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Chalmers University of Technology and University of Gothenburg

ABSTRACT
Tools from Fourier analysis of Boolean functions have commonly been used to prove

results both in hardness of approximation in computer science and in the study of

voting schemes in social choice theory. In this thesis we consider various topics in

both these contexts. In hardness of approximation we study the asymptotic approx-

imation curve of MAX-CSP’s for predicates given by linear threshold functions and

prove upperand lowerbounds for this curve formajority-like threshold functions. We

also relate the hardness of MAX-q-CUT to a conjecture in Gaussian isoperimetry and

the plurality is stablest conjecture in social choice. In particular the Frieze-Jerrum

semidefinite programming based algorithm forMAX-q-CUT achieves the optimal ap-

proximation factorassuming the unique games conjecture if plurality is indeed stablest.

In social choice theory we show a quantitative version of the Gibbard-Satterthwaite

Theorem, showing that for election schemes in elections with more than 2 candidates,

situations in which a voter has an incentive to manipulate by not voting according to

his true preference are common enough that they cannot completely be masked behind

computational hardness. We also prove a generalization of a Gaussian isoperimet-

ric result by Borell and show that it implies that the majority function is optimal in

Condorcet voting in the sense that it maximizes the probability that there is a single

candidate which the society prefers overall other candidates.

Keywords: Hardness of approximation, social choice theory, Gibbard-Satterthwaite, max-q-cut,

Condorcet voting, linear threshold functions.
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1
Introduction

An approximation algorithm is an algorithm that computes approximate solutions to a

given optimization problem. Consider for instance the problem of coloring regions or

countries on a map using a fixed set of colors so that adjacent regions have different

colors. It is well-known that fourcolors suffice if the map is planarand the regions are

contiguous. For more general maps more colors may be needed. Thus, if we decide

thatwe want to colorthe mapusing only three colors, we cannot in general hope to find

acoloring. Insteadwemay considerthe optimizationproblemof finding a coloring that

maximizes the number of adjacent pairs of regions which are differently colored. The

optimal such coloring can be found by trying all possibilities but this is a very ineffi-

cient algorithm - requiring time exponentially increasing with the number of regions.

Frieze and Jerrum gave an efficient (polynomial time) approximation algorithm for (a

more general version of) this problem which guarantees to always find a coloring in

which the number of adjacent pairs of regions which are differently colored is at least

83.6% of the optimal number. One may ask if this number can be improved upon.

This is the type of question studied in hardness of approximation, where the objective

is to prove upperbounds on the approximation guarantees that can be achieved by any

efficient algorithm fora given optimization problem.

In social choice theory one studies methods for collective decision making. An

example is an election of say a president oramayorfromafixednumberof candidates.

For this example one of the most obvious methods is plurality voting, where every

individual votes on one candidate and then the winner is selected to be the candidate

with the most number of votes. But there are also many other methods in use. For

1



2 CHAPTER 1. INTRODUCTION

example electoral voting systems, where (in a simple case) individuals in subregions

select awinning candidate by plurality voting, and then the winner is selected to be the

candidate thatwon the most numberof subregions. Anotheralternative is instant runoff

voting, where each individual presents a preference ordering on the candidates and

then, repeatedly, the candidate which is preferred by the least number of individuals

is eliminated until one candidate is preferred by a majority of the individuals among

the remaining candidates. Although plurality voting seems very reasonable it does

have some possibly undesirable properties. For instance, if all individuals have an

implicit preference ordering of the candidates, there could be situations in which the

runner-up in the election is actually preferred over the winner by a majority of the

voters. Furthermore, there can be situations in which a well-informed individual has

an incentive to vote strategically. For instance, if his top preference is a candidate

which is very unlikely to win, but he prefers the likely runner-up more than the likely

winner, he would have a higher probability of changing the outcome to his advantage

by voting on the likely runner-up. Both of these situations commonly occur when a

third candidate which have no chance of winning “steals” votes from one of the two

top candidates. Arrow andGibbard/Satterthwaite, respectively, showed that both these

situations cannot be avoided by changing the voting method without giving up some

otherdesirable property. On the more positive side it is conjectured that, under certain

requirements, plurality is the most stable voting method under noise, where a small

fraction of the votes are assumed to be incorrectly registered.

These are examples of the topics considered in this thesis. In the next section we

give some more formal background to the theory used in the papers. Then follows an

overview of the included papers, and finally the three papers themselves.



2
Background

2.1 Boolean functions

Many of the results in this thesis involve Boolean functions. In this section we intro-

duce Boolean functions and some common notation and tools used to deal with them.

A Boolean function of arity n is a function f : {0� 1}n → {0� 1}, mapping a set

of n Boolean values to another Boolean value. 0 is usually thought of as false and 1

as true. In many settings it is more convenient to work with ±1 instead, so for the

remainderof the section a Boolean function is a function f : {−1� 1}n → {−1� 1}.

We will usually think of the input as being uniformly distributed over {−1� 1}n

and denote it by X . By the Fourier-Walsh transform, any real-valued function on

the Boolean hypercube, f : {−1� 1}n → R, can be written uniquely as a multilinear

polynomial in the input variables

f(x) =
�

S⊆[n]

f̂(S)
�

i∈S

xi. (2.1)

To see this it is enough to note that
��

i∈S xi

�
S⊆[n]

is an orthonormal basis for the

vector space of functions f : {−1� 1}n → R equipped with the innerproduct

�f� g� = E[f(X)g(X)].

By (2.1), f can be viewed as a multilinear polynomial over the variables x1� . . . � xn,

3



4 CHAPTER 2. BACKGROUND

and we define the degree of f as

deg f = max
S|f̂(S)�=0

|S|.

Forany coordinate i ∈ [n]we define its influence onaBoolean functionf : {−1� 1}n →

{−1� 1} as the probability that changing the value of that coordinate will change the

value of f , i.e.

Infi(f) = P(f(X) �= f(X(i)))�

whereX(i) is obtained fromX by flipping the i:th coordinate. Note that fora dictator

function DICTn�i(x) := xi exactly one coordinate has influence 1 while the others

have influence 0. For the majority functionMAJn(x) := sgn(
�n

i=1 xi) ,which is de-

fined foroddn, one can show that each coordinate has influenceΘ
�

1√
n

�
. Thinking of

the functions as social choice functions, that given n voters’ preferences between two

candidates determines the winning candidate it is natural to ask which function mini-

mizes the most influential voter. One candidate is the tribes functionTRIBESn which,

rougly, divides the n variables into Θ
�

n
log n

�
groups of size Θ(log n) and returns +1

if and only if all variables in one group is +1. For this function the influence of ev-

ery variable is Θ
�

log n
n

�
. The KKL theorem [9] showed that this is asymptotically

optimal:

THEOREM 2.1 (KKL). For any f : {−1� 1}n → {−1� 1} there exists an i ∈ [n] such

that

Infi(f) ≥ Ω

�

Var(f)
log n

n

�

.

The definition of influences can also be extended to functions taking real values,

f : {−1� 1}n → R, in the following way:

Infi(f) = E[Var[f(X) | X1� . . . � Xi−1� Xi+1� . . . Xn]].

2.1.1 The Invariance Principle

The invariance principle of [13], which can be seen as a generalization of central limit

theorems to multilinear polynomials, is a very useful tool formapping discrete prob-

lems to continuous problems. In its simplest form, it states that if f : {−1� 1}n → R

is of low degree and each coordinate has small influence on f , then the distribution of

f(X) will not change by much if we replace the Xi’s in the multilinear polynomial

expansion given by (2.1) by i.i.d. standard Gaussians Zi ∼ N(0� 1). The change of

the distribution is measured by an arbitrary C3 functionΨ having bounded third order

derivatives.
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THEOREM 2.2. ( [13], special case of Theorem 3.18)

Suppose X1� . . . � Xn are i.i.d. uniform on {−1� 1}, f : {−1� 1}
n → R has deg f ≤ d

and Infi f ≤ τ�∀i. Let Ψ : R → R be a C3 function with |Ψ(r)| ≤ B for |r| = 3.

Then, �
�
�
�
�
�
EΨ(f(X))−EΨ

�


�

S⊆[n]

f̂(S)
�

i∈S

Zi





�
�
�
�
�
�
≤ B10dτ�

where Z1� . . . Zn are i.i.d N(0� 1).

The theorems in [13] and [11] are muchmore general. For example

• The underlying probability space is generalized to an arbitrary finite product

space (Ω� µ) = (
�n

i=1 Ωi�
�n

i=1 µi) where |Ωi| <∞, ∀i. Functions f : Ω→ R

can still be written as a multilinear polynomial by constructing an orthonormal

basis Xi = (Xi�0 = 1�Xi�1� . . . �Xi�|Ωi|−1) for the space of functions Ωi → R

equipped with the innerproduct �f� g� = EX∼µ[f(Xi)g(Xi)] and expressing f

as

f(x) =
�

σ

f̂(σ)

n�

i=1

Xi�σi
(x)�

where the sum is overall tuples σ = (σ1� . . . � σn) such that 0 ≤ σi < |Ωi|.

• Multidimensional functions f : Ω → R
k can be handled similarly using a test

functionΨ : R
k → R.

In Paper I a few more generalizations that are useful in applications are introduced:

• the C3 restriction onΨ in Theorem 2.2 is removed and replacedwith a Lipschitz

continuity requirement.

• non-orthonormal bases for the functions spaces Ωi → R are handled (this was

also discussed in [11]).

2.2 Social Choice Theory

Social choice theory is the study of methods of collective decision making. An im-

portant example, which is studied in this thesis, are elections where n voters choose

between q candidates. In this case the method of decisionmaking can be described by

a social choice function whichmaps the preferences of all voters to a preference of the

whole society. Depending on the setting, a preference could be eithera single preferred

candidate, a linear ordering of all candidates, or some more general binary relation on

the set of candidates.

Assuming that the candidates are numbered 1� . . . � q, we let [q] denote the set

{1� . . . � q}, Lq denote the set of all q� linear orderings of the set [q] and Gq denote
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the set of all 2(
n

2) tournaments on the set [q], i.e. binary relations such that for every

pair of candidates a� b ∈ [q], either aGq b or bGq a, indicating whether a is preferred

over b orvice versa.

2.2.1 Transitivity

Here we will assume that the voters present linear orderings on the candidates which

the social choice functions maps to a tournament describing the society’s preference

between every pair of candidates. Such a social choice function f : Ln
q → Gq is said

to be

• Independent of Irrelevant Alternatives (IIA), if the society’s preference be-

tween any two candidates only depends on the voters’ relative preferences be-

tween these two candidates.

• unanimous, if forany two candidates a� b ∈ [q], the society prefers a to b when-

everall voters prefera to b.

• transitive, if the society’s preference is always a linearorder, i.e. f(x) ∈ Lq�∀x.

• neutral, if it is invariant under renumberings of the candidates.

• a dictator, if there is a voter i ∈ [n] such that the society’s preference only

depends on that voter’s preference.

One of the first results in Social Choice Theory is Condorcet’s paradox which ap-

plies to the function PAIRWISE-MAJn for which the society’s preference between

every two candidates is determined by the majority among the voters’ preferences be-

tween those two candidates. Even for this simple and natural function, there can be

situations in which the society’s preference is cyclic, e.g. the society prefers candi-

date a over b, b over c and c over a. Thus, this particular social choice function is not

transitive.

Arrow’s Theorem states that this situation cannot be avoided unless we sacrifice

one of the arguably desirable properties IIA, unanimity ornon-dictatorship.

THEOREM 2.3 (Arrow’s Theorem, [3, 4]). Any social choice function f : Ln
q → Gq

which is IIA, unanimous and transitive must be a dictator.

A related, but weaker requirement than transitivity is that of having a Condorcet

winner. We say that a social choice function f : Ln
q → Gq

• has a Condorcet winner on input x, if the society’s preference f(x) has one

candidate which is preferred overall the other candidates.
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In paper I we show that the function PAIRWISE-MAJn maximizes the probability

of having a Condorcet winner among social choice functions f : Ln
q → Gq that are

IIA, neutral and low-influential (in that every voter has a small probability of being

able to change the outcome), when all voters’ preferences are assumed to be selected

uniformly at random.

2.2.2 Manipulability

Another desirable property of a social choice function is that of non-manipulability.

Here we consider social choice functions f : Ln
q → [q] where the society selects a

single winning candidate. We say that such a function is

• manipulable, if there are situations in which a voter i, who knows the votes

of all other voters, has an incentive to change his vote, in that by doing so the

society’s preference will change to a candidate which voter i originally preferred

more than the candidate that would win if voter i voted according to his true

preference.

An example of a non-manipulable function is a dictator which always selects the top

preference of a specific voter.

The Gibbard-Satterthwaite Theorem shows that manipulability cannot be avoided

when there are at least three candidates, unless the social choice function is a dictator

ornever selects any but two of the candidates:

THEOREM 2.4 (Gibbard-Satterthwaite, [8, 16]). Any social choice function f : Ln
q →

[q] which takes on at least three values and is not a dictator is manipulable.

In paper II we show a quantitative version of this theorem.

2.2.3 Noise Stability

Considera simple electionwithn voters choosing between q candidates of which only

one can be selected by the society. The method of decision making can then be de-

scribed by a social choice function f : [q]n → [q].

The noise stability of such functions measures the stability of the output when the

votes are chosen independently and uniformly at random, and then re-randomizedwith

probability 1− ρ. In social choice this can for instance be used to model the situation

where a certain fraction of the votes are incorrectly counted.

DEFINITION 2.5. For ρ ∈ [0� 1], the noise stability of f : [q]n → [q] is

Sρ(f) = P(f(ω) = f(λ))�
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where ω is uniformly selected from [q]n and each λi is independently selected using

the conditional distribution

µ(λi|ωi) = ρ1{λi=ωi} + (1− ρ)
1

q
.

We say that a social choice function f : [q]n → [q] is balanced if for any j,

P(f(ω) = j) = 1
q
when ω ∈ [q]n is chosen uniformly at random.

It is natural to require that a social choice functionhas low influence in each coordi-

nate, so that a single voterhas a small chance of changing the outcome of the election.

This avoids dictatorships and other functions that mainly depend on a few voters. An-

other natural requirement is for the function to be as noise stable as possible, so that

even if a small fraction of the votes are miscounted the result is unlikely to change.

It is conjectured that for balanced low-influential functions f : [q]n → [q], this

noise stability is maximizedby the plurality functionPLURn�q , which selects the most

popular candidate (ties broken arbitrarily):

CONJECTURE 2.6 (Plurality is Stablest).

For any q ≥ 2, ρ ∈ [0� 1] and � > 0 there exists a τ > 0 such that if f : [q]n → [q] is a

balanced function with Infi(1{f(·)=j}) ≤ τ , ∀i ∈ [n]� j ∈ [q], then

Sρ(f) ≤ lim
m→∞

Sρ(PLURm�q) + �.

The special case for q = 2, the Majority is stablest theorem, was proved in [13].

In paper I the invariance principle is used to show that the Plurality is Stablest

conjecture is equivalent to a conjecture on Gaussian noise stability.

2.3 Hardness of Approximation

2.3.1 Introduction to computational complexity theory

In computational complexity theory, one is interested in the asymptotics of the amount

of time (or space) required to compute discrete functions. For simplicity we will as-

sume that all combinatorial objects used (numbers, sets, graphs, formal mathematical

proofs etc.) are represented as binary strings, i.e. elements inΣ∗ =
�

n∈�
{0� 1}n. The

exact encoding used for different objects does not matter for our purposes (as long as

it is a reasonable one). The length of a string x ∈ Σ∗ is denoted by |x|.

In general a computational problem is defined by a function f : Σ∗ → Σ∗. A

decision problem is a problemwhich can be answered by yes orno. For instance,

• 3-COLOR: given a graph, can the vertices be colored using 3 colors such that no

neighboring vertices have the same color?
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• TRUEΓ: given a proposition T in a formal mathematical theory Γ and an empty

proof consisting of n zeroes 1 , does there exist a formal proof of T of length at

most n?

By identifying a given decision problem with the subset of all strings (usually called

language) forwhich the answer is yes we may define decision problems as follows:

DEFINITION 2.7. A decision problemL is a subset ofΣ∗.

The complexity class P consists of all decision problems that can be computed in

polynomial time (on any (and thus all) universal Turing machines, which the reader

may think of as a regular computer equipped with unlimited amount of memory). If

an algorithm’s running time is bounded above by a polynomial in the length of the

input (for some fixed universal Turing machine) we say that it is a polynomial time

algorithm.

DEFINITION 2.8. The complexity class P consists of all decision problems L for which

there exists a polynomial time algorithmA such that
�

x ∈ L⇒ A(x) = yes

x /∈ L⇒ A(x) = no

The complexity class NP consists of all decision problems forwhich yes-instances

have proofs that can be verified in polynomial time.

DEFINITION 2.9. The complexity class NP consists of all decision problems L for

which there exists a polynomial q and a polynomial time algorithm (verifier) V such

that �
x ∈ L⇒ ∃Π ∈ Σ∗ : |Π| ≤ q(|x|) and V (Π) = yes

x /∈ L⇒ ∀Π ∈ Σ∗ : V (Π) = no

Note that both 3-COLOR and TRUEΓ are in NP. For instance, for 3-COLOR the

verifier V can be taken to be an algorithm that simply checks that Π is a string that

describes a coloring of all vertices in the graph in a way such that no neighboring

vertices have the same color. Clearly, such aΠ exists if and only if x ∈ 3-COLOR.

Further, P ⊆ NP, since for L ∈ P we can simply ignore the proof Π and use

the algorithm A as verifier. It remains an open problem whether P = NP, although

equality would be very surprising (implying e.g. that proofs of mathematical theorems

can be found in time polynomial in the length of the statement and the length of the

proof).

In hardness of approximation one is interested in showing non-existence of poly-

nomial time algorithms for approximating combinatorial optimization problems (as-

suming P �= NP). Let us first define combinatorial optimizations problems.

1The reason that we include an empty proof of length n in the instance and not just the numbern is that
the numbern is encoded by a string of lengthΘ�log�n)) but we laterwant a polynomial in the length of the
instance to be polynomial in n.
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DEFINITION 2.10. A combinatorial maximization problem is defined by a function

f : Σ∗ × Σ∗ → R ∪ {−∞} assigning a value f(x� l) to any solution l of an instance

x such that for each x, there are only a finite number of solutions l (called feasible for

x) for which f(x� l) �= −∞.

An instance x is said to be valid if it has a feasible solution l.

The optimal value for an instance x ∈ Σ is

OPT(x) = max
l

f(x� l).

Aminimization problem is defined similarly by replacing the max by min and −∞ by

+∞.

We can now define the corresponding complexity classes PO and NPO.

DEFINITION 2.11. The complexity class NPO consists of all combinatorial optimiza-

tion problems f for which there exist

i) a polynomial time algorithm that determines whether an instance x is valid,

ii) a polynomial q such that for any instance x, all feasible solutions l satisfy

|l| ≤ q(|x|), and

iii) a polynomial time algorithm that computes f .

PO is the subset of NPO for whichOPT(x) is computable by a polynomial time algo-

rithm.

There is a natural pre-ordering of computational problems given by polynomial

time reducibility.

DEFINITION 2.12. Given two computational problems X and Y , we say that X is

polynomial time reducible to Y , denoted X ≤P Y , if there exists a polynomial time

algorithm A which computes the value of instances x ∈ X in polynomial time, given

access to an oracle for Y (i.e. a hypothetical algorithm that computes Y in constant

time).

From this we may define the complexity classes NP-complete consisting of the

hardest problems in NP and NP-hard consisting of all problems that are at least as

hard as NP. More generally,

DEFINITION 2.13. Let C be a complexity class. Then C−hard consists of all com-

putational problems Y such that X ≤P Y�∀X ∈ C. Further, C−complete =

C−hard ∩ C
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2.3.2 Approximation algorithms

Many NP-hard optimization problems (forwhich no polynomial time algorithm exists

unless P = NP) are possible to approximate within a constant factor in polynomial

time. For instance, for the Euclidean Traveling Salesman Problem where one is given

a set of points in Euclidean space, computing the shortest round-trip route visiting all

points is NP-hard. However, forany � > 0 there exist a polynomial time approximation

algorithm that computes a route no more than 1+� times longerthan the optimal route.

DEFINITION 2.14. If f : Σ∗×Σ∗ → R
+∪{−∞} is a maximization problem inNPO,

A is an algorithm and r ∈ [0� 1), we say that A is an r-approximation algorithm for f

if for all valid instances x,

f(x�A(x)) ≥ rOPT(x).

Similarly, if f : Σ∗ × Σ∗ → R
+ ∪ {∞} is a minimization problem and r > 1 we say

that A is an r-approximation algorithm for f if for all valid instances x,

f(x�A(x)) ≤ rOPT(x).

Thus, forany � > 0, the EuclideanTraveling SalesmanProblemhas a polynomial time

1+�-approximation algorithm.

Otherproblems can only be efficiently approximated up to a certain approximation

constant. For instance, considerMAX-3-SAT defined as

DEFINITION 2.15. An instance of the MAX-3-SATproblem consists ofm clauses, each

being a disjunction (logical or) of at most three literals, where each literal is either a

variable or the negation of a variable from a set of n Boolean variables b1� . . . � bn. A

feasible solution is an assignment l : [n]→ {0� 1} to these variables. The value f(x� l)

of an assignment is the fraction of clauses that are satisfied by the assignment.

ForMAX-3-SAT there exist a 7
8 approximation algorithm based on semidefinite pro-

gramming [18]. For the restricted problemMAX-E3-SAT, where we require that each

clause contains exactly three (different) variables, this can be achieved by picking a

random assignment which will satisfy a 7
8 fraction of the clauses in expectation. Note

that this algorithm can easily be derandomized to get a deterministic polynomial time

algorithm that is guaranteed to find an assignment satisfying at least a 7
8 of the clauses.

This is done in the following way, using the method of conditional expectation: On af-

teranother, set each variable to the value whichmaximizes the conditional expectation

over the remaining variables.

On the other hand it is known [17] that no 7
8 + � polynomial time approximation

can be achieved (unless P = NP), forany � > 0.
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(b1 ∨ ¬b2 ∨ b4) ∧ (¬b1 ∨ ¬b3 ∨ b2) ∧ (¬b2 ∨ b3 ∨ b5)

Figure 2.1: A MAX-E3-SAT instance. All 3 clauses can be satisfied simultaneously so the opti-

mal value is 1.

MAX-3-SAT is an example of class of optimization problems called Constraint

Satisfaction Problems (CSP’s). The maximization version of CSP’s can be defined as

follows:

DEFINITION 2.16. A MAX-CSP Λ = (P� q) is specified by a set of predicates P over

the finite domain [q]. The arity ofΛ is the maximal arity of the predicates inP .

An instance I ofΛ consists of a set of variables b1� . . . � bn and a set of constraints, each

formed by a predicate fromP applied to a subset of the variables and their negations.

The optimal value OPT(I) for I is the maximum number of constraints satisfied by

any assignment b ∈ [q]n.

Thus, MAX-3-SAT, which can be described as a MAX-CSP (P� q) with q = 2 and

P = {x1 ∨ x2 ∨ x3}, is a ternary MAX-CSP overa Boolean domain.

2.3.3 The PCP Theorem and the Unique Games Conjecture

The 7
8+� inapproximability result forMAX-3-SAT(andsimilarresults forotherMAX-

CSP’s) is obtained by a reduction from a standard problem called the Label Cover

problem forwhich arbitrarily good inapproximability results exist.

DEFINITION 2.17.

An instance of the Label Cover problem, L(V�W�E�M�N� {σv�w}(v�w)∈E), consists

of a bipartite graph (V ∪W�E) with a function σv�w : [M ] → [N ] associated with

every edge (v� w) ∈ E ⊆ V ×W . A labeling l = (lV � lW ), where lV : V → [M ] and

lW :W → [N ], is said to satisfy an edge (v� w) if

σ(v�w)(lW (w)) = lV (v).

The value of a labeling l, VALl(L), is the fraction of edges satisfied by l and the

optimal value for L is the maximal fraction of edges satisfied by any labeling,

OPT(L) = max
l
VALl(L).

The PCP (Probabilistically Checkable Proofs) theorem [1, 2] asserts that the Label

Cover problem is NP-hard to approximate within any constant � > 0, for suitable

choices ofM andN .

THEOREM 2.18 (Label Cover version of the PCP Theorem). For any � > 0 there

existM and N such that it is NP-hard to distinguish between instances L of the Label
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Cover problem with label set sizesM and N having OPT(L) = 1 from those having

OPT(L) ≤ �.

This implies that any problem in NP (for instance TRUEΓ) has a probabilistically

checkable proof, which can be verified by looking only at a constant (depending on

�, but not on the length of the instance |x|) number of bits in such a way that a false

proof is accepted with probability � while a correct proof is always accepted. The

proof structure is given by the polynomial time reduction from the NP problem to a

Label Cover problem for which a correct proof (assignment) satisfies all edges while

any other (incorrect) proof satisfies at most an � fraction of the edges.

However, the PCP theorem is not strong enough to give sharp inapproximability re-

sults forbinaryMAX-CSP’s (2-CSP’s). One promising direction forward is the Unique

Games Conjecture (UGC), a strengthened form of the PCP Theorem introduced by

Khot [10].

DEFINITION 2.19. ALabel CoverproblemL(V�W�E�M�N� {σv�w}(v�w)∈E) is called

unique ifM = N and each σv�w :M →M is a permutation.

CONJECTURE 2.20 (Unique Games Conjecture). For any η� γ > 0 there exists M =

M(η� γ) such that it is NP-hard to distinguish instances L of the Unique Label Cover

problemwith label set sizeM havingOPT(L) ≥ 1−η from those havingOPT(L) ≤

γ.

It was recently shown [15] how to obtain optimal approximation algorithms forany

MAX-CSP including 2-CSP’s assuming the Unique Games Conjecture. However, the

optimal approximation constants in [15] are generally not very explicit but given as the

optima of certain optimization algorithms whose running time is doubly exponential in

1/�. where � is the desired precision.

It shouldbe noted that, althoughmany hardness of approximation results have been

based on the Unique Games Conjecture, it is still not known whether this conjecture

holds.
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3
Summary of Papers

3.1 Paper I

Maximally Stable Gaussian Partitions with Discrete Applications.

Marcus Isaksson and ElchananMossel.

Gaussian noise stability measures the stability of partitions of Gaussian space under

noise. In the simplest form we have two jointly standard Gaussian vectors X and Y

in R
n, with a covariance matrix Cov(X�Y ) = E[XY T ] = ρIn, i.e. the coordinate

pairs (Xi� Yi) are i.i.d. N

�

0�

�
1 ρ

ρ 1

��

. The stability of a subsetA of R
n is defined

to be the probability that bothX and Y fall into A. Borell [5] proved that for sets of

fixed Gaussian measure, half-spaces maximize this stability . For simplicity, in this

overview, we restrict attention to balanced partitions, i.e. sets of Gaussianmeasure 1
2 .

THEOREM 3.1. [5] Fix ρ ∈ [0� 1]. Suppose X�Y ∼ N(0� In) are jointly normal and

Cov(X�Y ) = ρIn. Let A ⊆ R
n withP(X ∈ A) = 1

2 . Then

P(X ∈ A� Y ∈ A) ≤ P(X ∈ H�Y ∈ H)�

where H = {x ∈ R
n|x1 ≥ 0}.

In paper I, two generalizations of this theorem are considered from which various

applications in social choice and hardness of approximation are derived. The first

15
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generalization, also stated in a simplified formhere, considers the probability of k > 2

correlated vectors falling into A. We prove that half-spaces are optimal even in this

case:

THEOREM 3.2. Fix ρ ∈ [0� 1]. Suppose X1� . . . � Xk ∼ N(0� In) are jointly normal

and Cov(Xi� Xj) = ρIn for i �= j. Let A ⊆ R
n withP(Xi ∈ A) = 1

2 . Then

P(∀i : Xi ∈ A) ≤ P(∀i : Xi ∈ H)�

where H = {x ∈ R
n|x1 ≥ 0}.

Note that such a distribution on X1� . . . � Xk exists for any ρ ∈ [0� 1] since it can

be constructed by letting Xi =
√
ρZ0 +

√
1− ρZi where Z0� Z1� . . . � Zk are i.i.d.

standard Gaussians.

We prove two applications of this theorem.

• First, in the context of social choice, we show that the functionPAIRWISE-MAJn

defined in Section 2.2.1 maximizes the probability of having a Condorcet win-

ner among social choice functions f : Ln
q → Gq that are IIA, neutral and low-

influential, if all voters’ preferences are selected uniformly at random.

• The second application is in the context of cosmic coin flipping [12, 14] where

k players receive noisy copies of the same n bits and want to agree on a single

uniformly random bit without communicating. We show that each playerapply-

ing the majority function on his received bits maximizes the probability of all

players agreeing among low influence functions.

The second generalization considers a partition of R
n into q > 2 subsets (instead

of just the two A and AC), and asks for the probability that all k vectors fall into the

same subset. We will still restrict attention to balanced partitions, i.e. into disjoint sets

A1� . . . Aq ⊆ R
n with equal Gaussianmeasure 1

q
.

It is conjectured that for n ≥ q − 1 and ρ ≥ 0 the most stable partition is a

standard simplex partition, which divides R
n into q partitions depending on which of

q maximally separated unit vectors are closest (ties may be broken arbitrarily):

DEFINITION 3.3. For n+1 ≥ q ≥ 2, A1� . . . � Aq is a standard simplex partition ofR
n

if for all i

Ai = {x ∈ R
n|x · ai > x · aj �∀j �= i}�

where a1� . . . aq ∈ R
n are q vectors satisfying ai · aj =

�
1 if i = j

− 1
q−1 if i �= j

The standard simplex partition is also conjectured to be the least stable partition

when ρ < 0.
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When n ≥ q a standard simplex partition can be formed by picking q orthonormal

vectors e1� . . . � eq , subtracting theirmean and scaling appropriately, i.e.

ai =

�
q

q − 1

�

ei −
1

q

q�

i=1

ei

�

and for n = q − 1 it is enough to project these vectors onto the q − 1 -dimensional

space which they span.

When q = 3 the standard simplex partition, also known as the standard Y partition

or the peace sign partition, is described in R
2 by three half-lines meeting at an 120

degree angle at the origin (Figure 3.1) and in R
n, where n > 2, it can be exemplified

by taking the Cartesian product of the peace sign partition andR
n−2.

Figure 3.1: The peace sign partition

The conjecture, which is still open, can slightly simplified be stated as:

CONJECTURE 3.4. Fix ρ ∈ [0� 1] and 3 ≤ q ≤ n+1. Suppose X�Y ∼ N(0� In) are

jointly normal and Cov(X�Y ) = ρIn. Let A1� . . . � Aq ⊆ R
n be a balanced partition

ofRn. Then,

P((X�Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≤ P
�
(X�Y ) ∈ S2

1 ∪ · · · ∪ S2
q

�
� (3.1)

where S1� . . . � Sq is a standard simplex partition ofR
n. Further, for ρ ∈ [−1� 0], (3.1)

holds in reverse:

P((X�Y ) ∈ A2
1 ∪ · · · ∪A2

q) ≥ P
�
(X�Y ) ∈ S2

1 ∪ · · · ∪ S2
q

�
.

In the paperwe derive two applications of this conjecture:

• First we show that it implies that Plurality is Stablest (Conjecture 2.6).

• We also show that it implies that an approximation algorithm by Frieze and

Jerrum [7] for the optimization problem MAX-q-CUT (described in the next

section) achieves the optimal approximation ratio assuming the unique games

conjecture.

Since it is not known whether this conjecture holds and the standard simplex partition

is optimal, it should be pointed out that one of the main contributions of paper I is to
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show that the optimality of certain discrete problems can be reduced to the question of

finding optimal partitions with respect to Gaussian noise stability.

The main tool forthe proofs of the applications is the invariance principle described

in Section 2.1.1 and the paperalso includes proofs for the generalizations described in

that section.

3.1.1 MAX-q-CUT

In the MAX-q-CUTproblemorApproximate q-Coloring, one is given a (possible edge

weighted) graph and seeks a coloring of the vertices using q colors that minimizes the

numberof edges between nodes of the same color(i.e. maximizes the numberof edges

between different colors).

DEFINITION 3.5.

An instance of the weighted MAX-q-CUT problem,Mq(V�E�w), consists of a graph

(V�E) with a weight functionw : E → [0� 1] assigning a weight to each edge. A q-cut

l : V → [q] is a partition of the vertices into q parts. The value of a q-cut l is

VALl(Mq) =
�

(u�v)∈E:l(u)�=l(v)

w(u�v).

The optimal value forMq is

OPT(Mq) = max
l
VALl(Mq).

Figure 3.2: In MAX-3-CUT we want to find a partition of the vertices into 3 sets so as to

maximize the weight of edges between different sets.

Note thatMAX-q-CUT is a (weighted) binary MAX-CSP over the alphabet [q].

Frieze and Jerrum [7] devised a polynomial time approximation algorithm for

MAX-q-CUTbased on semi-definite programming, which forany fixed � > 0 achieves

an approximation ratio of αq − �, where

αq = inf
− 1

q−1
≤ρ≤1

q

q − 1

1− qI(ρ)

1− ρ
.
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Here, qI(ρ) is the noise stability the standard simplex partition, i.e.

qI(ρ) = P((X�Y ) ∈ S2
1 ∪ · · · ∪ S2

q )�

whereX�Y ∼ N(0� Iq−1) are jointly normal withCov(X�Y ) = ρIq−1 andS1� . . . Sq

is a standard simplex partition of R
q−1. For instance, for q = 3 the approximation

ratio can be made arbitrarily close to

α3 = inf
− 1

2
≤ρ≤1

1− 9
8π2 (arccos(−ρ)

2 − arccos(ρ/2)2)

1− ρ
≈ 0.83601.

We show that Conjecture 3.4 implies that this is the optimal inapproximability

constant forMAX-q-CUT assuming the unique games conjecture (and P �= NP):

THEOREM 3.6. Assume Conjecture 3.4, the UGC and P �= NP. Then, for any � > 0

no polynomial time algorithm exists that approximates MAX-q-CUT within αq + �.

3.2 Paper II

The Geometry of Manipulation - a Quantitative Proof of the Gibbard Satterthwaite

Theorem.

Marcus Isaksson, Guy Kindler and ElchananMossel.

In the second paper we give a quantitative version of Theorem 2.4, the Gibbard-

Satterthwaite theorem. Recall that this theorem stated that any non-dictatorial social

choice function f : Ln
q → [q] which takes on at least three values is manipulable. A

consequence of this is that we shouldn’t expect voters to always vote according to their

true preferences in an election with three or more candidates. However, the theorem

only guarantees that there is one set of orderings x ∈ Ln
q forwhich some voter has an

incentive to manipulate (such anx is called amanipulationpoint). Hence, this situation

could be very unlikely.

In quantitative social choice some distribution on the voters’ orderings is assumed

and the probability of some undesirable situation is then estimated. In this paper we

assume that the set of orderings X are selected uniformly at random from Ln
q and ask

for the probability of X being amanipulation point. Letting

DICT = {f : Ln
q → [q] | ∃i : f only depends on the i:th coordinate }

be the set of dictatorial functions, D(f� g) = P(f(X) �= g(X)) be the fraction

of x ∈ Ln
q on which two functions f� g : Ln

q → [q] differ, and D(f�DICT) =

ming∈DICT D(f� g) the distance from f to the closest dictator, we show the follow-

ing quantitative version of the Gibbard-Satterthwaite theorem under neutrality (recall

that a function is neutral if it is invariant under renumbering of the candidates):
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THEOREM 3.7. Fix q ≥ 4 and let f : Ln
q → [q] be a neutral social choice function

withD(f�DICT) ≥ �. Then,

P(f is manipulable at X) ≥
�2

104n3q30
�

where X ∈ Ln
q is uniformly selected.

Note that although this probability bound is small, it is asymptotically (in q) much

largerthan the bound 1
(q�)n that adirect applicationof the original Gibbard-Satterthwaite

theorem gives.

In the paperwe also prove a strengthened form of Theorem 3.7, which shows that

the same bound holds if we only allow a small (linear in q) set of possible manipu-

lations for a fixed voter and a given profile. This has implications for the approach

of masking manipulability behind computational hardness; an algorithm that tries all

such manipulations (linearly many in q) for a given voter will succeed finding a ma-

nipulation with non-negligible probability (at least �2/poly(n� q)).

3.3 Paper III

Approximating Linear Threshold Predicates.

Mahdi Cheraghchi, Johan Håstad, Marcus Isaksson and Ola Svensson.

Given a set of integerweights w1� . . . � wn with odd sumW = w1 + . . .+ wn we can

define a predicate P : {−1� 1}n → {−1� 1} as

P (x) = sgn

�
n�

i=1

wixi

�

where −1 is viewed as false and+1 as true so that the predicate is satisfied by x if and

only if P (x) = 1. We call such a predicate a homogenous linear threshold predicate.

Note thatW being odd implies that the sum
�n

i=1 wixi is never zero.

In the third paperwe considerthe hardness of approximating MAX-CSP’s overho-

mogenous linearthresholdpredicates. Forsuchapredicate P the optimizationproblem

MAX-CSP(P ) can be defined as follows:

DEFINITION 3.8. Fix a homogenous linear threshold predicate P : {−1� 1}n →

{−1� 1}. An instance I = (m�N� l� s) of the optimization problemMAX-CSP(P ) con-

sists ofN Booleanvariables x1� . . . � xN , and matrices l ∈ Nm×n and s ∈ {−1� 1}m×n

describingm constraints. The i’th constraint is

P (si�1xli�1
� . . . � si�nxli�n

) = 1
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The optimal value OPT(I) of I is the maximal fraction of constraints satisfied by any

assignment x ∈ {−1� 1}N .

The simplest such predicate is the majority predicate MAJn = sgn (
�n

i=1 xi),

where n is odd, and for simplicity we will here describe the results for majority, let-

ting MAX-MAJ-n denote the optimization problem MAX-CSP(MAJn). But first we

need to define the optimal approximation curve which is a more refined characterisa-

tion of hardness of approximation than the optimal approximation constant defined in

Definition 2.14:

DEFINITION 3.9. If f : Σ∗ × Σ∗ → R
+ ∪ {−∞} is a maximization problem in NPO,

A is an algorithm and s : R
+ → R

+, we say that A is an s-approximation algorithm

for f if for all valid instances I,

f(I� A(I)) ≥ s(OPT(I)).

In the third paperwe determine asymptotic upperand lowerbounds on the optimal

approximation curve s∗ : [0� 1]→ [0� 1] achievable by polynomial time algorithms for

MAX-MAJ-n as n → ∞, assuming the unique games conjecture and P �= NP. The

bounds are almost tight in an asymptotic sense.

First note that the trivial algorithm which selects a random assignment will satisfy

a fraction 1
2 of the constraints on average. Further, this algorithm can be derandomized

using the method of conditional expectation (see Section 2.3.2) to deterministically

find an assignment satsfying at least a fraction 1
2 of the constraints. Hence s∗(c) ≥ 1

2

forall c. Ourfirst result is that this is optimal for c < 1− 1
n+1 .

THEOREM 3.10. Assume the UGC and P �= NP. Then,

s∗(c) =
1

2
� for c < 1−

1

n+ 1
.

Then we give an algorithm that does slightly better when c > 1− 1
n+1 , i.e. on

instances where all but a small fraction (less than 1
n+1 ) of the clauses can be simulta-

neously satisfied. Note that this establishes a critical threshold at c = 1 − 1
n+1 above

which non-trivial approximation is possible.

THEOREM 3.11. For c = 1− δ
n+1 , where δ < 1, we have

s∗(c) ≥
1

2
+ Ω

�
1
√
n

�

where the hidden constant depends on δ.

Although this only gives a small advantage over the random assignment algorithm,

we also show that it is asymptotically optimal when δ is bounded away from 1.
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THEOREM 3.12. Assume the UGC and P �= NP. Then, for c = 1− δ
n+1 , where δ < 1,

we have

s∗(c) ≤
1

2
+ (1− δ)O

�
1
√
n

�

.

In the paper we also generalize these results to other majority-like homogenous

linear threshold predicates. It is well-known that any linear threshold predicate is de-

termined by its so called Chow parameters [6] which are the Fourier coefficients of

size at most 1:

P̂ (∅)� P̂ ({1})� . . . � P̂ ({n}).

For a homogenous linear threshold predicate P (x) = sgn (
�n

i=1 wixi), we have

P̂ (∅) = 0, and we say that P is Chow-robust if the function does not change when

the weights are replaced by the corresponding Chow parameters, i.e. if for all x ∈

{−1� 1}n:

sgn

�
n�

i=1

wixi

�

= sgn

�
n�

i=1

P̂ ({i})xi

�

Note thatmajority is Chow robust since all its Fouriercoefficients of size 1 are equal. In

the paperwe derive a sufficient condition forChow robustness and show that ourresults

generalize to Chow robust predicates satisfying some additional technical conditions.
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