered when J; # .J,
gives that such a .J does not even exist in that case.) Our first result deals with the
following question: Given Jy, Jo > 0, hy € R, can we find the smallest external
field h = h(Jy, Jo, hy) with the property that ,uiz’Jr dominates ,uii’Jr forall h > h?
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To clarify the question a bit more, note that an easy application of Holley’s theorem
(see [3]) tells us that for fixed J > 0,themap R > h — ,ui"'r is increasing. Hence, for
given Jq, J> and h; as above the set

I, Ji+
{hER:Nh2+ZNhi }

is an infinite interval and we want to find the left endpoint of that interval (possibly
—o0 or +o0 at this stage). For a general graph not much can be said, but we have the
following easy bounds on h when G is of bounded degree.

Proposition 4.1.1. Consider the Ising model on a general graph G = (V,E) of
bounded degree. Define

h=h(J,Jo, ) =inf{h € R: >t > Mif 1.

Then .
hl_N(Jl‘I‘JQ) §h§h1+N|Jl—J2|,

where N = sup N, and N, is the number of neighbors of the site x € V.
eV

For the Ising model, we will now consider the case when G = T4, the homo-
gencous d-ary tree, defined as the unique infinite tree where each site has exactly
d + 1 > 3 neighbors. The parameter d is fixed in all that we will do and so we
suppress that in the notation. For this particular graph it is well known that for given
h € R, the existence of multiple Gibbs states is increasing in .J and so as a conse-
quence there exists a critical value J.(h) € [0, co] such that when .J < .J.(h) we have
a unique Gibbs state whereas for J > J.(h) there are more than one Gibbs states. In
fact, much more can be shown in this case. As an example it is possible to derive an
explicit expression for the phase transition region

{(J,h) € R+ |G(J,h)| > 1},
in particular one can see that .J.(h) € (0, 00) forall h € R. Moreover,

J. := J.(0) = arccothd = %log %,
see [2] for more details. (Here and in the sequel, := will mean definition.)

To state our results for the Ising model on T?, we need to recall some more facts,
all of which can be found in [2, p. 247-255]. To begin, we just state what we need very
briefly and later on we will give some more details. Given .J > 0 and h € R, there is a
one-to-one correspondence ¢ — 1 between the real solutions of a certain equation (see
(7) and the function ¢y in (6) below) and the completely homogeneous Markov chains
in G(J, h) (to be defined in Section 4.2). Let ¢t (.J, h) denote the real numbers which
correspond to the plus and minus measure respectively. (It is easy to see that the plus
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and minus states are completely homogeneous Markov chains, see Section 4.2.) We
will write ¢ (J) instead of ¢ (.J, 0). Furthermore, let

h*(J) = max (d . (1) 1)

and denote by ¢t*(.J) the ¢ > 0 where the function ¢ + d ¢;(t) — ¢ attains its unique
maximum. In [2], explicit expressions for both A* and ¢* are derived:

* 0 if J < J.
h(J) = darctanh (%)1/2 — arctanh (%)1/2 it J > J.
) 0 if J < J.
)= arctanh (73:52£EE§§)1/2 if J > J.

In particular one can see that both h* and ¢* are continuous functions of .J and by
computing derivatives one can show that they are strictly increasing for J > J..

2 -
1 <
S
kS
0 -
-1 T T T T 1
0 0.2 0.4 0.6 0.8 1
Interaction parameter .J
2 -
1 <
S
0 -
-] T T T T 1
0 0.2 0.4 0.6 0.8 1

Interaction parameter .J

Figure 4.1: The functions h™ and t* in the case when d = 4.

Theorem 4.1.2. Consider the Ising model on T¢ and let J., Jo > 0, hy € R be given.
Define

fe(Ji, Jayhy) =inf{h € R: pp>* > Mﬁ’i}
9 (Ji, T hy) = inf{h € R >~ > pyo* )
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and denote T+ = 14 (J1, J2, hy) =t (Ji, h1) + |Ji — Ja|- Then the following holds:

Q) f+(J1, J2,h) = {

—h*(JQ) l:ft_(JQ, —h*(JQ)) <T7L < t*(JQ)
T+ —doy, (T:t) ifre > t*(.]g) or T < t,(.]g, —h*(J2))

h*(J2) if —t*(J2) <7 <ty (J2,h*(J2))
(3) gj:(JlaJQahl): . * *
Ty — d¢J2 (T:t) ifre < —t (Jg) or T+ > t+(.]2,h (Jg))
Remarks:
(i) Note thatif 0 < Jo < J,, then h*(J2) = 0 and

(i)

(iii)

(iv)

t(Ja, =h*(J2)) =" (J2) = t4(J2, h*(J2)) = 0
and hence the first interval disappears in the formulas and we simply get

f+(Ji, Jo, ha) = g+ (Ju, Jo, ha)
=14 (J1, J2, ha) — do g, (T (J1, J2, ha)).

By looking at the formulas (2) and (3), we see that there are functions v, 6 :
(0,00) x R + R such that

f+(Ji, Jo, hy) = ¥(Jo, 74 (J1, J2, hy))  and
gi(JlaJQahl) :0(J27Tj:(l]1aj2ahl))-

(Of course, ¥(Jo, t) and 6(.J5, t) are just (2) and (3) with ¢ instead of 7.) Tt is
easy to check that for fixed Jo > 0, the maps ¢ + ¢(Jo,t) and t — 6(J2,t)
are continuous. A picture of these functions when J; = 2, d = 4 can be seen in
Figure 4.2.

It is not hard to see by direct computations that f, satisfies the bounds in Propo-
sition 4.1.1. We will indicate how this can be done after the proof of Theorem
4.1.2.

We will see in the proof that if
t—(J2, =h*(J2)) < 7e(J1, J2, ) <t*(J2),

then
{heR:pu>" > p* ) = [=h*(J), 00),

and if —t*(Jg) < Ti(Jl, Jz, hl) < t+(J2, h*(JQ)), then
{heR:p™™ > pp ™} = ("(Je), 00).

Hence in the first case the left endpoint belongs to the interval, while in the
second case it does not.
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t— 'I,Z)(JQ,t)

-10 A

-20 -10 0 10 20

107 t s 0(J,t)

-20 -10 0 10 20

Figure 4.2: The functions t v 1(Ja,t) and t — 6(J2,t) in the case when J> = 2 and d = 4.

Our next proposition deals with continuity properties of f1 and g+ with respect to the
parameters Jq, Jo and hy. We will only discuss the function f., the other ones can be
treated in a similar fashion.

Proposition 4.1.3. Consider the Ising model on T% and recall the notation from The-
orem 4.1.2. Let

a = a(Jl, Jz) = t_(Jl, —h*(J1)) + |J1 - J2|
b=b(Jy,Js) =ty (Jy,—h*(J1)) + |JL — Ja|

a) Given Jy, Jy > 0, the map R > hy — fi(J1,J 2, h1) is continuous except
possibly at —h*(Jy) depending on Jy and Js in the following way:
If 1 < J.orJy = Jy then it is continuous at —h*(Jy).
If Ji > J.and 0 < Jy < J, then it is discontinuous at —h*(Jy).
If Jv, Jo > J., J1 # Jo then it is discontinuous except when
t,(.]g, —h*(J2)) S a < t*(.]g) and t,(.]g, _h*(J2)) S b S t*(J2).

b) Given Jo > 0, hy € R, the map (0,00) > Jy — fi(J1,J2, h1) is continuous
at Jy if 0 < Jy < JeoorJy > J.and hy # —h*(J1). In the case when
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h1 = —h*(Jy) it is discontinuous at .Jy except when

t_(JQ, —h*(lz)) <a< t*(JQ) and t_(JQ, —h*(JQ)) < b < t*(JQ).

¢) Given J; > 0, hy € R, the map (0,00) > Jo — fy(J1,J2, hy) is continuous
forall Jo > 0.

We conclude this section with a result about how the measures {ui’“L} J>0 are
ordered with respect to .J for fixed h € R.

Proposition 4.1.4. Consider the Ising model on T%. The map (0,00) > J ui’+ is
increasing in the following cases: a) h > 0 and J > J., b) h < 0 and h*(J) > —h.

4.1.2 The fuzzy Potts model

Next, we consider the so called fuzzy Potts model. To define the model, we first need
to define the perhaps more familiar Potts model. Let G = (V, E)) be an infinite locally
finite graph and suppose that ¢ > 3 is an integer. Let U be a finite subset of V' and
consider the finite graph H with vertex set U and edge set consisting of those edges
(z,y) € E with z,y € U. In this way, we say that the graph H is induced by U.
The finite volume Gibbs measure for the g-state Potts model at inverse temperature
J > 0 with free boundary condition is defined to be the probability measure 71';{ 7 on

{1,2,...,q}Y which to each element o assigns probability

1
H
Tor(0) = - exp <2J > I{a(z)w(g)})a
q,J (z,y)EE z,yeU

where Z[; is a normalizing constant.

Now, suppose r € {1,...,q — 1} and pick a wgJ - distributed object X and for
z €U let

-1 ifX(x)e{l,...,r
@ vy =y rREE
1 ifX(z)e{r+1,...,q}.
We write I/f 7, for the resulting probability measure on {=1,1}Y and call it the finite

volume fuzzy Potts measure on H with free boundary condition and parameters ¢, .J
and r.

We also need to consider the case when we have a boundary condition. For fi-
nite U C V, consider the graph H induced by the vertex set U U QU and let €
{1,..., q}V\U. The finite volume Gibbs measure for the g-state Potts model at inverse
temperature .J > 0 with boundary condition 7 is defined to be the probability measure
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on {1,...,q}Y which to each element assigns probability

i 1
T (o) = 7 P (2] Yo ew=otn
q,J (z,y)EE,z,yeU

+2J > I{U(w)—n(y)}>’

(z,y)EE,2€U,ycdU

where Z ' is a normalizing constant. In the case whenn = i forsome i € {1,...,q},
we replaoe n with ¢ in the notation.

Furthermore, we introduce the notion of infinite volume Gibbs measure for the
Potts model. A probability measure yz on {1,...,q}" is said to be an infinite volume
Gibbs measure for the ¢-state Potts model on G at inverse temperature .JJ > 0, if it
admits conditional probabilities such that for all finite U C V, all 0 € {1,...,q}Y
andallp € {1,...,¢}V\V

WXU)=c|X(V\U)=n) =7 (o)

where H is the graph induced by U UOU. Let {V}, },,>1 be a sequence of finite subsets
of V' such that V;, C Viyq foralln, V=, Vi and for each n, denote by G, the
induced graph by V,, U 9V,,. Furthermore, for each i € {1,...,q}, extend T, ”’l (and
use the same notation for the extension) to a probability measure on {1, ... ,q}V by
assigning with probability one the spin value 7 outside V,,. It is well known (and inde-
pendent of the sequence {V/, }) that there for each spini € {1,..., ¢} exists a infinite
volume Gibbs measure 7r0 which is the weak limit as n — oo of the corresponding

7y

Gpyi
measures 7T o
G,O

Moreover there exists another infinite volume Gibbs measure de-

noted 7, Wthh is the limit of 7rq 7 in the sense that the probabilities on cylinder sets
converge The existence of the above limits as well as the independence of the choice
of the sequence {V,,} when constructing them follows from the work of Aizenman et
al. [1].

Given the infinite volume Gibbs measures {7rq J}ZE{O .q}» we define the corre-

sponding infinite volume fuzzy Potts measures {z/q 7. r}ze{o ¢} using (4).

In words, the fuzzy Potts model can be thought of arising from the ordinary g-state
Potts model by looking at a pair of glasses that prevents from distinguishing some of
the spin values. From this point of view, the fuzzy Potts model is one of the most basic
examples of a so called hidden Markov field [11]. For earlier work on the fuzzy Potts
model, see for example [6, 8—10, 14].

Given a finite or countable set V and p € [0, 1], let y,, denote the product measure
on {—1,1}V with v,(n : n(z) = 1) = pforall z € V. In [13] the authors proved
the following results for the Ising model. (The second result was originally proved for
d = 2 only but it trivially extends to all d > 2.)
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Proposition 4.1.5 (Liggett, Steif). Fix an integer d > 2 and consider the Ising model
on 7. with parameters J > 0 and h = 0. Then for any p € [0, 1], p/+ > vp if and
only if = > ,.

Proposition 4.1.6 (Liggett, Steif). Let d > 2 be a given integer and consider the Ising
model on T with paramteters J > 0 and h = 0. Moreover, let i”>7 denote the Gibbs
state obtained by using free boundary conditions. If p/t # p’~, then there exist
0 < p' < psuch that p”+ dominates Yp but uh ! does not dominate Yp and uhf
dominates vy, but wh = does not dominate Yp'-

In words, on Z? the plus and minus state dominate the same set of product measures
while on T? that is not the case except when the we have a unique phase.

To state our next results we will take a closer look at the construction of the infinite
volume fuzzy Potts measures when G = Z% or G = T<. In those cases it follows from

symmetry that z/qur = yqG’JjT ifi,j € {l,....r}ordi,j € {r+1,...,q},i.e. when
the Potts spins ¢, j map to the same fuzzy spin. For that reason, we let l/qu’J;, = l/qu’Jlﬂ,
and l/qur = Vf:,qr when G = Z% or T?. (Of course, we stick to our earlier notation
of I/fj,or.) Our first result is a generalization of Proposition 4.1.5 to the fuzzy Potts
model.

Proposition 4.1.7. Let d > 2 be a given integer and consider the fuzzy Potts model
on 7% with parameters ¢ > 3, J > 0O andr € {1,...,q — 1}. Then for any k,l €

{0,—,+}andp € [0,1], 1/?31; > v, if and only l'fI/qu]”lT > Yp.

In the same way as for the Ising model, we believe that Proposition 4.1.7 fails
completely on T¢ except when we have a unique phase in the Potts model. Our last
result is in that direction.

Proposition 4.1.8. Let d > 2 be a given integer and consider the fuzzy Potts model on

T with parameters ¢ > 3, J > 0andr € {1,...,q — 1} where e*’ > q — 2. If the
d d

underlying Gibbs measures for the Potts model satisfy 71';1: J’l #* 7r:£ J’O, then there exists

Td70 d7

0 <p < 1suchthatv, j, dominates y, but I/;JTJ; does not dominate yp.

4.2 Proofs

We start to recall some facts from [2] concerning the notion of completely homoge-
neous Markov chains on T?. Denote the vertex set and the edge set of T¢ with V (T?)
and E(T?) respectively. Given a directed edge (z,y) € E(T?) define the “past” sites
by

] — 00, (x,y)[= {2 € V(T?) : z s closer to « than to y }.
For A C V(T%) denote by F 4 the o-algebra generated by the spins in A. A probability
measure g on {—1, I}V(Td) is called a Markov chain if

p(n(y) =1 Aso @) = w(n(y) = 1| Fzy)  p-as.
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for all {(x,y) € E(T%). Furthermore, a Markov chain y is called completely homoge-
neous with transition matrix P = { P(i,5) : i,j € { —=1,1} } if

(5) w(n(y) =u|Fy) = P(n(z),u) p-as.

for all (z,y) € E(T?) and u € {—1,1}. Observe that such a P necessarily is a
stochastic matrix and if it in addition is irreducible denote its stationary distribution
by v. In that situation, we get for each finite connected set C' C V(T?), z € C and
¢ € {-1,1}“ that

(z,y)ED

where D is the set of directed edges (z,y), where z,y € C and z is closer to z than
y is. In particular, it follows that every completely homogeneous Markov chain which
arise from an irreducible stochastic matrix is invariant under all graph automorphisms.

Next, we give a short summary from [2] of the Ising model on T?. For J > 0,
define

1. cosh(t+J)
(6) ¢J(t)—§10gm, teR

The function ¢ is trivially seen to be odd. Moreover, ¢ is concave on [0, c0), in-
creasing and bounded. (In fact, ¢;(¢t) — J as t — o00.) Furthermore, there is a one-
to-one correspondence t — i between the completely homogeneous Markov chains
in G(J, h) and the numbers ¢ € R satisfying the equation

(7) t=h+do,(t).
In addition, the transition matrix P; of p; is given by

(8) Pt(_la_l) Pt(_lal) — 2c0§hEJ—t) 2c0§h£rJ—t)
P(1,-1)  P(1,1) S e )

2cosh(J+t)  2cosh(J+t)

Given h € R and J > 0 the fixed point equation (7) has one, two or three solutions. In

fact Lemma 4.2.1 below tells us exactly when the different situations occur. The largest
solution, denoted ¢, (J, h), corresponds to the plus measure ui’+ and the smallest,
denoted t_(J, h), to the minus measure ui’_. To see why the last statement is true,
let g+ = piy, (7,n) and note that Lemma 4.2.2 from Section 4.2.2 implies that p— <
u < pg forany p € G(J, h) which is also a completely homogeneous Markov chain
on T?. Moreover, equation (1) implies that ui’_ < pg < ,ui"'r and so py = uii
will follow if ,ui’i are completely homogeneous Markov chains. To see that, note that
equation (1) also implies that uii are extremal in G(.J, h) which in turn (see Theorem
12.6 in [2]) gives us that they are Markov chains on T?. Finally, from the fact that
uii are invariant under all graph automorphisms on T¢, we obtain the completely
homogeneous property (5).
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Figure 4.3: A picture of the fixed point equation (7) when d = 5, h = 8 and J = 3/2. In this
particular case we have a unique solution.

Lemma 4.2.1 (Georgii). The fixed point equation (7) has
a) a unique solution when |h| > h*(J) or h = h*(J) =0,
b) two distinct solutions t_(J,h) < t4(J, h) when |h| = h*(J) > 0,
c) three distinct solutions t_(J, h) < to(J, h) < t(J, h) when |h| < h*(J).

4.2.1 Proof of Proposition 4.1.1

For the upper bound, just invoke Proposition 4.16 in [3] which gives us that ,uiz* >
T if > by + N|Jy = .
For the lower bound, we argue by contradiction as follows. Assume

h<hy—N(Jp+J5)
and pick hg such that
) h < hy < hy — N(Jy + J2).
The right inequality of (9) is equivalent to
2(hg + N.J2) < 2(hy — N.Jy)
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Figure 4.4: A picture of the fixed point equation (7) when d =5, h = 0 and J = 3/2.

and so we can pick 0 < p; < p2 < 1 such that

D1 D2

) < log( ) < 2(h1 - NJl)

2(ho + N J. 1
(o 0 J2) < losl I—p>
By using the last inequalities together with Proposition 4.16 in [3], we can conclude
that
Ja,
,uhi * S Tp1
Ji,
luhi * Z Tpo-

Since p; < p- this tells us that ui§’+ 2 uﬁ’f On the other hand we have hg > h

which by definition of % implies that uii* > ,uii*. Hence, we get a contradiction

and the proof is complete. O

4.2.2 Proof of Theorem 4.1.2

We will make use of the following lemma from [13] concerning stochastic domination
for completely homogeneous Markov chains on T?,
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Lemma 4.2.2 (Liggett, Steif). Given two 2-state transition matrices P and @, let
p and pug denote the corresponding completely homogeneous Markov chains on T<,
Then pp dominates ug if and only if P(—=1,1) > Q(—1,1) and P(1,1) > Q(1,1).

Proof of Theorem 4.1.2. To prove (2), let J, J, > 0 and h; € R be given and note

that we get from Lemma 4.2.2 and equation (8) that ui2’+ > ,uii’i if and only if

et+(J2,h)—J2 eti(.]17h1)—.]1

>
2cosh(ty(Ja,h) — Jo) = 2cosh(t+(Ji,h1) — J1)

and
€t+(J27h)+J2 eti(J17h1)+J1

> .
2cosh(ty(J2,h) + J2) = 2cosh(te(Ji,h1) + J1)

Since the map R > z — ﬁ;m is strictly increasing this is equivalent to
ti(Jo,h) > te(Ji,ha) +Jo — i

and
to(Ja,h) >t (Ji,ha) + 1 — Jo

which in turn is equivalent to
(10) ty(Jo,h) >t (Ji, ) + |y = | = 7(J1, 2, ha),

and so we want to compute the smallest ~ € R such that (10) holds. Note that since
the map h — t (Ja, h) is strictly increasing and ¢4 (J2, h) — +00 as h — Fo00 there
always exists such an h € R. If 7 > t*(J2) or 7o < t_(Ja,—h*(J2)), then the
equation
h+dgy,(T4) = T4
is equivalent to
to(Ja,h) =74

and so in that case the smallest & € R such that (10) holds is equal to

T+ — d¢]2(7i).

If t_(Jo,—h*(J2)) < 7+ < t*(J2), then since ¢4 (Jo, h) > t*(J2) whenever h >
—h*(J2) and t4 (J2, h) < t_(J2,—h*(J2)) whenever h < —h*(.J2), we have in this
case that

{he R > ™ = [=h"(), ),

and so the h we are looking for is given by —h*(.J3).
For (3), we note as above that u#’_ > uii’i if and only if

(11) t_(Jo,h) > 14 (J1, J2, ha).
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If 7 < —t*(J3) or 74 > t4(Ja, h*(J2)) then we can proceed exactly as in the first
case above. If —t*(Jo) < 74 < ti(J2,h*(J2)), then t_(J>,h) < T4 whenever
h < h*(Jy) and t_(J2, h) > 7+ whenever h > h*(.J) and so in that case we have

,— ,+ *
{heR:uy™ > "} = (W (), 00),
which yields (3) and the proof is complete. O

We will now indicate how to compute the bounds in Proposition 4.1.1 in the special
case when G = T?. By looking at the formula for f, and using the definition of h*
we get that

f+(Ju, J2, b)) <1 (Jiy T2, b)) — dog, (T (J1, Jo, ha)).

Substituting 74 and using the bounds —J < ¢;(t) < J forall ¢ € R we get the upper
bound in Proposition 4.1.1 with N = d + 1. For the lower bound, first note that

Ty = dog (t4) = hi + (b, (b4 (J1, 1)) = ¢ (t4- (1, 1)) + |1 = Ja]
> hy — (d+ 1)(Jy + J2).
Moreover it is easy to check that

—h*(J2) > hy — (d+ 1)(J, + J2)

when
t—(J2, —h*(J2)) < 1y <t°(J2) =t (J2, —h"(J2))

and so the lower bound follows at once.

4.2.3 Proof of Proposition 4.1.3

Before we prove anything we would like to recall the fact that we can write (see Remark
(ii) after Theorem 4.1.2)

f+(J17J27h1) = 1/1(J2,T+(J1,J2,h1)) J17J2 > Oahl S ]Ra

where
7'+(J1, JQ,hl) = t+(J1,h1) + |J1 - J2|

and the map ¢t — (J2,t) is continuous (see Figure 4.2 for a picture). In the rest of
the proof, we will use this fact without further notification. For example, the above
immediately gives that hy — fi(J1, J2, h1) is continuous at a point by € R if by +—
t4(J1,hy) is so.

Proof of Proposition 4.1.3.  We will only prove part a) and ¢). The proof of part b)
follows the same type of argument as the proof of part a).
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To prove part a), we start to argue that for given .JJ; > 0the map hy — ¢4 (Jy, hy) is
right-continuous at every point hy € R. To see that, take a sequence of reals {h,, } such
that h,, | h1 as n — oo and note that since the map hy > t4.(J1, hy) is increasing,
the sequence {t; (J1,hy,)} converges to a limit £ with > t, (.J;, h1). Moreover, by
taking the limit in the fixed point equation we see that

(12) t=hy +ds (1)

and since ¢ (J1, hy) is the largest number satisfying (12) we get £ =t (.J1, hy).

Next, assume hy # —h*(Jy) and hy, T hi as n — oo. As before, the limit of
{t+(J1, hp)} exists, denote it by 7. The number T will again satisfy (12). By consid-
ering different cases described in Figure 4.5, we easily conclude that T =t (J1, hy).
Hence, the function hy +— t4(J1, 1) is continuous for all hy # —h*(J) and so we
get that hy — f1(J1, Ja, hy) is also continuous for all hy # —h*(Jy).

Now assume hy = —h*(J;). By considering sequences h,, | —h*(J;) and h,, 1
—h*(.J1) we can similarly as above see that

T (Ji, Jo, =R (1) +) = = hiJ}LfP(J )T+(J17J27h) =t (Ji, =h*(J1)) + |1 = T
T (i, Jo, =R (J1)—=) 1 = hT_lthP(Jl)ﬂ(Jthh) =t_(Ji,—h*(J1)) + |1 — J2
and so

T+(J1,J2,—h*(J1)+):T+(J1,J2,—h*(J1)—) <~ h*(Jl) =0.

Since h*(J;) = 0if and only if 0 < J; < J, the continuity of hy — fy(J1, o, hy) at
—h*(Jy) follows at once in that case. If J; = Js, then

Ty (Ji, Jo, =h* (J1)+) = t4 (J2, —=h*(J2))
T+(Jla J27 _h*(']l)_) = t*(‘]27 _h*(']2))
and since
Y(Ja,t4 (J2, —h*(J2))) = P (J2,t-(J2, =h*(J2))),
the continuity is clear also in that case. If J; > J. and 0 < J5 < .J., then

T (J1, Jo, —=h*(J1)+) # 7 (J1, J2, =R (J1) =)

and the map ¢t +— 1 (Jo, t) becomes strictly increasing, hence hy +— fi(J1, J2, hy) is
discontinuous at —h*(J;). For the case when J; > J., Jo > J., J1 # J> just note
that by — f4(J1, Ja, h1) is continuous at —h*(J;) if and only if @ and b (defined in
the statement of the proposition) are in the flat region in the upper graph of Figure 4.2.

To prove part ¢) we take a closer look at the map (J2,t) + 1(.J2, t). By definition,
this map is

—h*(J2) it t_(J2, —h*(J2)) <t < t*(J2)

vt = {t —do(t) if t>t*(h)ort <t_(Jo,—h*(J)).
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Figure 4.5: A picture of the different cases in the fixed point equation that can occur when
hi # —h*(J1). Here, d =4 and J; = 3.

From the continuity of ¢t — 1(J>,t) for fixed J> and the facts that Jo — t*(.J2),
Jy > t_(Jo, —h*(J3)), J2 — —h*(J3) and (Ja,t) = t — d¢p 5, (t) are all continuous,
we get that 1) is (jointly) continuous and so the result follows. O

4.2.4 Proof of Proposition 4.1.4
To prove the statement, we will show that the inequality

0
— >
(13) 7t (J.0) > 1
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holds if a) h > O and J > J. orb) h < 0 and h*(J) > —h. By integrating equation
(13) the statement follows. The proof of equation (13) will be an easy modification of
the proof of Lemma 5.2 in [13]. The proof is quite short and so we give a full proof
here, even though it is more or less the same as the proof in [13].

Write ¢(.J, t) for ¢7(t) and use subscripts to denote partial derivatives. By differ-
entiating the relation

h+ d(b(‘]a t+(']7 h)) = t+(']7 h)
with respect to J and solving, we get

0 _ d¢1(J7t (Jah))
gy =1 d¢z(J,+t+(J, h))’

To get the left hand side bigger or equal to one, we need

(14) Ao (J b4 (T, 1)) < 1
and
(15) G171 (T ) + o (L 1) > =

The first inequality is immediate since in the cases a) and b) above, the function ¢
h + d¢(J,t) crosses the line t — ¢ from above to below. For (15), note that

¢1(Jat) =
¢2(J7t) =

(tanh(.J +t) — tanh(J — t))

DN = DN =

(tanh(J +t) + tanh(J — t))

and so
¢1 (J, t) + ¢2(J, t) = tanh(.] + t),

which yields that ¢ + ¢» is increasing in both variables. Moreover, since tanh(.J.) =
% (see [2]), we get

6100 0) + 62(J.,0) = -

and so

(16) SL(Jt) + da(Jit) > = T > ot > 0.

Ul

To complete the proof, observe that in the cases a) and b), we have J > .J. and
ty(J,h)>0.0
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4.2.5 Proof of Proposition 4.1.7

In the proof we will use the following results from [13] concerning domination of
product measures.

Definition 4.2.1 (Downward FKG, Liggett, Steif). Given a finite or countable set
V, a measure y on {—1,1}V is called downward FKG if for any finite A C V, the
conditional measure (- |7 = 0 on A) has positive correlations.

Here, as usual, positive correlations is defined as follows:

Definition 4.2.2 (Positive correlations). A probability measure 2 on {—1,1}" where
V is a finite or countable set is said to have positive correlations if

/fgduz/fdu/gdu

for all real-valued, continuous and increasing functions f, g on {—1,1}V.

Theorem 4.2.3 (Liggett, Steif). Let i be a translation invariant measure on

d
{—1,1}%" which also is downward FKG and let p € [0,1]. Then the following are
equivalent:

a) p> Vp-

b) limsup u(n=—1on [l,n]d)l/”d <1l-p

n—o0

Remarks:

(i) In particular, Theorem 4.2.3 gives us that if two translation invariant, downward
FKG measures have the same above limsup, then they dominate the same set of
product measures.

(i) In [13], it is a third condition in Theorem 4.2.3 which we will not use and so we
simply omit it.

Before we state the next lemma we need to recall the following definition.

Definition 4.2.3 (FKG lattice condition). Suppose V' is a finite set and let i be a
probability measure on {—1,1}" which assigns positive probabilty to each element.
Forn, £ € {—1,1}" definen vV £ and n A € by

(nV &) (x) = max(n(z),£(x)), (n A&)(x) = min(n(z),{(x)), v € V.
We say that p satisfies the FKG lattice condition if

pm A un Vv E) > un)u§)
forallm, & € {-1,1}V
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Given a measure y on {—1, I}Zd we will denote its projection on {—1,1}7 for
finite T C Z? by pr.

d
. g are FKG in the sense that 1/7% g0 Satisfies the
FKG lattice condtion for each finite T C 7.4,

Zd
Lemma 4.2.4. The measures v> ;= +

Proof. Forn > 2,letA,, = {—n,...,n}? and denote the finite volume Potts measures
on {—1,1}*» with boundary condition y = 1 and n = ¢ by 71';’,’} and 7,7 Further-

- and VnHr

more, let Vil T

denote the corresponding fuzzy Potts measures. Given the
convergence in the Potts model, it is clear that I/;;t 7, converges weakly to I/%dq’i:,m
as n — oo for each finite T C Z Since the FKG lattice condition is closed under
taking projections (see [4, p. 28]) and weak limits we are done if we can show that
I/Z’JJ satisfies the FKG lattice condition for each n > 2. In [6] it is proved that for
an arbitrary finite graph G = (V, E) the finite volume fuzzy Potts measure with free

boundary condition and parameters ¢, .J, r is monotone in the sense that
(A7 v, (V@) =1 Y(V\{z}) =n) <vg),(Y(z) = 1YV \ {z}) = 1)

forall z € Vand 5, ' € {—1,1}VM#} with n < 1. We claim that it is possible
to modify the argument given there to prove that ng’r are monotone for each n > 2.
(Recall from [4] the fact that if V' is finite and p is a probabilty measure on {—1,1}V
that assigns positive probabilty to each element, then monotone is equivalent to the
FKG lattice condition.) The proof of (17) is quite involved. However, the changes
needed to prove our claim are quite straightforward and so we will only give an outline
for how that can be done. Furthermore, we will only consider the minus case, the plus
case is similar.

By considering a sequence n = 1y < 2 < -+ < 1, = 1’ where 1; and 7;11
differ only at a single vertex, it is easy to see that it is enough to prove that for all z,
y € Ay andn € {—1,1}A\{=¥} we have

Voure V(@) =1,Y (y) =11V (An \ {z,y}) =)
(18) > vy, (V@) =11V (An \{z,y}) =n)
Ve (V(y) = 1Y (An \ {z,4}) = n).

Fix n > 2, z, y and n as above. We will first consider the case when x and y are
not neighbors. At the end we will see how to modify the argument to work when
x, y are neighbors as well. Define V_ = {z € A, \ {z,y} : n(2) = —1} and
Vi ={z € Ay \ {z,y} : n(z) = 1}. Furthermore, denote by E,, the set of edges
(u,v) with either u, v € A, oru € Ay, v € OA, and let P denote the probability
measure on W = {1,...,¢}"»"9%» x {0,1}P» which to each site u € A, U dA,
chooses a spin value uniformly from {1, ..., ¢}, to each edge (u,v) assigns value 1 or
0 with probabilities p and 1 — p respectively and which does those things independently
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for all sites and edges. Define the following events on W

A={(0,8): (o(u) —o(v))é(e) =0, Ve = (u,v) € E, },
B={(0,8): 0(z)e{l,...,r}VzeV_,o(z) e {r+1,...,q}Vz € Vi },
C={(0,6):0(2) =1,Vz € 0A,, },

and let P’ and P" be the probability measures on {1,...,q}*" x {0,1}"» obtained
from P by conditioning on AN C and AN B N C respectively. (P’ is usually referred
to as the Edward-Sokal coupling, see [3].) It is well known (and easy to check) that the
spin marginal of P’ is W”} and that the edge marginal is the so called random-cluster
measure defined as the probability measure on {0, 1}£» which to each £ € {0, 1}£»

assigns probability proportional to

qk(ﬁ) H pﬁ(e)(l _p)lfﬁ(e),
eckE,

where k(&) is the number of connected components in £ not reaching A ,,. In a similar
way it is possible (by counting) to compute the spin and edge marginal of P”: The

. . "o . n,l .. . " .
spin marginal 7" is simply 7,; conditioned on B and the edge marginal ¢" assigns
probability to a configuration ¢ € {0, 1}¥» proportional to

lDrko(ﬁ)(q _r)kl(f = (&)+ky (€) H p —¢(e )
e€FE,

where ko (&) is the number of clusters intersecting V_ but not reaching dA,,, ki (§) is
the number of clusters intersecting Vi, k, () (resp ky(§)) is 1 if x (resp y) is in a
singleton connected component and 0 otherwise and D is the event that no connected
component in £ intersects both V_ and V.. Observe that (18) is the same as

m™(X(@) e{r+1,...,q}, X(y) €{r+1,...,q})
>r'(X(z)e{r+1,....qH) 7" (X(y) € {r+1,...,q}).

An important feature of the coupling P" is that it gives a way to obtain a spin config-
uration X € {1,...,¢}"~ distributed as 7"":

19)

1. Pick an edge configuration ¢ according to ¢''.

2. Assign X = 1 to the connected components of ¢ that intersect A,, and denote
the union of those components by C'.

3. Assign independently spins to a connected component C' # C' of & where the
spin is taken according to the uniform distribution on

{1,...,r} if C' intersects V_,
{r+1,...,q} if C intersects V,
{1,...,q} if C'is a singleton vertex  or y.
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By defining the functions f;, f, : {0,1}P» — R as

0, ifC, = C or C, intersects V_,
fa(€) = ¢ &+, if Cy is a singleton,

1, otherwise,

where C; is the connected component of £ containing z (f,, defined analogously), we
see as in [6] that (19) follows if

(20) [ ety > [ foas [ 5,06,

The significance of f, and f, is that f, (&) is the conditional probability that X (z) €
{r+1,...,q} given { and similarly for f,, and that the events X (z) € {r +1,...,q}
and X (y) € {r +1,...,q} are conditionally independent given &. With all this setup
done it is a simple task to see that to prove (20) we can proceed exactly as in [6, p. 1154-
1155].

To take care of the case when = and y are neighbors, observe that everything we
have done so far also works for the graph with one edge deleted, i.e. the graph with
vertex set A, and edge set E, \ {(z,y)}. Hence we can get (19) for that graph.
However the observation in [6, 1156] gives us (19) even in the case when we reinsert
the edge (x,y). O

Proof of Proposition 4.1.7. Letk,l € {0, —,+} be given and let A,, = [1,n]%, n > 2.
We are done if there exists 0 < ¢ < 1 (independent of &, [ and n) such that
yii’fi(n =—-1lond,)> clBA"‘yqzsﬁﬂ(n = —1on A,) forall n.

As for the Ising model, it is well known that the infinite volume Potts measures satisfy
the so called uniform nonnull property (sometimes called uniform finite energy prop-
erty), which means that for some ¢ > 0, the conditional probability of having a certain
spin at a given site given everything else is at least c. (See for example [8] for a more
precise definition.) We get for arbitrary o € {1,...,q}%4»

1) V5t (= —ton[1,n]?) > P4 lzdno (v = —1on 4,).

d
Since yqz 7L (n=—1on[1,n]") can be written as a convex combination of the terms

in the far right side of (21) the result follows at once. O

4.2.6 Proof of Proposition 4.1.8

Let p denote the root of T? and let V}, be the set of all sites in T¢ with distance at
most n from p. If x is on the unique self-avoiding path from p to y, we say that y is
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a descendant of z. Given z € T, let S, denote the set of vertices of all descendants
of z (including z). Moreover, let T, denote the subtree of T¢ whose vertex set is S,
and edge set consisting of all edges (u,v) € E(T?) with u, v € S,. In the proof of
Proposition 4.1.8, we will use the following Lemma from [13]:

Proposition 4.2.5 (Liggett, Steif). Lerp € [0,1], { P(i,7) : 4,5 € { =1,1} } be a
transition matrix for an irreducible 2-state Markov chain with P(—1,1) < P(1,1)
and let . be the distribution of the corresponding completely homogeneous Markov
chain on T%. Then the following are equivalent:

a) p> Vp-
b) limsupu(n = —1on V)=l <1 —p,

n—oo
c) P(_]-a 1) > D
Proof of Proposition 4.1.8. Fix J >0,q > 3andr € {1,...,q—1} withe?/ > ¢—2.

d
In [9], it is proved that I/;T J’?, is a completely homogeneous Markov chain on T¢ for all
values of the parameters with transition matrix

e 4r—1 q—r
e?/4q—1 e2/4q—1
€2J+Q77‘71 .

r
e2J +q—1 e2J +q—1

Hence, from Proposition 4.2.5 we get that V;T(;’[; > 7, if and only if
q—r

22 < 0.

(22) P=ri i

d
Furthermore, in [9, p. 10] the authors also derive the transition matrix for W;T J’l from
which we can compute the following:

r
I/Td’f(n =—-lonV,)> Zﬂ'gj]’l(X =ionV,)

a,J,r
i=1

b ce?’ Val=1
- b+q—1 <ce2J+q—1>

r—1 e’ IVal =t
+ :
b+qg—1 <c+e“+q—2>

where
d

y_ T (X(p)=1)

T Tdn _
m,; (X(p)=2)
T,,1
T (X(z)=1

T (Y@=
T, (X(z)=2)

<
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(Of course, homogeneity gives that the last quotient is independent of x.) We get that

lim sup 1/;;’;(77 =—1lonV, )1/\Vn\
n—o0
(23) 2] 27

> + .
T +q—1 c+e +q-2

d
Now, assume that the underlying Gibbs measures for the Potts model satisfy 7r:£ J’l #

d
W;T J’O. It is known [1] that this is equivalent to having

1
”g?cxu)=1)>5, Vz e T

In [9], the authors observed that if a = 7r1qr731 (X (p) = 1), then from symmetry reasons

(g—1a
b= ——.
1—a

Hence, if a > % we get b > 1. Moreover, from the recursion formula in [9, p. 9] we
obtain
_ (662‘] + qg-— 1)d+1
(et e g —2)dH1T
It is easy to see from (24) that if b > 1 then ¢ > 1. Hence, we can choose p € (0,1)
such that

(24)

(25) -7  p< 1T
e +q—1 P>l fq-1

Moreover, an easy calculation gives us that

ce2? 027 e +q—2

+ ‘ > —
ce? +q—1 c+el+q—2 7 ce? +q-1

and since )
ce* +r—1 _ ce® +q-2

ce?’ +q—1" ce? +¢q—1

1-p<
we get from (23)

lim sup UTd’f(n =—lon V)"l >1_p.

q,J,r
n—oo

d d
It is now clear that for p as in (25) we have that 1/37 J’f; dominates vy, but 1/37 J’; does not
dominate ,. O

d
Remark: By deriving the transition matrix for 7r3, ;1 it is probably possible to prove

d d
that there exists p € (0, 1) such that 1/?; j’?ﬂ dominates v, but I/;I: jjf does not dominate
Vp-
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4.3 Conjectures

We end with the following conjectures concerning the fuzzy Potts model. The corre-
sponding statements for the Ising model are proved in [13].

Conjecture 4.3.1. Letq > 3,r € {1,.. ,q 1} and consider the fuzzy Potts model on

VA If Ji, Jy > 0 with Jy # Ja, then v” Z%+ are not stochastically ordered.

andzlq Jor

q, J1 r
Conjecture 4.3.2. Let g > 3, r € {1,...,q — 1} and consider the fuzzy Potts model

on 7.4, If0 < Jy < Js, then
sup{p € [0,1] : qJ1,27p}>sup{p€[0 1] : qJ2T>7p}

Conjecture 4.3.3. Let J > 0,q > 3, r € {1,...,q — 1} and consider the fuzzy Potts
model on T®. Define the sets:

Dy ={pel]: i3t >y},
(26) D ={pel0,1]: vqj;>vp},
DO :{pe [071] qJT Z"yp},
If the underlying Gibbs measures for the Potts model satisfy 7TT o1 # 7rq J , then the
sets in (26) are all different from each other.

Conjecture 4.3.4. Let g > 3, r € {1,...,q — 1} and consider the fuzzy Potts model
on T. Denote the critical value correspondlng to non- uniqueness of Gibbs states for

the Potts model by J.. If J. < J1 < J» thenv,, J’fr < q’jj’r.

Remark: 1f J; < Jo < J., then

T, T4, q-—r
Vone (@) = 1) = v, 75 (n(@) = 1) =

q
and so in that case, I/ridjfr andv, ’+ can not be stochastically ordered.
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ABSTRACT

A pair trade is a portfolio consisting of a long position in one asset and a short posi-
tion in another, and it is a widely applied investment strategy in the financial industry.
Recently, Ekstrom, Lindberg and Tysk studied the problem of optimally closing a pair
trading strategy when the difference of the two assets is modelled by an Ornstein-
Uhlenbeck process. In this paper we study the same problem, but the model is gener-
alized to also include jumps. More precisely we assume that the above difference is
an Ornstein-Uhlenbeck type process, driven by a Lévy process of finite activity. We
prove a verification theorem and analyze a numerical method for the associated free
boundary problem. We prove rigorous error estimates, which are used to draw some
conclusions from numerical simulations.

Key words and phrases: Pairs trading, Ornstein-Uhlenbeck type process, finite element
method, error estimate.
Subject classification : 91B28, 65N30, 45J05.

5.1 Introduction

A portfolio which consists of a positive position in one asset, and a negative position in
another is called a pair trade. Pairs trading was developed at Morgan Stanley in the late
1980’s, and today it is one of the most common investment strategies in the financial
industry. The idea behind pairs trading is quite intuitive: the investor finds two assets,
for which the prices have moved together historically. When the price spread widens,
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the investor takes a short position in the outperforming asset, and a long position in
the underperforming one with the hope that the spread will converge again, generating
a profit. A main advantage of pairs trading is that the short position can, in principle,
remove any exposure to market risk. For a historical evaluation of pairs trading we
refer to [6].

To model the pair spread the authors in [3] proposed a mean reverting Gaussian
Markov chain which they considered to be observed in Gaussian noise. Recently, in
[2] the authors suggested the continuous time analogue, the so called mean reverting
Ornstein-Uhlenbeck process. In this paper we generalize the model of the spread to
also include possible jumps. Let (2, F, P) be a complete probability space where the
following processes are defined in such a way that they are independent:

— A standard Brownian motion W = {W; };>0.
— A Possion process N* = { N };>0 with intensity A > 0.

— A sequence of independent random variables { X }72; with common continu-
ous symmetric density ¢. Moreover, the support of  is contained in the interval
(—J,J) for some J > 0.

Define the compound Poisson process C% = {C;‘“"}tzo in the usual way as

N
A 2
v =3 Xf
k=1

and denote the filtration generated by W, C' A# and the null sets of F by F = {Fi}i>0.
It is well known that this filtration satisfies the usual hypotheses (see for example [10]).
From now on, when we say that a process is a martingale, submartingale or super-
martingale we mean that this is with respect to F.

Let the difference U = {U;}+>0 between the assets be the unique solution of the
stochastic differential equation

(1) AUy = —pUp dt + o dW; +dC)%, >0,

where ;# > 0, ¢ > 0. (The solution of equation (1) is usually called a generalized
Ornstein-Uhlenbeck process or an Ornstein-Uhlenbeck type process.) Sometimes we
will denote the driving Lévy process in (1) by Z7M% | i.e.

ZIM = oW, + CM%, > 0.

As discussed in [2], there is a large risk associated with a pair trading strategy. Indeed,
if the market spread ceases to be mean reverting, the investor is exposed to substantial
risk. Therefore, in practice the investor typically chooses in advance a stop-loss level
a < 0, which corresponds to the level of loss above which the investor will close the
pair trade. For a given stop-loss level a < 0 define

2) To =inf{t >0: U; <a},
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the first hitting time of the region (—o0, a], and the so called value function

3) V(z) =supE,[U;rr] z€R

where the supremum is taken over all stopping times with respect to U. (Here and
in the sequel E, means expected value when Uy = x.) The major interest here is to
characterize V', and perhaps more importantly, to describe the stopping time where the
supremum is attained. Since the drift has the opposite sign as U, we have no reason
to liquidate our position as long as U is negative. On the other hand, if U is positive,
then the drift is working against the investor and for large values of U the size of the
drift should overcome the possible benefits from random variations. Moreover, since
the jumps are assumed to be symmetric, this indicates that there is a stopping barrier
b > 0 with the property that we should keep our position when U; < b and liquidate
as soon as Uy > b. We note that we cannot be sure to close the pair trade at any
of the boundaries a or b, because the spread can exhibit jumps. This was not the case
in [2] and it is the major reason for the additional difficulties encountered in the present
paper.

General optimal stopping theory (described for example in [9, Ch. 3]) leads us to
believe that the value function is given by V' = w, where (u, b) is the solution of the
free boundary problem

gUU(x) =0, = (aa b)a
“4) U(ZL”) =z, T¢ (0,, b)a
u'(b) =1

Here Grr is the infinitesimal generator of U, which is defined on the space of twice
continuously differentiable functions f : R — R with compact support:

©) Guf@) = 5@ —paf @+ [ G+ - S@De) s, R

Moreover, the stopping time where the supremum in (3) is attained should be
(6) 7, =inf{t > 0: U; > b}.
Indeed, our first result is a so called verification theorem.
Theorem 5.1.1. Assume that (u,b) is a classical solution of (4) with
a) Guu(z) <0, forz > b,
b) u(x) >z, forx € R

Then u(z) =V (z) = Ep[Ur,ar,], for & € R, where V is given by (3).
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Remark: As seen from the assumptions on ¢, we are assuming that the absolute value
of the jumps of the process {U;}>¢ are bounded. The reason is that on the financial
market, an asset cannot jump to arbitrarily large levels. If nothing else, the jumps are
bounded by all the money in the world.

The rest of the paper is organized as follows. In Section 5.2 we prove Theorem
5.1.1 and in Section 5.3 we discuss a numerical solution of the free boundary problem
(4). We also present strong evidence for the existence and uniqueness of a solution of

).

5.2 Proof of Theorem 5.1.1

Before we start to prove Theorem 5.1.1 we need to recall some facts. From the general
theory in [5] we get that the boundary value problem

Gou(z) =0, =z € (a,b),

(N u(z) =2z, z¢(ab),

has a unique classical solution and that such a solution belongs to the space
C*(R\ {a,b}) N C" (B \ {a,b}) N C(R).

Moreover, the finite left and right limits of »’ and u’ exist at a and b. Although these
facts follow from [5], we present in Theorem 5.3.1 a self-contained proof for the sim-
pler situation that we consider here. Hence, if (u, b) is a classical solution of (4), then
necessarily

u € C*(R\ {a,b}) nC'(R\ {a}) N C(R)

with finite left and right limits of " and u"" everywhere. Furthermore, recall a general-
ized version of It6’s formula for convex functions (see for example [10, Ch. 4]):

Theorem 5.2.1 (Meyer-It6 formula). Ler X = {X;}>( be a semimartingale and let
f be the difference of two convex functions. Then

(X)) = F(Xo) + /0 DX d,
+ Y (f(X.) = (X, ) = D f(X, ) AX,)

0<s<t

w3 [ DO du),

where D~ f is the left derivative of f, i is a signed measure which is the second
generalized derivative of f and {L{(X)}s>o is the local time process of X at a.
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Due to the regularity of w it can be written as a difference of two convex functions
(see Problem 6.24 in [7, Ch. 3]). Moreover, the second derivative measure p of u
can be split into two parts u = p. + pgq, where the continuous part p. is given by
due = v dx and the discrete part pg = 0, is a point mass at a. Here, u” () denotes
the second derivative of w at x except at the points a and b, where it denotes the right
second derivative (which we know is finite). By Corollary 1 of the Meyer-It6 formula
in [10], we can now write

8) %/_o(:;L;%’(U)du(.w=1 / u' (Us-) dU, U5 + L“(U)(u’(a+)—u’<a—>)

= —/ )ds + Lt (U)(u'(a+) —u'(a—)),

where [U, U] denotes the continuous part of the quadratic variation [U, U].
Furthermore, by using (1) and the compensated Poisson random measure

Nyz(dt,dy) = Nz(dt,dy) — \dt p(y) dy,

where N; denotes the jump measure associated with Z7M% we get

)dUs+ > (u(Us) = u(Us—) = D™ u(U,—) AU,)

0+ 0<s<t

:—,u/U _D u(U, ds+o/Du
€)

+ /0+ /R (w(Us= +y) —u(Us=)) Nz(ds,dy)
A [ @O+ 9) — w0 o) dy s

Summing up, we now have for¢ > 0
tio
w(Up) = u(Up) +/ (—u”(Us,) - uUs,D*u(Us,)) ds
0

(10) + A (uw(Us— +y) —u(Us-))p(y) dy ds

where

M; = 0/0 D™ u(Us—) dW, + /0+ /R (u(Us— +y) —u(Us—)) Nz(ds, dy).

Since u is Lipschitz, has a bounded left derivative and since the jumps density ¢has a
finite swe get that { M, };>0 is a martingale.
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Lemma 5.2.2. Assume a € R and Uy > a. Then a.s. L2 ,,(U) = 0 forall t > 0.

Proof. Fix a € R and assume Uy > a. Since the local time process {L{};>¢ is
continuous in ¢ it is enough to prove that for fixed ¢ > 0 we have L} ,,(U) = 0 a.s.
From [10, p. 217], we get that

1 —_ p—
nga/\t(U) = (Ur,at — @)™ = Z 1{Us,>a}(Us —a)
0<s<Tg AL
T At
+/ 1{U57S(L} dUs — Z 1{US,§[L}(US — 0,)+.
0+ 0<s<To At

Futhermore, from the fact that Us > a forall 0 < s < 7, A t, we get that Us_ > a for

all 0 < s < 1, At and from the left continuity of Us_, we can conclude that we also

have UT Art— > a. From that and by splitting the integral and the sum, we obtain
Lia/\t(U) = I{Ufa/\t—:a}(UTa/\t - a)7 + I{Ura/\t—:a}(UTa.At - a’)

ToAt—

Mg e Unni—a)t 4 / 110, —ay U,
0+

- Z ]-{U _:a}(Us - a)+

0<s<TaNt
ToAt—
= / 1{US,:a} dUs — Z 1{US,:a}(Us — a)+.
0+ 0<s<Ta AL
From the observation that if Us_ = a for some 0 < s < 7, A t, then s is a jump time
and the jump must be in the up direction, we conclude that the right hand side of the
last expression is zero and so we are done. (|

Remark: In a similar way one can show that, if a < Uy < b, then
Lt onU)=0and LY ., (U)=0 for t > 0.

Proof of Theorem 5.1.1. Since u(x) = V(z) = E;[Ur ar,] = x, when 2 < a, we can
assume that x > a. Define Y; = w(U;,at), t > 0. By using (10), Lemma 5.2.2, the
expression (5) for the generator of U, and (4), we get

T At
Y, = u(x / pUs— 11y, _>py ds

Tat
5\ / / (Us- +9) = ulUs )0 () (01— 0y dy ds + My, ni.

Property a) and the martingale property of {A; A:} give that {Y;}:>¢ is a super-
martingale. Furthermore, from property b) we get that Y; > U, s, for ¢t > 0, and
since

(12) U‘ra/\t Z a — Ja t Z 07



5.3. NUMERICAL SOLUTION OF THE EQUATION (4) 105

we can apply the optional sampling theorem (see [7]) and obtain
EI[U‘I’G_/\T] < EZ[YT] < EI[YO] = U(l’),

where 7 is an arbitrary stopping time with respect to U. Hence, V(z) < u(z) for
x > a. In particular, if z > bthen x < V(z) < u(z) = z and so u(z) =V (z) =
E.[U:, rr] when z > b.

For the case when a < = < b, note that from (11) we get for ¢ > 0 that

Y‘rb/\t = MT,,/\T;,/\t + U(l‘)

and since

a_JSYTb/\tSb_'_Ja tZOa
the optional sampling theorem applies again and we obtain u(x) = E,[Y;,]. Finally,
the fact that Y;, = U, ar, gives us u(z) = E [U; ar] < V(x) and the proof is
complete. O

5.3 Numerical solution of the equation (4)

We have not been able to give a rigorous proof of the existence and uniqueness of the
solution (u, ) of the free boundary value problem (4). We therefore resort to a nu-
merical solution by means of the finite element method. However, at the end of this
section we will show that we have strong computational evidence for both existence
and uniqueness for (4). In order to achieve this we first show rigorous existence and
regularity results for the boundary value problem (7) and rigorous convergence esti-
mates with explicit constants for the finite element approximation.

5.3.1 The boundary value problem

We begin by transforming the free boundary value problem (4) to a problem with ho-
mogeneous boundary values. Set v(z) = u(z) — z and use [~ yp(y)dy = 0 to
get

—L0*v" () + pav'(z)

. N[ (ol ) = o)t dy = iz, 2 € (a)

Introducing the operators
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our approach will be to first solve the boundary value problem

Lv—Tv=f, =€ (a,b),
U(x) =0, = € (aab)a

with f(z) = —px, and then for fixed a < 0 find b > a such that v'(b) = 0.

To solve (14) we follow a standard approach based on a weak formulation and
Fredholm’s alternative. We denote by (+,-) and || - || the standard scalar product and
norm in L (a, b), and we denote by H*(a,b) and H{ (a,b) = {v € H'(a,b) : v(a) =
v(b) = 0} the standard Sobolev spaces. We denote the derivative Dv = dv/dz. We
choose v + || Dv|| to be the norm in H} (a, b), which is equivalent to the standard H*-
norm. We extend functions v € Ly(a, b) by zero outside (a, b) so that Zv is properly
defined. We define bilinear forms

(14)

b
Ap(u,v) = / (30%u/ (z)v' (z) + pou'(z)v(z)) dz, u,v € Hy(a,b),

b
(15) Az(u,v) :/ Tu(z)v(z)dz, w,v € La(a,b)

Au,v) = Ag(u,v) — Az(u,v).

Since [*_o(y) dy =1, o(—y) = ¢(y), and v(z) = 0 for z & (a,b), we also have

b
(16) Tov(z) = /\/ olx —y)v(y)dy — Mv(z), v € La(a,b).

The convolution operator Zy v(z) = ffooo w(z — y)v(y) dy is bounded in Ly(a,b)
with constant ¢ = [ fooo ©(y) dy = 1 by Young’s inequality. Hence,

(17) IZv|| < 2A||v[|, v € Lz(a,b),
(18) IDZv|| < 2\[|Dvl|, v € Hy(a,b),
and

—Az(v,0) > A(0ll* = | Zvlljoll) > 0, v € La(a,b).
Hence,
| A(u, )| < 50| Dul[|Dv]| + pmax(lal, [b]) [ Dull[[v] + 2X[Jul]||v]
< ci||Dull|Dv|,  u,v € Hy(a,b),
¢ = 10% + ex(pmax(fal, b)) + 2Xc2),

where we also used Poincaré’s inequality

(19) [l < e2llDoll, v € Hyla,b), 2= (b—a)/r.
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By integration by parts we obtain
Ag(v,v) = 50°|Dvl* = Spllol?, v € Hy(a,b),
so that A(-, -) is bounded and coercive on H{ (a, b):

(20) |A(u,v)|

, e[| Dull[[ Dol], u,v € Hy(a,b),
(21) A(v,v)

<
> 50% || Dol]” = Sullvll?, v € Hy(a,b).

1
2

We say that v € H{ (a,b) is a weak solution of (14) if

(22) A(v,¢) = (f,¢) Yo € Hy(a,b).

We also use the adjoint problem: find w € H{ (a, b) such that

(23) A(p,w) = (¢,9) V¢ € Hy(a,b).

The strong form is (note that Z is self-adjoint in Lz (a, b))
(24)

where
2

Lw(z) = —30°w" (z) — paw' (z) — pw(z).

We may now prove the existence and uniqueness of a classical solution of (14). In
principle this follows from the general theory in [5], but we present a self-contained
proof, with explicit constants, for the simpler situation that we consider here. The
theorem also provides results necessary for the analysis of the finite element method.

Theorem 5.3.1. The boundary value problem (14) has a unique weak solution v €
H}(a,b) for every f € La(a,b). The solution belongs to H?(a,b) and there is a
constant ¢z such that

(25) | D?v]| < es]|f]|-

Moreover, if f(z) = —px, then the solution is classical, v € C*([a, b]). Similarly, the
adjoint problem (24) has a unique weak solution w € H_ (a,b) for each g € Lo(a,b),
which belongs to H?(a, b) and

(26) |D*w]| < esllgll-

Proof. The proof is a standard argument as presented, for example, in [4, Ch. 6] for
elliptic PDEs. The only difference is that that the lowest order term in A(-, ) is defined
by means of an integral operator, but the crucial properties (20), (21) are the same.



108 CHAPTER 5. PAPER IV

We first show that weak solutions are regular. We use a regularity result for elliptic
problems (see [4, p. 323]): If v is a weak solution of

Lv(x) = g(x), © € (a,b); wv(a) =v(b) =0,

and if g € H*(a,b) for some k > 0, then v € H**2(a,b). A weak solution v €
H}(a,b) of (14) satisfies this with ¢ = f + Zv, where by (17), (18) Zv € H'(a,b).
For f € Ls(a,b) we conclude that v € H?(a,b). If f € H'(a,b), then we have
v € H?(a,b) and by Sobolev’s inbedding v € C?([a, b]). In particular, a weak solution
is classical when f(z) = 0 and f(2) = —pz. Analogous regularity results hold for
the adjoint problem.

Now we can prove existence. Let

Ay(u,v) = A(u,v) + $p(u,v).
By the Lax-Milgram lemma we know that the shifted problem

Au(u,¢) = (9,¢) Vo € Hy(a,b),

has a unique solution u € Hj(a,b) for each g € Ly(a,b). This defines the bounded
linear operator A, ' : Ly(a,b) — Hg(a,b) by u = A, 'g. The equation (22) is now
equivalent to

v=A'f+ spAl,

orv — Kv = h, where h = A" f and where K = $u A7 : Ly(a,b) — La(a,b) isa
compact operator, because H{ (a, b) is compactly inbedded in Ls(a, b).

By the Fredholm alternative we know that the latter equation is uniquely solvable
for every h € Lo(a,b) if and only if the corresponding homogeneous equation has
no non-trivial solution. But a non-trivial solution of v — Kv = 0 would be a weak
solution, and hence a classical solution, of (14) with f = 0.

Then we can apply the maximum principle for classical solutions of (14), see [5,
Theorem 3.1.3]. It says that if a classical function satisfies (£ — Z)u < 01in (a,b),
then max, 3) u = maxp\ (4,5) ¥. (The maximum principle for the integro-differential
equation is proved in the same way as for the differential equation after noting that
—TZu(zg) > 0 if u has a maximum at xy.) We conclude that that the homogeneous
equation has no non-trivial solution and therefore (14) has a unique weak solution for
every f € Lo(a,b). By the Fredholm theory the adjoint problem (24) is then also
uniquely solvable for all g € Lo(a, b).

Finally, we prove the bounds (25) and (26). Letv = A"'f and w = (A*) g
denote the solution operators of (14) and (24), respectively.

Let f € H}(a,b). Then v = A~ f is classical and the maximum principle gives

27) M|z ap) < Call Il an)-
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In order to compute the explicit constant we briefly recall the proof. Let

eVb=a) _er(@=a) 5 < p
¢(z) = N
0, x>b,

where v > 0 is chosen so that that A > 1 in (a,b). Then u(z) = || fllz_(a,p)P(x)
satisfies Au > ||fllz(ap) > f = Avin (a,b) and u > 0 = v outside (a,b), so
that the maximum principle gives maxy, (v — u) = maxg\ (q,p)(v — u) = 0, that
is, u > vin [a,b]. Hence v < ||@|z_(a,5)|lfllLc(ap) i [a,b]. The lower bound
v > =@z (a,p) | fll L (a,p) is Obtained in a similar way and so we get

1002w () < NBl e @iy 1Ly < € C™NFN L (art)-
To determine v, let x € (a,b) and compute

b—x

—Th(z) = NV / (€7 = Dp(y) dy

— 00

Hence,
Ap(x) > (%0272 — puby — )\)e”(z*“) >1, =z€(a,b),
if 20292 — pby — X > 1, that is, if

. ub 2(0+1
TEYE 5T (72)
a g

Then we conclude that (27) holds with ¢;, = e¥(0—a),
. 1 1
Hence, since |[v]] < (b —a)z ||v||Lw(a7b) and ||f||Loo(a7b) < (b—a)z||Df]|, we
obtain the bound
o]l = [AT fll < es|IDfIl VS € Hy(a,b), e5 = (b—a)ea.
By duality we conclude
||(A71)*||B(L2,H71) = ||A71||B(H3,L2) < cs.

Hence

28)  Nwllg— = [1(A) gl = (A glla-1 <esllgll Vg € La(a,b),
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where H~!(a,b) = (H{ (a,b))* and

ollgr-s = sup &2
b Ddl

Recall that v ~ ||Dwv]| is the chosen norm in H{ (a,b). By using ¢ = w € Hg(a,b)
here we obtain

(29) lwl||* < |Jw]| gr-1]| Dw]|.

We take ¢ = w in the adjoint equation (23) and use coercivity (21), the inequality
2ab < ea® + ¢ 'b?, and (29) to get
307 |Dwl|* < A(w,w) + spullwll® < [lgllllwll + 5 pullw|?
s lgll? + pllwll* < 5u7 gl + pllwll -+ | Dwl|
s gl + o~ wllf - + o[l Dwl .

INIA

With (28) this leads to
|1Dw]” < 2072~ lgl]” + 40~ 2 ||wl -
<20 2t 402 d) gl
and with Poincaré’s inequality (19),
lw]| < el Dwl| < e2(207 2" + 4o~ p=?2)2 gl
Hence

I(A") " gll = llwll < csllgll Vg € L2(a,b),

-2 2

(30)
c6 = 22072 + 40 c5)%.

By duality in L, we also have
(31) Il =A™ Il < eollFIl VS € La(a,b).

In order to bound D?v we recall that v € H?(a, b). Hence it satisfies (14) strongly, so
that with (17) we obtain
30°ID?0l| < pllzDol| + [|Zo]| + (| f]]
< pmax([al, [p) | Do]| + 2A[[]| + (| f]]
< pmax(jal, [BDID*01# Joll* + 2X][o]| + £
< 0% ID%0]| + (22 + o2 p® max(|al, [b)*) o]l + (| £
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Hence,
D%l < exll Il + eslloll,
cr =40 %, cg =40 22\ + p+ o 2 p® max(|al, |p])?).

In the last step we replaced 2\ by 2\ + p in cg, so that the same result holds also for
the adjoint equation (24). Using also (30) and (31) we finally conclude

1D%0]] < eslIfll,  [1D*wl]] < esllgll,
c3 = ¢7 + CcgCy.

This completes the proof. O

5.3.2 The finite element method

The finite element method is based on a family of subdivisions 7}, of the interval [a, b]
parametrized by the maximal mesh size h. Each mesh is of the form

Thia=zg<z < <zj1 <z; < - <zny=b, h= 'I{IaXN(CUj—ZL”]'_l).
J=1,..,

We introduce the space Vi, C H{ (a,b) consisting of all continuous functions that
reduce to piecewise polynomials of degree < 1 with respect to 7. See [8, Ch. 5] or [1,
Ch. 11. Then there is an interpolator I, : C'([a,b]) = V}, such that [yu(z;) = u(x;),
j=1,...,N,and

(32) ID(u— Ih)|lp,ap < h2F5(|D%ull, € H?(a,b) N Hi(a,b), p = 2,00.

To prove this we use the identity

D(u — Ipu)(z) = h; / ) dy =h; / / z)dz dy,

forz € (xj_1,x;) and with h; = ; — 2;_1, which yields
1
D@ = i) (@) < B ID?ull1sa, s ey < BHID%ll, @ € (251,5).

This proves the case p = oo and for p = 2 we have

N
ID(u = )| <> h3ID%ull3, 2y < B2IDul,
j=1
The finite element problem is based on the weak formulation in (22): find v, € V},
such that

(33) A(vn, ¢n) = (f,¢n) Von € Vi,

where A(-, ) is defined in (15) with the integral operator computed as in (16). In the
following theorem we prove convergence estimates with explicit constants.
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Theorem 5.3.2. Let v be the solution of (14) as in Theorem 5.3.1. There is hy =
0'/(2%/1%0163) such that, for h < hg, (33) has a unique solution v, € V}, and

(34) Jv —wnll < deicGo?R2(If]l,  1D(v —wvn)ll < derczo 2| |-

Proof. We adapt an argument from [11]. Let e = v — vj, denote the error. By subtrac-
tion of (33) and (22) with ¢ = ¢, € Vi, C Hi (a,b) we get

(35) Ale,¢n) =0 VYop € Vp.

Consider the adjoint problem (23) with g = e and solution w = (A*)~le. With ¢ = e
this yields

lell> = Ae,w) = A(e,w — Iyw) < 1| Dell[| D(w — Tyw)|
< ci1||De||h||D*w]| < eresh|Del||[e]].
Here we used (35), (20), (32), and (26). We conclude
(36) llell < cresh||Del].

In view of (35) we have A(e,e) = A(e,v — v,) = A(e,v), so that by (21) and
(36),
37 50°[|Dell” < Ae,e) + sullel” = Ale,v) + sulle]|”
< c1||Delll[Dv]] + sucicih? || Del*.
Hence, for h < hg sufficiently small (h% = 02 /(2uc?c3)), we have
|Del| < co||Dv||, ¢y =4cio72.

Now if f = 0 in (22) and (33), then v = 0 by uniqueness, and hence e = 0, so that
vy, = 0. This means that we have uniqueness for the finite element problem (33). But
this is an equation in a finite dimensional space so existence also follows. Therefore,
(33) has a unique solution for all f € La(a,b) if h < hyg.

In order to prove the error estimate (34) we return to (37) but use A(e,e) =
A(e,v —vp) = A(e,v — I,v) instead:

Lo |Dell? < A(e,e) + Sullell? = Ale,v — Iw) + Lplel?
< || DelllD(v — Inv)|| + spuciesh?|| Dell?,
and conclude, for h < hyg,
|De|| < co||D(v — Tv)||, co =4ci07 2.
Hence, by (32), (25), and (36),
|1 Del| < eoh||D?v]| < eoeshl| fI| = derezohl|f]l,
lell < eresh||Del| < 4ciezo™n?||f]),

which is (34). O
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We finish by proving the pointwise convergence of the derivative.

Corollary 5.3.3. Assume that each finite element mesh Ty, is uniform, that is, x; —
xzj_1 =hforj=1,...,N. Then, for h < hg as in Theorem 5.3.2, we have

[v'(B) = 0 ()] < croh?|Ifll, 10 =2+4derczo %,
Proof. We use the inverse inequality

IDG|1 0y < B 2IDSwll, 6 € Vi

To prove this we note that
Tj
D(bh(x) = h_1/ D¢h(y) dya VS (l‘j,l,l’j), h = rj —Tj-1,
Tj—1

which yields
1 1
D6 ()] < ™2 {ID@nllrs(e;or 05 < B 21Dl @ € (w1, 75)-
Hence, by (32) and (34),

IDellL o (ap) < NID(@W = Inv)l| L ap) + 1D Inv = vn) |1 o (a,b)
<D = 1)l 0y + B2 D (Iyw — vp)|
<ID@ = In)||r. 0y + b2 IDTnw = v)|| + b2 | D( = vi)|
< 203 || D%v]| + b3 |D(v — vp)|| < (2 + 4ercs0 )3 | ]

(v —
(v—

Therefore

[0/ (b) — v (b)] < (2 + derczo2)RE| ]|

In particular, with f(z) = —pux, Corollary 5.3.3 gives

B3 — 3
3

(38) [v'(b) — vy, (b)] < C11h%, C11 = Cioft

Given numerical values for the parameters a, b, o, i, A we may now compute nu-
merical values for hg and ¢11. Alternatively, we may conclude that there are uniform
bounds hg > hg, c11 < é11 for b € [by, ba] and with the other parameters fixed.
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5.3.3 The free boundary value problem

We use uniform meshes 7;, with

l‘j—l‘jflzh: N s

Since we want to vary b, we parametrize by N instead of h. Let f(z) = —uz, fixa < 0
and let v, vy denote the solutions of (22) and (33) for b > a. Define the functions

F(b) =v'(b), Fn(b) =viy(D).
From (38), we get fora < by < by

|F' = FNI Lo (b1 .,02) < é1aN"%, N> Ny,
(39

. N 1
G2 = é11(b2 —a)?, 0= —=

By writing down the matrix equation for solving the finite element problem (33), it is
easy to see that, for fixed N, the function b — Fn (D) is continuous on (a, o). From
(39) we conclude that b — F(b) is also continuous on (a, c0). Moreover, by a direct
consequence of the strong maximum principle and the Hopf boundary point principle
for our equation (see [5, Theorem 3.1.4-3.1.5]), we get the following:

Lemma 5.3.4. Ifa < b <0, then F(b) < 0. In particular, if (u, b) is a solution to the
free boundary problem (4), then b > 0.

We believe that there exists a unique b > 0 such that F'(b) = 0. We are not able to
provide a rigorous proof of this, but numerical simulations present strong evidence in
the following way. Assign numerical values to the parameters a, o, i, A and fix a jump
density ¢. In all our computations, we took ¢ to be the truncated normal distribution
with mean zero, variance v > 0 and support [—.J, J], i.e.

y2

) =1 3v2x (28(7/7) - 1)

0 otherwise,

if —J<y<J,

where

1 x y?
@(l‘) = E/ e 2 dy, r € R
—00

From computations of the boundary value problem (33) (see Figures 5.1 and 5.2), we
can find 0 < by < by and N > Ny such that

=

1 1 3
Fg(b) < =3, Fylb) >3, and G N2 <
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(The 1/2 and 1/4 may vary if we change the parameters.) From (39), we can then
conclude that

F(b) <0, F(b2) >0,
Fn(b1) <0, Fn(by) >0 forall N> N.

Hence, there exists b € (by,bs) such that F(b) = 0 and for each N > N there exists
by € (b1, by) such that Fy(by) = 0. Moreover, (39) gives us that

]\;E}noo F(by) =0.
Of course, we cannot conclude that b is unique and by — b as N — oo. However,
Figure 5.1 suggests that b is unique and from computations with increasing IV, it seems
like b converges, see Table 5.1.
We now discuss whether the properties a) and b) in the statement of Theorem 5.1.1
hold for a solution (u,b) of (4). We have no rigorous proof, but computational evi-
dence. The properties a) and b) boil down to

b
(40) A oty ~5)dy <, tore >,

and v > 0 respectively, where (v,b) solves (13). We believe that v > 0 holds for
all values of the parameters, but computations suggests that (40) may fail for certain
parameter values, typically when ¢ is small and A is three or four times larger than .
See Figures 5.3 and 5.4, where we check (40) for (vx, by) instead of (v, b).

N bn
2000 | 0.0572939
4000 | 0.0572743
6000 | 0.0572678
8000 | 0.0572653

Table5.1: a = —0., A=10,0 = 0.2, p = v = 0.02 and J = 0.05.

o>
0.005”
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Figure 5.2: The solution (vn,bn) when a = —0.1, A = 10, 0 = 0.2, p = 5505

and J = 0.05.

v = 0.02
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Figure 5.3: A simulation of (40) whena = —0.1, A =30, 0 = 0.2, p = #25, v = 0.02 and
J = 0.05. The condition fails.
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Figure 5.4: A simulation of (40) whena = —0.1, A = 10, 0 = 0.2, p = 5%, ¥ = 0.02 and
J = 0.05. The condition holds.



