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Tracking and radar sensor modelling
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Lars Danielsson

Department of Signals and Systems

Chalmers University of Technology

Abstract

This thesis studies the problem of tracking in the setting of an automo-
tive safety system. In particular, it considers the problem of estimating the
surrounding traffic situation using observations from radar sensors. In this
context, we develop two accurate radar sensor models and vehicle tracking
algorithms, when multiple measurement can be obtained from each object.
The first model describes the radar return from a vehicle as originating from
a known set of point features, whereas the second approach jointly estimates
the position of the reflecting point features and the position of the extended
object. Both models incorporate novel approaches for describing the limited
resolution of the sensor and the resulting tracking frameworks effectively ex-
ploit the information in all the detections from the vehicle.

Additionally, we investigate the use of radar measurements in a proba-
bility hypothesis density (phd) framework for constructing maps over the
stationary objects around a vehicle. By proposing new data clustering and
merging methods we manage to exploit the inherent structure in the map.
The efficiency of the phd framework both in the measurement update and
in the representation of the map is thereby improved considerably.

Besides models for accurately describing the measurements, we also pro-
pose a new vehicle motion model that describes the driver as an optimal con-
troller with preferences (described by a parameter vector) which are tracked
over time. The proposed framework enables more accurate predictions and
offers a formal treatment of the model uncertainties.

Finally, we present a modular sensor data fusion functional architecture,
tailored for development of automotive safety systems. The ambition with
this paper is to illustrate how the other findings in the thesis can be imple-
mented in practice.

Keywords: extended target tracking, radar sensor models, motion mod-
els, automotive safety systems, sensor data fusion
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Chapter 1
Introduction

Considerable effort is put into developing preventive safety systems1 that

assist the driver in safely guiding the vehicle to the desired destination.

By monitoring and analysing the traffic situation, these systems aim to sup-

port the driver in preventing accidents from occurring in the first place. The

system can be seen as being composed of three layers, each responsible for

their own separate part. A perception layer that uses sensors to perceive

the current traffic scenario, a decision layer that uses this information to

detect hazards and decide on the appropriate action, and, an action layer

that executes the decided action.

Some of these systems base their decisions on observations of the position

of surrounding vehicles estimated using external object sensors mounted on

the vehicle, such as radar and vision sensors. The sensor observations are

often influenced by noise and clutter, and hence need to be refined before

being transmitted to the decision layer. A tracking algorithm uses a series of

these observations and tries to accurately estimate, e.g., the current positions

and future trajectories of adjacent vehicles. Together with the sensors. the

tracking algorithm forms a tracking system, which provides a refined per-

ception to the decision layer. For certain decisions, even more accurate and

reliable information is needed. Typically this is achieved by combining or

1Also known as active safety systems. These two terms are used interchangeably
throughout this thesis.
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Chapter 1. Introduction

fusing information from multiple sensors. In this case, the tracking system

is also called a sensor data fusion system.

This thesis considers tracking systems (or parts of tracking systems), de-

signed to support these applications with accurate and reliable information

about the surrounding traffic situation. Although tracking and fusion sys-

tems have been used extensively in military applications, such as surveillance

systems and airborne radar target tracking, this thesis highlights aspects that

are of particular interest in the application to automotive safety systems. For

example, in airborne radar target tracking it is commonly assumed that the

origin of the observations made by the radar can be accurately modelled as

a point source. This is often a valid assumption when tracking aircrafts at

a distance of tens of kilometres. However, in automotive scenarios, where

the distance to the objects of interest is much shorter, the radar is typically

capable of detecting multiple features (reflection centres) on the same object.

Clearly, receiving multiple detections from a object, e.g. a vehicle, offers a

possibility to extract more detailed information about the object. To address

this, we propose more accurate radar sensor models and tracking algorithms

when multiple detections can be obtained from each object. Paper I and

III focus on tracking moving objects and aim at improving the tracking of

vehicles in a traffic environment. Paper II concentrates on resolution mod-

els for general objects (or group of objects), made up of multiple reflectors

which may or may not be resolved. The goal in Paper IV is to use radar

measurements and the probability hypothesis density (PHD) framework to

construct a map over the stationary objects around a vehicle.

Apart from modelling the radar observations and using them to estimate

the traffic environment, this thesis studies a model for accurately describing

the motion of vehicles. In Paper V we propose a new motion model that

describes the driver as an optimal controller with preferences (described by

a parameter vector) which are tracked over time. In the last paper, Paper

VI, we propose a modular sensor data fusion functional architecture, tailored

for development of automotive active safety systems. The ambition with this

paper is to illustrate how the other findings can be implemented in practice.

4



1.1 Thesis outline and contributions

This work was conducted within the IVSS2 sponsored project, sensor

fusion for safety (SEFS). The aim of the project is to develop methods of

combining information from different sensors in order to get a better view

of the environment around the vehicle. By providing this information, it is

possible to construct more effective preventive safety systems.

1.1 Thesis outline and contributions

The thesis is divided into two parts. The first part gives an introduction

and background to the subject at hand, and convey some basic theory to

those not familiar with tracking theory and radar sensor modelling. The

second part contains the author’s contributions in the form of publications.

An overview of the introductory chapters are given below together with a

discussion on the scientific contributions in the publications.

Part I: Introduction

Chapter 1 Introduction

This general introduction to the thesis includes discussions of contributions

and future work.

Chapter 2 Preventive safety systems

This chapter gives an introduction to preventive safety systems. The mo-

tivation for bringing these systems to the market is discussed and put into

context alongside other measures of reducing the number of dead and injured

in traffic-related accidents. The basic components that compose a preventive

safety system are presented together with the different aspects required to

be considered in the design. This chapter focuses on giving the reader the

perspective needed to understand the reasoning behind the following chap-

ters.

2Intelligent vehicle safety system project is a Swedish research project sponsored by the
Swedish road authority and Vinnova. The aim of the project was to strengthen Sweden’s
competence in the field of IVSS and preventive safety systems.
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Chapter 1. Introduction

Chapter 3 Tracking Theory

This chapter presents the different components of a tracking system along

with the underlaying theory. The aim is to give the reader the appropriate

background to appreciate the publications and to give an overview of the dif-

ferent methods that are available. This will range from filtering techniques

and the models therein, to data association methods and track handling

schemes.

Chapter 4 Radar sensor modelling

To better position the contributions in this thesis related to radar sensor

modelling, this introductory chapter on radar sensors is included. The dis-

cussions are primarily focused on the signal processing and signal modelling

perspectives of radar. That is, discussions about radar system performance

analysis and components are omitted to benefit the understanding of the

characteristics of the radar signal and the radar measurements.

Part II: Publications

Paper I A radar sensor model for improved tracking of vehicles using pos-

sibly unresolved detections

This paper is concerned with the problem of tracking vehicles using radar de-

tections. In particular, we deal with problems where multiple detections are

received from each vehicle. Previous research shows that automotive radar

sensors mainly receive detections from a discrete set of strong reflection cen-

tres. However, due to the limited resolution of the sensor, some reflection

centres may be detected individually while others are clustered and, hence,

only render a single joint detection. In this paper we propose a radar sensor

model capable of describing multiple detections from each vehicle and the

effects of a limited sensor resolution. We also suggest appropriate approxi-

mations to reduce the inherent complexity of the data association problem

and to make the model suitable in a tracking framework. Using these ap-

proximations we derive a tractable vehicle tracking framework that effectively

exploits the information in all the detections from the vehicle.
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Paper II Multi-target sensor resolution model for arbitrary target numbers

In this paper we focus on modelling the resolution capability of a radar sen-

sor. In many radar tracking problems the observed objects are so closely

spaced that they cannot always be resolved by the sensor(s). Typical exam-

ples are those discussed in Paper I. Ignoring the limited sensor resolution in

a tracking system may lead to degraded tracking performance, in particular

unwanted track-losses. In this paper we extend the resolution model, given

for two partially unresolved objects in [33], to the case of arbitrary object

numbers. We also derive the effects of the resolution model to the multi-

target likelihood function and the possible data associations. Further, it is

shown how the model can be integrated into the Joint Probabilistic Data

Association Filter (jpdaf).

Paper III Adaptive radar sensor model for tracking structured extended objects

In this paper we propose a general tracking framework where we jointly es-

timate the position of an extended object and adapt the description of the

object-generated radar measurements. The extended object is modelled as

a set of structured radar reflection centres, where we assume that the struc-

ture is known but both the number of reflection centres and their positions

on the structure are unknown. Additionally, we incorporate the radar res-

olution model proposed in Paper II to consider the effects of limited sensor

resolution. As a result, we have a tracking framework capable of adapting

the description of the extended object as the range and aspect angle to the

object change.

Paper IV Road Mapping using Radar Measurements in a Probability Hypoth-

esis Density Filter

In this paper we investigate the use of radar measurements in the probabil-

ity hypothesis density (phd) framework to construct a map over surround-

ing stationary objects. The main advantage with using a phd filter is that

it avoids the detection, the data association and the track handling prob-

lems in conventional multiple-target tracking. It also gives a parsimonious
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representation of the map in contrast to grid based methods. Two original

contributions further releases the complexity of the algorithm: first, a new

data clustering algorithm is suggested to sort the components of the phd

in a few different clusters, which considerably improves the description of

appearing objects used in the prediction step of the phd filter. Second, a

merging step is proposed to simplify the map representation in the phd filter.

Paper V A new vehicle motion model for improved predictions and situation

assessment

Most of us can agree that the motion of a vehicle under normal conditions

is controlled by the driver. Even so, many vehicle motion models ignore

this fact or, alternatively, model the drivers influence as a zero-mean white

Gaussian noise process. This paper proposes an alternative motion model

framework where the expected action of the driver is included as a control

input. This enables us to consider and model different driver intentions, such

as the desire to drive safely and comfortably, and how it influences the motion

of the vehicle. The preferences of the driver are described by a cost function

and the expected control input is derived by seeing the driver as an optimal

controller. We show that this description gives an opportunity to more ac-

curately predict the future trajectory, as well as to get an understanding of

the current traffic situation.

This framework was originally presented in [51] and further developed in

[21]. Here, it is extended by considering the interaction with other vehicles

and, more importantly, with the ability to estimate the uncertainty in the

expected driver control input. The latter is a very useful property when ap-

plying the framework in, e.g., tracking algorithms.

Paper VI A design architecture for sensor data fusion systems with applica-

tion to automotive safety

When designing a sensor data fusion system that should work in real-time

using online sensor data, several practical issues need to be considered, in

addition to those discussed in classical text books. This paper highlights

some of these aspects and considers, in particular, issues important in an
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automotive context. Here, we elaborate on the different design choices and

solutions to practical problems that arise when fusing data from different

asynchronous sources. Based on these experiences, a modular fusion frame-

work, suitable for a preventive safety system, is proposed and motivated. In

the proposed framework it is relatively easy to exchange the sensor configu-

ration and software components.

1.2 Future work

Elaborations on future extensions in the discussed areas are given below.

Sensor resolution modelling

The radar resolution model proposed in Paper II and used in Paper III has

thus far been applied in traditional tracking frameworks using classical data

association algorithms. However, the problem considered in Paper III can

also be formulated using the finite set statistics fisst framework and random

finite sets rfs developed by Mahler [38]. To the authors’ knowledge, no

framework exist for incorporating limited resolution considerations into fisst

based methods. It would be interesting to adjust the fisst algorithms to

handle these problems.

Structured object tracking

In Paper III, we demonstrate the possibility for jointly tracking an extended

object and estimating the parameters of the sensor model. This is accom-

plished by imposing a rather rigid line structure to describe both the object

and the position of the radar reflecting features. Although this structure

proved to work well in the evaluated scenario, it would probably be limiting

in more general cases.

The results from the evaluation merit an exploration of other structures

for describing an extended object using the same filtering framework. This
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could, for example, be a more general graph representation where the radar

reflection features are only loosely interacting. The structure chould then

adapt more freely to changes in object response, as the radar views it, e.g.,

from different angles. This type of model would probably fit well also for

tracking a group of objects.

Mapping

From the phd filter proposed in Paper IV, we obtain a general map describing

where the radar measurements indicate that there are stationary objects.

Although a radar sensor gives numerous detections on stationary objects, it

will not give us the complete picture of the infrastructure surrounding the

vehicle. However, the information obtained is fairly up to date and reliable

in terms of relative positioning.

On the other hand, the map databases typically used for navigation are

becoming more and more advanced and are enhanced with information about,

e.g., curvature of the road and the geometry of an intersection. This infor-

mation can be very detailed but it may also suffer from relative positioning

errors and that the map data base is out-dated.

Hence, there is a potential in fusing the information in the radar based

map with that in the map database to obtain a detailed locally updated map

with high relative positioning accuracy.
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Chapter 2
Preventive safety systems

Every year, far too many are involved in traffic-related accidents result-

ing in injury or death. In the EU alone, there are around 1.3 million

injured and 43,000 fatalities every year [18]. Over the years, effective coun-

termeasures have been taken reduce these numbers, such as building better

and safer roads or developing vehicles crashworthiness. Although these coun-

termeasures have had a considerable effect on lowering the number of fatal

accidents, there is still a long way to go.

In this chapter preventive safety systems are explained and put it in

context alongside other measures to lower the number of dead and severely

injured in traffic-related accidents. An historical background on in-vehicle

safety systems is given and the motivational forces that drive these systems

to the market are highlighted. Plus discussion around the three basic lay-

ers, proposed in [42], that together compose a preventive safety system, i.e.,

perception, decision and action layer. This serves as an introduction and

motivation for the next chapter where the different aspects of the perception

layer will be discussed in more detail.

2.1 Background of in-vehicle safety systems

Historically, there been two dominating strategies for reducing the number

of traffic-related fatalities, either by regulatory changes and developing the

11



Chapter 2. Preventive safety systems

road infrastructure to reduce the probability of an accident, e.g., introducing

speed limits and constructing signal-controlled intersections, or by developing

in-vehicle (passive) protective systems that mitigate the injuries when the

accident becomes a reality, e.g., crumple zones and seat belts. The first

strategy aims at designing a road transport system that is safe to travel

on, whereas the latter is a matter of designing safe vehicles. Both are very

important factors in reducing the number of severe injuries.

2.1.1 Protective safety systems

Newton’s First Law of Motion states in part that, an object in motion will

stay in motion - unless influenced by an external unbalanced force. This has

been the focus of automotive research for more then a half century. The

aim has been and remains to disperse the kinetic energy in an accident to

protect the vehicle’s occupants, i.e., protective safety system. Systems that

we today see as standard components of a car have emerged over the year,

e.g., bumpers, seat belts, crumple zones and air-bags. Research shown also

that the introduction of these systems has played a vital role in reducing the

severity of injuries [44].

2.1.2 Preventive safety systems

In resent years a new type of safety systems have been introduced. In con-

trast to the protective safety systems, these in-vehicle systems are designed

to help the driver to prevent, avoid or mitigate an impending collision or

accident. One of the first preventive safety systems introduced as early as

1978 was the Anti-lock Braking System (abs). By monitoring the rotational

speed of the wheels during braking, the system actively optimises the brake

pressure to give maximum contact between the tyres and the road surface

while not locking the wheels. This enables the driver to steer the vehicle

even under emergency braking manoeuvres and shortens the stopping dis-

tance significantly in comparison with if the wheels where allowed to skid.

In 1995, Electronic Stability Control (esc) systems where introduced on

the market. Esc supports the driver in maintaining the desired path when
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experiencing loss of optimal contact with the road surface. In an evasive

manoeuvre or when negotiating a curve on a slippery road, esc detects if

and when the vehicle starts to slip and applies different braking force on

each individual wheel to stabilise the car1. Although the system was first

introduced as an option on high end cars, in 2006 esc was offered as standard

in 40% of the passenger vehicle models in EU [17]. In the U.S., legislation

mandates that 100% of all vehicles weighing under 10,000 lbs (approximately

4.5 tons) should be equipped with esc by 2012 [40].

Following the success of abs and esc, more and more advanced preven-

tive safety systems are being introduced on the market. Through sensing not

only the motion of vehicle hosting the system but also perceiving the traffic

situation around the vehicle, they can detect and classify dangerous situa-

tions. Depending on the severity and timing, the systems make decisions

whether to:

• inform the driver of the possible danger

• warn the driver of an impending accident

• actively assist or intervene in order to ultimately avoid the accident or

mitigate its consequences.

Some of the systems are listed below. A more comprehensive list of current as

well as upcoming systems can be found in [9], where there also is a discussion

of their effectiveness and possible side effects.

Forward collision warning systems monitor the traffic situation in front

of the vehicle, utilising external object sensors such as radar, lidar

and/or vision systems. The system alerts the driver when it is deter-

mined that there is a high probability of a rear-end collision with the

closest vehicle in path.

Collision avoidance by braking is an application that, if detecting that

a collision is likely and that the driver does not react, automatically

1In order for a driver to have the same ability, there needs to be four brake pedals in
the car, one for each wheel.
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Figure 2.1: Collision avoidance system launched in 2008 on Volvo XC60. City
safety automatically avoids low speed collisions of up to 15 kph
and mitigates collisions for speeds up to 30 kph.

applies the brake to avoid the collision. An example of such a system

is the Volvo City Safety system, which automatically avoids collision

for a host speed of up to 15 kph, see Fig. 2.1.

Collision mitigation by braking functions in a similar manner as the col-

lision avoidance by braking systems, by actively reducing the collision

speed of the vehicle either by, amplifying the driver-initiated brake pres-

sure or autonomously applying the brakes when the system determines

that a collision is unavoidable. The difference being that the main aim

is not to avoid the collision but rather to reduce its severity.

Lane departure warning typically uses a camera or laser that measures

the vehicle position between the lane markings. If it detects that the

vehicle begins to wander outside the lane without the use of indicators

an alert is issued to the driver. The application targets unintentional

lane changes and road departures.

Lane change aid supports the driver during lane change manoeuvres. By

monitoring the traffic in the left and right adjacent lanes, the system
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informs the driver of approaching cars with a speed and distance which

would make it unsafe to change lanes.

The main focus of this thesis is on supplying this type of preventive safety

systems with the information that they need in order to make them as efficient

and reliable as possible.

2.1.3 Integrated safety systems

In the wake of the preventive safety system, synergies with the traditional

protective safety systems have been identified. The information perceived by

the preventive system can be used to earlier prepare the protective system

of an impending collision. By utilising this information, the seat can be put

in a better position for a collision, the seat belt can be pre-tightened and the

air bag system can be pre-fired to enable a smoother deployment.

2.2 Motivation and safety benefit

Traffic safety research have shown that traditional protective safety systems,

though proven to be very effective [9, 44], are reaching a ceiling when it

comes to further significantly decreasing the number of serious injuries and

fatalities. However, research also show that the preventive safety system

ESC is estimated to have lowered the fatal single-vehicle crashes involving

cars by 30-50% and by as much as 50-70% for SUVs [17]. This indicates that

with the introduction of new preventive safety system, there is a possibility

of changing the trend.

This is a step in the right direction, but as mentioned in the introduction,

there is still a long way to go. When analysing the cause of accidents, research

concludes that a majority of accidents involve human inattention [54, 32],

which is not considered by these early systems. An analysis of American rear-

end collisions [55], concludes that in over 78% of the cases, the driver did not

take any corrective action before the collision. This is the main motivation for

introducing the more advanced preventive safety systems discussed in Section

2.1.2. The general aim of these systems, is to aid drivers when driving.
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The potential for these more advanced systems is clear. For example, re-

search on the preliminary safety benefits of a forward collision warning system

shows that it has the potential to prevent 51% of all police reported rear-end

crashes [20] in the U.S. As yet however, there is no conclusive evidence that

these new preventive safety systems have a real impact on real-world safety.

The systems are relatively new on the market and the penetration is still

quite low. There have been naturalistic studies [41, 14], or field operational

tests (FOT), where more people get the opportunity to drive cars with and

without these systems. During which a large quantity of data is collected

and analysed to determine if these system have a positive impact on driving.

Although, rear-end collisions are a major accident scenario, they occur rela-

tively seldom. Therefore, the FOTs were only able to make vague statements

such as,

“Forward Collision Warning may be capable of assisting drivers

in avoiding crashes within their own lane by improving awareness

of a developing conflict and prompting its recognition.” - [41]

Although research shows that there is a great potential for these advanced

preventive safety systems, the need for continued research in this area is

evident.

2.3 Basic system components

When analysing the examples of preventive safety system listed above, one

can identify three separate basic components or layers that they all have in

common. The systems need to:

1. perceive the traffic environment and the host vehicle motion

2. detect dangerous situations and make decisions on whether to inform,

warn or intervene

3. convey this decision to the driver or to the vehicle.

16



2.3 Basic system components

In [42] these three layers are denoted, perception, decision and action, re-

spectively. To make an effective preventive safety system, all these layers

need to be carefully designed. To be able to detect a dangerous situation,

the perception layer needs to supply the decision layer with sufficiently ac-

curate and reliable information. Similarly, it does not matter how good you

are at detecting dangerous situations if you have no means of conveying

the information to the driver or making efficient interventions to avoid or

mitigate the collision. When designing a preventive safety system all these

different principles need to come together, e.g., tracking and estimation the-

ory in the perception layer, detection and threat assessment methods in the

decision layer and human behavioural studies as well as ergonomics in the

action layer. Improved knowledge in all of these layers will result in the most

efficient system.

In the sections to follow there will be a more detailed discussion of the

different aspects in each layer.

2.3.1 Perception layer

In order to make the right decision the systems require robust and reliable

information about the current traffic situation. This is retrieved by equipping

the vehicle with sensors, such as:

• gyros and accelerometers to measure the host vehicle motion

• radar and lidar sensors to measure the traffic scenario around the ve-

hicle

• vision system to measure the road and classify objects, e.g., cars, trucks

and pedestrians.

Given the information from these sensors, the perception tries to estimate

both the ego vehicle motion as well as the position and motion of the sur-

rounding vehicles with associated uncertainties. This is typically done with

a tracking system or a fusion system (in the event that data from several

sensors is combined or fused). Both these systems are frameworks that use
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Figure 2.2: Example of a perception system mounted on a car observing the
traffic situation at an intersection. The estimated positions of
the vehicles are shown together with their associated uncertainty
regions.

past and present measurements to more accurately estimate vehicle position

and future trajectories. The frameworks apply statistical models of objects’

motion and measurement response to incorporate a-priori knowledge about,

e.g., typical motion of vehicles and sensor characteristics. These models are

often called motion model and measurement model, respectively. Contribu-

tions to the modelling of vehicle motion is presented in Paper V, whereas

contributions to modelling of a radar sensor can be found in Paper I - IV.

In Paper VI, a real-time implementation of a fusion system for automotive

preventive safety system is presented.

2.3.2 Decision layer

Given the estimates of vehicle positions in the vicinity of the host vehicle in-

cluding uncertainty measures, it is up the decision layer, i.e., preventive safety

applications, to detect dangerous situations and make a decision whether to
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inform, warn or intervene. This can typically be done in two stages, threat

assessment and feature. The former is responsible for detecting hazards and

calculate a corresponding threat level, e.g., how difficult it is to avoid a col-

lision. The latter then makes a decision on an appropriate action and when

this should be taken, e.g., warn the driver of an impending rear-end collision

when there is still enough time for the driver to react or apply the brakes to

mitigate a collision when the accident is unavoidable.

Depending on the intrusiveness of the decision, the requirement for false

alarm rates could be very different. For example, if a warning application

gives a false warning it is irritating for the driver (which ultimately leads to

the driver switching off the system), whereas with an application that au-

tonomously applies the brakes the consequences are much more serious. It all

boils down to the information provided by the perception. In order to make

intrusive/effective applications the reliability of the information supplied by

the perception needs to be very good.

Even though this part of a preventive safety system is not covered in the

thesis, it is important to know its needs in order to design effective perception

algorithms.

2.3.3 Action layer

When the decision layer has decided on an appropriate action it needs to be

executed. Depending upon if the chosen course of action is to inform or warn

the driver or if it is to intervene, the action layer has to consider different

aspects. For an intervention, it has to activate and manage the appropriate

actuators that are to perform the intervention. In the case of a warning on

the other hand, an intuitive message needs to be conveyed to the driver that

persuades him/her to take appropriate action. Figure 2.3 shows an example

of such a warning from a forward collision warning application, where red

light is projected onto the windscreen in conjunction with an audible alert.

The row of red lights is reminiscent of the brake lights of the preceding vehicle

indicating that the driver should apply the brakes.

If there are several preventive safety applications integrated in the same
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Figure 2.3: A warning of an impending rear-end collision issued as a row of
red lights projected onto the windscreen.

vehicle, either requesting the attention of the driver or the actuators, these

requests need to be managed. Research shows that integration of several

information and warning applications in a vehicle have the could reduce the

effectiveness of each individual application and increase the workload for

the driver, [34]. It is also possible that applications may request conflictive

actuator responses. In these cases there is a clear need for mechanisms to

manage warnings and actuator requests. Such mechanisms for integrating

multiple systems in the same vehicle are presented in [13].

2.4 Summary

To conclude the discussion, three types of in-vehicle safety systems have been

applied to reduce the number of dead and injured on the roads.

protective safety system designed to passively protect the driver and pas-

senger in the case of an accident. This could be crumple zones that are

constructed to absorb energy at the time of collision or seat belts that

hold the driver firmly.

preventive safety system is an active system that monitors the driver,

host vehicle and/or surrounding traffic in order to apply active mea-

sures to avoid or mitigate an accident.
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integrated safety system is a combination of the two above, where the

protective safety system is enhanced using information about an im-

pending accident from the preventive safety systems.

The remainder of this thesis, will mainly focus on the different aspects of

preventive safety systems, although some of these aspects also apply for in-

tegrated safety systems.
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Chapter 3
Bayesian tracking theory

A tracking system, consisting of one or several sensors and tracking al-

gorithms, is an essential part of a preventive safety system. It supplies

the decision algorithms with the perception of the surrounding traffic envi-

ronment based on the observations made by the sensors. External object

sensor systems, such as radar, lidar and vision, report (noisy) measurements

originating from a variety of sources. The measurements could originate from

objects of interest, referred to as targets1, but also clutter or spurious de-

tections due to, e.g.,, thermal noise in the sensor. The aim of the tracking

algorithms is to detect and confirm the true targets and collect the set of

observations that originate from the same target into tracks. From these

tracks, the quantities of interest, such as target position and motion, future

predicted path and object characteristics, are estimated.

This chapter tries to cover the basic Bayesian tracking theory needed to

solve this problem. Good text books that cover this topic or at least impor-

tant parts of it are, e.g. [12, 45, 7]. In this thesis, we focus the discussion

on the state space approach to model the quantities of interest and focus on

the discrete-time representation of the problem. That is, all observations are

collected at discrete-times tk, where k ∈ N denotes the discrete time index.

1The expression originates from military applications of tracking theory and also be is
extensively used in the literature. The term target will used in this thesis, even though
preventive safety systems are more concerned with avoiding an object rather then hitting
a target.
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The time between two consecutive observations is specified by the possibly

time dependent sampling interval, Ts(k) , tk− tk−1. At time k, the complete

information required to describe the system is summarised in the discrete-

time state vector xk ∈ Rn
x. In tracking applications, xk typically includes

kinematic information about the targets of interest and can be divided into

sub-vectors, representing the state for each target,

xk = [(x1
k)
T , (x2

k)
T , . . . , (x

nt(k)
k )T ]T , (3.1)

where nt(k) is the number of targets at time k.

Noisy observations related to xk are supplied to the tracking algorithm

(at each time instance) in the form of a measurement vector, yk ∈ Rny . The

complete observed information available on the system up to and including

time k is collected in,

Y1:k = [(y1)
T , (y2)

T , . . . , (yk)
T ]T . (3.2)

The aim of a Bayesian tracking algorithm is to calculate the joint prob-

ability density of all target-positions given all available information, i.e., to

find the posterior probability density function (pdf),

p(xk
∣∣Y1:k), (3.3)

also called the posterior density in short. All available statistical information

about the system is contained in this probability density and from this, as we

will see later, it is possible to calculate an optimal estimate of xk, including

measures on the estimation accuracy.

Preventive safety systems, as with many other systems, rely on obtaining

an estimate of the quantity of interest, e.g., current traffic situation, as soon

as new measurements are received. A convenient approach to render this

solution, is a recursive tracking algorithm. In this formulation, it is not

necessary to store previous data nor to reprocess old data as new data become

available2. Figure 3.1 illustrates this approach for a complete multi-target

2Assuming that there are no measurements arriving out of sequence, i.e measurements
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Figure 3.1: Sequential multi-target tracking process. Here, yk represents the
measurements on the system, Λk contains the measurement to
track associations, p(xk

∣∣Y1:k−1) and p(xk+1

∣∣Y1:k) are respectively
the prediction densities at the beginning and at the end of a filter
iteration and p(xk

∣∣Y1:k) is the desired posterior density.

tracking system [12] and the basic blocks are briefly described below. A more

detailed description of the blocks are given in the coming sections.

Data association: as new measurements, yk, arrive they are associated

with the existing tracks, using their predicted densities, p(xik|Y1:k−1),

i.e., the densities of each target, i, at time k based on measurements up

to and including time k−1. Using this distribution, this block is able to

form the most likely connections between the new measurements and

existing tracks. These associations are specified in the data association

matrix, Λk, such that if Λk(i, j) = 1 if measurement j is associated

with track i.

Track management: in each iteration in the tracking system there is an

uncertainty regarding how many tracks that are present. The track

management is responsible for ensuring that tracks gets initiated and

validated if data indicates that a new track is present. It also ensures

that tracks that are no longer observed or exhibit unlikely behaviour,

get deleted.

Filtering: the old and newly initiated tracks are updated with their associ-

ated measurements to calculate the desired posterior density, p(xk|Y1:k).

that were made prior to the time of the current state estimate.
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Prediction: to align the known tracks in time with the expected new mea-

surements arriving at time k+1, the tracks are predicted and p(xk+1|Y1:k)

is calculated. This concludes the track update cycle and we are back at

the beginning, except that the information in yk is now incorporated

in the tracks.

This chapter continues by examining the recursive Bayesian filtering prob-

lem in Section 3.1. Here, the conceptual formulation of the problem is pre-

sented together with exact and approximative solutions. In Section 3.2, two

statistical models for solving the recursive tracking problem are introduced,

i.e., the motion model and the measurement model. The former describes

how the state vector evolves over time and is mainly used in the prediction

module in Fig. 3.1. The latter relates the state to the noisy measurements

and is used both in the data association and the filtering blocks. Differ-

ent aspects of the observation-to-track problem are discussed in Section 3.3

and the chapter is concluded with different schemes to handle initiation and

deletion of tracks in Section 3.4.

3.1 Recursive filtering problem

In this section, the recursive Bayesian filtering problem is presented. Here it

is assumed that there are no association uncertainties and we disregard all

track handling considerations. We start by introducing the general solution

to the problem in Section 3.1.1 and continue with showing how it can be

solved analytically under linear and Gaussian assumptions, resulting in the

well known Kalman filter presented in Section 3.1.2. However, for many

practical problems, the assumptions used to derive the Kalman filter are too

restrictive. To alleviate some of these restrictions, approximative solutions

to the general tracking problem are presented in Sections 3.1.3 - 3.1.5.

3.1.1 General recursive filtering problem

The problem at hand is to recursively calculate the posterior probability

density function, p(xk
∣∣Y1:k). In the Bayesian framework, the quantities of
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3.1 Recursive filtering problem

interest are seen as unknown stochastic variables. In this setting it is possible,

and necessary, to describe a-priori information about the random parameter

in the form of a prior density

p(x0

∣∣y0) , p(x0), (3.4)

i.e., the initial information about the parameter before any observations are

done. A discussion of designing a suitable prior can be found in 3.4.1.

Furthermore, to recursively estimate the target positions we require at

least two probabilistic models. One describing the evolution of the state

vector, called the motion model, and one relating the noisy measurements to

the state, called measurement or sensor model. We assume that the former

can be written as

xk = fk−1(xk−1,vk−1), (3.5)

where fk−1(·) is a possibly nonlinear and time dependent function and vk−1 is

a stochastic noise process explaining unforseen deviations and perturbations

from the expected behaviour. This relation is used to specify the conditional

pdf p(xk
∣∣xk−1), i.e., the probability density of xk given that the previous

position xk−1 is known.

The measurement model is similarly formed as

yk = hk(xk,wk), (3.6)

where hk(·) is a possibly nonlinear and time-dependent function describing

how the state is related to the measurements, and wk is a stochastic noise

process to account for measurement noise and sensor modelling uncertainty.

As for the motion model, the measurement model has a probabilistic interpre-

tation. In this sense, (3.6) is regarded as the likelihood function of xk given

the measurement yk, denoted p(yk
∣∣xk)3 or L(xk

∣∣yk). Often, p(xk
∣∣xk−1) and

p(yk
∣∣xk) are used interchangeably with (3.5) and (3.6), respectively. Further-

3Note that the likelihood p(yk

∣∣xk) should be seen as a function of xk and is not a
probability density function. Hence, the motivation for the alternative notation which is
clearer in this way.
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Chapter 3. Bayesian tracking theory

more, both noise process, vk and wk, are assumed to be white and mutually

independent.

Assuming that the density p(xk−1

∣∣Y1:k−1) from the previous recursion

is known, the posterior density can be obtained in two steps, prediction

and measurement update. The prediction step involves using (3.5) and the

Chapman-Kolmogorov equation (or law of total probability) to calculate,

p(xk
∣∣Y1:k−1) =

∫
p(xk

∣∣xk−1,Y1:k−1)p(xk−1

∣∣Y1:k−1) =

=

∫
p(xk

∣∣xk−1)p(xk−1

∣∣Y1:k−1)dxk−1. (3.7)

Here we use the fact that p(xk
∣∣xk−1,Y1:k−1) = p(xk

∣∣xk−1) as (3.5) stipulates

that all information needed to calculate xk is summarised in the previous

state xk−1. In statistics, it is stated that (3.5) is a Markov process of order

one.

In the succeeding update step, the predicted density in (3.7) is updated

using the information in the new measurement, yk, to form the desired pos-

terior distribution. According to Bayes rule,

p(xk
∣∣Y1:k) = p(xk

∣∣yk,Y1:k−1) =

=
p(yk

∣∣xk,Y1:k−1)p(xk
∣∣Y1:k−1)

p(yk
∣∣Y1:k−1)

=

=
p(yk

∣∣xk)p(xk
∣∣Y1:k−1)

p(yk
∣∣Y1:k−1)

, (3.8)

where the normalising constant in the denominator can be obtained by

marginalising known distributions as

p(yk
∣∣Y1:k−1) =

∫
p(yk

∣∣xk)p(xk
∣∣Y1:k−1)dxk. (3.9)

Starting from (3.4), it is possible to recursively calculate p(xk
∣∣Y1:k) for all k

by repeatedly using (3.5) to predict the prior to the time of the measurement

according to (3.7) and updating with new information, in the form of a

measurement, using (3.6) according to (3.8).
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In the Bayesian sense it is possible to calculate the optimal estimate of xk,

given the posterior distribution p(xk
∣∣Y1:k), under any optimality condition.

It is possible to calculate the minimum mean square error (mmse) estimate

by taking the conditional expectation on xk as,

x̂mmse
k|k = E{xk

∣∣Y1:k} =

∫
xkp(xk

∣∣Y1:k)dxk, (3.10)

or themaximum a posteriori (MAP) estimate as the maximum of p(xk
∣∣Y1:k),

x̂map
k|k , argmax

xk

p(xk
∣∣Y1:k). (3.11)

The optimal recursive solution to the Bayesian filtering problem is sup-

plied by (3.7) and (3.8). However, in practice these expressions are seldom

analytically solvable. Even if they were solvable for general distributions,

it could imply the need to keep track of infinite many moments in order

to describe p(xk
∣∣Y1:k). However, under special conditions/assumptions, it

is possible to derive an optimal solution that is also tractable. If both the

process model and the measurement model are linear with additive Gaussian

noise the solution results in the well known Kalman filter, discussed further

in Section 3.1.2. In Sections 3.1.3 - 3.1.5, different approximation methods

are presented when the linear Gaussian assumptions do not hold.

3.1.2 Kalman Filter

In this section, an important case where (3.7) and (3.8) can be solved an-

alytically is presented. This is accomplished by imposing the following as-

sumptions on the system,

Assumption 1 (Linear and Gaussian models)

1. the prior pdf, p(x0

∣∣y0), is a Gaussian distribution

2. the process noise, vk−1, and the measurement noise, wk, processes are

assumed to be independent for all k and Gaussian

3. both the process model and measurement model are assumed to depend
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linearly on xk, vk and wk.

Using these assumptions the system model can be expressed as a linear

system of equations,

xk = Fk−1xk−1 + vk−1, (3.12)

yk = Hkxk +wk, (3.13)

where vk−1 ∼ N (0,Qk−1) and wk ∼ N (0,Rk)
4. Recursively solving (3.7)

and (3.8) analytically under these assumptions results in the well known

Kalman filter [28]. Before presenting the solution we discuss some interest-

ing properties of Gaussian linear models which, as we will see, make them

convenient to work with in this context. Proofs of these theorems can be

found in standard statistical texts, such as [29].

Theorem 3.1 (Gaussian linear transformation)

For any linear transformation, T, of a Gaussian random vector, x, such that

y = Tx, (3.14)

the resulting random vector is also Gaussian with

E{y} = TE{x}, (3.15)

Cov{y} = TCov{x}TT . (3.16)

2

Theorem 3.2 (Sum of Gaussian random vectors)

If x ∼ N (x̄,Px) and y ∼ N (ȳ,Py) are two independent Gaussian vectors,

z = x+ y, is also Gaussian with,

z̄ = x̄+ ȳ, (3.17)

Pz = Px +Py. (3.18)

4The Kalman filter can easily be expanded to handle non-zero mean noise vectors,
although not covered here.
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2

These two theorems give us the nice property that, under the linear and

Gaussian assumptions, the transformations in (3.12) and (3.13) will always

produce Gaussian random vectors with statistics that are easily calculated.

Theorem 3.3 (Conditional pdf of multivariate Gaussian)

If two random vectors, x and y, are jointly Gaussian with mean vector

[E{x}T E{y}T ]T and covariance matrix

P =

[
Pxx Pxy

Pyx Pyy

]
. (3.19)

then the conditional pdf p(x|y) is also Gaussian with

E{x|y} = E{x}+PxyP
−1
yy (y − E{y}) (3.20)

Px|y = Pxx −PxyP
−1
yyPyx (3.21)

2

Note that Theorem 3.3 also stipulates that the mmse estimate (3.10) of x,

given y, for the Gaussian linear case can be written in the form,

x̂(y) = E{x|y} = E{x} +K(y− E{y}), (3.22)

where the expected value of x is updated by the difference between the

observed y and its expectation scaled with some gain, K = PxyP
−1
yy .

Theorem 3.4 (Additive conditional expectation)

The conditional expectation of the Gaussian random vector x given two

jointly Gaussian and independent random vectors y1 and y2 can be formu-

lated as,

E{x|y1,y2} = E{x|y1}+ [E{x|y2} − E{x}] . (3.23)

2
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This property of the conditional expectation follows from Theorem 3.3 and

is convenient when finding a sequential formulation of the mmse estimate of

x based on two independent data sets. Theorem 3.4 could be interpreted as;

if we have an mmse estimate of x based on the data set y1 and an mmse

estimate of x based on the orthogonal (uncorrelated) data y2 the mmse

estimate based on both of these data sets can be found by simply adding

them together.

Using the above properties of a linear Gaussian system and examining

(3.7) and (3.8), it is clear that the following Gaussian densities are of interest,

p(xk−1

∣∣Y1:k−1) = N (xk−1; x̂k−1|k−1,Pk−1|k−1), (3.24)

p(xk
∣∣Y1:k−1) = N (xk; x̂k|k−1,Pk|k−1), (3.25)

p(xk
∣∣Y1:k) = N (xk; x̂k|k,Pk|k), (3.26)

and consequentially only the mean and the covariance of these distributions

need to be calculated. Assuming that (3.24) is available for the previous

recursion and using (3.12), the prediction step (3.7) resolves to,

x̂k|k−1 = E{xk
∣∣Y1:k−1} = Fk−1x̂k−1|k−1 (3.27)

Pk|k−1 = Cov{xk
∣∣Y1:k−1} = Fk−1Pk−1|k−1F

T
k−1 +Qk−1. (3.28)

Before disclosing the measurement update step, we introduce the innova-

tion in the new measurement,

ỹk , yk − E{yk|Y1:k−1}, (3.29)

which can be viewed as the new information in yk that is uncorrelated with

Y1:k−1 (and hence x̂k|k−1). Using Theorem 3.1 and 3.2 it is easy to show that

ỹk is Gaussian with zero mean and conditional covariance

Sk = Cov{ỹk
∣∣Y1:k−1} = HkPk|k−1H

T
k +Rk. (3.30)
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Using the innovation, it is possible to find a convenient decomposition of the

updated estimate,

E{xk
∣∣Y1:k} = E{xk

∣∣ỹk,Y1:k−1} (3.31)

and using Theorem 3.3

E{xk
∣∣ỹk,Y1:k−1} = E{xk

∣∣Y1:k−1}+PxyP
−1
yy(ỹk − E{ỹk}) =

= E{xk
∣∣Y1:k−1}+PxyS

−1
k (yk − E{yk|Y1:k−1}) (3.32)

Evaluating (3.32) using (3.12) and (3.13) results in the Kalman filter

update,

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (3.33)

Pk|k = Pk|k−1 −Kk(Sk)
−1KT

k , (3.34)

where

Kk = PxyP
−1
yy = Pk|k−1H

T
kS

−1
k (3.35)

is known as the Kalman gain matrix.

Clearly, the state estimate x̂k|k, calculated using the Kalman filter is

the optimal state estimate in the mmse sense, under the linear Gaussian

assumptions. It is also possible to show that the Kalman filter is the best

linear estimator, or linear minimum mean square error (lmmse) estimator,

even if the process and measurement noise is non-Gaussian [29].

Example 3.1 (Scalar Kalman filter)

To demonstrate the different steps in the Kalman filter we use a simple

example of tracking a scalar quantity, xk, which evolves according to this

very simple model,

xk = 1.2xk−1 + vk−1, (3.36)

where vk−1 ∼ N (0, 0.1). We also make noisy observations, yk which relate to
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the state as,

yk = xk + wk, (3.37)

where wk ∼ N (0, 0.5). From the previous iteration of the filter we have the

density,

xk−1|Y1:k−1 ∼ N (1, .3). (3.38)

Using the models described by (3.36) - (3.38) we have all the information we

need to construct a Kalman filter. Suppose we at time k receive a measure-

ment, yk = 1.5, the first iteration of the Kalman filter becomes,

xk
∣∣Y1:k−1 ∼ N (1.2, 0.53) (3.39)

xk|k
∣∣Y1:k−1 ∼ N (1.4, 0.26) (3.40)

The different steps in the Kalman filter to arrive at this posterior density are

illustrated in Fig. 3.2. Note that the predicted density is much flatter than

the prior as uncertainty is introduced in the prediction. However, in the re-

sulting posterior density the uncertainty decreased is due to the measurement

update.

2

3.1.3 The extended Kalman filter

For many practical filtering applications the assumptions made to derive the

classic Kalman filter are too restrictive. Typically, either the motion or the

measurement models (or both) are not accurately described as linear models.

In addition, if more accurate models exist that depart from the linear and

Gaussian assumption, there is often no analytical solution to (3.7) and (3.8).

In these cases, suboptimal methods for approximatively solving the Bayesian

filtering equations should be used. The extended Kalman filter (ekf) is

one such suboptimal method, to expand the Kalman filter framework to also

handle nonlinear models. The general idea is to linearise the nonlinear models
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Figure 3.2: a) The prior density p(xk−1

∣∣Y1:k−1). b) Predicted density
p(xk−1

∣∣Y1:k−1) in blue and the measurement yk in red. c) The
posterior density p(xk−1

∣∣Y1:k−1) after the measurement update.

by first order Taylor expansion. Using the first order Taylor approximation

of the nonlinear models and assuming independent white Gaussian noise

ensures that the linear Gaussian assumptions hold for the linearised system.

Assume that we have models in the general form as in (3.5) and (3.6),

where vk−1 is zero-mean process noise with covariance matrix Qk−1 and wk

is zero-mean measurement noise with covariance matrix Rk. By linearis-

ing the models using first order Taylor expansion around their conditional

expectations we can approximate the nonlinear models as,

xk ≈ fk−1(xk−1,vk−1)
∣∣
xk−1=x̂k−1|k−1,vk−1=0

+

+ F̂xk−1
(xk−1 − x̂k−1|k−1) + F̂vk−1

(vk−1 − 0), (3.41)

yk ≈ hk(xk,wk)
∣∣
xk=x̂k|k−1,wk=0

+

+ Ĥxk
(xk − x̂k|k−1) + Ĥwk

(wk − 0), (3.42)
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where

F̂xk−1
= [∇xk−1

fTk−1(xk−1,vk−1)]
T
∣∣
xk−1=x̂k−1|k−1,vk−1=0

(3.43)

F̂vk−1
= [∇vk−1

fTk−1(xk−1,vk−1)]
T
∣∣
xk−1=x̂k−1|k−1,vk−1=0

(3.44)

Ĥxk
= [∇xk

hTk (xk,wk)]
T
∣∣
xk=x̂k|k−1,wk=0

(3.45)

Ĥwk
= [∇wk

hTk (xk,wk)]
T
∣∣
xk=x̂k|k−1,wk=0

. (3.46)

Using these linear approximative models and applying them in the Kalman

filter framework results in the following recursive estimator:

x̂k|k−1 = fk−1(x̂k−1|k−1, 0) (3.47)

Pk|k−1 = F̂xk−1
Pk−1|k−1F̂

T
xk−1

+ F̂vk−1
Qk−1F̂

T
vk−1

(3.48)

x̂k|k = xk|k−1 +Kk(yk − Ĥxk
x̂k|k−1) (3.49)

Pk|k = Pk|k−1 −KkSkK
T
k , (3.50)

where

Sk = Ĥxk
Pk|k−1Ĥ

T
xk

+ Ĥwk
RkĤ

T
wk

(3.51)

Kk = Pk|k−1Ĥ
T
xk
S−1
k (3.52)

In order for the first order ekf to be applicable, the estimation error,

x̃k = xk − x̂k|k, must be kept sufficiently small. This is something that is

difficult to guarantee, as the estimation error can build up over time. If it does

not hold, the estimate will suffer in accuracy and it could lead to instability

issues of the filter. There are also cases when the ekf is an inconsistent

estimator, i.e., the estimator error is not zero-mean with a covariance that

matches that calculated by the filter [46]. One should also mention that it is

often tedious to compute (3.43) - (3.46).

There have been attempts to improve the performance of the ekf, e.g., by

including a second-order term in the Taylor expansion [4], or by iteratively

finding the linearisation point in the measurement update step [7]. The

reasoning behind the latter improvement is that you have more information
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about xk after the measurement update step and are therefore able to choose

a better linearisation point resulting in a more applicable linearisation.

One should bear in mind that if (3.5) and (3.6) are mildly nonlinear,

and/or the noise is relatively small (compared to the nonlinearity), the ekf

has proven in practise to produce sufficiently accurate estimates. It is after

all probably the most widely used estimator for nonlinear problems.

Example 3.2 (Linearisation of a nonlinear motion model)

This example will try to demonstrate the effects that linearisation has on the

estimated prediction density, p(xk|k−1

∣∣Y1:k−1), if the motion model is nonlin-

ear. We are interested in describing the prediction density of the discrete-time

state vector,

xk =




ξx(k)

ξy(k)

ψ(k)

v(k)

ψ̇(k)

a(k)




, (3.53)

where (ξx, ξy) is the position of the vehicle in global coordinates, ψ is the

heading of the vehicle, v and a are the velocity and acceleration in that

direction, respectively, and ψ̇ is the yaw rate of the vehicle. To describe how

xk evolves as a function of time, we use the simplified bicycle model as in

[10, 22]. In discrete time this motion model has the following approximative
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form:

ξx(k) = ξx(k − 1) + v(k − 1)Ts cos(ψ(k − 1)) · α1(xk−1,vk−1, Ts)+

sin(ψ(k − 1)) · α2(xk−1,vk−1, Ts), (3.54)

ξy(k) = ξy(k − 1) + v(k − 1)Ts sin(ψ(k − 1)) · α1(xk−1,vk−1, Ts)+

cos(ψ(k − 1)) · α2(xk−1,vk−1, Ts), (3.55)

ψ(k) = ψ(k − 1) + ψ̇(k − 1)Ts + vψ̈
T 2
s

2
(3.56)

v(k) = v(k − 1) + a(k − 1)Ts + vȧ
T 2
s

2
(3.57)

ψ̇k = ψ̇(k − 1) + vψ̈Ts (3.58)

a(k) = a(k − 1) + vȧTs. (3.59)

where αi(·) are nonlinear functions of the previous state xk−1, the noise

process, vk−1, and the sample time Ts. Furthermore, vk−1 =
[
vψ̈, vȧ

]T
is a

zero-mean and Gaussian noise process with covariance matrix

Qk−1 =

[
qψ̈ 0

0 qȧ

]
. (3.60)

To appreciate this example, is it not important to fully understand the pro-

posed motion model. However, what is important to understand is that the

position of the vehicle at time k, (ξx(k), ξy(k)), is a nonlinear function of

xk−1 and vk−1. For example, uncertainty in the heading of the vehicle, ψ,

will propagate through the trigonometric functions to the position (see (3.54)

and (3.55)).

Assume that we at time k have a prior distribution

p(xk−1

∣∣Y1:k−1) ≈ N (xk−1; x̂k−1|k−1,Pk−1|k−1), (3.61)

where

x̂k−1|k−1 = [0, 0, π/6, 25, π/2, 4]T , (3.62)

Pk−1|k−1 = diag([1, 1, π/15, 1, π/6, 6]). (3.63)
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Figure 3.3: Comparison of the true mean and covariance to that estimated
by ekf of a Gaussian distribution propagated through a non-
linear function, (3.54)-(3.59). In the figure is only the (ξx, ξy)
components of the state vector displayed. In the simulations we
use Ts = 0.3s and Qk−1 = diag([0.1, 1]).

Suppose the tedious work of calculating the Jacobians (3.43) and (3.44)

for the discrete-time motion model (3.54) - (3.59) is already done, we can

estimate the mean and covariance of the predicted density p(xk
∣∣Y1:k−1) ac-

cording to (3.47) - (3.48). In Figure 3.3 this estimated mean and covariance

is compared to the “true” mean and covariance estimated through Monte

Carlo simulations. From the simulations it is clear that the ekf estimate

has a significant bias in the mean, and the covariance is under estimated for

this highly nonlinear example.

2

3.1.4 Unscented Kalman Filter

Relatively recently, another extension of the Kalman filter framework has

been proposed [24], called the unscented Kalman filter (ukf). Instead of lin-

earising the nonlinear functions fk−1(·) and hk(·), this approach uses the un-

scented transform to approximate moments of p(xk
∣∣Y1:k−1) and p(yk

∣∣Y1:k−1).
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The estimate of x̂k|k is then formed as an lmmse estimator using the esti-

mated moments from the unscented transform [37].

We will start by explaining the unscented transform and continue with

showing how it is used in an lmmse estimator.

Unscented transform

The basic idea behind the unscented transform (ut) is that it is easier to

approximate a probability distribution than it is to approximate an arbi-

trary nonlinear function or transformation. The principle is; for any given

probability distribution, p(x), a set of points, called sigma points, are de-

terministically selected such that their mean and covariance equals that of

x ∈ Rnx . By transforming these sigma points through a nonlinear mapping,

g(·), statistics about p(z) = p(g(x)) can be estimated from these transformed

points.

We denote a set of sigma points with their associated weights as S =

{X (i),W (i), i = 0 . . . p}, where W (i) is such that

p∑

i=0

W (i) = 1. (3.64)

Note that W (i) can take both positive or negative values, but to ensure an

unbiased estimate they all have to sum to one. The sigma points should be

chosen in such a way that they capture at least5 the mean and the covariance

of x, i.e., these two conditions should hold,

x̄ = E{x} =

p∑

i=0

W (i)X (i), (3.65)

Pxx = Cov{x} =

p∑

i=0

W (i)(X (i) − x̄)(X (i) − x̄)T . (3.66)

5There are methods of choosing sigma points that claim to also capture higher moments
under certain conditions [27].
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By transforming the sigma points through the nonlinear mapping, z = g(x),

Z(i) = g(X (i)). (3.67)

The mean and the covariance of z can be estimated according to

z̄ ≈
p∑

i=0

W (i)Z(i), (3.68)

Pzz ≈
p∑

i=0

W (i)(Z(i) − z̄)(Z(i) − z̄)T . (3.69)

If the sigma points are selected such that (3.65) and (3.66) hold, it is claimed

in [25] that the estimates in (3.68) is accurate to the second order and (3.69)

to the first order of the Taylor expansion of the true mean and covariance.

There are different ways of choosing the set of sigma points, depending on

which statistics of the transformed distribution that should be captured. In

[27] there is a discussion about these different methods as well as derivations

of their properties. Here the method called symmetric set is listed. The idea

is to select one point in the mean and 2nx points symmetrically and equally

spaced (in a statistical sense) on a contour of Px, inversely proportional to

their associated weight. The method is as follows

X (0) = x̄, W (0) = κ
nx+κ

, i = 0

X (i) = x̄ +
(√

(nx + κ)Px

)
i
, W (i) = 1

2(nx+κ)
, i = 1, . . . , nx

X (i) = x̄−
(√

(nx + κ)Px

)
(i−nx)

, W (i) = 1
2(nx+κ)

, i = (nx + 1), . . . , 2nx

(3.70)

where nx is the dimension of the state vector and
(√

(nx + κ)Px

)
i
is the ith

column of any matrix L such that

(√
(nx + κ)Px

)
= LLT . (3.71)

The design parameter κ can be viewed as a scaling constant that determines
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at which covariance contour the sigma points are positioned, as

|X (i) − x̄| ∝ √
nx + κ. (3.72)

Setting κ > 0 tend to position the points further from the mean and choosing

a κ < 0 will do the opposite. This could be used to abate the scaling effects

caused when the dimension of the state vector, nx, is large. If the sigma

points are too far apart the risk is that too much importance is given to

aspects of g(·) that are far from the mean. This results in a covariance

estimate that is perhaps too general, and does not accurately describe the

covariance locally, especially if g(·) has discontinuities. Setting κ = 3 − nx

will result in a dimensional independent scaling, which is the optimal setting

if x is a Gaussian [27].

An alternative view on κ, is that it regulates how much weight is given

to the sigma point assigned to the mean, i.e.,

W (0) =
κ

(nx + κ)
. (3.73)

Similar reasoning as above holds for this interpretation as well. If large weight

(large κ) is put on the mean, the other sigma points compensate by moving

further away and vice versa. Note, however, that setting κ < 0 will result

in a negative weighting of X (0). Although this is acceptable, as the sigma

set does not represent a distribution, caution is needed as this could lead

to a non-positive definite covariance estimate, see (3.69). An amendment to

this problem is to use the scaled unscented transform, originally proposed

in [26]. In this unscented transform the sigma point selection method is re-

parameterised and a covariance compensation term is added to ensure that

the covariance estimates are positive definite.

Compared to the method used in the ekf, where g(·) is first linearised

using first order Taylor expansion and then z̄ and Pzz are estimated, the

ut propagates the sigma points through the nonlinear function and then

makes the estimates. As the standard ekf truncates the Taylor series at the

first order (assumes that all higher terms are small or zero), the estimated
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mean and covariance is only accurate to the first order. In contrast, the

ut manages to capture the mean accurately to the second order and the

covariance to the first. Moreover, as there is no truncation, some parts of the

higher order terms are still present [53]. The latter means that if you have

information about the higher order moments of z̄ and Pzz this can be used

when selecting the κ parameter. It can be shown, by examining the Taylor

expansion of (3.68) and (3.69), that the κ parameters determine how much

of the higher order terms are included [25].

Filter equations

Again, we return to the general nonlinear filtering problem defined by (3.7)

and (3.8). Here we will see how the UT can be used to approximate these dis-

tributions’ mean and covariance, with the aim of finding an lmmse estimator

of xk.

From text books, such as [29], we know that the lmmse estimator can be

written on the form,

x̂k|k = x̂k|k−1 +PxyP
−1
yy(yk − ŷk|k−1) (3.74)

Pk|k = Pk|k−1 −PxyP
−1
yyP

T
xy (3.75)

where

Pxy = E{(xk − x̂k|k−1)(yk − ŷk|k−1)
T} (3.76)

Pyy = E{(yk − ŷk|k−1)(yk − ŷk|k−1)
T}. (3.77)

The relation above holds if and only if, x̂k|k−1, is uncorrelated with the new

information in ỹk = (yk − ŷk|k−1), where x̂k|k−1 and ŷk|k−1 are lmmse esti-

mates of xk and yk given Y1:k−1, respectively. To put things in perspective,

it should be noted that the estimator in (3.74) - (3.75) in the linear and
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Gaussian case, turn into the Kalman filter as

Pxy = Pk|k−1H
T
k (3.78)

Pyy = Sk (3.79)

and the Kalman gain matrix can consequentially be identified as

Kk = Pk|k−1H
T
kS

−1
k = PxyP

−1
yy (3.80)

Here, we will demonstrate how the unscented transform can be used to

make nonlinear estimates of the mean and covariance needed to calculate

(3.74) and (3.75) and that the necessary lmmse conditions hold. As usual,

this is done in two steps, prediction and measurement update.

The first step is to estimate the prediction density assuming that x̂k−1|k−1

and Pk−1|k−1 are known. Here, we introduce an augmented state vector,

xak =




xk

vk

wk+1


 , (3.81)

of dimension nax = nx + nv + nw and with corresponding covariance matrix

Pa
k|k =




Pk|k 0 0

0 Qk 0

0 0 Rk+1


 . (3.82)

Using this notation we can represent p(xak−1|Y1:k−1) as the sigma points set

X a,(0)
k−1|k−1 = x̂ak−1|k−1, W (0) =

κ

(nax + κ)
(3.83)

X a,(i)
k−1|k−1 = x̂ak−1|k−1 +

(√
γPa

k−1|k−1

)
i
, i = 1, . . . , nax (3.84)

X a,(i)
k−1|k−1 = x̂ak−1|k−1 −

(√
γPa

k−1|k−1

)
i−na

x

, i = (nax + 1), . . . , 2nax (3.85)

W (i) =
1

2(nax + κ)
, i = 1, . . . , 2nax, (3.86)
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3.1 Recursive filtering problem

where γ = nxa
k
+ κ and

x̂ak−1|k−1 =




x̂k−1|k−1

E{vk−1}
E{wk}


 . (3.87)

By forming the sigma point set with the augmented state vector we are able

to propagate and estimate the possibly nonlinear influence that the process

and measurement noise has on the state vector and measurement vector,

respectively6. Note also that the sigma point set X a
k−1|k−1 can be divided

partitioned as

X a
k−1|k−1 =




X x
k−1|k−1

X v
k−1

Xw
k


 . (3.88)

The estimates x̂k|k−1 and Pk|k−1 can be formed by propagating X a
k−1|k−1

through the augmented process model

X x,(i)
k|k−1 = fk−1(X x,(i)

k−1|k−1,X
v,(i)
k−1|k−1), (3.89)

and approximate

x̂k|k−1 ≈
2na

x∑

i=0

W (i)X x,(i)
k|k−1, (3.90)

Pk|k−1 ≈
2na

x∑

i=0

W (i)(X x,(i)
k|k−1 − x̂k|k−1)(X x,(i)

k|k−1 − x̂k|k−1)
T . (3.91)

6If the process noise and/or measurement noise is additive, there is no need to augment
the state vector. The noise influence can be exactly accounted for by adding the noise
covariances to the estimated covariances of the non augmented sigma points.
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The updated sigma point set is now

X a
k|k−1 =




X x
k|k−1

X v
k−1

Xw
k


 . (3.92)

which can be used to estimate ŷk|k−1 and the corresponding covariance Pyy

but also the cross-covariance Pxy. Again we apply the unscented transform,

Y (i)
k|k−1 = hk(X x,(i)

k|k−1,X
w,(i)
k ) (3.93)

ŷk|k−1 ≈
2na

x∑

i=0

W (i)Y (i)
k|k−1 (3.94)

Pyy ≈
2na

x∑

i=0

W (i)(Y (i)
k|k−1 − ŷk|k−1)(Y (i)

k|k−1 − ŷk|k−1)
T (3.95)

Pxy ≈
2na

x∑

i=0

W (i)(X x,(i)
k|k−1 − x̂k|k−1)(Y (i)

k|k−1 − ŷk|k−1)
T (3.96)

As ŷk|k−1 is calculated using all available information up to and including

time k − 1, the innovation, (yk − ŷk|k−1), and the predicted state estimate,

x̂k|k−1, are uncorrelated. Hence, we can use (3.74) and (3.75) to calculate

x̂k|k = x̂k|k−1 +PxyP
−1
yy(yk − ŷk|k−1) (3.97)

Pk|k = Pk|k−1 −PxyP
−1
yyP

T
xy (3.98)

which is the desired estimate and error covariance. To summarise the Un-

scented Kalman filter, it:

1. estimates x̂k|k−1 and Pk|k−1 using the unscented transform, where also

the process noise is propagated through fk−1(·)

2. similarly calculates estimates of ŷk|k−1, Pxy and Pyy using the updated

sigma point set (3.92)

3. finally updates x̂k|k and Pk|k on the form of an lmmse estimator.
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3.1 Recursive filtering problem

Example 3.3 (Unscented transform of a nonlinear motion model)

Returning to the problem defined in Example 3.2, but instead of using lin-

earisation of (3.54) - (3.59) we here apply the unscented transform to esti-

mate p(xk
∣∣Y1:k−1). Defining the augmented mean and the covariance of the

augmented state vector as,

x̂ak−1|k−1 =




x̂ak−1|k−1

0

0


 , Pa

k−1|k−1 =

[
Pk−1|k−1 0

0 Qk−1

]
. (3.99)

We select sigma points according to (3.83) - (3.86), where

κ = 3− nxa
k
= −5 (3.100)

in accordance with previous discussion on optimal choice for Gaussian dis-

tributions. Finally, we use (3.89) to propagate the sigma points through the

motion model and (3.90) - (3.91) to estimate the mean and covariance of the

prediction density. As in Example 3.2, the result is compared to Monte Carlo

estimates of the true mean and covariance shown in Figure 3.4, together with

the propagated sigma points.

It is clear from the figure that the unscented transform is capable of mak-

ing an unbiased mean estimate as well as accurately capturing the covariance.

2

3.1.5 Particle Filters

The methods described previously all use mean and covariance to describe

the posterior density, p(xk
∣∣Y1:k), either exactly as in the Kalman filer or

as an approximation as in the ekf and ukf. In many cases the posterior

density is adequately described by these two moments. The particle filter

algorithms, however, offer another type of description which enables a general

and straightforward parametrisation for a large a family of problems. These

algorithms rely on Monte Carlo approximations and importance sampling to

describe p(xk
∣∣Y1:k). An excellent book covering this subject is [45], and
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Figure 3.4: Comparison of the true mean and covariance to that estimated
by ukf of a Gaussian distribution propagated through a non-
linear function, (3.54) - (3.59). In the figure is only the (ξx, ξy)
components of the state vector displayed. In the simulations we
use Ts = 0.3s and Qk−1 = diag([0.1, 1]).

application of particle filters can be found in [3, 16, 15].

The principle of Monte Carlo approximation builds upon the notion that,

besides the function itself also statistics of a distribution, i.e. moments, can

be numerically approximated using samples of the distribution, also called

particles.

Example 3.4 (Monte Carlo approximation)

Suppose we have M ≫ 1 independent samples drawn from a pdf, p(x) as,

x(m) ∼ p(x), m = 1 . . .M, (3.101)

we can approximate p(x) and its general expectation function as,

p(x) ≈ 1

M

M∑

m=1

δ(x− x(m)) (3.102)

E{g(x)} ≈ 1

M

M∑

m=1

∫
g(x)δ(x− x(m))dx =

1

M

M∑

m=1

g(x(m)) (3.103)

The accuracy of this approximation is dependent on the complexity of p(x)
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3.1 Recursive filtering problem

and how many samples, M , that are used to describe it.

2

At first glance, Monte Carlo approximation may seem very similar to the

aforementioned unscented transform. In this setting, however, the samples

are drawn stochastically and not chosen deterministically, and typically the

number of particles are far more numerous than the number of sigma points.

The particles are generally able to capture higher moments of the distribu-

tion, whereas the sigma points are only designed to accurately describe the

first two moments. In situations where the pdf is not nearly Gaussian (not

accurately depicted by just mean and covariance) this will prove to be a very

limiting restriction.

The method described in Example 3.4 relies upon the fact that it is possi-

ble to generate samples from the density, p(x). Generally, this is not compu-

tationally straightforward except for some specific functions7. To circumvent

this difficulty importance sampling can be used; that is instead of sampling

directly from p(x), generate samples from a similar distribution called the

importance density q(x). Using these samples, the approximations (3.102)

and (3.103) can be expressed as,

p(x) =
p(x)

q(x)
q(x) ≈ 1

M

M∑

m=1

p(x(m))

q(x(m))
δ(x− x(m)) =

M∑

m=1

w(m)δ(x− x(m))

(3.104)

E{g(x)} ≈
M∑

m=1

∫
g(x)w(m)δ(x− x(m))dx =

M∑

m=1

w(m)g(x(m)),

(3.105)

where w(m) = p(x(m))

Mq(x(m))
is a (sample dependent) importance weight to compen-

sate that we are not sampling from the desired distribution. Depending on

our knowledge of p(x), is it sometimes only possible to calculate w̃(m) ∝ w(m).

7For instance, in the case when x has a Gaussian or uniform distribution for example,
one can in Matlab easily use the functions randn() and rand(), respectively, to generate
samples from these distributions.
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However, it is easily amended by normalisation,

w(m) =
w̃(m)

∑M
m=1 w̃

(m)
(3.106)

In this case, the only requirement on p(x) is that it should be possible to

evaluate the function pointwise up to a normalising constant, a much looser

assumption than if it should be practical to generate samples from it. The

requirement of the importance density is that it should be easy to generate

samples from and that it has the same support as p(x), that is

p(x) > 0 ⇒ q(x) > 0 ∀x ∈ Rnx. (3.107)

The latter condition is to ensure that we are able to generate samples from

the complete range of x and that the weights p(x)/q(x) have an upper bound

for all x.

Particle filter algorithm

Here we will demonstrate how Monte Carlo approximation and importance

sampling can be used sequentially to calculate the posterior distribution,

p(xk
∣∣Y1:k), again using the general nonlinear models (3.5) and (3.6). Before

deriving the filter we introduce X1:k−1 =
[
(x1)

T , (x2)
T , . . . , (xk)

T
]
, which

contains a whole trajectory of state vectors. Suppose that we at time k − 1

have a set of particles with associated normalised weights, {X(m)
1:k−1, w

(m)
k−1}Mm=1.

This particle set approximates p(X1:k−1

∣∣Y1:k−1) such that

p(X1:k−1

∣∣Y1:k−1) ≈
M∑

m=1

w
(m)
k−1δ(X1:k−1 −X

(m)
1:k−1), (3.108)

w
(m)
k−1 ∝

p(X
(m)
1:k−1

∣∣Y1:k−1)

q(X
(m)
1:k−1

∣∣Y1:k−1)
,

M∑

m=1

w
(m)
k−1 = 1. (3.109)

Furthermore, assume that we can factorise the importance functions as,

q(X1:k

∣∣Y1:k) , q(xk
∣∣xk−1,yk)q(X1:k−1

∣∣Y1:k−1). (3.110)
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3.1 Recursive filtering problem

Using importance function on this form enables simple generation of new par-

ticles, X
(m)
1:k ∼ q(X1:k

∣∣Y1:k), by adjusting each of the old particles, X
(m)
1:k−1 ∼

q(Xk−1

∣∣Y1:k−1), by appending x
(m)
k ∼ q(xk

∣∣x(m)
k−1,yk). Here, we assume that

the xk is a first order Markov process and hence only dependent on its pre-

vious state. To conclude the filter update we just need to update the im-

portance weights. Remembering the general measurement update equation

(3.8) we can express the posterior distribution as

p(X1:k

∣∣Y1:k) =
p(yk

∣∣X1:k,Y1:k−1)p(X1:k

∣∣Y1:k−1)

p(yk
∣∣Y1:k−1)

=
p(yk

∣∣xk)p(xk
∣∣X1:k−1,Y1:k−1)p(X1:k−1

∣∣Y1:k−1)

p(yk
∣∣Y1:k−1)

∝ p(yk
∣∣xk)p(xk

∣∣xk−1)p(X1:k−1

∣∣Y1:k−1) (3.111)

An expression for updating the unnormalised importance weights can be

found by substituting (3.110) and (3.111) in (3.109),

w̃
(m)
k =

p(yk
∣∣x(m)
k )p(x

(m)
k

∣∣x(m)
k−1)p(X

(m)
1:k−1

∣∣Y1:k−1)

q(x
(m)
k

∣∣x(m)
k−1,yk)q(X

(m)
1:k−1

∣∣Y1:k−1)

=
p(yk

∣∣x(m)
k )p(x

(m)
k

∣∣x(m)
k−1)

q(x
(m)
k

∣∣x(m)
k−1,yk)

w
(m)
k−1, (3.112)

and by normalisation we have

w
(m)
k =

w̃
(m)
k∑M

m=1 w̃
(m)
k

. (3.113)

From the updated particle set {x(m)
k , w

(m)
k }Mm=1, it is possible to form an

approximative mmse estimate of the quantities of interest as,

x̂MMSE
k = E{xk

∣∣Y1:k} ≈
M∑

m=1

w
(m)
k x

(m)
k . (3.114)

The accuracy of (3.114) depends on how many particles are used in the filter

as well as how effectively these particles are utilised. The latter could be
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somewhat controlled by choosing an appropriate importance function. In [16]

it is proven that choosing q(x
(m)
k

∣∣x(m)
k−1,yk) = p(x

(m)
k

∣∣x(m)
k−1,yk) minimises the

variance in the weights, w
(m)
k . In the general nonlinear filtering problem, it

could be difficult to generate samples from this pdf. A good approximation

is, however, to estimate the distribution using either an ekf or an ukf

filter. Another simple, but suboptimal, choice is to use the motion model,

p(xk
∣∣x(m)

k−1), and therefore ignore the new information in the measurement

when generating new particles.

In [16] it is also shown that the variance of the importance weights can

only grow for each iteration. In a few iterations the mass of the normalised

weights will be concentrated in a handful of particles, and only these particles

contribute in describing the posterior density. As a result, the Monte Carlo

approximation will degenerate. One answer to the problem would be to

resample the particles if the importance weights get concentrated in just a

few particles. By mapping the degenerated particle set {x(m)
k , w

(m)
k }Mm=1 into

a new particle set with uniform weights, {x∗(m)
k , 1/M}Mm=1, such that

Pr{x∗(m)
k = x

(m)
k } = w

(m)
k , (3.115)

the new particle set will be likely to contain more good particles that previ-

ously had large weights than particles with low weights. This is sometimes

appropriately called the survival of the fittest.

3.2 Models

In the model-based formulation of the sequential tracking problem that is

discussed in this thesis, there is a need for two probabilistic models, one

describing the uncertainty in target motion and the other describing the

uncertainty in measurement origin. These models are called motion model

(or dynamic model) and sensor (or measurement model) and are here as-

sumed to be in the form of (3.5) and (3.6), respectively. It is clear that if

information exists about the probable motion of a target and sensor char-

acteristics,a tracking system should benefit from including this information.
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Consequently, will the performance of the tracking system also be dependent

on the accuracy of both these models.

This section discusses the design of these two models. In Section 3.2.1 dif-

ferent aspects of constructing target motion models are considered, whereas

Section 3.2.2 focuses on modelling sensor measurement origin and the uncer-

tainties therein.

3.2.1 Motion models

The motion model in a discrete-time tracking framework aims at describing

the evolution of the state vector in-between the measurement updates. That

is, assuming the previous position of target i is known, xik−1, the motion

model predicts the target’s position at the time of the next expected obser-

vation, xik, including uncertainty measures. In preventive safety applications,

motion models are also used to predict the future traffic scenario. Precise

vehicle motion models are of high importance, as these systems need to give

prior warning or intervene before the dangerous situation occur. In Figure

3.5 5 is an example, where a vehicle motion model can be used to determine

if a car is likely to brake to take account of the slower vehicle in front or

if it is more likely to overtake. By comparing the motion indicated by the

two models with the actual motion of the vehicle, a decision can be made on

which of these hypotheses is more likely.

From the discussion in Section 3.1 discrete-time motion models are con-

sidered on the from,

xik = fk−1(x
i
k−1,vk−1),

where vk−1 is a noise process used to describe motion uncertainties. There

are three inherent uncertainties that need to be considered, namely,

• the uncertainty in possible deviations/changes from the path stipulated

by xk−1 between k − 1 and k

• the uncertainty in parameters used to describe fk−1(·)
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Figure 3.5: Multi hypothesis motion model for prediction of the future tra-
jectory of the ego vehicle.

• the uncertainty that originates from approximations or simplifications

when designing fk−1(·)

To find this model, there are two choices. Either to firstly formulate the

model in a continuous-time differential equation model, the solution of which

is then discretised, or describing the discrete-time motion model directly. Of-

ten it is more convenient to start by formulating the continuous-time model,

as motion is a continuous-time phenomenon. However, depending upon the

complexity of the model, it could be difficult to find an analytical solution

to the discretisation. In such cases it is easier to construct the motion model

directly in discrete time. The main difference between these approaches is

the interpretation of the resulting noise process. The examples used in this

section are directly formulated in discrete time.

An extensive overview of different target motion models is given in [35].

Helpful books that also cover the subject are [12] and [7]. These references

mainly focus on kinematic models, extensively used to describe the motion of,

e.g. aircrafts. More accurate motion models, which specialise in describing

the motion of cars, have emerged since the introduction of preventive safety

systems, relying on accurate description of the vehicle dynamics, e.g., esc

discussed in Chapter 2. An example of one such model is the single track

model, used in, e.g. [2]. Even though the primary use of this model is for
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control applications, a simplified version of the model is successfully applied

in a tracking framework in [22] and [10]. Examples of commonly used motion

models are given next.

Constant velocity model

A frequently used and simple model to describe vehicle motion is the con-

stant velocity model (CV). This model is based upon the assumption that

the accelerations posed on the vehicle between two samples are constant and

drawn from a zero-mean white noise process. Hence, this model is some-

times called discrete white acceleration model [7]. Using this assumption the

motion of the vehicle can be modelled as,

xk = Fcvxk−1 +Gcvvk−1 (3.116)

where

Fcv =




1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1



, Gcv =




T 2
s /2 0

0 T 2
s /2

Ts 0

0 Ts




(3.117)

where the state is parameterised in the inertial coordinates (ξx(k), ξy(k))

as xk = [ξx(k), ξy(k), ξ̇x(k), ξ̇y(k)]
T . The covariance matrix of the white

acceleration noise process is,

Cov{vk−1} =

[
σ2
ẍ 0

0 σ2
ÿ

]
. (3.118)

The covariance matrix of the noise term in (3.116) then becomes,

Cov{Gcvvk−1} =




σ2
ẍT

4
s /4 0 σ2

ẍT
3
s /2 0

0 σ2
ÿT

4
s /4 0 σ2

ÿT
3
s /2

σ2
ẍT

3
s /2 0 σ2

ẍT
2
s 0

0 σ2
ÿT

3
s /2 0 σ2

ÿT
2
s




(3.119)
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Note that the unit of σẍ and σÿ is m/s2, i.e., accelerations as would be

expected.

Constant acceleration model

A slightly more complicated motion model is the constant acceleration model

(CA). In this model, the acceleration increments are assumed to be a zero-

mean white process. This results in a model containing position, speed and

acceleration in each dimension as,

xk = Fcaxk−1 +Gcavk−1 (3.120)

where

Fca =




1 0 Ts 0 T 2
s /2 0

0 1 0 Ts 0 T 2
s /2

0 0 1 0 Ts 0

0 0 0 1 0 Ts



, Gca =




T 2
s /2 0

0 T 2
s /2

Ts 0

0 Ts

1 0

0 1




(3.121)

and the state vector is extended to also include the accelerations, according

to xk = [ξx(k), ξy(k), ξ̇x(k), ξ̇y(k), ξ̈x(k), ξ̈y(k)]
T . The noise term in the CA

model becomes,

Cov{Gcavk−1} =




σ2
ẍT

4
s /4 0 σ2

ẍT
3
s /2 0 σ2

ẍT
2
s /2 0
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ÿT

4
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ÿT
2
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ẍT
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s /2 0 σ2

ẍT
2
s 0 σ2

ẍTs 0

0 σ2
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ÿT
2
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ÿTs
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ẍT
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s /2 0 σ2

ẍTs 0 σ2
ẍ 0
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ÿT

2
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(3.122)

The unit of the standard deviation of noise process ism/s2. A clear advantage

with both these models is that they are linear in both the state and the noise
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process. This property make them suitable motion models to use in a Kalman

filter.

3.2.2 Sensor models

The sensor model tries to capture the probabilistic relation between the sen-

sor measurements and the state vector. To recap (3.6), we assume that it is

possible to describes this relation using

yk = hk(xk,wk),

where h(·) is a possibly nonlinear function and wk is a noise process that

describe the uncertainty in the origin of the measurement. The interpretation

of h(·) can typically be divided into two parts,

1. a deterministic mapping between the state vector to the measurement

vector, yk = hk(xk, 0), describing what in xk is measured and how it

is measured.

2. a probabilistic description of the measurement noise including uncer-

tainties that originate from simplification and assumptions made in the

mapping described above that influence the uncertainty in the origin

of the measurement.

To illustrate this we use a simple example where we are tracking a vehi-

cle in Cartesian coordinates on which we make radar observations in polar

coordinates.

Example 3.5 (Radar sensor model for a point target)

Suppose we have the state vector parameterised in Cartesian coordinates as,

xk =




ηx

ηy

η̇x

η̇y



. (3.123)
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In the system we have a radar sensor delivering measurements in polar co-

ordinates, e.g., range and azimuth (angle). A typical radar sensor model is

formed as

yk =

[
r

φ

]
=

[ √
η2x + η2y

arctan
(
ηy
ηx

)
]
+

[
wr

wφ

]
(3.124)

where wr and wφ is measurement noise in range and azimuth, respectively.

In (3.124) it is clear that

yk =

[ √
η2x + η2y

arctan
(
ηy
ηx

)
]

(3.125)

describes the deterministic mapping between the different coordinate systems

and the wr and wφ accounts for the uncertainty in measurement origin.

2

Note that, the whole state vector is not observed by the sensor in Example

3.5. The only information that the tracking system can derive about the

velocity of a target, (η̇x, η̇y), is coupled through the target motion model.

Only by using both these models the tracking framework is able to draw

conclusion about the target velocity.

The purpose of the sensor model in a multi-target tracking system is

twofold. It is used in the measurement update in the filter to determine not

only how the information in the measurement is related to the state but also

how much the tracking algorithm should trust the new measurement over

the information already collected in the previous state estimate. Recalling

the Kalman filter update equation (3.33),

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1),

Kk = PxyP
−1
yy,

where Pyy = E{(yk − ŷk|k−1)(yk − ŷk|k−1)
T} is the covariance of the new in-

formation in the measurement describing the uncertainty therein and Pxy =

E{(xk − x̂k|k−1)(yk − ŷk|k−1)
T} describes the mapping (correlation) between
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the innovation and the state. Both of these statistics are highly dependent

on the sensor model, as ŷk|k−1 = E{hk(xk,wk)|Y1:k−1}. If the measure-

ment is informative, i.e., Pyy is small in relation to Pxy, the filter will trust

the measurement more and vice versa if the measurement is less informative.

Similarly, if the measurement noise is underestimated in the model compared

to the real measurement noise, the estimates from the filter will become noisy.

On the other hand, if the noise is overestimated, the information in the mea-

surement will not be efficiently exploited. It is clear that no filter is optimal

as long as the models used in the filter is inaccurate.

The other purpose of the sensor model is to find the likely measurements-

to-track associations in the data association. Using the measurement model

it is possible to determine how likely it is that a certain track gives rise to a

certain measurement. These aspects of the sensor model are covered more in

detail Section 3.3. For further discussion on sensor models, a useful survey

in [36] and text books that cover the subject are [12] and [5].

3.3 Data association

Up until now we have disregarded any uncertainty in measurement-to-track

assignments, i.e it has been known to us which measurement should update

which track. In practical multi-target tracking systems, this is however sel-

dom known. Methods for finding likely measurements-to-track associations

need to be in place to handle this uncertainty, known as the data association

problem.

Example 3.6 (Data association problem)

Suppose we have mounted a radar sensor on a vehicle observing the traffic in

front of the car as in Fig. 3.6. At time k, we are tracking nt(k) = 2 targets

but we receive nm(k) = 11 measurements. The data association problem is

to find which of these nm(k) (if any) likely belong to which of the current

nt(k) tracks.

To easily remove highly unlikely measurements-to-track associations, a

gate is often constructed around each track. Measurements falling outside
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Figure 3.6: A radar mounted on a vehicle observes two targets in front. The
measurements from the radar are depicted as red stars. It is clear
that the radar sees both objects, but there are also many false
alarms or clutter measurements. It is also uncertain which mea-
surement truly originates from the two cars. To remove unlikely
data associations, a so-called gate is constructed around each ob-
ject, drawn as an ellipse. All measurements falling outside this
gate will not be considered in the data association.

these gates are not considered as candidates for association. The gates in

this example are depicted as circles in Fig. 3.6.

2

The discussion in this section is limited to systems that can be separated

as

xik = fk−1(x
i
k−1,v

i
k−1) (3.126)

yik = hk(x
i
k,w

i
k) (3.127)

where xik is the state vector of the ith track and yik is a measurement origi-

nating from that track. It is further assumed that at most one measurement

originates from each track. Even though we show in Paper I-III, that this is

not always a valid assumption.

60



3.3 Data association

There are several methods available for solving the data association prob-

lem. A good overview is given in [12] and [5]. In [12] there is also an extension

to more advanced methods not covered in this thesis, such asmulti-hypothesis

tracking (mht). Here, we will focus the discussion to two common types of

data association methods, nearest neighbour association, in Section 3.3.2,

and all-neighbour association, in Section 3.3.3. The conceptual difference

between the two is that the nearest neighbour algorithms find one likely

measurement for each track, whereas the all-neighbour methods assign mul-

tiple measurements to each track, but weigh their contribution depending

on how likely it is that each originate from the track. However, we start by

examining a convenient method of reducing the computational load be re-

moving unlikely measurements-to-track associations. This method is called

gating and is explained in Section 3.3.1.

3.3.1 Gating

As shown in Example 3.6, gates are constructed around each track, or rather

the predicted measurement of each track, ŷik|k−1, to limit the number of

possible measurement-to-track associations that are examined by the data

association algorithm. Consider the residual between a measurement, yjk,

and the expected measurement from the ith track, ŷik|k−1,

ỹi,jk|k−1 = yjk − ŷik|k−1. (3.128)

In the Kalman filter we know that this residual (or innovation) is Gaussian

distributed as,

ỹi,jk|k−1 ∼ N (0,Sik), (3.129)

and in the ekf and ukf we believe it is approximately so. Using this measure

we are able to calculate the statistical distance, d2i,j, between the measure-

ment, yjk, and the expected measurement, ŷik|k−1, as the norm of the residual,

d2i,j = (ỹi,jk|k−1)
T (Sik)

−1(ỹi,jk|k−1), (3.130)
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Figure 3.7: Two elliptic gates centred around the predicted measurement of
each track.

where d2i,j, if (3.129) holds, is a χ
2
M random variable for the correct measurement-

to-track pairing, M being the dimension of the measurement vector. It is

possible to express an elliptic gate using this measure as,

(ỹi,jk|k−1)
T (Sik)

−1(ỹi,jk|k−1) ≤ G (3.131)

where G is the gate size. All measurements that satisfy the gate criterion

d2i,j ≤ G is said to pass the gate and will be considered in the data association

algorithm. The assumption that d2i,j ∼ χ2
M can be used to determine a

suitable gate size, according to the probability that the true measurement

from the ith track will fall with in the gate of size G, for details see, e.g.,

[12]. In Fig. 3.7, the gating of two tracks is demonstrated. Both predicted

measurements, ŷ1
k|k−1 and ŷ2

k|k−1, are shown together with their elliptic gates.

From the gating process will measurements, y1
k and y5

k, will be removed

by the data association algorithm from further processing. Note also that

measurement y6
k falls within the gate of both tracks.

As the accuracy of the predicted measurement of a track is both de-

pendent on the motion model to calculate x̂ik|k−1, and the sensor model to

retrieve, ŷik|k−1, the precision of both these models will influence the gating

performance as well as the opportunity to create correct data associations.
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3.3 Data association

3.3.2 Nearest neighbour association

The concept of nearest neighbour association is to find the one measurement

that is in some sense nearest to the predicted measurement of each track. The

simplest method is called nearest neighbour (nn), and is a greedy method in

which each track picks the measurement with the smallest statistical distance

d2i,j. Clearly, this could result in two tracks choosing the same measurement

to update their estimates, and can lead to the tracks converging to describe

the same target. nn can be seen as locally minimising the association distance

for each individual track separately.

Another natural approach would be to find the global minimum distance

considering all tracks simultaneously, under the restriction that a measure-

ment can only be associated with one track. This approach is referred to in

the literature as global nearest neighbour (gnn) or single hypothesis tracking

[12], as it tries to find the single most probable measurement-to-track as-

signment. To ensure that poor quality tracks (large prediction covariance)

do not steal measurements from high quality tracks, it is common to modify

(3.130) to the general statistical distance,

d̆2i,j = d2i,j + ln(|Sik|), (3.132)

where | · | is the determinant. Additionally, some arbitrary large distance can

be given to those measurements that fall outside the gate of a track. The

aim of gnn is then to find the unique measurement-to-track assignments

(1, λ1), . . . , (nt(k), λnt(k)) that solves,

min
{λi}

nt(k)∑

i=1

d̆2i,λi, (3.133)

where λi ∈ (0, . . . , nm(k)) indicates which measurement track i has been

assigned. The value λi = 0 stipulates that track i is not assigned a measure-

ment.

The main difficulty with gnn is to find an efficient way to solve the assign-

ment problem (3.133). In [12], there is a discussion of different alternatives,
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Figure 3.8: Comparison between nn and gnn data association methods.

where the auction algorithm [11] is suggested as a suitable candidate. Solving

(3.133) using one of these algorithms results in the data association matrix

Λk(i, λi) = 1, indicating which measurement, λi, is assigned to track i.

Figure 3.8 shows a comparison between the nn and gnn, where one of the

tracks only has one measurement in its gate. The comparison clearly shows

the suboptimal behaviour of the nn algorithms as it assigns measurement,

y2
k, to both tracks.

3.3.3 All-neighbour association

In contrast to the data association methods discussed in Section 3.3.2, the

all-neighbour association methods, as the name implies, uses all the mea-

surements that fall inside the gate of a track. The idea is to weigh each

measurement, j, in accordance with the probability that it originated from

track i, denoted pij. There are two methods that use this approach for as-

signing multiple measurements to tracks. The first one was probabilistic data

association (pda) proposed in [8], which was later extended to joint proba-

bilistic data association (jpda) in [19]. The only difference between the two

is the way the association probabilities are calculated, pij. Similarly to nn,

pda considers each track separately, whereas jpda formes global hypotheses

to calculate the probabilities. We start by explaining pda and later expand

to consider jpda.

To calculate the association probabilities, pij , these algorithms forms data
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association hypothesis. Suppose nim(k) measurements fall within the gate of

track i at time k, then there are nim(k) + 1 hypotheses that can be formed.

One suggesting that none of the measurements originate from track i,i.e.,

λi = 0, and that measurement j is the valid measurement from track i,

denoted λi = j. Using these hypotheses we can calculate the association

probabilities,

pij = Pr{λi = j
∣∣Y1:k−1}, (3.134)

where j = 0 . . . nim(k) and pi0 is the probability that non of the measurements

are valid. The association probabilities for all tracks can be summarised in

the association matrix as, Λk(i, j) = pij . Suggestions on how to calculate

these probabilities can be found in [12] and [8]. Using these probabilities it

is possible to calculate an equivalent innovation to use in the measurement

update,

ỹik =

ni
m(k)∑

j=1

pijỹ
i,j
k , (3.135)

where ỹi,jk is the innovation of measurement j to track i. To compensate that

clutter is also weighted into the state update, the resulting error covariance

needs to be adjusted,

Pk|k = pi0Pk|k−1 + (1− pi0)P
∗
k|k + dPk|k (3.136)

where the state covariance updated with the correct measurement is,

P∗
k|k = Pk|k−1 −KkSkK

T
k (3.137)

and the spread of the innovation terms contribute with,

dPk|k , Kk



ni
m(k)∑

j=1

pij(ỹ
i,j
k )(ỹi,jk )T − (ỹik)(ỹ

i
k)
T


KT

k (3.138)
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This concludes the formulation of the pda algorithm. Additional information

about the pda algorithm can be found in [31], where also practical examples

of pda implementations are provided.

As previously mentioned, the only difference between pda and jpda, is

the way the hypotheses are constructed. Pda suffer from the same deficiency

as nn, in that it is possible for tracks to share measurements. In multi-target

environments will this lead to degeneration of the tracking performance.

Jpda mitigates this deficiency by calculating the association probabilities,

pij, jointly across all tracks. In these calculations assignment hypotheses are

formed where there are no assignment conflict

λn = {λn1 , λn2 , . . . , λnnt(k) : if λ
n
i = λnj then i = j or λni = λnj = 0} (3.139)

The joint association probability can the be calculated as,

pij =
∑

{λn=j} ∈ λn

Pr{λn
∣∣Y1:k−1}. (3.140)

This will ensure that a measurement that is likely to originate from one track

will have low weight (probability) for all the other tracks. More on how to

calculate these global probabilities can be found in [19].

In Fig. 3.9, a similar comparison is made between the pda and jpda

as previously made between nn and gnn. As these methods computes a

weighted innovation from all measurements inside the gate, how much weight

is assigned a certain measurement is indicated by the thickness of the con-

nection. The conclusion being that less cross influence between sharing mea-

surements is achieved using the jpda.

3.4 Track management

In order to apply the methods discussed in the previous sections we have

one major aspect left to consider, the aspect of track management. Up until

now we have assumed that all tracks have already been validated and that
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ŷ1
k|k−1

ŷ2
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Figure 3.9: Comparison between pda and jpda data association methods.

we have no uncertainty regarding how many true targets we are observing.

Track management methods make sure that only tracks of sufficient quality

gets reported to the receiving decision algorithms. The life of a track can be

divided into three stages,

track initialisation: a tentative track gets started, for those measurements

that are likely to originate from new targets, by choosing a suitable

prior, p(x0

∣∣y0), to initialise the tracking filter. This enables us to asso-

ciate further measurements to the tentative track using standard data

association methods.

track validation: if observations indicate that the tentative track resembles

a true target rather then just random noise or clutter, its status gets

upgraded to a validated track, i.e., a track that can be trusted by the

receiving decision algorithms as describing a real target.

track deletion: if the track is no longer visible by any sensor or the tracking

algorithm is too uncertain by the target state, the track gets removed

and will no longer be considered.

In this section we discuss different methods of track initialisation, validation

and track deletion.
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3.4.1 Track initialisation

When initiating a track in a Bayesian tracking filter it is essential to design

a prior density, p(x0

∣∣y0), that incorporates the information about the state,

x0, before any observations are made. Depending on the problem the con-

struction of a proper prior could sometimes be difficult. In the example of

tracking vehicles, prior knowledge is available in that vehicles tend to travel

on the road and with a velocity in the same direction as the road. This type

of information could, for example, be included into the prior density. It is

also possible to have different priors to represent different hypotheses in the

track initialisation. A radar sensor is only able to measure radial velocity, as

such it is hard to distinguish between a stationary vehicle and a vehicle trav-

elling perpendicular to the sensor. By designing a prior for both hypotheses

it is possible to let future measurements determine which hypothesis is the

correct one.

It is, however, also possible to initiate the filter with a non-informative

prior, indicating that no information about the state exists before making

any observations. In a Kalman filter framework this would be to chose a

prior as,

x0 ∼ N (0,P0), (3.141)

where P0 is chosen to be much larger in relation to the measurement uncer-

tainty. In this case both the mean and covariance estimates, after the first

iteration of the Kalman filter, will be largely based on the information in the

associated measurement and its uncertainty.

Further discussion on suitable priors in a tracking framework are pre-

sented in [7] and a more general discussion of the choice of prior density can

be found in [47].

3.4.2 Track validation

Before tentative tracks get reported further, the track management need

to make sure that it describes a real target and is not a result of spurious
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clutter. A frequently used but ad hoc method is the M/N principle. Here, a

track is validated if M measurements out of N possible are associated with

the tentative track. This principle for track validation is frequently used

together with nearest neighbour data association methods.

More formal methods for track validation in all-neighbour association al-

gorithms can be found in [6] and [39]. The latter derives the pda algorithm

without the initial assumption of track existence. The resulting integrated

probabilistic data association (ipda) is thus capable of both expressing prob-

ability of target existence and data association. A track is validated using

this framework when the probability of existence exceeds a certain threshold.

A general measure for track validation which support standard detection

test, such as the sequential probability ratio test (sprt), is the formulation

of track score first proposed in [48]. The probability ratio used in sprt to

accommodate track validation can be found by calculating,

sik =
Pr {{}Hi

T

∣∣Y1:k}
Pr {{}Hi

FA

∣∣Y1:k}
=

p(Y1:k

∣∣Hi
T )Pr {{}Hi

T }
p(Y1:k

∣∣Hi
FA)Pr {{}Hi

FA}
, (3.142)

where Hi
T is the hypothesis that track i describes a true target and Hi

FA is

the hypothesis that it is a false alarm (or clutter). Assuming independent

measurement noise a sequential formulation of the track score can be found

as

sik =
p(yk

∣∣Hi
T )

p(yk
∣∣Hi

FA)
· p(Y1:k−1

∣∣Hi
T )Pr {{}Hi

T}
p(Y1:k−1

∣∣Hi
FA)Pr {{}Hi

FA}
=

p(yk
∣∣Hi

T )

p(yk
∣∣Hi

FA)
sik−1. (3.143)

Similarly as in the ipda algorithm, a tentative track is validated if the track

score exceeds a certain threshold. A detailed derivation of the hypotheses

probabilities can be found in [12].

3.4.3 Track deletion

The deletion of tracks can also be performed by the use of the track score

defined in (3.142). In this case if the score falls below a certain threshold.

There are also other more ad hoc methods, such as deleting the track if no
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observations have been associated with the track in ND consecutive scans.
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Radar sensor modelling

T here exist a vast amount of literature describing all parts of a radar

system, from the design of the important oscillator circuits to advanced

signal processing specialities. Probably the most classical reference work is

the introductional book by Skolnik [49]. Other good reference books include

[50], directed towards non-specialists, and [43], having a signal processing

point of view. In this thesis, the discussion is primarily focused on the signal

processing and signal modelling perspectives of the radar sensor. That is,

discussions about radar system performance analysis and components are

omitted to benefit the understanding of the characteristics of the radar signal

and the radar measurements. This will also serve as an introduction to the

contribution in the appended papers dealing with radar sensor modelling.

4.1 Brief history of radar and its applications

The word radar originates from the acronym, radar, for “radio detection

and ranging,” but is now considered an ordinary English noun. The word

has two meanings today [1]. The first meaning is a method of detecting

distant objects and determining their position, speed, material composition,

or other characteristics, by causing radio waves to be reflected from them and

analysing the reflected waves. The second meaning is the equipment used in

such detecting.
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Figure 4.1: The first radar patent describing a system for detecting ships in
fog.

The first patent on radar technology was granted in 1904 to the German

engineer Hülsmeier [23]. As depicted in Fig. 4.1, the intended application

was a collision warning system for ships where radio waves were used to

detect approaching ships in dense fog. The development was accelerated

and spread in the 1930s, very much driven by military necessities, which

still today is the dominant user and developer of radar technology. Some

military applications of radar sensors include surveillance, navigation, and

weapon-guidance for ground, sea and air vehicles.

Today the use of radar systems is far from limited to military applications.

Most of us have probably been subjected the police traffic radar, used to en-

force speed limits, and have watched a weather forecast showing images from

a meteorological radar depicting the movement of rain clouds. As Hülsmeier

originally intended, radar sensors are frequently used in collision avoidance

systems for ships and, as indicated by this thesis, they are beginning to have

the same role for automotive safety systems.

4.2 Radar system description

This thesis focuses on what is called a detection radar which is used in, e.g.,

automotive safety systems. The basic aim of a detection radar is to detect the

presence of objects and to estimate the range and angle to these objects as

well as their range rate (radial velocity). This is accomplished by analysing

the return of a directed and modulated radio signal (electromagnetic wave)
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Figure 4.2: One general description of a monostatic detection radar where
the emphasis is put on the signal processing parts of the radar
system.

sent from the radar antenna and scattered back both from the objects of

interest as well as from other objects, known as clutter. In Figure 4.2, one

example of a generic description of a monostatic1 detection radar system

is shown, where the emphasis is put on the signal processing parts of the

system. A walk-through of the different steps is given below.

We start with the design of the transmitted signal. The shape of the

radar signal is first constructed at baseband by the waveform generator. The

choice of waveform, e.g. simple pulse, linear frequency modulated pulse or

continuous wave signal, will very much influence the resolution and accuracy

in both the estimates of the range to objects and their range rates. The

baseband signal is modulated by the carrier frequency and amplified in the

transmitter stage before it is sent to the antenna through the duplexer.

The antenna radiates the modulated waveform as a directed electromag-

netic wave, where the directivity is determined by the antenna beam pattern

(proportional to the size of the antenna). The narrower the beam pattern,

the more concentrated the electromagnetic wave is. Objects illuminated by

1Monostatic means that both the transmit and receive antenna are either the same or
at least collocated.
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the radio wave scatters the energy in different directions and a small portion

is reflected back to the radar. The back-scattered signal is received by the

antenna and then amplified and down-converted to baseband in the receiver

stage. The down-conversion to a baseband signal is typically performed in

a couple of steps, each synchronised with the carrier frequency which modu-

lates the transmitted signal (coherent radar).

As only a small part of the transmitted energy is reflected back and in-

tercepted by the radar antenna, the received signal has a very low amplitude

and is thus sensitive to corruption by thermal noise in the receiver and at-

mospheric noise intercepted by the antenna. A low signal-to-noise (snr)

will badly affect the performance of the detector. Hence, to improve the snr

before the detection stage some signal conditioning is usually performed. As-

suming additive white Gaussian noise, maximised snr is achieved by filtering

the received baseband signal with a conjugated and time-reversed version of

the transmitted radar waveform, a so called matched filter [30].

Once the snr is maximised, it is up to the detection stage to decide

whether there are reflections from objects present in the received signal or

not. This decision is typically made using statistical decision theory consid-

ering two hypotheses, is there a reflected radar signal present in the received

signal during a certain time interval or is there only noise. In most cases, the

decision is made by comparing the amplitude at the output of the matched

filter against a threshold, which could either be set a priori or determined

adaptively from radar data. If the amplitude is above the threshold, it is as-

sumed that there is an object present, and vice versa. If an object reflection

is detected, the signal can be further analysed to more accurately estimate

the range and angle to the object as well as its range rate.

4.3 Basic radar measurement principles

As aforementioned, the aim of a detection radar is to detect objects and to

estimate their positions (in terms of range and angle2) as well as their range

2Automotive applications are typically only interested in the bearing to objects and
not the elevation angle. Hence, this thesis only considers the position of objects in range
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rates. In this section, we briefly discuss the basic properties of the estimates

(measurements) from a detection radar on the form given in Fig. 4.2. The

estimates are discussed in terms of measurement principles and in terms of

resolution and accuracy.

The accuracy is to what precision the radar can correctly determine the

position of a point object, and is presented as the theoretical minimum vari-

ance of the estimation error determined by the Cramer-Rao lower bound

(crlb). The resolution, on the other hand, describes the ability of the radar

to separate two closely spaced point objects in a certain measurement di-

mension and report them as two objects and not as one. An inclusive figure

of merit of the resolution capability of a radar is however difficult to attain

as it is highly dependent on the relative strength of the return signals (from

the two closely spaced objects). As a result, we resort to give an intuitive

description of which radar parameters that influence the resolution in each

dimension and to give a rule-of-thumb expression for the resolution if the

reflections from the objects are of equal strength.

4.3.1 Range measurement

Suppose a radar signal sent at time t = 0 is reflected from an object and

detected at the receiver output at time t = τ . The time it took for the

signal to propagate to the object and back, τ , is directly proportional to the

distance to the object according to this simple relation

r =
cτ

2
, (4.1)

where r is the range to the object and c is the speed of light. Hence, by

measuring the time it takes for a transmitted signal to propagate to an object

and back gives us a measure of the distance to that object.

and bearing.
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Figure 4.3: Illustration of the range resolution of a pulsed radar. In the top
scenario the echo from both objects are grouped in the received
signal whereas in the bottom scenario they are well separated.

Range resolution

The capability of a radar to separate two closely spaced targets in range

is most intuitively explained considering a pulse radar. In its most simple

form, a pulse radar transmits a pulse modulated signal at a single carrier

frequency and of a certain duration τp (in practice the time between the half-

power points of the pulse). In Fig. 4.3, the reflected signal from two point

reflectors are shown for two scenarios. In the top scenario, the two point

reflectors are not sufficiently separated for the two echoes to be separated in

the received signal, whereas in the bottom scenario they are. For the trailing

edge of the echo from the first object to arrive at the receiver before the

leading edge of the second echo, the objects must be separated by more than

∆r =
cτp
2
, (4.2)

where ∆r is called the range resolution of the radar. From (4.2) we deduce

that for a pulse radar the range resolution is directly proportional to the

pulse duration.

The expression in (4.2), although intuitive, is misleading for other radar

waveforms than the simple pulse, such as linear frequency modulated pulses

76



4.3 Basic radar measurement principles

(pulse compression) or continuous wave signals. Fundamentally, it is not the

duration of the pulse that limits the range resolution of the radar but rather

the bandwidth of the transmitted signal. A more general expression for (4.2),

which is frequently used, is

∆r =
c

2B
, (4.3)

where B is the bandwidth of the baseband waveform, in practice taken as the

3dB bandwidth. Note that a reasonable approximation of the 3dB bandwidth

of a simple pulse is B ≈ 1/τp.

Range accuracy

Intuitively, the ability to determine the range to an object is dependent on

two things: the “sharpness” of the pulse shape and snr. In other words, the

accuracy is dependent on how informative the waveform is and how clear the

response from the target is in relation to the noise in the system.

In [49], the crlb of the range error variance for a point target is derived.

Assuming that a band-limited signal with high snr is processed using a

matched filter and that the noise is additive and described by a Gaussian

density with zero-mean, the standard deviation in range error is bounded by

σr ≥
c

2

1/β√
2E/N0

, (4.4)

where 2E/N0 is the snr after the matched filter and β is the effective band-

width of the transmitted waveform. The effective bandwidth is given by,

β2 =

∫∞
−∞(2πf)2|S(f)|2df∫∞

−∞ |S(f)|2df =

∫∞
−∞(2πf)2|S(f)|2df

E
, (4.5)

where S(f) is the Fourier transform of the transmitted baseband waveform.

The effective bandwidth of a signal is a measure of its spread of energy in

the frequency domain, analogous to variance in probability theory.

As intuition predicted, the variance of the range error is inversely propor-
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Figure 4.4: Illustration of the angle resolution of a scanning radar.

tional to how informative the waveform is (bandwidth) and the clearness of

the response (snr).

4.3.2 Angular measurement

The angle to a radar reflecting object, denoted ϕ, can be deduced by con-

centrating the radar energy in a narrow antenna beam, by estimating the

direction of arrival of the reflected wave, or by combining the two. The first

principle, shown in Fig. 4.4, is used by scanning radars, which sweeps the

area of interest (in a known pattern) with a concentrated beam. Hence, an

object is only detected if the antenna is pointed in the direction of the object.

Using an antenna array or a monopulse antenna (antennas with multiple re-

ceive channels), the direction of arrival of the reflected radar signal can be

estimated by sampling the instantaneous response from different parts of the

antenna.

Angular resolution

Similar to the difficulty of separating two close objects in range, the radar can

not resolve closely spaced objects in angle either. The concept is illustrated in

Fig. 4.4 for a scanning radar, but similar reasoning holds also for other types
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of angle estimators. In the figure, there are three stationary point objects

that are located at the same range from the sensor and that are equally good

radar reflectors. The antenna radiates energy according to the antenna beam

pattern and when the beam is swept from top to bottom, the return power

is registered for each direction as shown in the bottom plot. The return from

each object is at its maximum when the beam is pointed directly at it but

a response is given at other angles as well. As a result, the return power

from each object is spread in angle according to the antenna beam pattern

and, whereas the top object is clearly distinguishable, the returns from the

bottom pair are merged together.

From the considered example it is clear that the capability of the radar

to resolve closely spaced objects in angle is dependent on the width of the

antenna pattern. A practical definition of angle resolution would hence be

∆ϕ = θ3dB, (4.6)

where θ3dB is the beam-width between the half-power points in the antenna

pattern. However, the fact that two objects are separated more than ∆ϕ

is not a guarantee for that they are actually resolved. For example, if the

return power from one of the objects is much greater than from the other,

the return from the weaker object will drown.

Angular accuracy

The angular accuracy is, similar as for range, dependent on the snr and the

sharpness of the antenna beam pattern. The crlb of the angular estimation

error is derived in Chapt. 10 of [49] and is expressed as,

σϕ/λ ≥ 1/γ√
2E/N0

, (4.7)

where σφ/λ is the standard deviation for the angular error normalised by the

wave length, λ, of the carrier and γ is the effective aperture width (analogous

79



Chapter 4. Radar sensor modelling

to the effective bandwidth). The effective aperture width is given by

γ2 =

∫∞
−∞(2πx)2|A(x)|2dx∫∞

−∞ |A(x)|2dx , (4.8)

where A(x) is the aperture illumination function describing the amplitude

distribution across the aperture (x direction).

For a rectangular receiving aperture of width D, the effective aperture

width is found as [49]

γ =
π√
3
D,

and the half-power beam with is given as θ3dB ≈ 0.88λ/D. The minimum

theoretical angular error can thus be expressed as,

σϕ ≥
√
3

π

λ/D√
2E/N0

≈ 0.628θ3dB√
2E/N0

. (4.9)

Hence, to get a finer angular resolution, one can increase the transmitted

power or make a more concentrated beam by increasing the antenna aperture

(size) D or shortening wave length λ (by increasing the carrier frequency).

4.3.3 Range rate measurement

All objects having a relative radial velocity (range rate), denoted vr, to the

radar sensor will change the frequency of the reflected electromagnetic wave.

This phenomenon is known as the Doppler effect.

Suppose an object is at a distance R from a radar emitting an electromag-

netic wave with wave length λ. The 2-way path between the radar and object

is 2R/λ number of wave lengths, each corresponding to a phase rotation of

2π. In total, the signal has had a phase rotation

δφ =
4πR

λ
, (4.10)

during its transit to and from the object. As a result, at a given time, the
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phase of the received signal, φr, will lag that of the transmitted signal, φt,

according to,

φr(t) = φt(t)− δφ. (4.11)

If there is a relative motion between the sensor and the object, R will

change as a function of time and, consequently, also will δφ. A change in

phase with respect to time corresponds to a frequency. If we denote the

distance travelled by the wave as 2R̃(t) when there is a relative motion, this

frequency is given by

ωδ =
dδφ

dt
=

4π

λ

dR̃(t)

dt
≈ 4πvr

λ
, (4.12)

where the approximation is accurate as long as vr ≪ c.

Assuming that the radial velocity is constant during the time for it takes

the electromagnetic wave to travel to the object and back, the received an-

gular frequency, given by the time derivative of (4.11), is

dφr(t)

dt
= ωc −

4πvr
λ

= ωc + 2πfd, (4.13)

where ωc is the carrier angular frequency and fd is called the doppler fre-

quency given by,

fd = −2vr
λ
. (4.14)

The frequency of the return signal can thus be written as,

fr = fc + fd. (4.15)

From (4.14) it is possible to deduce that the received frequency will in-

crease if vr < 0 (closing velocity) and decrease if vr > 0 (opening velocity).

Hence, by measuring the difference in frequency between the transmitted

and received signal, the radar can estimate the relative radial velocity of the

object.
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0

ff − 1/τ f + 1/τ

Figure 4.5: The frequency content of a τ seconds long sinusoidal with fre-
quency f .

Range rate resolution

As explained in the previous section the range rate of an object is manifested

as a doppler shift in the frequency of the return signal. How well a radar can

distinguish two closely spaced targets in range rate can hence be regarded as

a frequency estimation problem.

Suppose that we have a signal s(t) with a duration of τ seconds, which

contains a single frequency, f . The total frequency content of this signal is

described by a sinc-shaped function centred at f and where the first null is at

f ± 1/τ as shown in Fig. 4.5. Analogous to the angular resolution discussed

in Section 4.3.2, if two signals are too close in frequency relative to the width

of the main lobe of the sinc-function, the two individual signals will be hard

to distinguish. As for the angular resolution, the frequency resolution is often

defined as the half-power (-3dB) width of the single frequency response of a

signal of length τ , given by

∆f = f3dB =
1

τ
. (4.16)

The range rate resolution is thus,

∆ṙ =
λ

2
∆f =

λ

2τ
. (4.17)

From (4.17) we can deduce that in order to have a good range rate res-
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olution we need to observe the return signal from the object under a long

time. This is the opposite to the requirement for a good range resolution

using the simple pulse radar. There, the pulse should be as short as possible

to get good range resolution.

Range rate accuracy

The crlb for the range rate error is derived in similar manner as for range

and angle, resulting in the expression,

σṙ ≥
λ

2

1/α√
2E/N0

. (4.18)

The parameter α is defined as the effective time duration of the transmitted

signal s(t), given by

α2 =

∫∞
−∞(2πt)2s2(t)dt∫∞

−∞ s2(t)dt
=

∫∞
−∞(2πt)2s2(t)dt

E
, (4.19)

which can be viewed as a normalised second order moment of the transmitted

signal, s2(t), in this case taken around t = 0.

As with range and angular error, the error in range rate can be made

arbitrary small by increasing the snr. Although in practice there is an

upper limit on how large snr that can be obtained. If the snr is fixed,

however, the accuracy in range and range rate are coupled. In this case the

range error is inversely proportional to the effective bandwidth occupied by

the signal, β, whereas the range rate error is inversely proportional to the

effective time duration of the signal, α. It is a well-known mathematical fact

that a narrow time signal has a wide spectrum and that a wide time signal

has a narrow spectrum and that both the time signal and the frequency

spectrum cannot be made arbitrary small simultaneously. This leads to the

so-called uncertainty relation

βα ≥ π (4.20)
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which is proven in Chap. 10 of [49]. From (4.20) we can express to which

accuracy range and range rate can be measured simultaneously as,

min{σrσṙ} =
λc

4

1

βα
√
2E/N0

≤ λc

4

1

π
√
2E/N0

. (4.21)

That is, range and range rate can be simultaneously estimated to as small

theoretical error as desired by designing the radar to give sufficient snr or,

for fixed snr, choose a waveform that gives a large value of βα. A waveform

which has a large βα has both a long duration and a wide bandwidth. Typ-

ically, practical constraints, such as power limitations and the time to scan

the area of interest limit the theoretical accuracy.

4.4 Signal model

This section introduces the basic signal processing models used in a detection

radar. A more thorough account is given in the books [43] and [49].

4.4.1 Transmit signal

The transmitted signal from a radar is described by

st(t) = a(t)cos(ωct+ θ(t)), (4.22)

where ωc is the carrier at radio frequency, a(t) is the envelop function de-

scribing the amplitude modulation of the signal, and θ(t) accounts for phase

and frequency modulations of the carrier. Using the model in (4.22), a simple

pulsed waveform can be described by setting θ(t) to zero and a(t) as a peri-

odic rectangular function of width τp. Other examples of possible waveforms

are depicted in Fig. 4.6.

To facilitate later analysis it is convenient to represent the real signal

in (4.22) by its complex equivalent

st(t) = a(t)ej(ωct+θ(t)). (4.23)
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(a) Simple pulse

τp0

−A

A

(b) Linear frequency modulated pulse

τp0

−A
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(c) Binary phase-coded pulse

Figure 4.6: Three different examples of modulated waveforms.

Further, the baseband part of (4.23) is called the complex envelop of the

waveform, defined as

u(t) = a(t)ejθ(t), (4.24)

and describes the amplitude and phase or frequency modulation applied to

the carrier.

The design of the waveform directly influences many of the basic radar

performance metrics. For example, the amplitude of the waveform directly

affects the signal-to-noise ratio and consequently the accuracy in all mea-

surement dimensions. As we saw in the previous section, the spread of the

signal spectrum (bandwidth) determines the resolution and accuracy of the

range estimates and the time duration of the transmitted signal influences

the resolution and accuracy in range rate.

In a matched filter receiver, as the one depicted in Fig. 4.2, the resolution

properties of a waveform is described by its ambiguity function defined by

the integral

χ(t, ωd) =
1

E

∫ ∞

−∞
u(s)u∗(s− t)ejωdsds. (4.25)

The ambiguity function describes the output of the matched filter receiver
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(correlation receiver) in terms of how well the filter is matched to the received

signal in time delay, t, and doppler shift, ωd. Consequently, the amplitude

maximum is found as |χ(0, 0)| ≥ |χ(t, ωd)|, i.e., when the received signal and

the matched filter are perfectly matched. Thus, an object whose response is

perfectly matched to the receiver will give rise to an output proportional to

χ(t, 0) (for simplicity we assume that the range delay of the returned pulse

corresponds to time 0). The return from another object with similar snr,

but with slightly different time delay, τ , and doppler shift, ωd, will for the

same filter give rise to an output proportional to χ(t− τ, ωd). If χ(t, 0) and

χ(t − τ, ωd) are not significantly different, the return from the two objects

are difficult to resolve.

From a resolution point of view, it is most favourable that χ(t, ωd) has

a peak at (0, 0) and is zero everywhere else. However, it is possible to show

that, irrespectively of the waveform, |χ(0, 0)| = 1, and that the volume under

|χ(t, ωd)|2 (energy) is

∫ ∞

−∞

∫ ∞

−∞
|χ(t, ωd)|2dt dωd = 1. (4.26)

From these two properties of the ambiguity function, it is possible to deduce

that even if we make the peak at (0, 0) narrow, the limit in the amplitude

at this point, and the constant volume of |χ(t, ωd)|2 means that the mass of

|χ(t, ωd)| must appear at other places, further away from the central peak.

As a result, if the waveform offers good resolution in the centre (where t and

ωd are zero), ambiguities will appear off-centre in the form of large values.

4.4.2 Radar equation

The performance of the radar, in terms of the probability of detecting an

object and in terms measurement precision, is highly dependent on the snr

of the received signal after the matched filter. The expected snr in an echo

from an object is expressed by the radar equation, in terms of system and

object parameters. There are many flavours of this equation depending on

which aspects of the system that are of interest. A more detailed discussion
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is found in, e.g., [49]. In this thesis we consider the equation on the following

form

SNR(r, ϕ) =
EtGt(ϕ)Ar(ϕ)RCS

(4π)2r4kTsCBL
, (4.27)

where r is the range and ϕ is the azimuth angle to the object reflecting the

signal. The parameters in (4.27) are defined as

Et : energy in the transmitted signal waveform [Ws]

Gt(ϕ) : antenna gain of the transmit antenna in the ϕ direction [ ]

Ar(ϕ) : effective receive aperture for an incident wave at ϕ [m2]

RCS : radar cross section (rcs) of the reflecting object [m2]

kTsCB : noise energy [Ws]

L : general loss term [ ].

The transmitted energy, Et, is determined by the amplitude and length

of the complex envelop u(t). The parameters Gt and Ar depend on the

directivity (and size) of the transmit and receive antennas, respectively. The

noise primarily enters the signal as thermal noise in the receiver, which is

described by the factor kTsCB, where k is Boltzmanns’ constant and Ts is the

system temperature. The term CB accounts for the fact that the received

signal passes through a set of filters. In the ideal case, CB is one, which

occurs when the received signal is filtered by a matched filter.

All of the parameters mentioned above are relatively easy to determine

based on the design of the radar system. What is more difficult to know a

priori, however, is the rcs of the reflecting object. The rcs is a measure of

how well the object reflects the radar energy, and for a nontrivial object, this

is sensitive to changes in distance and aspect ratio of the object relative to

the sensor. This, among other things, is discussed in the following sections.

4.4.3 Object return model

Assuming that the reflection process is linear and frequency independent

over the bandwidth of the signal, the complex representation of the reflected
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signal at the receiver (before filtering) from an ideal point object at range r

and at an azimuth angle ϕ can be written as

sr(t) = A(r, ϕ)grcsa(t− τ)ej[ωc(t−τ)+θ(t−τ)+ωdt+φ]

= A(r, ϕ)grcse
jφst(t− τ)ejωdt, (4.28)

where grcs =
√
RCS, and

A(r, ϕ) =

√
Gt(ϕ)Ar(ϕ)

(2π)2r4L
(4.29)

is the attenuation. The time delay, τ , is the time it takes for the signal to

travel from the radar to the object and back, and the frequency shift, ωd, is

due to the doppler effect described in Section 4.3.3. Further, the reflected

signal is subjected to an unknown phase shift, φ. The expression in (4.28)

is thus an attenuated, time delayed, as well as frequency and phase shifted

version of the transmitted signal. The attenuation is described by A(r, ϕ)

and is due to general losses in the system, energy dilution (energy spreading)

during propagation, and the gain of the transmit and receive antenna in the

direction of the object.

The objects under consideration thus far have been regarded as ideal

point sources, where all objects are assumed to reflect the radar signal in a

single point, and to have the same (constant) radar cross section. A more

complex object can be modelled as a set of ideal point objects, where the

ith point object is positioned at a range ri and angle ϕi. The return from this

type of object is thus an aggregation of the returns from the individual point

objects,

sr(t) =
∑

i

A(ri, ϕi)grcs,ie
jφia(t− τi)e

j[ωc(t−τi)+θ(t−τi)+ωd,it]

=
∑

i

A(ri, ϕi)grcs,ie
jφist(t− τi)e

jωd,it. (4.30)

From (4.30) we deduce that the return from a more complex object gives

a more spread response, in time (range), angle and frequency (doppler) than
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the ideal point object. The spreading of the signal affects the measurement

accuracies negatively compared to the ideal point source cases discussed in

Section 4.3. This effect is small if the spread is small in relation to the

resolution in the different dimensions (point source assumption), but if the

spreading is even and comparable to the resolution, the effect is quite notice-

able (extended object).

The time delay (range) differences between the individual reflectors in

relation to the carrier frequency and the induced individual phase shifts, de-

termine if the returns from the point objects are added coherently (construc-

tively) or incoherently. As a result, the rcs of a complex object fluctuates

with just small changes in range. This is easily seen for a simple pulse, i.e.,

where θ(t) is zero, and assuming that the spread in time delay, angle and

doppler is small compared to the resolution cell. In this case, the received

signal can be written as,

sr(t) =
∑

i

A(ri, ϕi)grcs,ie
j(−ωcτi+φi)a(t− τi)e

j(ωct+ωd,it)

≈
(∑

i

grcs,ie
j(−4πri/λc+φi)

)
A(r, ϕ)a(t− τ)ej(ωct+ωdt), (4.31)

where r, ϕ and ωd is the mean of the position of the point reflectors in

respective dimension. The rcs of the complex object is an aggregation of

the contribution from each reflector. By defining the complex sum,

grcs =
∑

i

grcs,ie
j(−4πri/λc+φi), (4.32)

the rcs of the complex object is defined as |grcs|2. Assume that the number

of point reflectors is large, that the rcs of the individual point reflectors,

grcs,i, are identically distributed and that the phase shifts (−4πri/λc + φi)

are independent and uniformly distributed. The central limit theorem then

gives us

Re{grcs}, Im{grcs} ∼ N (0, σ2
rcs). (4.33)
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From (4.33) it follows that the rcs of a complex object can be modelled as

|grcs|2 ∼ Exp

(
1

2σ2
rcs

)
, (4.34)

where E {|grcs|2} = 2σ2
rcs. This is the Swerling i (and Swerling ii) model [52]

of fluctuating target rcs. Other assumptions about the properties of the

components in (4.32) will lead to slightly different models, see e.g. [43]. How-

ever, it is clear that a small change in the range to the object (fraction of a

wavelength) will cause the terms in (4.32) to add up completely differently

and the resulting rcs is thus an independent realisation of (4.33). Addition-

ally, if the aspect angle changes, some of the point reflectors in (4.32) are

no longer visible, while other points on the object appear. This leads to a

change in the expected object rcs, E {|grcs|2}.

4.4.4 Receiver and matched filtering

The aim of the receiver is to demodulate the received signal to baseband and

to extract the relevant information from the signal in order to facilitate the

detection of objects and to estimate their properties. The demodulation is

typically done with an In-phase and Quadrature mixer. Using an I/Q de-

modulator, the general received signal in (4.30) is transformed to a baseband

signal on the form,

sb(t) =
∑

i

A(ri, φi)grcsu(t− τi)e
jωd,it + n(t)

= I(t) + jQ(t), (4.35)

where u(t) is the complex envelop of the waveform, n(t) describes the thermal

noise in the receiver, and

I(t) = Re{sb(t)} (4.36)

Q(t) = Im{sb(t)}, (4.37)
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are the real signal representations of the complex received signal. The noise is

modelled as an additive white complex Gaussian noise process with variance

σ2
n in each component (due to bandwidth limitations the noise is in practice

non-white).

Given that the return signal only consists of one ideal point object (there

is only one term in the sum in (4.35)), it is proven in [30] that the snr of

the signal is maximised using a matched filter (correlation receiver), with

impulse response

h(t) = u∗(τint − t)e−jωd(τint−t), (4.38)

where ωd is the doppler shift caused by the range rate of the object, and

τint is an integration time used to make the filter causal. The integration

time is typically chosen such that h(t) = 0 for t /∈ [0, τint], i.e., for a simple

pulse system τint = τp. To simplify the following discussions, the amplitude

of u(t) is set to unity and the amplitude of the transmitted signal is instead

incorporated into A(r, φ).

Applying the matched filter in (4.38) to the general signal in (4.35), and

denoting Ai = A(ri, ϕi)grcs, and ωd,i = ωd +∆ωi, the output of the matched

filter can be written as,

sb ∗ h(t) =
∫ ∞

−∞

∑

i

Aiu(s− τi)e
j(ωd+∆ωi)su∗(s+ τint − t)e−jωd(s+τint−t)ds

=
∑

i

Ai

∫ ∞

−∞
u(s− τi)u

∗(s+ τint − t)ej(ωd+∆ωi)s−jωd(s+τint−t)ds

= ejωd(t−τint)
∑

i

Ai

∫ ∞

−∞
u(s− τi)u

∗(s+ τint − t)ej∆ωisds

= ejωd(t−τint)
∑

i

Aiχ(t− τi − τint,∆ωi), (4.39)

where χ(·, ·) is the ambiguity function of the transmitted waveform as defined

in (4.25). As previously discussed, the resolution capability of the sensor is

in large part determined by the choice of waveform design. From (4.39) we

deduce that the signal-dependent output of the matched filter from a complex
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object is the superposition of scaled and shifted ambiguity functions.

In (4.39), the filter response of the signal part of the received signal is

derived. To describe the complete output of the receiver, we also need to

consider the effect of the matched filtering on the noise process n(t). Clearly,

low-pass filtering (which is what the matched filter performes) of a random

process will lead to time correlation. This correlation is described by the

autocorrelation function of the filtered noise process, defined as

R(τ) = Cov {n ∗ h(t), n ∗ h(t + τ)} =
1

2π

∫ ∞

−∞
|H(ω)|2Sn(ω)ejωτdω

=
2σ2

n

2π

∫ ∞

−∞
|H(ω)|2ejωτdω, (4.40)

where H(ω) is the frequency response of the matched filter and Sn(ω) = 2σ2
n

is the power spectral density of n(t). As the matched filter has unit energy,

the variance of the noise process after the matched filter is,

R(0) = 2σ2
n. (4.41)

Consequently, the variance of the noise is unaffected by the matched filter,

but its time-correlation is increased.

4.4.5 Detection

Suppose we want to detect if there is an object at a certain distance, cor-

responding to a time delay τ , and with a certain range rate, corresponding

to a doppler shift ωd. This problem can be formulated as a binary detection

problem, where the two hypotheses are:

H1 : sb(t) = Agrcsu(t− τ)ejωdt + n(t), τ < t ≤ τ + τint (4.42)

H0 : sb(t) = n(t), τ < t ≤ τ + τint, (4.43)

where A is the deterministic part of the amplitude of the return signal. As

the phase of the signal is noninformative, a sufficient statistic for detection
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can be formed as [30]

Λ = |sb ∗ h(t)|2
∣∣
t=τ+τint

= I2m(t) +Q2
m(t)

∣∣
t=τ+τint

, (4.44)

where h(t) is the impulse response of the filter matched to the signal we want

to detect, and Im and Qm are the output of the matched filter in the I and

Q channels, respectively. In the case of a signal present (H1), the expression

in (4.44) becomes

Λ = 2A2|grcs|2 + 2σ2
n, (4.45)

whereas in the case of only noise (H0), we have

Λ = 2σ2
n. (4.46)

Hence, if the energy in the return signal, 2A2|grcs|2, is large in relation to the

power spectral density of the noise, 2σ2
n, i.e. high snr, these two hypotheses

are well separated.

The optimal decision that maximises the probability of detection (making

a correct detection) for a given probability of false alarm (detecting a false

target), is found as

Λ
H1

≷
H0

γ, (4.47)

where γ is a threshold.

In the discussed problem, it is assumed that the time delay and doppler

shift of the reflected signal is known. This is, however, not very realistic in

a real radar situation. As a result, we need to sample the matched filter at

all possible time-delays and doppler shifts. Furthermore, since it is unlikely

that we will obtain a sample at the precise time delay and doppler shift of

the signal, we suffer from additional performance losses.
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