
Implementation of an RFID-reader based on the EGON protocol
Master of Science Thesis in Integrated Electronic System Design

Björn Felber
Shine Vallath Sadhanandan

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden, October 2009

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher
or a company), acknowledge the third party about this agreement. If the Author has signed a
copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she
has obtained any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make it accessible on
the Internet.

Implementation of an RFID-reader based on the Egon protocol

Björn. Felber,
Shine Vallath Sadhanandan

© Björn Felber, October 2009.
© Shine Vallath Sadhanandan , October 2009.

Examiner: Lars Bengtsson

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden October 2009

i

Sammanfattning

Rapporten fokuserar på implementering av ett nyutvecklat protokoll för energieffektiv RFID-
kommunikation. Examensarbetet är en del av EGON projektet, där man har utvecklat detta
protokoll. Implementeringen är gjord på ett Virtex2 Pro utvecklingskit med en AD-omvandlare från
MAXIM (MAX1211) ansluten till data ingången. Projektet innefattar bland annat detektering av
frekvenser med hjälp av Xilinx LogiCORE Fast Fourier Transformer v6.0 och beräkning av
tillhörande energispektrum. En tillståndsmaskin(state machine) bestående av sex tillstånd där varje
tillstånd består av en sändande och en mottagande fas, används vid implementationen av algoritm
för att erhålla rfid-tagens(transponderns) identifikationsnummer. En Microblaze processor
implementerad på FPGAN används för kommunikation med dator genom RS232 porten. Ett
grafiskt gränssnittet skrivet i C och körs på Microblaze processorn, genom det kan de detekterade
taggarnas identifikationsnummer visas i binärt format och man kan också ändra olika parametrar i
designen. Det hardvarubeskrivande språket VHDL har använts vid skapandet av hårdvarublocken
och EDA (Electronic Design Automation) verktyg från Xilinx (ISE 10.1 och EDK 10.1) har använts
vid utvecklingen av dem. Vid simulering av blocken har ModelSim från Mentor Graphics använts.

ii

Abstract

This report focuses on the implementation of a newly developed protocol for energy efficient active
RFID communication. The master thesis is part of a project called EGON, which is a project where
an energy efficient protocol is needed. Implementation is performed on a Virtex2 Pro Development
board connected to an AD-converter from MAXIM (MAX1211). The project involves detecting
frequencies by using the Xilinx LogiCORE Fast Fourier Transformer v6.0 and calculating the
corresponding power spectrum. A state machine is used when implementing the algorithm for
receiving the tag (transponder) identification number consisting of six states, where each state has a
sending and a receiving part. For the graphical interface a soft-core processor (MicroBlaze) is
employed to handle the communication to the computer, which is accomplished through the RS232
port. The graphical interface is written in C and is running on the soft-core processor. It can display
tags found as a binary number on screen and it can also be used to change different parameters of
the design. The hardware description language VHDL is used when creating the hardware blocks
needed. In the project EDA (Electronic Design Automation) tools from Xilinx (ISE 10.1 and EDK
10.1) were used for development and ModelSim from Mentor Graphics was used for simulation.

iii

Abbreviation

ADC/ AD-converter Analog to Digital Converter
EDA Electronic Design Automation
FFT Fast Fourier Transform
FIFO First in First out
FPGA Field Programmable Gate Array
IP Intellectual Property
LSB Least Significant Bit
LUT Lookup Table
MSB Most Significant Bit
PLB Peripheral Local Bus
POSIX Portable Operating System Interface for Unix
PSD Power Spectral Density
RFID Radio Frequency Identification
RISC Reduced Instruction Set Computer
VHDL Very high speed integrated circuit Hardware Description

Language

iv

Preface
This project is performed by two students and the workload has been distributed equally among
them.

Björn Felber and Shine Sadhanandan have a bachelor degree in electronics and this master thesis is
the final work of the Integrated electronics and system design master program at Chalmers
University.

As both people involved in the project has about the same knowledge in VHDL programming, the
parts concerning the hardware blocks were divided equally. When one part was considered finished
it was tested and debugged by both parts. This way both students have a good knowledge of the
code. Below follows a list of the main author of the different parts of this report.

Topic Author
Introduction Björn
Task description Björn
Hardware Björn
RFID Björn
EGON protocol Björn
FFT-core Björn
MicroBlaze Shine
Xilinx EDK Shine
Xilinx ISE Shine
ModelSim Shine
Implementation of the RFID-reader Björn
FFT Björn
Power Spectrum Shine
Frequency Finder Shine
Clock divider Björn
Algorithm Björn
Software Application Shine
Project Phases Shine
Tag emulator Shine
Simulation and debugging Shine
Simulink model Björn
Set-up Björn
Results Björn Shine
Improvements Shine

Table 1: Documentation distribution

v

The list of tasks and the person responsible for them can be seen in Table 2.

Task Description Responsible
AD-sampling Björn

Algorithm implementation Björn
Down clocking block Björn

FFT block implementation Björn
Frequency detection Shine
Graphical interface Shine

MicroBlaze integration Shine
Power spectrum block Shine

Table 2: Task distribution

vi

Table of Contents
1 Introduction...1
2 Task description..2
3 Hardware...3

3.1 FPGA Development board..3
3.2 AD-converter...4
3.3 Filter..4

4 Theory...5
4.1 RFID..5
4.2 EGON protocol...5
4.3 FFT-core..6
4.4 MicroBlaze..6
4.5 Xilinx EDK...7
4.6 Xilinx ISE..8
4.7 ModelSim..8
4.8 VHDL..9

5 Implementation of the RFID-reader...10
5.1 Block descriptions...11

5.1.1 FFT..11
5.1.2 Power Spectrum..12
5.1.3 Frequency Finder...13
5.1.4 Clock divider...15
5.1.5 Algorithm...16

5.2 Software Application...18
5.3 Project Phases..20

5.3.1 Phase I...20
5.3.2 Phase II..20
5.3.3 Phase III...21
5.3.4 Phase IV..22

5.4 Tag emulator..22
6 Simulation and debugging..24

6.1 Simulink model...25
7 Set-up..28
8 Results...30
9 Improvements...33

vii

List of Figures
Figure 1: Digilent Virtex-II Pro Development System...3
Figure 2: MAX1211 Evaluation kit..4
Figure 3: Flow chart...9
Figure 4: VHDL Structure..10
Figure 5: State machine where n is the bit being received..18
Figure 6: Phase I block diagram...21
Figure 7: Phase II block diagram..22
Figure 8: Phase III block diagram..23
Figure 9: Phase IV block diagram..23
Figure 10: Samples captured from the ADC at an input signal of 10MHz.......................................26
Figure 11: FFT of samples from the AD converter, with a peak at 10MHz.......................................26
Figure 12: Simulink model with FFT-block in the middle...27
Figure 13: Input sine wave containing 21MHz and 25MHz frequencies...29
Figure 14: Output, 256 FFT..29
Figure 15: Output, 512 FFT..31
Figure 16: Output, 1024 FFT..31
Figure 17: Input amplitude versus Power...35
Figure 18: A screenshot of the user interface, three tags are found so far...36

viii

List of Tables
Table 1: Data of the XC2VP30...3
Table 2: Frequency bit..5
Table 3: Processor, co-processor settings...7
Table 4: Port description - FFT...10
Table 5: Configurations of FFT core..11
Table 6: Port description - Power Spectrum...12
Table 7: Port description-Frequency Finder...13
Table 8: send_freq logic...14
Table 9: state_3_frequency logic..14
Table 10: tag_bit logic..14
Table 11: Port description - Clock divider..15
Table 12: Port description - Algorithm...16
Table 13: Tag id example ...19
Table 14: Software accessible parameters..20
Table 15: Tag emulator frequencies..24
Table 16: Connections between AD-board and Virtex2 development board.....................................32
Table 17: Connection pins used on the Virtex2 development board...33
Table 18: Device utilization summary- Co-processor..36
Table 19: Project Device utilization summary...37

ix

1 Introduction
In RFID communication a small transponder called RFID-tag and a RFID-reader is used. It is used
in many places today and has a lot of opportunities for new innovative areas; attaching a tag to all
articles in a warehouse and easily tracking the inventory is one [1]. The most common version of
RFID-tags are the passive ones; meaning that they do not have a power source of their own. This
also means they can be kept small, and there is no battery to be worn out. Those tags have the
drawback of only operating in really short range. For longer ranges an active RFID tag is needed.
Active tags contain a battery, this provides the tag with necessary power to operate at much longer
ranges. An obvious drawback here is that the life of the tag ends when its battery is empty; this
makes the use of a power efficient algorithm necessary [2]. This project implements a power
efficient RFID algorithm on a Xilinx Virtex2 FPGA development kit using an evaluation kit from
Maxim for AD-Conversion.

The project started as an idea between Lars Bengtsson at Chalmers University and Björn Nilsson at
Halmstad University, the purpose was to create a Master Thesis based on a project carried out in
Halmstad in developing a RFID algorithm. The algorithm was already developed, but no real
implementation had been performed. Since work already had been started with construction of a
tag, the idea was to construct a reader for testing purposes. As the authors of the project are
educated in digital circuit design, the main interest was to carry out the project as a FPGA
implementation. A meeting was held with Björn Nilsson and Lars Bengtsson to discuss structure
and content, giving an overview to the project and what product to expect. Later another meeting
was held where the RFID algorithm was explained in more details. As the algorithm is rather simple
and relies on detections of different signal frequencies and since FPGA implementation is
commonly used in signal processing this seems feasible.

The project of constructing the RFID-reader was divided into five phases; the first part involved
setting up a basic structure and be able to detect frequencies. As no AD-converter was available in
that phase, a file containing signals was used for testing. In the next phase the algorithm was
implemented to make use of the detected signals and to be able to retrieve the identification number
of the tag. The third and fourth phases are almost like the two first, but instead of using test vectors
as input, an AD-converter was used. Each phase involved testing and verifying to make sure that
every phase was working probably before moving on to the next. The final testing of the RFID-
reader involved connecting to a physical tag and receiving the corresponding tag identification
number. Because of many uncertainties in the specification, as for example which frequencies to be
used and time of the sending and receiving cycles, the reader was constructed with flexibility in
mind, making it easy to change parameters in the code through a graphical interface.

1

2 Task description
The main purpose of this project is to design a prototype RFID-reader for the company Lepton
Radio AB. The prototype RFID-reader should be constructed for an active prototype RFID-tag
using the EGON protocol developed by the same company. It will not have the final manufacturing
specifications as its purpose is to be used for proof of concept. The EGON protocol is a low power
dissipation protocol especially developed for active RFID tags and with this protocol the tag should
be able to use a printed battery and therefore be able to be made really slim and compact. The
implementation is to be performed by using a standard FPGA development kit. Research in signal
processing is carried out to be able to make valid decisions on the type of hardware to be used and
their features. The main criterias for the project are listed below:

• Be able to detect frequencies up to 30MHz.

• Have a resolution of less than 600 kHz between detectable frequencies

• Work at clock frequency of at least 100Mhz.

• Resistance to noise

• Display found tags on computer monitor

• Be able to handle 48bit identification numbers

2

3 Hardware
As this project is going to be performed at Chalmers University, it is preferable to use the existing
hardware available and only purchase what is not available.

3.1 FPGA Development board
The choice was between a Spartan 3 development board and a Virtex2 Development board. Because
of the ability to run the MicroBlaze processor and also better support for the FFT the decision fell
on the Virtex-2 Pro Development System from Digilent. It has a built-in clock of 100MHz and
13969 slices on the FPGA [3]. Data taken from the Digilent Hardware reference manual gives the
following data (Table 3) for the on board FPGA. For additional memory a 512MByte random
access memory was also installed. The board can be seen in Figure 1.

Features XC2VP30

Slices 13969
Array Size 80 x 46

Distributed RAM 428 Kb
Multiplier Blocks 136

Block RAMs 2448 Kb
DCMs 8

PowerPC RISC Cores 2
Multi-Gigabit Transceivers 8

Table 3: Data of the XC2VP30

3

Figure 1: Digilent Virtex-II Pro Development
System

3.2 AD-converter

For the analog to digital conversion the AD-converter MAX1211 from MAXIM is used. The AD
works at a maximum of 65MHz and has an output bit length of 12 bits. The chip comes mounted on
an evaluation board from Maxim. The board has SMC connectors for the input and clock signal, an
on-board clock shaping circuit is also available on the board. The output is a 40 pin connector of
which 14 pins are used, 12 for data, one for data available (dav) and one for data out of range (dor).
A small change had to be done to the board for a single-ended input configuration, how to perform
this can be studied in the data sheet [4]. The board can be studied in Figure 2.

3.3 Filter
An analog filter before the AD-converter is needed to avoid aliasing from unwanted signals above
30MHz [5]. In a closed environment like the lab a filter is not needed but almost everywhere else
disturbances can interfere with the signal. The construction of the filter was not performed during
the time span of this project it was instead left as a later improvement.

4

Figure 2: MAX1211 Evaluation kit

4 Theory
In this chapter theory of different parts of the design is explained.

4.1 RFID
RFID is a common name for a variety of different ways of wireless communication between a tag
and reader. There are three types of RFID-tags, active, semi-active and passive. Active RFID-tags
have their own power source and usually they have a longer working range a drawback is of course
that the size of the tag increases when using a battery. Passive tags do not have a battery and their
power is based on induction which charges the tag for a short while. Without a battery the RFID-tag
can be made really small, the drawback is that the working range is small, only up to a few meters.
Semi-active is as the name indicates, a mixture of the two above methods. The RFID-tag has a
battery but also makes use of induction when operating [2]. This report focuses on the active RFID-
tag; the protocol is called EGON and differs from the conventional implementation where a tree
structure is used.

4.2 EGON protocol
The algorithm is basically using five frequencies of which one is a beacon. The protocol does not
involve modulation of the signals. This excludes the need for modulator/demodulator in the RFID-
tag and RFID-reader which makes the logic much simpler to build.

The beacon signal is used to activate the tags and begin the retrieving of the tag identification
number. The other frequencies each correspond to a certain bit number, which can be seen in Table
4.

Frequency Bit number

f1 00

f2 01

f3 10

f4 11

Table 4: Frequency bit

The process starts by sending the beacon. The tag(s) then responds by sending the beacon back. The
receiver now knows that there are tags nearby. In the next step the receiver sends on all frequencies,
f1, f2, f3 and f4. The tag(s) with the corresponding first two bit-numbers in its/their id sends back
on the same frequency.

The RFID-reader detects the frequency with the highest energy and sends back on that frequency
again. If more than one tag is answering it will only reply the tag with the highest amount of energy
in its signal. The tag with the corresponding first two bits will respond with the frequency received.

When the RFID-reader receives the frequency, it saves the corresponding first bit of the tag
identification number. Then it will send on those frequencies which correspond to a bit-number
starting with the second bit of the received signal. The tags with the second and third bit
corresponding to the sent signal will answer by sending back at the corresponding frequency and
then the second address bit of the tag is received and saved.
This will go on until only the last two bits of the tag identification number is left, the receiver will

5

then send on all frequencies (f1, f2, f3, f4) and the tags with the corresponding last two bit numbers
will answer and in this way at most four different tags will be completed simultaneously. The
detected tag(s) will then go to sleep and the next time the beacon is sent they will not wake up and
because of that the algorithm will not find the same tag twice. The RFID-reader will keep running
the algorithm and sending the beacon until all tags are sleeping and no more tags are detected [1].

The protocol is developed by Lepton Radio AB and is still under development, therefore a more
detailed description of the algorithm cannot be given.

4.3 FFT-core
As this project is planning on detecting frequencies using the Fourier transform a digital
implementation is needed.

Fast Fourier transform (FFT) is a fast and efficient algorithm for doing digital Fourier transforms
(DFT). The FFT can be applied to sample sizes that are a positive integer of the power of two. In
equation 1 the definition of the DFT can be observed, where n = 0,...N-1, k=0,...,N-1, N is the
transform size and i=−1 .

X k =∑
n=0

N−1

x ne
−i2k n

N 
k=0, ... , N−1 (1).

There are different algorithms implementing the FFT, for example, when using the Xilinx FFT core
there are two available; Radix-4 and Radix-2. The algorithms can then be implemented using
different architectures. When using the Xilinx IP core there are four architectures available;
Pipelined Streaming I/O, Radix-4 Burst I/O, Radix-2 Burst I/O and Radix 2 Lite Burst I/FO. The
main considerations when choosing one of the architectures are size (resources used on the FPGA)
and transform time, where the Pipelined Streaming I/O is the fastest but also the largest, Radix2
Lite Burst I/O the slowest and smallest and the other two are in between. The architecture chosen in
this project is the Radix-4 burst I/O because it had a suitable trade of between size and transform
time. When using the Burst I/O architecture the data is processed in different stages and grows with
each stage, for the Radix-4 the growth is up to 3bits in each stage. To avoid overflow at the output a
scaling factor can be set in each stage, which means that the final output will be modified by a

factor
1
S , as seen in equation 2.

X k =1
s ∑n=0

N−1

x ne
−i2k n

N 
k=0, ... , N−1 (2)

A conservative scaling vector proposed by Xilinx is [01 10 10 10 11], for a FFT of length 512, this
means that the scaling in the first stage is 3, 2 in the second, 2 in the third, 2 in the fourth and 1 in
the fifth. This scaling guarantees that no overflow occurs at the output [6].

4.4 MicroBlaze
To incorporate the various peripherals with the design and interface it with a computer a processor
core needed to be implemented on the FPGA. The major goal of this was to successfully be able to
communicate with the co-processor (RFID-reader core), set/change parameters and extract the
required results. The selected processor architecture should also allow use of peripherals like
SDRAM, on-board switches and LEDs. The processor was also to be used extensively for
debugging, since it was the only available, efficient option.

There are two processor architectures that can be implemented on the XUP Virtex-II Pro
Development Board; MicroBlaze and PowerPC. Since MicroBlaze is the processor that can be

6

implemented in a wide range of Xilinx FPGA family, it was chosen.

The MicroBlaze(TM) 32-bit soft processor is a RISC-based engine with a 32 register by 32 bit LUT
RAM-based Register File. This embedded processor supports both on-chip Block RAM and/or
external memory, of which both were used in this project. The MicroBlaze can be connected to a
co-processors implemented on the FPGA. The co-processors can be interfaced with it using FSL
(Fast Simplex Link) or PLB (Processor Local Bus). PLB v4.6 was used in the thesis project to
interface the RFID-reader co-processor with the MicroBlaze. This facilitates data streaming
between the embedded processor and the required design in hardware.

The MicroBlaze supports a vast array of peripherals to be interfaced with it. In this thesis project,
the major peripherals added were RS232 and DDR SDRAM. At various stages of the project
development, peripherals such as on-board dip switches, LEDs and push buttons were also added to
the MicroBlaze. The processor can also be configured with an on-chip hardware debug module
which helps to debug the software on the MicroBlaze [7].

The processor is also capable of running operating systems like μC/OS-II [8] and μClinux [9]. The
Xilinx EDK environment facilitates custom C/C++ applications that can be run on the MicroBlaze
instead of any operating system.

4.5 Xilinx EDK
The Xilinx® Embedded Development Kit (EDK) is an environment of tools and Intellectual
Property (IP) that enables the implementation of a complete embedded processor system on a
Xilinx FPGA device. EDK is then further divided into two: XPS and SDK [10].

XPS (Xilinx Platform Studio) deals with the hardware aspect of the project. It supports two
processors to be implemented on the FPGA: MicroBlaze and PowerPC, of which the MicroBlaze
was used in this project. Through XPS, the MicroBlaze can be configured (clock frequency,
peripherals etc) according to the designers need and the hardware specification of the processor can
be created. XPS also helps in interfacing co-processors, the custom RFID-reader in this case, to the
MicroBlaze. For the purpose of interfacing the co-processor, PLB (Peripheral Local Bus) or FSL
(Fast Simplex Link) is provided by XPS, of which PLB is used in the project design. After all the
hardware configuration is completed in XPS, the specification is converted by XPS to bit file,
which can be downloaded into the FPGA board. For the conversion of specification to bit file, XPS
makes use of the Xilinx tools for synthesis, translate, map, place and route, and bit stream
generation in the background. For the project, the co-processor was designed in Xilinx ISE which
also includes all the Xilinx tools. It facilitates as easier design and debugging process. After it was
verified in ISE, the design files can be used in the XPS. To successfully complete these processors,
various design files has to be modified, details of which is included in the appendix.

Processor MicroBlaze
Clock frequency 100 MHz
Debug I/F On-chip H/W debug module
Peripherals RS232, DDR SDRAM
Standard I/O device RS232
Boot memory Local Memory(BRAM)
Co-processor Bus interface Processor Local Bus(PLBv4.6)
Co-processor IP interface Services Read/write FIFO

Table 5: Processor, co-processor settings

7

The SDK (Software Development Kit) provides an environment in which the software to be run on
the embedded processor can be designed. It is based on the Eclipse open source suite and enables
writing, compiling and debugging C/C++ applications targeted at the embedded processor. SDK
includes Standalone and Xilkernel software platform. Standalone corresponds to simple
environment with basic features while Xilkernel provides POSIX-style services. A simple
Standalone software platform was used for the project which provides input/output operations,
access to the processor features and parameters, and basic C/C++ operations [11].

The table, Table 5, gives a brief overview of the processor and co-processor settings.

4.6 Xilinx ISE
Xilinx Integrated Software Environment (ISE) is a software suit which above all provides tools for
compiling, synthesizing and floorplanning. It also has various tools for verification such as
simulation abilities. Working in ISE usually consist of a number of steps. First of all the design
entry is made; here the source files are entered and the structure of the files are viewed. The source
files can be written in any hardware description language, such as VHDL, Verilog or ABEL. In the
next step synthesis is performed where a netlist is generated from the hardware description language
code. The netlist is then used in the implementation process where the netlist is translated into
physical file which can be downloaded to the FPGA device [12]. In this project version 10.1 of
Xilinx Integrated Software Environment (ISE) was used.

4.7 ModelSim
ModelSim is a verification environment by Mentor Graphics. It supports simulation and verification
of multiple languages like VHDL, Verilog and System C. When a design has to be simulated,
ModelSim compiles the code using in-built compilers. The graphical user interface (GUI) provided
by it allows access to all the inputs, outputs and signals in the design on which numerous debugging
options can be applied [13].

This verification environment was used in the project to verify the properties. Test benches, which
can be written to automate simulation, were extensively used to verify the functionalities of the
design. The version used in the project was ModelSim SE PLUS 6.5.

4.8 VHDL
VHDL is a popular language for describing digital circuits. Many EDA (Electronic Design
Automation) tools like Xilinx ISE and Quartus supports VHDL design entry [14]. It supports
structural and behavioral descriptions of circuits [15]. In this project, VHDL was used to design all
the user-defined hardware blocks.

8

5 Implementation of the RFID-reader
This chapter will begin with a brief overview of the design used when implementing the RFID-
reader, explaining the data flow and how all blocks are connected. Later on in the report each block
will be explained in more detail.

The EGON protocol is based on a set of five frequencies of which the RFID-reader and the RFID-
tags uses to communicate with each other (as explained in 4.1). To detect tags and proceed through
the steps in the protocol, the RFID-reader needs to detect the frequency of the sinusoidal wave
input from the tags. Since most of the RFID-reader design is implemented on the FPGA, signals
from the tags are to be sampled through the AD-converter. To detect the interested frequencies in
the digitized sine wave, the power spectral density (PSD) was considered as a solution. To compute
the PSD, the time domain signal has to be converted into frequency domain, which was done by
performing FFT (Fast Fourier Transform). Even though it is possible to conduct DFT (Discrete
Fourier transform) such as Goertzel Algorithm for five separate frequencies, FFT allows a simpler
IP implementation and more freedom in varying the frequencies in the design [16].

The final implementation of the RFID-reader consists of four blocks, FFT, Power spectrum,
Frequency finder, Algorithm and Clock divider, as seen in Figure 3. The data from the ADC gets
stored and processed in the FFT block and then passed on to the power spectrum block, where the
power spectrum is calculated. The frequency finder finds the frequencies and passes them together
with the frequencies to be sent to the algorithm block.

The algorithm block is divided into different states. Depending on the current state and the data
from the frequency finder block, the block adds bits to the tag identification number and handles the
sending frequencies. When a complete identification number is obtained it sends the number to the
MicroBlaze which prints it out through RS232. The tag identification number can then be viewed
by connecting a computer to the RS232 port and using a terminal application.

To be able to set the timing for the sending and receiving cycles a separate block for the time was
created, this block sends the time to the Algorithm and Frequency finder blocks.

9

Figure 3: System overview.

5.1 Block descriptions
The VHDL code for the RFID-reader is divided into five blocks; the structure can be seen in Figure
4 and the function of each block is described below. The main block acts as a hub in the middle,
simply connecting the ports coming from each block to each other.

5.1.1 FFT
A separate block for the FFT calculation is used with a start signal as input and the calculated FFT
data with its corresponding index as output.

The block stores values from the ADC in a buffer of size 512, the same length as the FFT being
calculated. The buffer has a pointer which moves one step whenever a data available (dav) signal is
received from the ADC, when the pointer reaches the end of the buffer it wraps around and starts
from the beginning of the buffer again. Data are then read from the buffer and passed to the real
input (xn_re) of the FFT-core.

Port Type Description
clk in System clock
rst in Reset

Start in Start calculating FFT
xk_im out Imaginary output
xk_re out Real output

xk_index out Index of output

Table 6: Port description - FFT

The FFT block makes use of a generated FFT-core from Xilinx core library, it uses a length of 512,
and because of the data from the ADC being 12bit the input and output bit length of the FFT is set
to 12bits. A pointer is used, pointing at the index of the input word; it is set to point at the buffer
containing the saved values from the ADC. The FFT-block takes about 5μs (derived by simulation)
to complete one transformation, this means that during one listening cycle of 250us, 50 FFT
calculations can be performed. The IP core was generated with the settings depicted in Table 7. As
mentioned before a scaling vector is used, the vector is directly attached to the FFT-core. The in and
outputs of the block can be studied in Table 6.

10

Figure 4: VHDL Structure

Function Setting

Implementation Radix-4, Burst I/O

Transform length 512

Channels 1

Data Format Fixed Point

Input Data Width 12

Phase Factor Width 12

Scaling Scaled

Rounding Modes Truncation

Output Ordering Bit/Digit Reversed Order

Data Block RAM

Phase Factors Block RAM

Table 7: Configurations of FFT core

5.1.2 Power Spectrum
The primary function of the Power Spectrum block, is to compute the power spectral density of the
FFT output. Table 8 depicts the port description of the Power Spectrum block. The power spectral
density (PSD) can be calculated using the following relations:

X =FFT Y 

PSD= X. X
number of FFT points

Port Type Description
clk in System clock
re in Real output from FFT
im in Imaginary output from FFT

valid in Valid flag from FFT
index in FFT output index

index_out out FFT output index
valid_out out Valid flag from FFT
com_conj out re2 + im2

Table 8: Port description - Power Spectrum
To simplify the process and to minimize the hardware utilization, the division by number of FFT
points in the PSD equation was omitted. This means that the results will be amplified by number of
FFT points, and since this signal is dealt internally between two blocks the extra logic would seem
unnecessary. The inputs im and re from FFT block is manipulated in the following way to obtain the
com_conj:

11

com conj=reali.imaginary⋅real – i.imaginary 

 = real2 – i 2⋅imaginary2

 = real2imaginary2

5.1.3 Frequency Finder

Frequency Finder is the block succeeding Power Spectrum. As the name suggests, it is designed to
detect the required frequencies from the FFT output. A threshold (threshold) is set for the frequency
detection. To detect the frequencies, the position of the required frequency in the spectrum has to be
determined. These positions can be calculated using the following formula:

 Frequency position= lengthof FFT
Sampling frequency

⋅ frequency

Port Type Description
clk in System clock

toggle in Toggle from clock divider
valid in Valid from FFT

threshold in Threshold for freq detection
time_us in Time in us from clock divider

com_conj in com_conj from Power Spectrum
index in FFT output index

f0_position in Index of f0 in FFT output
f1_position in Index of f1in FFT output
f2_position in Index of f2 in FFT output
f3_position in Index of f3 in FFT output
f4_position in Index of f4 in FFT output
toggle_out out Toggle from clock divider

time_us_out out Time in us from clock divider
tag_bit out Detected tag bit

frequency out Detected frequencies from tags
send_freq out Reader output freq for next state(except state 3)

state_3_frequency out Reader output freq for state 3

Table 9: Port description-Frequency Finder

Using the above relation, the expected position of all the five frequencies involved in the design
(beacon and four frequencies) were calculated and in the C application and relayed to the frequency
finder (f0_position, f1_position, f2_position, f3_position and f4_position). If the computed position
matches the index, and if the com_conj value for the index is greater than threshold when toggle is
high (receiving stage), the corresponding frequency bit is set high.

12

The output send_freq is based on the frequency with the highest power among the detected
frequencies, except when the beacon is encountered. An internal signal keeps track of the highest
power among the detected frequencies and based on that send_freq is calculated according to the
Table 10.

Frequency(highest power) send_freq
f0 f1,f2,f3,f4
f1 f1,f2
f2 f3,f4
f3 f1,f2
f4 f3,f4

Table 10: send_freq logic
state_3_frequency is an output closely related to send_freq, which is specifically designed for use in
state 3 in the state machine in the algorithm block. The logic associated with the signal is the same
as send_freq except that it will only give one frequency to be sent in state 3. The state_3_frequency
is assigned according to the table below, based on the highest power frequency detected. It should
also be noted that this output is not related to f0, the beacon.

Frequency(highest power) state_3_frequency
f1 f1
f2 f4
f3 f3
f4 f4

Table 11: state_3_frequency logic
tag_bit is a two bit std_logic_vector. The LSB is the valid bit and MSB being the detected tag bit.
This signal is also based on the detected frequency with highest power. If a valid bit is found based
on the detected frequencies, the LSB of tag_bit will be set high and the MSB will be set as per
Table 12.

Frequency(highest power) tag_bit<1>
f1 0
f2 0
f3 1
f4 1

Table 12: tag_bit logic

If a valid bit could not be found, the LSB will be set to '0', pronouncing the MSB to be invalid. This
signal is further used in algorithm, to detect the tags and also to detect if the tag is set to be valid.

13

5.1.4 Clock divider
The EGON algorithm is divided into two parts, sending and receiving, of which, using standard
configuration, the first occurs for 200μs and the second for 250μs. For that reason an
implementation of a separate block handling the sending and receiving time is a solution. The clock
divider creates a clock with a period of one microsecond and from that an asymmetrical clock pulse
with a period of 450μs is made (toggle). The pulse is low for 200μs and high for 250μs. An output
for the time in microseconds will also be available, which counts from 1μs to 200μs or 1μs to 250μs
depending on if toggle is low or high. The block is made in such a way that changing of sending or
receiving times requires little effort as those are implemented as inputs which can be modified
through the user interface. A description of the ports can be found in Table 13.

Port Type Description
clk in System clock
rst in Reset

out_time out Output time
toggle out Pulse of send and receive time

time_send in Input for setting the sending time
time_receive in Input for setting the receiving time

Table 13: Port description - Clock divider

5.1.5 Algorithm
To have good overview of the code, different processes were used for different parts of the
implementation of the algorithm block. A description of each process can be studied below and a
descriptions of the ports can be viewed in Table 14.

Port Type Description
clk in System clock
rst in Reset

frequency in The detected frequency
stage_3_frequency in Frequency to be sent in stage 3

tag_bit in The bit number for the found
frequency

send_frq_in in The frequencies to be sent
time_us in Current time
toggle in Pulse with send and receive

cycles
time_receive in Receiving time

send_f out Frequencies which are sent
tag_output out Found tag output

Table 14: Port description - Algorithm

14

State machine
The algorithm block consists of a state machine with six states. In Figure 5 all of its states can be
observed. Depending on which states the state machine is in, different operation will be performed.
Each state lasts for 450μs of which 200μs is the sending part and 250μs the receiving part. On reset
the state machine will go to state1 and then start looping through the states. It will continue looping
forever as long as it gets the beacon. If no beacon is detected, it will stay in state1 and continue to
send the beacon. The beacon is sending for 200μs, then it waits for 250μs, if it gets the beacon back
it will continue to the next state, else it will send the beacon again. When in the second state all
frequencies except the beacon are sent. The frequency with the highest amount of energy received is
then sent in state 3. This is also where the first bit of the tag is received. In state 4 and 5, two
frequencies will be sent based on the received frequencies of the previous state. In each of these
states one bit of the tag identification number will be added. When there is only 2 bits left it will go
to state 6 and send on all frequencies. It will then concatenate the already received tag identification
bits with all combinations of the two last bits, and also a valid bit. The valid bit will be put to zero if
at some point no frequency is detected.

Sending
A single process handles the sending part. Based on the current state and toggle, it decides when to
send. In state 2 and 6 the sending frequencies are constant. In state 3 to 5 the sending frequencies
are based on the frequencies detected and passed from the frequency finder block

Counter
To be able to know how many bits have already been processed a counter process is implemented,
the process counts each time the state machine visits state 3, 4, 5 and 6.

15

Figure 5: State machine where n is the bit being received and N the
total length of the tag identification number.

Tag output to MicroBlaze (tag_output_pro)
To be able to read the tag in the MicroBlaze, the tag identification number has to be available at the
output. This is done by putting out the tag id vector on a bus available for the MicroBlaze. Because
of limitations in the MicroBlaze only 32 bit numbers can be transferred, this is solved by dividing
the 48 bit tag into two parts and sending them one by one. The tags are then converted into binary
format by a program running on the MicroBlaze and displayed on the screen.

Main
The main process handles the state transitions of the state machine. Each transition occurs at the
positive clock edge.

Write bits (tag_temp_pro)
Based on the value of the counter, this process adds the corresponding bit from the received signal
to the tag's identification vector. The vector will be updated during the first microsecond in the
sending sequence after the listening sequence. This vector contains all the tag's identification
number bits except the two most significant, which will be appended in the tag_app_pro process in
the end.

Appending last two bits and valid bit (tag_app_pro)
When the tag id vector is completed, this process appends all combinations of the two most
significant bits and also an extra bit at the end (lsb) for validation. This creates four different tag
identification numbers, with all of the bits being the same except for the two first (msb) bits. The
value of the validation bit is passed from the frequency finder block. An example of how 8bit tag
identification vectors can look like can be found in Table 15. In the example only one tag is valid,
00101010, which has the valid bit set to 1.

Complete tag id with valid bit
Tag id last 2 msb Tag id Valid bit

00 101010 1
01 101010 0
10 101010 0
11 101010 0

Table 15: Tag id example

5.2 Software Application
A software application is necessary to be executed on the MicroBlaze processor to provide various
functionalities. The application must be given access to the required co-processor parameters which
has to be modified or read. This is done indirectly through the read/write FIFO of the PLB interface,
which is connected to the required input/output ports of the co-processor.

In the C/C++ application for the thesis project, the software is given access to the read/write FIFO.
Through this the necessary parameters of the system designs can be changed easily. During the
testing and verification stages of the design this was extensively used. Various parameters of the
RFID-reader design including threshold, reset and start were connected to the write FIFO, so that
these values could be changed from the software. To check the various components on hardware,
any of the required outputs to be checked was connected to read-FIFO and was accessed through
the C application. The standard input/output device of the MicroBlaze was configured as the

16

RS232. Using the serial port, the outputs from the software application was displayed in Tera Term,
a terminal emulator [17].

In the earlier stages, the RFID-reader design included an tag emulator embedded within, which is
further explained later in the report. This tag emulator was effectively used for testing, using the
C/C++ application on the MicroBlaze. The tag emulator emulates a tag whose identification number
is given as an input through the C/C++ application. The C/C++ application generates the tag
identification number exhaustively, based on the frequency vectors in memory supplied as input to
the FFT. To test the correctness of the system, the detected tag id from the co-processor is then
compared to the application generated tag id.

The final version of the project software manages various inputs and output of the co-processor as
specified in Table 17.

Co-processor parameter Type
threshold input

f0_position input
f1_position input
f2_position input
f3_position input
f4_position input

time_receive input
time_send input
tag_output output

Table 16: Software accessible parameters
As threshold is an input, this gives the possibility to change the threshold when the experimental
setup is changed. The frequencies associated with the design (f0, f1, f2, f3 and f4) can be changed
through the software application. The corresponding index of the frequencies (f0_position etc) can
be calculated and passed through the PLB. The sending and receiving cycle duration of the protocol
can also be altered through the C application.

The detected tags (tag_output) are read through the read FIFO. This data is initially represented in
decimal form, and a separate coding is required to represent in binary format, since the print
function in the C/C++ library does not support binary representation.

Limitations: The major limitation of the software is its inability to keep up with the speed of the
hardware. For longer sending and receiving duration between RFID-reader and RFID-tag, the
software will have enough time to process different computations needed, such as binary conversion
and printing of results. But as the sending and receiving times become shorter, the software might
not be able to complete the required processes in the given time. This leads to loss of data. The
above stated limitation does not occur for the specification of this project.

The other limitation is related to higher tag identification number length than the lower one. The
macros and functions defined in the C/C++ libraries in EDK are targeted at 32 bits and lower. When
the tag address is more than 31 bits (+ 1 valid bit), these functions are unable to relay the output
from co-processor to Tera Term. To solve this the tag id was separated as follows: If the tag id is 48
bit long (49 bits including the valid bit), the tag address is separated as 32 bits and 17 bits. This data
is sent to the MicroBlaze and the software prints it as a single address.

17

5.3 Project Phases

The project was divided into different phases, each having a definite objective, to systematically
fulfill the specifications. Since the A/D converter was not available at the initial stages of the thesis,
the first two phases dealt only with the digital realm. The two final phases introduces ADC into the
design, and can be considered as modified version of first two phases.

5.3.1 Phase I
The objective of this phase was to implement an FPGA design which could detect five specific
frequencies. This was necessary for the later stages, in which the implemented protocol works based
on the detected frequencies.

The design flow can be seen in Figure 6. The 512-point FFT block receives the sampled input data
on which the FFT is calculated. This data is sent to the power spectrum block to deduct the power
spectrum, which is followed by frequency finder. The frequency finder block used for this design is
a simpler version than that in final design. This version was designed to detect the presence of any
of the five frequencies specified. Based on the power spectrum data, the frequency finder block
detects if the frequency is present using power spectrum value corresponding to the respective
position. The design was implemented as a co-processor with the MicroBlaze processor, interfaced
through PLB. Threshold and the frequency finder output were connected to the PLB. A C-software
application was designed to modify the threshold through the terminal. The software application
was also designed to access the frequency finder output and notify the user if any of the frequencies
were detected.

The tag emulator was included in the project to provide the FFT block with a sampled input, which
could also be controlled through the terminal.

5.3.2 Phase II
In phase II, the complete digital aspect of the thesis was covered, as seen in Figure 7. The tag
emulator was used to feed input to the system and test the functionality. The FFT of the input data is
calculated and as in Phase I, this is further processed in power spectrum block. The frequency finder
detects the frequencies and computes various signals required in the algorithm block. The frequency
finder used in this phase is the final version explained in the earlier sections. The clock divider unit

18

Figure 6: Phase I block diagram

controls the timing of the sending and receiving cycles of the RFID-reader. Based on the signals
from the frequency finder, the algorithm block determines the tag address and frequencies to be
transmitted in the next cycle.

As seen in Figure 7, MicroBlaze processor was implemented in FPGA and the reader design was
connected using PLB, with access to various design parameters. This is to enable easier system
modification by the user, which was enabled through the C application run on the MicroBlaze.

5.3.3 Phase III
This phase introduces the ADC to the project scope. The objective of this phase was to implement
the ADC in the phase I design. As a result, the tag emulator was removed and the ADC was
interfaced to the design.

Since the tag emulator was designed to represent the ADC, with similar 12-bit output, the processes
involved were similar to that in phase I. Figure 8 depicts the block diagram for this phase. The
design was tested using frequency generator and the prototype RFID-tag.

19

Figure 7: Phase II block diagram

Figure 8: Phase III block diagram

5.3.4 Phase IV
The fourth phase of the project was intended to fulfill all the design specifications. In this phase, the
design in phase II was upgraded to include the ADC. The digital part of the design is similar to that
in phase II except the removal of tag emulator. The 12-bit ADC feeds the input to the FFT block.
The design flow can be seen in Figure 9.

The RFID-reader design was connected to the MicroBlaze through PLB. For the purpose of easy
and quick system modification, the MicroBlaze was given access to the following parameters:
threshold, sending and receiving duration and the frequencies associated. The C application was
modified to access these parameters, giving the user options to modify it. The design was tested
using frequency generator and the prototype RFID-tag

5.4 Tag emulator
To verify the RFID-reader design, a tag based on the EGON protocol was necessary. Since it was
not available, a tag emulator was required to test and debug the design. This was incorporated
within the whole system. The emulator was not implemented as a separate functional unit, but as a
design that spreads across different components of the system. It was implemented mainly within
the algorithm block and FFT block.

The tag emulator was used in the earlier designs which did not include the A/D interface. It was
completely within the digital realm. A file was included to the design which contained sampled
values of sine waves of the following frequencies: 20MHz, 22MHz, 24MHz, 26MHz, 28MHz and
noise. The frequencies involved with the RFID-reader were set as in Table 17.

20

Figure 9: Phase IV block diagram

Frequency variable Frequency(MHz)
f0 20

f1 22

f2 24

f3 26

f4 28

Table 17: Tag emulator frequencies

To simulate the presence of tags, the tag addresses to be detected was embedded to the C
application on the MicroBlaze. A function was created in the application which was to generate the
tag addresses systematically, and to break down this tag addresses to the frequencies involved in it.
This frequency information was sent to the RFID-reader co-processor. Based on this information,
the tag emulator sends the appropriate sampled sine wave values to the FFT block at various
algorithm stages. After the whole cycle to detect a single tag was completed, the tag address
detected by the design, based on the frequency information from MicroBlaze, is sent to the
MicroBlaze C application and cross checked with the expected result.

Limitations

Since the tag emulator was intended for preliminary testing only, it was not designed with general
use in mind. As a result it was spread across various blocks in the design, which makes it harder to
modify without detailed knowledge of the tag emulator implementation.

21

6 Simulation and debugging
In this project, testing and verification were mainly conducted through the MicroBlaze. In the early
stage of the design, to simulate and verify the functionalities of the FFT IP block from Xilinx, a
Simulink model was used. Sampled frequency data was generated using MATLAB and sent to the
FFT block. The output was captured and studied. Based on these tests, the FFT block was calibrated
in the VHDL design.

The Phase I of the project, which involved detecting a frequency based on the sampled frequency-
data in file, was simulated using test benches in ModelSim. The input data file consisted of seven
sets of data; combination of four frequencies and noise. To test this on the board, initially, the ISE
project bit file was downloaded to the FPGA board. Switches were assigned to select the input data
corresponding to a frequency or set of frequencies. LEDs were mapped to light up if a frequency
corresponding to one of the four LEDs were detected. To ease the testing and debugging process a
MicroBlaze processor was implemented on the FPGA with Phase I design being the co-processor.
This allowed the selection of data sets through the terminal. This was also useful in debugging since
any signal in the design could be displayed through the terminal.

The second phase of the project involved the implementation of the whole RFID-reader without the
A/D interface. The design also included the tag emulator. This design was simulated in ModelSim
using various test benches and verified to a certain extent. Due to the sheer number of signals
involved in the design, simulation and waveform study proved difficult, but manageable. Similar to
Phase I, MicroBlaze was used to debug the design on the FPGA board. Initial testing showed that
the simulation results varied from the on-board results. To rectify the unexpected behaviors,
properties of each block were scrutinized. For this purpose, various signals associated with the
blocks were connected to the MicroBlaze and made available through the terminal. The majority of
the problems were detected to be related to the algorithm design file. Timing issues with the state
machine and design interpretation by the tools contributed to abnormalities. The functions involved
in the algorithm were all treated as separate processes, which rectified most problems. The
operating frequency of the design was lowered, since the C applications had limited processing
power, to observe the changes more clearly. Based on these tests, the algorithm was fixed. To verify
this design phase, the tag emulator was designed to produce 2401 tag instances and verify the
design outputs, which was successfully completed.

The third phase of the project was the A/D interfaced version of Phase I design. The design did not
include the sampled data file for different frequencies; but used the input as the data from the A/D
converter. To test the design, a signal generator was used, which was connected to the ADC input.
The frequency of the signal generator was varied and the user was notified if any of the interested
frequency in the design was detected, through the MicroBlaze. Since the FPGA design was very
close to that in Phase I, most of the issues were related to the ADC and interfacing it with the
FPGA. Signal integrity was a major problem, which was improved by using a 40-pin flat cable
instead of 20-pin flat cable.

In the fourth phase, the second phase of the project was modified to include the ADC. Testing of
this modified design proved difficult due to that no physical tag was available at this time. As a
result initial testing revolved around the beacon signal. Since the design proceeds through all the
stages if a beacon signal is detected, producing a valid/invalid tag address, it could be tested if the
system detects a beacon. The frequency associated with the beacon was varied, and a signal
generator was used to test the expected functionality. While sweeping the frequencies, it was
noticed that beacon was detected at unexpected frequencies. This was rectified by determining the
optimal threshold for the experimental settings.

22

When connecting different kinds of hardware, it is important to know how each device is
functioning, including the ADC used in this project. To test the AD-converter a code was made for
printing out the sampled values. Because a set-up of the MicroBlaze processor had already been
done, implementation of such code was rather easy. With the AD-converter connected to a signal
generator producing a sine wave at 10MHz, with a peak to peak value of 300mV, the values from
the 12bit output of the AD-converter was captured and stored by the Virtex2 board. The values were
then sent through the RS232 port to a computer and stored to a file. MATLAB was later used to plot
the values (Figure 10). The data coming from the AD is in 12 bit two's complement form. This
means that the data range is -2048 to 2047. As seen in Figure 10 the data range of the captured
values is much smaller, since the number of bits used is only 10. This is as expected, as the full
input range of the ADC is 1 VP-P and only 300mV was used.

In MATLAB, the built-in FFT function was used to calculate the FFT of the captured signal. Using
the known sample rate of 64MHz, the power of the FFT was plotted with a correct scaling on the
frequency axes. As expected, most of the energy was found around 10MHz as seen in Figure 11.

This test helped in verification of the ADC and also confirming that the connections between the
boards were done correctly.

6.1 Simulink model
Simulink is a tool from MathWorks the developer of MATLAB. It is a graphical environment where
you can do simulation of different systems with the help of blocks. It is especially developed for
communications, controls, signal processing, video processing, and image processing.

As project plans for this project was to use a Xilinx FFT core for the FFT calculations, it was
fortunate that Xilinx had provided a block library for Simulink, with their own cores. By adding the
Xilinx FFT-core V6 in Simulink, tests could be performed too learn more about the core. The block
has two inputs, one for real numbers and one for imaginary. In the tests the imaginary input was set
to zero and a sine wave was applied to the real input. An input called start needs to be high for the
block to process the data at the input. The inputs for choosing whether the FFT core should use
forward or backward transformation (fwd_inv) is set to forward.
There are different types of implementation of the algorithm. In this project the Radix-4 is used,
which divides the calculations into a number of stages depending of FFT length. The scaling in each

23

Figure 10: Samples captured from the ADC
at an input signal of 10MHz.

Figure 11: FFT of samples from the AD converter,
with a peak at 10MHz.

stage is set by a vector connected to the scale_sch port. In the model this is set to 0110101011 or
427 in decimal.
Further information about the Xilinx FFT core can be found in the Xilinx LogiCORE product
specification sheet. (“Xilinx LogiCORE Fast Fourier Transformer v6.0 DS260 September 2008”).

The Simulink model created, including the FFT block, is depicted in Figure 12. The model was
constructed to get a better view of the expected output and help in deciding the length of the FFT.

24

Figure 12: Simulink model with FFT-block in the middle.

Figure 13: Input sine wave containing
21MHz and 25MHz frequencies Figure 14: Output, 256 FFT

real

re

imaginary

im

done

done

WaveScope

Wave Scope

Terminator 5

Terminator 4

Terminator 3

Terminator 2

Terminator 1

Terminator

Step4

Step3

Step2

Step1

Step

Sine Wave 1

Sine Wave

Random
Number

Gateway Out 1
 Out

Gateway Out
 Out

Gateway In 8
 In

Gateway In 6
 In

Gateway In 5
 In

Gateway In 4
 In

Gateway In 3
 In

Gateway In 2
 In

Gateway In 1
 In

Gateway In
 In

Fast Fourier Transform 6.0

xn_re
xn_im
start
unload
fwd_inv
fwd_inv _we
scale_sch
scale_sch_we

xk_re
xk_im

xn_index
xk_index

rfd
busy

dv
edone

done

Divide

DSP
Constant 2

427

DSP
Constant 1

4

DSP
Constant

0

System
Generator

xn _im

fwd_inv

fwd_inv_we

xk _im
xk _re

start

busy

done
edone

rfd
xk _index

vout

xn _re

The output of the FFT block was sampled at 60MHz and plotted for different lengths, utilizing an
input signal containing noise and two frequencies at 21MHz and 25MHz (Figure 13).

The noise added was generated using uniform random number, ranging from -1 to 1. Three test
cases were studied; FFTs of length 256, 512 and 1024, which can be observed in Figure 14, Figure
15, Figure 16 respectively. As seen, higher the resolution, the more precise the peak detection is and
lesser the effect by noise. By studying the output and considering criteria for the bandwidth between
frequencies, the decision fell on a FFT of length 256 which has a band width of 234kHz between
the detectable frequencies. This was no crucial decision because changing the FFT length is not a
complicated process. The decided length should be seen as a initial value which later can be
changed after testes if necessary.

25

Figure 16: Output, 1024 FFTFigure 15: Output, 512 FFT

7 Set-up
The AD-board is connected to the Virtex2 board with a standard 40 pin flat cable, with every other
pin connected to ground for shielding purpose. An oscillator with a frequency of 64 MHz is used as
a clock for the AD-board. The Virtex2 board has built in 2.5, 3.3 and 5 V connectors which can be
used when connecting external peripherals. In Table 18 the connection between the AD-board and
the Virtex2 board is shown, where J5 is the leftmost of the two 40 pin connectors on the board.

Pin on AD-board Pin on Virtex2 development board
(FPGA pins in brackets)

Description

VDUT 3.3V Analog power
VLDUT 2.5V Digital power

VL 2.5V Logic power
GND GND ground

CLOCK taken from oscillator input clock
D0 J5 pin 8 (M2) bit 1
D1 J5 pin 10 (P9) bit 2
D2 J5 pin 12 (M4) bit 3
D3 J5 pin 14 (N1) bit 4
D4 J5 pin 16 (P8) bit 5
D5 J5 pin 18 (N4) bit 6
D6 J5 pin 20 (P3) bit 7
D7 J5 pin 22 (R8) bit 8
D8 J5 pin 24 (P5) bit 9
D9 J5 pin 26 (R2) bit 10
D10 J5 pin 28 (R6) bit 11
D11 J5 pin 30 (R4) bit 12
DOR J5 pin 34 (T5) data out of range
CLK J5 pin 38 (U2) data available clock

Table 18: Connections between AD-board and Virtex2 development board

In Table 19, the pin configuration of the board can be viewed, where J6 is the rightmost 40 pin
connector. Sw3 is the leftmost switch of the blue dip-switches and PB ENTER is the center of the
five pushbuttons.

Five outputs, active low, are used to set the sending frequencies. Connected to these port there will
later be a signal generator, generating the appropriate frequencies.

A LED on the board is indicating if the input is out of range, making it easier to debug for possible
errors concerning input amplitude.

26

The fft start input is connected to a switch on the board, this switch can then be used to turn on and
off the output of the FFT-block and this switch should always be in the on position during standard
operation.
The reset button is used to clear all variables and put the state machine back into state one. During
normal operation reset is done automatically.

To be able to use the graphical interface, a RS232 serial cable has to be connected between the
Virtex2 development board and a computer. The graphical interface can then be viewed with a
terminal emulator software such as Tera Term [17].

Pin on Virtex2 development board
(FPGA pin in brackets)

Description Direction

J6 pin 5 (T8) beacon out
J6 pin 7 (U5) frequency 1 out
J6 pin 9 (W2) frequency 2 out
J6 pin 11 (U9) frequency 3 out
J6 pin 13 (V4) frequency 4 out

(AJ15) clock in
LED 2 (AA6) dor (data out of range) out
SW 3 (AF9) FFT start in

PB ENTER (AG5) reset In
RS232 serial communication port in/out

Table 19: Connection pins used on the Virtex2 development board

27

8 Results
Test of the implementation was performed during a trip to Halmstad University (Högskolan
Halmstad). Parts of the design was tested against a demo-tag done by the Björn Nilsson and Emil
Nilsson. The tests showed that detection of signals sent by the tags were possible. During the tests,
it was discovered that the oscillator being used for the AD-converter was interfering with the tag at
a close distance (1-2m). That problem was later solved by connecting 100nF coupling-capacitor
between Vdd and ground of the oscillator. As help when choosing the threshold value for detection
of signals with different amplitude a test was performed by feeding the AD-converter with a signal
of 10MHz and writing out the calculated power value for the detected frequency. As input, a high
precision signal generator was used. The measured values along with a trend line can be viewed in
Figure 17. The FFT function is linear and power calculation is a second order operation this leads to
the expected behavioral of a second order trend line.

Later on further tests were performed at Chalmers using the prototype RFID-tag. Frequencies sent
by the tag could be detected and after some calibration the tag was able to detect the beacon sent by
the RFID-reader. The final interface can be viewed in Figure 18. In the GUI you have the choice to
set the value of the threshold, frequencies, duration (send and receive time) and tag id bit length.
The threshold has to be set according to the input signal amplitude. A value of 300 was used as
threshold for the project, which corresponded to 300mVP-P. All five of the frequencies should be
entered in kilo Hertz starting with f0. It is also possible to set the send and receive time separately
under the duration option, with each unit representing 10μs. An option for changing tag
identification number bit length is also available. This change though has to be changed in
combination with change in the hardware. The input and output bus width of MicroBlaze processor
is 32, which means all inputs have a range of 0 to 227, since 5 bits are used as control signals. In
Figure 18 the design can be seen running and three detected tags are showing.

28

Figure 17: Input amplitude versus Power

An utilization summary for the final design is depicted in Table 21 and Table 20.

Table 20 describes the device utilization of the co-processor, which is the RFID-reader design along
with the PLB interface. Among the 25% of flip flops and 18% of input LUTs, around 70% was
utilized solely for the implementation of the FFT.

Number of Slices: 6140 out of 13696 44,00%

 Number of Slice Flip Flops: 7023 out of 27392 25,00%

 Number of 4 input LUTs: 5171 out of 27392 18,00%

 Number of IOs: 291

 Number of bonded IOBs: 0 out of 556 0,00%

 Number of BRAMs: 2 out of 136 1,00%

 Number of MULT18X18s: 2 out of 136 1,00%

 Number of GCLKs: 1 out of 16 6,00%

Table 20: Device utilization summary- Co-processor

29

Figure 18: A screenshot of the user interface,
three tags are found so far.

From Table 21, device utilization for the entire project design, it can be seen that 51% of the total
available flip flops on the FPGA was used along with 40% of the 4-input LUTs. It should be noted
that the FFT block along with associated logic utilizes about a third of the total used resources. This
was expected from an implementation of 512-point FFT with 512 12-bit registers. The MicroBlaze
along with its various device wrappers also used about a third of resources.

Number of Slices: 11176 out of 13696 81,00%

 Number of Slice Flip Flops: 14127 out of 27392 51,00%

 Number of 4 input LUTs: 10978 out of 27392 40,00%

 Number of IOs: 139

 Number of bonded IOBs:

 IOB Flip Flops:

53 out of 556

84

9,00%

 Number of BRAMs: 22 out of 136 16,00%

 Number of MULT18X18s: 14 out of 136 10,00%

 Number of GCLKs: 8 out of 16 50,00%

 Number of DCMs: 2 out of 8 25,00%

Table 21: Project Device utilization summary

30

9 Improvements
To better the performance and user friendliness of the thesis project, a number of improvements can
be considered, as recommended below.

FFT
The major improvement to be considered is the resolution of the FFT results. With the design
having a 512-point FFT at a sampling frequency of 64 MHz, the resolution between FFT output
data points is 125 kHz. Even though this is sufficient for the current requirements, to take complete
advantage of the design, it is necessary to improve the resolution. This can be achieved by down
converting the A/D converter output, and then decimating it with an appropriate value. For a design
concentrating on the frequency range 20-30 MHz, with the same setup as described above, it is
possible to achieve a resolution higher than 50 kHz, as per preliminary MATLAB simulation [18].

It is also possible to further improve the resolution by using multiple FFTs in the same design. In
this method, each frequency associated with the RFID tag (f0, f1, f2, f3, f4) will have a dedicated
FFT block with down-converter and decimator. As a result the frequency range for each FFT can be
narrowed down to attain a much higher resolution [19].

Tag emulator

As a future improvement, it is possible to design a tag emulator as an independent block. The block
can also me made less dependent on the MicroBlaze, by moving the tag address generation from C
application to the FPGA design. An exhaustive tag address generation and verification can also be
made possible.

Debugging

Due to the lack of availability of required tools and instruments, debugging was a complex aspect of
the thesis project. The debugging of hardware and software design relied solely on the MicroBlaze
debug module. This means that detecting a bug involves lot of time and changes in design. It would
be more efficient to use a better environment for debugging. Even though tools like ChipScope Pro,
which helps in debugging, were available in market, it required an expensive upgrade of hardware.

The debugging of the analog aspect of the design can also be improved in presence of more
instruments. It was carried out mostly with a signal generator and an oscilloscope. This limited the
number of frequencies to be produced at a given moment to one. A device such as Programmable
Frequency Sweep and Output Burst Waveform Generator would have helped to generate multiple
frequencies and simulate a tag functionality to some extent.

Software Application

The C/C++ software application running on the MicroBlaze was used not only as an interface, but
also for testing, verification and debugging. But this application is limited due to its operational
speed. For the current settings and data rate of the FPGA, the C application performs without a
fault. When the data rate was increased (as a result of lesser number of tag address bits and shorter
interval between sending/receiving stages of algorithm) in such a way as to detect over 1000 tags
per second, operations like decimal to binary conventions was impossible to include in the C
application. Though an absolute alternative solution cannot be given to this problem at this point, a
faster processor can be considered.

31

Embedded test module

Throughout the thesis stages, the project design included test modules and tag emulators. But the
final design does not involve anything to check the correctness of the design, if any changes were to
be made. To address this problem a test module can be embedded in the system, which has a similar
functionality of the tag emulator. This module will generate frequency data samples based on the
predefined tag addresses. The module then cross checks the results of the RFID-reader to the
expected results, and notifies the user if an error was detected.

Threshold advisor

The detection of a proper threshold to detect for the frequencies was a very important aspect. It is
important to have an appropriate value for threshold, since the whole tag detection has a great
impact on this. During the test stages, due to the difference in setup and equipments, the threshold
differed. A separate project was created to detect the power spectrum values so that a decision on
the threshold could be made. This feature can be further improved and incorporated into the RFID-
reader design. This can be made available through the user interface, where the user selects the
option. The design replies by asking the user to feed an input frequency of specific value. Then the
highest power spectrum value for that frequency for a limited interval will be extracted, and the user
will be given an advice, to set the threshold, based on this.

Analog filter
An analog filter before the AD-converter is needed to avoid aliasing from unwanted signals above
30MHz. In a closed environment like the lab a filter is not needed but almost everywhere else
disturbances can interfere with the signal. Adding a filter between antenna and ADC will make the
reader less affected by disturbances [5].

32

Bibliography
[1] B. Nilsson, L. Bengtsson, PA Wiberg, and B. Svensson, "Protocols for Active RFID - The

Energy Consumption Aspect", IEEE Symposium on Industrial Embedded Systems -
SIES'2007, Lisbon, Portugal, 4-6 July, 2007. pp. 41-48.

[2] Roberts. Chris M, “Radio frequency identification (RFID)”, Computers & Security 2006, 25
(1), pp. 18-26. ISSN 0167-4048.

[3] Xilinx Inc, “Xilinx University Program Virtex-II Pro Development System – Hardware
Reference Manual”, 8 March 2005, [Online]. Available:
http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf [Accessed:
5 Sept. 2009].

[4] Maxim Integrated Products Inc, “MAX1211 Evaluation Kit”, June 2005, [Online]. Available:
http://datasheets.maxim-ic.com/en/ds/MAX1211EVKIT.pdf [Accessed: 5 Sept. 2009].

[5] C. E. Shannon, “Communication in the presence of noise,” Proc. IEEE, vol. 72, no. 9, Sept.
1984, pp. 1192–1201.

[6] Xilinx Inc, “LogiCORE Fast Fourier Transform v7.0”, 24 June 2009, [Online]. Available:
http://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf [Accessed: 5
Sept. 2009].

[7] Xilinx Inc, “MicroBlaze Soft Processor Core”, 2009, [Online]. Available:
http://www.xilinx.com/tools/microblaze.htm [Accessed: 5 Sept. 2009].

[8] Jean J. Labrosse, “Use an RTOS on Your NextMicroBlaze-Based Product”, Spring 2004,
[Online]. Available:
http://www.xilinx.com/publications/xcellonline/xcell_48/xc_pdf/xc_micrium48.pdf
[Accessed: 5 Sept. 2009].

[9] John Williams, “Microblaze uClinux Project Home Page”, 12 May 2006, [Online]. Available:
http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux/ [Accessed: 25 May 2009].

[10] Xilinx Inc, “EDK Concepts and Techniques - A Hands-On Guide to Effective Embedded
System Design”, 2009, [Online]. Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/edk_ctt.pdf [Accessed: 5
Sept. 2009].

[11] Xilinx Inc, “Software platforms” , 2009, [Online] . Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/SDK_doc/concepts/sdk_
c_platforms.htm [Accessed: 5 Sept. 2009].

[12] Xilinx Inc, “ISE Design Suite Software Manuals and Help”, June 24 2009, [Online].
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/manuals.pdf
[Accessed: 5 Sep. 2009].

[13] Mentor Graphics, “ModelSim - Datasheet”, 2009, [Online]. Available:
http://www.mentor.com/products/fv/modelsim/upload/datasheet.pdf [Accessed: 5 Sept. 2009].

[14] Altera Corporation, ”Quartus II Handbook Version 9.0”, 2009. [Online]. Available:
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf. [Accessed: 5 Sept. 2009].

[15] Peter J. Ashenden, ”The VHDL Cookbook”, July, 1990. [Online]. Available: http://tams-
www.informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf. [Accessed: 5
Sept. 2009].

[16] M. C. Lin, G R. Tsai, Y. C. Tu, T. H. Chang, and C. H. Lin, ”FPGA-based Spectrum Analyzer
with High Area Efficiency by Goertzel Algorithm”, Image and Signal Processing, 2008. CISP
'08. Congress on, 27-30 May, 2008, vol.2, pp. 157-159.

[17] Ayera Technologies Inc, ”TeraTerm Pro Web 3.1.3 - Enhanced Telnet/SSH2 Client”.
[Online]. Available: http://www.ayera.com/teraterm/. [Accessed: 5 Sept. 2009].

33

http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf
http://www.ayera.com/teraterm/
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4566097
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4566097
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.mentor.com/products/fv/modelsim/upload/datasheet.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/manuals.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/SDK_doc/concepts/sdk_c_platforms.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/SDK_doc/concepts/sdk_c_platforms.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/edk_ctt.pdf
http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux/
http://www.xilinx.com/publications/xcellonline/xcell_48/xc_pdf/xc_micrium48.pdf
http://www.xilinx.com/tools/microblaze.htm
http://www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf
http://datasheets.maxim-ic.com/en/ds/MAX1211EVKIT.pdf

[18] The MathWorks, Inc., ”Implementing the Filter Chain of a Digital Down-Converter in HDL”.
[Online]. Available: http://www.mathworks.com/applications/dsp_comm/demos.html?
file=/products/demos/shipping/filterdesign/ddcfilterchaindemo.html#1. [Accessed: 5 Sept.
2009].

[19] Y. Nakagawa, M. Muraguchi, H. Kawamura, K. Ohashi, K. Sakaguchi, and K. Araki, ”Novel
Multi-Stage Transmultiplexing Digital Down Converter for Implementation of RFID
(ISO18000-3 MODE 2) Reader/Writer”, Vehicular Technology Conference, 2007. VTC2007-
Spring. IEEE 65th, 22-25 April, 2007, pp. 2300-2304.

34

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4196544
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4196544
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4196544
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4196544
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4196544
http://www.mathworks.com/applications/dsp_comm/demos.html?file=/products/demos/shipping/filterdesign/ddcfilterchaindemo.html#1
http://www.mathworks.com/applications/dsp_comm/demos.html?file=/products/demos/shipping/filterdesign/ddcfilterchaindemo.html#1
http://www.mathworks.com/applications/dsp_comm/demos.html?file=/products/demos/shipping/filterdesign/ddcfilterchaindemo.html#1

	1 Introduction
	2 Task description
	3 Hardware
	3.1 FPGA Development board
	3.2 AD-converter
	3.3 Filter

	4 Theory
	4.1 RFID
	4.2 EGON protocol
	4.3 FFT-core
	4.4 MicroBlaze
	4.5 Xilinx EDK
	4.6 Xilinx ISE
	4.7 ModelSim
	4.8 VHDL

	5 Implementation of the RFID-reader
	5.1 Block descriptions
	5.1.1 FFT
	5.1.2 Power Spectrum
	5.1.3 Frequency Finder
	5.1.4 Clock divider
	5.1.5 Algorithm

	5.2 Software Application
	5.3 Project Phases
	5.3.1 Phase I
	5.3.2 Phase II
	5.3.3 Phase III
	5.3.4 Phase IV

	5.4 Tag emulator

	6 Simulation and debugging
	6.1 Simulink model

	7 Set-up
	8 Results
	9 Improvements

