

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden, November 2009

Multi-cores for Signal Processing
Using Instruction Set Simulation to explore performance of LTE (Long Term
Evolution) applications

Master of Science Thesis in the Program “Networks and Distributed Systems”

MUHAMMAD ISMAIL AHMED

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Multi-cores for Signal Processing

Using instruction level simulation to explore performance of LTE applications

MUHAMMAD ISMAIL AHMED

muhahm@student.chalmers.se

© MUHAMMAD ISMAIL AHMED, November 2009.

Examiner: Per Stenström, Professor Computer Engineering, CHALMERS

Industry Supervisors:

1) Peter Brauer, Baseband Research, Ericsson AB

2) David Engdal, Baseband Research, Ericsson AB

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: 14 core Simics model of the Texas Instrument® DSK6455 DSP board, page 23

Department of Computer Science and Engineering

Göteborg, Sweden November 2009

mailto:muhahm@student.chalmers.se

Table of Contents

Table of Figures .. 5
Abbreviations ... 6
Acknowledgements .. 7
Abstract ... 8
1 Introduction ... 9

1.1 Background ... 9
1.2 Problem ... 9

1.3 Solution ... 9
1.4 Results .. 9

1.5 Outline .. 10
2 Intro to LTE ... 11

2.1 Background ... 11
2.2 Standardization ... 11
2.3 Architecture and Technicalities .. 12

3 Overview of Multi-cores ... 13
3.1 Background ... 13

3.2 Multi-cores and signal processing (LTE application) .. 13
3.3 Why Texas Instrument

®
? .. 13

3.4 Texas Instruments ... 14
3.4.1 TMS320C6455 .. 14

3.4.2 C64x+ CPU core .. 14

3.4.3 TMS320TCI6487 .. 15

3.4.4 TCI6487 Case study .. 15

3.5 TILERA .. 16

3.6 Freescale semiconductor... 16
4 Instruction Set Simulation ... 18

4.1 Background ... 18

4.1.1 Why Instruction set Simulators? ... 18

4.1.2 Timing Accurate simulators .. 18

4.1.3 Instruction set simulators (ISS) ... 18

4.2 Introduction to Simics .. 19

4.2.1 VSD (Virtualized software development) ... 19

4.3 Simics - software development concepts.. 20

4.3.1 Simulation limits ... 20

4.3.2 Simics debugging capabilities ... 20

5 Modeling in Simics .. 22
5.1 Simics Modeling Process ... 22

5.2 Simics Timing concepts ... 22

5.2.1 Timing Model .. 22

5.3 Simics System Modeling Breakdown .. 23
5.3.1 Device modeling .. 23

5.3.2 Memory system modeling ... 23

5.3.3 Processor Modeling ... 24

5.4 Modeling of 14 Core DSK6455 DSP Board .. 24

5.4.1 Components ... 25

5.4.2 Configurations and Scripts .. 25

5.4.3 System Setup ... 25

5.4.4 Path to 14 core Model- Technical details .. 26

6 Application Case Study ... 28
6.1 LTE Uplink Processing .. 28

6.1.1 LTE Uplink resource grid .. 28

6.1.2 Data Flow .. 28

6.2 LTE application - functional division for 4 core model ... 29

6.2.1 Antenna Data Generation .. 29

6.2.2 Channel Estimation ... 30

6.2.3 Antenna Combine .. 30

6.2.4 Scale and Demap ... 30

6.3 LTE application – functional division for 14 Core model.. 30
6.3.1 Parallelization process ... 30

6.3.2 Putting it all together ... 31

6.3.3 Future Applicability of this method .. 31

7 Experimental Results ... 33
7.1 Statistics for the LTE Application .. 33

7.1.1 Experimental Setup ... 33

7.1.2 Results ... 33

7.1.3 Discussion .. 35

8 Conclusion ... 37
9 Future Work ... 38
10 References ... 39

Table of Figures

Figure 1: Trends in voice and data traffic Source: [2] .. 11
Figure 2: LTE standardization process ... 11
Figure 3: Projected broadband growth 2007-2014 Source: [2] 12
Figure 4: Power dissipation w.r.t. clock rate .. 13

Figure 5: TMS320C6455 DSP block diagram ... 14
Figure 6: C64x+ CPU Core, block diagram ... 16
Figure 7: Traditional vs. Virtualized software development .. 20
Figure 8: Simics model of the newly created 14 core DSK6455 DSP board 24
Figure 9: Simics model, hierarchal build up .. 25

Figure 10: 4 cores Simics model of DSK6455 ... 26

Figure 11: LTE uplink physical resource grid ... 28

Figure 12: LTE uplink processing .. 29
Figure 13: LTE uplink processing, functional division .. 30
Figure 14: LTE uplink slot ... 31
Figure 15: LTE uplink processing 14 core model .. 32

Figure 16: Antenna Combine, parallel vs. serial execution ... 34
Figure 17: Scale and Demap, parallel vs. serial execution ... 34

Figure 18: Complete application execution time, 4 vs. 14 cores ... 35
Figure 20: User shared uplink slot ... 38

file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008224
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008226
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008227
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008228
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008229
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008232
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008233
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008234
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008236
file:///G:/STUDY/Thesis/Report%20and%20Presentation/Masters%20thesis.ismail.docx%23_Toc246008237

Abbreviations

4G Fourth Generation

DSP Digital Signal Processor

HDTV High-definition television

HSPA High Speed Packet Access

IP Internet Protocol

ISS Instruction Set Simulation

LTE Long Term Evolution

MIMO Multiple Input Multiple Output

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak to Average Power Ratio

QAM Quadrature Amplitude Modulation

RAM Random Access Memory

ROM Read Only Memory

SAE System Architecture Evolution

SC-FDMA Single Carrier Frequency Division Multiple Access

SOC System on Chip

TI Texas Instruments

VSD Virtualized Software Development

Acknowledgements

First of all, I feel obliged to thank GOD almighty for providing me with adequate capacity

and strength to carry out this thesis work.

After that I am heartily gratified to my supervisor, Per Stenström, who had confidence in me

to start this project. The freedom and space he has given me and the way he guided me

throughout this thesis work assisted me immensely in understanding and developing my own

understanding of the subject. I thank him for his detailed comments which helped me to focus

and put everything together in the end.

Besides Per, I am particularly thankful to my industry supervisors, Peter Brauer and David

Engdal who actually initiated this project. Their guidance and help was with me all the time

during this project. I would especially like to thank Peter for his help relating to programming

issues and David for his value able inputs.

Last but not the least, I would like to express my gratitude to my parents, family members and

friends, particularly Waqas, for supporting me throughout this period.

Abstract

Increasing multimedia demands and mobile broadband has forced the cellular operators to

adapt radio technologies that meet requirements of next generation (mobile TV, real time

audio/video etc.). LTE (Long Term Evolution) is the radio technology that already meets most

of 4G (Fourth generation) requirements. But to exploit higher data rates offered by LTE,

powerful processing engines are required at mobile base stations. Multi-cores due to low

power consumption and high performance are considered a natural choice however novelty of

multi-cores combined with evolving LTE application software has forced the developers to

use Instruction Set Simulators, which allows testing the application software on hardware that

does not exist or is in short supply. Simics is one such simulation technology with special

multi-core development tools, capable of simulating dozens of cores at adequate levels of

speed and accuracy. An existing single core Simics model of the target hardware is modified

and a 14 core hardware model is created, to accommodate the parallelized (14 part) LTE

application. Simics helped in constructing the target multi-core hardware with relative ease,

which consequently enabled the development of application software for it.

1 Introduction

1.1 Background
The ever increasing multimedia demands and the advent of mobile broadband has put the

cellular operators under pressure to increase capacity and speed of their mobile phone

networks, 4G is here. 4G demands an all IP packet switched network with data rates of at least

100 Mbps for downlink and high quality services for next generation multimedia (real time

audio/video, high speed data, HDTV video content, mobile TV, etc) [1]. LTE (Long Term

Evolution) is the radio technology and current state of the art [3] that meets most of these

requirements. With high peak rates and low latency, LTE is ideal solution for mobile

broadband which contributes 80% of the broadband market. Broadband subscriptions are

projected to reach 3.4 billion in 2014 [2] and in this regard LTE is the front runner to make it

a reality.

1.2 Problem
However to harness higher data rates offered by Long Term Evolution and to accommodate

its complexity (features like MIMO technology, flexible bandwidth, complex modulations

schemes, etc) powerful, novel and flexible processing engines are required at base stations.

Just increasing the clock rate is no more a solution because of high power consumption.

Therefore at this point in time, multi-cores operating at lower clock rates seem to be the only

solution meeting primary goals of the cellular base stations, that is, less power consumption

and high throughput. Now such high bandwidth management in real time demands hardware

that perfectly couples the Long Term Evolution application. In the wake of evolution and

changing requirements of the application it is almost impossible to select or build the target

hardware before the application is ready. At the same time relative novelty of multi-cores

makes it even more challenging. Under such circumstances when target hardware does not

physically exist, Virtualized Software Development (VSD) is the solution.

1.3 Solution
Simics [6] is chosen as the development tool since it’s a full system simulator and is capable

of virtualized co-development of software and hardware. Simics is an instruction level

simulator and it can simulate multiple cores and chips at sufficient levels of accuracy and

speed. It offers tools and support to manipulate simulation data statically as well as

dynamically, e.g. Python control functions may be used for profiling purposes [4] to extract

information out of the simulated system at run time. As a performance measure, the

information could be number of executed cycles for a particular section of code. It also

supports reverse execution which is extremely helpful for debugging purposes and critical for

fast application development along with hardware. Using Simics, I have created a multi-core

(14 core) Simics model of TI’s [5] DSK6455 single core (C64x+) DSP board and ported the

LTE application software on it. The given LTE application has four main parts so first of all I

created a 4 core model and assigned one part to each of its cores to make it a standalone DSP

solution. As a next step, I identified the parts of application that can be done in parallel and

divided the application into 14 parts. Now I created a 14 core model of DSK6455 board and

ported the 14 part application on it.

1.4 Results
The focus of this study is to comprehend the potential of Virtualized System Development

(Instruction Set Simulation) for multi-core DSPs. The creation of a 4 core target hardware that

does not exist and running the complete four stage LTE application on it was the first major

step highlighting the worth of Virtualized Software development. The second important

insight was how the software application has influenced the design of the target hardware.

Initial plan was to make 16 core hardware but the construction of the application dictated that

a 14 core model will utilize the resources optimally. Similarly it can not be ruled out that

based on hardware limitations, for overall system enhancement, changes in the application

software can also be suggested. So according to requirements VSD leverages modification in

both hardware and software on the fly and consequently can identify major design flaws

which otherwise could cost much more if found later on in the development cycle. Also multi-

core programming, in case of general purpose multi-cores is very difficult however

experiments reveal (14 core model reduces the latency more than 3 fold as compared to 4 core

model) that LTE signal processing application is inherently parallel in nature therefore it can

greatly benefit from multi-core architectures and dramatic increase in throughput (number of

users) may be achieved with lesser hardware and minimal power consumption.

1.5 Outline
In the rest of the report first of all I will briefly explain LTE application requirements and its

streaming behavior. Third part gives an overview of multi-cores and currently available

commercial multi-core DSPs. Fourth part explains concept of Instruction set simulation and

Simics as a Virtualized Software Development tool. Fifth chapter give details of Simics

model building process and focuses on areas related to this thesis work, it also explains

modeling procedure of 14 core DSK6455 DSP model. Sixth part explains how functional

parallelism was identified in the application and how it was parallelized and possibility of

using the same method in the future for lets say 100 cores DSP model. In seventh part

experimental results are discussed. Eighth part concludes the whole thesis and the last part is

about future work.

2 Intro to LTE

2.1 Background

LTE is considered to be the first step towards 4G. 4G actually defines a standard set of

requirements to meet future demands of mobile phone networks. Primarily these requirements

are set in response to current trends in the cellular industry. For example packet data traffic

has surpassed voice traffic since summer of 2007 (see Figure 1) and since last two years there

is exponential growth in data traffic as compared to voice traffic. This was mainly due to the

introduction of HSPA which improved the end user experience. It increased the downlink

speed up to 14 Mbps and uplink speed up to 5.4 Mbps and this increased bandwidth enabled

the users to surf the web efficiently as well as in a limited way to enjoy real time contents like

online audio and video and other multimedia services.

The other major indicator reflecting the increased demand of packet data is mobile broadband.

Broadband subscriptions are projected to reach 3.4 billion in 2014 and 80% of it will be

mobile broadband (see Figure

3). Anticipating these trends,

4G working group put forth

objectives for new generation

(4G) of mobile networks. The

requirements related to

bandwidth included high

network capacity, spectral

efficiency, data rate of 100

Mbps for a moving client and

1 Gbps for a static one and

lower latency. LTE even in its

current form happen to meet

most of these requirements

and even surpass a few as well.

2.2 Standardization

The first step towards LTE standardization was taken in Toronto, Canada in 2004 at 3GPP

RAN Evolution workshop. The basic idea was to develop a framework for the progress of

3GPP radio network technology that could facilitate cheap cost per bit, adaptation of new and

existing frequency bands, a simple architecture that could allow seamless integration with

existing standards and which could enable mobile terminals to consume less power.

Figure 2: LTE standardization process

Figure 1: Trends in voice and data traffic Source: [2]

Current version of LTE represents improvements in Universal Mobile Telecommunications

System (UMTS) which will be introduced in 3rd Generation Partnership Project (3GPP)

Release 8 [7].

The original LTE requirements envisioned by 3GPP included

 100 Mbps downlink and 50 Mbps uplink

 Reduce the Radio Access Network (RAN) time to less than 10 milliseconds (roundtrip

time for complete LTE frame).

 Improved spectral efficiency as compared to HSPA release 6

Also LTE should be able to

incorporate IP connectivity

with improved broadcasting

and flexible bandwidth

allocation schemes.

It should also support

internetworking with existing

3G and networks not

compliant with 3GPP

standard.

The specification work for

LTE completed in March

2009 (see Figure 2) and it is

ensured that implementation

based on 2009 specifications will meet backward compatibility.

2.3 Architecture and Technicalities

In the network world there was a constant effort to develop a common standard protocol

which could serve as middleware for various existing network protocols. The introduction and

success of internet has made packet based IP protocol as the universal standard. Realizing this

3GPP in 2004 proposed IP as the protocol for next generation of its networks. This

recommendation of a new architecture is a part of the 3GPP System Architecture Evolution

(SAE). LTE-SAE is designed to incorporate and support huge market share of IP-based

services.

LTE uses OFDM (Orthogonal frequency division multiplexing) for both uplink and downlink.

OFDM is chosen as the radio technology because it meets the LTE requirements for spectrum

flexibility and wide carriers for peak data rates. However the standard version of OFDM has

high Peak to Average Power Ratio (PAPR). Which means that in order to manage PAPR in

the mobile terminal, you have to use expensive power amplifiers that would increase cost of

the terminal and also would drains its battery faster. Therefore uplink uses a pre-coded

version of OFDM called SC-FDMA which addresses these issues.

To achieve peak data rates and extended coverage that meets the future broadband

requirements another enhancement that LTE borrows from HSPA is advanced antenna

solutions. There are different variants of it based on the arising situation. For example

extended coverage is supported using beam forming and peak data rates are achieved using

MIMO technology that employs multiple input and output antennas.

Figure 3: Projected broadband growth 2007-2014 Source: [2]

3 Overview of Multi-cores

3.1 Background
In recent past, for almost a decade, the most popular approach to gain computational

performance was to increase the clock rate or to devise new strategies for exploiting ILP

(instruction level parallelism). As a result every new enhancement to get more ILP made the

architecture more complex, consuming much more power. Both these approaches have

exhausted because of diminishing returns and issues of high power consumption and

dissipation.

Now the fact that clock rate can not be increased beyond a certain limit due to power

dissipation (see Figure 4), the only way forward, one may imagine at this point in time, is to

increase the number of cores and hope that software, which is predominantly sequential in

nature, will be parallelized to

take advantage of this

increased performance,

offered by these multiple

cores on chip.

Parallelism promises same or

higher performance at lower

clock rates (as work can be

done in parallel). Lower clock

rate means lesser power

consumption.

3.2 Multi-cores and

signal processing (LTE

application)

Fortunately, most of the

signal-processing applications

are parallel in nature (signal

processing applications are

extensively SIMD (Single

Instruction Multiple Data)

because it deals most of the time with matrix and vector data which may be processed

independently), this factor also tempts to yearn for parallelism at coarse grained (thread) level

rather than instruction level. Therefore signal processing applications can immensely benefit

from multi-core architectures.

 It is argued that the design of multi-cores for such applications should be simpler (due to

predictable execution loops there will be less complicated issues of cache coherence, dynamic

prediction and synchronization etc) as compared to general purpose multi-cores and this fact

is verified during this thesis work as well. For example in the process of parallelizing the LTE

application code to make it run on 14 cores, I was able to identify parts of the application, that

could be done in parallel, by simply inspecting the code.

3.3 Why Texas Instrument
®
?

The selection of TI® as the DSP vendor for this thesis work is done after performing various

case studies on existing multi-core DSPs commercially available in the market. There are lots

Figure 4: Power dissipation w.r.t. clock rate

of factors contributing to the worth of a multi-core DSP however we selected and focused our

attention on areas that are potentially critical for the existence of any DSP solution in the

foreseeable future. These include scalability, software model, development support, multi-

threading and power consumption.

After much consideration, TI’s solution is selected primarily because it’s famous

TMS320C64x+™ DSP core is available for experimentation in virtual form. Virtutech® [6]

has developed its virtual model in Simics™ [6]. This model has good signal processing

capabilities and is available to academia for experimentation. This virtualized model has

opened a whole new range of possibilities for software developers. Simics will be explained,

in detail, in the following chapters.

The major DSPs studied are Freescale™ semiconductor MSC8156, TILERA
®
 TILEPro64

and Texas Instruments
®

 TMS320C6455. I will now briefly discuss architecture of TI’s DSPs

in terms of their future scalability and will also touch upon Freescale® and TILERA® DSPs.

Some of the salient features of these DSPs may be found in Table1.

3.4 Texas Instruments
This thesis work is based on Texas Instruments® TMS320C6455 DSP. The actual case study

was done for TI’s latest commercial DSP, TMS320TCI6487. However these devices are very

similar. The most important factor is that both these DSPs use the famous TMS320C64x+™

CPU core for which Virtutech® has developed the virtualized processor. Also both these

DSPs have same mix of peripherals and on chip memories. The main difference is that

TCI6487 has three C64x+™ DSP cores (c6455 has one), a faster DDR2 memory and new

antenna support. Nonetheless for the purpose of this thesis work, architecturally both these

DSPs are the same.

First I will briefly explain the architecture of TMS320C6455 DSP and C64x+™ CPU core,

after that will discuss the findings about TMS320TCI6487 DSP.

3.4.1 TMS320C6455

This DSP is based on advanced VelociTI™, very-long-instruction-word (VLIW) architecture

developed by TI®, targeting video, telecom and Wireless infrastructures. It has performance

of 9600 MIPS (million instructions per second) operating at a clock rate of 1.2 GHz and 90nm

process technology is used in fabrication. Power dissipation is 3.3W and performance per

Watt is 2.9 MIPS/mW.

TMS320C6455 device has

2Mbyte L2 memory and 32

Kbyte level1 program

(L1P) and data (L1D)

memories (see Figure 5).

L1D is two way set

associative cache where is

L1P is direct mapped. L2

memory may be used as 4-

way set associative cache

or configured as SRAM.

3.4.2 C64x+ CPU core

C64x+ CPU comprises of

eight functional units, two

register files and two data

paths (see Figure 6). Since Figure 5: TMS320C6455 DSP block diagram

signal processing applications are math intensive therefore C64x+ incorporates special

instruction set enhancements for multiplication and arithmetic logic

operations like 32bit multiply, complex multiplication and parallel add and subtract.

3.4.3 TMS320TCI6487

TCI6487 is one of TI’s latest commercial DSP specifically targeting wireless infrastructure

applications. Therefore I have looked at its multi-core architecture critically.

3.4.4 TCI6487 Case study

Operating System
There is no sophisticated operating system present (like Linux® kernel 2.6) which may

leverage multiple concurrent task management (using scheduling techniques like priority

scheduling, time sliced scheduling etc). However it supports DSP/BIOS, a RTOS (Real Time

Operating System) but this RTOS has limitations e.g. it supports only priority scheduling

based on software interrupts and tasks, which means that some low priority tasks might starve

and there could be “priority inversion” issues. The advantage of an RTOS is that DSP/BIOS

allows direct access to manipulate hardware resources (which is not possible to that extent in

Linux since it maintains strict separation between user application and physical resources, so

if a user space program accesses a device an expensive context switch to kernel mode is

required) e.g. hardware interrupts which gives more fine grained control to reduce system

latency. To address these issues related to both GPOS(General purpose OS) and RTOS a third

party supplier Virtual Logix® has tried to come up with a hybrid solution, namely VLX (a

virtualizer), enabling a Linux based development environment to run alongside TI’s

DSP/BIOS.

Architecture and Scalability

Coherency
There is no cache coherence protocol implementation (snoopy, directory based etc) between

on chip caches and memory, among the three cores. However for a multi-core solution to

work correctly, shared memory transactions (reads, writes) should meet serializability and

sequential consistency conditions. TCI6487 uses the semaphores module to meet these

conditions[16]. Not only it manages resource sharing but also helps in keeping cache

coherency between the three cores. A multi-core shared memory semaphore implementation

(for cache coherency) requires two main ingredients, one, hardware should support atomic

read-modify-write operations (e.g. test and set, test test and set etc) and, two, these operations

should be non interruptible (similar to single processor implementation to maintain sequential

consistency). But this two fold semaphore solution comes at a price, e.g. a resource (e.g.

SRIO®) can not be shared between two cores at the same time, one has to wait for the

resource until it receives the signal from the other (core) to go ahead.

Architecture scalability
Literally three C64x+ cores are placed side by side on one chip. One reason could be that

multi-cores in embedded industry are still at an early stage. But in the wake of dozens, if not

hundreds, of cores on chip in the near future, an operating system similar to Linux is dearly

required which could support multithreading, manage load balancing, load sharing and switch

off idle chips etc. However currently according to TI [13], they have intentionally kept it

generic so that third parties could come up with innovative ideas and solutions.

Expensive (in terms of CPU cycle consumption) semaphore signaling means there will be

issues related to synchronization and latency because of resources blocking. Also I think this

approach is not scalable from futuristic point of view as well, even by adding a few more

cores, the complexity of its architecture will greatly increase. However current DSP solutions

has cores in single digit and there are no critical issues of load balancing or scheduling. This

is partly due to extensive SIMD nature of signal processing applications.

With a weakness in multi-cores, TI is focusing more on functional integration, that is,

defining TCI6487 scalability in terms of number of chips that can be connected together

seamlessly using for example SRIO daisy chain network which uses hardware packet

forwarding to advance data to a specific DSP in the daisy chain, however message passing is

always expensive and a serious performance bottleneck. Based on requirements they have

proposed a so called system-on-chip architecture if there is no task dependency among chips

and each DSP is doing the same functions and other architecture called customized

architecture if role of each DSP is

different from each other.

3.5 TILERA
TILERA’s TILEPro64™

processor targets the embedded

market. It has an impressive 64

processor cores connected to each

other through its iMesh™

network. Each processor has L1

and L2 cache and a non blocking

connection to the iMesh™. It

incorporates its trade mark

dynamic distributed cache

(employs concept of

“neighborhood caching”, so in

case of miss a processor may

consult remote processor’s sub-

cache) which claims to be twice

as fast compared to other multi-

cores. Also each processor tile can run independent operating system or multiple tiles may be

combined together to form SMP Linux like OS. Each processor support 32bit VLIW

architecture and is capable of handling up to 3 instructions per cycle.

3.6 Freescale semiconductor
The latest Freescale DSPs aimed at wireless base stations is MSC8156, it has 6 cores

(StarCore SC3850) operating at 1GHz, a built in Multi Accelerator Platform Engine for

Baseband (MAPLE-B) and various other features to optimize it for 3G-LTE, 3GPP, TD-

SCDMA etc. It’s an enhanced version of previous chip combo of MSC8144/MSBA8100 that

Freescale® launched in the middle of 2008. MSC8144 is a quad core (SC3400) DSP chip that

works with MSBA8100 chip which is a baseband accelerator. It has 32 Kbyte L1 instruction

and data cache available on each core. Also it includes 512 Kbyte L2 cache which may be

used for both instruction and data along with 1056 Kbyte shared M3.

Figure 6: C64x+ CPU Core, block diagram

Table 1: DSP comparisons

Vendor DSP

of Cores

/

Frequency

Power

CMO

S

Tech.

Languag

e support

System

Simulator

Freescale® MSC8156 6 / 1GHz 10 W 45 nm

C, C++

compiler

yes

TI®
TMS320T

CI6487
3 / 1GHz 6 W 65 nm

C, C++

compiler
N/A

TILERA®
64 / 866

MHz
23 W 65 nm

C, C++

compiler
yes

Vendor DSP Throughput
Development

tool

Operating

System

Support

Freescale® MSC8156

48000

MMACS

CodeWarrior

v10
SmartDSP

TI®
TMS320T

CI6487

24,800

MMACS

(16-bit)

Code Composer

Studio
DSP/BIOS

TILERA®
TILEPro64

Max. of 443

billion

operations

per second

MDE

SMP Linux

with 2.6

kernel

4 Instruction Set Simulation

4.1 Background
Simulations are used to recreate an environment for the real system in enough detail, so that

the desired effects can be observed [8]. Simulators therefore eliminate the need of actual

hardware unavailability or shortage, which is most of the time a major bottleneck for software

developers.

4.1.1 Why Instruction set Simulators?

When one talks about simulators the next obvious question is do you need an accurate

simulation or exact numbers? Or you need fast simulation speed for functional verification of

your software application? Before answering these questions lets see how simulators actually

work.

There are two broad categories of simulators

1) Timing/cycle accurate simulators

2) Instruction set simulators

4.1.2 Timing Accurate simulators

Timing accurate simulators works in cycle (timing) accuracy and provides very high visibility

into processor and applications. In this mode, in order to model detailed operations like bit

reset and register access etc. a lot of computation power is required therefore this mode is

very slow and running of only core algorithms in this mode are recommended.

4.1.3 Instruction set simulators (ISS)

Instruction set simulators simulates the target processor at instruction set level. These

simulators are detailed enough to run the executable programs written for the intended target

machine.

Advantages
The biggest advantage of instruction set simulators is that they can be used to execute

applications for computers that, for various reasons, do not exist. Another major advantage is

that they can be used to view the internal state of the system which in case of real hardware is

not possible. Also with the introduction of multi-cores and multiprocessors, heisenbugs have

started to occur more frequently, instruction set simulators help in this regard as well. You

will always get the same output no matter how many times you re-execute the program in a

multi-core or multiprocessor. Therefore complete control of the system to track changes at

instruction level can provide comprehensive insight about the behavior of the applications

which may be used to address issues spanning all areas of multi-cores(mainly three), that is,

compiler, architecture and application.

 Aim of ISS (Instruction set simulators)
Instruction set simulator is used to check functional correctness of the application and bring

the code to life. Since they are not intended to get actual real data/values therefore a lot of

tricks and workarounds are done to simulate the actual behavior of the system. These

shortcuts lower the simulation workload enormously that’s why they are very fast as

compared to cycle accurate simulators. Even these are capable of simulating multiprocessors

systems at satisfactory speed and accuracy.

One such simulator is Simics, which is a System-level Instruction Set Simulator.

4.2 Introduction to Simics
Simics is a virtualized software development platform developed by Virtutech

®
 [6]. It

provides the hardware and software developers with the virtual version of their target

hardware and is capable of running from a single CPU with local memories to a complex

system on chip (SOC) at good speeds. At the same time debugging and testing is simplified

with the help of check points, determinism and reverse execution.

4.2.1 VSD (Virtualized software development)

 Background
Moore’s law still holds, now in form of multi-cores, therefore with increase of the transistors

complexity of the electronics systems is increasing every day. Also if we take the example of

mobile phones, now a day the other factor increasing the complexity of the system is that

devices communicate with their environment frequently. For example a mobile phone device

through Bluetooth™ and Wi-Fi™ interacts with its surroundings.

These two trends have in turn made the software increasingly complex. Now considering

these obstacles if the target hardware is in short supply or it does not exist then it’s a

nightmare for software developers. One option is to test software on something that some

what at least approximates the production hardware. In the wake of an evolving application

and the hardware that does not exist both these approaches are un-reliable thus not practical.

 Solution VSD (Virtualized Software Development)
Simics jumps in here with its so called VSD solution (see Figure 7) that combines the speed

and accuracy of software development to the desktop PC. Virtualized software development is

a way of developing software with out the need of actual target hardware, on which the

software will eventually run. VSD allows the software developers to use target hardware on

their own workstations.

Since VSD allows running the exact same binary that would run on physical hardware

therefore it eliminates the need to use stubbed software or API abstraction layers for two

different environments e.g. production environment and test lab environment.

To accomplish above mentioned goals VSD takes care of following four areas

1. Provides an instruction set simulator for the microprocessors in the target hardware

2. Provides device models (simulating the behavior of devices) in the target hardware

that the software might interact with

3. Takes care of interaction, if any, among multiple simulated targets or outside

world(e.g. networks, firewall etc)

4. Allows the software developer to use all the tools that he might use with actual

physical target

Electronic design automation (EDA) industry also provides simulation tools for software

development which are very accurate as well but they take enormous time to execute the

software. VSD is valuable in this regard as well since it gives real time simulation speed.

Figure 7: Traditional vs. Virtualized software development

4.3 Simics - software development concepts

Simics is a system level instruction set simulator which means that

 Simics can model the target system at instruction level (executing them one by one)

and

 Simics interface for application binaries to the virtual hardware model is so accurate

that it can execute the same binaries that run on real hardware.

This essentially means that Simics is capable of running and debugging almost any kind of

software, firmware, hardware drivers and operating systems.

4.3.1 Simulation limits

However one should take care of a few things while developing software in Simics. The

model of time in Simics is pretty trivial; it assumes that all the instructions take same amount

of time to execute. There might be some issues in multiprocessor environments where certain

assumptions are made about delayed inputs or outputs, however this is not an issue majority

of the times. Also the model of the target hardware should be detailed enough so that while

running, software should not detect any difference between real and virtual hardware.

4.3.2 Simics debugging capabilities

For any software application, speedy development and quick time to market is directly

proportional to the debugging capabilities of its development environment.

Simulation time and debugging
One of the biggest advantages of full system simulation is that time in the simulation is

completely independent of the real world time. This gives a number of advantages for

example

 One can pause and view the state of system at any point which is almost impossible in

real hardware

 State of the system can be saved into disk (checkpoint) and may be restored later

 No heisenbugs, complete determinism

 Reverse execution, very handy to find elusive bugs

Debugging
The most powerful tools for debugging in Simics include

1. Breakpoint support

2. Scriptable debug and symbol information handling

Breakpoints
Breakpoint in Simics can be set on code as well as data e.g. they can be set on memory

accesses, time, instruction types, device accesses and output on the console.

Symbolic Debugging
The breakpoints set at bits and bytes level are not always meaningful and required. Debugger

should enable the user to think at higher level as well i.e. in terms of functions, processes and

named variables.

Simics implements this using certain classes namely context, symtable and process trackers.

These concepts are critical in order to simulate multi-cores in Simics.

Context
A context object symbolizes a virtual address space which is assigned to a processor in multi-

core simulation. If the context is selected for a processor, this address space is visible to the

code running on the processor. Similarly virtual breakpoints can be assigned to a virtual

address space. In a multi-core environment, context objects are very useful for debugging and

measurements e.g. during simulation if you want to inspect code running on a certain

processor, you can select that processor using “pselect” and set breakpoint in its context. So it

allows you to maintain separate debugging symbols and breakpoints for separate processors in

the target machine.

However context object does not in any way effect correctness of simulation, they are just

used to understand the software.

Symtable
Symtable objects are used to store information about symbols and debugging for a certain

virtual address space. Symtables are associated with context objects and are used by Simics to

switch between code addresses, variable names and memory locations.

Symbolic Breakpoints
In this thesis work symbolic breakpoints along with haps are extensively used to extract

profiling data from simulation and thereby used for performance measurements.

Following statement tells how to read symbolic information from a binary file.

new-symtable st0 file = my_file

Here symbolic information is read from binary file “my_file” and stored in a new symtable

named “st0”.

5 Modeling in Simics

This section starts with a brief description of the modeling process in Simics. After that it

explains how different components of system are modeled in Simics. Finally it elaborates how

to setup different machine configurations using scripts and how starting from a single core

DSK6455 board I created its 14 core model.

5.1 Simics Modeling Process

For developing a virtual system in Simics, there is a generic out line

 Create list of devices, processors etc that constitute the system

 Decide level of abstraction according to requirements

 Reuse if device models already exist, use the device modeling language(DML) to

create the remaining devices

 Test the newly created system with the intended software and iteratively compensate

and improve the model to desired levels

The key in development is to get the working prototype early no matter how trivial it is and

iteratively enhance its functionality.

5.2 Simics Timing concepts
Simics simulates the behavior of the system and does not implement actual physical

phenomena. Simics simulation model does not model the actual details of how bits or bytes

are transferred across interconnect, instead it can be considered as one possible

implementation of the target architecture. For example, in a real physical system, a processor

requests bus access in order to write to a memory location but in Simics reads and writes are

directly routed to target memories without involving any buses. To make the virtual target

work like the physical one, Simics employs certain proprietary tricks and techniques.

5.2.1 Timing Model

One of the major differences that can exist between real hardware and Simics simulation

model is timing. This difference could be due to number of reasons e.g. incomplete

documentation, desire to increase simulation speed etc. The most significant timing difference

between real and Simics model is observed in instruction execution timings. For example in

real hardware instruction timing depends upon memory access latencies, bus contention etc

whereas in Simics, by default, each instruction takes exactly one cycle to finish. However in

order to simulate actual behavior, it is possible to build timing accurate models and connect

them to Simics.

In Simics, completion of one simulation instruction is also called execution of one step.

Instruction Execution Timings

In-order mode
In default mode, Simics executes one instruction in one cycle. It does not model actual

execution timing in any way. So in this case number of cycles equals the number of

instructions.

Stalling mode
If the goal of simulation is to perform detailed studies, e.g. involving timing of memory

access operations, then Simics functionality of in-order model may be enhanced by adding so

called timing models. This is usually done using memory hierarchy interface (see section

5.3.2). In this mode of simulation, instructions no longer finish atomically but rather stall for a

specified number of cycle events before a step event is executed.

5.3 Simics System Modeling Breakdown

Simics divides the system into three broad categories and models them differently

1. Device modeling

2. Memory system modeling

3. Processor modeling

5.3.1 Device modeling

Device modeling in Simics is implemented using a technique called transaction level

modeling (TLM) which uses Virtutech’s device modeling language(DML) [13]. When a

device is presented with a request it computes the results and replies. As explained above, it

does not bother about bits and bytes, making implementation convenient as well as efficient.

5.3.2 Memory system modeling

Simics has developed a very efficient technique to handle the memory system and processor

bus interface. This technique is instrumental in Simics success of ensuring a very fast

simulation. Processor address space is modeled as a memory map and the target memories

and devices in the system are assigned to that memory space (see Figure 8). So reads and

writes are routed directly to the recipient devices with out involving any buses or bridges.

If system timing requirements are not affected by impact of cache hierarchies and bus access

latencies, then this method often allows the virtual system to perform better, in terms of

speed, than the original system. Please see section 5.2 for timing details.

Memory Spaces
Memory accesses in Simics are handled by the generic memory-space class. An object of

class memory-space implements necessary functions for memory accesses and has attributes

specifying how memory mappings are setup for a processor. The most important attribute in

memory-space class is the map attribute which provides a list of mapped objects in a given

memory-space. Those could include devices, RAM, ROM or even other memory-spaces.

The following example from DSK6455 Simics model explains the concept of memory-spaces

and their usage.

For example first statement below creates a memory space object called “phys_mem” and the

2
nd

 statement maps a RAM object (namely iram) into this memory space object.

 self.o.phys_mem = pre_obj('phys_mem', 'memory-space')

 self.o.phys_mem.map = [0x00000000, self.o.iram, 0, 0, 0x1000000]

In the following statements, a CPU object is created and this memory-space (phys_mem) is

assigned to it. So now the CPU object (namely cpu) can access this memory (iram) at address

0x00000000.

 self.o.cpu = pre_obj('cpu', 'tms320c64plus' + classname_suffix_cpu)

 self.o.cpu.physical_memory = self.o.phys_mem

Memory transactions
In Simics, both devices and CPUs can initiate memory transactions. ACPU can get the

physical address (from virtual address) after it is translated by MMU whereas device

transaction does not require any translation. The physical address is actually mapped to a

device or memory (RAM, ROM etc) by memory-space and an access to the physical address

is automatically sent to the right target by the memory-space class.

For observing or modifying memory transactions, memory-space class has a special memory

hierarchy interface. This interface in fact consists of timing_model interface (gives access to

transaction before execution) and snoop_memory interface (provides transaction access after

it has been executed)

Figure 8: Simics model of the newly created 14 core DSK6455 DSP board

5.3.3 Processor Modeling

In Simics processor modeling is not done using DML because then simulation of processor

alone would consume all the processing power of the host machine. The processor models are

developed and shipped by Virtutech® and are highly optimized, enabling Simics to simulate

billions of instructions per second.

5.4 Modeling of 14 Core DSK6455 DSP Board
This section explains how different elements of Simics are put together to create a working

virtual model of a target physical system. At the same time DSK6455 model is related to

these details where possible.

Simics model is designed in bottom-up fashion, first of all devices are created which are

combined to form components. Finally a complete system is constructed in Simics, using

configuration scripts (see Figure 9).

5.4.1 Components

Any standalone piece of hardware that can be connected or removed from the system is

represented by a component in Simics. A component is basically a collection of devices which

are connected together though different interfaces. Components have various types of

standard connectors in order to connect to interfaces like Ethernet and buses. Components

hide complexity of the system and give an easy to understand overview of the system from

outside. It is implemented by a component module which is placed in the workspace

directory.

Components are written in “python™”. DSK6455 component is named

“dsk6455_components.py”.

5.4.2 Configurations and Scripts

Most convenient way of starting Simics is through configurations using scripts.

Configurations actually define different components and objects and tell how they are

interconnected. So scripts can be considered at a higher level of abstraction, above

components.

Figure 9: Simics model, hierarchal build up

5.4.3 System Setup

To setup machines and systems in Simics, a configuration consists of many scripts. However

for each configuration there should be at least three kind of scripts.

 <machine>-common.simics

This script actually defines the complete

simulated machine. This script file uses

“–system.include” to define hardware and “-setup.include” to define the software of

the system. However since DSK6455 is an embedded system and there is no operating

system present therefore our configuration does not have any “-setup.include” script

file. So “-common.simics” script incorporates this functionality as well.

In our configuration “-common.simics” script is named “himalaya-selftest.Simics”.

 <architecture-variant>-system.include

This script defines the hardware of the system.

In our case this script is called “himalaya-system.include”.

 <machine>-setup.include

Figure 10: Simics model, hierarchal build up

It defines the software for the system. In our case this script is part of the

common.simics script.

5.4.4 Path to 14 core Model- Technical details

Initially the aim of this work was to create a 16 core model however the LTE application

dictated that a 14 core model will be the optimal one (will be explained in section 5). Since no

new devices were required in order to scale the model from single core to 14 cores therefore I

conveniently skipped to the last part of Simics model development process. I used the existing

devices and modified the Simics model at component level.

4 Core Model
The given LTE application consists of 4 major parts therefore the obvious first step, towards a

14 core DSK6455 DSP, was to first create a 4 core model. This model not only provides a

standalone DSP solution, running all parts of LTE application on a single board, but also

serves as a guideline for creating the 14 core model. The process of creating 4 core and 14

core model in Simics is exactly the same. So in Simics one may create as many cores as one

likes, as long as the software can handle it.

The given single core Simics

model consisted of a single

component (dsk6455) which

represents a Texas Instruments

DSK6455 board. This board has

one (C64x+) CPU core. I

modified this piece of hardware

(represented by dsk6455

component class in Simics) and

added 3 more CPU objects in it.

For each CPU a separate

memory-space object is created

and all the devices on board are

mapped into it. Please see section

5.3.2 for an example.

All the CPUs in the new 4 core DSK6455 model share the same address space on board (see

Figure 10). All I/O devices and memories are shared among all CPUs. However for smooth

functioning of this multi-core model, synchronization and mutual exclusion is maintained

through the application software. For mutual exclusion semaphores are used which make sure

that different CPUs do not step on each other’s feet. The application programs assigned to

each CPU core are loaded into a pre-allocated area in the internal on chip memory (namely

iram). This particular memory section is local to every CPU core and no other processor can

access it. The rest of the iram is shared and is available to every CPU, so it may be called as

the working area for all (4 or 14) cores on board. Here with the help of synchronization

primitives, output from one CPU core may be used by the other one as input. For example

“Antenna_Combine” part of the LTE application uses the result from “Channel_Estimates”

part as input operating in the same shared memory.

Figure 11: 4 cores Simics model of DSK6455

14 core model
The construction of the 14 core model in Simics is the same story as 4 core model. Here I

created 14 CPU objects instead of 4, as in previous case and repeated all the steps mentioned

in section 5.4.4 (see Figure 8).

Therefore creation of a multi-core model in Simics is relatively trivial; the real challenge is to

build a complete working software hardware package that optimally utilizes the full potential

of all cores. For that matter comprehensive understanding of the given software application is

required.

6 Application Case Study

This section starts with a brief introduction to LTE uplink processing. It then explains 4 part

functional division of the LTE uplink processing application. Next it explains how 4 part

application is further divided into 14 functionally independent parts that can be processed

autonomously. In the last part, issues and avenues related to future scalability of this model

e.g. increasing the number of cores, limitations and bottle necks are discussed.

6.1 LTE Uplink Processing
For both uplink and downlink LTE uses OFDM as the radio technology. However to

compensate for high peak to average power ratio (PAPR) of OFDM, uplink uses a special pre-

coded version of it, called SC-FDMA. In order to understand LTE uplink processing first

hand knowledge of the uplink physical layer is required.

6.1.1 LTE Uplink resource grid

In the time domain, one uplink slot

is 0.5ms in length and contains 7

OFDM symbols (see Figure 11).

 In frequency domain, subcarrier

spacing is 15 kHz. 12 subcarriers

combine to make a resource block

(see Figure 11). Each resource

block has 84 resource elements.

One resource element may contain

different number of bits based on

the modulation scheme. For

example for 64QAM each resource

element will contain 6 bits.

Similarly for 16 QAM modulation

scheme one resource element will

contain 4 bits. Bit rate or bandwidth

for a certain user is directly

proportional to the modulation

scheme used for the resource

elements, the higher the modulation

scheme the more the bandwidth.

6.1.2 Data Flow

Figure 12 shows simplified block

diagram for LTE uplink processing

application. Every 70 microseconds

antennas generate data and a new symbol (1200 complex data) arrives. As described earlier, 7

consecutive symbols are grouped together to form one uplink slot. Data is processed one slot

at a time. Since new data is coming all the time therefore LTE application is required to

process an uplink slot before a new one has arrived or in other words, LTE application has to

finish processing(one uplink slot per user) within 0.5 milliseconds barrier (7 symbols × 70µs

≈ 0.5 ms).

Figure 12: LTE uplink physical resource grid

Out of seven symbols in a slot, fourth symbol is called the reference symbol. This symbol is

used to calculate channel estimates. Channel estimates are required to process the remaining

symbols (6) in the corresponding uplink time slot. This step is identified as “Antenna

Combine” and its output is user symbols which are used in next stage. Finally in the end,

based on the modulation scheme and constellations, values are normalized and demapped to

generate 8 bit soft values.

Figure 13: LTE uplink processing

6.2 LTE application - functional division for 4 core model
LTE uplink processing may be divided into 4 major stages (see Figure 13). Therefore based

on this functional division, the given LTE application software has four main parts namely

1. Antenna data Generation (stage 1)

2. Channel estimation (stage 2)

3. Antenna Combine (stage 3)

4. Scale and Demap (stage 4)

Please note these are not the standard names; they simply identify and give understanding of

each stage

6.2.1 Antenna Data Generation

In a real setup, this part will not be required since physical antennas will serve this purpose.

However as we are working in a simulated environment therefore we need a data source that

is generating antenna data all the time (see Figure 13).

It is assumed that there are two antenna data sources. This part of application basically

generates dummy antenna data and fills the data buffers allocated for incoming data symbols.

One OFDM symbol is generated in every iteration of this program. According to LTE

specifications, a physical antenna generates a new symbol every 70µseconds therefore in this

simulated setting, calibrations are done with the help of special loops such that a new symbol

is generated every 70 microseconds. Since each time slot consists of 7 symbols therefore the

buffer values are overwritten after every “0.5 milliseconds (70µs × 7 ≈ 0.5ms).

6.2.2 Channel Estimation

This part of the application waits for the reference symbol (4th) in every slot. Once the

reference symbol is available from both the antennas, it starts to calculate the channel

estimates.

When finished it writes the estimates in the shared memory and stops processing until

reference symbol for the next uplink slot is available. At the same time it triggers next part of

the application to go ahead, see

stage 2 in Figure 13

6.2.3 Antenna Combine

In this stage of uplink

processing data symbols are

available even when channel

estimation is being done but it

has to wait for the results from

2
nd

 stage in order to process

them. Once channel estimates

are available it processes the

symbols one by one and

generates user symbols which

are used in the next stage to get

soft values. When finished it

triggers the final stage.

6.2.4 Scale and Demap

This is the final stage in uplink processing. It waits for the user symbols from the “Antenna

Combine” stage and converts them to soft 8 bit values which are understandable by

computers.

6.3 LTE application – functional division for 14 Core model
The functional division of LTE application into 4 parts was pretty straight forward. Next step

was to further divide the application into parts that may be processed independently, so that

the processing power of the envisioned 16 core DSK6455 DSP, which eventually reduced to

14 cores (see Figure 15), is fully utilized.

6.3.1 Parallelization process

For the sake of parallelizing, I deliberated on last three stages of LTE uplink processing (since

first stage in this model is just meant for simulating antenna behavior).

Parallelism in “Channel Estimate” stage
This part of the application basically processes the 4

th
 symbol or the reference symbol (see

Figure 13) in the uplink slot. A good look at the code reveals that, at macro level, there are no

functionally independent sections. Mainly there are loop carried dependencies therefore to

extract functionally independent parts of this code sophisticated code optimization techniques

like loop unfolding [9], software pipelining [10], DO-ACROSS parallelism [11] and

Sensitivity analysis) [12] may be used.

Figure 14: LTE uplink processing, functional division

Parallelism in “Antenna
Combine” stage
Antenna combine stage processes the

remaining 6 symbols in the uplink

slot (excluding the reference

symbol). Each of these symbols is

processed independently of each

other, one by one. Since there is no

functional dependence among these

symbols therefore every symbol may

be processed independently of each

other. So instead of processing each symbol one by one, all of them may be processed in

parallel at once. This functional division can straight away reduce the processing time for this

part of the application by a factor of 6. That is exactly what I have done (see Figure 14).

Parallelism in “Scale and Demap” stage
This is the final part of the application and its functionality is pretty similar to the previous

“Antenna Combine” stage. It also processes 6 symbols in the corresponding uplink slot, one

by one, generating soft values for each of them. Since there are no dependencies among these

symbols therefore these symbols can be processed in parallel and latency for this stage can be

reduced 6 times as well (see Figure 14).

6.3.2 Putting it all together

After the functional division of last two stages of the LTE application into 6 parts each, now

we have identified 14 functionally independent parts of that application that may be processed

in parallel. So if we use the originally planned 16 core model of DSK6455 DSP, 2 cores of the

chip will be literally sitting idle doing nothing therefore a decision was made to use a 14 core

model instead of 16 cores.

6.3.3 Future Applicability of this method

The method used in dividing this application into 14 independent parts may be extended by

having detailed studies of the actual complete version of the LTE application and by looking

at LTE physical layer specifications in depth.

Using this 14 core application model, one straight forward enhancement could be to a 28 core

hardware model. By introducing a secondary antenna data source on chip, operating at

frequencies other than the previous sources to avoid interference, to feed the newly added 14

cores, if dynamic load sharing can be done, this form of parallelism can reduce hardware and

power costs.

Figure 15: LTE uplink slot

Figure 16: LTE uplink processing 14 core model

7 Experimental Results

The main aim of this thesis work is to study and comprehend the potential of Virtualized

System Development and to use Instructions Set Simulation for creating hardware that does

not exist and then test an application on it that is still evolving. Also LTE application used for

this thesis work does not represent the actual work load therefore it is meaningless to look for

numbers as they can not be compared with actual existing commercial DSPs in real working

environment. Also Instruction Set Simulators make use of certain tricks to simulate the actual

behavior of the physical target hardware therefore it can not be relied upon for precise

calculations.

However in this thesis work, two multi-core models are discussed, 4 cores and 14 cores. The

four core model was built to port all parts (4) of the LTE application on a single board to

make it a stand alone DSP solution. Therefore it is used as a reference point in relation to

further enhancement towards the 14 cores model.

 In the rest of this section I will briefly explain the experimental setup used for the

calculations and results related to different parts of the LTE application and over all

performance enhancements from 4 cores to 14 cores model.

7.1 Statistics for the LTE Application

7.1.1 Experimental Setup

CPU Frequency = 1000 MHz

For all the calculations, the codes are compiled in the “Code Composer Studio” at

optimization level zero (0) except “Antenna Generation” part where optimization level 2 is

used.

Antenna Data generation setup
Since we need to simulate antenna data to generate a symbol every 70µs therefore operating

at 1000 MHz, every 70000 intervals a new symbol is generated (Simics assumes a perfect

memory model and executes an instruction every new cycle therefore cycle rate =step rate

here).

7.1.2 Results

This part gives details about statistical numbers (number of cycles consumed) in a particular

section of code. Since 0.5millisecond is the time barrier to complete the uplink processing for

one time slot therefore I have chosen it as the reference point for all calculations. Firstly time

for every individual stage of application is calculated then a comparison is made, for complete

application time, between 4 and 14 cores to see if it meets the 0.5millisecond barrier.

Time is calculated in terms of number of cycles (as CPU frequency is 1000MHz therefore

1000 cycles equal one microsecond).

Individual stages
Table 2 summarizes the speedup for different stages in the application. Stages “Antenna

Combine” and “Scale and Demap” are divided into 6 parts each whereas “Channel Estimate”

stage remains unchanged.

Table 2: Speedup comparison between Parallel and Sequential execution

 Mode of execution

Application Stage

Sequential
(Single-core)

Parallel
(6 cores)

 Cycles

consumed

Time

consumed

(milliseconds)

Cycles

consumed

Time

Consumed

(milliseconds)

Channel Estimate

110227 0.110 n/a n/a

Antenna Combine

916135 0.916 152598 0.152

Scale and Demap

292781 0.292 49223 0.049

Figure 17: Antenna Combine, parallel vs. serial execution

Figure 18: Scale and Demap, parallel vs. serial execution

Complete application time
After antenna data is generated, Table 3 shows total time consumed to process one uplink slot

(time consumed by all 3 parts of the application, starting from Channel_Estimate through

Antenna_Combine till Scale_Demap).

Uplink processing for the very first time slot consumes 1.38 milliseconds, after that when data

is in pipeline, processing for one uplink slot, on the average, takes 0.902 milliseconds.

Table 3: Execution time for complete application, 4 vs. 14 cores

 Execution Time

Cycles

consumed

Time consumed

(milliseconds)

4 Cores

901970 0.902

14 Cores

410942 0.410

Figure 19: Complete application execution time, 4 vs. 14 cores

7.1.3 Discussion

From hypothetical point of view and for the sake of comparison, in case of 4 core model the

results reveal that if the data is processed in a sequential manner, this implementation of the

application processes one uplink slot in 0.902 milliseconds which breaks the 0.5 milliseconds

barrier. Parallelizing the second and third stage of the application straight away gives an

improvement by a factor of 6 in those stages however 14 cores model completes the

processing in 0.410 milliseconds which meets the time limit but does not reflect a linear

speed up in relation to the amount of hardware added (10 new cores) or the speed up in the 3
rd

and 4
th

 stage (under ideal conditions time consumed for all three stages should be around

0.311milliseconds).

This is because new data from antenna source (stage 1 is the bottleneck) is not available for

processing while the later stages (3 and 4) have finished their processing of previous uplink

slot. Actually antenna source is generating the data every 70 microseconds and measurements

reveal that “Antenna Combine” (3
rd

 stage) has to wait for the antenna data, on the average, for

33microseconds even when the channel estimates are available. This is almost one half of the

time to generate one uplink symbol. This time may be used to serve another antenna source.

8 Conclusion

Foremost conclusion of this thesis work is that “Virtualized System Development”,

employing “Instruction Set Simulation” technique, accelerates the application development

time because target hardware is available even before it physically exists. This allows the

software development team to begin process of experimentation and development right away

and an early start in development eventually exposes the design flaws in both hardware and

software much earlier in the development cycle of the actual physical product. One example is

how the architecture of LTE application influenced to reduce the originally planned 16 cores

model to 14 cores.

Also VSD enables the development team to focus on their actual goals i.e. a developer

consumes almost 60% of the time in debugging and finding errors in code and these matters

have been even complicated with the introduction of “hiesenbugs” in case of multi-cores.

Now because of deterministic reproducible execution and excellent debugging capabilities,

VSD can reduce this time many folds allowing the developer to spend more time on

development rather than debugging.

Simics as a simulation tool is pretty fast and accurate capable of scaling to hundreds of

multiprocessors and multi-cores (using technologies like JIT, page sharing and multi-

threading). With very good debugging and testing capabilities (deterministic execution, inject

faults seamlessly using scripts, reverse execution, ability to save system state and replay it)

which are critical for multi-core software development in the wake of heisenbugs.

The interaction with the LTE application reveals that there is lot of parallelism available in it

which is evident from the results obtained from the 14 core model. Over all system latency is

reduced almost three fold as compared to 4 core model. The same is true for all signal

processing applications. In essence, using virtualized system development, detailed studies of

the LTE application promises to reveal number of avenues leading to a rapid cost effective

multi-core solution that spans dozens of cores.

9 Future Work

The success of a “multi-core solution” lies in its ability to divide and do work in parallel. The

14 core model, created during this study, actually represents one way of dividing the uplink

processing into 14 parts. Therefore to further increase the throughput (number of users) one

way is to reduce the latency by further dividing the LTE uplink processing into independent

parts, let’s say 30, and subsequently develop a 30 cores model for it. This requires advanced

and in depth studies focusing on all layers (e.g. PHY, MAC, RLC etc) of the LTE protocol. In

this case, a reduction in latency would mean that more users can share, thus be

accommodated, in a given time slot (since every user needs to be scheduled only after every

0.5 milliseconds).

Figure 20: User shared uplink slot

Another important aspect is that in LTE a lot of intelligent decision making is delegated to the

base station. For example unlike HSPA, in LTE data rate of the terminal (user) is controlled

by NodeB (base station). Also LTE schedules the users based on channel conditions (shared

channel assignment and data rate). Therefore if two users are sharing a channel in time and

frequency domain, one with high data requirements (real time video content) and the other

one with minimal services (just updating it’s live status) then for optimal resource utilization

future base stations would require intelligent Linux® like operating systems, capable of

efficiently utilizing the available resources (using task sharing and load management) by

temporarily taking resources from one user and allocating them to the demanding one.

Now to explore all these possibilities, involving the software and hardware that does not exist,

virtualized software development (Instruction Set Simulation) seems to be the only solution.

10 References

[1] Young Kyun, Kim; Prasad, Ramjee (2006). 4G Roadmap and Emerging

Communication Technologies. Artech House 2006. pp. 12–13. ISBN 1-58053-

931-9

[2] LTE–an introduction,

www.ericsson.com/technology/whitepapers/lte_overview.pdf date visited 26
th

November 2009

[3] LTE (Long Term Evolution), first 4G wireless communication systems

[4] Faroughi, N. 2005. Profiling of parallel processing programs on shared memory

multiprocessors using Simics. SIGARCH Comput. Archit. News 33, 5 (Dec.

2005), 51-56

[5] www.ti.com, date visited 15
th

 March 2009

[6] http://www.virtutech.com, date visited 25
th

 March 2009

[7] http://en.wikipedia.org/wiki/3GPP_Long_Term_Evolution

[8] http://www.xsim.com/bib/index1.d/Index.html#Overview , date visited 20
th

October 2009

[9] S. Ha and H. Kim. Ku-loop scheme: An efficient loop unfolding scheme for

multithreaded computation. Journal of Information Science and Engineering,

14(1):223–236, 1998.

[10] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily

schedulable horizontal architecture for high performance scientific computing.

In MICRO 14: Proceedings of the 14th annual workshop on Microprogramming,

pages 183–198, Piscataway, NJ, USA, 1981. IEEE Press.

[11] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Int’l Conf.

Parallel Processing (ICPP), pages 836–845, 1986.

[12] Rus, S., Pennings, M., and Rauchwerger, L. 2007. Sensitivity analysis for

automatic parallelization on multi-cores. In Proceedings of the 21st Annual

international Conference on Supercomputing (Seattle, Washington, June 17 -

21, 2007).

[13] http://focus.ti.com/lit/an/sprab24/sprab24.pdf, Page 4, date visited 4
th

November 2009

[14] “Modeling your system in Simics” v.4

[15] http://www.mobileshop.com/blog/mobile-phone-news/he-shoots-he-scores-new-

software-to-revolutionise-football-coverage-on-mobile-phones/ , date visited 3
rd

November 2009

[16] http://focus.ti.com/lit/an/sprab24/sprab24.pdf, Page 4 , date visited 15
th

November 2009

http://en.wikipedia.org/wiki/Special:BookSources/1580539319
http://en.wikipedia.org/wiki/Special:BookSources/1580539319
http://www.ericsson.com/technology/whitepapers/lte_overview.pdf
http://www.ti.com/
http://en.wikipedia.org/wiki/3GPP_Long_Term_Evolution
http://www.xsim.com/bib/index1.d/Index.html#Overview
http://focus.ti.com/lit/an/sprab24/sprab24.pdf
http://www.mobileshop.com/blog/mobile-phone-news/he-shoots-he-scores-new-
http://www.mobileshop.com/blog/mobile-phone-news/he-shoots-he-scores-new-
http://focus.ti.com/lit/an/sprab24/sprab24.pdf

