
 

 
 

 

_____________________________________________ 

CPL 
Chalmers Publication Library  

 

Institutional Repository of Chalmers Technical 

University 

http://publications.lib.chalmers.se 

____________________________________________ 

 

Copyright Notice 

The following copyright notice must be displayed on the initial screen displaying IEEE-
copyrighted material electronically:  

©2010 IEEE. Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or for creating 
new collective works for resale or redistribution to servers or lists, or to reuse any 
copyrighted component of this work in other works must be obtained from the IEEE. 

This material is presented to ensure timely dissemination of scholarly and technical work. 
Copyright and all rights therein are retained by authors or by other copyright holders. All 
persons copying this information are expected to adhere to the terms and constraints 
invoked by each author's copyright. In most cases, these works may not be reposted 
without the explicit permission of the copyright holder. 

 

Citation for the published paper: 
 

Author(s): Healy SB, O'Reilly EP, Gustavsson JS, Westbergh P, Haglund 
A, Larsson A, Joel A 
Source: IEEE JOURNAL OF QUANTUM ELECTRONICS     
Volume: 46    Issue: 4    Pages: 506-512     
Published: APR 2010  



506 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 46, NO. 4, APRIL 2010

Active Region Design for High-Speed
850-nm VCSELs

Sorcha B. Healy, Eoin P. O’Reilly, Johan S. Gustavsson, Petter Westbergh, Åsa Haglund, Anders Larsson, and
Andrew Joel

Abstract—Higher speed short-wavelength (850 nm) VCSELs are
required for future high-capacity, short-reach data communication
links. The modulation bandwidth of such devices is intrinsically
limited by the differential gain of the quantum wells (QWs) used in
the active region. We present gain calculations using an 8-band k p
Hamiltonian which show that the incorporation of 10% In in an In-
GaAs/AlGaAs QW structure can approximately double the differ-
ential gain compared to a GaAs/AlGaAs QW structure, with little
additional improvement achieved by further increasing the In com-
position in the QW. This improvement is confirmed by extracting
the differential gain value from measurements of the modulation
response of VCSELs with optimized InGaAs/AlGaAs QW and con-
ventional GaAs/AlGaAs QW active regions. Excellent agreement is
obtained between the theoretically and experimentally determined
values of the differential gain, confirming the benefits of strained
InGaAs QW structures for high-speed 850-nm VCSEL applica-
tions.

Index Terms—Differential gain, high speed, vertical-cavity sur-
face-emitting laser (VCSEL).

I. INTRODUCTION

T O meet the demands for higher communication capacity
and low power consumption in short reach optical links

and interconnects, GaAs-based vertical cavity surface emitting
lasers (VCSELs) are being developed for operation at enhanced
speed [1], [2]. Direct current modulation of VCSELs at bit rates
as high as 40 Gb/s was recently demonstrated at wavelengths
of 850 and 1100 nm [3], [4]. The former (850 nm) is of par-
ticular importance since it has become the standard wavelength
for data communication links. Therefore, high-speed multimode
fiber is available, and standards are being developed for this
wavelength.
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The modulation bandwidth of a VCSEL (as of any other semi-
conductor laser) is fundamentally limited by the rates at which
the resonance frequency and the damping of the resonant car-
rier–photon interaction increase with current. Initially, the mod-
ulation bandwidth increases because of the increasing resonance
frequency, but eventually the damping becomes large enough
to limit the bandwidth. This defines the intrinsic modulation
bandwidth. With increasing current, the temperature of the ac-
tive region starts to increase due to self-heating. This eventually
leads to a saturation of the photon density and therefore the res-
onance frequency and the modulation bandwidth, which defines
the thermally limited bandwidth. The intrinsic and thermally
limited bandwidths are thus to a large degree limited by the rate
at which the resonance frequency increases with current. This
is primarily determined by the differential gain, with a higher
differential gain resulting in a more rapid increase of the reso-
nance frequency, thus enabling a higher modulation bandwidth
to be reached before being limited by damping and/or thermal
effects.

Of great importance for the design of high-speed VCSELs is,
therefore, to maximize the differential gain. It is well known that
strained quantum wells (QWs) can provide a higher differential
gain, due to effects of both quantum confinement and strain [5],
[6]. Strained QWs were previously employed for improving the
high-speed characteristics of 850-nm VCSELs intended for op-
eration at 10 Gb/s [7]. More recent VCSELs operating at higher
speed (30–40 Gb/s) all use strained QWs [1]–[4], [8]–[10].

It is the aim of this work to find an optimum active region
design for 850-nm datacom VCSELs employing strained In-
GaAs/AlGaAs QWs. The effects of QW thickness and strain
(In concentration) on differential gain are analyzed using 8-band
k p theory. Under the condition of having the gain peak near
850 nm, designs that provide the most significant enhancement
of the differential gain with respect to unstrained GaAs/AlGaAs
QWs are identified. The improvement of differential gain is
also confirmed by small-signal modulation response measure-
ments on 850-nm VCSELs with strained InGaAs/AlGaAs and
unstrained GaAs/AlGaAs QWs.

The paper is organized as follows. Section II describes the
various designs considered in the theoretical and experimental
studies. Results from band structure and gain calculations are
presented in Section III and a comparison between theoretical
and experimental values for differential gain are presented in
Section IV. Conclusions are given in Section V.

II. DESIGN

The active region of a conventional 850-nm VCSEL employs
unstrained, multiple GaAs/AlGaAs QWs, with a QW thickness

0018-9197/$26.00 © 2010 IEEE
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TABLE I
ACTIVE REGION DESIGNS CONSIDERED IN THE CALCULATIONS OF ENERGY STATES, BAND DISPERSIONS, DENSITY OF STATES, AND GAIN CHARACTERISTICS.

ALSO LISTED ARE THE OPTICAL CONFINEMENT FACTORS ��� IN THE VCSEL CAVITY

of 8 nm and an Al concentration in the barriers of 30% [1].
When adding In to the QWs for improving differential gain, the
QW thickness has to be reduced, and the Al concentration in the
barriers has to be increased to maintain the gain peak at 850 nm.
When using multiple InGaAs/AlGaAs QWs, the accumulated
strain also has to be considered since the critical thickness must
not be exceeded. In addition, with a too-high concentration of Al
in the barriers, a significant population of X-related states in the
conduction band occurs, which may slow down the trapping of
electrons in the QW ground state, thus affecting the high-speed
performance. In the present designs, we therefore limit the Al
concentration in the barriers to 37% at which the occupation of
X-related states was found to be negligible.

The QW designs considered are listed in Table I. The In con-
centration varies from 0 to 15%. To maintain the gain peak close
to 850 nm, the Al concentration in the InGaAs/AlGaAs QWs is
increased to 37%, and the QW thickness is reduced from 8 to
3.3 nm with increasing In concentration.

The VCSEL cavity is as described in [1]. The top p-doped
distributed Bragg reflector (DBR) consists of 23 pairs of
Al Ga As/Al Ga As layers and the bottom n-doped
DBR consists of four pairs of Al Ga As/Al Ga As
layers (closest to the active region) followed by an additional
28 pairs of AlAs/Al Ga As layers (where the use of
binary AlAs layers is expected to reduce the thermal impedance
because of the higher thermal conductivity of binary materials
compared to ternary). The longitudinal optical confinement
factor was calculated using a one-dimensional transfer matrix
method and was found to be 3.46% for the VCSEL with three
GaAs/AlGaAs QWs. To maintain a similar optical confinement
factor 3% for the VCSELs with InGaAs/AlGaAs QWs, the
number of QWs was increased from 3 to 6 with increasing In
concentration and decreasing QW thickness. The number of
QWs and the corresponding optical confinement factors are
also listed in Table I. It is expected that none of the designs
exceed the critical thickness limit.

III. THEORY

We use an 8-band k p Hamiltonian [11] to determine the
electronic structure of the InGaAs QW structures. The band
structure is calculated using a plane-wave expansion method,
where we surround each active region of QWs (Table I) and

barriers with 20-nm AlGaAs external barriers, giving
a supercell of length greater than 80 nm in all cases. We include
61 plane waves for each basis state to ensure convergence of the
calculated band dispersion. We calculate the band dispersion
using the axial approximation [12], so that the band dispersion
is isotropic in the QW plane. The material parameters used in

this work were taken from [13], with the exception of the band
offsets, which were determined using Model Solid theory [14].
We calculate the material gain following a similar approach to
that used in [11] and [15], using a sech broadening function
when determining the gain, with the line broadening
6.6 meV and with the momentum matrix elements calculated
fully following the method described in [16].

Fig. 1 shows the calculated valence band dispersion for the se-
ries of InGaAs/AlGaAs QW structures defined in Table I. The
structures considered are (left to right) an 8-nm unstrained GaAs
QW; a 4-nm In Ga As QW; a 3.6-nm In Ga As QW
and a 3.3-nm In Ga As QW. Table II lists the calculated
ground state transition energy and wavelength for each of these
structures at 25 C and at 85 C, confirming that all have an op-
tical gap close to 850 nm. To facilitate comparison between the
different graphs, the highest confined heavy-hole state, HH1,
is in each case taken as the zero of energy. It can be seen that
the unstrained GaAs material has a small splitting between the
highest heavy-hole (HH) and light-hole (LH) state (21 meV; see
Table II), with the splitting determined by the QW width and the
difference in the growth direction hole effective masses. The
addition of In to the QW increases the HH-LH splitting, both
because of the strain-induced splitting of the HH and LH band
edge states, and also because of the reduction in QW width re-
quired to maintain a fixed emission wavelength. The incorpora-
tion of 10% In in the QW (0.71% strain) increases the HH-LH
splitting to 76 meV, while 12% In in the QW layer increases it
further to 84 meV, with 15% In giving a calculated splitting of
95 meV.

Fig. 2 shows the calculated valence band density of
states (DOS) for the four structures considered in Fig. 1.
It can be seen that the addition of In significantly reduces the
density of states near the valence band maximum, due to the
increased separation and reduced band mixing between the
highest HH and LH valence bands. This reduction in the va-
lence band DOS near the band edge reduces the carrier density
per unit area required to reach transparency and will also
lead to an improved differential gain in the In-containing QW
structures [5]. It can be seen that the incorporation of 10% In
leads to a reduced DOS over an energy range of about 75 meV
( 3 kT at room temperature ) with 15% In increasing this
energy range to almost 100 meV ( 4 kT ). In addition, the
combination of the increased In concentration in the QW and
Al concentration in the barrier pushes the barrier valence band
edge further away from the highest valence state in the QW,
with this energy separation increasing from 130 meV in the
GaAs/AlGaAs to over 200 meV in the InGaAs/AlGaAs QW
structures. The major reduction in density of states has already
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Fig. 1. Valence band dispersions for the QW structures defined in Table I.

TABLE II
ENERGIES AND CORRESPONDING WAVELENGTHS FOR THE GROUND STATE TRANSITIONS (E1-HH1) FOR THE QW DESIGNS IN TABLE I. ALSO LISTED IS THE

SPLITTING OF HEAVY AND LIGHT HOLE GROUND STATES (HH1-LH1). NUMBERS IN PARENTHESES ARE AT 85 C, OTHERS AT 25 C

Fig. 2. Valence band density of states for the QW structures defined in Table I.

occurred by 10% In. We may therefore expect a significant
reduction in and increase in differential gain by 10% In,
with the addition of further In up to 15% then bringing a further
small improvement in laser characteristics.

Fig. 3 shows the calculated variation of peak modal gain
and differential peak modal gain per

QW as a function of the in-plane carrier density per QW,
at 25 C (300 K). The total modal gain necessary to
overcome cavity losses and start lasing has been calculated
as 15.7 cm at RT for an active material with five QWs of
composition In Ga As and QW width 4 nm (using
a cold cavity model for the mirror losses). A three-QW system
would then require 5.2 cm per QW and a six-QW
system would require 2.6 cm per QW to reach
threshold. We see in Fig. 3 that because of the reduced density
of valence states, the calculated transparency sheet carrier den-
sity per QW, , decreases from cm in an 8-nm
GaAs QW to cm in a 4-nm In Ga As QW.
The horizontal lines in Fig. 3 show the calculated threshold
modal gain (per QW) for a VCSEL containing three, five,
and six QWs, respectively. The threshold sheet carrier density
decreases and 2-D differential modal gain also increases with
increasing In content.

The modal gain per QW, , is related to the material
gain as , where is the optical con-
finement factor and is the total number of QWs. We use
the differential material gain calculated with respect to the 3-D
carrier density in the QWs, when comparing with ex-
periments below. This is related to the differential modal gain
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TABLE III
CALCULATED THRESHOLD SHEET CARRIER DENSITY PER QUANTUM WELL �� � AND DIFFERENTIAL MATERIAL GAIN ��� ���� AT THE THRESHOLD CARRIER

DENSITY FOR THE ACTIVE REGION DESIGNS IN TABLE I. NUMBERS IN PARENTHESES ARE AT 85 C, OTHERS AT 25 C

Fig. 3. Variation of (a) peak modal gain and (b) differential modal gain with
sheet carrier density at 25 C for the QW structures defined in Table I.

Fig. 4. Variation of (a) peak modal gain and (b) differential modal gain with
sheet carrier density at 85 C for the QW structures defined in Table I.

presented in Fig. 3 as .
Because is approximately constant, we then find the
same variation in the differential modal gain and differential ma-
terial gain. We see from Fig. 3 that the calculated differential
gain per QW at threshold increases from
to cm ( to cm )
as the In content increases from 0% in a three-QW structure to
10% in a five-QW structure. The calculated differential gain at

threshold is further increased to
cm ( cm ) when the In content is in-
creased to 15% in a six-QW structure. It can be observed from
Fig. 3 that an increase from five to six QWs has little effect on
the calculated threshold carrier density or differential gain per
QW.

Fig. 4 shows the calculated variation of peak modal gain and
differential peak modal gain per QW at 85 C (358 K) as a func-
tion of carrier density. It can be seen that both the peak gain and
differential gain show broadly similar trends to that observed
in Fig. 3. We calculate that a significant improvement in dif-
ferential gain is obtained by adding 10% In (90% improvement
at 25 C and 95% at 85 C for a five-QW VCSEL), with a fur-
ther increase of 6% (10%) at 85 C relative to the 10% In value
when the In content is increased to 12% (15% and six QWs). We
conclude, therefore, that the improvement in differential gain is
most marked with the initial addition of 10% In but that, so long
as material quality is maintained, a small further improvement
in the gain characteristics can be achieved through the use of
higher In composition QWs. Table III summarizes the calcu-
lated variation in threshold carrier density and differential ma-
terial gain as a function of In composition and QW width.

IV. EXPERIMENTS

The calculations in Section III predict a near dou-
bling of the differential gain at threshold with five 4.0-nm
In Ga As/Al Ga As QWs compared to three 8-nm
GaAs/Al Ga As QWs. To confirm this improvement, high
speed VCSELs were fabricated and values for the differential
gain were deduced from small signal modulation response
measurements.

The epitaxial VCSEL material was grown by MOCVD
(AIX2600G3) by IQE Europe, paying special attention to
accurate calibrations of QW thickness and strain to avoid
relaxation and generation of dislocations. The VCSELs (mul-
timode) employ a double oxide aperture, with a diameter of
9 m, for current and optical confinement [1]. A double oxide
aperture is used to reduce the capacitance associated with the
oxide layers. The device capacitance is further reduced by
a thick layer of BCB under the p-bond pad. Apart from the
active region, the designs of the two VCSELs are identical.
Output power and voltage, measured as a function of current,
are shown in Fig. 5. The VCSELs exhibit quite similar dc
characteristics with a threshold current of 0.5 mA, a slope
efficiency of 0.7–0.8 W/A, a maximum power of 9 mW, and
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TABLE IV
COMPARISON OF DIFFERENTIAL MATERIAL GAIN ��� ���� OBTAINED FROM THEORY AND MEASUREMENTS FOR TWO OF THE ACTIVE REGION DESIGNS IN

TABLE I. NUMBERS IN PARENTHESIS ARE AT 85 C, OTHERS AT 25 C

Fig. 5. Output power as a function of current at 25 and 85 C for a VCSEL
with a 3� 8-nm GaAs/Al Ga As active region (dashed) and a 5� 4-nm
In Ga As/Al Ga As active region (solid). The voltage drop at
25 C is also shown.

Fig. 6. Resonance frequency as a function of square root of current above
threshold at 25 and 85 C for the two VCSELs in Fig. 5.

a differential resistance of 70–80 . The emission wavelength
is at 845–850 nm.

The small-signal modulation response was measured at dif-
ferent bias currents and temperatures (25 C and 85 C) using
the procedures outlined in [1]. From fits of a three-pole transfer
function to the measured modulation response at each current,
the resonance frequency and its dependence on current
was deduced. The results are shown in Fig. 6.

The rate at which the resonance frequency increases with cur-
rent above threshold is quantified by the -factor [1]

(1)

where

(2)

The -factors are obtained from the linear dependence of
the resonance frequency on the square root of current above
threshold at low currents and are shown in Fig. 6. The devia-
tion from linearity at higher currents is due to thermal effects. It
is obvious from the much higher -factors for the VCSEL with
strained InGaAs/AlGaAs QWs that such QWs provide higher
differential gain . To obtain numerical values for the
differential gain from (2), all values for the device specific pa-
rameters in (2) have to be quantified. The optical confinement
factors were obtained from transfer matrix calculations and
are listed in Table I. The active region volumes were cal-
culated from the number of QWs, their thicknesses and the di-
ameter of the double oxide aperture. The transport factor
was set to unity because of the relatively thin, graded compo-
sition separate confinement layers employed [17]. A value of

m/s was used for the group velocity [18]. Accu-
rate values for the internal quantum efficiency and its de-
pendence on temperature are more difficult to obtain. Assuming
a temperature independent internal quantum efficiency of 90%
for both VCSELs (which is a typical number for edge emit-
ting lasers with a similar active region design [19]), we obtain
the values for differential material gain listed in Table IV. The
values are in very good agreement with those obtained from
the calculations (also listed in Table IV) and confirm the pre-
dicted doubling of the differential material gain with strained
InGaAs/AlGaAs QWs from to cm
at 25 C and from to cm at 85 C.
If we instead use the calculated values for differential material
gain to obtain the internal quantum efficiency from the mea-
sured -factors we obtain an internal quantum efficiency of
100% (77%) at 25 C (85 C) for the VCSEL with strained In-
GaAs/AlGaAs QWs and 94% (69%) at 25 C (85 C) for the
VCSEL with unstrained GaAs/AlGaAs QWs. These are also
reasonable values with the higher values for the VCSEL with
InGaAs/AlGaAs QWs consistent with the larger barrier height.
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V. CONCLUSION

In summary, we have shown that incorporating 10% In in the
active region of an InGaAs/AlGaAs 850-nm VCSEL structure
can lead to a significant improvement in the differential gain
of the device compared to a GaAs/AlGaAs structure, both
because of the strain-induced splitting of the HH and LH band
edge states, and also because of the reduction in QW width
required to maintain a fixed emission wavelength. Excellent
agreement was obtained between the calculated and measured
values of the differential gain, including its variation with In
composition. We calculate that the incorporation of more In
only brings a marginal further improvement to the differential
gain. The 4-nm-wide strained In Ga As QWs reported
here are, therefore, close to optimum and are well below the
critical thickness for layers with this level of strain, confirming
the benefits of a strained InGaAs QW active region for reliable
high-speed VCSEL devices and applications.
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