

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, 2009

A remote controlled embedded system implemented
in FPGA

Master of Science Thesis in the Programme of Integrated Electronic System
Design

ZIYI JIN

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

 i

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party
to let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

A remote controlled embedded system implemented in FPGA

Z.JIN

© Z.JIN, 2009

Examiner: A.LINDE

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden 2009

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Acknowledgments

 I would like to thank my supervior Arne Linde, who gives me a lot of help
in the design work and many good advices in thesis writing. And my
classmates Zhou Xuan and Gao Xingyu, I appreciate their sharing of
information and experience when I met the problems. Further I would
like to thank my parents and Qian for their encouragment and support.

 ii

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Abstract

Since the Embedded system and SOC technology is increasingly
developing and widely applied in industry, the education in this field is
considered as an important part for the students in Electronic Engineering.
Therefore, a basic but complete embedded system for demonstration is
required to implement. In practice, the Altera DE2 board is adopted to
construct an embedded system which consists of CPU (soft core “Nios”),
ALU, memory chip and USB port. At the same time, a remote terminal in
PC is created to control the system depending on the USB channel
connecting two sides. In the project, the procedure for building a platform
based embedded system is presented as well as the USB application in
Windows environment.

 iii

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Abbreviations

 CPU — Central Process Unit

DDK —Driver Development Kit
DSP —Digital Signal Processor
FPGA —Field-Programmable Gate Array
GUI — Graphical User Interface
GUID —Globally Unique Identifier
HAL — Hardware Abstraction Layer
HDL — Hardware Description Language
HID — Human Interface Device
IP — Intellectual Property
ISR — Interrupt Service Routine
MFC — Microsoft Foundation Class Library
OS — Operation System
PLD —Programmable Logic Device
RF —Radio Frequency
RTOS —Real-Time Operating System
SDRAM —Synchronous Dynamic Random Access Memory
SIE —Serial Interface Engine
SOC — System On Chip
SRAM —Static Random Access Memory
USART —Universal Asynchronous Receiver/Transmitter
USB — Universal l Serial Bus

 iv

CONTENTS

1. Introduction.. 1
1.1 Background.. 1
1.2 Purpose .. 1
1.3 System overview... 2
1.4 Limitation and delimitation... 2

2. Theory.. 3
2.1 Embedded system design ... 3

2.1.1 Specification and Modeling.. 3
2.1.2 Hardware/Software codesign .. 4
2.1.3 Validation .. 6

2.2 SOC design ... 8
2.3 USB... 9

2.3.1 Introduction... 9
2.3.2 USB communication protocol .. 10
2.3.3 Enumeration and USB driver... 13

2.4 Embedded system implementation platform .. 15
2.4.1 Hardware platform... 15
2.4.2 Software environment... 16

3. Method ... 17
4. Design and Implementation ... 18

4.1 System description ... 18
4.2 Embedded system.. 20

4.2.1 ALU.. 20
4.2.2 Memory and“Nios” CPU ... 21

4.3 Remote terminal.. 23
4.3.1 MFC ... 23
4.3.2 GUI .. 23

4.4 USB transmission ... 25
4.4.1 USB socket in remote terminal.. 25
4.4.2 USB firmware in embedded system ... 27

5. Discussion.. 30
5.1 Conclusion ... 30
5.2 Future work.. 31

6. References.. 32

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

1. Introduction
This chapter is to give a brief introduction for the motivation of the
project and how it goes on.

1.1 Background

Embedded system is a compute system designing for a specific
application. Both the hardware and software should be adjustable to
insure the functionality, reliability, cost, volume and power dissipation
could meet the requirements when serving in different field. The
hardware mainly includes embedded CPU, memory chip, peripheral
equipments etc. And software covers embedded operation system,
developing/debugging environment and application software.

When the semiconductor process technology is developing into deep
submicron range, the designers of embedded system have realized
that it is possible to integrate the whole system or some key
components together into a single chip. Therefore, System-On-Chip is
coming forth as an essential technique to bring the embedded system
design in an entire new scope and also a crucial application. It has
many advantages due to its high integration: lower power dissipation
for a single chip system; less pins and interface for peripherals which
speed up the signal transmission and response time; less crosstalk by
reducing wires and disjunct components. Accordingly the large scale
integration also causes the high complexity in design, test and
simulation. Besides, multi-core design is coming out as a new
research hotspot with aim to explore the potential for parallel
computation. A new program, named flexsoc, is launched which is
focused on developing a new architecture for processor of embedded
system.

1.2 Purpose

In under graduation education, the exiting embedded system
developing board is too complicated for testing and demonstration.
For the students to obtain an easy start of embedded system
developing a new assemble evaluation system including the data
input/output, basic computation and storage is required.

 1

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

1.3 System overview

The whole system should be communicative with exterior and efficient
to handle the input/output data. It consists of

● Input / Output terminal
● Communication channel
● Data process device

The Input/Output terminal has a user-friendly interface where the input
8-bit operands could be easily typed in as well as the required
algorithm can be selected. After confirming the instruction, the result
could be obtained and displayed immediately. Communication
channel is responsible to transmit the data from Input/Output terminal
to Data process device and vice versa. When the input data is arrived,
Data process device will motivate the corresponding function to
compute and the result is stored on chip or sent out when available.

1.4 Limitation and delimitation

The research will concentrate on wire communication that USB
technique is applied. The wireless solution could be a further study
case but out of scope in this project. Moreover, the data width is
defined as 8 bits as a proper length for the beginning research work.
At the same time, the implementation tool in practice is the Altera DE2
Development and Evaluation board.

For the operation system in PC terminal, the GUI is based on
Microsoft XP, which has a good support for USB protocol and the
programming tool: Visual C++. Some necessary functions and library
files are directly used in project by installing third-party software:
Windows DDK while the task for creating them is not the focus at the
present period.

 2

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

2. Theory

In this chapter, the relevant theory in embedded system and SOC
design, USB protocols are described as well as the introduction on
implementation environment.

2.1 Embedded system design

Embedded system has its own characteristics when comparing with
other compute device [1]
1. With some high requirements in safety or to do some specific task,
embedded systems are designed to meet the real-time performance
constraints.
2. Embedded systems usually consist of small, computerized parts
within a larger device that serves a more general purpose.
3. Embedded systems store the program instructions known as
"firmware" in read-only memory or Flash memory chips.
Therefore in the design of embedded system there are several
important steps should be emphasized and developed in new
methodology.

2.1.1 Specification and Modeling

From the figure below we can observe that a design work is always
launched by requirement of a practical application. But a common
description for an application is vague and general, hence a
specification for an engineering mission in embedded system should
be abstracted which contains the following key points [2]:
● Hierarchy: Behavioral hierarchies to describe the system

behavior while Structural hierarchies to present the physical
components.

● Timing-behavior: timing requirements should be strictly
followed for a real-time system.

● State-oriented/Exception-oriented behavior: The mechanism
for state-machine portraying the system’s whole working process.

● Environment supporting: Hardware platform which confines
the design layout/ Software source such as IP cores, if applied,
could save much time and guarantee the quality.

 3

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Figure 2.1 Simplified design flow

Obviously, all facts above have great impact that the designers should
take into account and also some other limitations we can not ignore,
for instance, the requirements on portability and flexibility, the
synchronization and communication issues, etc.

After clarifying all specification of the design, it is the time to draw the
outline of the system in a scientific method—modeling. On the top
level, models of computation can help to define:
● Components, including procedures, processes, functions, finite
state machine
● Communication protocols which delimit the interactions between
different components
Then varies practical means are applied to refine the modeling which
are the necessary for complicated and large system. In our case, as a
simple system in a matured developing environment, modeling is
combined with hardware design to commence.

2.1.2 Hardware/Software codesign

One significant characteristic of embedded system is that both
software and hardware design should be carried out in parallel, which
is called hardware/software codesign as well. The aim is to decrease
the conflict between hardware and software design while by the
combination constructing, codesign would help pre-plan to fit into
consequent implementation step, which can save the time for

 4

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

unnecessary modification or redesign. Meanwhile, to meet the
stringent time-to-market requirements and reduce the complexity of
large scale system design, the design reusing has led to platform-
based design. The term we can understand as Sangiovanni-Vincntelli
[3] said:
“A platform is a family of architectures satisfying a set of constraints
imposed to allow the reuse of hardware and software components. A
quick, reliable, derivative design requires using a platform application
programming interface (API) to extend the platform toward application
software. In general, a platform is an abstraction layer that covers
many possible refinements to a lower level. ”

Figure 2.2 Platform-based design

With illustration in Figure 2.2, mapping is the iterative process which
embodies the high-level abstraction in platform with help of evaluation
tools. Then the result of performance simulation will direct the further
modification until final implementation.

For platform-based embedded system design, several important steps
are listed and explicated as well:
1. Task level concurrency management: Specification of design

should be reviewed according to platform’s features, so merging or
splitting tasks are needed.

2. High-level optimizations: The methods to explore the maximum
potential of software work includes: data conversion, loop
transformation, array folding, etc.

 5

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

3. Hardware/Software partitioning: As shown in Figure 2.3,

hardware/software partitioning roots in system behavior and also
takes the platform into account. Being an iterative approach, the
feedback from the simulation for software compilation and
hardware synthesis would effect on partitioning again until satisfied
result is gained.

4. Compilation: The characters of embedded system demand the
compiler to pay more attention on timing constraints, energy
consumption or even thread distribution in multi-core system.

5. Scheduling: An approximate scheduling is arranged in hardware
and software partitioning while after final coding precise
scheduling could serialize executions.

Figure 2.3 Overview of hardware/software partitioning

2.1.3 Validation

Finished design is far away from finished product because there is
one step we can not ignore: Validation. Although difference simulation
tools are applied in design, the final work could still be brittle because
of the distance between reality environment and theoretical modeling.
In validation there are several measures to remedy deviations.

 6

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Simulations in non-functional behaviors mimic practical condition,
including the electro-magnetic compatibility and thermal behavior.
Test on design which is a group of actives: Test pattern generation;
Test pattern application; Response observation and result comparison.
Fault injection and simulation that are utilized to know how system
behaviors when fault occurs. Risk and dependability analysis assist
design avoid of damage from hazards. Only qualified design could
pass all measurements and then delivered to manufacture.

 7

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

2.2 SOC design

System On Chip is requiring a whole system or most core
components could be realized in a chip. It usually comprises [4]:
● One or more microcontroller, processor or DSP core(s)
● Timing generator as oscillator or phase-locked loops
● Memory blocks including ROM, RAM, EEPROM and Flash
● Peripherals including counter-timers, real-time timers and

power-on reset generators.
● External interfaces including industry standards such as USB,

FireWire, Ethernet, USART, and SPI.
● Analog interfaces including ADCs and DACs.

Comparing with common embedded system design, SOC has its own
features:
1. High complexity and integrality. It is easy to understand that

enormous transistors assembled in such a limited chip. Hence
components in reusing and platform-based design are a natural
solution to meet this challenge.

2. Low power consumption. SOC is widely adopted in portable
devices for its small size while high speed running in a carried
battery deserves low power consumption.

3. Mixed analog /RF signal design. Usually as a separate part in
embedded system, analog/RF signal component could bring many
new matters which designer have to handle with.

4. Testing in embedded IP. By applying the third-party IP, the
difficulty of design could be less. But for testing, new methods
should be implemented for others’ creature.

5. Low power RTOS, chip package and process technology. All the
issues are unnegligible that designers should take care of.

Moreover, the highlights in design are including:
1. System level hardware description language also object-oriented, is
an ideal choice to get high efficiency in coding and good for software
design as well. But it is still in development because not all hardware
components can be well depicted at the moment.
2. Based on system task graph, task scheduling and resource
allocation is the best way of SOC architecture design, effectively
resolving the long-term problems like hardware/software partitioning
[5].
3. Multi-voltage design and energy-aware multi-processor design are
the most popular strategy to realize low power consumption.

 8

http://www.answers.com/topic/timer
http://www.answers.com/topic/power-on-reset

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

2.3 USB

2.3.1 Introduction

Traditional devices for contacting peripheral equipment and computer
are the Parallel port and Serial port. The serial communication
protocol is RS-232, which is suitable for distance within 15 m and
transmission speed as high as 20KB/S. For Parallel port, high speed
is on the cost of even shorter distance and high complexity in
developing. Besides ， loose limitation on protocols and various
standards make the designers and manufacturers difficult in
production. All these obstacles force the manufacturer to introduce a
new communication protocol—Universal Serial Bus (USB). Soon,
USB has become a first choice in the application for low/medium
speed transmission between computer and periphery devices. Its
main advantages lie in [6]:
● High speed: In USB 2.0 standard, the high data transfer rate is

25Mbps-400Mbps
● Bus topology: The architecture consists of Host, Hub and Node.

Hub behaves as key role in architecture: It could not only connect
the Host and the Node but also support low-level hub. In one USB
topology network, it can be as most as 4 level hub and 127
periphery devices.

● Plug and Play: It basically appears as two traits: hot swapping
and auto-configuration. Depending on the improvement in physical
design, hot swapping becomes an easy conduct. And auto-
configuration is more relying on the support of software drivers.

● Low power consumption: Especially for bus-powered device, the
maximum current is limited below 500mA. And two working status:
Normal and Suspend insure the device working properly.

All USB periphery devices are distinctly defined from the bottom
physical and electronic characteristics to upper software protocols and
data communication. The host and node are treated as differ objects
which are formed with various modules and levels. Demonstrated in
figure 2.4, the black arrowhead means the actual communications
flow and gray arrowhead means the logical communications flow.
Besides, devices are divided into three levels: USB bus interface layer,
USB device layer and Function layer although in practice there is not
any clear interface among them.

 9

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

However, when moving to Host, both the operation system (like
Window or Linux) and difference application functions make the
circumstance change. The three levels of USB Host Controller, USB
System Software (SW) and Client SW independently exist and work.
The interfaces between them are also well defined and strict in
modification. The benefit is so visible that the standard device or host
could make USB design compatible for all manufacturers. Moreover,
the designer could more concentrate on partial work

Figure 2.4 Object modules of USB

2.3.2 USB communication protocol

For the beginning, two essential concepts should be introduced:
● Endpoint: Each USB device is considered as a set of points

while Host could only communicate with each device through
diverse endpoints. And each endpoint is a data buffer with fixed
size which is configured in manufacture. Its important features
includes: transmission mode, bandwidth, mark number, the

 10

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

maximum capacity for one packet, etc. All endpoints are activated
only after configuration. Endpoint 0 is customarily used to initialize
the parameters while endpoint 1, 2 is applied in data transfer
between Host and devices.

● Pipe: A pipe is a logical concept to describe the connection
between a data buffer in Host application software and an
endpoint in periphery device.

The periphery device is configuring the endpoint 0 to crate the pipe.
On the other hand, the information of the periphery device, including:
device type, power management, configuration, endpoint description,
is obtained from the pipe. Therefore, once a device is connected to
USB and powered, the endpoint 0 is accessible and the
corresponding pipe is paved. Consequentially the device is identified
by Host and the data transfer starts.

 Figure 2.5 USB data flow

 11

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

In Figure 2.5 above it has demonstrated the data flow in USB
transmission. In logical sense, the data transfer is carried out in pipe
which is under the supervision of the USB drives. In practical, the
device driver is sending out the Input/Output Request Packet (IRP)
from USB Drive Interface. When the request is received, USB drive in
Host would interpret the I/O Request Packet into USB transfers
through Host Controller Driver Interface (HCD). Then USB system
software would exchange the d data with high-level Client software
with sharing buffers. Inversely, the USB transfers is decomposed as
Transaction and sent out as Packet from Host to device.

In addition, the concept Frame is introduced in the figure. It is a unit of
1 ms for all activities in Bus transfer. In respect that the project does
not refer to the research on Packet level, the relevant information will
not be presented here as well as the Serial Interface Engine (SIE)
which is in charge of realization of physical protocols. When comes to
the transfer between two USB SIE, there are four kinds of transfer
modes in USB standard to meet the requirement in different
applications:

Control
Transfer

Usually used in configuration, setup or
status, the last two are in USB own format.
Maximum capacity for each packet is either
of 8, 16, 32 64 bytes. Retransmission is
available in case of failure.

Isochronous
Transfer

A periodic and continuous transmission in
real-time required task. On direction for
each endpoint and capacity for packet can
be as high as 1032 bytes. Maintain a fixed
data rate and have a certain error tolerance.

Interrupt
Transfer

Non periodic and occasional transmission
for small amount data from devices to host.
No USB specific format for data and
retransmission available if necessary.

Bulk
Transfer

To transfer large amount of data while time
is not critical. One direction for each
endpoint and retransmission is available to
promise the quality and veracity.

Table 2.1 Four modes in USB transfer

By observing their distinctness, it is naturally to find that: Isochronous
Transfer is best for real-time video or audio application and Bulk
Transfer is suitable for Printer or Scanner servers. But the Control

 12

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Transfer and Interrupt Transfer are fundamental mode and the project
for the thesis also relies on.

2.3.3 Enumeration and USB driver

Enumeration is a term to describe the process that how the Host
recognize a USB device. Therefore, a good understanding of
enumeration is the first step to develop a USB application. The whole
process can be briefly presented as follows:

Hub is the component in Host to detect whether there is a connection
or not, and it has an Interrupt flow to report the Host. When the
operation system is activated or periodic scanning, the Host would
enquiry its Hub what kinds of device is/are connected. Once a new
device is detected, Host sends a series requests to Hub for building a
pipe between Host and device where Enumeration begins. It consists
of several actions: allocate an address for new device; read the
descriptor from it (descriptor is a set of message containing useful
information of device and Host also depends on it to identify different
devices); allocate and load the corresponding driver and configure the
device by the receiving data. As far as the configuration is done, the
device has been successfully recognized and waiting for coming
employ.

Software in Windows runs in either two modes: user or kernel.
Application is booted in user level while USB drivers should run in
kernel mode in which drives is authorized to permit or deny an
application to access a device [7]. When applications visit client
derives, the Windows API function play as a bridge and Win32 system
is the manager of communication process.

In Windows Drive Model (WDM), as a layered architecture, it can be
sorted into two classes for a USB device: Bus drive and function drive.
The former is supplied by operation system which lies beneath
function drive. It is working with hardware to implement the
complicated down-level communication. To a function drive, it is
usually built by designers, on the top of bus drive. Hence the main
task is not relating any hardware but responsible to send IRP, which
requests a single input or output action. A concrete explanation is
show as Figure 2.6.

 13

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Figure 2.6 A layered driver model for USB under Windows OS

 14

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

2.4 Embedded system implementation platform

2.4.1 Hardware platform

To fulfill the demands for design, the Altera DE2 Development and
Education board is selected and the actual picture is presented here:

 Figure 2.7 A planform of Altera DE2 board [8]

The figure 2.7 above which is labeled elaborately is the instrument
where the embedded system would be constructed. Among all
components indicated，only the ones relating to the project would be
depicted here:

● Altera Cyclone® II 2C35 FPGA device. It contains a number of
33 216 Logic Elements, 483.840 RAM bits and 475 user I/O pins.
The most important feature is that a customized softcore “Nios” is
supported within the FPGA. There are three types of CPU:
“Economic”, “Standard” and “Fast”, which acquire different portion of
hardware resources and behaves in different performance that are
chosen according to demands.
● Memory chips: SRAM organized as 256K X 16 bits; SDRAM
organized as 1M X 16 bits X 4 banks and Flash as 4 M byte NAND
flash memory.

 15

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

● Periphery interfaces chips: 10/100 Ethernet controller; USB
Host/Slave controller and serial ports.

2.4.2 Software environment

Quartus II is the integrated developing tool for PLD design by Altera,
which supports several types of design inputs like schematic or HDL.
With the embedded synthesizer and simulator, all work flow from
design composing to hardware configuration could be realized.

However to build a system there are more tools should be applied in
design. SOPC Build, a sub developing environment in Quartus,
assists the designers to fast and easily construct a system level
project [9]. SOPC Builder allows the user choose standard
components as CPU, memory interface and other user-defined
periphery components to form the system. And SOPC Builder would
help to connect all components together by modeling all separate
modules and creating bus logic for connecting.

When referring to manipulating the softcore—Nios II processor, the
Nios II Integrated Development Environment (IDE) is introduced [10].It
is a GUI software developing programme where all software execution
including editing, building and debugging for control CPU operation is
accomplished.

 16

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

3. Method

To achieve a success when a new project is launched, an overall plan
is plot. Especially in engineering field, a project as in this thesis work
is closely attached with hands-on practice which requires a good
partition of the time in theory preparation and implementation in
device. As a result, the developing process can be broke down as
following steps:

1. Planning
2. Theory preparation
3. System development
4. Validation

The steps although is ranked as a sequence, iterative work is often
exited as well.

The first phrase of the planning, the motivation for the project is the
guide for the plan to revise the timing, resources and other
requirements. What sort of theory should be aware? What kind of
reference should be prepared? What is the topology for system
modeling? All the relating issues are taken into account though far
from concrete.

For theory preparation, attempt to find the materials which would be
most similar to the project is important. Therefore the reference for
embedded system design, USB protocols and Visual C application are
in the scope. Certainly to pursuit a whole coverage of these subjects
is impossible. But obtain primary instructions and a notice in relevant
chapters is a good start.

In system development, the bottom-up thinking is to construct the
whole system by “connecting” the each component which is devised
to realize some functions. It is called Block Base Design as well.
However among the detail work for each component, the theory study
and design execution is always in accompany.

The final phrase, validation, is the stage to test the function behavior
for the system and discuss whether the final target is satisfied or how
much progress is made.

 17

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

4. Design and Implementation

In this chapter, the specific work for the system would be presented
while whole system is decomposed into three blocks from their
diverse function. The implementation environment both the hardware
and software would be introduced as well as the relating information.
Then the key steps of the design are demonstrated which are
combined with some testing functions. In short, a technical view for
the system is offered.

4.1 System description

Figure 4.1 System overview

From the demonstration as Figure 5.1, we can have a general picture
of the system. In practice there is a suit of Altera DE2 Development
and Education Board which is the target for the implementation of
embedded system. Its main task is responsible for data process and
storage. While for remote terminal, a PC with Windows Operation
System is prepared to build a control panel. Certainly a
communication channel is necessary to connect two parts.

In Embedded system part, the Altera DE2 platform is capable to
support a well-developed soft core Nios which could behavior as a

 18

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

CPU in the system. And the data process could be achieved by ALU
in the FPGA as well. Moreover, the SRAM is added as the memory for
the data read and write. By considering the complexity and reality of
the design work, USB is a most proper measure among several
communication devices which the platform supports.

Naturally in Remote terminal, the application programme should
contact well with embedded system by USB channel. Also the
required function of the terminal include that in Input/Output GUI, 8-bit
operands are typed in as well as the required algorithm can be
selected. After confirming the instruction, the result could be obtained
and displayed immediately. Besides, the read and write on data saved
in embedded system are available. The Microsoft Visual developing
tool is adopted to construct the terminal due to its good support for
GUI programming and API functions which shield the low-level design
for USB protocols.

 19

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

4.2 Embedded system

4.2.1 ALU

The ALU is always a kernel component in CPU which carries out the
basic arithmetic computation. Here the ALU would be built as a
separate part from the CPU and its functions are defined as: Adder,
Logic Calculation and Shift. From the Figure 4.2 below, a classical
design would bring an intuitionistic image.

 Figure 4.2 Function blocks of ALU

For the input signals, there are two operands: A and B, and one
operator: Op. All the signals are delivered from CPU and the
result ”OUT” would be sent back when available. In execution step,
there are three function blocks in charge of the responding
computation. The adder performances four sorts of calculations:
signed add, unsigned add, signed subtract, unsigned subtract which
are determined by two mux. In logic calculation, AND, OR, NOR and
XOR are implemented while in Shift block, we have signed left shift,
unsigned left shift and signed right shift.

To test the ALU, the design is moving to ModelSim where a test
bench is constructed. For each arithmetic 20 groups of test vectors

 20

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

are applied to insure the correctness. After that, the ALU is saved as
one project in Library for the further using in embedded system.

4.2.2 Memory and“Nios” CPU

 For the memory to read/write the data, the DE2 board has provided
three chips to select:

● 512-Kbyte SRAM
● 8-Mbyte SDRAM
● 4-Mbyte Flash memory

In practice SRAM is chose which is organized as 256K X 16bits. The
function “IORD” and “IOWR” are the tools applied by CPU to access
the memory that thanks to the Hardware Abstraction Layer (HAL)
system library [9]. HAL create a simple device driver interface for
communication with the underlying hardware, so the visiting for a
memory becomes much easier that IORD and IOWR would execute
the instructions to the target address. The later as the important
parameters in the function are appointed in the SOPC Builder this will
be discussed in following paragraph.

In the project to involve the CPU and memory as an integrated system,
the SOPC Builder is started. The chief steps for setup the system with
Nios soft core are performed:
1. Create a new project in Quartus and configure well based on the

target board.
2. Assign the pins according the peripheral equipments (the USB

controller and SRAM) used in system in form of Tcl Script File.
3. Activate SOPC builder and configure again.
4. Add the Nios soft core to the project where the standard one is

adopted and configure it as default parameters.
5. Add other necessary components for the system: SRAM, Parallel

I/O and ISP1362, the USB controller which manufactured by
Philips. Configure them as well.

6. Generate the system.

When the system is successfully created, it means that the hardware
frame is ready and the rest task is to start IDE tool for software
debugging. However, by evaluating the complexity of the system,
especially in USB communication, too much low-level protocols and

 21

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

physical designs would cause a great deal of barrier. To conquer this
challenge, a relevant demonstration project is referenced. The
demonstration project is an onboard counter that the accumulation
signal is transmitted by USB device port which has the similar
hardware architecture. Therefore some modification on original project
is carried out. To add the interfaces with the ALU block and memory,
more I/O modules are created and mounted on the Avalon bus [10]. In
the figure 4.3 there is the list of all components including the Parallel
I/Os: pioA, pioB, pioOP; pioOUT and memory bus: sdram_0.
Moreover, the base address is initialized as well which is the
destination register for the corresponding functions.

 Figure 4.3 New added components in SOPC Builder

Then the SOPC Builder will generate the system according to the
design requirement.

 22

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

4.3 Remote terminal

Remote terminal is planting on the personal computer which is the
interface between the user and the embedded system. From the
terminal, user can send out the information by typing the key board or
clicking on mouse which requires a user-friendly GUI. On the other
hand, the terminal should work well in Windows environment and
convenient in communication with USB port. The Micro Visual C++ is
a reasonable tool to undertake the task.

4.3.1 MFC

MFC, Microsoft Foundation Class Library, is an important tool for
designers to setup an application frame in Windows where the
Windows Application Program Interface (API) is capsulated [11]. The
later involves a great deal of functions that simply the communication
between application software and Windows. Therefore some crucial
MFC applied in project are displayed here:
● CWnd: Window, the parent class for most visible components,

include: CFrameWnd (frame window); CToolBar (Tool bar);
CDialog (Dialog), CButton (Button), etc.

● CFile: contains functions: Open, Read, Write file which are applied
for the data transmit when a hardware device is simulated as a
specific file in software.

4.3.2 GUI

The architecture of GUI is showed as Figure 4.4 that obviously the
GUI is divided into three blocks which are representing different
functions.

The left part is the module to setup the connection between the
Remote terminal and the DE2 board. When the board is on power and
connected to the computer, the driver would recognize device. Then
by clicking the Connect button, the Remote terminal would scan all
USB devices and point to the DE2 board. Afterwards, a report sent by
firmware in DE2 would be received and the content is displayed in
Text window which containing the configuration information for USB
controller from the embedded system.

 23

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

Figure 4.4 Topology of GUI for remote terminal

The middle part is in charge of arithmetic and logical computation.
The input value is typed in Window A and B. Required Algorithms are
selected in OP selection bar. Then the result is obtained and showed
in the following Text window.

The right part is the place to access on-board memory. The assigned
addresses are listed. When required address is chose in Address
selection bar, the content in this cell would be presented after clicking
Read button. Similar for write in memory, by choosing the required
address and typing the corresponding data, the click on Write button
would conduct this command.

 24

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

4.4 USB transmission

Since the USB is adopted to carry out the transmission between the
remote terminal and the embedded system, the task for developing
the USB mechanism is becoming the substantial part in project.
Based on the fundamental theory, a USB application usually consists
of three portions: firmware in USB device; driver program and
application program in USB host.

In this case, the configuration of firmware is a part of work in Nios
programming while the application program in USB host is the primary
mission for the application setup in Visual C++ environment. Due to
the demonstration application utilized, the exited driver software is still
in role. Consequently the following content is about the USB
programming in remote terminal and embedded system.

4.4.1 USB socket in remote terminal

The application program in remote terminal is constructed under the
Visual C++ environment. Since the GUI is the interface for user to
manipulate the embedded system, the USB socket is the down-level
component to transfer the message from human’s instructions to
characters in USB standard and vice versa.

Before to explore the procedure in detail, there is one concept should
be mentioned here—Human Interface Device (HID). HID classes is
one of the first API functions supporting by Windows for the
communication with HID. There are three DLL files containing the
necessary API functions: hid.dll; setupapi.dll and kernel 32.dll.
However, the prerequisite to use them is that Device Development Kit
(DDK) should be installed at first [12]. DDK is a suit of developing
tools for Windows device driver while the detail information can be
acquired in Microsoft website.

Moreover, to identify a HID, every device would be titled in a specific
symbol that is Globally Unique Identifier (GUID). By pointed to a
certain GUID, the corresponding HID is assigned. The data structure
for the attributes of HID supplies information such as: Vendor ID
(Identifier of the manufacturer); Product ID (Identifier of the product);
Version Number, etc [6].

 25

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

By catching the desired GUID, a piece of buffer is assigned for the
pointer to store the relating information for HID. Then the handle
representing the device is brought and configured as a file. Afterwards
the actions of reading or writing on file take the equal result on the
target USB device until the file is closed by corresponding motion. A
simplified diagram is to present the all procedure as Figure 4.5.

Figure 4.5 Design flow of the USB application

 26

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

4.2 USB firmware in embedded system

The firmware is the configuration defined by both the manufacturer
and the users to control the USB device port that the structure is
clearly interpreted in Figure 4.7. The firmware is a typically interrupt-
driven model that Interrupt Service Routine (ISR) hierarchizes all
interruptions according to their priority and triggers corresponding
operations. In the project, the flag of status in control IN or OUT would
evoke ISR to carry out the right subroutine when the data transfer has
happened.

The middle level, HAL4D13.C is a set of command defined by
firmware to encapsulate all the functions to access the device—
ISP1362 [13].

On top level, HAL4SYS.C has defined the I/O access of the device;
Chap9.C is the standard file to address USB device requests within
USB Specification Rev.2.0; D13bus.C is in charge for handle the
specific vendor requests. Mainloop.C needs to check all event flags
and hand it to the right subroutine to process [14]. Like in this project,
the receiving data would induce the mainloop program passing to ALU
block for further processing.

Figure 4.6 Software scheme of the firmware in USB controller

Before probing into the mechanism of ISR’s function in firmware, two
basic definitions is quoted here: An IN data transfer means the

 27

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

transfer from the USB controller chip to external USB host, which is
the personal computer here while an OUT data transfer means the
transfer from the USB host to USB device controller chip(ref.
datasheet for USB_ISP1362).

The evoking of ISR initiates with the read from the interrupt registers
in USB device controller which are ranked according to their priorities.
The first interrupt information is the Bus Reset signal as the device
reset configuration while the second one is the Suspend status signal
to confirm the working request on present device. Then the device
should tell the main function whether the request is the IN data
transfer or OUT data transfer. For the Control IN handler the function
would clear the interrupt bit and judge whether the buffer is empty. If
not, the status is keeping in Writing until the last packet arrived. And if
the last packet is not the over flag, the buffer would record with
remaining data size for the next term transfer. On the other hand for
the Control OUT handler, the function would clear the interrupt bit first
and judge whether the buffer is full. Then if the receiving data is the
setup packets, the setup program would take over the information
otherwise the status is in Reading on the buffer. To achieve the data
transfer between the USB device and the Nios processor, the
Endpoint 01 and Endpoint 02 is activated. The interruptions described
above have constituted the whole ISR and the flowchart as Figure 4.7
would display a more intuitional impression.

 28

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

 Figure 4.7 Work flow of ISR

 29

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

5. Discussion
5.1 Conclusion
The motivation to commence this project is originating from the
education demands that a straight and explicit embedded system
model would be easy to fascinate the eyes of new students in
Electrical Engineering. To build up a user-friendly interface for control
and demonstration, a remote terminal is required in personal
computer while the embedded system is implemented on Altera DE2
board. The initiate task for embedded system is to realize an
elementary data process and storage which requests a CPU for
schedule, an ALU for computation and a memory to save data.
However, how to connect the embedded system and the computer is
a choice-test that there are three candidates: RS232, Ethernet and
USB. After carefully comparing the pros and cons of three methods,
USB is finally selected as the communication channel to take.

The fist barrier in design is how to integrate all components in DE2
board although as a separate part, design and test are not tough task.
Especially for the soft core “Nios”, it behaviors as the CPU so that all
other components should be well joined. Fortunately a demonstration
program is exited which try to utilize the USB function. So adding the
own design work on old program is a proper solution in order to insure
the system’s validity and reduce the work in hardware mapping.
However the cost is that too much unnecessary design is brought.

By the USB becoming the solution as the communication channel, a
considerable part of work has been invested on exploring the USB
protocols and its applications. The developing tool in personal
computer is Visual C++ which is easy to access and huge resources
can be found on net. Therefore the application program is
accomplished which has referred some coherent design. However the
testing for the data transmission is not ideal as imaging. The data
from Remote computer down to embedded system on board is normal
while in opposite way the computer can not receive anything. After
several serious reviews of the design on both sides of USB port, the
most puzzling obstacle is in the driver which is supplied with the
demonstration program. In spite of unfinished dual-transmission,
certain progress has been made in the application for USB
communication.

 30

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

5.2 Future work

To achieve the initial design, which relies on USB channel for
communication, a full and intensive research on USB protocol is
needed. In particular a proper driver program is the foundation to build
the upper application.

Moreover, Ethernet is also a widely used solution for remote control
system. Transplant the project to a Ethernet application environment
would be meaningful as well.

On the other hand, to mimic the real status of the CPU operation,
more devices can be added. The ALU could take more functions and
even one more CPU can be utilized to form a dual-core system.

 31

A remote controlled embedded system implemented in FPGA 2009-11-20
Chalmers University of Technology

6. References
[1] Michael Barr. “Embedded Systems Glossary”, Netrino Technical
Library.
URL:http://www.netrino.com/Embedded-Systems/Glossary

[2] Marwedel,P. Embedded system design, 2005

[3] Sangiovanni-Vincntelli,A The context for platform-based design,
IEEE Design & Test of Computers, page 120.2002

 [4] System-on-chip, Product Technologies, STMicroelectronics
 URL: http://www.st.com/stonline/products/technologies/soc/soc.htm

 [5] Shao, JW. Key technologies of system on chip design, Science in

China Series F: Information Sciences, 2008

 [6] Universal Serial Bus Specification 2.0
 URL: http://www.usb.org

 [7] Axelson,J. USB Complete, Third Edition, 2005

 [8] Altera DE2, FPGA product, Terasic Technologies

URL:http://www.terasic.com.cn/cgibin/page/archive.pl?Language=Chin
a&CategoryNo=40&No=31

 [9] Introduction to the Quartus II Software, Altera, 2009

 [10] Nios II Software Developer’s Handbook, Altera, 2005

 [11] Chivers, I. Essential Visual C++ 6.0 fast: an introduction to

Windows programming using the Microsoft Foundation, 2000

 [12] About Developer Tools, Windows Hardware Developer Central,

Microsoft
 URL:http://www.microsoft.com/whdc/devtools/WDK/default.mspx

 [13] Philips, USB_ISP1362 Datasheet, 2004

 [14] Kunzang.D, USB Embedded Programming Guide, 2002

 32

