
Software Product Line Engineering Maturity Model
for Small and Medium Sized Organisations

Master of Science Thesis in the Programme Software Engineering and
Technology

SIIM SAARLO

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, June, 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the nonexclusive right to publish the Work electronically and in a noncommercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Software Product Line Engineering Maturity Model for Small and Medium Sized
Organisations.

S.Saarlo

© S.Saarlo, June, 2009.

Examiner: T.Gorschek

Department of Computer Science and Engineering
Chalmers University of Technology
SE412 96 Göteborg
Sweden
Telephone + 46 (0)31772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June, 2009

Abstract

This work is an attempt to create a software product line engineering matu-
rity model (SPLEMM) suitable for small and medium sized enterprises (SME).
Existing frameworks were analyzed, restructured, reduced and populated with
examples from available case studies. Theory based model was validated and
expanded with findings from empirical study.

Result of the work is the maturity model that provides a way to get an
overview of SPLE paradigm and necessary adoption activities for potential
SPLE implementers. The model can be also used to evaluate and compare
existing product line activities, and to plan and support improvements in SPLE
processes.

Based on the conducted study it was recognised that available theory lacks
proven case studies involving practitioners of SPLE. That is why there is a lot
of room for expansion of the model in form of example activities.

Acknowledgements

Foremost I want to thank my supervisors Tony Gorschek and Martin Ivarsson
for motivating me and helping through situations when I was stuck. Tony
Gorschek for providing very fast feedback and concrete, directive expertise.
Martin Ivarsson for contributing into discussions that always lead me some

important steps further.

Also I am very greatful to people in Syntronic [7], Carmenta [1], TIBCO
Spotfire [6] and Lavasoft [3] for finding time to provide me with all so valuable

information.

Contents

1 Introduction 1
1.1 Disposition . 1

3 Method 16
3.1 Research question . 16
3.2 General structure of the project 17

3.2.1 Creation of SPLEMM based on theory 18
3.2.2 Validation of the model 18

3.3 Choice of organisations for validation of the model 18

4 Presentation of SPLEMM 19
4.1 Structure of the model . 19

4.1.1 Process areas . 19
4.1.2 Example actions . 20
4.1.3 Organisation of elements 20

4.2 Maturity levels . 22
4.3 Notation . 23
4.4 Evolution of the model . 25
4.5 Usage of the model . 26

4.5.1 The model as a source of SPLE overview 26
4.5.2 First time adoption of SPLE 26
4.5.3 SPLE process assessment and improvement 28
4.5.4 Modifications on SPLEMM 28

4.6 Limitations of the model . 29

5 Validation of the model 30
5.1 Composition of interviews . 30
5.2 Interview subjects . 31
5.3 Results and analyses . 32

5.3.1 Feedback to the structure and content of the model . . . 33
5.3.2 Validation of the Business maturity area 34
5.3.3 Validation of the Domain Engineering maturity area . . . 35
5.3.4 Validation of the Application Engineering maturity area . 37
5.3.5 Validation of the Collaboration maturity area 39
5.3.6 General observations . 40

5.4 Changes in the model . 41

6 Conclusions 43
6.1 Reflections on SPLEMM development project 43
6.2 Satisfaction of research questions 43
6.3 Suggestions for further research 45
6.4 Summary . 45

7 References 47

Appendices

List of Figures

8 Structure of SPLEMM . 20
9 Example of SPA levels . 21
10 Example of SPLEMM structure 24
11 Extending the model on different hierarchy levels 28

List of Tables

1 Structure of Domain Requirements Engineering PA 27
2 Agenda of conducted interviews 30
3 Interviewed organisations . 32

1 Introduction

SPLE (software product line engineering) is a software development paradigm
with a growing popularity in industry and academy as a method which brings
benefits to organisations that develop multiple products in one domain. De-
veloped products share number of commonalities but also have differences. By
developing those products from a common set of core assets in a prescribed
way, and managing commonalities and differences between them, it is possible
to gain remarkable improvements in development costs, time to market, quality
and productivity. [5, 31]

SPLE is mainly practiced in big organizations for developing embedded sys-
tems [25]. Still there are no evidences suggesting that SPLE is not suitable for
SMEs (small or medium sized enterprises). Instead descriptions of successful
adaption cases in SMEs can be found [25, 31, 30, 37, 43]. These case studies
allow to make an assumption that with appropriate adaption techniques it is
possible to successfully implement SPLE theories in smaller scales and reach
the benefits that have made the paradigm so popular in big organisations.

Although adopted in some SMEs, there are no guidelines focusing on small
scale SPLE adaption. Some form of guiding ”cookbook” into SPLE is necessary
for the theory to gain wide spread [24]. Available frameworks and pattern
collections tend to be complex and lack the approach suitable for small scale
practitioners [11].

Most of the available research in the field of SPLE is directed towards the
initiation of a product line and its evolution does not have so much attention
[39]. Organisations need a model that offers guidance for sustainable evolution
of development processes subsequent to initiation of SPLE practices.

Current work addresses these issues by creating software product line engi-
neering maturity model (SPLEMM) that takes into consideration the needs and
restrictions faced by SMEs. This is done by gathering and analysing available
research in the area and organising it in the format suitable for target audience.
The model is organised both into process areas and maturity levels. These
principles allow the final model to be used by practitioners to get a thorough
overview of SPLE, evaluate the state of SPLE practices, benchmark, start adop-
tion process, and further develop already existing SPLE processes. The model
is based on analyse of existing theory and state of the art case studies, and is
validated in industrial context.

1.1 Disposition

Rest of the document describes five main topics: theoretical framework, project
methodology as it was planned, outcome of the project, validation of the model,
and final conclusions. SPLEMM is presented as an appendix of the document.

In theoretical overview main subject related concepts are presented. Issues
that were found as lacking in the current state of theory are summarised in the
end of chapter 2. Chapter ?? presents the research question that are motivated
with missing parts in the theory. Also the methodology of the project, that
was used to answer the research questions, is described. Developed model is
thoroughly explained in chapter ?? and organisation, results and analyses of
empirical part of the project are given in chapter 5. The conclusions of the
project are presented in chapter 6.

1

Theoretical framework

This chapter gives an overview of main theoretical concepts related to the
project. High level introduction into software reuse is provided and followed
with main concepts of SPLE. Overview of existing SPLE related research in
the fields of SMEs and existing maturity models are given as well. Chapter is
concluded with a summary of current state of the research and aspects that
were found missing in current theory.

Method

This chapter specifies the main principles and methodologies of the project.
Research question is formulated based on the deficit in theory. The question
is thoroughly explained in the beginning of the chapter. The planning of two
main parts of the project - building the model based on theoretical research and
validating the model in industry - are explained here as well.

Presentation of SPLEMM

This section presents the logic and principles of the model developed during
the project. Structure of the model is described in chapter ??. Mandatory and
optional elements of the model are defined with the description of the hierarchies
they are organised into. Chapter ?? explains the maturity levels and rest of the
chapter ?? explains the usage and limitations of the model.

Validation of SPLEMM

Chapter 5 gives an overview of conducted validation activities in industry.
Overview is provided about planning of validation interviews, interview out-
comes and analyse of results. Main findings about each maturity area are given
in chapters 5.3.2 - 5.3.5. Number of modifications were made in the model after
analyse of interview results. These changes are listed in chapter 5.4.

Conclusions

Final chapter summarises the the project by listing the learnings and main
experiences. Research question is reviewed again and mapped to the findings of
the project. Finally some suggestions for future research directions are proposed
and whole work is summarised in a brief manner.

2

2 Theoretical framework

This section gives an overview of available theoretical framework that the project
is based on. Subsections introduce important concepts and references that had
an influence on development of SPLEMM. Section 2.1 gives brief overview of
general software reuse concept, section 2.2 introduces the concept of SPLE and
some related aspects. Sections 2.3 and 2.4 describe software development and
SPLE in the context of small and medium sized enterprises. SPLE connections
with agile methodologies is discussed in section 2.5 and section 2.6 gives and
overview of some more common models and frameworks studied during the
project. Theoretical part is finished with a section 2.7 which summarises the
issues that by author’s opinion have not been studied enough in state of the art
theory.

2.1 Software reuse

Following section gives a brief overview about general aspects of software reuse,
involved methodologies and differences between SPLE and other reuse methods.

Krueger [26] has defined the software reuse as the process of creating soft-
ware systems from existing software rather than building software systems from
scratch. This gives an effect of reduced effort required to build software systems.
As quality of software systems increases due to reuse of quality artifacts, the
maintenance costs decrease as well. [26] The idea of software reuse is as old
as programming [19, 30]. The earliest researched approaches in the field were
reusable components, program families and concepts of domain and domain
analyses. Other actively studied areas listed by Frakes et al. [19] include reuse
libraries, domain engineering methods and tools, reuse design, design patterns,
domain specific software architecture, componentry, generators, measurement
and experimentation, and business and finance. [19]

Abstraction is stressed as the main requirement for success of software reuse
by Krueger. Efforts in this direction has been rewarding both in industry and in
academic research. Example of high level abstraction is the settings of reusable
artifacts where developer can choose artifacts based on ”what they do” instead
of being forced to deal with ”how they do it” questions. [26]

So called small-grained reuse [30] bases on reuse of libraries containing al-
gorithms, modules, objects, or components. Major disadvantage with this kind
of libraries is that it takes often more time for a developer to find and integrate
a suitable artifacts from there than to build one from scratch. Industrial ex-
perience have shown that reuse under these settings is fortuitous and payoff is
usually nonexistent. [30] Compared to this paradigm SPLE has more planned,
comprehensive and profitable approach to reuse. The asset base includes also
other artifacts besides code. Namely requirements, domain models, architec-
ture, test cases and components - the ones that are most costly to develop from
scratch. [30]

SPLE can be compared to component based development. Although the
products on product line are based on reuse of components, these components
are all defined by product line architecture and assembled in prescribed way.
Prescription of derivation procedure includes the built-in variability mechanisms
in the components. SPLE can also be distinguished from reconfigurable archi-
tecture and set of technical standards as its approach to reuse is much wider.

3

[30]

2.2 Software Product Line Engineering

Software product line engineering (SPLE) is a paradigm of software develop-
ment with a growing popularity that aims to minimise rework and maximise
reuse. The paradigm is suitable for organisations that are developing several
software products in one domain. Using the commonalities and managing differ-
ences it is possible to develop these products from a set of predefined core assets
in a prescribed way. Concentrating on full product line and reuse through cus-
tomisation allows organisations to gain remarkable benefits in a form of reduced
development costs and faster time to market, increased quality and reliability
of products. [30, 31]

As examples of more formal definition can be given one by Pohl et al. [31] :

Software product line engineering is a paradigm to develop software
applications (software-intensive systems and software products) us-
ing platforms and mass customisation.

and alternative by Clements et al. [30]:

A software product line is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of
a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way.

2.2.1 History

The idea of minimising rework through reuse is not new in software engineer-
ing. Most of the initiatives were based on small-scale ad hoc code level reuse.
Development of reusable assets focused on specific domain has been practiced
for some time in form of automatic code generation in a single domain. This
has lead to domain specific languages. [42]

Something similar to product line concept was first proposed by Parnas
in 1970s as product families [42]. Term software factory, which is used as a
synonym to product line, goes bit more back in time. It was first used by
R. W. Bremer of General Electrics who explained the term through focusing
on standardised tools and controls. In 1968 M. D. Mcllroy at AT&T stressed
systematic reuse of code on development of new programs. Practical usage of
the term started in Japan where Hitachi company used term kojo (factory in
English) to label its software development facility in 1969. But it still took some
time for the concept to mature. [22, 16]

Precise concept was developed in the early 1990s. Initiatives like Feature-
Oriented Domain Analysis (FODA) method and systematic approach from com-
panies like Philips leaded to further development of the paradigm in both re-
search and industry. In Europe there were many scientific groups: Architectural
Reasoning for Embedded Systems (ARES 1995-1998), Product-line Realisation
and Assessment in Industrial Settings (Praise 1996-2000), Engineering Software
Architectures, Processes and Platforms (ESAPS 1999-2001), from Concepts to
Application in system-Family Engineering (CAF 2001-2003), FAct-based Matu-
rity through Institutionalisation, Lessons-learned and Involved Exploration of

4

System-family engineering (FAMILIES 2003-2005). At the same time in USA
the subject was lead by Software Engineering Institute (SEI). [42]

2.2.2 Fundamentals

The main difference between single system development and SPLE is that the
focus is shifted from the single product and project to the product line. Strategic
vision covers the whole field of business in specific domains instead of concen-
trating only on next projects and contracts. [42]

Product line engineering consists of two life-cycles: domain engineering and
application engineering (Figure 1). Due to their purpose they can be described
as development for reuse and development with reuse respectively. Domain en-
gineering develops the assets that can be later used in product development
life-cycle. When other reuse approaches focused on reuse of coding assets then
domain engineering in SPLE prepares reusable assets for product development
throughout whole life-cycle from requirements until testing. Application engi-
neering depends strongly on the assets provided by domain engineering. Appli-
cations are derived from reference architecture using available core assets and
prescribed methods. Different projects may have up to 90% of a new product
available in core assets. [42]

Successful product line engineering relies on fundamental principles [42] :

• Variability management: individual systems are considered as
variations of a common theme. This variability is made explicit
and must be systematically managed

• Business centric: Software product line engineering aims at
thoroughly connecting the engineering of the product line with
the long-term strategy of the business

• Architecture-centric: the technical side of the software must be
developed in a way that allows to take advantage of similarities
among the individual systems

• Two-life-cycle approach: the individual systems are developed
based on a software platform. These products - as well as the
platform - must be engineered and have their individual life-
cycles (Figure 1)

2.2.3 Benefits

Success of SPLE paradigm relies on the presumption that accumulative cost of
developing reference architecture and deriving new systems from that is lower
than creating each product from scratch. It can be expected that creation
of a set of core assets, that includes common parts of product line systems
and takes into account the variations between them, is relatively complicated
task compared to development of single system. Consequently development of
reference architecture and deriving only one product from it costs more than
building single product from scratch. Thus it is justified to ask when starts
SPLE to pay off. By Linden et al. [42] investments into SPLE start making
economical sense when core assets are used to derive at least three products
(Figure 2). This can be seen as a point when sum of costs for developing each

5

Figure 1: The two-life-cylce model of SPLE [42]

system from scratch outweighs investments needed for first developing reference
architecture and then deriving same products from there. [42]

Besides lower development cost it is possible to achieve better time to market
with new products derived using SPLE practices. [42]. This affects organisations
ability to deliver new products or versions of products to customer fast and
regularly. This feature can play important role in success and failure of product
development organisation in highly competitive markets.

Minimising the work to be done with each single product allows to lower the
risks of development errors. As products are largely based on reuse of thoroughly
tested core assets, reliability of these assets is transferred to produced systems.
[42]

Other improvements recognised after SPLE adoption are reduced code size
through removing duplicated code, satisfaction of people involved in develop-
ment, more efficient use of human resources, increased market agility, ability to
effect mass customization, reduced maintenance costs and common user inter-
faces through products. [5, 42]

2.3 Software development in small and medium sized or-
ganisations

European Commission categorises enterprises by their headcount and turnover.
Micro enterprises have headcount below 10 and turnover up to 2 million euro.
Small enterprises are the ones with less than 50 people and up to 10 million euro
turnover. Medium sized enterprises have headcount below 250 and turnover up
to 50 million euro.[2] So when designing a SPLE maturity model for SMEs we
are considering software development companies with less than 250 employees

6

Figure 2: Economics of SPLE [42]

and up to 50 million euro turnover.
Tore Dyb have made a study among Scandinavian small and big sized com-

panies to analyse the differences in practices and results of their software pro-
cess improvement efforts. It was recognised that small size does not limit or-
ganisation’s potential for SPI success. When properly utilizing its strengths,
small organisations were able to implement SPI as effectively as their bigger
counterparts. High employee participation and exploration of new knowledge
and possibilities were recognized as critical success factors for effective SPI in
small scales. This requires effective mix of formal practices and informal, inter-
personal coordination from small sized practitioners of SPI. Dyb concludes that
software processes for smaller companies should support different formality lev-
els: ”a general description of the process, supplemented by specific examples
from practice.” [18]

There are several problems affecting process improvement activities in small
sized companies. SMEs often bare under limited resources and strict time con-
straints [34, 44]

In most cases they can not afford to maintain SPI expertise in house. Instead
they have to buy it in from external resources. Also it is difficult to find out
how to start the improvement and what experts to use [29]. As SMEs often lack
formal processes [44, 25] Wangheim proposes descriptive modelling as a suitable
approach for process improvement in SMEs. This is a practice of describing
as-is processes and then completing or changing process elements with suitable
best practices where necessary. [44] Smaller organisations have a structure that
encourages innovation. It is flat and lead by organic management [34].

2.4 SPLE in small and medium sized organisations

SPLE is more common in bigger organisations that can afford and manage
the long term planning, process changes and other investments needed for the
practice of the paradigm. Smaller companies often have the flexibility and
agility as competitive advantages [25, 34]. This makes it seem like SPLE and

7

small organisations do not make a good combination [25].
Number of case studies have shown that the benefits SPLE offers - lower de-

velopment costs, decreased time to market, increased quality - are also achiev-
able when applying the theory in smaller organisations. Small size can even
be a benefit in SPLE adoption. This often means that less rigid organisational
structures and processes are sufficient and troubles of distributed development
can be omitted [12, 43]. Also when talking about the spread of SPLE among
smaller companies, then it has to be noted that lot of companies already have
SPLE practices without being aware of it [10]. Following gives a brief overview
of example cases that were studied during the project.

Alves et al. have described the exploratory study of SPLE practice in SME
active in the mobile games domain. The work analysed the main challenges in
the domain and how SPLE practices could help solving those. Studied company
faced some complications because of the relatively new and complex domain
but overall adoption project was considered successful. It was concluded that
although somewhat complicated to adapt, SPLE is still suitable approach for
SME-s in mobile games domain. [10]

Bosch has studied SPLE experience in two Swedish companies Axis Com-
munications AB and Securitas Larm AB from the perspective of product line
architecture. It has to be noted that these companies are not exactly fitting into
SME definition. The case study is still used as theoretical base because of its
suitable focus and research direction. The article identified several problems like
limited background knowledge, information distribution, asset versioning, use
and dependencies between assets, documentation, tool support, management
involvement and effort estimation. [13]

Reactive software product line approach in start-up company is evaluated by
Buhrdorf et al. Studied company achieved remarkable benefits in a very short
time of adoption. The study showed how the risks of uncommon domain and
upfront investments can be mitigated with usage of reactive adoption processes.
Several other good case practices for SPLE adaption were pointed out as well
in the article. [36]

Birk et al. have studied the experience of Market Maker as one of the 6
cases, when doing the research about SPLE practices [12]. The same company’s
case was more thoroughly evaluated by Verlage et al. who have followed the
successful practice throughout 5 years and pointed out the lessons learnt from
the experience. The company was able to gain benefits from the stable domain
of stock markets and hence scoping activities are stressed in report. [43]

Another example of SPLE in SME was mentioned by Deelstra et al. who used
Dacolian BV for testing their variability assessment technology. The company
was described as a successful practitioner of SPLE. [17] An alternative case study
with Spanish SME follows company’s SPLE adaption process through IDEAL
steps presenting the original context and motivation behind transformation,
migration process, gained benefits and learning (REF: Clements et al). Knauber
gives an overview of a research project that aimed to transfer product line
engineering concepts to SME-s using and adapting Pulse methodology. The
project was initiated by IESE in 1997, involved 6 companies, and lasted for 2.5
years.

Similar issues can be recognised throughout the different experiences with
SPLE in small and medium sized companies. These issues can be taken into
consideration as requirements or principles when creating maturity model for

8

SPLE. Described SPLE adoptions were successful and achieved the aimed bene-
fits but it can be noticed that due to a lacking maturity in processes the gaining
was sometimes not exactly measurable. This explains the importance of man-
agement support which was pointed out as a crucial success factor in SPLE case
studies with SMEs [37, 25]. More abstract or invisible are the benefits in early
stage the more it has to be guaranteed that key decision makers understand the
long term winnings and background behind the SPLE adaption efforts.

SMEs seldom have well defined processes set in company. This complicates
SPLE adoption as it is hard to change non-defined processes and non-existing
baselines [25]. On the other hand small size of organisation allows to mitigate
the importance of organisational structure and rigid processes. Implementation
of rigid processes can be too costly for smaller enterprises [13]. As there is
a lack of available tools supporting SPLE needs, it is suggested to invest into
development of own tools. These tools can replace alternative systems of papers
and processes. [13, 37] Although light weight methodologies are more suitable
for SME-s proper adaption of rigid processes can bring remarkable benefits to
smaller companies [25, 43]

Important issue to consider in SME cases is usage of flexibility as a compet-
itive advantage and SPLE influence to it. When SMEs are often very respon-
sive to customer demands then SPLE practicing needs confidence about future
product developments. Prioritisation and compromises are used to overcome
this conflicts in available cases. [43, 12, 25]

Importance of using legacy systems on core asset development was stressed
in studied SME cases. Proper component extraction and encapsulation can cru-
cially speed up SPLE adoption in SME. [36, 43, 25] Also it was common that
organisational division into application and core asset development teams was
avoided [43, 12]. Lack of domain knowledge was recognised as a often occur-
ring problems in new domains and small sized companies [10, 25]. Information
gathering from more experienced stakeholders was used to mitigate this issue
[37, 25]. Also extractive and reactive adoption strategy where SPLE is adopted
gradually helps to deal with the problem of lacking data [10].

2.5 SPLE and agile methodologies

Usage of agile methodologies is widely popular in software development specially
in small scales [33]. Knowing that it is much easier to modify existing processes
instead of changing them totally [44], it is justified to ask how SPLE and agile
methodologies fit together.

Tian et al. have studied the question more thoroughly through the per-
spectives of engineering, software quality assurance and project management
[40]. When SPLE and agile methodologies share the same high level goal to
deliver quality software quickly, they have different strategies for achieving it
[40]. Similar observations are made by other authors too [32]. But as the dif-
ferences are not fundamental, several studies propose to tailor SPLE with agile
practices [40, 32, 28, 23]. Carbon et al. successfully added agile practices like
planning game, continuous integration and automated regression testing into
PuLSE-I product instantiation processes [32]. Adaption of agile practices into
product line planning activities are also studied in couple of works [28, 27].
In work by Tian et al. it is proposed that agile methodologies may be good
addition to SPLE when there is not enough knowledge for thorough SPL scop-

9

Figure 3: Components of the CMMI model [38]

ing. Quickly built and easily modifiable prototypes make it possible to manage
changing scope [40]. Still making SPLE agile should not be the goal itself but in
some cases agile methodologies can add some flexibility and reduce complexity
in SPLE. [40]

2.6 SPLE maturity models and frameworks

This section gives a brief introduction into existing models and frameworks that
were used as example when developing SPLEMM. First CMMI is introduced,
which is not SPLE specific but covers whole software engineering area. Later
overview about SPLE related works is given.

2.6.1 Capability Maturity Model Integration (CMMI)

Capability Maturity Model Integration (CMMI) is probably the best known
process improvement model for software engineering. It was developed from
Capability Maturity Model (CMM) that was introduced by Carnegie Mellon
University’s Software Engineering Institute already in 1980s. According to them
CMMI is a process improvement approach that provides organisations with
essential elements of effective processes. Its application areas include process
improvement and assessment across a project, a division, or entire organisation.
[4]

CMMI consists of 25 process areas divided into four groups: Process man-
agement, Project management, Engineering and Support. Each process area
includes set of specific goals and generic goals, that are considered as required
components of the model. Specific and generic goals organize specific practices

10

Figure 4: BAPO concerns of SPLE [42]

and generic practices respectively. These are expected components of CMMI
model and should be performed in an organization to achieve a concrete goal.
Practices contain subpractices and other helpful hints or guidelines which rep-
resent informative part of the model. Specific goals are unique for each process
area but generic practices apply to multiple process areas and describe the level
and quality of performance in that area. Only required elements are necessary
to achieve a maturity level in CMMI. (Figure 3)[38]

Continuous representation of CMMI, that is more flexible than its coun-
terpart staged representation, has 5 maturity levels: Incomplete, Performed,
Managed, Defined, Quantitatively managed, and Optimizing. Organization can
choose to work and improve single process area or simultaneously develop per-
formance in multiple areas, when they use continuous representation of CMMI.
It is also possible to improve different process areas in different rates. [38]

2.6.2 Family Evaluation Framework

Family Evaluation Framework (FEF) is a framework for assessing organisations
effectiveness in SPLE and can show the possible improvement opportunities in
the area of SPLE. It only includes areas specific to product line engineering
and leaves out general software engineering issues. FEF is divided into four
BAPO concerns: Business, Architecture, Processes and Organisation (Figure
4). Each area has number of aspects and defined levels of maturity. This makes
it possible to measure level of organisation in each concern separately. So the
final result of FEF evaluation gives a result in form of four values - one for each
BAPO area. FEF has taken over a lot from CMMI. The framework has five
maturity levels with first one being achievable to everyone. FEF also follows the
CMMI practice of giving guidance of what should be done for each level instead
of explaining how should it be done. FEF still is less comprehensive as it does
not specify the components like goals, practices and work products (Figure 3).
[41, 38]

Business dimension concentrates on the issues that are relevant from the

11

Figure 5: Essential activities of SPLE in SEI Framework for Software Product
Line Practice [30]

perspective of how to make profit from developed products and considers the
business relationships between domain and application engineering. The dimen-
sion is divided into four aspects: Sales Marketing and Product Management
Involvement, Budgeting and Investment, Vision and Business Investment, and
Strategic Planning. Maturity levels for business dimension are Project Based,
Aware, Managed, Measured, and Optimised. [41]

Architecture dimension concerns with the technical means to build soft-
ware. The dimension consists of Asset Reuse Level, Software Product Family
Architecture, and Variability Management aspects. Maturity levels are named
as Independent Product Development, Standardised Domain Independent In-
frastructure, Software Platform, Derivable Variant Products, and Automated
Product Derivation. [41]

Process concern area deals with roles, responsibilities and relationships with-
ing software development. It is divided into Domain Engineering, Application
Engineering and Collaboration aspects. Maturity levels under this concern area
are the same as in CMMI: Initial, Managed, Defined, Quantitatively Managed,
and Optimising. [41]

Finally Organisation concern area deals with the actual mapping of roles
and responsibilities to organisational structures. It consists of Roles and Re-
sponsibilities, Structure, and Collaboration Schemes aspects. Maturity levels
are Project, Reuse, Weakly Connected, Synchronised, and Domain Engineer-
ing. [41]

2.6.3 SEI Framework for Software Product Line Practice

The SEI’s Framework for Software Product Line Practice sees the essence of
software product lines in interconnection of three essential and iterative product
line activities: Core Asset Development, Product Development, and Manage-
ment (Figure 5). [5]

The framework itself describes 29 practice areas from different aspects of

12

Figure 6: Categories of process areas in SEI Framework for Software Product
Line Practice [30]

SPLE. Practice areas are organised under 3 categories: Organisation Manage-
ment, Technical Management and Software Engineering (Figure 6). Practice
areas in the same category share a relation that might be described as ”re-
quires the same kind of knowledge as” or ”requires the same kind of skill set
as”. Software Engineering practice areas deal with the question of how to apply
the technology to create and evolve both core assets and products. Technical
management is needed to engineer the creation and evolution of core assets
and products. Organisational management practice areas synchronise all SPLE
activities. [5, 30]

Practice areas in the framework are quite thoroughly described. Besides gen-
eral introduction each area is equipped with a list of aspects that are specific
to SPLE. Practice area’s relation to both Core Asset Development and Product
Development essential activities are also given. The framework additionaly in-
troduces the example practices that are given as possible ways to deal with the
problems in concrete process area. [5]

SEI also offers a different organisation of practice areas. Software Product
Line Practice Patterns act as a guidance that allow implementation of knowledge
that is gathered into separate practice areas. These patterns are collections of
practice areas that are organised according to the most common needs of SPLE
practitioners. Software Product Line Practice Patterns are modified to be appli-
cable for concrete situations and parts of the product line effort. Each pattern
is described with example scenarios, contextual overview, problem statement,
offered solution and few other attributes. Patterns described by SEI include
The Curriculum Pattern, What to Build Pattern, Cold Start Pattern, Factory
Pattern and many others. [5, 30]

2.6.4 PuLSE

PuLSE is a methodology for developing and deploying software product lines.
It was created as an effort to target the shortcomings present in other domain
engineering approaches - deployment complexity, lack of customizability, and
misplaced focus on domains. Instead PuLSE is stressing on a product centric
focus, component customizability and incremental introduction capability. The
methodology gathers the learning from industrial cases facilitated by Fraunhofer
Institute of Experimental Software Engineering. [11]

PuLSE methodology is organised into three main elements: deployment
phases, technical components and support components (Figure 7). Deployment
phases are logical stages that product line goes through. Initialisation stage in-

13

Figure 7: PuLSE Overview [11]

volves base-lining the organisation and customising PuLSE methodology to its
needs. In Infrastructure Construction stage scoping and modeling is done and
product line infrastructure is architected. Product line members are created
from Infrastructure Usage stage and finally Evolution and Management stage
deals with evolution and management of product line over time. [11]

Technical components, that were developed before other components, pro-
vide necessary technical expertise to certain deployment phases. Customiz-
ing (BC) provides the solution for Initialization phase. Also there are Scoping
(Eco), Modeling (CDA), Architecting (DSSA), Instantiating (I) and Evolving
and Management (EM) technical components provided by the model. [11]

The three support components in PuLSE methodology are guidelines used
by other elements to support better adaptation, evolution and deployment of a
product line. Project Entry Points customise PuLSE to major project types.
Maturity Scale provide evolution path for adapting organisations. And Or-
ganisational Issues support component provides guidelines for organisational
structure of product line organisation. [11]

2.6.5 Maturity and evolution in software product lines

Bosch have defined a set of maturity levels to describe the common stages of
SPLE evolution. Initial maturity level is standardised infrastructure where com-
mon operating system with components on top of it. Third party domain specific
components may also be required. Further development goes through platform
stage where common infrastructure is implemented by the organisation. Next,
on software product line maturity level, shared artifacts include the functional-
ity that is common to several, but not all, products. Configurable product base

14

concentrates on automating the product derivation process from core assets.
More advanced levels are program of product lines and product populations
which can be useful to target in large scale product line engineering.[14] The
article gives rather general overview about different stages product SPLE can
go through and is not usable as independent model or comparable to previously
described frameworks.

2.7 What is missing in available theory

Current state of research is missing a source of reference specialised for soft-
ware product developers in small and medium sizes that have some principal
differences compared to their bigger counterparts. Author’s opinion is that ex-
isting guidelines and frameworks for SPLE adaption and evaluation seem to be
complex and need a lot of overhead to adapt for a concrete case. From the
other hand available case studies that give an overview of a concrete instance of
SPLE usage are hardly extensible for wider audience. Compromising tool could
be welcomed by practitioners. This tool should combine the high-level overview
of SPLE paradigm provided by existing models with concrete steps necessary
for successful implementation of the SPLE.

Many organisations are already using practices from the SPLE paradigm
without calling it product line engineering or connecting it with the theory.
It can be assumed that this is more of a issue with SMEs as they probably
have less overview about different state of the research theories and invest less
into SPI activities compared to big corporations working with software product
development. Unification of separate procedures into one thorough theory brings
in obvious benefits. Recognising some parts of the SPLE already used in an
organisation may have negative effect on further interest of SPI. First seeing
that parts of the paradigm are already done in an organisation could rise doubts
about possible added value from the paradigm. Also seeing that the used tool
does not provide easy and understandable proposals but need lots of analyse
and investment could dampen the excitement drastically. There is a need for a
tool that gives an overview of companies current level and possible advancement
opportunities fast and clearly. This would motivate SMEs to continue with SPI
initiatives.

15

3 Method

This section presents the research question of the project. Also general overview
is given about the approach and structure on how the answer for the question
was searched.

3.1 Research question

The main research questions of the thesis project is:

What is the suitable software product line engineering ma-
turity model for small and medium sized organisations?

The model should provide following functionality for its target group:

• Overview of SPLE - Organisations using the model should get a good
overview of SPLE paradigm. Besides having a definition of the paradigm
it is important for companies to know what does the paradigm involve in
form of actions and processes. Lot of research and work on the subject
should not be needed but initial understanding of the paradigm and related
activities must be easily conceived.

• SPLE adoption - The model should support first time adoption of SPLE.
Companies who want to start using SPLE can use the model to build up
their own SPLE processes. It must provide overview and definitions of
process areas in the paradigm plus some concrete references on how to
work in the necessary fields. SMEs might not have the resources or will to
start with something that consists of only abstract overview. Thus some
form of concrete activities has to be included in the final model.

• SPLE process improvement - Organisations that are already using
SPLE should be able to use the model for assessing and improving their
processes. The model should provide opportunities for process assessment
that allows organisations to clarify their current state in SPLE practices.
Further it has to provide them with guidelines on how to improve their
situation.

To further dissassemble the research question, the terms in it has to be
clarified. Terms product line engineering, maturity model and small and medium
sized organisations of the main research question are already discussed under
the theoretical framework (chapter

In current work suitable model has following characteristics:

• Usable - Suitable SPLEMM has to be usable by its target group. This
means that organisations can use the final model as it is or adapt it in
a simple and understandable manner. These requirements mainly affect
structure of the model which must not be complicated but easy to follow
and understand.

• Relevant - The content of SPLEMM has to be relevant for its users. It has
to be analysed if all the SPLE related issues have the same importance
for smaller organisations. Most of the available knowledge is currently

16

based on the experiences from larger organisations and the model is cre-
ated based on this knowledge. Thus the content of the model has to be
validated to include only relevant aspects of the SPLE to smaller software
developers.

• Evolvable - It should be possible to extend the model by adding new
information to it. The area of SPLE is fairly new and expanding. New
case studies from SPLE practitioners could contribute a lot to the practice
and based on the image gained through theoretical overview there is a fair
amount of active research happening in the area. Thus future updates
in the model are most likely required to keep the model up to date with
evolvement of the state of the art theory and practice. So the model has
to be stable and evolvable in a sense that its principles remain valid when
the model is expanded.

• Tailorable - Model should allow changes and modifications so it is possi-
ble to adapt it according to different process environments. Chosen target
group of software product development SMEs is fairly large. Thus the
model has to cope with a large audience. Users with different conditions
and starting states should be able to use the model in beneficial manner.
This requires that the model clearly addresses organisations on different
levels and is flexible enough so that organisations may tailor it the way
suitable to their individual needs.

• Useful - The implementation of the model should return more benefits
than it costs. Organisations are willing to invest into projects that they
can profit from. Thus in order to gain potential popularity the model has
to attract users with positive outcomes that oversize all the initial and
operational investments.

Theoretical research coverage of SPLE in smaller organisations context will
be thoroughly evaluated during the project. SPLE related theory will be gath-
ered and analysed from the SMEs perspective. This gives an overview about
current state of the research and practice in SPLE in SMEs. Process of assem-
bling the model based on theory and following validation may give some hints
for the further research needs.

3.2 General structure of the project

Current work is not the first time attempt to adapt SWD methodologies or
models for SMEs. It has been done before for SPI practices [29, 34] and often
the work has followed similar basic structure: scaling down current state of the
art practices and packing them into suitable form for smaller scales. [29] This
approach were chosen for current initiative as well.

The initial idea of the project was to create a software product line engineer-
ing maturity model (SPLEMM) that would meet the requirements presented in
chapter ??. The first part of the project was theoretical study where initial
version of SPLEMM was created based on available theoretical sources.

The model was later validated during the empirical part of the work where
it was presented to selected industry representatives for feedback. Qualitative

17

(flexible) design [35] was used for empirical part and semi structured interviews
[35] planned for validation.

Validation interviews were also used as a source for further input to the
model. The final version of SPLEMM was composed by analysing both theory
and interviews’ results.

3.2.1 Creation of SPLEMM based on theory

Different sources of information were worked through during the theoretical
study. These involved more general groundworks on the SPLE, specific studies
concentrating on some aspects of the paradigm, and case studies about SPLE
adoption and usage. Also the picture of SMEs and main limitations and benefits
they are facing was created through related theory and used on assembling
process. The studied material included the works related to topics presented
under theoretical overview, plus more specific articles were used to populate the
model with relevant examples.

Several other maturity models and process frameworks in the field of software
engineering were analysed to find the most suitable composition for project aims.

3.2.2 Validation of the model

The aim of the validation was to first understand how industry representatives
perceive the model and also to modify it to be more suitable for the needs of
target audience. Validation was planned in a form of semi-structured interviews
with representatives from industry. To achieve the first goal it was necessary
to introduce SPLE concept, applicability and benefits to the interviewees. This
was done with a brief oral presentation in the beginning of the interview. Inter-
viewees understanding of the SPLE also grew throughout the interview when
different parts of the model were explained. In the end of the interviews inter-
viewees opinion about the model was measured with a quantitative questions.
These questions were asked to find out how well involved people had understood
both the structure and the content of the model.

Main part of the interview went through each process area in the model.
The purpose of that was to introduce the model to participants and ask their
feedback about the content. Interviewees were asked to answer if the process
is performed in their organisation. In case of negative answer short reasoning
was expected. In case of positive answer interviewee was asked to name couple
of most important critical success factors that contribute to the success of the
SPA in their organisation.

Process areas that were not performed in interviewed companies were checked
against the given reason and their purposefulness in the model was analysed
again. Success factors that were pointed out by industry representatives were
later considered as possible additions to the model.

3.3 Choice of organisations for validation of the model

Organisations were chosen as potential users of the model. Interviewed organi-
sations were chosen by two main criteria. They had to develop multiple software
products and have a development in a small or medium sized settings.

18

Although sometimes it is suggested to distinguish between small and medium
sized SWD companies [34], this work does not separate them. Instead the def-
inition is left indefinite targeting smaller companies and using the European
Commission’s definitions [2] just as guiding suggestions rather than rigid re-
strictions. Thus no concrete numbers were followed during company selection.
Still all interviewed organisations classified as SMEs [2].

More important criteria on interview subject selection was their experience
with software intensive product development and management. Although po-
tential for SPLE was considered important factor, no formal tests were made to
find out organisation’s potential. Instead it was assumed that if an organisation
is producing several software intensive products in one domain or using same
base technology there is some potential for SPLE adaption.

4 Presentation of SPLEMM

This chapter gives an overview of the software product line engineering maturity
model (SPLEMM) that was developed during the thesis project. Following sub-
paragraphs describe the elements and general structure of the model, maturity
levels, and notation that is used for the model documentation. Evolution of the
model through the project is described in the chapter ??. Section ?? gives the
overview and examples of different ways to use the model and final part of this
paragraph presents the limitation of SPLEMM that potential users should take
into consideration.

4.1 Structure of the model

SPLEMM consists of two types of elements - process areas and example actions
- that are organised in hierarchical tree structure. Current section describes
these elements and how they are organised in SPLEMM.

4.1.1 Process areas

SPLEMM is a collection of processes of software product development that have
effect on and are affected by SPLE paradigm in organisation that practices
SPLE. The model can be seen as a collection of factors that are necessary
for the success of SPLE practice. These success factors (called process areas
in the model) were found through the analyse of available theory and case
studies in the field of SPLE. The model is organised into a hierarchical tree
structure where lower level process areas contribute to the success of their parent
element. Depending on the positioning on the hierarchy levels the process areas
are categorised as maturity areas (MA), process areas (PA) and sub-process
areas (SPA). Note that the term process areas are used both as a general term
referring to all three categories (MA, PA and SPA) and as a name of second
category (PA). In rest of the document general term is written out and when
referred to specific category then abbreviation PA is used.

On the highest level of abstraction the model is divided into four MAs: Busi-
ness, Domain Engineering, Application Engineering, and Collaboration. For an
organisation to be successful in its general SPLE practice it is necessary to be
successful in each MA. Each MA is divided into PAs which in turn contain

19

Figure 8: Structure of SPLEMM

SPAs. One SPA can be divided into other level of SPAs. Each SPA under one
parent element contributes into success of its parent. It must be noted that
process areas are divided into above mentioned categories only based on their
positioning in the model. There is no other difference between the elements and
all rules that apply to SPAs also apply to PAs and MAs.

4.1.2 Example actions

The model also includes example actions (EA). EA is an example of activity or
method that have proven to contribute to the success of parenting process area.
EAs are optional elements in SPLEMM. They are examples of possible ways on
how to implement parenting SPA. EAs can be compared to informative com-
ponents in CMMI [38]. EAs were added to the model from available industrial
case studies, validated theories or interviews with practitioners. It has to be
noted that collection of EAs under one SPA is not the only possible nor final
list of actions to be performed under successful SPA.

Although SPAs and EAs are quite similar there still are some conceptual
differences. EAs are more concrete and precise. When SPA-s answer question
”what should be done” then EAs answer ”how should it be done”. For exam-
ple SPA C.1.2.2 (Mechanisms for Achieving Variability) states that Variabil-
ity Management PA should support Domain Engineering MA with knowledge
about different variability mechanisms so that most suitable method could be
chosen in different situations. EAs under this SPA are examples of concrete
variability mechanisms that have been proven as useful (eg. Using Applica-
tion Specific Plug-ins (C.1.2.2.ea1) and Using Language and Generative Support
(C.1.2.2.ea3)).

4.1.3 Organisation of elements

As mentioned above the model consists of process areas (MAs, PAs and SPAs)
and example actions (EAs). EAs are optional elements of the model or informa-
tive to use the terms from CMMI [38]. Process areas are mandatory elements

20

Figure 9: Example of SPA levels

of the model. Organisation has to satisfy all the process areas in order to be
considered as SPLE practitioner (see section ?? for explanation of maturity
levels).

Still satisfying a process area does not mean that an organisation has to
perform it exactly as described in the model. In order to meet the requirement
of tailorability (see section ??) with SPLEMM the term satisfied-explained is
taken over from the work of Gorschek et al. [21]. This means that organisation
can satisfy a process area by not completing it but explaining that the process
area in question is not applicable or not relevant in their context. Example of
how satisfied-explained concept should be used is given in chapter ??.

As explained before on the highest level of abstraction in the model are
four MAs that all have to contribute to the successful SPLE performance in
organisation (Figure ??). Next level consists of PAs and each PA is divided into
SPAs and/or EAs. Every SPA must have other SPAs and/or EAs as their sub-
elements. Process area (MA, PA, SPA) can not be the last element in a branch.
Instead the process area who have no lower level process areas connected to
them have to have at least one EA below. EAs can not have any sub-elements
(Figure ??).

Business maturity area involves issues in the model that are directly
related to business decisions. It can be said that this area answers to the question
how to make profit with SPLE [41]. The MA is divided into three PAs: Sales
and Marketing (B.1), Scoping (B.2) and Business Planning (B.3). Sales and
Marketing PA has three SPAs that contribute to success of the PA. For example
Brand Name Strategy Aligned with SPLE SPA deals with questions concerning
brand strategy. EAs under it are Defined Branding Strategy (B.1.1.ea2) and
Brand Alignment With SPLE (B.1.1.ea1).

Scoping is the process area that determines the products and product fea-
tures which should be included in the SPL. It is divided into Scope Plan-
ning (B.2.1) and Scope Maintenance (B.2.2) SPAs. Some EA-s on lowest level
of Scoping branch are Studying Available Products in Existing Product Lines
(B.2.1.1.ea1), Define Domain Candidates (B.2.1.2.ea2), and Developing Product

21

Line Scenarios (B.2.2.1.ea1). Business Planning PA consists of Strategic Plan-
ning (B.3.1) and Budgeting and Investment (B.3.2) SPAs. Some descriptive
EAs are Managing Domain Engineering Budget (B.3.2.1.ea2) and Prediction of
Future Cost and Benefits of Product Line Approach (B.3.2.2.ea2).

Domain Engineering maturity area incorporates the process areas that
control creation and maintenance of the reference architecture of SPL. These are
mainly similar to processes in usual software development organisation. The MA
includes process areas like Domain Requirements Engineering (D.1) and Domain
Testing (D.3) among others. SPLEMM aims to present the differences between
single-system software development and processes that run the successful SPLE
practice. In the model representation these differences are often explained in
the descriptions of SPAs or EAs. For example Defining Production Strategy
SPA (D.2.1.ea1) is about choosing and using the variability mechanisms that is
a SPLE specific concern.

Application Engineering maturity area involves the processes that con-
trol how products are derived from reference architecture and how modifications
are made before the release of the final application. This MA as well follows the
traditional software development life-cycle beginning with Application Require-
ments Engineering (A.1) and ending with Application Testing (A.4). But the
essence of the maturity area is to reuse as much as possible from work done in
Domain Engineering (eg. Mining / Accessing Appropriate Assets (A.2.2) and
Domain Test Artefact Reuse (A.4.ea1)). The MA also deals a lot with using the
options provided by variability (eg. Binding of Variants (A.2.3) and Selecting
Suitable Variants in Variation Points (A.2.3.ea1).

Collaboration maturity area consists of PAs that run through both life-
cycles of SPLE and thus should be presented under separate MA. Variability
Management (C.1) manages the variability in domain architecture and how
it is used by application engineering. Configuration Management (C.2) deals
with the issues that make configuration management more complex in SPLE
context. And Organisation MA (C.3) slightly touches the questions of skills
and organisation of people in SPLE environment.

4.2 Maturity levels

The number of maturity levels is slightly lowered in the presented model. Com-
pared to other approaches [38, 41, 9, 21] that distinguish between 5 to 6 different
levels, SPLEMM defines 4. These are Non-performed level, Adaption level, Sus-
tainable level, and Improving level.

Example actions in the model are mapped to certain maturity levels. The
proposed mapping is based on the assumed cost and the complexity of actions
but also on the relation of their estimated effects to the nature of each maturity
level. Cost is seen as the measure of resources (money, time) that are needed
to perform the action. Complexity is denoted as the extrapolated measure of
how complex the action is. The higher the cost and complexity of activity, the
higher is the level of its maturity. [21] The relation between EA and maturity
area is more abstract and it needs some analyse to decide which is the level of
maturity for new EA added to the model.

For example Identify a Set of Common and Variable Requirements SPA
(D.1.2.1) has Application-Requirements Matrix EA (D.1.2.1.ea1) on maturity
level 1 but Priority-Based Analysis Scheme EA (D.1.2.1.ea2) on maturity level

22

2. This distinction in the maturity levels is made because by author’s opinion
application-requirements matrix [31] is the simplest available tool for variability
analyses and essential for light-weight SPLE practice. Priority based analyses
[31] is more complex methodology but also gives more thorough overview about
the issue.

Non-performed level (level 0) describes an organisations that do not prac-
tice SPLE or do it incompletely. 0 level organisation have not implemented all
the mandatory parts of the model and do not have motivated alternatives for
non-implemented areas. Organisations that have partial SPLE solution are of-
ten lacking SPLE essential high-level process areas like Variability management
or sub-process areas on lower levels. There are no EAs mapped to level 0 in the
model.

Adoption level (level 1) describes an organisation that is still in the middle
of SPLE adoption process or has just finished it. The level mainly consists of
product line essential actions that define the SPLE approach. Adoption level is
necessary mid step for smaller companies who do not have resources for a full
scale adoption in the beginning. It can be also considered by isolated parts of
bigger organisations to test the suitability of SPLE practices. After achievement
of this level efforts have to be made to reach sustainability in SPLE practices.

Level 1 organisation has to perform actions in all SPAs. Example actions
under adaption level are simple and with low implementation cost. Often related
to technical issues of SPLE building and initial organisation of support practices.

Sustainable level (level 2) provides organisation with mature enough pro-
cesses to achieve sustainability in technological and economical development.
Organisations on this level have looked forward from initial engineering issues
and eager to take more advantage of primary SPLE solution, add quality to it,
and develop it further.

Actions under the level are complimentary to initial adoption activities and
contribute to the sustainability and efficiency of the SPLE practices. Defined
processes, more attention to quality and communication, and stability charac-
terise this level.

Improving level (level 3) takes advantage of different pre-defined, available
and comprehensive methodologies in SPLE paradigm. The level and EAs on it
are meant for companies who have achieved the stability of SPLE processes but
have to extend them because of the growing production needs.

It can be seen as a step where organisation grows further from medium size
and need more rigidness and comprehension in its processes.

4.3 Notation

SPLEMM is presented as hierarchical list of model elements. Every MA, PA,
SPA and EA in the model has a unique identifer which denotes its place in the
model structure. See section ?? for detailed descriptions of model elements.
Elements are presented in the model following way (Figure ??):

1. - Code
Unique identifier that each element in the model has. The letter in the
code denotes the MA where element belongs to. Numbers indicate ele-
ment’s position in the hierarchy.

23

Figure 10: Example of SPLEMM structure

24

2. - Maturity Area (MA)
The model consists of four maturity areas that each have its unique dis-
tinguisher (B - Business, D - Domain Engineering, A - Application Engi-
neering, C - Collaboration).

3. - Process Area (PA)
Highest element in the model after MA.

4. - Sub-Process Area (SPA)
Elements that may be in several leveles between PAs and EAs.

5. - Example Activity (EA)
Bottom elements of each branch in SPLEMM.

6. - Maturity Level
Denotes the level of maturity for EAs.

7. - References
Each PA has list of references attached to it. This presents the main
sources that were used to collect and analyse the information under under
this branch of the model.

4.4 Evolution of the model

FEF [41] as the most sophisticated maturity model was used as a main reference
for SPLEMM in the beginning of the project. Inspired by that the BAPO
structure was tried tested. By BAPO the model was divided into business,
architecture, processes and organisation areas (Figure 4). Soon the need for
better expression of two-life-cycles of SPLE (Figure 1) was recognised.

Reason for that was that two-life-cycle approach is one of the fundamental
principles (2.2.2) of SPLE and the model was intended to give an overview of
the SPLE paradigm (??). Thus it was assumed that the model gives better
understanding about SPLE when two-life-cycle principle is presented already
through the high level structure. Also some difficulties were experienced when
the BAPO model was extended with practice areas which often apply to either
domain or application engineering. Thus the original architecture maturity area
was divided into domain and application engineering areas taking Pohl et al.’
book [31] as a model. Similar categorisation is mentioned also in SEI Frame-
work for Software Product Line Practice (Figure 5). Also the processes and
organisation areas from BAPO were strongly changed as they were considered
too abstract and unsuitable for model’ purposes. These areas were combined
into one Collaboration maturity area.

Final structure evolved during theoretical study where maturity areas were
populated with sub processes. Structures of several existing models [38, 21, 41, 9]
were analysed to find suitable combination to best fulfill the research goals
(??). Lot of features were omitted in order to keep the model simple and easily
understandable. Hierarchical structure, concept of success factors, satisfied-
explained, mandatory and optional elements, and maturity levels were developed
or obtained during the studies.

Number of modifications in the content of the model were also done after
analyse of validation results. These changes are listed in chapter 5.4. Final
version of the model is available as appendix of current document.

25

4.5 Usage of the model

The model was created to make SPLE paradigm more accessible for SMEs. For
this purpose model’s functionality had to cover guidance for SPLE adoption,
assessing and benchmarking current SPLE efforts, and also an overview of SPLE
paradigm and estimation of the level of changes necessary for adoption.

4.5.1 The model as a source of SPLE overview

It is intended that the structure of the model gives its users an understanding
of process areas that have a role in successful SPLE practice. This is a strong
addition to the definition of the model by giving the overview of SPLE’s scope.
Example actions allow users to get initial understanding of the level of changes
and complexity of actions needed in their organisation for SPLE implementa-
tion. Simple reading of the model and comparing the model to the processes
in organisation can already give sufficient initial overview of SPLE and related
actions. Gaps between the model and practiced processes pinpoint additional
changes and extensions that organisation must execute in order to adopt SPLE
paradigm.

4.5.2 First time adoption of SPLE

Organisation that decides to adopt SPLE practice using SPLEMM should first
map its existing practices to the model - do a process assessment. This will
give them an initial understanding of their current state and rate of necessary
changes in their processes. This kind of mapping is easier when organisation
already is following some process framework and has an structured view of their
processes.

Organisation should take a top-down approach on process assessment. This
means that it should go through elements in each branch of the model starting
with maturity areas. On each process area it should be checked if it is performed
in organisation. Notes should be made on whether element is done or not
done. Also any variations from elements definitions or other comments should
be stored. Extra attention must be paid on procedures that are considered as a
success factors in company’s existing processes but are not in the model. These
should be considered as a parts that should be added to the model (see section
??).

For example organisation may discover that under Domain Requirements
Engineering PA (D.1 - see table ??) they have Domain Requirements Elicitation
SPA (D.1.1) and Requirements Management SPA (D.1.3) performed but they
are not doing Commonality and Variability Analysis (D.1.2). They may also
notice that besides EAs listed under Using Different Sources of Requirements
SPA (D.1.1.1) they have some additional sources that they plan to keep using
when adapting SPLE. These will be added to the model as additional EAs.

This assessment of Domain Requirements Engineering PA showed that or-
ganisation should extend their current processes with whole Commonality and
Variability Analysis SPA (D.1.2) to successfully implement SPLE in organisa-
tion. Analyse of the example activities on the lowest level of Commonality and
Variability Analysis branch allow organisation to predict the amount of work
needed to implement the changes.

26

Code Title Maturity
level

D.1.1 Requirements elicitation
D.1.1.1 Using different sources of requirements
D.1.1.1.ea1 Involving Different Roles 2
D.1.1.1.ea1 Involving different sources 2
D.1.1.1.ea3 Studying existing applications for requirements 2
D.1.1.2 Initial organisation of requirements
D.1.1.2.ea1 Prioritisation of Requirements 1
D.1.1.2.ea2 Separation of Problem and Solution Space 1
D.1.1.2.ea3 Defining Requirements Organisation Process 2
D.1.1.2.3a4 Using Proven Representation Methods 3
D.1.1.2.ea5 Categorise Requirements 2
D.1.2 Commonality and Variability Analysis
D.1.2.1 Identify a Set of Common and Variable Requirements
D.1.2.1.ea1 Application-Requirements Matrix 1
D.1.2.1.ea2 Priority-Based Analysis Scheme 2
D.1.2.1.ea3 Check-List Based Analysis 2
D.1.2.2 Requirements Variability Documentation
D.1.2.2.ea1 Defining Variation Points and Variants in Requirements 1
D.1.2.2.ea2 Distinguish between internal and external variability 1
D.1.2.2.ea3 Document the common requirements in detail 2
D.1.3 Requirements Management
D.1.3.1 Manage Requirement Changes
D.1.3.1.ea1 Communicate Software Requirements 1
D.1.3.1.ea2 Process for Integrating New Requirements 2
D.1.3.1.ea3 Collecting Feedback From Application Engineering Cycles 2
D.1.3.1.ea4 Reactive Customisation of Product Line Requirements 1
D.1.3.2 Guarantee Quality of Requirements
D.1.3.1.ea1 People Carrying Knowledge
D.1.3.2.ea2 Document Assumptions of Commonalities
D.1.3.2.ea3 Compromise Between Quality and Generality 2
D.1.3.2.ea4 Regular Roundtable Meetings 2
D.1.3.2.ea5 Usage of Defined Requirement Management Tools or Processes 3

Table 1: Structure of Domain Requirements Engineering PA

27

Figure 11: Extending the model on different hierarchy levels

When missing parts of the model are identified it has to be found out whether
they should be adapted fully or should some parts (or whole area) be considered
as satisfied-explained (see section ??) and excluded from the organisation SPLE
processes. This decision should not be taken easily and leaving out an element
from the model requires thorough analyse and motivation by SPLE expert. Thus
it is suggested at least on 1st maturity level not to leave out anything from the
model without having very strong and obvious reasons for it.

4.5.3 SPLE process assessment and improvement

Maturity levels give a basic opportunity to first identify the level of organisa-
tion’s SPLE processes and also to compare the SPLE levels of different organi-
sations or different units working separately in the same organisation.

Mapping current processes to related SPAs in the model - doing process
assessment (see section ??) - allows comparison of existing actions with the ex-
ample actions in the model or the ones performed in other organisation under
same SPA. Detailed categorisation of the processes simplify the improvement at-
tempts. For example when there are two units in an organisation that follow in-
dividual non-standardised SPLE processes then both of the processes should be
assessed. By comparing the activities performed and deviations from SPLEMM
it is easyer to identify which practices lead to success in certain process areas
and standardise those in all units of organisation.

4.5.4 Modifications on SPLEMM

For the model to be tailorable and up to date in future it has to be possible to
make changes in it without altering the general principles and structure of it.
Model could be changed when new information evolves from research or when
practitioners want to tailor it for use in smaller and more specific target groups
(eg. specific industry or single organisation).

The developed structure of SPLEMM allows it to extend the model with
new information. Users of the model can add elements to each level of the

28

model under the root element SPLE (Figure ??). Changes can be made among
the levels of EAs (example activities), SPAs (sub-process areas), PAs (process
areas) and also on MAs (maturity areas) (Figure ??). The higher is the level
where change is made the more careful has the user be when performing it.
When EAs are optional elements that are meant to be modified and tailored,
then changes on all the mandatory element levels have to be carefully considered
and motivated. For example It is likely that some organisation needs to add
new SPA under Budgeting and Investment PA (B.3.2) to accent some company
specific budgeting system. First they should control if it would be possible to
add the element as EA and then think about adding it to a higher level. All the
initiatives of adding new MA or PA should be considered extra carefully as the
effect on the model’s behaviour is much higher on these levels of abstraction.

When adding an element to any mandatory level of the model sub-elements
have to be provided as well. The success factors of the added element have to
be found and described in the model for it to be complete.

It is also possible to remove and modify the elements of the model when
applying the same rules. The changes on the higher level should be considered
as more rare and proper motivation is needed before implementation. Also it
has to be controlled that EAs are on lowest levels of all the branches.

4.6 Limitations of the model

Constructed SPLEMM consists of software product engineering process parts
that are related to SPLE paradigm. Thus it does not cover all the areas of SWD
processes. This compromise had to be done to keep the model from growing too
big. It may be beneficial to use SPLEMM together with more general models
to gain improvements in areas outside of direct SPLE scope.

It has been hard to avoid relative abstraction of maturity levels and achieve
the planned purpose of them at same time. Thus the maturity levels leave some
room for interpretations. Due to lack of theoretical and empirical materials in
many areas of SPLE, there is currently lot of room for the model to expand
and evolve in near future. Thus the maturity levels were defined with high
abstraction level that was found suitable for the early stage of evolution.

It was tried to use only proven theories of success factors to fill the model.
Sometimes the lack of case studies about specific topics forced to make com-
promises in model’s contents. Some areas, that could not be tied with concrete
usage examples, were left on the optional level of EAs. Thus some EAs in the
model are not atomic, concrete actions. In future, when suitable case studies
emerge to prove their reliability, these should be changed into SPA status and
extended with EAs.

These areas are usually suggested by some theoretical works but by author’s
opinion were not sufficiently proven in practice to include it as mandatory part
in the model. Often sub-activities that could be potential EAs in future are
given in descriptions of such SPAs. For example EA Organising Variability on
Various Levels of Product Line (C.1.2.ea1) was included as EA to the model
although it has sub elements of its own. But as no real life usage example was
found with this theory it was left as EA with potential to be developed into
SPA in future.

29

Part of meeting Time
Intro to SPLE 3 min
Introduction of SPLEMM 3 min
Company overview by interview subject 5-10 min
Questions about Business maturity area 20-30 min
Questions about Domain Engineering maturity area 20-30 min
Questions about Application Engineering maturity area 10-15 min
Questions about Collaboration maturity area 10-15 min
General questions 10-20 min

Table 2: Agenda of conducted interviews

5 Validation of the model

Purpose of this section is to validate the accordance of the model to the re-
quirements specified in the research question ??. The project aimed to create a
SPLE maturity model that would be usable by small and medium sized organi-
sations. Series of validation interviews were conducted with organisations from
the model’s target audience. These interviews, analyse of results and conclusions
drawn are described in the rest of the current paragraph.

5.1 Composition of interviews

Validation interviews (2) presented the SPLE paradigm and the developed
SPLEMM with the aim to collect feedback from industry.

Prior to the interview just a brief introduction to SPLE and SPLEMM was
sent to interviewees. Besides that main concepts were repeated in the beginning
of each validation meeting to give attendees an idea of the context. Main part
of the interview went through the model and for each SPA it was asked if that
or something similar is performed in the company.

Questions were asked in a form ”Is this SPA performed in your company?”.
For example the question about SPA D.1.2.2 was formed as ”Is Requirements
Variability Documentation performed in your company”. Limiting the questions
only with a title of a SPA gave additional feedback about the clarity of namings
in the model. Interviewees’ understanding about the SPA was controlled and
guiding definition of SPA was given if necessary. SPA was marked as needing
a better wording in cases when interview subject had problems understanding
the SPA after initial question.

If SPA was not performed in the company then reason for that was asked.
This information helped to analyze the relevance of each SPA later. Non-
performed SPA was potentially non-relevant to the organisation. Later analyse
had to answer if the SPA is irrelevant only in the concrete case or could the
assumption of irrelevance be extended to the whole target group of the model.
In latter case removal or modification of the SPA was considered. If SPA was
performed then most important actions under that, and factors for its success
were enquired. This information helped to extend the model with new EAs
(Example Actions) and also to test the relevance of example activities collected
from theoretical study. About every PA it was asked if something is missing in
the model under this area. Any comments given to this question were analysed.

30

Modifications were made to the model if the comment were found to apply to
whole target group.

Several general questions were asked in the end of the meeting to get fi-
nal overview about interview subjects’ understanding about the model and its
functionality. These questions were following:

• Is something missing from the model?

• Key differences between smaller and bigger SWD organisations?

• How well do you understand SPLE paradigm (in a scale 1..5)?

• Why don’t you use SPLE in your company?

• How suitable is the model’s structure for SMEs?

• How suitable is the model’s contents for SMEs?

5.2 Interview subjects

It was intended to conduct validation interviews with organisations that could
be potential users of SPLEMM-like model. For that purpose small and medium
sized companies were approached. Another interviewee selection criterion was
organisation’s potential for SPLE. Company had to be a user of SPLE prac-
tices or have a potential for that paradigm. Thus ideally, in case of further
interest from company side, they could use the model for process assessment
and improvement activities or use the model as a tool for SPLE adoption. In-
terview subjects with given profile were chosen to make it simpler for them to
relate with the model and with introduced SPLE paradigm. Also these pre-
requisites set to interview subjects made their provided answers more relevant
in terms of research question. Interview subjects’ correspondence to criteria
was controlled through initial observation of available information about the
subject and phone-discussion with company representative. Organisations were
expected to have experience with development of one or preferably more prod-
ucts in defined domain. No official potential analyse like PLPA (Product Line
Potential Analyse [20]) was considered necessary. In ideal case the final model
should be simple and intuitive enough to be suitable as first choice tool for both
initial screening of SPLE potential and further adoption activities. Thus it was
intentional to have organisations with uncertain SPLE potential as interview
subjects. These characteristics of interviewed organisations made it possible
to evaluate suitability of SPLEMM for getting an initial overview about the
paradigm.

Four organisations agreed to participate in validation interviews (Table 3).
Syntronic is an international engineering design company with a smaller office
in Goteborg. The organisations is specialised in the design and development of
electronics, electro-mechanics, technical and administrative software in telecom-
munication, automotive, defense and medicine industries.[7] Interview was made
with the head of their Goteborg’s office that was looked as an isolated part of
rest of the corporation to study the questions in SME similar environment.

Carmenta offers a wide range of software products for business-critical geospa-
tial applications with main markets on location based services, security and
defense, and aerospace. [1]

31

Organisation Nr of employees SPLE practitioner Products and domain
Carmenta approx. 60 no software products

for geospatial applications
Lavasoft approx. 60 no several product versions

of spyware protection
Tibco Spotfire approx. 150 no information visualisation
division and analytic tools
Syntronic approx. 250 no consultants with wide exp-

erience in product development

Table 3: Interviewed organisations

Lavasoft is a creator of widely used spyware protection software Ad-Aware.
Their product selection consists of several configurations of the base software
that can include several levels of additions to basic protection. [3]

Tibco Spotfire division provides users with information visualization and
analytic solutions tools [6]. The company was recently bought by Tibco corpo-
ration but was able to remain relatively independent in the questions concerning
areas of SPLE.

Each organisation was asked to provide an interviewee or interviewees with
experience in organisation’s software development and product management
processes. Interviewed persons held positions of office manager, project man-
ager, product manager and R&D manager. 1 interview with Regional office
manager was conducted in Syntronic and 1 interview with project manager in
Lavasoft. Product manager was interviewed in Spotfire.

In Carmenta R&D manager and two project managers were interviewed.
Introductory part to SPLE, the model and the company was performed with
all attendants present. Rest of the interview was divided into two parts where
questions about the Business maturity area were asked from product managers
and questions about Domain and Application Engineering maturity areas were
asked from R&D manager. Questions about Collaboration maturity area was
asked from both roles. As R&D manager was attending through whole interview
process he was subject to general questions in the end of the meeting as well.

Each of the interviews were conducted in subject’s facilities in order to cause
minimal disturbance to their daily work. Notes were taken both on laptop
and paper. Guiding materials in form of process descriptions and diagrams
were received from interview subjects in some cases to clarify more complicated
processes and methods. These documents are not used directly in the current
work but used as references together with interview protocols.

Interview protocol and results were summarised and analysed after each
meeting to be able to store the fresh impressions from the interviews. Further
analyse of the information took place when collected information was ready for
comparison. It was agreed with the interviewees that any further question would
be clarified via phone.

5.3 Results and analyses

Conducted interviews gave feedback to the developed model. Interview proto-
cols consisted of comments to separate process areas as well as to the model in

32

general. After the interviews each process area was reviewed taking into consid-
eration the information collected. None of the interviewed organisations were
knowingly using SPLE practices. Due to that many SPAs that were more SPLE
specific were commented as ”non performed” in interviewed organisations.

General feedback to the model was positive. Interviewees admitted the im-
provement of their knowledge about SPLE and its implementation issues after
going through the maturity model during validation meetings. Design of the
model’s structure can also be considered successful and easy to follow for users.

Most of the interviews’ time was spent on a discussions about Business and
Domain Engineering maturity areas. Collaboration and Application Engineer-
ing maturity areas were gone through faster. Organisations did not practice
SPLE and due to that the processes under these maturity areas were not recog-
nised in the organisations.

5.3.1 Feedback to the structure and content of the model

In order to meet the usability and usefulness requirement of the model (see sec-
tion ??) SPLEMM development initiative aimed to create a model with logical
and easily understandable structure. Developed model consists of process areas
that are organised into hierarchical tree-structure. SPLE practices are organised
into 4 maturity areas that each have hierarchies of sub-elements that contribute
to the success of the area. Example actions are given on the lowest level of the
model. In order to keep the model from growing too big only process areas that
are directly influenced by or contributing to SPLE practice are included. Some
process areas that are part of general SWD frameworks (see section 2.6), but
not so much related to SPLE adoption in an organisation, are omitted from the
model. For example project management issues are separate process category
in CMMI [38] but in SPLEMM they are not included as they are not directly
affected by SPLE characteristics.

Structure of the model was presented in the beginning of the validation in-
terviews and followed throughout the meetings. In the end of the meetings
interview subjects were asked about their opinion about suitability of the struc-
ture for the model’s purposes. Also any kind of feedback they had regarding
the structure or missing parts of the model was recorded.

General opinion about the developed structure of the model was positive.
It was accepted as suitable for the purposes and target group. The structure
was regarded as easy to understand and follow. The 4th maturity area, Col-
laboration, raised some questions. When Business, Domain and Application
Engineering were quite distinctive areas then Collaboration seemed to be the
MA with more abstract definition. Concrete proposals were made to consider
dividing Collaboration process areas between other maturity areas or name it
as Miscellaneous or Technology Management MA.

Feedback about the model was collected throughout the interviews. Each
SPA was presented to the interview subject who then had an opportunity to
comment the relevance of it among the organisation’s processes. Not much addi-
tions were proposed during the interviews. The model’s content was considered
sufficient taking into account that it was not an aim to cover all aspects of soft-
ware product development but only the areas that are tightly related to SPLE.
When interviewee recognised a SPA as being practiced in an organisations he
was asked to name concrete actions that are performed to guarantee the suc-

33

cess of the practice area. These inputs were used to specify and add example
activities to the model.

Following four subsections describe interview findings in four maturity areas.

5.3.2 Validation of the Business maturity area

This subsection points out the general trends and relevant findings that came
out during the validation interviews about Business maturity area.

Some form of Marketing strategy existed in all of the organisations. Promo-
tion and development of brand name was considered important and was mainly
exercised through the usage of common brand name throughout all the products.
Although exact usage of brand was different in the organisations, then impor-
tance of this asset was recognised in all cases. One organisation had recently
renamed its products to unify the naming of product and organisation. Other
company had strong enough brand that even after the company was bought by
another corporation its products remained on market with the old name.

Relationship Management (D.1.1.3) was based on a quite similar principles
throughout the organisations and actions pointed out as performed during the
interviews were matching with example actions in the model. Market strategy
(D.1.1.2) had more varying approaches among the companies. Main differences
were due the level of detail used for defining the market strategy and its gener-
ation processes.

Scoping processes in the studied organisations were quite straightforward
and lightweight. Only one organisation had distinguishable procedure defined
for it and incorporated into organisation wide product management processes.
Criteria for domain and scope selection was not defined but decisions were made
on product managers meetings. Scope revisions were usually informal and it was
up to project managers to get the new information from different sources and
regularly discuss the scope.

Business vision and strategic goals had a high relevance in all the organi-
sations. Goals are set, followed and tracked for several years terms. Although
not as much as in SPLE case studies, the relationships between strategy and
production characteristics was recognisable in interviewed organisations.

Financial management practices existed on different levels of rigidity and
comprehension in the organisations. General trend was that budgeting and
money investments were made on high-levels and did not go very much into
details. Organisations where core asset development was more distinguishable
could the tracks of it be seen also in financial management. In given cases de-
cisions on new products were not motivated with payback period, net present
value, internal rate of return or other similar techniques [8].

Summarising notes:

Lessons learned - Interviewed organisations were familiar with goals and prin-
ciples introduced through Business MA process areas. Scoping was an
area where processes described in SPLEMM were distinctively more com-
prehensive than the ones actually used in the organisations. Common
trend was to use light-weight and in-formal methods throughout whole
maturity area. Still the number of processes from the model that was
recognised by interview subjects was surprising.

34

Before the validation it was doupted if separation of strategic goals and
business vision under separate SPAs in Strategic Planning SPA (B.3.1)
was well-founded. Interviews proved that the organisations distinguish
between these areas and they can be kept apart in the model.

Validation process - In some cases interviewed persons did not have a full
overview of marketing and financial management activities. They could
provide a general overview about these areas in company but no concrete
details. In current case this did not affect the outcome of the result as
the information was sufficient for the model validatoin task. Still the wide
scope of SPLE should be considered in future works.

Impact on the model - Based on the validation meetings it can be said that
success factors under Business maturity area are relevant also in the in-
terviewed organisations. This information contributes positively to fulfill-
ment of relevance requirement given in chapter ??. As scoping practices
in organisations were not following all the SPA-s presented by SPLEMM
some simplifying changes were considered in the Scoping PA. For that re-
lated theory was analysed again. It was recognised that the importance
of scoping is much higher in SPLE environment. thus it was decided
that reasoning given during validation was not sufficient and Scoping PA
was not modified. Contrary example was with Strategic Planning (B.3.1)
where SPAs concerned with strategic goals (B.3.1.1) and vision (B.3.1.2)
were proven to be distinguishable. Thus these both were remained in the
model although it was considered to combine them before the interviews.
Some changes were still made in the Business MA. See section 5.4 for a
full list of those.

5.3.3 Validation of the Domain Engineering maturity area

Interviewed organisations did not have comprehensive or rigidly defined require-
ments engineering processes. Still the importance of existence and quality of the
process area was commonly appreciated. Amount of requirement sources was
wide including for example customer feedback, competitor product screenings,
input from partners and changing trends in related technologies. Organisation
of requirements was light-weight and had some minor variations between the
companies. Still some form of prioritisation was mentioned by every interview
subject. Variability in requirements was not understood in the way as it is de-
scribed in SPLE paradigm. General requirements applying to all products and
products specific requirements are distinguished. But variability in individual
requirement items was not used. As stated before, requirements were regarded
as highly important artifacts in the organisations and need for improvements
in the quality was mentioned in validation interviews. Organisations had used
different solutions for improvement of requirements engineering processes pre-
viously. Agile principles were used to remove communication gaps between
requirements engineers and software developers. Noteworthy was an example
where company had reassigned the task of requirements writing from team based
in USA to Sweden in order to have requirements engineers and developers work-
ing in same teams.

Organisations were using rather light-weight solutions also in Architecture
Definition PA. Agile practices like open communication, short iterations and

35

light-weight documentation [15] were enforced. All the organisations were men-
tioning modularisation as a goal for their architectural strategy and this affected
decisions throughout the whole life-cycle of software development. Interviewed
organisations were often using 3rd party components and software developed
by suppliers. Thus Buy/Make/Mine/Commission Analyses SPA (D.2.3.3) had
high relevance for them. Besides the concern if externally developed component
could break their modularisation efforts, the need for keeping strategical knowl-
edge in-house was regarded as important factor under this SPA. Methods for
ensuring stability of architectural style were dedicated board of architects and
usage of in-house SDK (Software Development Kit). The board of architects
contributed into quality of architecture by coaching new developers and valida-
tion during code reviews. It was also considered as a good practice to assign
each architect for a specific part of product’s architecture. Maximising the use
of in-house SDK was also acknowledged as a way to keep constant architectural
design.

Interface and component designing processes were distinguishable in the or-
ganisations. Interface design was considered extra important by the organisa-
tions that managed their own SDK (3 out of 4). In these cases interfaces were
kept well documented and up to date with new technology trends. Also the aim
for clean and simple architecture was confirmed under this point again. Common
design practices like object oriented programming, test driven methodologies
and maximising the use of existing systems were used to guarantee the quality
in interface and component design stages. Compilation process was automated
as much as possible, for example through usage of continuous builds and nightly
tests. It was pointed out during one interview that considerable troubles are
raised by 3rd party components that are not applicable with automated build
processes.

There were several ways used for architecture evaluation. One organisation
had set peer review requirement for all the code that is committed to repository.
Others had more relaxed view of code reviews and held it in every 1 or 2 weeks for
teams of developers. When two organisations had dedicated quality assurance
teams for testing then others had assigned quality assurance tasks to developers.
Still even then it was stressed that different people have to develop and test one
code. 2 out of 3 organisations brought up that usability testing requires quite
a lot of resources.

Documentation was considered to be rather unprioritised area. When cus-
tomer documentation was always kept up to date then technical documentation
was often found in a bad shape. Importance of technical documentation was
not considered very high. For example new people were introduced to the work
rather through communication and mentoring than with technical guides. Tech-
nical documentation was often maintained on a level of code only. Still there
was an exception in an organisation who had built up an full internal process
for technical documentation.

Generally it can be said that process areas in Domain Engineering MA are
relevant to interviewed organisations and cover the their software development
processes sufficiently. As only few process areas were not recognised it can be
concluded that adaption effort here would not be too high.

Summarising notes:

36

Lessons learned - Main thing that was confirmed with the interviews was that
due to SMEs’ tendency to practice agile methodologies, their processes are
more light-weight than the ones described in SPLEMM. However it was
noted that none of the organisations had fully implemented any concrete
agile methodology. Rather general principles were used and different prac-
tices tested now and then in a search for the best suitable method. So low
level of documentation and process comprehension was not an aim itself
but a method that was belived to help in creating better software. It was
agreed that if SPLE can fulfill that goal then there should not be principal
opposition against the paradigm.

Validation process - Domain Engineering MA got very good coverage during
the validation interviews because the interview subjects understood it best
as it follows the general flow of traditional software development process.
The MA took most time during the interviews and also most information
was collected there. Thus it might seem that domain engineering has
also so much higher importance in organisations’ processes. Actually it
must be understood that interview subjects were often refering to whole
software deveopment area in organisation when answering questions under
Domain Engineering MA part. Interviewed organisations were producing
products as single systems.

Impact on the model - Differences between light-weight processes of SMEs
and SPLE that needs some more comprehension are not too big. Besides
variability related PAs the adaption of other SPLE domain engineering
activities should not require much change in activities.

Interviews in this MA validated number of EAs that were mentioned in
some theories but not documented as tested in practice. These were the
EAs under Domain Requirements Engineering PA (D.1) and Architecture
Definition PA (D.2).

Testing processes in organisations were not much different from common
single system testing procedures. Even in cases where some work was
done on core assets in R&D level, the main part of testing was performed
on applications. So the information about testing was not included to
the model as nothing SPLE specific was found. The same issues were
experienced with documentation, as no addition to the model was found
during the interviews.

5.3.4 Validation of the Application Engineering maturity area

As mentioned before the interviewed companies were not users of SPLE paradigm
nor did they have separated life-cycles for domain and application engineering.
Instead they had singe process for product development. Thus lot of the in-
formation about Application Engineering, that was related to general software
development, was collected through questions about Domain Engineering matu-
rity area. The part of interviews about Application Engineering maturity area
tended to take less time and were aimed to give hints about additional simi-
larities or differences between SPLE practices and practices in an interviewed
organisations.

37

The organisations had main requirements engineering practices related to
applications. This means that application specific requirements are collected
and analysed. General requirements, that are found to be applying for all prod-
ucts, are identified during analyse phase. So practically everything mentioned
in last subsections holds also true under Application Engineering.

Traceability in artifacts was not enforced much. Again organisations relied
on close communication instead of more formal tools and processes. In one
organisation commonly used issue and configuration management tool allowed
to implement traceability from requirements until parts of code that realise
them. But even there it could not be answered by interviewee how big is the
benefit of usage of such system.

Some high level configuration of variants could also be recognised. Most of
the organisations (3 out of 4) were offering variants of their core product to
customers. Products differed on a set of included features. These variants were
binded and configured in compile time. With simple configuration file triggers
it was possible to include and exclude the features of projects. Still physically
all the code was included into the product. Just certain features were disabled
on lower levels of products.

General software development processes in interviewed organisations were
not very distinctive from the processes described by SPLEMM. Although there
do not exist 2 separate life-cycles, most of individual process areas are known
to the organisations. Even the concepts of variability binding (A.2.3) and asset
mining (A.2.2.1) were not totally new to these companies.

Summarising notes:

Lessons learned - Interviewed organisations already have the concept of de-
riving different product versions out of one code base. But this is far from
the level of organisational and technical coordination of SPLE paradigm.
It can rather be described as a part of compilation and build activities
of software development than anything related to two-life-cycles model of
SPLE.

Validation process - It was hard to get information about Application Engi-
neering MA during the interviews. As the interviewed organisations were
not practitioners of SPLE they had not implemented the two-life-cycle
model. Thus the validation done in the area can be considered somewhat
incomplete.

Impact on the model - Validation of Application Engineering MA proved
that division of core-asset development and application development into
separate MAs (see section ??) was beneficial. Single-system develop-
ers need thorough presentation of two-life-cycle model concept and other
SPLE fundamental concepts (see 2.2.2).

Besides adding one EA (Using Subject Matter Experts - A.1.1.1.ea2) no
more changes was done in the model. Still it was felt that area of appli-
cation engineering in the model needs validation with organisation who
have actual experience with SPLE and application deriviation processes.

38

5.3.5 Validation of the Collaboration maturity area

Not much was done in the field of Variability Management (C.1) in studied
organisations. The area was existing in form of keeping track of general require-
ments and allowing some high level changes through configuration on compile
time. Still it can not be said that any of the organisations had a planned ap-
proach to the PA as described in SPLEMM.

Automation seems to be the main followed principle on configuration man-
agement. Noteworthy practices here are automation of compile and integration
processes, continuous integration processes, and dedicated and skillful config-
uration management responsible. The processes seemed to be straightforward
for the organisations. Only Spotfire mentioned some issues that raised with the
purchase of another organisation. In that case it had been hard to unify the
two already working systems. Outcome of these efforts were not clarified by the
time of writing this document.

Among the organisations it was common that only one team was dealing
with all produced products. Its tasks could be compared to the ones of ap-
plication engineering teams’ in SPLE paradigm. As a counterpart for SPLE’s
domain engineering team two interviewed organisations had R&D team which
were developing core set of features of product lines. Even as their goal was not
to create specific reference architecture, this kind of structure could be compared
to SPLE organisation and could serve as a catalyst for cultural change.

Organisations have been trying out different process standardisations and
SPI initiatives. These vary from ISO standards to CMMI and agile practice
adoptions. General trend seems to be the use of trial and error method where
failures are accepted and fast feedback expected. Dedicated PM, supporting
technical lead and open communication were mentioned as most common success
factors for the SPI processes in these organisations.

Summarising notes:

Lessons learned - Most of the PAs in Collaboration MA were not unknown
to interviewed organisations and many common aspects were found that
connects them to SPLE practices. Interesting observation was that some
organisations already had something comparable to core asset team. Their
R&D teams were developing features that would be used in all the product
line products. 3 out of 4 companies had had experiences with some process
standards. This experience potentially improves organisation’s ability to
adapt SPLE [31].

Validation process - Again as the interviewed organisations did not have ex-
perience with SPLE it was not possible to objectively validate Variability
Management PA. Only one of the interview subjects had had direct experi-
ence with SPI project in an organisation but this was not really a problem
as other interviewees were able to give sufficient information about these
initiatives.

Impact on the model - Not many changes were initiated after validation in-
terviews in the Collaboration MA. As the organisations were not fully
using the PAs it was not possible to run a full validation on those. Also
nothing spectacularly SME or SPLE specific were found about PA C.3

39

(Organisation). The general findings in the area was usually not suitable
for the model. Still one EA was added under Roles and Responsibilities
PA.

During the theoretical study PA C.4 was planned to be added to the model
to cover the issues related to SPLE adaption project. Although some
information was gained during the validation that impoved the overview
about SPLE adaptability in SMEs, it was still found to be not sufficient
to support whole process area. The PA could not have added true value
to the model and thus was decided to omit.

5.3.6 General observations

Although the organisations were mainly product oriented and were not familiar
with SPLE practices before, some hints about two life-cycle way of thinking
could be recognised during the interviews. Organisations had very specifically
defined their core competencies based on what they had built the core software
on what product laid on. For example Lafasoft had Ad-aware core product
which was sold to different customer segments by adding several features to it
that are built in house or by 3rd parties. In their case also existed a team that
was dedicated on a work with core system development.

Based on interviewed organisations it can be said that many SPLE principles
are already used in software product developing SMEs. This has two contrast-
ing effects on SPLE appeal to them. First it lowers the adaption barrier and
effort needed for implementation of the paradigm. Instead of complete change
of processes some practices has to be modified and some can be left as they
are. As interviews showed the recognition of SPLE practices in organisations
that consider the adoption can also have a negative effect on adaption. Inter-
view subjects were asked about the reasons for not applying the SPLE in their
organisation. One reason was that when seeing big part of the SPLE already
done in the organisation then current level seems sufficient and further changes
and investments are perceived with doubt. This stresses the requirement of
the model for giving a fast overview of adoption effort and achievable benefits.
The problem can be solved when stressing the benefits of full solution when
introducing the SPLE paradigm.

Also there were process areas found that are in SPLEMM but were not per-
formed as part of processes in interviewed organisations. One of the reasons
was that interviewed organisations were not users of full SPLE paradigm. Thus
they are not using many SPLE specific practice areas. Other group of SPAs
that were recognised as non-performed can be considered as not relevant in
SME settings. This distinction was clarified with brief discussion during the
interview and following analyse of the SPAs. For example none of the interview
subjects recognised Requirements Variability Documentation SPA (D.1.2.2) be-
cause it is very specific to SPLE practice. Number of other variability related
SPAs were not performed by interviewed organisations. Contrasting example
is Understanding Product Line Architecture Requirements SPA (D.2.1.1), that
has a low priority for SMEs. This SPA is important to unify the understand-
ing of requirements between people who document those and people who use
the requirements for development. When in big corporations this is an actual
problem because different people are involved in those activities then in SME
environments requirements are documented and used by same teams.

40

Interviewees were also asked how do they see the differences between SMEs
and big SWD organisations. The most praised characteristics of SMEs were
flexibility and agility. Lower number of people, open communication and less
rigid processes were proposed as contributors to lower overhead. Obvious dis-
advantage named in one of the interviews was ”lack of muscle” in SMEs. The
amount of resources sets some limits to possibilities of development speed and
reach. With limited team sizes it is crucial in smaller organisations to select
right people. People has to be selected more carefully to suit professionally for
the tasks and personally to the teams.

5.4 Changes in the model

Not all improvement ideas suggested or found during the interviews was trans-
ferred to the model. Each change suggestion that was found during the in-
terviews was analysed to find out if the change would apply with SPLEMM
criteria and requirements (see chapter ??). For example one organisation sug-
gested to add example activity under Brand Name Strategy Aligned with SPLE
SPA (B.1.1) that suggests keeping the company name visible on product names.
This change was still omitted as it is rather general branding strategy issue and
not related to SPLE. Also it was needed to be careful when discarding elements
from the model. Thorough analyse had to be done to clarify if this suggestions
is made due to organisation specific issues or due to something that can be
applied to the whole target group of SPLEMM.

Following is a list of changes made in SPLEMM after validation of the model:

• Marketing Strategy PA was renamed to Sales and Marketing
- During the validation interviews it was pointed out that the process
area actually involved more than it would be expected from area named
Marketing Strategy. It was referred back to Family Evaluation Framework
[41] and found that in that model exists an aspect that is named Sales,
marketing, product management involvement. Analyse of the content in
Marketing Strategy PA suggested that renaming is well-founded. Also
earlier sub-process area Product Line View to Marketing was removed
and its content was attached to the definition of Sales and Marketing PA.
Main reason of this change was to increase the simplicity and make it
easyer to understand the model

• Active Involvement of Customers EA (B.1.3.ea5) added - Two
interview subjects showed good results achieved from working with cus-
tomer groups and bringing different customer groups together. For ex-
ample organised conferences increased the interaction between customers
on different levels and this has a good effect on product development and
also on sales. As this activity has a high intercorrelation with several other
SPLE activities, the EA was added to the model.

• Getting Information from Stakeholders (B.2.1.1.ea2) - The defi-
nition of this EA under Scoping SPA was extended to also mention the
customers and competitors as possible sources of information. These roles
had been missed during initial theoretical study but were stressed in ev-
ery validation interview. It was decided to distinctively mention customers
and competitors under explanation of EA B.2.1.1.ea2.

41

• Understand Product Line Architecture Requirements PA was
removed - Validation interviews suggested that this PA was not relevant
for organisations in smaller sizes. The aim of this SPA was to eliminate
the problems caused by the dendency that in bigger organisations are re-
quirements engineering and actual usage of requirements often done by
different people. So there is a need for steps to be made to unify the
understanding that different groups of people may have about same re-
quirements. In SMEs these two tasks are usually done by same people.
So this SPA can be considered as irrelevant for SMEs generally.

• Categorise Requirements EA (D.1.1.2.ea5) added - During the in-
terviews one organisation presented their approach to organise require-
ments based on categories. This had proved to be useful as company was
also doing some iterations where only requirements from specific category
were approached. It was decided to add this practice as EA to the model.

• Definition of Requirements Management Process EA (D.1.3.2.ea2)
added - All the interview subjects recognised the importance of require-
ments engineering processes. Two organisations did not have defined and
documented process for requirements management but still admitted the
need for improvements in the area. Two other interviewed organisations
had and were using documented requirements management process and
stated it as a beneficial practice. Taking into account several mentions of
documented requirements engineering processes in theory [38, 21], and its
importance in SPLE, it was decided to add this EA to the model.

• Usage of Agile Principles EA (D.2.4.1.ea1) added - All of the or-
ganisations mentioned the effect that some agile practices and principles
have had on results of their development processes. Although it was not
included as separate EA in the model before it was now decided to do
that. Suitability of Agile and SPLE is discussed before (see chapter 2.5)
and validation interviews gave examples of its suitability in potential SPLE
environments. Even it can be argued that the usage of agile methodolo-
gies is not much different in SPLE and singly system environments, the
EA was still added to emphasise suitability of the agile theory in SPLE
practicing SMEs.

• Using Subject Matter Experts EA (A.1.1.1.ea2) added - During
theoretical study the role of expert knowledge in application engineering
was not seen as important. Validation interview subjects stressed this area
more than expected. Based on later analyse it was decided to add the EA
to Application Engineering MA.

• Emphasise Skills and Education EA (C.3.2.1.ea2) added - Inter-
view subjects brought up the importance of employers professional level
in SMEs. Based on different sources it can also be understood that SPLE
paradigm sets high expectations to its practitioners. To emphasise this
issue, the EA was added under Roles and Responsibilities PA.

42

6 Conclusions

Final section of the document presents the learning from the project, reviews
the satisfaction of research question, gives suggestions for further research and
briefly summarises the whole document.

6.1 Reflections on SPLEMM development project

The project of creating a maturity model for the whole area of SPLE involved
a huge scope. Areas covering business, software engineering, organizational
structure, and work process are all intricate parts of a complete model. It is
impossible to grasp all those aspects in detail during the project with the given
resources. Instead of specific studies on each area big picture had to be focused
on. The work gave a good understanding about different parts of the SPLE
paradigm and interactions between those parts. Also the general understanding
and experience of scientific research initiative is something that is gained from
the project.

It proved as important to have an opportunity to discuss and elaborate about
the model related issues. The fastest progress in the thesis was experienced
during and directly after validation interviews and meetings with supervisor.
Working in pairs could definitely be suggested for future projects of this kind.

Choice of the suitable structure for the model was not an easy task. It took
some time and lot of work to come up with the structure that contributes to all
the requirements extracted from research question (see section ??). The decision
about structure and principles of the project can not be done at once. It is not
possible to gather information about SMEs and SPLE and then based on that
assemble a working model. This process is rather iterative, where final structure
evolves through many changes and modifications (see section ??). Finalising the
structure had a great effect on work progress. It was much more effective to
gain new knowledge and organise it in a structured way.

Another interesting issue that came up during the project was a choice of
criteria on deciding which information to include to SPLEMM. From one side
the amount of information was very big due to large scope of the model. Then
again it was found that original intention, to only populate the model with in-
formation from theories that are proven in practice, was complicated to achieve.
There are not enough experiences documented on such a detailed level to cre-
ate a full maturity model with so strict restrictions. Thus compromises were
needed to deal with lack of information sources. It was not possible to have one
to one mapping between success factors and information sources where the suc-
cess factor was proven. Instead connected theories were analysed and author’s
judgement used in many cases to decide if potential success factor is suitable to
the model.

6.2 Satisfaction of research questions

Number of requirements about functionality and characteristics were set on
SPLEMM when research questions of the project (chapter ??) was disassembled.
Although concrete verification projects could be conducted to guarantee the ful-
fillment of these requirements, initial conclusions about model’s characteristics
may still be done based on validation interviews and general analyse. Current

43

section controls how the requirements were met with the final SPLEMM.

Functionality of the model :

• Overview of SPLE -

This functionality was tested during the validation interviews. Interview
subjects who did not have prior in-depth knowledge about SPLE were in-
troduced with the concept during the meetings and SPLEMM was used as
a main tool for this introduction. After the validation meetings interview
subjects were asked to grade their understanding about SPLE paradigm
in a scale from 1..5. In each case 4 was given as answer. This gives a good
base to assume that the model fulfills this requirement by giving sufficient
overview of the SPLE paradigm already with brief introduction.

• SPLE adoption -

The model provides sufficient overview about SPLE. Also it provides first
time SPLE users with example activities that allow simple and good ref-
erence base for development of their own first time SPLE processes. This
combination of overview on abstract level and detailed examples was recog-
nised as potentially well suited for new SPLE practitioners.

• SPLE process improvement -

Definitions of maturity levels of SPLEMM allow to assess the existing
processes and see the direction of further improvements. Also it is suitable
tool for benchmarking. The model can be used for comparison of processes
in different organisations or units of one bigger organisation. Results from
this kind of comparison may be used for improving the processes in the
organisation that falls behind in benchmarking.

Characteristics of the model :

• Usable -

Based on the feedback collected during validation interviews it can be said
that the model fulfills the usability criteria. Interview subjects recognised
it as simple and understandable enough. Hierarchical structure was easy to
follow and example activities were also acclaimed as feature that simplifies
the understanding of the model.

• Relevant -

Relevance of the model’s content was checked during the validation. Some
changes were made to the model to homogenize it with the state of SMEs.
When a SPA was not practiced in an organisation it was taken as a hint
that the SPA is irrelevant for this concrete organisation. The reasons for
not using the SPA by the organisation were analysed to find out if these
may apply to the whole target group of the model. Based on the decision
changes were made to the model. These changes and their decision criteria
are listed in chapter 5.4. Based on validation and few improvements made
it can be said that the content of the model is relevant to the software
product developing SMEs.

44

• Evolvable -

SPLEMM has a structure that is easy to understand and follow. The
model is fully extendable with example activities from new case studies
in research or user-specific analyse. Also it is possible to add SPAs under
every parent element in the model. The structure and principles of the
model are built in flexible manner and support evolution.

• Tailorable -

Set of maturity levels is the first option where organisations can choose
the settings that are most suitable for their initial situation. Also the
satisfied-explained feature of SPA-s give a room for personalisation of the
model. Example activities allow organisations to populate the model with
activities specific only to their individual process habits.

• Useful -

Usefulness as defined in chapter ?? is hard to prove without testing the
model in a dedicated and long lasting case study. During the validation in-
terviews some concerns were presented about cost-benefit ratios of process
changes generally. Still it was observed that a large part of SPLEMM pro-
cesses were present in interviewed organisations’ current processes. Thus
it can be supposed that necessary changes and investments for SPLE
adoption are not too high. Knowing the high rate of reported benefits
of SPLE projects in industry, it can be assumed that adoption costs are
lower than possible gains from SPLE. Still further case studies are needed
to strengthen this statement.

Based on the data gathered in scope of the thesis project it can be said that
the developed SPLEMM has potential to fulfill all the requirements set in the
beginning of the project. Still further verification and measurements of real
implementation cases are needed to confirm the realisation of all the criteria.

6.3 Suggestions for further research

The current project could be continued with validation in organisations that are
already practicing SPLE and control the structure and content in these contexts.
Next step would be to actually verify the model and test it for real life process
assessment, process improvement or SPLE adoption projects.

The need for more industrial case studies in SPLE area was recognised dur-
ing the project. SPLEMM could be extended with further EAs (example activ-
ities) that get proven in these case studies. Author’s opinion, that is based on
overview of theory and discussions with industry representatives, is that SPLE
area currently needs mostly practical success stories that could encourage the
wider spread of the paradigm.

6.4 Summary

The project aimed to develop SPLEMM (Software Product Line Engineering
Maturity Model) that is suitable for usage in small and medium sized organisa-
tions. The SPLE paradigm that has proven itself in larger companies have not
achieved wide popularity in smaller software product development organisations.

45

This gap was targeted with the development initiative of SPLEMM. The model
was created based on present best practices and frameworks, and adapted into
light-weight form for SME-s. The model was later validated in industry through
several interviews that gave input for the refinement and evolution of the model.

It was recognised during the project that many of the organisations among
the potential SPLE adopters already have quite a strong base of practices in
place. Thus the full adoption of the paradigm would not involve too much
changes. Developed model aimed to give an easy way of recognising the gaps
to fill for SPLE adoption and achieving the benefits of the paradigm in context
of SMEs.

Theoretical and empirical analyse showed that the goal of creating a model
that could be used for gaining overview, adopting and improving SPLE pro-
cesses in small and medium sized enterprises was achieved. The resulting model
satisfied the requirements of being usable, relevant, evolvable, tailorable and
useful for its target group.

46

References

[1] Carmenta ab webpage. http://www.carmenta.se/, May 2009.

[2] Definition of small and medium sized en-
terprises on european commission’s website.
(http://ec.europa.eu/enterprise/enterprise policy/sme definition/index en.htm),
May 2009.

[3] Lavasoft webpage. http://www.lavasoft.se/, May 2009.

[4] Software engineering institute website about cmmi.
(http://www.sei.cmu.edu/cmmi/index.html), May 2009.

[5] Software engineering institute’s website on software product lines.
http://www.sei.cmu.edu/productlines/, May 2009.

[6] Spotfire webpage. http://www.spotfire.se/, May 2009.

[7] Syntronic webpage. http://www.syntronic.se/, May 2009.

[8] John Adams and Linda Juleff. Managerial Economics for Decision Making.
Palgarve Macmillan, 2003.

[9] Faheed Ahmed. Process Maturity Model for Software Product Line. PhD
thesis, The University of Western Ontario, 2006.

[10] Vander Alves, Tarćısio Câmara, and Carina Alves. Experiences with mobile
games product line development at meantime. In SPLC ’08: Proceedings
of the 2008 12th International Software Product Line Conference, pages
287–296, Washington, DC, USA, 2008. IEEE Computer Society.

[11] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig,
Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. Pulse: a methodol-
ogy to develop software product lines. In SSR ’99: Proceedings of the 1999
symposium on Software reusability, pages 122–131, New York, NY, USA,
1999. ACM.

[12] Andreas Birk, Gerald Heller, Isabel John, Klaus Schmid, Thomas von der
Maen, and Klaus Mller. Product line engineering: The state of the practice.
IEEE Software, 20(6):52–60, 2003.

[13] Jan Bosch. Product-line architectures in industry: a case study. In ICSE
’99: Proceedings of the 21st international conference on Software engineer-
ing, pages 544–554, New York, NY, USA, 1999. ACM.

[14] Jan Bosch. Maturity and evolution in software product lines: Approaches,
artefacts and organization. In Software Product Lines, volume 2379/2002,
pages 247–262. Springer, Berlin / Heidelberg, 2002.

[15] A. Cockburn and J. Highsmith. Agile software development, the people
factor. Computer, 34(11):131–133, Nov 2001.

[16] M.A. Cusumano. The software factory: a historical interpretation. Soft-
ware, IEEE, 6(2):23–30, Mar 1989.

47

[17] S. Deelstra, M. Sinnema, J. Nijhuis, and J. Bosch. Cosvam: a technique for
assessing software variability in software product families. pages 458–462,
Sept. 2004.

[18] Tore Dyb̊a. Factors of software process improvement success in small and
large organizations: an empirical study in the scandinavian context. SIG-
SOFT Softw. Eng. Notes, 28(5):148–157, 2003.

[19] W.B. Frakes and Kyo Kang. Software reuse research: status and future.
Software Engineering, IEEE Transactions on, 31(7):529–536, July 2005.

[20] Claudia Fritsch and Ralf Hahn. Software Product Lines, chapter Prod-
uct Line Potential Analysis, pages 228–237. Lecture Notes in Computer
Science. Springer, 2004.

[21] Svahnberg M. Gorschek T. and Tejle K. Introduction and application of
a lightweight requirements engineering process evaluation method. In Pro-
ceedings of the Ninth International Workshop on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ’03), pages 101–112, Essen,
Germany, 2003.

[22] Christoph Wienands Gunther Lenz. Practical Software Factories in .NET.
Apress, 2006.

[23] Geir K. Hanssen and Tor E. Fgri. Process fusion: An industrial case study
on agile software product line engineering. Journal of Systems and Software,
81(6):843 – 854, 2008. Agile Product Line Engineering.

[24] Michael Kircher, Christa Schwanninger, and Iris Groher. Transition to
a software product family approach - challenges and best practices. In
Proceedings of the 10th International on Software Product Line Conference:
IEEE Computer Society, 2006.

[25] P. Knauber, D. Muthig, K. Schmid, and T. Wide. Applying product line
concepts in small and medium-sized companies. Software, IEEE, 17(5):88–
95, Sep/Oct 2000.

[26] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,
1992.

[27] F. Navarrete, P. Botella, and X. Franch. How agile cots selection methods
are (and can be)? pages 160–167, Aug.-3 Sept. 2005.

[28] Muhammad A. Noor, Rick Rabiser, and Paul Grnbacher. Agile product line
planning: A collaborative approach and a case study. Journal of Systems
and Software, 81(6):868 – 882, 2008. Agile Product Line Engineering.

[29] Jorma Palo Pasi Kuvaja1 and Adriana Bicego. Tapistrya software pro-
cess improvement approach tailored for small enterprises. Software Quality
Journal, 8(2):149–156, Oct 1999.

[30] Linda Northrop Paul Clements. Software Product Lines - Practices and
Patterns. Addison-Wesley, 2002.

48

[31] K Pohl, G Böckle, and F van der Linden. Software product Line Engineering
- Foundations, Principles, and Techniques. Springer, 2005.

[32] Dirk Muthig Patricia Costa Ralf Carbon, Mikael Lindvall. Integrating
product line engineering and agile methods: Flexible design up-front vs.
incremental design. In 1st International Workshop on Agile Product Line
Engineering (APLE).

[33] D.J. Reifer. How good are agile methods? Software, IEEE, 19(4):16–18,
Jul/Aug 2002.

[34] I. Richardson and C. Gresse von Wangenheim. Guest editors’ introduction:
Why are small software organizations different? Software, IEEE, 24(1):18–
22, Jan.-Feb. 2007.

[35] Colin Robson. Real World Research- A Resource for Social Scientists and
Practitioners-Researchers, volume 2nd. Blackwell, 2002.

[36] Dale Churchett Ross Buhrdorf and Charles W. Krueger. Salions experience
with a reactive software product line approach. In Software Product-Family
Engineering.

[37] D. Sellier, M. Mannion, G. Benguria, and G. Urchegui. Introducing soft-
ware product line engineering for metal processing lines in a small to
medium enterprise. pages 54–62, Sept. 2007.

[38] Software Engineering Institute. CMMI for Development, version 1.2, 2006.

[39] Mikael Svahnberg and Jan Bosch. Software Architectures for Product Fami-
lies, chapter Issues Concerning Variability in Software Product Lines, pages
146–157. Lecture Notes in Computer Science. Springer, Berlin / Heidelberg,
2000.

[40] Cooper K. Tian, k. Agile and software product line methods: are they so
different? In 1st International Workshop on Agile Product Line Engineer-
ing (APLE).

[41] Frank van der Linden. Family evaluation framework overview introduction.
Technical report, ITEA project, 2005.

[42] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software Product
Lines in Action - The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[43] Martin Verlage and Thomas Kiesgen. Five years of product line engineering
in a small company. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 534–543, New York, NY, USA,
2005. ACM.

[44] Christiane Gresse von Wangenheim, Srgio Weber, Jean Carlo Rossa Hauck,
and Gisele Trentin. Experiences on establishing software processes in small
companies. Information and Software Technology, 48(9):890 – 900, 2006.
Special Issue Section: Distributed Software Development.

49

Software Product Line
Engineering Maturity Model for

Small and Medium Sized
Enterprises

Appendix I

Author: Siim Saarlo

CONTENTS 1

Contents

1 Business Maturity Area 2

2 Domain Engineering Maturity Area 10

3 Application Engineering Maturity Area 22

4 Collaboration Maturity Area 28

5 Example Action Summary 37

References 44

1 BUSINESS MATURITY AREA 2

1 Business Maturity Area

Business maturity area includes process areas that answer the question how to
create profit with product line initiative. Process areas here deal with scope,
costs, profits, market value and strategy among others.

B.1 Sales and Marketing

Sales and marketing should be involved in and influenced by the software prod-
uct line engineering, so that these functions perform in synergy and mutually
beneficial manner. Sales and marketing should not be based on single systems
but product lines. The functions are aware of opportunities provided by SPLE
and variability.
[10, 5, 4, 9, 30, 31, 3, 32]

• B.1.1 Brand Name Strategy Aligned with SPLE
Organisation considers brand name as a driver of business success and has
agreed on goals and activities that maximise the usage of SPLE oppor-
tunities in strengthening the brand. Multiple products from product line
are collocated under one unified brand strategy.

∗ B.1.1.ea1 Product Line Wide Brand Name SPLEMM - 1
Different applications of product line are marketed under one
brand name.

∗ B.1.1.ea2 Defined Branding Strategy SPLEMM - 1
Organisation has a documented and followed strategy to build,
maintain and develop its brand. The strategy takes into account
the limitations and benefits provided by SPLE.

• B.1.2 Market Strategy Aligned with SPLE
Organisation has understanding about its market strategy and orientation.
Market strategy stands for finding out what customer wants and offering
it with competitive advantage. SPLE characteristics have distinct role in
the selection of market strategy.

∗ B.1.2.ea1 Using Process Qualities in Market Orientation SPLEMM
- 1
SPLE benefits of reduced cost and time to market are used
to market products. User values of having a large amount of
variability for low costs are defined as a main qualities of prod-
ucts. Organisation tries to gain customers by focusing on cost-
leadership strategy.

∗ B.1.2.ea2 Using Product Qualities in Marketing SPLEMM - 2
SPLE benefits of increased usability and quality are used in mar-
keting and promoted as main competitive difference.

1 BUSINESS MATURITY AREA 3

∗ B.1.2.ea3 Defined Product Definition Strategy SPLEMM - 2
Product definition strategy determines who has the influence on
defining product portfolio. Market situation, product line capa-
bilities and future plans are considered when choosing product
definition strategy. Generally customer driven mass customisa-
tion direction of strategy suits better with product line defini-
tion. Still in some cases other options could be considered to
achieve specific goals. For example market or technology ori-
ented producer-driven strategies.

∗ B.1.2.ea4 Setting Pricing Policy with Respect to SPLE Specific
Aspects SPLEMM - 2
Prices and discount rates are calculated in cooperation between
engineering and marketing. Fixed-price for systems can be set
as customers are not willing to pay for work on SPL and core
assets. For marketing purposes it may be considered to offer
multiple products from product line with discount to customers.

∗ B.1.2.ea5 Strategical Order of Entry Decisions SPLEMM - 3
The right time is planned to launch a new application from prod-
uct line in order to capture major shares of the market. Some-
times time-to-market requirements has to be relaxed in order
to improve it for subsequent products. Products are strategi-
cally divided between different life-cycle stages to keep sustain-
able cash flows.

• B.1.3 Relationship Management Aligned with SPLE
Communication and relationships with external stakeholders (eg. contacts
with customers and suppliers) use and take into consideration the benefits
and limitations of SPLE. Customer facing staff has proper overview of
whole product line so it can represent its whole scale.

∗ B.1.3.ea1 Centralised Customer Support SPLEMM - 2
Instead of having separate customer support and servicing groups
for different products on product line, SPLE characteristics like
common user interfaces and higher quality are benefited from.
Customer support is centralised and and provided by one team
who has sufficient knowledge about all product line systems. Be-
cause of the commonalities between the products it is easier to
achieve than among non-SPLE practitioners.

∗ B.1.3.ea2 Managing Customer Interface SPLEMM - 2
Processes and responsibilities are in place for customer interac-
tions. It is important to consider the level and proficiency of
people representing the organisation in front of customers. Pro-
cesses and skills of people interacting with customers (support,
sales, marketing) should support whole product line instead of
single system. Also people interacting with customers have to

1 BUSINESS MATURITY AREA 4

have skills and knowledge to recognise customer needs and op-
portunities for other product line applications.

∗ B.1.3.ea3 Collecting Feedback from Customers SPLEMM - 2
Feedback is collected from end users and used throughout whole
product line. Data is collected and organised about the cus-
tomers in a way that contributes into development of successive
products.

∗ B.1.3.ea4 Limiting Customer Choices with External Variability
SPLEMM - 2
Defined policy for limiting customer choices with external vari-
ability and for cases of exceptions in that policy. It must be made
clear in the organisation and to external stakeholders what are
the variation points in product line that customers can request
change for. Variation points out of that list should be made in-
visible for customers.

∗ B.1.3.ea5 Active Involvement of Customers SPLEMM - 2
Customers are actively involved through conferences, user fo-
rums, beta testers etc. During that it should be tried to bring to-
gether users of different product line systems to increase mouth-
to-mouth marketing and gather customers input into product
development.

B.2 Scoping

Determine the products and the product features which should be included in
the SPL. Main difference between SPLE and other reuse methodologies is that
the product line is based on a clear vision of future products. This vision is
initiated in scoping phase.
[7, 10, 11, 12, 17, 13, 18, 20, 3, 28]

• B.2.1 Scope Planning
Activities that include information collection and analyses necessary for
defining product line scope. As SPLE is not considered suitable for to-
tally new domains, then one of the first steps here should be analysing
and understanding already existing product line.

– B.2.1.1 Collecting Information to Identify Domain Candi-
dates for SPLE
Overview is established about the product line, its features, and how
features are distributed in products. Different available sources has
to be studied for this aim.

∗ B.2.1.1.ea1 Studying Available Products in Existing Product Lines
SPLEMM - 1

1 BUSINESS MATURITY AREA 5

Characteristics of legacy and competitor products as well as fu-
ture extensions to existing products are collected.

∗ B.2.1.1.ea2 Getting Information from Stakeholders SPLEMM
- 1
Small sized and new companies may lack the necessary domain
knowledge. In these cases different stakeholders with information
should be mapped and contacted. Stakeholders involve partners,
suppliers, customers and also competitors.

∗ B.2.1.1.ea3 Using Information Sources Available in Organisation
SPLEMM - 2
Information produced by different functions in organisation is
collected for scoping activities. This information includes for
example relevant standards, knowledge gained through market
analysis and technology forecasts.

– B.2.1.2 Finding Domain Candidates
Analysing collected information to find potential domain candidates
that could be suitable for SPLE. General SPLE standards and charac-
teristics are considered in this initial selection instead of organisation
specific goals and aims.

∗ B.2.1.2.ea2 Define Domain Candidates SPLEMM - 1
Domain candidates are picked based on the simplest analyses of
gathered information without using any specific tools.

∗ B.2.1.2.ea1 Specifying Product-Feature Matrix SPLEMM - 1
Simple matrix to represent the information about product on
product line and their common and variable features. This is a
simplest tool to find potential candidates for SPLE domains.

– B.2.1.3 Domain Candidates Potential Assessment
Domains with high reuse potential are identified through evaluation
of sub-domains in the product line.

∗ B.2.1.3.ea1 Domain analysis SPLEMM - 1
Assessment of domains and product line goals to identify do-
mains with highest reuse potential. The assessment should be
based on previously collected information. Form of the assess-
ment is not specified.

∗ B.2.1.3.ea2 Identification and Prioritization of Product Line Goals
SPLEMM - 1
Product line goals should be defined and understood. Align-
ment between organisational goals and product line business
goals should be established.

1 BUSINESS MATURITY AREA 6

∗ B.2.1.3.ea3 Technology Forecasting SPLEMM - 2
Use technology forecasts for domain potential assessment. Un-
derstand how possible future development in technology influ-
ences product line.

∗ B.2.1.3.ea4 Composing Initial Sketch of Business Case SPLEMM
- 2
Interview management and incorporate marketing and sales per-
sonnel into investigation of business potential of domain candi-
dates. Perspective of achievement of product line goals should
be understood with this step.

∗ B.2.1.3.ea5 Using Domain Experts SPLEMM - 2
Individuals with knowledge and experience with candidate do-
mains should be identified and incorporated into analysis. The
knowledge of in house or external domain experts should be used
to achieve thorough understanding of domains.

∗ B.2.1.3.ea6 Using Formal Methods for Domain Analyses SPLEMM
- 3
Wide selection of formal methods exist for domain analysis :
Scope, commonality, and variability (SCV) analysis, Domain
analysis and design process (DADP), Feature-oriented domain
analysis (FODA), Synthesis process of the reuse-driven software
processes (RSP) approach, Domain analysis process of organi-
zational domain modeling (ODM), Product Line Software Engi-
neering Customizable Domain Analysis (PuLSE-CDA), Domain-
Specific Modeling (DSM).

• B.2.2 Scope Maintenance
Output of scope planning activities is stored and used in further SPLE
activities.

– B.2.2.ea1 Definition of Scope SPLEMM - 1
Document decisions made in scope planning sub-process. Describe
domains and scope and avoid both over generalisation and over trival-
isation when doing that. Also stakeholder concept overlap is common
mistake that and should be avoided from happening.

– B.2.2.2 Definition of Systematic Scoping Processes
Product line scoping should be systematic and ongoing process in
order to understand domain and foresee future requirements. Strate-
gic discussions at the level of features and requirements centered on
the product line scope should be performed to continuously test the
product line scope.

∗ B.2.2.2.1.ea1 Developing Product Line Scenarios SPLEMM - 2
Extensive analysis of future domains and requirements in regular

1 BUSINESS MATURITY AREA 7

bases should result in scenario document that is used and kept
up to date.

∗ B.2.2.2.1.ea2 Defined Scope Management Processes SPLEMM
- 2
Explicit and periodic scoping and road-mapping processes are
put in place.

∗ B.2.2.2.1.ea3 Adopting Comprehensive Scoping Process SPLEMM
- 3
Organisations with high maturity and processes with growing
complexity may consider improving and standardising their scop-
ing procedures based existing methodologies in industry. For
example PuLSE-Eco is one of the few available comprehensive
scoping methodologies.

B.3 Business Planning

SPLE should be reflected in organisations vision, business objectives and also
traced by financial management.
[5, 4, 25, 21, 30, 32, 3]

• B.3.1 Strategic Planning
Organisation wide planning of the software product family business and
development on strategic level.

– B.3.1.1 Definition of Strategic Goals and Plans
Organisation has long term strategy and plans that are in alignment
with SPLE. Characteristics added to organisation by SPLE are con-
sidered and used on strategic level. SPLE specific characteristics are
included and considered in strategy building process.

∗ B.3.1.1.ea1 Analiese of Internal and External Environment, Risks
and Opportunities SPLEMM - 2
Usage of different tools helps organisation to get a thorough pic-
ture of different aspects that affect their product line perfor-
mance. SWOT and PEST analyse are examples of such tools.
Relations among systems of product line are considered in envi-
ronment analyse. Overview of possible risks and opportunities
is established during the analyse.

∗ B.3.1.1.ea2 Using Product Roadmaps SPLEMM - 2
Goals and results of domain engineering are considered on strate-
gic level using roadmaps of future products. Product roadmaps
give a perspective of different products and give an opportunity
to build connections between the product line level and strategic
level.

1 BUSINESS MATURITY AREA 8

∗ B.3.1.1.ea3 Distinguishing Between Domain and Application Plan-
ning SPLEMM - 2
There are separate plans and roadmaps for domain and appli-
cation engineering. The plans are related and commonalities in
applications provide the basis of the domain engineering plan.

∗ B.3.1.1.ea4 Defined Portfolio Management Processes SPLEMM
- 3
There is defined process for utilising plans and roadmaps of prod-
uct line and its applications, which are coordinated and used
strategically to gain best business value out of SPLE.

– B.3.1.2 Business Vision
SPL should have a big role in business vision and the vision should
address the benefits and reflect the nature of SPLE. The vision should
motivate to reach strategic goals through proper SPLE practices.

∗ B.3.1.2.ea1 Using Vision as Decision Making Tool SPLEMM -
1
Business vision is in practical use as decisions on different levels
and functions are measured against it

∗ B.3.1.2.ea2 Incorporating SPLE in business vision SPLEMM -
2
SPLE has the central part in business strategy. It is recognised
that strategic goals and development towards vision are achieved
through practicing SPLE. Foreseeing SPLE vision responds to
new market needs and changing technology

∗ B.3.1.2.ea2 Quantitatively Incorporating SPLE in Business Vi-
sion SPLEMM - 3
SPLE, its value and evolution is incorporated in quantitative way
in business objectives and vision. Advantages of SPLE appear
in vision and business objectives and at the same time the draw-
backs are discovered and their effects diminished on strategic
level. Vision and business objectives are related to SPL develop-
ment upon a well-understood bases.

• B.3.2 Budgeting and Investment
Integration of SPLE related aspects in budgeting, financial management
and funding activities.

– B.3.2.1 Financial Management of SPLE
SPLE is reflected in financial management of the organisation.

∗ B.3.2.1.ea1 Establishing Budget for Domain Engineering SPLEMM
- 2
Investments are made and budgeted for domain-engineering ac-
tivities and for repository of reusable assets. Costs for example
for refactoring of reference architecture are included in budget.

1 BUSINESS MATURITY AREA 9

∗ B.3.2.1.ea2 Managing Domain Engineering Budget SPLEMM
- 3
Mechanisms in place to generate budget for domain engineering
by results of sales. Costs and savings of reuse and variability
and SPLE is measured, and reflected in budgets. In more ad-
vanced organisations budgeting and investment are accurately
integrated with the forecast of sales, costs and savings of SPL
products.

– B.3.2.2 Financial Management Involvement in Product Line
Development Decisions
Financial justification is provided for the choice of products and the
product line approach to build them.

∗ B.3.2.2.ea1 Prediction of Future Costs and Benefits Using Cur-
rent Development Approach SPLEMM - 2
Financial management has an ability to predict costs and bene-
fits organisation has when continuing with current development
approach

∗ B.3.2.2.ea2 Prediction of Future Cost and Benefits of Product
Line Approach SPLEMM - 3
Financial management has an ability to foresee costs and bene-
fits organisation has when using product line approach.

∗ B.3.2.2.ea3 Investment Analysis about Product Line Related Costs
SPLEMM - 3
Financial management has a capacity to predict costs related to
improving product line or converting to product line approach.

2 DOMAIN ENGINEERING MATURITY AREA 10

2 Domain Engineering Maturity Area

Domain Engineering is a maturity area that deals with development of core
assets base (reference architecture). The area follows development of core assets
through the traditional software development life-cycle stages.

D.1 - Domain Requirements Engineering

Development, management and documentation of common and variable domain
requirements.
[3, 1, 27, 8, 9, 10, 19, 22, 23, 26]

• D.1.1 Requirements Elicitation
Process of collecting stakeholder needs and translating them into require-
ments. The goal is to cover maximum amount of requirements of all
envisioned product line applications.

– D.1.1.1 Using Different Sources of Requirements
Involvement of potentially large number of different sources for re-
quirement identification.

∗ D.1.1.1.ea1 Involving Different Roles SPLEMM - 2
Roles like product managers, architects, customer groups, main-
tenance staff etc. should be involved in requirement elicitation
process.

∗ D.1.1.1.ea2 Involving Different Sources SPLEMM - 2
Other potential sources involve legacy systems or external sources
like country laws, environment and safety regulations etc.

∗ D.1.1.1.ea3 Studying Existing Applications SPLEMM - 2
Already existing applications can be reviewed as a source of re-
quirements for product line.

– D.1.1.2 Initial Organisation of Requirements
Organise collected requirements for further analyse and usage. Be-
cause of the high number and growth of requirements they should be
organised in a manner suitable for concrete case.

∗ D.1.1.2.ea1 Prioritisation of Requirements SPLEMM - 1
Priorities should be organised into arbitrary, named subsets or
concrete release strategy by prioritising the software require-
ments and mapping them to future releases of the software.

∗ D.1.1.2.ea2 Separation of Problem and Solution Space SPLEMM
- 1
Separate pure customer requirements from technical requirements.

2 DOMAIN ENGINEERING MATURITY AREA 11

∗ D.1.1.2.ea3 Defining Requirements Organisation Process SPLEMM
- 2
SPLE needs more rigid requirements organisation process be-
cause number of requirements tend to be high.

∗ D.1.1.2.ea4 Categorise Requirements SPLEMM - 2
Depending on development procedures it might be beneficial to
organise requirements based on their types. Keeping the bug-
reports, enchancement requests, smaller new features requests
etc in separate group may become beneficial when organisation
has special debugging iterations. This also makes it easyer to
decide if something should be approached on reference architec-
ture level or on single applications.

∗ D.1.1.2.ea5 Using Proven Representation Methods SPLEMM -
3
Example of such methods is definition hierarchies that organises
the requirements into a definition hierarchy and shows require-
ments for different products in the same hierarchy. Chosen or
developed method should identify architectural drivers of the
product family and show how different products in the family
vary. Other example of such method is to organise requirements
into Lucent’s Commonality Analysis document

• D.1.2 Commonality and Variability Analysis
Elicited requirements should be analysed to understand the required vari-
ability in them. This makes it possible to design required variation points
during architectural and detailed design.

– D.1.2.1 Identify a Set of Common and Variable Require-
ments
In application requirements engineering common requirements must
be transferred to domain level. In domain engineering process area
elicited requirements have to be analysed to find the ones that are
specific to only some applications and should be implemented as vari-
ants in domain variability points. Less common requirements can be
left to be specified during application engineering.

∗ D.1.2.1.ea1 Application-Requirements Matrix SPLEMM - 1
Simple way to keep track on requirements and their existence
in applications of product line by visualising them in the 2-
dimensional table.

∗ D.1.2.1.ea2 Priority-Based Analysis Scheme SPLEMM - 2
Kano model is an example of priority based analysis scheme.
This helps to organise customer requirements into different groups
depending on their effect on customer satisfaction with product.

2 DOMAIN ENGINEERING MATURITY AREA 12

∗ D.1.2.1.ea3 Check-List Based Analysis SPLEMM - 2
Keeping track of categories of potentially common requirements
like strategic commonalities, country laws, customer’s basic needs
etc.

– D.1.2.2 Requirements Variability Documentation
Variability must be documented already in requirements. Effective
documentation guarantees that people in marketing and development
understand each other and can agree on implementation.

∗ D.1.2.2.ea1 Defining Variation Points and Variants in Require-
ments SPLEMM - 1
Define and document variation points and variants with their
dependencies in requirements

∗ D.1.2.2.ea2 Distinguish Between Internal and External Variabil-
ity SPLEMM - 1
Distinguish between variability that is only visible to engineers
and variability for customers

∗ D.1.2.2.ea3 Document the Common Requirements in Detail SPLEMM
- 2
Requirements documentation process and methods are agreed
in the organisation. These allow representation of requirements
and back-tracing links between requirements and following de-
sign and implementation issues. Feature models, use-case models
and functional models have been suggested for requirements doc-
umentation in SPLE cases

• D.1.3 Requirements Management
Elicited requirements have to be collected, organised and used in a way
that keeps their quality high.

– D.1.3.1 Manage Requirement Changes
Requirements may change in time. Collected requirements have to be
managed in a way that allows to reflect those changes in documented
requirements. In case of SPLE extra attention has to be payed to
keep variants up to date.

∗ D.1.3.1.ea1 Communicate Software Requirements SPLEMM -
1
Establish communication mechanisms for dissemination of soft-
ware requirements, and updates to requirements to all parties
who will be using them. In SPLE environment requirements
have to be discussed intensively across larger group of people.
By default it is one of the responsibilities of architect. This can
be done by relatively informal discussion support integrated in

2 DOMAIN ENGINEERING MATURITY AREA 13

processes.

∗ D.1.3.1.ea2 Process for Integrating New Requirements SPLEMM
- 2
Defined process have to exist to integrate future requirements
into product line. This process should include regular analysis
of possible future product line requirements that take into con-
sideration business strategy, software industry development and
customer needs.

∗ D.1.3.1.ea3 Receiving Feedback from Application Engineering
Cycles SPLEMM - 2
New requirements or changes in requirements have to get from
application engineering to domain engineering through feedback
cycles. Organisational issues should be considered when estab-
lishing processes.

∗ D.1.3.1.ea4 Reactive Customisation of Product Line Require-
ments SPLEMM - 1
With smaller companies and new markets insufficient domain
knowledge can be a problem. Reactive customisation of product
line requirements may be used in this case until enough domain
knowledge is gathered.

– D.1.3.2 Guarantee Quality of Requirements
Evaluate the consistency and establish traceability between software
requirements and system requirements. Extra effort has to be put on
quality of common requirements as they affect all the systems derived
from product line. In later stage of SPL life it can happen that more
focus is put on architectural issues which may loosen the consistency
between product line and its requirements.

∗ D.1.3.1.ea1 People Carrying Knowledge SPLEMM - 1
Easiest way to make sure that customer requirements are un-
derstood correctly in design phases is to involve some people in
both of the processes. Architects should be part of requirements
elicitation processes to bring the understanding and knowledge
of requirements logic into design. Also it may be beneficial to
integrate architects into customer negotiations.

∗ D.1.3.2.ea2 Definition of Requirements Management Process SPLEMM
- 2 Requirements engineering process should be documented
properly so that all the stakeholders have same understanding
of how it works and what are the standards to be followed when
creating and managing artefacts in the process.

∗ D.1.3.2.ea3 Document Assumptions of Commonalities SPLEMM
- 2 Reasons and assumptions on why concrete requirement is

2 DOMAIN ENGINEERING MATURITY AREA 14

common should be documented. This allows to validate those
assumptions in further stages of product line.

∗ D.1.3.2.ea4 Compromise Between Quality and Generality SPLEMM
- 2
In SPLE contexts quality requirements has to be lowered some-
times to gain in generality. Organisation has to be aware of the
trade-offs and have common policy for decisions on these issues.

∗ D.1.3.2.ea5 Regular Roundtable Meetings SPLEMM - 2
Regular meetings between requirements engineers, lead archi-
tects, and marketing and sales people are held in order to bal-
ance requirements and architecture.

∗ D.1.3.2.ea6 Usage of Defined Requirement Management Tools or
Processes SPLEMM - 3
Complexity of requirements management in SPLE often requires
creation of customised tools or processes to support standard
methodologies. Also some dedicated processes for SPLE require-
ments engineering are available. Pulse-CDA is an example of
pre-defined process.

D.2 - Domain Architecture Definition

Process area where product line core assets are designed and realised.
[3, 1, 7, 9, 10, 17, 25, 15, 23, 29, 32]

• D.2.1 Develop Architectural Design
Initial decisions about domain architecture design

– D.2.1.ea1 Defining Production Strategy SPLEMM - 2
Defining, choosing and using the variation mechanisms provided by
the architecture. That strategy describes how the organisation plans
to build the specific products from the core assets.

– D.2.1.1 Deciding on Usage of Architectural Styles and Pat-
terns
Some high level decisions has to be made on the initial design of ref-
erence architecture. These also have to be reviewed continuously and
communicated. Some styles and methods are proven and more com-
mon in designs of product line architectures, and therefore should be
considered as first-hand options.

∗ D.2.1.2.ea1 Aspect-oriented Software Development (AOSD) SPLEMM
- 2
Allows to eliminate causes of scattering and tangling of features
by a good separation of concerns (features)

2 DOMAIN ENGINEERING MATURITY AREA 15

∗ D.2.1.2.ea2 Usage of Layered Architecture Style and Strategy
Pattern SPLEMM - 2
Engineers should separate context-specific, domain-specific, and
product category specifics. Layered architecture style and strat-
egy pattern are example of available opportunities to separate
different types of functions

• D.2.2 Define Component Interfaces
Development and implementation of a design for the external and internal
interfaces.

– D.2.2.ea1 Interface Design SPLEMM - 1
Interface design process has to incorporate all developers of related
components (providing or requiring). The design is a compromise
between the abilities of components that provide or use the interface
functionality.

– D.2.2.ea2 Interface Implementation SPLEMM - 1
Interface elements have to be declared in programming language file
and added to implementations of componentes that provide or re-
quire the interfaces.

• D.2.3 Define Connecting Components
Development and implementation of a design for core asset components.

– D.2.3.1 Design for Variability and Quality Requirements
Design, implementation and general usage of the variation points and
general mechanisms for achieving variability in a product line archi-
tecture and in consisting components. Chosen variation mechanisms
must support variations required by products, pre-defined production
strategy and efficient integration of new products. Besides variability
product line development demands higher quality in terms of vari-
ability, flexibility, evolvability and maintainability. There are some
proven design methods that help to achieve these criteria

∗ D.2.3.1.ea1 Separation of the Common and Variant Behaviour
SPLEMM - 1
Good design requires distinct separation between common parts
and variation points in product line architecture components.

– D.2.3.3 Make/Buy/Mine/Commission Analysis
New development should occur only after carrying out the activities
in the Make/Buy/Mine/Commission Analysis practice area. Deci-
sion has to be made between building a new component in house,
buying available 3rd party products or letting 3rd party to build a
necessary component. Also existing systems with good architecture,
design and implementation can be used for creating a baseline for

2 DOMAIN ENGINEERING MATURITY AREA 16

the core assets - mining. For example COM interface can be used to
connect legacy system which is written in other language than new
one.

∗ D.2.3.3.ea1 Defined Standard Activity SPLEMM - 1
No analyse is performed for separate components or component
groups. Organisation uses default strategy for all components.
Irregular add-hoc decisions may happen sometimes.

∗ D.2.3.3.ea2 Breath-First Analysis of Options SPLEMM - 2
The most basic way of weighting all the options by using pre-
defined sets of questions. Questions should compare the costs
and benefits, experience with the option and other relevant de-
cision factors. Questions should be organisation specific.

∗ D.2.3.3.ea3 Using More Sophisticated Techniques and Tools SPLEMM
- 3
The growth of the product line can be supported for example
with SEI’s OAR/SMART practice for minging existing assets
and CoVAR process for selecting 3rd party components (COTS).
Also some commercially available tools exist on the market.

• D.2.4 Domain Realisation

– D.2.4.1 Component implementation
Implementation of component designs in programming language.

∗ D.2.4.1.ea1 Usage of Agile Principles SPLEMM - 2
Despite some differences in approaches agile principles and SPLE
may be suitable combination. Specially in SME environments it
is beneficial to leave the development process agile after SPLE
adoption.

∗ D.2.4.1.ea2 Usage of Test-Driven Development SPLEMM - 2
Unit testing is a common and important practice in SPLE that
holds the roles of initial testing and also protects the quality of
reference architecture from changes in future.

∗ D.2.4.1.ea3 Encapsulation of Legacy Systems SPLEMM - 2
Wrapping legacy systems and integrating them to SPL has proven
as highly beneficial practice to lower the costs of SPLE practice
initiation.

– D.2.4.2 Compilation
There exists a process for compiling components into object files that
can be linked into working executables during application realisation.

∗ D.2.4.5.ea1 Automating Compilation Activities SPLEMM - 2
Compilation activities should be integrated with testing and ref-

2 DOMAIN ENGINEERING MATURITY AREA 17

erence architecture organisation. Automated process should in-
volve compilation, binding and unit testing. There exist exam-
ples of Fowler’s Cruise Control usage in SPLE settings.

• D.2.5 Domain Architecture Evaluation
Evaluation of reference architecture can be organised in different forms.
What ever is the choice of methods it is important that quality of the
architecture is guaranteed through that step.

– D.2.5.1 Review-Processes for Product Line Quality Require-
ments
Extra attention should be paied to product line specific quality re-
quirements like variability, flexibility, evolvability, and maintainabil-
ity to assure quality and sustainability of the product line. Several
architecture review techniques exist that can be used in product line
context. These techniques are categorised as questioning and mea-
suring techniques. Often mechanisms like Java reflection and late
binding is used in product lines. In these cases static code analy-
sis are not sufficient but dynamic analysis using runtime information
should be used instead.

∗ D.2.5.1.ea1 Architecture design reviews SPLEMM - 2
Rather informal design review meetings. Exact form and par-
ticipants can be decided by the organisation. For example these
can be run in a form of peer and team reviews.

∗ D.2.5.1.ea2 formal architecture evaluation methods SPLEMM
- 3
Usage of more formal methods could be considered for mature ar-
chitectures. Example of such methods include SEI Architecture
Tradeoff Analysis Method (ATAM) or the SEI Software Archi-
tecture Analysis Method (SAAM), software performance egni-
neering (SPE)

∗ D.2.5.1.ea3 Establishing Arhitecture Review Board SPLEMM
- 3
Architecture review board should be responsible for the overall
architecture, its quality and general accordance to design prin-
ciples. Also the decisions about how and where to implement
requirements can be overviewed by the board. It also has the
communicational responsibility to mediate across product and
platform development.

– D.2.5.2 Refactoring
Refactoring processes is necessary to keep asset evolution under con-
trol.

2 DOMAIN ENGINEERING MATURITY AREA 18

∗ D.2.5.2.ea1 Ad-hoc Refactoring SPLEMM - 1
Non planned refactoring happens irregularly

∗ D.2.5.2.ea2 Including Refactoring Activities in Processes SPLEMM
- 2
Refactoring is incorporated in standard architecture develop-
ment processes. Refactoring costs are accepted and importance
understood even when customer is not paying for it directly
(higher level of maturity).

∗ D.2.5.2.ea3 Removing Unused Component Parts SPLEMM - 2
Removing of the component parts that are not used to avoid
dead code.

∗ D.2.5.2.ea4 Finding Emerging Abstractions SPLEMM - 2
Usage of customisation and refactoring to find emerging abstrac-
tions in order to avoid inaccurate and over-generalized proactive
design efforts.

∗ D.2.5.2.ea5 Incorporating Business Unit Architectures SPLEMM
- 2
Business unit architectures are incorporated in code reviews and
refactoring to minimise dependencies between reusable assets.

∗ D.2.5.2.ea6 Minimising Interfaces SPLEMM - 2
Refactoring and redesign of product line and its assets should
aim at minimising the interfaces between the components. This
mitigates the problem of architecture with growing complexity.

D.3 - Domain Testing

Domain testing looks for defects in domain artefacts and creates reusable test
artefacts for application testing. Domain testing processes are generally same
as single-systems but additionally has to deal with variability and the issue of
non-existing executable system.
[3, 23, 32]

• D.3.1 Choice of Test Strategy and Approach
Assets to be tested are analysed and suitable test cases are identified for
separate assets. In theory there are two extreme strategies for quality as-
surance: product-focused and infrastructure-focused. One is performing
the tests on derived applications and the other on core assets respectively.
Because of the flaws in both of these, some less compromising strategies
are used in practice.

∗ D.3.1.1.ea1 Using a Sample Application Strategy (SAS) SPLEMM
- 1
Sample applications are used to test domain artefacts or finalised

2 DOMAIN ENGINEERING MATURITY AREA 19

platform development stalled until first application is ready to
be used for testing instead of sample application.

∗ D.3.1.1.ea2 Using Commonality and Reuse Strategy (CRS) SPLEMM
- 1
Common parts of core assets are tested during domain testing.
At the same time reusable test artefacts are prepared for vari-
able parts and these are used in application testing phase when
variabilities are binded.

∗ D.3.1.1.ea3 Composite Strategy SPLEMM - 1
This strategy combines strengths of SAS and CRS strategies by
enforcing the creation of reusable test artefacts in domain testing
and the reuse of these artefacts in application testing.

• D.3.2 Domain Test Specification and Construction
Building process of test artefacts.

– D.3.2.1.ea1 Creating Logical Test Cases SPLEMM - 1
Test cases without concrete details like data, GUI elements etc are
created.

– D.3.2.1.ea2 Creating Detailed Test Cases SPLEMM - 1
Logical test cases are improved with details. Detailed test cases are
only created for common parts of reference architecture.

– D.3.2.1.ea3 Creating Traceability Links SPLEMM - 2
Creating traceability links between test artefacts and test references.
Traceability links allow to reuse test artefacts in application engi-
neering.

• D.3.3 Domain Test Execution and Evaluation
The phase of conducting designed tests and analysing results

– D.3.3.ea1 Domain Unit Testing SPLEMM - 2
Use rigid unit testing (eg. Junit framework) to avoid problems with
core assets usage. If variability is realised then the unit has to be
built with each defined variant. From then each build is tested as in
single-system engineering.

– D.3.3.ea2 Integration Testing on Domain Engineering Level SPLEMM
- 2
In SPLE context variability makes it impossible to test all component
interactions during domain testing. It is more reasonable to test only
common interactions and those that contain few variable interactions
with already realised components.

2 DOMAIN ENGINEERING MATURITY AREA 20

– D.3.3.ea3 System Testing on Domain Engineering Level SPLEMM
- 2
System tests are influenced by variability that is defined in domain
requirements artefacts. As parts of the system tested in this level
are typically large, it is hard to find test cases without variability.
Thus system tests can be performed with a defined configuration of
variants.

– D.3.3.4 Documenting Test Cases SPLEMM - 2
Test cases has to be documented in order to guarantee verifiability
and repeatability of tests. For that test protocol including test case,
version number of the tested object and the test result should be cre-
ated. Test records and error classes should be analysed and origins
of the errors determined. Each test run should have test summary
raport.

D.4 - Product Line Architecture Documentation

Documentation should aim to give thorough overview of architecture and avail-
able assets and visualise dependencies between assets. Architecture should be
described in well known notations such as UML, covering all relevant architec-
tural views and using clearly defined semantics.
[3, 10, 9, 23]

• D.4.1 Documentation Processes Management
Management practices related to documentation.

– D.4.1.ea1 Assigning Role for Architecture Documentation Responsi-
ble SPLEMM - 1
Responsible for documentation must be set to guarantee high qual-
ity. Also documentation should have an essential part of development
processes and core assets.

– D.4.1.ea2 Documentation and Guidelines for Application Builders
SPLEMM - 1
Descriptive scenarios have to be provided to application builders that
explain the features of reference architecture.

– D.4.1.ea3 Communicate Architecture SPLEMM - 1
Architecture should be communicated to different stakeholders through
appropriate documentation. It has to be made sure that business
and marketing people, who might not understand technical notation,
have a possibility to understand it. Also it has to be quaranteed that
different stakeholders get the information they actually need.

• D.4.2 Architecture Documentation
Proper documentation techniques for product line architecture.

2 DOMAIN ENGINEERING MATURITY AREA 21

– D.4.2.ea1 Using Architectural Scenarios SPLEMM - 1
Describe architectural scenarios that present the architecture from a
system use perspective. Use cases and textual descriptions can be
used for that.

– D.4.2.ea2 Using Different Views to Represent Architecture SPLEMM
- 2
Different views can be used to guarantee good visibility of architec-
ture. Possible views include a module-decomposition view, a communicating-
processes view, a layered view, a deployment view.

– D.4.2.ea3 Specifying Component Interfaces SPLEMM - 2
Use contractual approach, state machines, interval temporal logic
and aim for minimising the interfaces between components to sim-
plify the architecture

3 APPLICATION ENGINEERING MATURITY AREA 22

3 Application Engineering Maturity Area

Application Engineering maturity area consists of software engineering activities
that are related to production of product line applications. It ivolves application
specific requirements elicitation and development, application deriviation from
core assets, and application testing.

A.1 Application Requirements Engineering

The goal of application requirements engineering in SPLE is to elicit and to
document the requirements specific for a particular application and at the same
time use the domain requirements artefacts as much as possible.
[31, 23, 3]

• A.1.1 Requirements Elicitation The process of application specific re-
quirements elicitation and reference requirements reuse.

– A.1.1.1 Elicitation of Application Specific Requirements Re-
quirements are collected from application stakeholders. It is impor-
tant to get information from all relevant stakeholders that were not
covered during domain requirements engineerig. Also the ones al-
ready interviewed there should be considered if exists a chance that
they have specific needs towards the application in question.

∗ A.1.1.1.ea1 Analysing Target Group Needs SPLEMM - 1
Elicitation of application specific requirements should start with
identification of the application target group and analyzation of
their needs. Methods from common single-system development
practices can be used.

∗ A.1.1.1.ea2 Using Subject Matter Experts SPLEMM - 2
Specific expert knowledge should be used also during applica-
tion specific requirements elicitation besides scoping and domain
requirements elicitation phases. Relationships with proper ex-
pertise sources should be mapped and managed.

– A.1.1.2 Domain Requirements Reuse
Application engineering should maximise the reuse of reference re-
quirements artefacts.

∗ A.1.1.2.ea1 Communication of External Variability to Stakehold-
ers SPLEMM - 1
Stakeholders should have clear understanding of available vari-
ability choices supported by reference architecture. External
variability is this part of supported variability in reference ar-
chitecture that is available for customers to change. The more
customers make their change requests among these variables, the
higher is reuse of reference requirements artefacts.

3 APPLICATION ENGINEERING MATURITY AREA 23

∗ A.1.1.2.ea2 Usage of Domain Variability Model SPLEMM - 1
Domain variability model is documentation of supported vari-
ability in reference architecture. It can be used to better com-
municate product line capabilities to stakeholders.

• A.1.2 Application Requirements Analyse Requirements that are col-
lected during Application requirements elicitation have to be analysed to
distinguish the ones that could be common throughout whole product
line and should be included to reference architecture. Also in this stage it
should be decided weather the product is viable to be developed as a part
of a product line or not.

– A.1.2.1 Distinguish Between Product Line Wide and Appli-
cation Specific Requirements
Product line wide requirements can arise during application require-
ments analyse. These requirements has to be effectively communi-
cated back to domain engineering.

∗ A.1.2.1.ea1 Review Application Specific Requirements SPLEMM
- 1
Collected application specific requirements have to be reviewed
to find potential domain wide requirements

∗ A.1.2.1.ea2 Defined Decision Criteria Exists for Domain Wide
Requirements SPLEMM - 2
There exists concrete process for deciding if any requirement
should be considered as domain wide and suggested to add as
a core asset.

– A.1.2.2 The Evaluation of Realisation Effort for Require-
ment Deltas
Reuse of core assets is maximised by using domain requirements to
satisfy stakeholder requirements where possible. Stakeholder require-
ments that do not correspond to domain requirement artefacts are
application specific or can apply for more than one application. In
latter case it might be beneficial to implement as requirement delta.
These requirements has to be analysed to decide weather the delta
should be realised in the application or not.

∗ A.1.2.2.ea2 Analysing Requirement Deltas SPLEMM - 2
Analyse requirement deltas with respect to variability model, do-
main requirements artefacts, and the application architecture.

∗ A.1.2.2.ea1 Deciding about Requirement Deltas SPLEMM - 2
Trade-off decisions made about which of the stakeholder require-
ments to include as application requirement.

– A.1.2.3 Decision about Application’s Viability as a Product
Line Member

3 APPLICATION ENGINEERING MATURITY AREA 24

Application specific requirements help to estimate the cost of the
product and its feasibility for production. These estimations give a
base to application’s business case.

∗ A.1.2.3.ea1 Comparing Application Requirements to Product Line
Scope Definition SPLEMM - 1
The control should be performed if the application in question
fits into the criteria of product line scope.

∗ A.1.2.3.ea2 Updating Product Line Scope Definition SPLEMM
- 2
It may happen that customer demands for many products that
are slightly out of scope of product line. This may indicate that
scope definition should be extended. Trade-offs between chang-
ing the scope and rejecting customers requests must be consid-
ered and proper actions taken in these cases.

• A.1.3 Documentation of Application Requirements
SPLE specific aspects and issues are considered when documenting appli-
cation requirements

– A.1.3.ea1 Establishment of Traceability Links SPLEMM-2
Record traceability links between the domain requirements artefacts
and application requirements artefacts.

– A.1.3.ea2 Documentation of Variability Bindings SPLEMM - 2
Application variability documentation must document the bindings
of the variation points defined in the domain variability model.This
means there is a clear way of indicating which variant is chosen in
each variability point for a application in question.

A.2 Application Design

Design of the application specific architecture and usage of design artefacts from
reference architecture.
[25, 16, 31, 23, 24]

• A.2.1 Application Specific Modelling Creating the design of appli-
catoin by adding application specific abstractions and models to reused
reference architecture artefacts.

– A.2.1.ea1 Establishing Application Specific Design Documentation
SPLEMM - 1
Extracting application design documentation from core assets and
updating it with application specific abstractions and models.

3 APPLICATION ENGINEERING MATURITY AREA 25

– A.2.1.ea2 Product Line Principles are Used in Application Design
SPLEMM - 2
It is good practice to also use general domain design principles in
application design besides tangible core assets. Attention should be
payed to this point specially when there are separate teams for core
assets and application development. Usage of established product
line texture helps to meet this goal.

• A.2.2 Mining / Accessing Appropriate Core Asset
Duplication of core assets in application engineering should be avoided by
maximising the usage of core assets.

– A.2.2.1 Mining Existing Assets for Application Develop-
ment
In order to take maximum out of reusable assets provided by refer-
ence architecture, application engineering has to have good overview
about asset base and defined processes for finding and selecting nec-
essary assets.

∗ A.2.2.1.ea1 Utilisation of the Organisation of Core Asset Base
SPLEMM - 1
Reused domain requirements are used as a first hint of opportu-
nities for reuse as common requirements are implemented in core
assets. Traceability links allow to find implementation assets of
domain requirements. Generally speaking, application engineers
have to have overivew about organisation of core assets.

– A.2.2.2 Using Existing Assets in Application Development
Domain assets are reused in application development by incorporat-
ing them into application design.

∗ A.2.2.2.ea1 Limiting Further Development of Core-Asset Based
Products SPLEMM - 2
Products generated from core assets should not be developed
further to keep the architectural stability among whole product
line and benefit from effective configuration management.

• A.2.3 Binding of Variants
Variation points in core assets are bound to application specific variants
according to bindings.

– A.2.3.ea1 Selecting Suitable Variants in Variation Points SPLEMM
- 1
Reasoned decisions guarantee consistent selection of component vari-
ants. (SPLE book)

– A.2.3.ea2 Binding of Variants SPLEMM - 1
Variants of reference architecture’s variation points are bound based
on application variability model. Traceability between variability in
domain requirements artefacts and the reference architecture is used

3 APPLICATION ENGINEERING MATURITY AREA 26

to accomplish the process.

• A.2.4 Feedback from Application to Domain Engineering Life-
Cycle

– A.2.4.ea1 Integrating Application Specific Elements to Reference Ar-
chitecture SPLEMM - 2
Application specific artefacts that are considered reusable for other
applications are integrated into domain artefacts by domain architect
(or other role responsible for the task).

– A.2.4.ea2 Updating Application Design with Reusable Components
SPLEMM - 2
When application artefact has been integrated to core assets, the
application should use new version of reusable artefact instead of
original application specific one. This allows to reduce the amount
of application specific artefacts that have to be maintained.

A.3 Application Realisation

Provides detailed design and implementation of application-specific components
and interfaces. Selected variants of reused components, and application config-
uration. Final outcome is a working application that is ready for testing.
[25, 31, 23]

• A.3.ea1 Configuration SPLEMM - 1
Applications that are derived from core asset base should reuse these as-
sets as much as possible. Product derivation should be supported by
automated configuration tools or techniques which allows to minimise the
work on application engineering.

• A.3.ea2 Realisation of Application-Specific Components SPLEMM - 1
Similar activities to realisation of single systems but lot of effort is put
on reuse of product line opportunities. Domain interfaces should be used
where possible to keep the common structure even on application specific
parts. Also the design of existing variants should be used. For example in
case of application component and reusable component being variants of
same variation points it is suggested to use the design of existing variants
as an input for the design of the new variant.

• A.3.ea3 Building the Application SPLEMM - 1
As a final task of realisation the application is built using organisation
standard process. This activity includes compiling, linking and deploying
of the software. Depending on used configuration mechanism variation
points of reused components are bound in some of these steps.

3 APPLICATION ENGINEERING MATURITY AREA 27

A.4 Application Testing

Application testing process area is a step necessary to achieve a sufficient qual-
ity of the application under test. The tests cover both reusable and application
specific components. Thus the area complements the testing activities of do-
main testing. Besides some more common quality assurance activities like code
inspections, static analysis of source code and manual testing some SPLE spe-
cific issues has to be considered.
[3, 14, 23]

• A.4.ea1 Handling SPLE Specific Aspects in Testing SPLEMM - 1
Application tests have to handle variability issues in tests. For that vari-
ant absence and application dependency tests could be useful.

• A.4.ea2 Domain Test Artefact Reuse SPLEMM - 2
Core assets include test artefacts that should be used during application
testing. Depending on testing methodology (Component Reuse Strategy
(CRS) or Sample Application Strategy (SAS)) artefacts available for reuse
may differ.

4 COLLABORATION MATURITY AREA 28

4 Collaboration Maturity Area

Collaboration is a maturity area that assembles miscellaneous processes that are
interacting with both domain and application engineering areas. It includes dif-
ferent techical management areas, organisational structure and communication
issues.

C.1 - Variability management

The explicit use of variation points and supporting mechanisms. Involves vari-
ability management processes that support and control variability utilisation in
domain and application engineering paradigmas. Variation points and variants
allow to delay design decisions. Thereby it is possible on domain level to man-
anage differences between applications.
[3, 6, 12, 17, 19, 30, 23, 29]

• C.1.1 Identification of Variation Points
Identification of variation points is an ongoing process in SPLE. Besides
variability identification in domain and application engineering maturity
areas, it should be incorporated as continuous part of general processes.

– C.1.1.ea1 Incorporating Ongoing Variability Points Identification in
Processes SPLEMM - 2
Organisation wide processes support an ongoing identification of vari-
ation points. It should get input from new application engineering,
ongoing scoping and other sources of relevant information.

– C.1.1.ea2 Evolution of Variability SPLEMM - 2
Evolution of variability may happen through introduction of a new
variation point, changed binding time, changed variant addition time,
changed variation point dependences, removed variation point or
added variants. Organisation has defined process in parallel with
variability identification to control and manage the evolution of vari-
ability.

• C.1.2 Variability support processes
Support for variability decisions in engineering areas should be incorpo-
rated in organisation wide processes.

– C.1.2.1 Evaluating Trade Offs Between Early and Late Bind-
ing
When late binding of variants increases the flexibility of product line,
it still has several trade offs including higher resource cost, decrease in
testability and thus predictability of quality, increased need for devel-
opment resources and problems with implicit context dependencies.
Organisations should possess knowledge and preferences about the
issue.

4 COLLABORATION MATURITY AREA 29

∗ C.1.2.1.ea1 Choice of Binding Time for Variability Implementa-
tion SPLEMM - 1
Choice is made considering all different possibilities and their
pros and cons. Different technologies allow to set the binding
time before compilation, at compile time, at link time, at load
time or at Run-time.

∗ C.1.2.1.ea2 Choice of Variability Mechanisms SPLEMM - 1
Depends on the choice of binding time. Examples of variability
mechanisms include [29]:
a) Inheritance, is used when the variation point is a method that
needs to be implemented for every application, or when an ap-
plication needs to extend a type with additional functionality.
b) Extensions and extension points, is used when parts of a com-
ponent can be extended with additional behaviour, selected from
a set of variations for a particular variation point.
c) Parameterisation, templates and macros, are used when un-
bound parameters or macro expressions can be inserted in the
code and later instantiated with the actual parameter or by ex-
panding the macro. For example templates and ifdefs in C++.
d) Configuration and Module Interconnection Languages, are
used to select appropriate files and fill in some of the unbound
parameters to connect modules and components to each other.
e) Generation of derived components, is used when there is a
higher level language that can be used for a particular task, which
is then used to create the actual component.

– C.1.2.2 Mechanisms for Achieving Variability
Domain engineering area should be supported with a knowledge about
different variability mechanisms to make it possible to choose the
most suitable one for concrete situations.

∗ C.1.2.2.ea1 Using Application Specific Plug-ins SPLEMM - 2
In cases where variability provided by domain architecture is
not sufficient to application needs, then a ad hoc solution must
be developed. Although this is done by application developer,
also domain architect must have prepared the architecture for
such application-specific variants. Proper planning and trade-off
decisions have to be made to have this process go easyest way
possible.

∗ C.1.2.2.ea2 Definition of Configuration System SPLEMM - 2
Different configuration methods (eg. license-key-driven configu-
ration) exist to define system structure at build time. Foremost
it is crucial to properly document usable parameters in configu-
ration files to guarantee proper usage of those.

∗ C.1.2.2.ea3 Using Language and Generative Support SPLEMM
- 2
Methodologies in this group include aspect oriented program-

4 COLLABORATION MATURITY AREA 30

ming, template meta programming, domain specific languages
and code generation and macro languages that allow compile-
time binding.

– C.1.2.3 Documentation of Variability
There is a lack of proven and available variability documentation
mechanisms. Organisation wide methodology has to be agreed for it
and its usage enforced.

∗ C.1.2.3.a1 Using Orthogonal Variability Model SPLEMM - 2
Orthogonal variability model is a method for variability docu-
mentation that allows descriptive models to be light-weight. The
method documents only variable aspects of product line when
some other methods grow fast in complexity as they capture
both common and variable features.

– C.1.2.4 Defined Levels of Variation Support
Product line can manage variability in different levels of complexity.

∗ C.1.2.4.ea1 Managing Cross-Cutting Variants SPLEMM - 1
Support for variation that are common for all applications of
product line. Product line specifies only the variation points
that exist over all the applications.

∗ C.1.2.4.ea3 Introducing Variation Points SPLEMM - 1
Variation points are defined in reference architecture. Through
variation points it is determined how core assets can be config-
ured to derive applications from reference architecture.

∗ C.1.2.4.ea4 Completely Defined Variation Points SPLEMM - 2
In more mature and planned ahead product lines there is no
need for adding new variants to variation points during product
derivation. Complete set of variants for each variation point are
part of the configurable product base and ideally represented in
derivation tool.

– C.1.2.ea1 Organising Variability on Various Levels of Product Line
SPLEMM - 3
Variability management is understood as process on different levels
by addressing right issues and using proper variability techniques on
each level of variability[29]:
a) On product line level it is concerned how products differ over the
product line. Variability management activities on this level include
suitable components for product and generate or select product spe-
cific code from reference repository. b) On product level components
are to be fit together and the parts of product specific code are re-
placed or extracted. c) On component level variability defines how to
add implementations of the component interface, and also how these
evolve over time. Questions addressed here include how to enable

4 COLLABORATION MATURITY AREA 31

addition and usage of several component implementations and how
to design the component interface in such a way that it survives the
addition of more concrete implementations. d) On sub-component
level a component consists of a number of feature sets. On the sub-
component level these feature sets are selected to create the compo-
nent for a particular product Main issue on this level is removing or
adding parts of a component where each part spans all component
implementations. e) On code level evolution, but also most variabil-
ity between products, actually take place. It has to be guaranteed
that the provided class interfaces match the method calls performed
throughout evolution of components.

C.2 - Configuration Management

Establish and maintain the integrity of all the work products of a process or
project by managing variability in both time and space.
[1, 3, 27, 17, 2, 23]

• C.2.1 Defined Configuration Management Process and Strategy
Determine configuration management strategy, including configuration
management activities and schedule for performing these activities. Con-
figuration management in SPLE context has to support few aspects that
are not present in single system development environments.

– C.2.1.ea1 Maintaining Unified Process of Configuration Management
SPLEMM - 2
In product line configuration management, a configuration must be
maintained for each version of each product by a single process. Thus
the process has one level of extra complexity when compared to con-
figuration management in single system development.

– C.2.1.ea2 Manage Permissions for Core Asset Product Developers
SPLEMM - 2
In SPLE context are core assets produced by one team but often used
by one or several other teams. This sets the higher requirements for
permission management complexity that single system development.

– C.2.1.1 Tool and Process Support Level
Depending on a complexity of variability management in organisa-
tion the needs for tool support differ significantly. It is important to
match the needs with appropriate level of tool support.

∗ C.2.1.1.ea1 Possiblility to Add New Application in Separate Branch
SPLEMM - 1
In case of adding new projects to product line it might be feasi-
ble to first create a separate branch and to integrate the changes
into the main branch later. Configuration management tools and
processes should allow this option.

4 COLLABORATION MATURITY AREA 32

∗ C.2.1.1.ea2 Basic Configuration Management SPLEMM - 1
Configuration management system supports version, branch, base-
line and branched baseline management. This functionality is
supported in all commercially available configuration manage-
ment systems.

∗ C.2.1.1.ea3 Component Composition SPLEMM - 2
Composition and branched composition management where con-
figuration management system is able to take snapshots of consis-
tent compositions of component versions and maintain indepen-
dent branches of component compositions. This is supported by
few commercially available configuration management systems
or homegrown systems are used.

∗ C.2.1.1.ea4 Software Mass Customisation SPLEMM - 3
In this level configuration management has to handle a) varia-
tion point management by maintaining variants of files in do-
main space, b) customisation management by managing consis-
tent compositions of common and variant files and b) Customi-
sation composition management by managing compositions of
customised components.

C.3 Organisation

Organisational issues relevant to SMEs in SPLE environment
[3, 10, 12, 9, 30, 23, 32]

• C.3.1 Structure
Organisation structure that puts the roles and responsibilities into prac-
tice.

– C.3.1.1 Decision of Organisational Structure
SPLE and company specific aspects should be considered when de-
ciding about the structural approach. Primary question is whether
to have separate core asset groups or not.

∗ C.3.1.1.ea1 Consider the Size of the Effort and the Number of
Products SPLEMM - 1
Usual practice is that with more complex product lines consisting
of different systems and product groups and involving many de-
velopers, it is more beneficial to have dedicated core asset team as
otherwise the communication processes would grow too complex.

∗ C.3.1.1.ea2 Consider the High or Low Effort of Tailoring Core
Assets SPLEMM - 1
How much work does it take to tailor core assets into end prod-
ucts? If there is more effort in product tailoring compared to
core assets development, then it could be beneficial to have in-
tegrated product groups with core asset responsibilities divided

4 COLLABORATION MATURITY AREA 33

between teams.

∗ C.3.1.1.ea3 Consider Proportion of New Development SPLEMM
- 2
Does the building of product line mean mainly new development
or more legacy-based development? In latter case it is better to
have product developers, who have experience with legacy sys-
tem, to be responsible for mining legacy system and developing
core asset base.

∗ C.3.1.1.ea4 Consider the Funding Model SPLEMM - 2
There might be problems with funding core asset team as it is
not clear who pays for their work. This issue must be cleared
before domain engineering team is created.

∗ C.3.1.1.ea5 Consider the Volatility of Core Assets SPLEMM -
2
If core assets are changing and evolving much they need more at-
tention. Then it should be considered to have a dedicated group
responsible for core asset management.

∗ C.3.1.1.ea6 Consider Parallel or Sequential Product Development
SPLEMM - 2
Whether the applications are built sequentially or in parallel
has role in deciding about the organisational structure. In case
of parallel production the need for separate core asset team is
greater in order to avoid a chance that parallel teams are devel-
oping same functionality.

– C.3.1.2 Organisational Structure Definition
Different structural solutions have been tested in industry. Choice
of the best suitable solution depends on organisation specific issues.
Different possible solutions should be considered before deciding on,
and defining the final structure.

∗ C.3.1.2.ea1 Business units specialised around types of products
SPLEMM - 1
The structure is organised around project based single system
development. There exists no separate core assets team.

∗ C.3.1.2.ea2 Single Development Department SPLEMM - 1
There is one development team handling both reference archi-
tecture and product derivation from it.

∗ C.3.1.2.ea3 Temporary Domain Engineering Units for Domain
Development SPLEMM - 2
Domain development unit is extracted from single development
department on bases of need.

4 COLLABORATION MATURITY AREA 34

∗ C.3.1.2.ea4 Project Based Domain Engineering SPLEMM -2
Domain engineering unit responsible for the design, development,
and evolution of reusable assets. On less mature organisations
the structure is still focussed on doing projects and certain se-
nior resources are allocated to reusable component identification
and development. In more mature organisations the domain and
application roles are distributed over the organisation. There are
separate domain engineering projects. Both domain and appli-
cation engineering have mostly project-oriented structure. Most
of the case studies have avoided the restructuring costs even if
it holds down some of the benefits of SPLE. Decision of having
separate domain engineering units has to be considered strongly
before.

∗ C.3.1.2.ea5 Definition of Feedback Loops SPLEMM - 2
Initiation of feedback loops between different product line re-
lated functional units (eg. application and platform developers)
should be defined in organisational structure to guarantee the
full functianality of them.

• C.3.2 Roles and Responsibilities
Organisation has to manage the distinct responsibilities and relationships
occurring in the software product family engineering.

– C.3.2.1 Definitions of Roles and Responsibilities
Distinctive domain and application engineering roles are defined in
role definitions.

∗ C.3.2.1.ea1 Ad Hoc Collaboration for Common Asset Develop-
ment SPLEMM - 1
There are no explicitly defined domain-engineering roles, but the
application-engineering experts collaborate over project borders
to identify and share common assets.

∗ C.3.2.1.ea2 Emphasise Skills and Education SPLEMM - 1
Both SPLE and SME environment sets higher requirements on
level of employers skills and knowledge. SPLE has more com-
plicated processes and more variables that employers have to be
aware of. Also staff requirements are very high on the design
of reusable assets and should be addressed that way. SMEs re-
lay heavily on their employees knowledge and experiences to stay
competitive. Recruitment and resource management should con-
sider this issue.

∗ C.3.2.1.ea3 Defining Both Application and Domain Engineering
Roles SPLEMM - 2
Both domain and application engineering roles and responsibil-
ities are defined. Following responsibilities could be considered

4 COLLABORATION MATURITY AREA 35

: product manager, scoping team, domain expert, architecture
manager, change manager, component developer, issue tracker,
request dispatcher, configuration manager, build manager, and
test engineer.

∗ C.3.2.1.ea4 Integrating Roles Between Domain and Application
Engineering SPLEMM - 2
There are coordination roles between domain and application
engineering, and across domain-engineering organisations. Do-
main engineering has a major role in software development. In
organisation with very high maturity domain and application
engineering are integrated. The most important roles are the
domain-engineering roles. Most people are involved in both do-
main and application engineering roles.

∗ C.3.2.1.ea5 Assignment of Basic SPLE Specific Tasks SPLEMM
- 1
Organisation should assign SPLE specific tasks to concrete units.
There are several tasks that should have responsibles in the struc-
ture or its abbsence should be reasoned. These tasks include re-
sponsibles for production strategy, product scope and associated
business case, product line architecture, requirements of product
line and its members, designing and producing core assets, prod-
uct deriviation.

∗ C.3.2.1.ea6 Assignment of Advanced SPLE Specific Tasks SPLEMM
- 2
Additional responsibilities to think about are core asset evolu-
tion, process improvement, production environment, forecasting
and communicating new trends that can affect product line. Also
the roles of produt, product line and domain and component ar-
chitect could be divided if resources allow that.

– C.3.3 Collaboration Processes
SPLE organisation may be uncommon and confusing to single system
developers in the beginning. Thus some guiding aids should be used
to lower the adaption parrier and enforce the usage of SPLE practices.

∗ C.3.3.1 Product Line Texture
Texture is a collection of rules for coordinatint the implementa-
tion of the architecture and evolving it over time. These rules can
be in form of coding conventions, design patterns (factory, strat-
egy, extension interface, bridge and adapter), architecture styles
(event based communication, pipes and filters, layered arch), or
even usage of concrete framework. The rules has to be communi-
cated effectively throughout organisation. Active awareness cre-
ation and dissemination of SPL principles are critical for success.

4 COLLABORATION MATURITY AREA 36

· C.3.3.1.ea1 Component Variability Documentation SPLEMM
- 1
Each core component must have associated process defined
so that built in component variations can be exercised in ap-
plication derivation.

· C.3.3.1.ea2 Architectural Constraints SPLEMM - 2
Architectural constraints are used to restrict reuse to com-
mon platform

· C.3.3.1.ea3 Appropriate Organisation of Core Asset Base
SPLEMM - 2
Core asset base should be organised in a way that supports
the easy access and usage of reusable components. Depend-
ing on exact context choice may be made among several op-
tions like key domain abstraction, architecture based, or fea-
ture based approaches.

· C.3.3.1.ea4 Rigidly defined variation points SPLEMM - 3
There is an explicit reference architecture determining ex-
plicitly where application architectures may vary. Managed
use of variation points supports the quality in whole SPLE
processes.

· C.3.3.1.ea5 Product derivation SPLEMM - 3
Automated product derivation mechanisms that support the
correct use of product line architecture

5 EXAMPLE ACTION SUMMARY 37

5 Example Action Summary

Example Actions SPLEMM Level 1

Business MA

EA id EA name
Sales and Marketing

B.1.1.ea1 Product Line Wide Brand Name
B.1.1.ea2 Defined Branding Strategy
B.1.2.ea1 Using Process Qualities in Market Orientation

Scoping
B.2.1.1.ea1 Studying Available Products in Existing Product Lines
B.2.1.1.ea2 Getting Information from Stakeholders
B.2.1.2.ea2 Define Domain Candidates
B.2.1.2.ea1 Specifying Product-Feature Matrix
B.2.1.3.ea1 Domain analysis
B.2.1.3.ea2 Identification and Prioritization of Product Line Goals
B.2.2.ea1 Definition of Scope

Business Planning
B.3.1.2.ea1 Using Vision as Decision Making Tool

5 EXAMPLE ACTION SUMMARY 38

Domain Engineering MA

EA id EA name
Domain Requirements Engineering

D.1.1.2.ea1 Prioritisation of Requirements
D.1.1.2.ea2 Separation of Problem and Solution Space
D.1.2.1.ea1 Application-Requirements Matrix
D.1.2.2.ea1 Defining Variation Points and Variants in Requirements
D.1.2.2.ea2 Distinguish Between Internal and External Variability
D.1.3.1.ea1 Communicate Software Requirements
D.1.3.1.ea4 Reactive Customisation of Product Line Requirements
D.1.3.1.ea1 People Carrying Knowledge

Domain Definition
D.2.2.ea1 Interface Design
D.2.2.ea2 Interface Implementation
D.2.3.1.ea1 Separation of the Common and Variant Behaviour
D.2.3.3.ea1 Defined Standard Activity
D.2.5.2.ea1 Ad-hoc Refactoring

Domain Testing
D.3.1.1.ea1 Using a Sample Application Strategy (SAS)
D.3.1.1.ea2 Using Commonality and Reuse Strategy (CRS)
D.3.1.1.ea3 Composite Strategy
D.3.2.1.ea1 Creating Logical Test Cases
D.3.2.1.ea2 Creating Detailed Test Cases

Product Line Architecture Documentation
D.4.1.ea1 Assigning Role for Architecture Documentation Responsible
D.4.1.ea2 Documentation and Guidelines for Application Builders
D.4.1.ea3 Communicate Architecture
D.4.2.ea1 Using Architectural Scenarios

5 EXAMPLE ACTION SUMMARY 39

Application Engineering MA

EA id EA name
Application Requirements Engineering

A.1.1.1.ea1 Analysing Target Group Needs
A.1.1.2.ea1 Communication of External Variability to Stakeholders
A.1.1.2.ea2 Usage of Domain Variability Model
A.1.2.1.ea1 Review Application Specific Requirements
A.1.2.3.ea1 Comparing Application Requirements to Product Line Scope Definition

Application Design
A.2.1.ea1 Establishing Application Specific Design Documentation
A.2.2.1.ea1 Utilisation of the Organisation of Core Asset Base
A.2.3.ea1 Selecting Suitable Variants in Variation Points
A.2.3.ea2 Binding of Variants

Application Realisation
A.3.ea1 Configuration
A.3.ea2 Realisation of Application-Specific Components
A.3.ea3 Building the Application

Application Testing
A.4.ea1 Handling SPLE Specific Aspects in Testing

Collaboration MA

EA id EA name
Variability Management

C.1.2.1.ea1 Choice of Binding Time for Variability Implementation
C.1.2.1.ea2 Choice of Variability Mechanisms
C.1.2.4.ea1 Managing Cross-Cutting Variants
C.1.2.4.ea3 Introducing Variation Points

Configuration Management
C.2.1.1.ea1 Possiblility to Add New Application in Separate Branch
C.2.1.1.ea2 Basic Configuration Management

Organisation
C.3.1.1.ea1 Consider the Size of the Effort and the Number of Products
C.3.1.1.ea2 Consider the High or Low Effort of Tailoring Core Assets
C.3.1.2.ea1 Business units specialised around types of products
C.3.1.2.ea2 Single Development Department
C.3.2.1.ea1 Ad Hoc Collaboration for Common Asset Development
C.3.2.1.ea2 Emphasise Skills and Education
C.3.2.1.ea5 Assignment of Basic SPLE Specific Tasks
C.3.3.1.ea1 Component Variability Documentation

5 EXAMPLE ACTION SUMMARY 40

Example Actions SPLEMM Level 2

Business MA

EA id EA name
Sales and Marketing

B.1.2.ea2 Using Product Qualities in Marketing
B.1.2.ea3 Defined Product Definition Strategy
B.1.2.ea4 Setting Pricing Policy with Respect to SPLE Specific Aspects
B.1.3.ea1 Centralised Customer Support
B.1.3.ea2 Managing Customer Interface
B.1.3.ea3 Collecting Feedback from Customers
B.1.3.ea4 Limiting Customer Choices with External Variability
B.1.3.ea5 Active Involvement of Customers

Scoping
B.2.1.1.ea3 Using Information Sources Available in Organisation
B.2.1.3.ea3 Technology Forecasting
B.2.1.3.ea4 Composing Initial Sketch of Business Case
B.2.1.3.ea5 Using Domain Experts
B.2.2.2.1.ea1 Developing Product Line Scenarios
B.2.2.2.1.ea2 Defined Scope Management Processes

Business Planning
B.3.1.1.ea1 Analiese of Internal and External Environment, Risks and Opportunities
B.3.1.1.ea2 Using Product Roadmaps
B.3.1.1.ea3 Distinguishing Between Domain and Application Planning
B.3.1.2.ea2 Incorporating SPLE in business vision
B.3.2.1.ea1 Establishing Budget for Domain Engineering
B.3.2.2.ea1 Prediction of Future Costs and Benefits Using Current Development Approach

5 EXAMPLE ACTION SUMMARY 41

Domain Engineering MA

EA id EA name
Domain Requirements Engineering

D.1.1.1.ea1 Involving Different Roles
D.1.1.1.ea2 Involving Different Sources
D.1.1.2.ea3 Defining Requirements Organisation Process
D.1.1.1.ea3 Studying Existing Applications
D.1.1.2.ea4 Categorise Requirements
D.1.2.1.ea2 Priority-Based Analysis Scheme
D.1.2.1.ea3 Check-List Based Analysis
D.1.2.2.ea3 Document the Common Requirements in Detail
D.1.3.1.ea2 Process for Integrating New Requirements
D.1.3.1.ea3 Receiving Feedback from Application Engineering Cycles
D.1.3.2.ea2 Definition of Requirements Management Process
D.1.3.2.ea3 Document Assumptions of Commonalities
D.1.3.2.ea4 Compromise Between Quality and Generality
D.1.3.2.ea5 Regular Roundtable Meetings

Domain Definition
D.2.1.ea1 Defining Production Strategy
D.2.1.2.ea1 Aspect-oriented Software Development (AOSD)
D.2.1.2.ea2 Usage of Layered Architecture Style and Strategy Pattern
D.2.3.3.ea2 Breath-First Analysis of Options
D.2.4.1.ea1 Usage of Agile Principles
D.2.4.1.ea2 Usage of Test-Driven Development
D.2.4.1.ea3 Encapsulation of Legacy Systems
D.2.4.5.ea1 Automating Compilation Activities
D.2.5.1.ea1 Architecture design reviews
D.2.5.2.ea2 Including Refactoring Activities in Processes
D.2.5.2.ea3 Removing Unused Component Parts
D.2.5.2.ea4 Finding Emerging Abstractions
D.2.5.2.ea5 Incorporating Business Unit Architectures
D.2.5.2.ea6 Minimising Interfaces

Domain Testing
D.3.2.1.ea3 Creating Traceability Links
D.3.3.ea1 Domain Unit Testing
D.3.3.ea2 Integration Testing on Domain Engineering Leve
D.3.3.ea3 System Testing on Domain Engineering Level
D.3.3.4 Documenting Test Cases

Product Line Architecture Documentation
D.4.2.ea2 Using Different Views to Represent Architecture
D.4.2.ea3 Specifying Component Interfaces

5 EXAMPLE ACTION SUMMARY 42

Application Engineerign MA

EA id EA name
Application Requirements Engineering

A.1.1.1.ea2 Using Subject Matter Experts
A.1.2.1.ea2 Defined Decision Criteria Exists for Domain Wide Requirements
A.1.2.2.ea2 Analysing Requirement Deltas
A.1.2.2.ea1 Deciding about Requirement Deltas
A.1.2.3.ea2 Updating Product Line Scope Definition
A.1.3.ea1 Establishment of Traceability Links
A.1.3.ea2 Documentation of Variability Bindings

Application Design
A.2.1.ea2 Product Line Principles are Used in Application Design
A.2.2.2.ea1 Limiting Further Development of Core-Asset Based Products
A.2.4.ea1 Integrating Application Specific Elements to Reference Architecture
A.2.4.ea2 Updating Application Design with Reusable Components

Application Testing
A.4.ea2 Domain Test Artefact Reuse

Collaboration MA

EA id EA name
Variability Management

C.1.1.ea1 Incorporating Ongoing Variability Points Identification in Processes
C.1.1.ea2 Evolution of Variability
C.1.2.2.ea1 Using Application Specific Plug-ins
C.1.2.2.ea2 Definition of Configuration System
C.1.2.2.ea3 Using Language and Generative Support
C.1.2.3.a1 Using Orthogonal Variability Model
C.1.2.4.ea4 Completely Defined Variation Points

Configuration Management
C.2.1.ea1 Maintaining Unified Process of Configuration Management
C.2.1.ea2 Manage Permissions for Core Asset Product Developers
C.2.1.1.ea3 Component Composition

Organisation
C.3.1.1.ea3 Consider Proportion of New Development
C.3.1.1.ea4 Consider the Funding Model
C.3.1.1.ea5 Consider the Volatility of Core Assets
C.3.1.1.ea6 Consider Parallel or Sequential Product Development
C.3.1.2.ea3 Temporary Domain Engineering Units for Domain Development
C.3.1.2.ea4 Project Based Domain Engineering
C.3.1.2.ea5 Definition of Feedback Loops
C.3.2.1.ea3 Defining Both Application and Domain Engineering Roles
C.3.2.1.ea4 Integrating Roles Between Domain and Application Engineering
C.3.2.1.ea6 Assignment of Advanced SPLE Specific Tasks
C.3.3.1.ea2 Architectural Constraints
C.3.3.1.ea3 Appropriate Organisation of Core Asset Base

5 EXAMPLE ACTION SUMMARY 43

Example Actions SPLEMM Level 3

Business MA

EA id EA name
Sales and Marketing

B.1.2.ea5 Strategical Order of Entry Decisions
Scoping

B.2.1.3.ea6 Using Formal Methods for Domain Analyses
B.2.2.2.1.ea3 Adopting Comprehensive Scoping Process

Business Planning
B.3.1.1.ea4 Defined Portfolio Management Processes
B.3.1.2.ea2 Quantitatively Incorporating SPLE in Business Vision
B.3.2.1.ea2 Managing Domain Engineering Budget
B.3.2.2.ea2 Prediction of Future Cost and Benefits of Product Line Approach
B.3.2.2.ea3 Investment Analysis about Product Line Related Costs

Domain Engineering MA

EA id EA name
Domain Requirements Engineering

D.1.1.2.ea5 Using Proven Representation Methods
D.1.3.2.ea6 Usage of Defined Requirement Management Tools or Processes

Domain Definition
D.2.3.3.ea3 Using More Sophisticated Techniques and Tools
D.2.5.1.ea2 formal architecture evaluation methods
D.2.5.1.ea3 Establishing Arhitecture Review Board

Collaboration MA

EA id EA name
Variability Management

C.1.2.ea1 Organising Variability on Various Levels of Product Line
Configuration Management

C.2.1.1.ea4 Software Mass Customisation
Organisation

C.3.3.1.ea4 Rigidly defined variation points
C.3.3.1.ea5 Product derivation

REFERENCES 44

References

[1] Spice assessment model.

[2] Software Product Lines, chapter Variation Management for Software
Production Lines. Springer, 2002.

[3] Software engineering institute’s website on software product lines.
http://www.sei.cmu.edu/productlines/, May 2009.

[4] F. Ahmed, L.F. Capretz, and A. Jaffar. The business of software
product family: An empirical survey. pages 745–749, 29 2008-Sept. 2
2008.

[5] Faheem Ahmed and Luiz Fernando Capretz. Managing the business
of software product line: An empirical investigation of key business
factors. Information and Software Technology, 49(2):194 – 208, 2007.

[6] Faheem Ahmed and Luiz Fernando Capretz. The software product
line architecture: An empirical investigation of key process activities.
Information and Software Technology, 50(11):1098 – 1113, 2008.

[7] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk
Muthig, Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. Pulse:
a methodology to develop software product lines. In SSR ’99: Pro-
ceedings of the 1999 symposium on Software reusability, pages 122–
131, New York, NY, USA, 1999. ACM.

[8] D. Beuche, A. Birk, H. Dreier, A. Fleischmann, H. Galle, G. Heller,
D. Janzen, I. John, R.T. Kolagari, T. von der Massen, and A. Wol-
fram. Using requirements management tools in software product line
engineering: The state of the practice. pages 84–96, Sept. 2007.

[9] Andreas Birk, Gerald Heller, Isabel John, Klaus Schmid, Thomas
von der Maen, and Klaus Mller. Product line engineering: The state
of the practice. IEEE Software, 20(6):52–60, 2003.

[10] Jan Bosch. Product-line architectures in industry: a case study. In
ICSE ’99: Proceedings of the 21st international conference on Soft-
ware engineering, pages 544–554, New York, NY, USA, 1999. ACM.

[11] Jan Bosch. Design and use of software architectures: adopting and
evolving a product-line approach. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 2000.

[12] Jan Bosch. Maturity and evolution in software product lines: Ap-
proaches, artefacts and organization. In Software Product Lines, vol-
ume 2379/2002, pages 247–262. Springer, Berlin / Heidelberg, 2002.

[13] R. Carbon, J. Knodel, D. Muthig, and G. Meier. Providing feedback
from application to family engineering - the product line planning
game at the testo ag. pages 180–189, Sept. 2008.

[14] D. Ganesan, J. Knodel, R. Kolb, U. Haury, and G. Meier. Comparing
costs and benefits of different test strategies for a software product
line: A study from testo ag. pages 74–83, Sept. 2007.

[15] J.F. Girard, M. Verlage, and D. Ganesan. Monitoring the evolution
of an oo system with metrics: an experience from the stock market
software domain. pages 360–367, Sept. 2004.

REFERENCES 45

[16] J.M. Hunt. Organizing the asset base for product derivation. pages
65–74, 2006.

[17] Danny Greefhorst Juha Kuusela J. Henk Obbink Jan Bosch,
Gert Florijn and Klaus Pohl. Variability issues in software product
lines. In Software Product-Family Engineering.

[18] I. John, J. Knodel, T. Lehner, and D. Muthig. A practical guide to
product line scoping. pages 3–12, 0-0 2006.

[19] Michael Kircher, Christa Schwanninger, and Iris Groher. Transition
to a software product family approach - challenges and best practices.
In Proceedings of the 10th International on Software Product Line
Conference: IEEE Computer Society, 2006.

[20] P. Knauber, D. Muthig, K. Schmid, and T. Wide. Applying product
line concepts in small and medium-sized companies. Software, IEEE,
17(5):88–95, Sep/Oct 2000.

[21] Charles W. Krueger. New methods in software product line develop-
ment. In Proceedings of the 10th International Software Product Line
Conference (SPLC 2006).

[22] John MacGregor. Requirements engineering in industrial product
lines. In Proceedings of the International Workshop on Requirements
Engineering for Product Lines.

[23] K Pohl, G Böckle, and F van der Linden. Software product Line
Engineering - Foundations, Principles, and Techniques. Springer,
2005.

[24] R. Rabiser, P. Grunbacher, and D. Dhungana. Supporting product
derivation by adapting and augmenting variability models. pages
141–150, Sept. 2007.

[25] Dale Churchett Ross Buhrdorf and Charles W. Krueger. Salions ex-
perience with a reactive software product line approach. In Software
Product-Family Engineering.

[26] K. Schmid, K. Krennrich, and M. Eisenbarth. Requirements man-
agement for product lines: extending professional tools. pages 10
pp.–122, 0-0 2006.

[27] Software Engineering Institute. CMMI for Development, version 1.2,
2006.

[28] Thomas Fischer Andreas Hein Michael Schlick Steffen Thiel, Ste-
fan Ferber. A case study in applying a product line approach for car
periphery supervision systems. In Proceedings of In-Vehicle Software.

[29] Mikael Svahnberg and Jan Bosch. Software Architectures for Product
Families, chapter Issues Concerning Variability in Software Product
Lines, pages 146–157. Lecture Notes in Computer Science. Springer,
Berlin / Heidelberg, 2000.

[30] Frank van der Linden. Family evaluation framework overview intro-
duction. Technical report, ITEA project, 2005.

[31] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software
Product Lines in Action - The Best Industrial Practice in Product
Line Engineering. Springer, 2007.

REFERENCES 46

[32] Martin Verlage and Thomas Kiesgen. Five years of product line engi-
neering in a small company. In ICSE ’05: Proceedings of the 27th in-
ternational conference on Software engineering, pages 534–543, New
York, NY, USA, 2005. ACM.

