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Abstract

The  introduction  of  CUDA, NVIDIA's  system for  general  purpose  computing  on  their  many-core 
graphics processor system, and the general  shift  in the industry towards parallelism,  has created a 
demand for ease of parallelization. Software transactional memory (STM) simplifies development of 
concurrent code by allowing the programmer to mark sections of code to be executed atomically. The 
STM will then guarantee that other processes will see either none or all of the writes done in in that 
section. In contrast to using locks, STM:s are easy to compose and does not suffer from deadlocks. An 
STM can thus be seen as a concurrency control mechanism.
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Preface

The three great essentials to achieve anything worth while are,
first, hard work; second, stick-to-itiveness; third, common sense.

-Thomas Edison 

I had an experience of a couple of years of web programming but latter turned to Computer Science 
teaching  before  I  took  admission  in  Masters  program  for  Networks  and  Distributed  Systems  in 
Chalmers University of Technology. Here during studies I took two courses in Distributed Systems one 
of them was led by  Philippas Tsigas. I made up my mind to do my thesis in Distributed Systems a year 
ago.  Philippas welcomed me and gave me a brief introduction to Software Transactional Memory or 
STM and suggested to do some knowledge building by studying the related research papers. STM was 
a new field for me. Initial study led me believe that it will be a tough job but I was excited to take the 
challenge.  As I  kept  on studying the recent  research work,  I  realized that  the future of Computer 
Architecture is Multi-core Systems which will definitely require a concurrency control mechanism for 
parallel  programming.  I  finalized  my  thesis  topic  after  consulting   Philippas.  But  as  a  trial  he 
supervised a 15 credit programming project on STM. After the research work studies, I was introduced 
with CUDA enabled NVIDIA's graphics card  which contains hundreds of many-core processors. And 
then Philippas plainly told me to make an STM for NVIDIA's graphic card. It made me shiver for a 
moment  because  so  far  whatever  I  had  studied  was  related  to  STMs  for  dual-core  or  quad-core 
processors. Whereas in addition to CPU, now I had to control more than a couple of tens of many-core 
processors on graphics card. It was a relief that CUDA is very similar to C language. I started working 
in device emulation mode, which at that time was sequentially executing. To my astonishment when I 
actually ran it in debug mode which runs concurrently, there was no error and no hang-up of system. It 
increased my confidence. At each and every step in this thesis, I climbed one step forward after each 
successful run. But this was not always the case. Whenever I was unsuccessful, I just tried to change 
the  logic.  I  started  with  simple  locking  and  with  guidance  of  my  supervisor,   Philippas  I  could 
eventually run a test STM that proved to be working on shared memory. This prototype showed that it 
is  possible  to  create  synchronization  among concurrent  shared  memory accesses.  It  had  yet  to  be 
polished to add new features as I will explain latter and to provide ease of use to CUDA STM user. The 
excitement in working with CUDA is that its an unmanaged environment and I based the STM on C 
language pointer operations. Sometimes I really had to work hard just to find out that a pointer was 
going outside the desired range. But it did not lower my concentration ever. My project was approved 
by Philippas and he extended it further to mater's thesis making it over all 45 credit thesis. Much of the 
time was spent in searching, developing and testing different logics so that CUDA STM could become 
faster and generalized for maximum usage. I developed and programmed it alone under the supervision 
of Philippas. Where as other STMs are being developed by teams of professionals. This STM is the 
first one ever built in CUDA. I think this is one of the main reasons that kept me working hard with 
dedication throughout this thesis. I am glad that I could finally fulfill the requirements. 
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Chapter 1

Introduction

Computer processor research have previously been focused on increasing the clock speed, but as of late 
the trend has shifted towards increasing the number of processors instead. This has lead to increased 
pressure for applications to become multi-threaded to take full advantage of the new computing power. 
But  with  increased  parallelism comes  the  problem of  efficient  synchronization,  since  threads  that 
concurrently access shared memory can easily corrupt data by accident.

The traditional way of synchronizing memory accesses have been to use mutual exclusion, using locks 
to only allow one process to access shared memory areas at any given time. However, this kind of lock 
based synchronization makes it hard to compose function calls and lead to problems such as deadlocks, 
where two processes are both waiting for the other one to give up a lock, and convoying, where a 
process that holds a lock gets swapped out causing other processes to wait unnecessarily long for that 
lock.

1.1  Transactional Memory

Transactional  memory  (TM)  provides  an  alternative  concurrency  control  that  can  eliminate  these 
problems or at least minimize them. A TM allows the programmer to mark a section of the code that is 
to run atomically [1], i.e. it should appear to take place instantly to all other processes. The TM keeps 
track of all reads and writes in the code block and only stores the new data if no other process have 
interrupted  it.  If  a  transaction  notices  that  another  transaction  has  written  to  memory read  in  the 
transaction, the
transaction will be simply restarted. 

1.1.1 Hardware Transactional Memory
Hardware transactional memory systems have modifications in processors, cache and bus protocol to 
support transactions [12].  

1.1.2 Software Transactional Memory (STM)
Since  there  are  no  commonly available  hardware  transactional  memory,  most  implementations  are 
completely software based, so called Software Transactional Memory (STM).  Purpose of a TM is to 
provide  opportunity to  programmers  to  achieve  high  degree  of  parallelism in  applications  without 
concentrating on the mechanism of synchronization. 

1.2 Database Transactions

Transaction is  in-fact  a  database  concept.  It  consist  of  a  single  or  a  series  of  data  read  and data 
manipulation operations. At the end of transaction, if there are no database errors then commit the 
transaction other wise rollback all the steps and end it.



A transaction assures four basic properties for the correctness of operations and data itself. They are 
called ACID properties.

1.2.1 Atomicity 
That a transaction is completed in full or not at all. If a transaction fails partially then it fails completely 
and should be restarted. It further refers to requirement of recoverability property which requires that 
no successful transaction should have read any data value updated by an unsuccessful transaction. 

1.2.2 Consistency  
It refers to the requirement that data is written back to database when it does not violate any of the 
consistency rules  and only valid data will be written back to database. The database is shifted from one 
correct state to other correct state after each transaction. If any of the consistency rules is violated, the 
transaction is rolled back and database is restored to a consistent state.

1.2.3 Isolation
It  means  that  every  transaction  proceeds  independent  of  any  other  transaction.  It  means  that  a 
successful transaction will  not interfere with any concurrent transaction during its  execution.  Each 
transaction is executed as if it is the only active transaction. The highest level of isolation is the serial 
execution  of  all  transactions.  It  is  also  known  as  serializability.  Even  if  there  are  concurrent 
transactions,  if  the final  outcome is  equivalent to serial  execution in any order,  it  is  assumed that 
serializability is achieved.

1.2.4 Durability
The modifications performed by any successful transaction can survive system failures. It also refers 
that a committed transaction cannot be reversed. Even in case of system failure, transaction effects can 
be restored from database log. But in case of STM, this is not the case [2]. 

Transactions can be executed in a centralized database as well as a distributed database. In case of 
distributed data, a transaction may cover many hosts. 



Chapter 2

Challenges for STM Transactions

A critical analysis by Felber et al.  [2] indicates that it is non trivial to base STM model on database 
transactions. 

2.1 STM Transactional Durability

STM transactions need not to be  durable because their effects need not to survive the crash of the 
process hosting the transaction. This is a clear difference from database transaction whose effects must 
be preserved in case the active database user process crashes. Thus it is not the same durability as of the 
database transactions. It is sometimes argued that the memory transactions are only ACI.

2.2 Programming Languages

In  terms  of  programming  languages,  unlike  database  transactions  where  each  SQL statement  is 
inherently executed as a single transaction and individual transactions can  co-operate to perform a 
single transaction, in case of STM  transactions the programmer  has to carefully define atomically 
executing  code  block  for  transactional  access.  Any shortfall  in  concurrency analysis  may lead  to 
inconsistent  results  when  a  data  item  is  concurrently  accessed  from  a  transactional  and   non 
transactional  code.  Database  Management  System  can  handle  such  conflicts.  Without  a  properly 
designed STM runtime it is not easy for an application developer to check and develop an error free 
code whose execution is robust to such concurrent read / write accesses to a single data item.

2.3 Semantics

In terms of  semantics, to prevent transactions from showing unexpected behavior and exceptions, a 
database requires its transactions to show the property of  serializability  means that  each successful 
transaction can be  independently marked in time as non overlapping with any other transaction which 
means that each transaction should produce the same result as if it was executed serially. Concurrent 
STM transactions may cause read-write conflicts which produce non-serialized results. STM runtime 
should be designed to implement  the theory of recoverability to avoid reading inconsistent data which 
is being updated by concurrent transactions. There can still be a conflict if a transaction reads between 
two updates of successfully committed concurrent transactions that overwrite the results of the each 
other.

2.4 Transforming Transactional Code

Automatically transforming the non transactional concurrent code to transactions is a difficult task. It 
contradicts database traditions in which such a code inherently runs as a transaction. There are two 



alternatives to that, either separate the transactional code from non transactional one in which the latter 
code is not guaranteed for consistency or  dynamically categorizing  transactional and non transactional 
access to shared objects. This conflicts with traditional database concepts [2].

2.5 Implementation 

Regarding the  implementation of  the  STM transactions,  the state  management  of  a   transaction  is 
difficult  task  in  concurrent  access.  A challenging  issue  with  STM  transactions  is  to  differentiate 
between read access and write access to transactional data for data contention management. Even the 
use of encapsulation is not sufficient fro always separate read from write access. Read-only accesses 
create less conflicts than write-only accesses. Therefore early monitoring of such accesses is essential 
[2].

2.6 Serial vs. Concurrent Execution

Database transactions are mostly optimized for serial execution. But the STM transactions are actually 
meant  to  run  on  multi  core  systems  to  increase  the  concurrency  and  boost  up  the  performance. 
Research on STM transactions optimization is still in progress [2].



Chapter 3

Concurrency Control Strategies

3.1 Simple Locking

Lock based concurrency control has been and is still used to synchronize concurrent accesses to shared 
memory by multiple threads. Each thread has to lock the shared memory before accessing it. When the 
memory operation/ s are successfully done, the lock is released. Till the lock is released, all the other 
processes trying to access the lock will have to wait. Such a mutual exclusion can be implemented by 
using semaphores.  Lock is an abstract data type in programming languages like Java. A lock is either 
taken or is released. Locks can be shared but read-write collisions are most likely to occur with increase 
in number of processors. The simple solution is to use separate types of locks, one is for readers which 
can be shared and the other is for writers which cannot be shared. So there can be multiple readers at 
the same time with no writer. And only one writer in the shared memory with no readers. 
There are various algorithms and various techniques to implement this. It is easy to code and easy to 
create new locks as and when required. But simple locking suffers performance loss due to deadlock 
when two threads wait for the availability of lock/s already held by each other.  Simple locking is non 
composable  as per James et. al [3] for example in a banking transaction to move amount from one 
account to other will require either locking of all the accounts or a single account. If a single account is 
locked then it may lead to deadlock between two transactions in which one transaction tries to move 
amount  from first  account  to  second and the other  transaction tries  to  move amount  from second 
account to first one.  An alternative approach to acquire a special lock prior to access the two locations. 
As the number of  objects  increase,  so does the number of  locks  and thus  difficult  to  manage the 
process. There is a problem of priority inversion when a low priority thread acquires a lock and all high 
priority threads have to wait for that lock to be released. Thus a concurrency control run-time totally 
created on the base of locks will suffer from performance loss and difficult to generalize for all types of 
application.

3.2 Multi Version Concurrency Control (MVCC)

This is a non lock based concurrency control mechanism used in databases in which each transaction 
stores a snapshot of the database in the form of versions of objects that it reads. Transaction gets the 
exact copies of objects and updates them locally and at commit time, it validates that the versions of all 
objects read are still  same, meaning that no other transaction has changed any object in the global 
memory. Only after the full read set validation, the updated local objects are copied back to global 
objects  and  their  version  numbers  are  increased  serially.   This  ensures  the  important  property  of 
serializebility. 
It is however notable that no transaction should read a version number that has not yet been produced; 
meaning that a transaction should only read version numbers produced by successful transactions to 



ensure recoverability. 
Also when a transaction has to write some object, then it must have read its version number before or 
read it prior writing. A transaction in MVCC is  recoverable  if  all the transactions which produced 
version numbers that it has read have already committed; otherwise the transaction commit is delayed. 
Object versions can be marked with time stamps. The basic idea is to make every transaction commit 
with unchanged versions of its read set objects so that it can be marked distinctly in history [4, 5]. 
MVCC tries to implement the distributed system total ordering for centralized database and partial 
ordering for distributed database [4]. In a database management system(DBMS), many versions may be 
stored for a single object depending upon how many concurrent transactions have read it and how 
many commit, but each transaction runs as if there is only one version of that object is kept by DBMS. 
MVCC can be used with  Two Phase Locking (2PL) [5]. In this case  there are two versions of each 
object one is known and readable to all concurrent transactions while the other one is the updated 
version  which  is  published  as  soon  as  the  writer  transaction  commits  successfully.  During  the 
execution, a transaction acquires three types of locks namely Read lock, Write lock and Certify lock. 
Function of Read lock and Write lock are obvious while Certify lock is used to delay a transaction from 
writing over an object while there is at least one read lock over it.. These locks are convertible from 
read to  write  to  certify.  There is  a  chance of  deadlock to  happen which can be avoided by using 
traditional methods like cycle detection. A transaction must obtain all certify locks on all objects that it 
tends to write over before committing. This is called two version two phase locking(2V2PL). Benefit of 
this  locking  technique  is  it  provides  less  delay  in  Read  than  simple  two  phase  locking(2PL)  as 
certification is delayed till atleast one read lock is present on the same object while in 2PL a lock is 
only free when a transaction is terminated and other readers have to wait.. Notable thing here is that all 
version control and locking is handled by DBMS and transaction just proceeds sequentially. 

3.3 Optimistic Concurrency Control (OCC)

Simple  locking  concurrency control  approach does  not  give  a  reasonable  gain  in  performance  for 
example when there are less chances of conflicts in concurrent transactions. Simple locking can be 
called a Pessimistic Approach [15] when locks are acquired in the early stage of transaction and are not 
released till the end. This shortens the resource availability [15]. 
OCC is  an  alternative  to  pessimistic  approach  [6,  15].  This  approach  believes  that  not  all  of  the 
transactions are conflicting therefore the locks should be acquired just before the memory access and 
should be released as soon as possible. The memory operations are performed in three steps:

1. Read:  Read the data  from the memory location and store  it  as  a  local  copy.  Perform  the 
operations on it. And maintain a log of all changes.

2. Validate: When the process has completed editing of the data, it checks if in the meanwhile no 
other transaction has changed the value in the original memory location. This can be done by 
checking the logs of either previous transactions (Backward validation) or by reading the logs 
of the currently executing transactions (Forward Validation). If there is a conflict in values read 
in the Read phase and the Validate phase, the process is restarted and we say that the transaction 
has aborted and will be restarted.

3. Write: If there is no conflict what so ever, the updated data is written in the original memory 
location. This is also called that the transaction has committed.

OCC has taken the newer approach that it is up to the reader to check at the end of the transaction that 
other threads have not changed the values that it has read in the past. For this, a transaction log is 
maintained and every read and write operation is recorded in it for future validation. A transaction 



effects can thus be rolled back using the log. The optimistic concurrency control gives independence to 
each thread and allows it  to  do its  tasks  regardless  of  what  other  threads  are  working upon.  The 
limitation of this approach is that it is applied when there is a low contention, meaning there are less 
chances of conflicts because although the validation phase takes less time but locks are obtained for a 
very short time just before read and then released but write locks on the other hand are obtained just 
before write but are retained till the transaction commits. This short duration lock acquiring lowers 
isolation level and the transaction is rolled back if a to-be acquired lock is not available [15]. But OCC 
provides better resource availability. 



Chapter 4

Types of STM

STM can be classified based on different parameters. Transaction granularity refers to the level of 
concurrency.  In  a  Word  based  STM,  the  memory  is  divided  into  some  predefined  blocks  called 
“words”. Memory access in this STM requires word address in the memory [2]. This STM provides 
concurrency  at  the  level  of  data  members  of  object.  There  are  lesser  conflicts  to  occur  if  two 
transactions access different elements of same object. An Object based STM assumes that the memory 
is  divided  into  objects  of  various  sizes.  The  objects  also  requires  meta  data  [2]  for  example  the 
properties and location. The meta data can be kept external or within the object. The memory access to 
the objects  requires the base address of the object as an additional parameter  [2].  A STM will  be 
classified as  Time based if  it  uses a  global  clock to  ensure the consistency of data.  They employ 
optimistic read operations (i.e., read operations are not visible to other transactions) because invisible 
reads are less expensive than visible reads. Time based transactional memories then guarantee on the 
basis of their time base that the snapshot that a transaction takes of the transactional memory at runtime 
is always consistent [5]. On the basis of updation policy [3, 7] a STM will be performing  Deferred 
updates if it clones data objects to local copies then locally performs computation and then detects any 
conflicts  and if no conflict is detected then writes back to shared memory. This type of STM uses read 
versioning for concurrency control  and is  lock free.  Opposite to  this  is  Direct updates in which a 
transaction directly updates shared data instead of local copies of objects. This STM has to maintain an 
undo log to restore shared objects in case a transaction aborts. In this STM, locks are to be used to 
prevent  readers  and  writers  to  access  an  object  which  is  being  updated  by  a  particular  writer. 
Performance results show that a lock based direct updates STM performs better than deferred updates 
STM [3, 7]. Further, the STM can be divided into two types, based on the environment as Managed 
Environment STM in which applications access resources through an intermediate layer such as a Java 
Virtual Machine [8]. In Unmanaged Environment STM application code directly accesses the resources 
provided to its process [8] such as C/C++.
Traditionally the compilers assume object based STM for managed environment and word based STM 
for unmanaged environments. The only obvious reason for that is an object is a continuous series of 
memory chunks and the  size  of  every user  defined  data  type  object  varies  and in  an  unmanaged 
environment, it is not possible to judge which memory location belongs to which object and since any 
memory location can be accessed by the code for example in C/C++, there is always a chance of data 
corruption.  Although it cannot be proven that either a word based STM is better or an object based 
STM but the unmanaged environment can also accommodate the object based accesses with the help of 
compiler support  to gain the performance benefit [8].
STM  maintains  the  information  for  every  object  for  example  the  locks  in  order  to  control  the 
concurrency. This can also be termed as meta data or transaction log. Depending upon the design of 
STM, if it is a word based then the memory locations or words belonging to same objects are mapped 
using a hash function; or if it is an object based  STM then the meta data is either external (linked to the 
base address ) or in-place (embedded into the object memory space if the object is not too large).  Each 
scheme has its own advantages and disadvantages. For example in the object based STM, the in-place 



approach is beneficial as it reduces the cache footprint and there is only one cache miss for both meta 
data and the object when the read data is modified by another transaction. In case of external meta data, 
the object can be partitioned implicitly to avoid acquiring several locks in order to write to a single 
object. This partitioning is not possible in case of fixed object to meta data mapping in case of in-place 
meta data and this is a disadvantage when there is a high contention. Further it increases the cache 
footprint by increasing the size of already large objects. The in-place design also suffers the overhead 
of maintaining the object in the memory until there is no other transaction accessing it. This is due to 
the fact that meta data is to be remained type safe and since meta data is embedded in the object, so 
whole of the object is to be kept alive [8].

4.1 Object based STM in Unmanaged Environments 

Using an object based STM in unmanaged environment requires that a programmer must use explicit 
calls to STM unless there is a proper support by the compiler to decide whether an access to a certain 
memory location as an object is safe or not. In other words, to automatically transform the memory 
accesses  to  STM runtime calls,  we must  make sure  that  the  call  is  for  an  object  in  the  memory 
identified by the base address of the object  in  memory.  The compiler  must  identify that  a  certain 
memory location belongs to an object no matter if it is dynamically allocated or is on  a stack or global 
and if so, then which object. This is however not an easy task since in unmanaged environment like C/
C++ the programmer can access any memory location, casts between the types and pass pointers to the 
fields of an object as function parameters. Therefore an inter procedural analysis [8] is required that 
computes a points-to graph for the complete program. The Data Structures Analysis (DSA) can be used 
for this purpose to ensure context sensitivity (the data structure is uniquely identified based on call 
graphs  ),  unification  (each  pointer  targets  at  most  one  location  in  the  points-to  graph )  and  field 
sensitivity (distinguishing between different fields in one data structure). The DSA is embedded in the 
LLVM compiler framework.
The whole procedure is done in four steps:

1. Compiling and linking of the whole program using LLVM into a single 
module.

2. Use DSA analysis of this module to distinguish the object-based accesses 
from word-based accesses.

3. Identify the data structures involved in object-based access to the memory.
4. Transform the transactional  parts  of  the application by choosing between the  object 

based and word based accesses according to the DSA results.

After the DSA, the data structures are represented as nodes in the points-to graph. This graph is built 
incrementally by first  analyzing each function  and determining  properties  of  nodes  based on how 
pointers and data structures instances are used. For example if a pointer points inside somewhere to the 
memory region occupied by a node, then that pointer is assumed to be pointing towards the node. There 
are certain flags of information stating if the data structure is located on stack or heap. An additional 
information is provided telling if all the calls to that data structure have been identified or not. After 
that the caller and callee graphs of the program are merged to identify the nodes which have escaped. 
Information about those nodes is marked as  incomplete. Further, if there is an uncertainty about two 
different type of pointers pointing towards same node, then that node is said to be collapsed. Some 
nodes are identified as external if they call some external function. A node is said to be accessed in  a 
type safe manner if it has been completely analyzed, is not external and is not in an array. The compiler 
then transforms the transactional memory accesses to STM runtime calls. The location of the object is 



determined from the base address and the size is  determined by the type of the user  defined data 
structure. For the objects with in-place meta data, sufficient space is allocated and the STM will fill the 
meta data. 
At this stage, the word based and object based accesses are identified keeping the point that only the 
type safe accesses identified during the DSA are considered. When the external meta data is used, the 
lock word is updated before releasing the object. There is no delay in it. But when an in-place meta data 
is used, the lock is not released until the time stamps of all the transactions become greater than the 
transaction who last committed the particular object. This is due to the use of time based STM in this 
compiler optimization.

4.2  McRT STM 

McRT [7, 9] is an experimental multi-core runtime and McRT-STM is an experimental STM  built on 
that runtime. It implements transactions using strict two-phase locking and contains commit and abort 
sequences  that  are  blocking.  It  uses  a  strict  two  phase  locking  protocol  to  implement  transaction 
manager. Each memory location is mapped to a lock and all locks are to be acquired before committing 
a transaction. Any transaction can abort other transaction if former is waiting for a lock acquired by the 
latter and the latter is not active. Blocking implementation reduces the number of aborts and memory 
management is  simplified.  Deadlocks are  detected by creating a graph of waiting transactions and 
aborting one of the transactions if there is a cycle detected. Deadlocks can also be avoided by waiting 
for a finite amount of time for a lock to be released and then aborting. Data contention is avoided by 
imposing read / write  locks and a transactions must wait for the lock to be released and then acquire 
the respective lock and completes its operations. Only the transaction executed by a thread which is 
still holding a lock but has yielded the processor can be aborted by the current transaction which is 
waiting for that lock to be released. Locking mechanism is implemented by using either Reader-writer 
locking or by using a combination of read versioning and write locking. When using the Reader-writer 
locking a transaction has to read first before writing to that memory location. This means that it should 
first acquire read-lock and then update it to write-lock. A single 32 bit integer is used as the read-write 
lock. The last three bits are used for the locking mechanism. A Reader 'R' bit is to be set prior to 
reading so that a writer cannot update the memory location. A Notify 'N' bit is set when a reader intends 
to read the memory location already locked. An Upgrade 'U' bit is set if the reader intends to upgrade 
the lock to write. A writer can only acquire the lock if all the three bits are zero. When a writer acquires 
a lock, it stores a transaction pointer in the lock word with last three bits set to zero. When the reader 
acquires the lock, the top 29 bits store the number of concurrent readers. In read versioning, the lock 
word contains the version number of the memory location or the transaction descriptor pointer of the 
writer. A reader reads when the R bit is one, meaning that the version number is stored in the lock 
word. The reader stores the respective version number and upon commit checks the version number 
again and commits if the number is unchanged. The writer stores the version number before it updates 
the memory and increments it after writing. The readers use the n bit for the signal. The difference in 
this scheme is that the wait locations are guarded by a mutex to prevent race condition between readers 
and writers. The U bit is not used. By the experimental results, it is observed that the read versioning 
performs better when the number of processors are not high. By the experimental results, undo logging 
performs better than write buffering because write buffering has the overhead of searching for the most 
recent  value  from  the  buffer  every  time.  For  the  managed  environments  like  Java  it  is  easy  to 
implement the object based conflict detection but for unmanaged environments like C/C++, McRT puts 
the objects in predefined object segregation memory chunks according to the size of objects and uses 
two approaches. First one is to place the locks in-line with the object. This will improve the locality on 
the cost of cache space if no transaction is using the lock. The second scheme is to separate the locks 



and place them externally. This benefits in reducing the memory wastage at the cost of worse cache 
locality.
McRT-STM API is created based on the above analysis. It contains functions to perform tasks like 
initiating a transaction, maintaining the dynamic nesting length, mapping an address to a lock, reading 
and storing the version number, acquiring the read lock, acquiring the write lock, storing the old value 
of a memory location before writing the new value to maintain the undo log, validation of version 
number, committing a transaction with validation and releasing of locks, aborting the transaction with 
roll back from undo log and some other related functions.
Some useful data structures are provided in the STM. For example the transaction descriptor for storing 
the meta data about the particular transaction, the read log and write log.

4.2.1 New Language Constructs Introduced in Java for McRT STM 

New language constructs are introduced to implement transactions in Java[9]. They are as followed:
1. atomic{S}: Executes the statement S as a transaction. The memory effects in S are serializable 

with respect  to  the memory effects  in other transactions.  The effects  of S become globally 
visible when it completes (either normally or exceptionally).

2. retry: Can only be executed inside a transaction block. It will block a thread and restarts its own 
transaction  when  an  alternative  path  is  available.  This  can  also  be  used  for  condition 
synchronization since it can make the current transaction to wait because it cannot proceed due 
to the current contents of memory till another transaction changes them. It is similar to Java's 
wait statement except that there is no construct that could be equivalent to notify statement.

3. or else: It gives two alternative transactions that can be set in the manner  atomic{S1}  orelse 
{S2} executes S1 as nested transaction and if it is successful the operation is complete otherwise 
if S1 needs to block, it must call  retry  to start the S2 as alternative transaction. The memory 
effects of S1 are discarded. The retry blocks only the outer level transaction. This also requires 
the capability of partial undo which is provided.

The second and third statements are used to compose the transactions and allow 
nesting of transactions.

1) Tryatomic: Tries to execute a block atomically but fails if it tries to block.
2) When: It blocks until a condition is not true, after that it executes a  corresponding 

statement atomically.
Only  the  Java  library  functions  can  be  called  from inside  the  transactions  and  there  is  no  direct 
interaction between the transactions. Effects of all atomic blocks are serializable.  

4.3 Herlihy et al.’s Dynamic STM (DSTM)[3, 10]

DSTM is a deferred-update STM which detects conflicts at object level. Due to deferred updates, a 
transaction can access the object whose clone is being used by another concurrent transaction. This will 
result in a conflict which is resolved by aborting one of the transactions. DSTM system atomically 
replaces  the  old  object  in  a  with  its  modified  version  on  successful  commit.  Before  commit  two 
conditions are verified. The first is read set validation, meaning that the versions of the read objects are 
still same. The second condition is that the current transaction is not trying to modify an objects which 
is being modified by another transaction. DSTM allows only one transaction to modify an object at a 
time.  If  there  is  a  write-write  conflict  between two transactions,  then  one of  them is  aborted and 
restarted. 



Chapter 5

CUDA

CUDA™ (Computer Unified Device Architecture) was introduced by NVIDIA in November 2006 as a 
general purpose parallel computing architecture that implements parallel computing engine on NVIDIA 
GPU making it more efficient to execute computationally complex problems than on CPU.  CUDA 
enabled GPUs have hundreds of cores which can run thousands of threads. CUDA applications include 
medical imaging, natural resource exploration, image recognition and in this case, CUDA STM.

5.1 CUDA Architecture

The CUDA Architecture [11] consists of several components: 

 Fig.1 CUDA architecture (courtesy of NVIDIA Corporation) [11]

 
1. Parallel compute engines inside NVIDIA GPUs 
2. OS kernel-level support for hardware initialization, configuration, etc. 
3.  User-mode driver, which provides a device-level API for developers.
4. PTX instruction set architecture (ISA) for parallel computing kernels and functions.



5.2 CUDA Programming Interfaces

Two programming interfaces [11] are supported by CUDA Software Development Environment: 
1. A device-level  programming  interface,  in  which  the  application  uses  DirectX  Compute, 

OpenCL or the CUDA Driver API directly to configure the GPU, launch compute kernels, and 
read back results [11]. 

2.  A language integration programming interface, in which an application uses the C Runtime for 
CUDA and developers use a small set of extensions to indicate which compute functions should 
be performed on the GPU instead of the CPU.  This programming interface enables developers 
to take advantage of native support for  high-level languages such as C, C++, Fortran, Java, 
Python etc [11]. 

 To develop CUDA STM, the device level programming interface was used. It  is  provided toolkit 
containing the nvcc C  compiler, CUDA runtime driver and other components.

Software environment of CUDA allows an enhanced version of C language to be used as high level 
programming language. 

 
5.3  CUDA Language Abstractions 

There are three key language abstractions of CUDA. 
1. Thread groups hierarchy
2. Shared memories 
3. Barrier synchronization 

 These abstractions allow the programmer to divide a problem into sub-problems and solve them in 
parallel on any number of processor cores. A C function that is to be called from CPU to begin parallel 
execution on GPU  is called kernel. 

Fig.2  Grid of Thread Blocks (courtesy of NVIDIA Corporation) [13]



Thread group hierarchy consists of thread blocks and grid. The term thread block refers to a set of 
threads having its own unique id and running on the same multiprocessor. Multiple thread blocks can 
run on same multiprocessor. Each multiprocessor has 8 scalar processors each running one thread on it. 
The instruction set is SIMT (Single Instruction Multiple Threads). Each thread executes independently. 
The SIMT unit creates and executes a group of 32 parallel threads called  warp  at a time. There is 
however a limitation on the maximum number of threads in a block of up-to 512 threads. Individual 
thread blocks can be arranged to form a grid on the cost of reduced communication between threads 
due to separate thread blocks. Here an important distinction is to be made which is, a thread block can 
contain a single or hundreds of threads. When thread blocks are joined to form a grid, depending upon 
the dimensions of each block, the total threads can be equivalent to number of blocks to thousands. A 
single kernel is invoked for whole grid at a time.

Fig.3  A set of SIMT multiprocessors with on-chip shared memory  (courtesy of NVIDIA Corporation)
[13]



Fig.4  Memory Hierarchy (courtesy of NVIDIA Corporation)[13]

Threads  of  same  as  well  as  different  blocks  can  share  memory and  can  perform read  and  write 
operations on memory hierarchy area called global memory. There are two other memory hierarchies 
namely texture memory and constant memory but they are read only. On the top of the hierarchies is 
the block level read and write shared memory. Barrier synchronization holds the threads till they are 
allowed to proceed.
Programming  model  of  CUDA  allows  a  coarse-grained  task  division  among  many-core  GPU 
processors with a further possibility of fine-grained task division among threads of each block.



                            
Fig.5  CUDA Heterogeneous Programming  (courtesy of NVIDIA Corporation)[13]

 



                                  Fig.6  Processing flow on CUDA [14]                                        

In  order  to  process  data  concurrently  on  GPU  by  using  CUDA,  following  four  steps  are  to  be 
performed:

1. Copy the data from main memory to GPU memory by using CUDA commands.
2. Execute kernel from CPU on GPU and pass necessary parameters to kernel along with grid 

configuration.
3. GPU executes kernel concurrently on all thread blocks.
4. After the execution, the processed data has to be copied back to main memory using CUDA 

commands.

5.4 Limitations of CUDA for a STM

There are however certain limitations in the development of STM in CUDA. These are listed below:
1. The language is not an object oriented language and there is no generic data type available to 

generalize an application for any type of data structure.
2. The environment does not allow to debug the code with concurrent access except in device 

emulation mode which is a sequential access mode and not compatible with actual run.



3. Busy loop or wait or indefinite loop cannot be executed for more than a fixed interval of time 
because it will hang the whole system which has to be rebooted then. This is the most important 
factor in case of STM.

4. The powerful GPU environment gives quite different results than device emulation mode. 
5. There is no support from the CUDA compiler to define atomic code blocks.
6. For memory manipulation through pointers, only the global memory can be used across various 

internal functions defined for STM. 
7. CUDA does not support recursive functions. Therefore binary-tree and skip-list are difficult to 

create.



Chapter 6

CUDA STM Design Motivations

CUDA provides a realistic  and practical  environment  for parallel  processing and provide excellent 
motivation to develop a concurrency control mechanism. No other platform provides hundreds of cores 
at a time for parallel processing than CUDA. We used it to implement STM for concurrency control to 
shared memory. This is the first STM build ever in CUDA and it can be used as word-based as well as 
object-based or a mixture of both.
 
Following are the steps and decisions taken while designing CUDA STM:

Initially I chose the STM to work as object-based STM. Since objects are not possible in CUDA, I 
based the concurrency at data structures level. Latter on I extended it to word-based STM. Still next 
step was allowing the mixture of both approaches. This is further explained latter.
In  order  to  decide  update  method  I  chose  deferred  update  because  in  highly  parallel  CUDA 
environment where hundreds of concurrent transactions may be executing, a transaction can perform 
relatively more isolated  if provided a local buffer to perform its operations on object clones and latter 
on perform the conflict detection. 
In such a highly parallel execution environment, locking a memory areas by following the pessimistic 
approach reduces the availability of memory resources. Therefore by following optimistic concurrency 
control (OCC) [15] to lock memory for a very short time increases the availability.
Here an important thing to note is that all the blocks execute the same kernel at a time and operate on 
the shared memory. In other words there is a high contention of data. OCC is useful in low contention 
and less conflicting environment and in case of CUDA, it will simply increase conflicts.
This also leads to a thought that if pessimistic locking is used, it will make other blocks to suffer while 
a memory area is locked and loss of performance because the GPU can be used for a limited amount of 
time. Any how I decided to use OCC  because it uses fine grained locking;  for example in creating a 
binary tree,  a transaction starting from root node will  only need read access to child  nodes while 
parsing and a write access to the leaf where the new node will be inserted.
OCC requires a transaction log and a transaction buffer because a transaction must keep the record of 
every memory access. Latter on in the end of transaction, some locks are to be acquired based on these 
records. Buffer is required to keep local clones of the objects. Transaction log is explained latter along 
with buffer.
To copy a data structures, I tried to impose a limitation that each data structure must contain a method 
which copied every element to another memory location pointed by a simple pointer of same data 
structure type. I found it restrictive in use since each data structure had to be designed like that to be 
usable with in STM. 
While searching for an approach to make STM generalized for any type of data structures, I required a 
generic data type for type casting. Since there is none in CUDA so far, I decided to copy the data 
structures byte by byte using simple char pointers. This made STM generalized as well as I got rid of 
previous problem of restricted design of data structures. Copying data in this manner can lead to fall in 



performance but this is the best choice available.
Any concurrency control mechanism requires validation of data reads before computed results can be 
written back to shared memory. The read data must be most recent on which computed results should 
be based and then written back. If any other transaction has updated at least one of the data items from 
read set of another transaction, then the computed results of  current transaction are no more based on 
fresh data  at  commit  time. So far I  had no method to verify any change in data  in  global  shared 
memory.
 Multi-Version Concurrency Control (MVCC) [4, 5] provides a simple technique to check any change 
in data. It is to associate a version number with every data item. Now this approach also uses locking in 
the background to refrain a writer from overwriting the data while it has at-least one reader. 
 OCC uses two types  of locks and MVCC uses three types  of locks as explained in the previous 
sections. I had total five locks. I decided to use a shareable read lock and a non shareable write lock and 
a version number with every data item and use transaction log to keep the record per access to memory.
Regarding the buffer, same problem of no generic data type present in CUDA led to use a long array of 
character data type and copy clones in it byte by byte as explained before and type cast it to appropriate 
data type at runtime.
 Till this step, locking was done by using a single integer as lock. Inspired by McRT [7, 9] a reader 
checks the availability of lock if lock value is zero or greater than zero and increasing it by 1 indicating 
the number of concurrent readers and on leaving the reader decreases the lock value. Thus read lock is 
shareable. A writer can only access the lock if it is equal to zero and changes it to -1 indicating the non 
availability of lock to any reader or any other writer. 
 Now for the validation phase, in addition to verifying the version number of each data item in read set, 
I had to lock them as well. A high isolation is provided if all the data items go into write lock to prevent 
any other transaction to access them and it will very well ensure serializability on the cost of reduced 
availability of memory resources. I created a binary tree which could have 300 nodes in 4927 milli 
seconds. 
At this stage, a fine grained locking was being used. It is fine grained in the sence that locks were being 
acquired  for  a  very  short  period  of  time  by  following  OCC.  Further  analysis  to  increase  the 
performance led to experiment with MVCC also. Here a notable thing is, by acquiring write locks over 
data items that were accessed read only will make them under go an illusive write-lock which is not 
useful. If those data items are locked using a read-lock, still it is of no use because they will not be read 
and any writer transaction will suffer non availability of lock. 
MVCC on the other hand uses three types of locks as explained before in section 3.2. An experiment 
was  performed  to  make  CUDA STM use  minimum locks  because  locks  are  the  major  source  of 
conflicts. Locks could not be avoided on write access because after all if a transaction is reading a data 
item and there is no locking for another writer transaction then reader will get a corrupt data value, 
partially overwritten by the writer or there may be a confusion in version number being not updated by 
writer and reader meanwhile completes reading.  Therefore write lock is unavoidable. While the read 
lock can be avoided if a proper algorithm was there.
It was performed with simple algorithm of storing version number of  lock and then checking the lock 
vale not to be in write mode before reading. If it  is not in write mode then start reading and after 
reading, compare the version number before and after read. If the version number is same then its a 
valid read. Nothing is read if version number does not match or the lock was in write mode. When this 
approach was tested, there was a remarkable increase in performance in terms of total time. It is shown 
in following tables and figures. The last two columns will be explained latter when multi-threading will 
be explained. Following are the test results performed for comaprison of different concurrency control 
mechanisms.



Fig.7  Performance graph for different concurrency controls for Binary-tree
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30 50 1.2 1.35 1.39
300 4927 7.9 4.75 5.6

Table 1  Performance in milli seconds for different concurrency controls for Binary-tree

The above table and figure shows that with the growth of binary-tree, the Pessimistic approach shows 
worst performance while the combination of MVCC and OCC shows a healthy performance gain in 
time. This performance is improved with the used of multi-threading in CUDA STM as explained in 
section 6.6.
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Fig.8  Performance graph for different concurrency controls for Skip-list

Total  Nodes  in 
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Total time in milli 
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memory access
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MVCC  &  OCP 
Mix  using  32 
threads  per 
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Total time in milli 
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MVCC  &  OCP 
Mix  using  1 
thread  per  byte 
per  memory 
access

30 9.7 5.45 3.13 3.18
300 3264 46 25 26

Table 2  Performance in milli seconds for different concurrency controls for Skip-list

The above table and figure shows that with the growth of skip-list, the Pessimistic approach shows 
worst performance while the combination of MVCC and OCC shows a healthy performance gain. This 
performance is improved with the used of multi-threading in CUDA STM as explained in section 6.6.

Using of locks brought various considerations regarding the disadvantages discussed in the start.  I 
decided to restart the transactions which comes in dead lock. I could reduce the blocking by using the 
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read operation is non blocking.
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only one type of lock i.e; the write lock, therefore an obvious conflict is write-write concurrent access. 
In this situation, one of the writers should succeed in acquiring the lock while others may wait or move 
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and now going to update, then if one of the transaction acquies al the locks and update the 
data items, it will after all update the associated version numbers as per MVCC approach. 
This  will  invalidate  the  read  set  or  snapshot  of  data  items  in  all  other  conflicting 
transactions. So there is no need for an unsuccessful transaction to move to try acquiring the 
next lock.

2. If  acquiring of lock will  not invalidate the read set  of other concurrent transactions for 
example the lock was shared (section 6.2.1) for two different data items, in this case as well 
if an unsuccessful transaction had read the data item before and now trying to update it, still 
the successful transaction will update the version number associated with the lock. Thus 
invalidating the read set of any other transaction trying who tried acquire the same lock. 

In both cases, the transaction which fails to acquire a lock will have no reason to continue and 
should be restarted.
In case of reader-writer conflict, in case the data item is under write lock, there is no read for 
reader to read because it may read corrupt data or invalid version number or both. On the other 
hand if the version number before and after read is not same, then reader can try again provided 
another transaction has not acquired the write-lock over that data item.

An important design decision was how much information should be maintained in transaction log. 
Traditionally transaction using direct updates [3] also have undo logs to revert the changes made by a 
transaction up-to the point of conflict. I already made the decision to make CUDA STM to perform 
deferred updates [3] therefore at-least the buffer and information regarding locks and versions should 
be maintained in transaction log . Transaction log is discussed latter in detail.
Final step of a transaction is called commit phase in which the CUDA STM acquires locks and verifies 
version numbers for validation of data and if validation and lock acquiring is successful, writes back 
the data to shared memory.
At last I arrived at complete design of CUDA STM. As per this design, this STM should use transaction 
local buffer to copy the values from global shared memory then perform computation on them and then 
write them back after acquiring the lock/s and validating the version number/s. CUDA STM uses an 
OCC & MVCC mix approach for concurrency control. It maintains a snapshot of data items by storing 
version  numbers  and  then  validates  the  read  set  with  reference  to  these  version  number/s  during 
commit. Only write locks are used  I had to decide which locks to acquire and which not in commit 
phase. 

6.1 CUDA STM Architecture with respect to Databases

CUDA STM transactions  ensure  three  basic  properties  of  database  transactions  namely Atomicity, 
Consistency and Isolation or in abbreviation ACI. 

1.  Atomicity is either the full completion of a transaction or no effects of the transaction is ensured 
by acquiring all the locks of all the memory location to be written when the transaction is in 
commit phase and verifying version numbers of all the data items in read set. In this phase the 
status of all the locks is write-lock this prevents other transactions to accesses these objects and 
the  current  transaction  can  complete  fully.  In  case  any lock  is  not  available  or  its  version 
number does not match, then current transaction is aborted and restarted. This  ensures proper 
atomicity.

2. Consistency is assured by read versioning of data structures. Consistancy refers to that only the 
valid data is to be written back. The version number of every data structure or, depending upon 
the implementation of kernel, even a char element of a data structure used in the transaction 
must not change till the commit phase. Since optimistic concurrency control is used in CUDA 



STM, it allows acquiring of lock in write mode even if another transaction is reading that data 
item.  In  such  a  case,  the  reader  transaction  shall  read  again  as  explained  before.  Version 
verification and acquiring of locks ensures that  the computed values written back to shared 
memory were based on most current values in shared memory.

3. Isolation is  markable  occurrence of  every transaction in  time line and is  different  for  each 
transaction.  In  CUDA STM, rigorous  testing  was  done  on  conflicting  transactions  and the 
architecture is robust enough to allow one transaction out of all the conflicting transactions to 
commit at one time instance. This increases the number of aborts with the increase in number of 
conflicting transactions but ensures the isolation property. The number of aborts increases with 
the increase in number of data items being accessed also. But only acquiring  locks for write 
access although lowers the isolation but it also lowers the number of aborts as well. And with 
continuous testing, no data conflicts were found. Serializability is ensured by version number 
verification  since  all  the  version  numbers  related  to  data  items  written  back  are  increased 
serially after very successful write.

6.2 CUDA STM Locking Mechanism

The concurrency can be increased to the level of a single member of the data structure, provided that a 
lock and a version number are associated with that data structure member. In such a case, the data 
structure should have a version number and a lock as well.  This is implemented by separating the 
locking mechanism from data. The following data structure is used for locking and read versioning:

struct lockAndVersion
{

int lock;
unsigned int version;
lockAndVersion()
{lock = version = 0;}

};

lock means the lock. If its value is equal to 0, it means there is no writer active for the data element 
related to this lock and it can be acquired by a writer; or a reader can read if lock value is 0. To acquire 
the lock in write mode,  lock value MUST be equal to 0 indicating there is no active writer and then it 
is set to -1 indicating a write lock. A write lock is not sharable. This prevents dirty reads. Read method 
does not read anything if the lock is in write mode. The lock acquiring in write mode fails if there is at-
most one active writer.
The version is originally the number indicating number of times a particular data item was updated. To 
update a data item, the related lock is acquired in write mode which in other words means the version 
number can be associated to lock i.e; whenever the lock is acquired in write mode and is released only 
after the successful run of transaction, the version number should be increased. So both the lock and 
version number can be put in the same data structure.
Whenever a transaction tries to read a memory location, a lock is to be associated at that time along 
with version number. This is explained in section 6.2.1.
Memory address is stored in 4 bytes in C. This gave two options  to implement the locks. Either to use 
a single 8 bytes unsigned  long long data type and use its lower 4 bytes to store the lock value and 
upper 4 bytes to store the version number. This approach was implemented and tested. It made the 
transaction log easy to implement but was less flexible for code management because the lock part or 



the lower 4 bytes are to be used as signed integer while the upper 4 bytes or the version number as 
unsigned integer and the pointer operations often confused me if I wanted to perform a minor update in 
the design of transaction log.  The other  approach is  to use a  separate 4 byte  integer for lock and 
unsigned integer for version number. This made the architecture more flexible for further experiments 
because I  could easily make updates  in  design and did not  confuse the items.  This  approach was 
finalized. This helped simplifying the read versioning control of STM as well.

6.2.1 CUDA STM Shared Locking
Now I explain shared locking. While developing CUDA STM, it was noticed that as much locks are 
required as are the total data items. This is an excessive use of memory. Therefore another idea to share 
the locks was tested. According to this, a hash function is used which gives the lock index. Since the 
data items reside in global memory which is visible to every thread in any thread block, therefore locks 
are mapped on memory address and hash function gives same lock index related to a particular memory 
address in global memory. Thus lesser locks can be used and data items can share the locks. This has no 
effect on performance since a conflict is rare that same transaction tries to acquire same lock which it 
has already acquired for one memory address but according to output of hash function, same lock was 
allocated to another memory address which by chance is to be acquired in the same transaction. Even if 
this  happens,  the lock  acquiring method checks  it  and continue  for  next  data  item in  the log and 
prevents transaction from falling into an indefinite loop of trying to acquire an already acquired lock 
then abort and then again trying for the same lock. In case of binary tree, there was no problem of 
repetition of locks but in case of skip-list which requires a huge number of locks due to excessive 
updation of node pointers in insert phase, this problem was observed. Enumeration values were used to 
caution CUDA STM to check if a to-be acquired lock is already acquired by the same transaction or 
another  transaction.  Enumeration  value  “STM_DUPLICATE_LOCK_CHECK”  is  to  be  passed  to 
Commit() function to make CUDA STM check for each non available lock. This slows down the lock 
acquiring process. Otherwise the default vale is “STM_NO_DUPLICATE_LOCK_CHECK”.

6.2.2 CUDA STM Flexible Locking 
CUDA STM provides highly flexible locking mechanism. The programmer can decide if the data item 
that is being read will be updated also or not or if there will be a lock acquired for that data item when 
the transaction is in commit phase. This is achieved by specifying a single character parameter for Read 
method. If a 'W' is provided then the STM will write back to this data item in commit phase. However 
in case of read only access where only the version number is to be verified then read with letter 'R'. For 
ease  of  use,  an  enumeration  is  used  as  parameter  to  Read()  method  which  has  two  options 
“STMREAD” and “STMWRITE”. A read access can be changed to write access during transaction but 
before commit phase. By default this value is “STMREAD”.

6.3 Transaction Log

Each  transaction  must  maintain  a  transaction  log  data  structure  which  keeps  meta  data  of  the 
transaction. Despite the data type, every pointer stores memory address in 32 bytes. By using a 32 byte 
unsigned integer, the memory address can be stored and can latter be used to initialize a pointer by 
using reinterpret cast. This gives a total generalization for any type of data structures in CUDA STM 
through pointer operations. This is explained latter.
Transaction log contains an array of unsigned integers to store the lock address related to   every data 
structure  that  a  transaction  reads  or  writes.  Every  transaction  maintains  a  local  copy of  the  data 
structure read and all  the update are performed on this local copy and later  written to the original 



memory location depending upon various conditions explained latter.
There is another array in transaction log for storing the addresses of the version numbers of the data 
structure/s read or to be written during the transaction. To store the actual version number of the data 
structure there is a separate array. The version number is then read using the C pointer type casting of 
the address of version number stored in the array when transaction goes in commit phase. The same 
type casting is used to acquire the lock.
There is a separate array of acquired locks. When a lock is successfully acquired in commit phase, its 
address is stored in this array. This helps in identifying which locks the transaction has so far acquired 
and in case of abort, only these locks are released and not all the locks are to be checked because all the 
transactions are accessing the same locks and which transaction has acquired which locks is impossible 
to indicate at run time unless each transaction maintains its own information for regarding that. In case 
of abort, only these locks are released. This is a safe approach.
There is an abort counter integer that stores the number of times the transaction aborted. The starting 
and ending time of the transaction are also stored in the transaction log. This data structure turned out 
to be quite handy for storing the debug information during the test-run of the STM.
CUDA STM reads data byte by byte and copies it to transaction buffer inside transaction log. For that, 
a char data type pointer is sufficient which points to first byte of the shared data structure/s being 
accessed during the transaction and an additional information of data structure size fulfills CUDA STM 
's generalization requirement. To implement this, three arrays are used, first one contains the pointers to 
shared data structures in global memory, a second one keeps their sizes and the third one keeps the 
pointers to local data structure clones in transaction buffer.
Transaction log or meta data is filled sequentially as the transaction proceeds. The main insertion point 
for meta data is  Read method. So which ever data  structure or data  item is  to  be included in the 
transaction, it must be at least once read successfully to store all the necessary information about it. 
This helps in automatic updation of data in Commit phase and the programmer just has to specify the 
data items he or she wants to use by reading them and updating the buffer and then commit. The rest of 
the tasks are performed by CUDA STM. This has made an ease of use and simpler code to be written 
for kernels. Please read the section related to transaction buffer also.

6.4 Transaction Buffer

Every transaction is required to keep a local buffer. With respect to MVCC, a buffer can be considered 
as the snapshot of data in global memory. As transaction proceeds, its snapshot is developed till at the 
end, it is completed. Here, by snapshot I mean the versions of locks are being stored in the log and 
verified in commit phase.
When transaction reads a data structure or a data item, it gets an exact copy or clone as a local copy to 
perform operations upon. Well this should have been an ideal case except that in CUDA, although if a 
variable is declared in a function, we can pass its reference as pointer and access it anywhere else while 
that function or code region is still active, but when its memory address is stored in transaction log and 
is latter accessed in Write method, nothing is retrieved not even if the variable is declared in block level 
shared memory. This is quite a problematic situation because CUDA STM is supposed to simplify the 
kernel code as much as possible. It was observed that if the buffer variables are present in device global 
memory just like the original shared data structures, then buffer is accessible anywhere else latter on. It 
provided a remarkable simplification of kernel code. Pointers to buffer items are stored in transaction 
log when Read method is used. Whenever the global memory is accessed, the buffer is first checked to 
contain its clone. If a clone is found the pointer to clone is returned instead of reading from global 
memory.  This reduces data contention and makes transaction faster. Latter on when data items are 
written back in commit phase, CUDA STM just checks the pointer to buffers and original shared data 



structures in transaction log arrays  explained before,  the respective pointers are stored sequentially 
therefore there is no confusion in finding out a pointer to global shared memory and its respective size 
and buffer item related to it because all of them are at same index in different arrays.

6.5 Dynamic Memory Allocation for CUDA STM Components

Transaction log and locks are invisible components to the STM user. Throughout the kernel code, a 
developer has not to access them because they are automatically used and updated by CUDA STM. 
Each thread block uses a separate transaction log therefore as much transaction logs are required. Since 
the locks are shared as explained before therefore suitable number of locks have to used. The user has 
to decide about the maximum records in transaction log, maximum buffer size  and maximum number 
of locks that are to be used. The method init() accepts four parameters for number of blocks , maximum 
log entries, buffer length and; number of locks in the form of power of 2.

6.6 Multi-threading Support in CUDA STM for Memory Coalescing

CUDA STM provides support for multi-threading as well for copying data to and from global shared 
memory and buffer. Since data transfer is done byte by byte, therefore it  is a significant overhead  on 
STM performance. As explained before, a warp consists of 32 threads. Therefore a whole warp can be 
used for data transfer in which each thread transfers one byte at a time. Multi-threading support is 
present in internal STM functions but its up-to the user to get the benefit from it or just use single 
thread  instead.  Barrier  synchronization  is  required  in  kernel  code  which  can  be  done  by  using 
__syncthreads().  By  using  multi-threading  in  read  and  write,  CUDA STM  provides  an  excellent 
example of memory coalescing.

Fig.9  Maximum performance graph for different concurrency controls for Binary-tree
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Total nodes in Binary-
tree

1  thread  per  memory 
access

32  threads  per 
memory access

1  thread  per byte  per 
memory access 

15000 680 405 356
30000 4009 1719 1706
45000 5458 4889 4430

Table 3  Maximum performance in nodes and milliseconds for different concurrency controls for 
Binary-tree

The above figure and table show that using multi-threading for memory coalescing is beneficial for 
performance. Here one thing is notable that with the growth of binary-tree, the path from root to point 
of insertion of new node becomes longer and longer and versions of all the nodes on that path have to 
be verified before inserting the node. This takes much of the execution time and increases the number 
of aborts. But there is only one write-lock related to parent node of new node to-be inserted is to be 
acquired on whole path. 

Fig.10  Maximum performance graph for different concurrency controls for Skip-list
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75000 5458 1795 1697

Table 4  Maximum performance in nodes and milliseconds for different concurrency controls for Skip-
list

Skip-list shows better performance than binary-tree because of its architecture. Skip list requires lesser 
number of jumps to reach appropriate node position. Skip list, as the name depicts, skips intermediate 
nodes while surfing. Thus it has smaller path from head to desired position. Skip-list provides more 
isolation to transactions because many transactions may be updating different parts of skip-list and are 
independent to each other. Therefore there are less chances of collisions or conflicts. Skip-list gives 
better response time than binary-tree due to these features.

6.7 CUDA STM Provides Alternative to Recursive Functions

As pointed out in section 5.4 that CUDA does not support recursive functions. But in CUDA STM, 
kernels can be created with proper logic that can perform the same tasks e.g; binary-tree and skip-list 
without using recursive calls that can work in concurrent environment.



Chapter 7

How to write STM Transaction Kernel Code ?

Now I explain an example of code to use CUDA STM.

7.1 Example 1

Here is a simple example to explain the use of CUDA STM. There is a single data-structure that all 
thread blocks will update by a random value.

7.1.1 Make suitable data structure
struct test
{

int value;
test(){value = NULL;}

};

7.1.2 Declare Shared Variables
Shared variables are to be used if multi-threading is utilized. These variables are present in shared 
memory of a thread block and therefore are visible to all the threads in a block. Otherwise if they are 
not declared in shared memory but inside kernel, then each thread will have separate variables of its 
own and will disturb the synchronization.
   
__shared__  char *global;
__shared__  char *global_previous;
__shared__  char *temp_local;
__shared__  int value;
__shared__  int rval;
__shared__  test *tst_buffer;

__global__ void  Test_Kernel(node *p_test, int  blocks, int loop_run)
{

  
    

int node_size = sizeof(test); 
rval = blockIdx.x * (blocks);  

for(int i = 0; i < loop_run; i++)

{



if(threadIdx.x == 0)
  {

 rval = ((rval * 214013L + 2531011L) >> 16) & 0x7fff;
 value = rval; // generate a random value

      }
        
                __syncthreads();    
        while(1)   

{

Start();  //initialize the internal variables of  CUDA STM
result = 0;  //this is a global variable in CUDA STM for giving back responce of an operation 

                                           __syncthreads();    
global = reinterpret_cast<char *>(p_test);
__syncthreads();    
temp_local = Read(global, sizeof(test), STMWRITE);  //read shared memory 
__syncthreads();    
if ((result == 1)|| (temp_local == NULL)){ __syncthreads(); continue;} //check if the operation  

                                                                                                                     //was successful otherwise restart the transaction
                                          __syncthreads();    

tst_buffer = reinterpret_cast<node *> (temp_local); //get the node read from buffer 
              

__syncthreads();  
if(threadIdx.x == 0)
{
nd_buffer->value = value; // set the root value
}

                                                      __syncthreads();
Commit(); 
__syncthreads();

                
if(result == 0)
{__syncthreads();break;}
else 
{ __syncthreads();

Abort();
__syncthreads();
continue;

} 
}

}
}

In the above kernel code, a single transaction runs in an indefinite while loop. This code is wrapped by 
a for loop which enables a thread block to perform more than one transactions. Methods like Read and 
Commit, update a shared variable result, which is 1 if operations generated an STM error. Otherwise it 
is 0. At anytime the transaction's while loop can be restarted. For that Abort method has to be called to 
clear the transaction log. __syncthreads is used at various places for barrier synchronization. 

7.1.4  Allocate memory and call the kernel
The memory is allocated on device from the host and the original data is copied there from the host. 
Memory allocation is done as follows:



const int loop_run = 1; // If multiple transactions are required inside each block 
const int blocks = 30;  // The number of blocks, each transaction is run on seperate block therefore it needs a seperate 
// transaction descriptor, so this size is also the array size of transaction descriptors and
// for the convenience of the code, this is also used for the data structure array length  
test  tst_host, *p_tst_device;  // one data structure instance and a pointer

Write the necessary functions to be executed on CPU inculing the main() function.

int main(int argc, char** argv)

{
 

init(blocks, 5, sizeof(test), 0);  // 5 entries log and buffer size is enough to conatin one object since only one object 
                                                               //is being used for concurrent access in this simple example

cudaMalloc((void**) &p_tst_device, sizeof(test)); //allocate suitable memory
cudaMemcpy(p_tst_device, tst_host, sizeof(test), cudaMemcpyHostToDevice); //copy  data from host memory to  

                                                                                                                                                //graphics card
 
              Test_Kernel<<<blocks, sizeof(test), 0>>>(p_tst_device, blocks, loop_run); 
                // number of threads is equal to the size of data-structure used in kernel for memory coalescing 
 cudaError_t err = cudaThreadSynchronize();

if(err != cudaSuccess)
printf("Error: %s\n",cudaGetErrorString((cudaError_t)err));

           cudaMemcpy(tst_host, p_tst_device,sizeof(test), cudaMemcpyDeviceToHost); //copy data from graphics card to host 
                                                                                                                                 //memory

 
cudaFree(p_tst_device);  //free the memory on device

printf("\n Node value is :  %d ",tst_host.value);//
getchar();
return;

}
  
There is a notable thing about calling the kernel from host code. Grid dimensions are determined by 
<<< >>> term. Its first parameter is the number of blocks in grid and second is the number of threads in 
each block. Threads in each block will be running the same kernel and so do all the threads in other 
blocks.  However,  the  same  number  of  threads  will  be  provided  to  CUDA STM  for  its  internal 
functions. Thus if there is only one thread in each block, then CUDA STM will read and write with one 
thread and there will not be a memory coalescing. If there are more than one threads in a block, then 
kernel programmer must control the threads so that all of them should together enter the  Read  and 
Commit methods. Once inside the STM internal functions, they will all come out together for sure due 
to CUDA STM design. To do so, __syncthreads() is a very useful utility to hold all the threads at one 
point in kernel code while one or more threads identified by their thread ID are doing any job.



7.2 More Complex Example

Here is a more complex example of a Binary-tree. This code was actually used to take performance 
results.

7.2.1 Make suitable data structure
struct node
{

int value;
node *left;
node *right;
int value_set;
node(){value = NULL; value_set = -1; left = NULL; right = NULL;}

};

7.2.2 Declare Shared Variables
Shared variables  are  to  be used if  multithreading is  utilized.  These variables are  visible  to  all  the 
threads in a block. Otherwise if they are not declared in shared memory but inside kernel, then each 
thread will have separate variables of its own and will disturb the synchronization.
   
__shared__  char *global;
__shared__  char *global_previous;
__shared__  char *temp_local;
__shared__  int value;
__shared__  int rval;
__shared__  node *nd_buffer;
__shared__  node *my_nd_buffer;
  
7.2.3 Create the Kernel

__global__ void Generate_BinaryTree(node *root, node *l_nodes, int  blocks, int loop_run)
{

  
    

int node_size = sizeof(node); 
rval = blockIdx.x * (blocks);

for(int i = 0; i < loop_run; i++)

{

if(threadIdx.x == 0)
  {

 rval = ((rval * 214013L + 2531011L) >> 16) & 0x7fff;
 value = rval; // generate a random value

      }
        
                __syncthreads();    
        while(1)   

{



Start(); 
result = 0;

                                           __syncthreads();    
global = reinterpret_cast<char *>(root);
__syncthreads();    
temp_local = Read(global, sizeof(node));  //read root node
__syncthreads();    
if ((result == 1)|| (temp_local == NULL)){ __syncthreads(); continue;} //check if the operation  

                                                                                                                     //was successful otherwise restart the transaction
                                          __syncthreads();    

nd_buffer = reinterpret_cast<node *> (temp_local); //get the node read from buffer 
              

            
if(nd_buffer->value_set == -1)  //if root was not set
{

__syncthreads();  
if(threadIdx.x == 0)
{
nd_buffer->value = value; // set the root value
nd_buffer->value_set = 1;
nd_buffer->left = nd_buffer->right = NULL;
Write_Intend(global); // the root will be updated
}

                                                      __syncthreads();
Commit(); 
__syncthreads();

}
else  

while(1)
{

__syncthreads();
temp_local = NULL;
if(value >= nd_buffer->value && nd_buffer->right != NULL) //navigate to  

                                                                        //right side of the current node if value is greater than or equal to node value
{   

                                                                                  global = (reinterpret_cast<char *>(nd_buffer->right));
                                                                                  __syncthreads();

           temp_local = Read(global, sizeof(node));
           __syncthreads();
           if((result == 1)|| (temp_local == NULL)){__syncthreads(); break;}  

                                                                                  __syncthreads();                        
            nd_buffer = reinterpret_cast<node *> (temp_local);
           __syncthreads();
           continue;
}
else if(value < nd_buffer->value  && nd_buffer->left != NULL)//navigate to  

                                                                                            //left side of the current node if value is less than the node value
{   

 global = (reinterpret_cast<char *>(nd_buffer->left));
__syncthreads();
temp_local = Read(global, sizeof(node));
__syncthreads(); 
if((result == 1)||(temp_local == NULL)){__syncthreads(); break;}  
__syncthreads();
nd_buffer = reinterpret_cast<node *> (temp_local);

                                                                                     __syncthreads();



continue;
}

else {              //end of current path is reached after parcing from the root
__syncthreads();
Write_Intend(global); 
__syncthreads();
global = (reinterpret_cast<char *>(&(l_nodes[blockIdx.x + 

                                                                                       (blocks*i)])));    //read the node related to current block
                                                                                      __syncthreads();
                                                                                     temp_local = Read(global, sizeof(node), STMWRITE);   

__syncthreads();
if((result == 1)||(temp_local == NULL)){__syncthreads(); break;}  
__syncthreads();

                                           my_nd_buffer = reinterpret_cast<node *> (temp_local);
my_nd_buffer->value = value;

                                                                                     __syncthreads(); 
if(value >= nd_buffer->value)

nd_buffer->right = (&(l_nodes[blockIdx.x + (blocks*i)]));
else if(value < nd_buffer->value)

nd_buffer->left = (&(l_nodes[blockIdx.x + (blocks*i)]));
__syncthreads();
Commit();
__syncthreads();
break;

}
}

                
if(result == 0)
{__syncthreads();break;}
else 
{ __syncthreads();

Abort();
__syncthreads();
continue;

} 
}

}
}

7.2.4  Allocate memory and call the kernel
The memory is allocated on device from the host and the original data is copied there from the host. 
Memory allocation is done as follows:

const int loop_run = 1; // If multiple transactions are required inside each block 
const int blocks = 30;  // The number of blocks, each transaction is run on seperate block therefore it needs a seperate 
// transaction descriptor, so this size is also the array size of transaction descriptors and
// for the convenience of the code, this is also used for the data structure array length  
node nd_device[blocks * loop_run], *p_nd_device, nd_root, *p_nd_root;



Write the necessary functions to be executed on CPU inculing the main() function.

int validatetree(node* n)
{

int c = 1;

if(n->left!=0)
{

if(n->left->value > n->value)
printf("Invalid tree!\n");

c+= validatetree(n->left);
}

if(n->right!=0)
{

if(n->right->value < n->value)
printf("Invalid tree!\n");

c+= validatetree(n->right);
}

return c;

}

int main(int argc, char** argv)

{
 

unsigned long long node_address_before = 0;
unsigned long long node_address_after = 0;

              node_address_before = (unsigned long long) (&(nd_device[0]));
init(blocks, 3000, 5000, 8);  // 3000 entries log and 5000 bytes long buffer

cudaMalloc((void**) &p_nd_device, sizeof(node)*blocks*loop_run); //allocate suitable memory
cudaMalloc((void**) &p_nd_root, sizeof(node));
cudaMemcpy(p_nd_device, nd_device,sizeof(node)*blocks*loop_run, cudaMemcpyHostToDevice); /copy  data 

from host memory to graphics card
cudaMemcpy(p_nd_root, &nd_root,sizeof(node), cudaMemcpyHostToDevice);

 
              Generate_BinaryTree<<<blocks, sizeof(node), 0>>>(p_nd_root, p_nd_device, blocks, loop_run); 
                 // number of threads is equal to the size of data-structure used in kernel for memory coalescing 
 cudaError_t err = cudaThreadSynchronize();

if(err != cudaSuccess)
printf("Error: %s\n",cudaGetErrorString((cudaError_t)err));

cudaMemcpy(nd_device,  p_nd_device,sizeof(node)*blocks*loop_run,  cudaMemcpyDeviceToHost);  //copy  data  from 
graphics card to host memory

cudaMemcpy(&nd_root, p_nd_root,sizeof(node), cudaMemcpyDeviceToHost);// the root node will show the 
                          //binary tree

 
cudaFree(p_nd_device);  //free the memory on device
cudaFree(p_nd_root);



    unsigned int address_difference = 0;
    address_difference = (unsigned int)p_nd_device-(unsigned int)&nd_device;//node_address_after - node_address_before;

printf("\n Node 0 address before: %X",(unsigned int)p_nd_device);// node_address_before);
printf("\n Node 0 address after: %X",(unsigned int)&nd_device);// node_address_after);
printf("\n Node  address difference: %u", address_difference);

     if(nd_root.left != NULL)
(nd_root.left) = reinterpret_cast<node *> ((unsigned long long) (nd_root.left) - address_difference);
if(nd_root.right != NULL)
 (nd_root.right) = reinterpret_cast<node *> ((unsigned long long) (nd_root.right) - address_difference);
for(int i = 0; i < blocks*loop_run; i++)
{

if(nd_device[i].left != NULL)
(nd_device[i].left) = reinterpret_cast<node *> ((unsigned long long) (nd_device[i].left) -  

                                            address_difference);

if(nd_device[i].right != NULL)
(nd_device[i].right) = reinterpret_cast<node *> ((unsigned long long) (nd_device[i].right) - 

                             address_difference);
}

printf("\n After the tree......(Place debugger break point here and check \"nd_root\")\n\n\n");// place debugger at this 
                           //line

 //Validate tree 
printf("Total items in tree: %d\n",validatetree(&nd_root));

    

getchar();
return;

}
  
In the host code, memory manipulation is required after the data is copied backed from graphics card 
because in a binary tree, a node uses pointers to point to next node and the memory address on graphics 
card and host memory are different.



Chapter 8
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