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Abstract 
 

 

 

Increasing multimedia demands and mobile broadband has forced the cellular operators to 

adapt radio technologies that meet requirements of next generation (mobile TV, real time 

audio/video etc.). LTE (Long Term Evolution) is the radio technology that already meets most 

of 4G (Fourth generation) requirements. But to exploit higher data rates offered by LTE, 

powerful processing engines are required at mobile base stations. Multi-cores due to low 

power consumption and high performance are considered a natural choice however novelty of 

multi-cores combined with evolving LTE application software has forced the developers to 

use Instruction Set Simulators, which allows testing the application software on hardware that 

does not exist or is in short supply. Simics is one such simulation technology with special 

multi-core development tools, capable of simulating dozens of cores at adequate levels of 

speed and accuracy. An existing single core Simics model of the target hardware is modified 

and a 14 core hardware model is created, to accommodate the parallelized (14 part) LTE 

application. Simics helped in constructing the target multi-core hardware with relative ease, 

which consequently enabled the development of application software for it.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 
 

1.1 Background 
The ever increasing multimedia demands and the advent of mobile broadband has put the 

cellular operators under pressure to increase capacity and speed of their mobile phone 

networks, 4G is here. 4G demands an all IP packet switched network with data rates of at least 

100 Mbps for downlink and high quality services for next generation multimedia (real time 

audio/video, high speed data, HDTV video content, mobile TV, etc) [1]. LTE (Long Term 

Evolution) is the radio technology and current state of the art [3] that meets most of these 

requirements. With high peak rates and low latency, LTE is ideal solution for mobile 

broadband which contributes 80% of the broadband market. Broadband subscriptions are 

projected to reach 3.4 billion in 2014 [2] and in this regard LTE is the front runner to make it 

a reality. 

 

1.2 Problem 
However to harness higher data rates offered by Long Term Evolution and to accommodate 

its complexity (features like MIMO technology, flexible bandwidth, complex modulations 

schemes, etc) powerful, novel and flexible processing engines are required at base stations. 

Just increasing the clock rate is no more a solution because of high power consumption. 

Therefore at this point in time, multi-cores operating at lower clock rates seem to be the only 

solution meeting primary goals of the cellular base stations, that is, less power consumption 

and high throughput. Now such high bandwidth management in real time demands hardware 

that perfectly couples the Long Term Evolution application. In the wake of evolution and 

changing requirements of the application it is almost impossible to select or build the target 

hardware before the application is ready. At the same time relative novelty of multi-cores 

makes it even more challenging.  Under such circumstances when target hardware does not 

physically exist, Virtualized Software Development (VSD) is the solution.  

 

1.3 Solution 
Simics [6] is chosen as the development tool since it’s a full system simulator and is capable 

of virtualized co-development of software and hardware. Simics is an instruction level 

simulator and it can simulate multiple cores and chips at sufficient levels of accuracy and 

speed. It offers tools and support to manipulate simulation data statically as well as 

dynamically, e.g. Python control functions may be used for profiling purposes [4] to extract 

information out of the simulated system at run time. As a performance measure, the 

information could be number of executed cycles for a particular section of code. It also 

supports reverse execution which is extremely helpful for debugging purposes and critical for 

fast application development along with hardware. Using Simics, I have created a multi-core 

(14 core) Simics model of TI’s [5] DSK6455 single core (C64x+) DSP board and ported the 

LTE application software on it. The given LTE application has four main parts so first of all I 

created a 4 core model and assigned one part to each of its cores to make it a standalone DSP 

solution. As a next step, I identified the parts of application that can be done in parallel and 

divided the application into 14 parts. Now I created a 14 core model of DSK6455 board and 

ported the 14 part application on it.  

 

1.4 Results 
The focus of this study is to comprehend the potential of Virtualized System Development 

(Instruction Set Simulation) for multi-core DSPs. The creation of a 4 core target hardware that 

does not exist and running the complete four stage LTE application on it was the first major 



step highlighting the worth of Virtualized Software development. The second important 

insight was how the software application has influenced the design of the target hardware. 

Initial plan was to make 16 core hardware but the construction of the application dictated that 

a 14 core model will utilize the resources optimally. Similarly it can not be ruled out that 

based on hardware limitations, for overall system enhancement, changes in the application 

software can also be suggested. So according to requirements VSD leverages modification in 

both hardware and software on the fly and consequently can identify major design flaws 

which otherwise could cost much more if found later on in the development cycle. Also multi-

core programming, in case of general purpose multi-cores is very difficult however 

experiments reveal (14 core model reduces the latency more than 3 fold as compared to 4 core 

model) that LTE signal processing application is inherently parallel in nature therefore it can 

greatly benefit from multi-core architectures and dramatic increase in throughput (number of 

users) may be achieved with lesser hardware and minimal power consumption.  

 

1.5 Outline 
In the rest of the report first of all I will briefly explain LTE application requirements and its 

streaming behavior. Third part gives an overview of multi-cores and currently available 

commercial multi-core DSPs. Fourth part explains concept of Instruction set simulation and 

Simics as a Virtualized Software Development tool. Fifth chapter give details of Simics 

model building process and focuses on areas related to this thesis work, it also explains 

modeling procedure of 14 core DSK6455 DSP model.  Sixth part explains how functional 

parallelism was identified in the application and how it was parallelized and possibility of 

using the same method in the future for lets say 100 cores DSP model. In seventh part 

experimental results are discussed. Eighth part concludes the whole thesis and the last part is 

about future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Intro to LTE 
 

2.1 Background 
 

LTE is considered to be the first step towards 4G. 4G actually defines a standard set of 

requirements to meet future demands of mobile phone networks. Primarily these requirements 

are set in response to current trends in the cellular industry.  For example packet data traffic 

has surpassed voice traffic since summer of 2007 (see Figure 1) and since last two years there 

is exponential growth in data traffic as compared to voice traffic. This was mainly due to the 

introduction of HSPA which improved the end user experience. It increased the downlink 

speed up to 14 Mbps and uplink speed up to 5.4 Mbps and this increased bandwidth enabled 

the users to surf the web efficiently as well as in a limited way to enjoy real time contents like 

online audio and video and other multimedia services.  

 

The other major indicator reflecting the increased demand of packet data is mobile broadband. 

Broadband subscriptions are projected to reach 3.4 billion in 2014 and 80% of it will be 

mobile broadband (see Figure 

3). Anticipating these trends, 

4G working group put forth 

objectives for new generation 

(4G) of mobile networks. The 

requirements related to 

bandwidth included high 

network capacity, spectral 

efficiency, data rate of 100 

Mbps for a moving client and 

1 Gbps for a static one and 

lower latency. LTE even in its 

current form happen to meet 

most of these requirements 

and even surpass a few as well.  

 

2.2 Standardization 
 

The first step towards LTE standardization was taken in Toronto, Canada in 2004 at 3GPP 

RAN Evolution workshop. The basic idea was to develop a framework for the progress of 

3GPP radio network technology that could facilitate cheap cost per bit, adaptation of new and 

existing frequency bands, a simple architecture that could allow seamless integration with 

existing standards and which could enable mobile terminals to consume less power. 

 

 
Figure 2: LTE standardization process 

 

Figure 1: Trends in voice and data traffic                Source: [2] 



Current version of LTE represents improvements in Universal Mobile Telecommunications 

System (UMTS) which will be introduced in 3rd Generation Partnership Project (3GPP) 

Release 8 [7].  

 

The original LTE requirements envisioned by 3GPP included 

 

 100 Mbps downlink and 50 Mbps uplink 

 Reduce the Radio Access Network (RAN) time to less than 10 milliseconds (roundtrip 

time for complete LTE frame).  

 Improved spectral efficiency as compared to HSPA release 6 

Also LTE should be able to 

incorporate IP connectivity 

with improved broadcasting 

and flexible bandwidth 

allocation schemes. 

It should also support 

internetworking with existing 

3G and networks not 

compliant with 3GPP 

standard. 

 

The specification work for 

LTE completed in March 

2009 (see Figure 2) and it is 

ensured that implementation 

based on 2009 specifications will meet backward compatibility. 

 

2.3 Architecture and Technicalities 
 

In the network world there was a constant effort to develop a common standard protocol 

which could serve as middleware for various existing network protocols. The introduction and 

success of internet has made packet based IP protocol as the universal standard. Realizing this 

3GPP in 2004 proposed IP as the protocol for next generation of its networks. This 

recommendation of a new architecture is a part of the 3GPP System Architecture Evolution 

(SAE). LTE-SAE is designed to incorporate and support huge market share of IP-based 

services. 

 

LTE uses OFDM (Orthogonal frequency division multiplexing) for both uplink and downlink. 

OFDM is chosen as the radio technology because it meets the LTE requirements for spectrum 

flexibility and wide carriers for peak data rates. However the standard version of OFDM has 

high Peak to Average Power Ratio (PAPR). Which means that in order to manage PAPR in 

the mobile terminal, you have to use expensive power amplifiers that would increase cost of 

the terminal and also would drains its battery faster. Therefore uplink uses a pre-coded 

version of OFDM called SC-FDMA which addresses these issues. 

 

To achieve peak data rates and extended coverage that meets the future broadband 

requirements another enhancement that LTE borrows from HSPA is advanced antenna 

solutions. There are different variants of it based on the arising situation. For example 

extended coverage is supported using beam forming and peak data rates are achieved using 

MIMO technology that employs multiple input and output antennas.  

Figure 3: Projected broadband growth 2007-2014             Source: [2] 

 



3 Overview of Multi-cores 
 

3.1 Background 
In recent past, for almost a decade, the most popular approach to gain computational 

performance was to increase the clock rate or to devise new strategies for exploiting ILP 

(instruction level parallelism). As a result every new enhancement to get more ILP made the 

architecture more complex, consuming much more power. Both these approaches have 

exhausted because of diminishing returns and issues of high power consumption and 

dissipation. 

 

Now the fact that clock rate can not be increased beyond a certain limit due to power 

dissipation (see Figure 4), the only way forward, one may imagine at this point in time, is to 

increase the number of cores and hope that software, which is predominantly sequential in 

nature, will be parallelized to 

take advantage of this 

increased performance, 

offered by these multiple 

cores on chip. 

 

Parallelism promises same or 

higher performance at lower 

clock rates (as work can be 

done in parallel). Lower clock 

rate means lesser power 

consumption. 

3.2 Multi-cores and 

signal processing (LTE 

application) 
 

Fortunately, most of the 

signal-processing applications 

are parallel in nature (signal 

processing applications are 

extensively SIMD (Single 

Instruction Multiple Data) 

because it deals most of the time with matrix and vector data which may be processed 

independently), this factor also tempts to yearn for parallelism at coarse grained (thread) level 

rather than instruction level. Therefore signal processing applications can immensely benefit 

from multi-core architectures. 

 It is argued that the design of multi-cores for such applications should be simpler (due to 

predictable execution loops there will be less complicated issues of cache coherence, dynamic 

prediction and synchronization etc) as compared to general purpose multi-cores and this fact 

is verified during this thesis work as well. For example in the process of parallelizing the LTE 

application code to make it run on 14 cores, I was able to identify parts of the application, that 

could be done in parallel, by simply inspecting the code.  

 

3.3 Why Texas Instrument
®
? 

The selection of TI® as the DSP vendor for this thesis work is done after performing various 

case studies on existing multi-core DSPs commercially available in the market. There are lots 

Figure 4: Power dissipation w.r.t. clock rate 



of factors contributing to the worth of a multi-core DSP however we selected and focused our 

attention on areas that are potentially critical for the existence of any DSP solution in the 

foreseeable future. These include scalability, software model, development support, multi-

threading and power consumption.  

After much consideration, TI’s solution is selected primarily because it’s famous 

TMS320C64x+™ DSP core is available for experimentation in virtual form. Virtutech® [6] 

has developed its virtual model in Simics™ [6]. This model has good signal processing 

capabilities and is available to academia for experimentation. This virtualized model has 

opened a whole new range of possibilities for software developers. Simics will be explained, 

in detail, in the following chapters. 

The major DSPs studied are Freescale™ semiconductor MSC8156, TILERA
®
 TILEPro64 

and Texas Instruments
®

 TMS320C6455. I will now briefly discuss architecture of TI’s DSPs 

in terms of their future scalability and will also touch upon Freescale® and TILERA® DSPs.  

Some of the salient features of these DSPs may be found in Table1.  

 

3.4 Texas Instruments 
This thesis work is based on Texas Instruments® TMS320C6455 DSP. The actual case study 

was done for TI’s latest commercial DSP, TMS320TCI6487. However these devices are very 

similar. The most important factor is that both these DSPs use the famous TMS320C64x+™ 

CPU core for which Virtutech® has developed the virtualized processor. Also both these 

DSPs have same mix of peripherals and on chip memories. The main difference is that 

TCI6487 has three C64x+™ DSP cores (c6455 has one), a faster DDR2 memory and new 

antenna support. Nonetheless for the purpose of this thesis work, architecturally both these 

DSPs are the same. 

First I will briefly explain the architecture of TMS320C6455 DSP and C64x+™ CPU core, 

after that will discuss the findings about TMS320TCI6487 DSP. 

3.4.1 TMS320C6455 

This DSP is based on advanced VelociTI™, very-long-instruction-word (VLIW) architecture 

developed by TI®, targeting video, telecom and Wireless infrastructures. It has performance 

of 9600 MIPS (million instructions per second) operating at a clock rate of 1.2 GHz and 90nm 

process technology is used in fabrication. Power dissipation is 3.3W and performance per 

Watt is 2.9 MIPS/mW.  

TMS320C6455 device has 

2Mbyte L2 memory and 32 

Kbyte level1 program 

(L1P) and data (L1D) 

memories (see Figure 5). 

L1D is two way set 

associative cache where is 

L1P is direct mapped. L2 

memory may be used as 4-

way set associative cache 

or configured as SRAM. 

3.4.2 C64x+ CPU core 

C64x+ CPU comprises of 

eight functional units, two 

register files and two data 

paths (see Figure 6). Since Figure 5: TMS320C6455 DSP block diagram 



signal processing applications are math intensive therefore C64x+ incorporates special 

instruction set enhancements for multiplication and arithmetic logic 

operations like 32bit multiply, complex multiplication and parallel add and subtract.  

3.4.3 TMS320TCI6487 

TCI6487 is one of TI’s latest commercial DSP specifically targeting wireless infrastructure 

applications. Therefore I have looked at its multi-core architecture critically.  

3.4.4 TCI6487 Case study  

Operating System 
There is no sophisticated operating system present (like Linux® kernel 2.6) which may 

leverage multiple concurrent task management (using scheduling techniques like priority 

scheduling, time sliced scheduling etc). However it supports DSP/BIOS, a RTOS (Real Time 

Operating System) but this RTOS has limitations e.g. it supports only priority scheduling 

based on software interrupts and tasks, which means that some low priority tasks might starve 

and there could be “priority inversion” issues. The advantage of an RTOS is that DSP/BIOS 

allows direct access to manipulate hardware resources (which is not possible to that extent in 

Linux since it maintains strict separation between user application and physical resources, so 

if a user space program accesses a device an expensive context switch to kernel mode is 

required) e.g. hardware interrupts which gives more fine grained control to reduce system 

latency. To address these issues related to both GPOS(General purpose OS) and RTOS a third 

party supplier Virtual Logix® has tried to come up with a hybrid solution, namely  VLX (a 

virtualizer), enabling a Linux based development environment to run alongside TI’s 

DSP/BIOS. 

Architecture and Scalability 

Coherency 
There is no cache coherence protocol implementation (snoopy, directory based etc) between 

on chip caches and memory, among the three cores. However for a multi-core solution to 

work correctly, shared memory transactions (reads, writes) should meet serializability and 

sequential consistency conditions. TCI6487 uses the semaphores module to meet these 

conditions[16]. Not only it manages resource sharing but also helps in keeping cache 

coherency between the three cores. A multi-core shared memory semaphore implementation 

(for cache coherency) requires two main ingredients, one, hardware should support atomic 

read-modify-write operations (e.g. test and set, test test and set etc) and, two, these operations 

should be non interruptible (similar to single processor implementation to maintain sequential 

consistency). But this two fold semaphore solution comes at a price, e.g. a resource (e.g. 

SRIO®) can not be shared between two cores at the same time, one has to wait for the 

resource until it receives the signal from the other (core) to go ahead. 

Architecture scalability 
Literally three C64x+ cores are placed side by side on one chip. One reason could be that 

multi-cores in embedded industry are still at an early stage. But in the wake of dozens, if not 

hundreds, of cores on chip in the near future, an operating system similar to Linux is dearly 

required which could support multithreading, manage load balancing, load sharing and switch 

off idle chips etc. However currently according to TI [13], they have intentionally kept it 

generic so that third parties could come up with innovative ideas and solutions.  

 



Expensive (in terms of CPU cycle consumption) semaphore signaling means there will be 

issues related to synchronization and latency because of resources blocking. Also I think this 

approach is not scalable from futuristic point of view as well, even by adding a few more 

cores, the complexity of its architecture will greatly increase. However current DSP solutions 

has cores in single digit and there are no critical issues of load balancing or scheduling. This 

is partly due to extensive SIMD nature of signal processing applications. 

 

With a weakness in multi-cores, TI is focusing more on functional integration, that is, 

defining TCI6487 scalability in terms of number of chips that can be connected together 

seamlessly using for example SRIO daisy chain network which uses hardware packet 

forwarding to advance data to a specific DSP in the daisy chain, however message passing is 

always expensive and a serious performance bottleneck. Based on requirements they have 

proposed a so called system-on-chip architecture if there is no task dependency among chips 

and each DSP is doing the same functions and other architecture called customized 

architecture if role of each DSP is 

different from each other. 

 

3.5 TILERA 
TILERA’s TILEPro64™ 

processor targets the embedded 

market. It has an impressive 64 

processor cores connected to each 

other through its iMesh™ 

network. Each processor has L1 

and L2 cache and a non blocking 

connection to the iMesh™. It 

incorporates its trade mark 

dynamic distributed cache 

(employs concept of 

“neighborhood caching”, so in 

case of miss a processor may 

consult remote processor’s sub-

cache) which claims to be twice 

as fast compared to other multi-

cores. Also each processor tile can run independent operating system or multiple tiles may be 

combined together to form SMP Linux like OS. Each processor support 32bit VLIW 

architecture and is capable of handling up to 3 instructions per cycle.  

 

3.6 Freescale semiconductor 
The latest Freescale DSPs aimed at wireless base stations is MSC8156, it has 6 cores 

(StarCore SC3850) operating at 1GHz, a built in Multi Accelerator Platform Engine for 

Baseband (MAPLE-B) and various other features to optimize it for 3G-LTE, 3GPP, TD-

SCDMA etc. It’s an enhanced version of previous chip combo of MSC8144/MSBA8100 that 

Freescale® launched in the middle of 2008. MSC8144 is a quad core (SC3400) DSP chip that 

works with MSBA8100 chip which is a baseband accelerator. It has 32 Kbyte L1 instruction 

and data cache available on each core. Also it includes 512 Kbyte L2 cache which may be 

used for both instruction and data along with 1056 Kbyte shared M3. 

 

Figure 6: C64x+ CPU Core, block diagram 



Table 1: DSP comparisons 

Vendor DSP 

# of Cores 

/ 

Frequency 

Power 

CMO

S 

Tech. 

Languag

e support 

System 

Simulator  

Freescale® MSC8156 6 / 1GHz 10 W 45 nm 

C, C++ 

compiler 

 

yes 

TI® 
TMS320T

CI6487 
3 / 1GHz 6 W 65 nm 

C, C++ 

compiler 
N/A 

TILERA®  
64 / 866 

MHz 
23 W 65 nm 

C, C++ 

compiler 
yes 

 

 

Vendor DSP Throughput 
Development 

tool 

Operating 

System 

Support 

Freescale® MSC8156 

48000 

MMACS 

 

CodeWarrior 

v10  
SmartDSP 

TI® 
TMS320T

CI6487 

24,800 

MMACS 

(16-bit) 

 

Code Composer 

Studio 
DSP/BIOS 

TILERA® 
TILEPro64 

 

Max. of 443 

billion 

operations 

per second  

MDE 

SMP Linux 

with 2.6 

kernel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 Instruction Set Simulation 
 

4.1 Background 
Simulations are used to recreate an environment for the real system in enough detail, so that 

the desired effects can be observed [8]. Simulators therefore eliminate the need of actual 

hardware unavailability or shortage, which is most of the time a major bottleneck for software 

developers.  

4.1.1 Why Instruction set Simulators? 

When one talks about simulators the next obvious question is do you need an accurate 

simulation or exact numbers? Or you need fast simulation speed for functional verification of 

your software application? Before answering these questions lets see how simulators actually 

work. 

 

There are two broad categories of simulators 

 

1) Timing/cycle accurate simulators 

2) Instruction set simulators 

4.1.2 Timing Accurate simulators 

Timing accurate simulators works in cycle (timing) accuracy and provides very high visibility 

into processor and applications. In this mode, in order to model detailed operations like bit 

reset and register access etc. a lot of computation power is required therefore this mode is 

very slow and running of only core algorithms in this mode are recommended. 

4.1.3 Instruction set simulators (ISS) 

Instruction set simulators simulates the target processor at instruction set level. These 

simulators are detailed enough to run the executable programs written for the intended target 

machine.   

Advantages 
The biggest advantage of instruction set simulators is that they can be used to execute 

applications for computers that, for various reasons, do not exist.  Another major advantage is 

that they can be used to view the internal state of the system which in case of real hardware is 

not possible. Also with the introduction of multi-cores and multiprocessors, heisenbugs have 

started to occur more frequently, instruction set simulators help in this regard as well. You 

will always get the same output no matter how many times you re-execute the program in a 

multi-core or multiprocessor. Therefore complete control of the system to track changes at 

instruction level can provide comprehensive insight about the behavior of the applications 

which may be used to address issues spanning all areas of multi-cores(mainly three), that is, 

compiler, architecture and application. 

 Aim of ISS (Instruction set simulators) 
Instruction set simulator is used to check functional correctness of the application and bring 

the code to life. Since they are not intended to get actual real data/values therefore a lot of 

tricks and workarounds are done to simulate the actual behavior of the system. These 

shortcuts lower the simulation workload enormously that’s why they are very fast as 

compared to cycle accurate simulators. Even these are capable of simulating multiprocessors 

systems at satisfactory speed and accuracy. 

One such simulator is Simics, which is a System-level Instruction Set Simulator. 



 

4.2 Introduction to Simics 
Simics is a virtualized software development platform developed by Virtutech

®
 [6]. It 

provides the hardware and software developers with the virtual version of their target 

hardware and is capable of running from a single CPU with local memories to a complex 

system on chip (SOC) at good speeds. At the same time debugging and testing is simplified 

with the help of check points, determinism and reverse execution. 

4.2.1 VSD (Virtualized software development)  

 Background 
Moore’s law still holds, now in form of multi-cores, therefore with increase of the transistors 

complexity of the electronics systems is increasing every day.  Also if we take the example of 

mobile phones, now a day the other factor increasing the complexity of the system is that 

devices communicate with their environment frequently. For example a mobile phone device 

through Bluetooth™ and Wi-Fi™ interacts with its surroundings.  

 

These two trends have in turn made the software increasingly complex. Now considering 

these obstacles if the target hardware is in short supply or it does not exist then it’s a 

nightmare for software developers. One option is to test software on something that some 

what at least approximates the production hardware.  In the wake of an evolving application 

and the hardware that does not exist both these approaches are un-reliable thus not practical. 

 Solution VSD (Virtualized Software Development) 
Simics jumps in here with its so called VSD solution (see Figure 7) that combines the speed 

and accuracy of software development to the desktop PC. Virtualized software development is 

a way of developing software with out the need of actual target hardware, on which the 

software will eventually run. VSD allows the software developers to use target hardware on 

their own workstations.  

 

Since VSD allows running the exact same binary that would run on physical hardware 

therefore it eliminates the need to use stubbed software or API abstraction layers for two 

different environments e.g. production environment and test lab environment.  

 

To accomplish above mentioned goals VSD takes care of following four areas 

1. Provides an instruction set simulator for the microprocessors in the target hardware 

2. Provides device models (simulating the behavior of devices) in the target hardware 

that the software might interact with 

3. Takes care of interaction, if any, among multiple simulated targets or outside 

world(e.g. networks, firewall etc) 

4. Allows the software developer to use all the tools that he might use with actual 

physical target 

 

Electronic design automation (EDA) industry also provides simulation tools for software 

development which are very accurate as well but they take enormous time to execute the 

software.  VSD is valuable in this regard as well since it gives real time simulation speed. 

 

 



 
Figure 7: Traditional vs. Virtualized software development 

 

4.3 Simics - software development concepts 
 

Simics is a system level instruction set simulator which means that  

 Simics can model the target system at instruction level (executing them one by one) 

and  

 Simics interface for application binaries to the virtual hardware model is so accurate 

that it can execute the same binaries that run on real hardware. 

This essentially means that Simics is capable of running and debugging almost any kind of 

software, firmware, hardware drivers and operating systems.  

4.3.1 Simulation limits 

However one should take care of a few things while developing software in Simics.  The 

model of time in Simics is pretty trivial; it assumes that all the instructions take same amount 

of time to execute. There might be some issues in multiprocessor environments where certain 

assumptions are made about delayed inputs or outputs, however this is not an issue majority 

of the times. Also the model of the target hardware should be detailed enough so that while 

running, software should not detect any difference between real and virtual hardware. 

4.3.2 Simics debugging capabilities 

 

For any software application, speedy development and quick time to market is directly 

proportional to the debugging capabilities of its development environment. 

Simulation time and debugging  
One of the biggest advantages of full system simulation is that time in the simulation is 

completely independent of the real world time. This gives a number of advantages for 

example  

 

 One can pause and view the state of system at any point which is almost impossible in 

real hardware 

 State of the system can be saved into disk (checkpoint) and may be restored later 

 No heisenbugs, complete determinism 

 Reverse execution, very handy to find elusive bugs 

Debugging 
The most powerful tools for debugging in Simics include  

1. Breakpoint support 



2. Scriptable debug and symbol information handling  

Breakpoints 
Breakpoint in Simics can be set on code as well as data e.g. they can be set on memory 

accesses, time, instruction types, device accesses and output on the console.  

Symbolic Debugging 
The breakpoints set at bits and bytes level are not always meaningful and required. Debugger 

should enable the user to think at higher level as well i.e. in terms of functions, processes and 

named variables. 

Simics implements this using certain classes namely context, symtable and process trackers.  

 

These concepts are critical in order to simulate multi-cores in Simics. 

Context 
A context object symbolizes a virtual address space which is assigned to a processor in multi-

core simulation. If the context is selected for a processor, this address space is visible to the 

code running on the processor. Similarly virtual breakpoints can be assigned to a virtual 

address space. In a multi-core environment, context objects are very useful for debugging and 

measurements e.g. during simulation if you want to inspect code running on a certain 

processor, you can select that processor using “pselect” and set breakpoint in its context. So it 

allows you to maintain separate debugging symbols and breakpoints for separate processors in 

the target machine. 

However context object does not in any way effect correctness of simulation, they are just 

used to understand the software. 

Symtable 
Symtable objects are used to store information about symbols and debugging for a certain 

virtual address space. Symtables are associated with context objects and are used by Simics to 

switch between code addresses, variable names and memory locations. 

Symbolic Breakpoints 
In this thesis work symbolic breakpoints along with haps are extensively used to extract 

profiling data from simulation and thereby used for performance measurements. 

Following statement tells how to read symbolic information from a binary file.  

 

new-symtable st0 file = my_file 

 

Here symbolic information is read from binary file “my_file” and stored in a new symtable 

named “st0”. 

 

 

 

 

 

 

 

 

 

 



5 Modeling in Simics 
 

This section starts with a brief description of the modeling process in Simics. After that it 

explains how different components of system are modeled in Simics. Finally it elaborates how 

to setup different machine configurations using scripts and how starting from a single core 

DSK6455 board I created its 14 core model.    

 

5.1 Simics Modeling Process 
 

For developing a virtual system in Simics, there is a generic out line  

 

 Create list of devices, processors etc that constitute the system 

 Decide level of abstraction according to requirements 

 Reuse if device models already exist, use the device modeling language(DML) to 

create the remaining devices 

 Test the newly created system with the intended software and iteratively compensate 

and improve the model to desired levels 

The key in development is to get the working prototype early no matter how trivial it is and 

iteratively enhance its functionality. 

 

5.2 Simics Timing concepts 
Simics simulates the behavior of the system and does not implement actual physical 

phenomena. Simics simulation model does not model the actual details of how bits or bytes 

are transferred across interconnect, instead it can be considered as one possible 

implementation of the target architecture. For example, in a real physical system, a processor 

requests bus access in order to write to a memory location but in Simics reads and writes are 

directly routed to target memories without involving any buses. To make the virtual target 

work like the physical one, Simics employs certain proprietary tricks and techniques.  

5.2.1 Timing Model 

One of the major differences that can exist between real hardware and Simics simulation 

model is timing. This difference could be due to number of reasons e.g. incomplete 

documentation, desire to increase simulation speed etc. The most significant timing difference 

between real and Simics model is observed in instruction execution timings. For example in 

real hardware instruction timing depends upon memory access latencies, bus contention etc 

whereas in Simics, by default, each instruction takes exactly one cycle to finish. However in 

order to simulate actual behavior, it is possible to build timing accurate models and connect 

them to Simics. 

In Simics, completion of one simulation instruction is also called execution of one step.  

Instruction Execution Timings  

In-order mode 
In default mode, Simics executes one instruction in one cycle. It does not model actual 

execution timing in any way. So in this case number of cycles equals the number of 

instructions. 

Stalling mode 
If the goal of simulation is to perform detailed studies, e.g. involving timing of memory 

access operations, then Simics functionality of in-order model may be enhanced by adding so 



called timing models. This is usually done using memory hierarchy interface (see section 

5.3.2). In this mode of simulation, instructions no longer finish atomically but rather stall for a 

specified number of cycle events before a step event is executed.  

 

5.3 Simics System Modeling Breakdown 
 

Simics divides the system into three broad categories and models them differently 

 

1. Device modeling 

2. Memory system modeling 

3. Processor modeling 

 

5.3.1 Device modeling 

Device modeling in Simics is implemented using a technique called transaction level 

modeling (TLM) which uses Virtutech’s device modeling language(DML) [13]. When a 

device is presented with a request it computes the results and replies. As explained above, it 

does not bother about bits and bytes, making implementation convenient as well as efficient.  

5.3.2 Memory system modeling 

Simics has developed a very efficient technique to handle the memory system and processor 

bus interface. This technique is instrumental in Simics success of ensuring a very fast 

simulation. Processor address space is modeled as a memory map and the target memories 

and devices in the system are assigned to that memory space (see Figure 8). So reads and 

writes are routed directly to the recipient devices with out involving any buses or bridges.  

If system timing requirements are not affected by impact of cache hierarchies and bus access 

latencies, then this method often allows the virtual system to perform better, in terms of 

speed, than the original system. Please see section 5.2 for timing details. 

Memory Spaces 
Memory accesses in Simics are handled by the generic memory-space class. An object of 

class memory-space implements necessary functions for memory accesses and has attributes 

specifying how memory mappings are setup for a processor. The most important attribute in 

memory-space class is the map attribute which provides a list of mapped objects in a given 

memory-space. Those could include devices, RAM, ROM or even other memory-spaces.  

 

The following example from DSK6455 Simics model explains the concept of memory-spaces 

and their usage. 

For example first statement below creates a memory space object called “phys_mem” and the 

2
nd

 statement maps a RAM object (namely iram) into this memory space object. 

 

 self.o.phys_mem = pre_obj('phys_mem', 'memory-space') 

 self.o.phys_mem.map = [0x00000000, self.o.iram,   0, 0,  0x1000000] 
             

In the following statements, a CPU object is created and this memory-space (phys_mem) is 

assigned to it. So now the CPU object (namely cpu) can access this memory (iram) at address 

0x00000000. 

 

 self.o.cpu = pre_obj('cpu', 'tms320c64plus' + classname_suffix_cpu) 

 self.o.cpu.physical_memory = self.o.phys_mem 



 

Memory transactions 
In Simics, both devices and CPUs can initiate memory transactions. ACPU can get the 

physical address (from virtual address) after it is translated by MMU whereas device 

transaction does not require any translation. The physical address is actually mapped to a 

device or memory (RAM, ROM etc) by memory-space and an access to the physical address 

is automatically sent to the right target by the memory-space class. 

For observing or modifying memory transactions, memory-space class has a special memory 

hierarchy interface. This interface in fact consists of timing_model interface (gives access to 

transaction before execution) and snoop_memory interface (provides transaction access after 

it has been executed) 

 

 
Figure 8: Simics model of the newly created 14 core DSK6455 DSP board 

 

5.3.3 Processor Modeling 

In Simics processor modeling is not done using DML because then simulation of processor 

alone would consume all the processing power of the host machine. The processor models are 

developed and shipped by Virtutech® and are highly optimized, enabling Simics to simulate 

billions of instructions per second. 

 

5.4 Modeling of 14 Core DSK6455 DSP Board 
This section explains how different elements of Simics are put together to create a working 

virtual model of a target physical system. At the same time DSK6455 model is related to 

these details where possible. 

Simics model is designed in bottom-up fashion, first of all devices are created which are 

combined to form components. Finally a complete system is constructed in Simics, using 

configuration scripts (see Figure 9). 



5.4.1 Components 

Any standalone piece of hardware that can be connected or removed from the system is 

represented by a component in Simics. A component is basically a collection of devices which 

are connected together though different interfaces. Components have various types of 

standard connectors in order to connect to interfaces like Ethernet and buses. Components 

hide complexity of the system and give an easy to understand overview of the system from 

outside. It is implemented by a component module which is placed in the workspace 

directory. 

Components are written in “python™”. DSK6455 component is named 

“dsk6455_components.py”. 

5.4.2 Configurations and Scripts 

Most convenient way of starting Simics is through configurations using scripts. 

Configurations actually define different components and objects and tell how they are 

interconnected. So scripts can be considered at a higher level of abstraction, above 

components.  

 
Figure 9: Simics model, hierarchal build up 

 

5.4.3 System Setup 

To setup machines and systems in Simics, a configuration consists of many scripts. However 

for each configuration there should be at least three kind of scripts. 

 

 <machine>-common.simics 

This script actually defines the complete 

simulated machine. This script file uses 

“–system.include” to define hardware and “-setup.include” to define the software of 

the system. However since DSK6455 is an embedded system and there is no operating 

system present therefore our configuration does not have any “-setup.include” script 

file. So “-common.simics” script incorporates this functionality as well. 

 

In our configuration “-common.simics” script is named “himalaya-selftest.Simics”. 

 

 <architecture-variant>-system.include 

 

This script defines the hardware of the system.  

In our case this script is called “himalaya-system.include”. 

 

 <machine>-setup.include 

 

Figure 10: Simics model, hierarchal build up 



It defines the software for the system. In our case this script is part of the 

common.simics script. 

 

5.4.4 Path to 14 core Model- Technical details 

Initially the aim of this work was to create a 16 core model however the LTE application 

dictated that a 14 core model will be the optimal one (will be explained in section 5). Since no 

new devices were required in order to scale the model from single core to 14 cores therefore I 

conveniently skipped to the last part of Simics model development process. I used the existing 

devices and modified the Simics model at component level.  

4 Core Model 
The given LTE application consists of 4 major parts therefore the obvious first step, towards a 

14 core DSK6455 DSP, was to first create a 4 core model. This model not only provides a 

standalone DSP solution, running all parts of LTE application on a single board, but also 

serves as a guideline for creating the 14 core model. The process of creating 4 core and 14 

core model in Simics is exactly the same. So in Simics one may create as many cores as one 

likes, as long as the software can handle it. 

 

The given single core Simics 

model consisted of a single 

component (dsk6455) which 

represents a Texas Instruments 

DSK6455 board. This board has 

one (C64x+) CPU core. I 

modified this piece of hardware 

(represented by dsk6455 

component class in Simics) and 

added 3 more CPU objects in it. 

For each CPU a separate 

memory-space object is created 

and all the devices on board are 

mapped into it. Please see section 

5.3.2 for an example.  

 

 

All the CPUs in the new 4 core DSK6455 model share the same address space on board (see 

Figure 10). All I/O devices and memories are shared among all CPUs. However for smooth 

functioning of this multi-core model, synchronization and mutual exclusion is maintained 

through the application software. For mutual exclusion semaphores are used which make sure 

that different CPUs do not step on each other’s feet. The application programs assigned to 

each CPU core are loaded into a pre-allocated area in the internal on chip memory (namely 

iram). This particular memory section is local to every CPU core and no other processor can 

access it. The rest of the iram is shared and is available to every CPU, so it may be called as 

the working area for all (4 or 14) cores on board. Here with the help of synchronization 

primitives, output from one CPU core may be used by the other one as input. For example 

“Antenna_Combine” part of the LTE application uses the result from “Channel_Estimates” 

part as input operating in the same shared memory. 

 

Figure 11: 4 cores Simics model of DSK6455 



14 core model 
The construction of the 14 core model in Simics is the same story as 4 core model. Here I 

created 14 CPU objects instead of 4, as in previous case and repeated all the steps mentioned 

in section 5.4.4 (see Figure 8).  

 

Therefore creation of a multi-core model in Simics is relatively trivial; the real challenge is to 

build a complete working software hardware package that optimally utilizes the full potential 

of all cores. For that matter comprehensive understanding of the given software application is 

required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Application Case Study 
 

This section starts with a brief introduction to LTE uplink processing. It then explains 4 part 

functional division of the LTE uplink processing application. Next it explains how 4 part 

application is further divided into 14 functionally independent parts that can be processed 

autonomously. In the last part, issues and avenues related to future scalability of this model 

e.g. increasing the number of cores, limitations and bottle necks are discussed. 

 

 

6.1 LTE Uplink Processing 
For both uplink and downlink LTE uses OFDM as the radio technology. However to 

compensate for high peak to average power ratio (PAPR) of OFDM, uplink uses a special pre-

coded version of it, called SC-FDMA. In order to understand LTE uplink processing first 

hand knowledge of the uplink physical layer is required.  

6.1.1 LTE Uplink resource grid 

In the time domain, one uplink slot 

is 0.5ms in length and contains 7 

OFDM symbols (see Figure 11). 

 In frequency domain, subcarrier 

spacing is 15 kHz. 12 subcarriers 

combine to make a resource block 

(see Figure 11). Each resource 

block has 84 resource elements. 

One resource element may contain 

different number of bits based on 

the modulation scheme. For 

example for 64QAM each resource 

element will contain 6 bits. 

Similarly for 16 QAM modulation 

scheme one resource element will 

contain 4 bits. Bit rate or bandwidth 

for a certain user is directly 

proportional to the modulation 

scheme used for the resource 

elements, the higher the modulation 

scheme the more the bandwidth. 

6.1.2 Data Flow 

Figure 12 shows simplified block 

diagram for LTE uplink processing 

application. Every 70 microseconds 

antennas generate data and a new symbol (1200 complex data) arrives. As described earlier, 7 

consecutive symbols are grouped together to form one uplink slot. Data is processed one slot 

at a time. Since new data is coming all the time therefore LTE application is required to 

process an uplink slot before a new one has arrived or in other words, LTE application has to 

finish processing(one uplink slot per user) within 0.5 milliseconds barrier (7 symbols × 70µs 

≈  0.5 ms).    

 

Figure 12: LTE uplink physical resource grid 



Out of seven symbols in a slot, fourth symbol is called the reference symbol. This symbol is 

used to calculate channel estimates. Channel estimates are required to process the remaining 

symbols (6) in the corresponding uplink time slot. This step is identified as “Antenna 

Combine” and its output is user symbols which are used in next stage. Finally in the end, 

based on the modulation scheme and constellations, values are normalized and demapped to 

generate 8 bit soft values. 

 

 
Figure 13: LTE uplink processing 

 

 

6.2 LTE application - functional division for 4 core model 
LTE uplink processing may be divided into 4 major stages (see Figure 13). Therefore based 

on this functional division, the given LTE application software has four main parts namely  

 

1. Antenna data Generation (stage 1) 

2. Channel estimation (stage 2) 

3. Antenna Combine (stage 3) 

4. Scale and Demap (stage 4) 

 

Please note these are not the standard names; they simply identify and give understanding of 

each stage 

6.2.1 Antenna Data Generation 

In a real setup, this part will not be required since physical antennas will serve this purpose. 

However as we are working in a simulated environment therefore we need a data source that 

is generating antenna data all the time (see Figure 13). 

 

It is assumed that there are two antenna data sources. This part of application basically 

generates dummy antenna data and fills the data buffers allocated for incoming data symbols. 

One OFDM symbol is generated in every iteration of this program. According to LTE 

specifications, a physical antenna generates a new symbol every 70µseconds therefore in this 

simulated setting, calibrations are done with the help of special loops such that a new symbol 



is generated every 70 microseconds. Since each time slot consists of 7 symbols therefore the 

buffer values are overwritten after every “0.5 milliseconds (70µs × 7 ≈ 0.5ms). 

6.2.2 Channel Estimation 

This part of the application waits for the reference symbol (4th) in every slot. Once the 

reference symbol is available from both the antennas, it starts to calculate the channel 

estimates. 

When finished it writes the estimates in the shared memory and stops processing until 

reference symbol for the next uplink slot is available. At the same time it triggers next part of 

the application to go ahead, see 

stage 2 in Figure 13 

 

6.2.3 Antenna Combine 

In this stage of uplink 

processing data symbols are 

available even when channel 

estimation is being done but it 

has to wait for the results from 

2
nd

 stage in order to process 

them. Once channel estimates 

are available it processes the 

symbols one by one and 

generates user symbols which 

are used in the next stage to get 

soft values. When finished it 

triggers the final stage. 

6.2.4 Scale and Demap 

This is the final stage in uplink processing. It waits for the user symbols from the “Antenna 

Combine” stage and converts them to soft 8 bit values which are understandable by 

computers.  

  

6.3 LTE application – functional division for 14 Core model 
The functional division of LTE application into 4 parts was pretty straight forward. Next step 

was to further divide the application into parts that may be processed independently, so that 

the processing power of the envisioned 16 core DSK6455 DSP, which eventually reduced to 

14 cores (see Figure 15), is fully utilized.  

6.3.1 Parallelization process 

For the sake of parallelizing, I deliberated on last three stages of LTE uplink processing (since 

first stage in this model is just meant for simulating antenna behavior).  

 

Parallelism in “Channel Estimate” stage 
This part of the application basically processes the 4

th
 symbol or the reference symbol (see 

Figure 13) in the uplink slot. A good look at the code reveals that, at macro level, there are no 

functionally independent sections. Mainly there are loop carried dependencies therefore to 

extract functionally independent parts of this code sophisticated code optimization techniques 

like loop unfolding [9], software pipelining [10], DO-ACROSS parallelism [11] and 

Sensitivity analysis) [12] may be used. 

Figure 14: LTE uplink processing, functional division 



 

 

Parallelism in “Antenna 
Combine” stage 
Antenna combine stage processes the 

remaining 6 symbols in the uplink 

slot (excluding the reference 

symbol). Each of these symbols is 

processed independently of each 

other, one by one. Since there is no 

functional dependence among these 

symbols therefore every symbol may 

be processed independently of each 

other.  So instead of processing each symbol one by one, all of them may be processed in 

parallel at once. This functional division can straight away reduce the processing time for this 

part of the application by a factor of 6. That is exactly what I have done (see Figure 14).  

Parallelism in “Scale and Demap” stage 
This is the final part of the application and its functionality is pretty similar to the previous 

“Antenna Combine” stage. It also processes 6 symbols in the corresponding uplink slot, one 

by one, generating soft values for each of them. Since there are no dependencies among these 

symbols therefore these symbols can be processed in parallel and latency for this stage can be 

reduced 6 times as well (see Figure 14). 

6.3.2 Putting it all together 

After the functional division of last two stages of the LTE application into 6 parts each, now 

we have identified 14 functionally independent parts of that application that may be processed 

in parallel. So if we use the originally planned 16 core model of DSK6455 DSP, 2 cores of the 

chip will be literally sitting idle doing nothing therefore a decision was made to use a 14 core 

model instead of 16 cores.  

6.3.3 Future Applicability of this method 

The method used in dividing this application into 14 independent parts may be extended by 

having detailed studies of the actual complete version of the LTE application and by looking 

at LTE physical layer specifications in depth.  

Using this 14 core application model, one straight forward enhancement could be to a 28 core 

hardware model. By introducing a secondary antenna data source on chip, operating at 

frequencies other than the previous sources to avoid interference, to feed the newly added 14 

cores, if dynamic load sharing can be done, this form of parallelism can reduce hardware and 

power costs.  

 

 

 

 

 

Figure 15: LTE uplink slot 



 
Figure 16: LTE uplink processing 14 core model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 Experimental Results 
 

The main aim of this thesis work is to study and comprehend the potential of Virtualized 

System Development and to use Instructions Set Simulation for creating hardware that does 

not exist and then test an application on it that is still evolving. Also LTE application used for 

this thesis work does not represent the actual work load therefore it is meaningless to look for 

numbers as they can not be compared with actual existing commercial DSPs in real working 

environment. Also Instruction Set Simulators make use of certain tricks to simulate the actual 

behavior of the physical target hardware therefore it can not be relied upon for precise 

calculations.  

 

However in this thesis work, two multi-core models are discussed, 4 cores and 14 cores. The 

four core model was built to port all parts (4) of the LTE application on a single board to 

make it a stand alone DSP solution. Therefore it is used as a reference point in relation to 

further enhancement towards the 14 cores model.  

 

 In the rest of this section I will briefly explain the experimental setup used for the 

calculations and results related to different parts of the LTE application and over all 

performance enhancements from 4 cores to 14 cores model. 

 

7.1 Statistics for the LTE Application 

7.1.1 Experimental Setup 

 

CPU Frequency = 1000 MHz 

 

For all the calculations, the codes are compiled in the “Code Composer Studio” at 

optimization level zero (0) except “Antenna Generation” part where optimization level 2 is 

used.  

Antenna Data generation setup 
Since we need to simulate antenna data to generate a symbol every 70µs therefore operating 

at 1000 MHz, every 70000 intervals a new symbol is generated (Simics assumes a perfect 

memory model and executes an instruction every new cycle therefore cycle rate =step rate 

here). 

7.1.2 Results  

This part gives details about statistical numbers (number of cycles consumed) in a particular 

section of code. Since 0.5millisecond is the time barrier to complete the uplink processing for 

one time slot therefore I have chosen it as the reference point for all calculations. Firstly time 

for every individual stage of application is calculated then a comparison is made, for complete 

application time, between 4 and 14 cores to see if it meets the 0.5millisecond barrier.  

 

Time is calculated in terms of number of cycles (as CPU frequency is 1000MHz therefore 

1000 cycles equal one microsecond).    

Individual stages 
Table 2 summarizes the speedup for different stages in the application. Stages “Antenna 

Combine” and “Scale and Demap” are divided into 6 parts each whereas “Channel Estimate” 

stage remains unchanged.   



 
Table 2: Speedup comparison between Parallel and Sequential execution 

      Mode of execution 

 

 

 

Application  Stage  

Sequential 
(Single-core) 

Parallel 
(6 cores) 

 Cycles 

consumed 

Time 

consumed 

(milliseconds) 

Cycles 

consumed 

Time 

Consumed 

(milliseconds) 

 

Channel Estimate 

 

110227 0.110 n/a n/a 

 

Antenna Combine 

 

916135 0.916 152598 0.152 

 

Scale and Demap 

 

292781 0.292 49223 0.049 

 

 

 
Figure 17: Antenna Combine, parallel vs. serial execution 

 

 
Figure 18: Scale and Demap, parallel vs. serial execution 



 

Complete application time 
After antenna data is generated, Table 3 shows total time consumed to process one uplink slot 

(time consumed by all 3 parts of the application, starting from Channel_Estimate through 

Antenna_Combine till Scale_Demap).  

 

Uplink processing for the very first time slot consumes 1.38 milliseconds, after that when data 

is in pipeline, processing for one uplink slot, on the average, takes 0.902 milliseconds.  

 

 
Table 3: Execution time for complete application, 4 vs. 14 cores 

 Execution Time 

 
Cycles 

consumed 

Time consumed 

(milliseconds) 

 

4 Cores 

 

901970 0.902 

 

14 Cores 

 

410942 0.410 

 

 

 

 

 
Figure 19: Complete application execution time, 4 vs. 14 cores 

 

 

 

7.1.3 Discussion 

From hypothetical point of view and for the sake of comparison, in case of 4 core model the 

results reveal that if the data is processed in a sequential manner, this implementation of the 

application processes one uplink slot in 0.902 milliseconds which breaks the 0.5 milliseconds 

barrier. Parallelizing the second and third stage of the application straight away gives an 

improvement by a factor of 6 in those stages however 14 cores model completes the 



processing in 0.410 milliseconds which meets the time limit but does not reflect a linear 

speed up in relation to the amount of hardware added (10 new cores) or the speed up in the 3
rd

 

and 4
th

 stage (under ideal conditions time consumed for all three stages should be around 

0.311milliseconds).  

This is because new data from antenna source (stage 1 is the bottleneck) is not available for 

processing while the later stages (3 and 4) have finished their processing of previous uplink 

slot. Actually antenna source is generating the data every 70 microseconds and measurements 

reveal that “Antenna Combine” (3
rd

 stage) has to wait for the antenna data, on the average, for 

33microseconds even when the channel estimates are available. This is almost one half of the 

time to generate one uplink symbol. This time may be used to serve another antenna source.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 Conclusion 
 

Foremost conclusion of this thesis work is that “Virtualized System Development”, 

employing “Instruction Set Simulation” technique, accelerates the application development 

time because target hardware is available even before it physically exists. This allows the 

software development team to begin process of experimentation and development right away 

and an early start in development eventually exposes the design flaws in both hardware and 

software much earlier in the development cycle of the actual physical product. One example is 

how the architecture of LTE application influenced to reduce the originally planned 16 cores 

model to 14 cores.  

Also VSD enables the development team to focus on their actual goals i.e. a developer 

consumes almost 60% of the time in debugging and finding errors in code and these matters 

have been even complicated with the introduction of “hiesenbugs” in case of multi-cores. 

Now because of deterministic reproducible execution and excellent debugging capabilities, 

VSD can reduce this time many folds allowing the developer to spend more time on 

development rather than debugging.  

 

Simics as a simulation tool is pretty fast and accurate capable of scaling to hundreds of 

multiprocessors and multi-cores (using technologies like JIT, page sharing and multi-

threading). With very good debugging and testing capabilities (deterministic execution, inject 

faults seamlessly using scripts, reverse execution, ability to save system state and replay it) 

which are critical for multi-core software development in the wake of heisenbugs.  

 

The interaction with the LTE application reveals that there is lot of parallelism available in it 

which is evident from the results obtained from the 14 core model. Over all system latency is 

reduced almost three fold as compared to 4 core model. The same is true for all signal 

processing applications. In essence, using virtualized system development, detailed studies of 

the LTE application promises to reveal number of avenues leading to a rapid cost effective 

multi-core solution that spans dozens of cores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 Future Work 
 

The success of a “multi-core solution” lies in its ability to divide and do work in parallel. The 

14 core model, created during this study, actually represents one way of dividing the uplink 

processing into 14 parts. Therefore to further increase the throughput (number of users) one 

way is to reduce the latency by further dividing the LTE uplink processing into independent 

parts, let’s say 30, and subsequently develop a 30 cores model for it. This requires advanced 

and in depth studies focusing on all layers (e.g. PHY, MAC, RLC etc) of the LTE protocol. In 

this case, a reduction in latency would mean that more users can share, thus be 

accommodated, in a given time slot (since every user needs to be scheduled only after every 

0.5 milliseconds).  

 

 
Figure 20: User shared uplink slot 

 

Another important aspect is that in LTE a lot of intelligent decision making is delegated to the 

base station. For example unlike HSPA, in LTE data rate of the terminal (user) is controlled 

by NodeB (base station). Also LTE schedules the users based on channel conditions (shared 

channel assignment and data rate). Therefore if two users are sharing a channel in time and 

frequency domain, one with high data requirements (real time video content) and the other 

one with minimal services (just updating it’s live status) then for optimal resource utilization 

future base stations would require intelligent Linux® like operating systems, capable of 

efficiently utilizing the available resources (using task sharing and load management) by 

temporarily taking resources from one user and allocating them to the demanding one.  

   

Now to explore all these possibilities, involving the software and hardware that does not exist, 

virtualized software development (Instruction Set Simulation) seems to be the only solution. 
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