

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, May 2009

Refactoring of a GUI prototype using AJAX
Improve the performance of a GUI prototype by introducing an
AJAX framework.

Master of Science Thesis

EMANUELLA WALLIN

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Refactoring of a GUI prototype using AJAX
Improve the performance of a GUI prototype by introducing an AJAX framework.

Emanuella Wallin

© Emanuella Wallin, May 2009.

Examiner: Sven-Arne Andreasson

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2009

 2

Contents

Contents.. 2
Abstract .. 3
1. Introduction .. 4
2. Background .. 4
3. The Company ... 4
4. Problem description.. 6
Limitations ... 7
Method ... 7
5. Analysis .. 8

5.1. Asynchronous JavaScript and XML AJAX ... 8
5.2. Direct Web Remoting – DWR ... 9
5.3. JavaScript libraries ... 11
5.3.1. Yahoo User Interface - YUI ... 11
5.3.2. YUI EXT – Ext .. 12
5.3.3. DOJO.. 13
5.4. Framework comparison.. 14
5.4.1. Short overview comparison.. 15
5.4.2. Comparison .. 15

6. Result.. 16
7. Discussion .. 20
8. Conclusions .. 23
9. Reference.. 25
Appendix A – Definitions, Acronyms and Abbreviations
Appendix B – Requirement Specification
Appendix C - Database Diagram
Appendix D – Sourceforge.net – feature request

 3

Refactor a GUI prototype using AJAX
Improve the performance of a GUI prototype by introducing an AJAX framework.
Emanuella Wallin
Department of Information Technology
Chalmers University of Technology

Abstract

The problem given from the company XDIN was to improve an existing Java EE web
application prototype which handles errands specified for the energy branch. Since the
prototype had a slow work process and a slow response time, the company wants the new
system to be implemented with AJAX and DWR. Furthermore, the task was also to examine
if it is beneficial to use other AJAX frameworks, in excess of DWR. Since there are many
different frameworks the review was limited to include two of the frameworks that are in the
frontline, DOJO and YUI.

A lot of different technologies were used, such as JSP, JS, HTML, AJAX, DOJO, YUI, EJB,
Struts, SQL and CSS (Cascading Style Sheet). Therefore the first step was to learn all the
different technologies by reading tutorials and API’s and attending workshops. The second
step was to understand the requirements of the system. Development of the code was done
using both Eclipse and IntelliJ, and for testing the UI, a tool called firebug was used.

DWR is a framework that advocates asynchronous communication and makes it possible to
do lightweight server roundtrips without any complete page refresh. By the very nature of the
framework, the response times were improved.

All three JavaScript libraries have pros and cons. DOJO has a lot of features and gives the
impact of being a library to trust because of its diversity. However, since there is no
documentation or complete API it makes it really difficult and cumbersome to use. The key
feature with a JavaScript library should be ease of use, and by that also a time saver to
develop with when compared to other frameworks or no framework at all. DOJO lacks in
these areas, and is not the framework of choice largely because of these. The YUI on the other
hand not only has a lot of features, but comes with a comprehensive API complemented with
examples and cheat sheets. As a result of the drawbacks of DOJO the choice was to use YUI
as a primary JavaScript Library and to use YUI ext as an extension.

Keywords: AJAX, DWR, YUI, DOJO, YUI ext, RIA.

 4

1. Introduction

The problem given from the company XDIN is to improve an existing Java EE web
application prototype which handles errands specified for the energy branch. Since the
prototype has a slow work process and a slow response time, the company wants the new
system to be implemented with AJAX (Asynchronous JavaScript and XML - eXtensible
Markup Language) and DWR (Direct Web Remoting). New AJAX Frameworks are under
development and therefore the task is also to choose one type of framework and examine its
usability by using the chosen framework in the implementation of the system.

2. Background

The motive to the task is to improve an existing prototype, where an administrator can
customize the different kinds of errands for the energy branch, i.e. give them certain
properties. A property can for example be what kind of timestamps should be used in relation
to the errand. The existing prototype is very slow and built in a way where each user
interaction results in a full page load and is therefore not user-friendly. In addition to improve
the prototype the task is also to examine AJAX and one AJAX Framework for future
development in the company.

Users using conventional web application cannot perform anything while waiting for a
response. Loss of information and the scrolled position of the screen is also a big problem and
these are some reasons why Rich Internet Applications (RIA) technologies were developed.
The same reasons apply to why the company wished for a new Errandhandler/CaseBuilder.
AJAX is a RIA technology and is the technology that will be used to develop the new
Errandhandler.

3. The Company

Xdin is one of Sweden's fastest growing technical consultancy companies developing
products and processes mainly for clients from the vehicle, energy and manufacturing
industries.

It has over 500 employees with offices in Sweden and the US.

Xdin's consultants develop world-leading products and processes for innovative companies
and organizations by providing services, training and creative tools.

The concern is founded on developing their clients’ products and processes which are made
possible by their competent employees – Xdin's single most important resource. They focus
on delivering the right competence, at the right price at the right time - Develop and Deliver!

The main areas of business are:
 Product Development
 IT- and System Development

 5

 Training, Support and Method Development

Xdin – a growth company. Xdin's average growth since its creation in 1991 has been around
60% per annum. The same figure for the last three years has been around 18% per annum.

Xdin enjoys a high ranking. The highly respected Swedish newspaper Affärsvärlden, that
conducts an annual ranking of Sweden's 1500 foremost consultancy companies, amongst
which Xdin was in 2005 ranked as number sixteen in the technical consultancy table.

 6

4. Problem description

The task is to improve the response time of an existing Java EE web application prototype
(also called Casebuild) which handles errands. The system handles the errands mainly by the
pattern CRUD (Create Read Update and Delete). The system is a part of a larger system,
WMS (Workflow Management System), which already has the underlying architecture
necessary to provide a better, faster and a more user friendly web application, the bottleneck
is the user interface of the system. WMS is a system specially built for the energy branch and
provides the necessary workflow according the processes needed in the energy branch, ex. the
move process. Users using conventional web application cannot perform anything while
waiting for a response. Rich Internet Applications (RIA) technologies have been developed to
deal with these common types of problems. The technologies AJAX and DWR which are RIA
technologies will be used to improve the user interface.

DWR and AJAX are not new on the market however a lot of different AJAX frameworks are
under development and therefore the task is furthermore to find out why developers should
use these kinds of frameworks. Since, there are several frameworks on the market, many
developers, including me, are eager to know which framework to use.

The prototype is written with JSP (Java Server Pages), JS (Java Script) and HTML
(HyperText Markup Language).

The underlying architecture is built with EJB (Enterprise JavaBeans), Struts, Java and SQL
(Structured Query Language). Even though there is a fully developed underlying architecture
some rewriting will of course be necessary.

The information given was the code of the prototype and WMS, an ER (Entity Relation)
diagram over the database and a presentation of the whole system called WMS. Furthermore,
a primitive requirement specification was given.

Additionally, the WMS requires at least IE6 (Internet Explorer) to run properly, and this will
be the requirement for the new application as well.

So to summarize the task is to;

• Improve the response time for the end users in an existing Java EE web application,
using DWR.

• Examine if it is beneficial to use other AJAX frameworks, in excess of DWR?
• Review some of the AJAX frameworks that are in the frontline and use one of them in

the application.

 7

Limitations

Since there are many different frameworks I have limited the review to include two of the
frameworks that are in the frontline, DOJO and YUI.

Method

A lot of different technologies will be used, such as JSP, JS, HTML, AJAX, DOJO, YUI,
EJB, Struts, SQL and CSS (Cascading Style Sheet). Therefore the first step is to learn all the
different technologies by reading tutorials and API’s and attending workshops. The second
step will be to understand the requirements of the system. After this, next step will be to
implement a user interface prototype, showing only dummy data. When the prototype is
approved by the company the user interface should be connected with the server code.
Changes or additions to the server side code may be necessary.

Development of the code will be made using both Eclipse and IntelliJ, and for testing the UI,
a tool called firebug is available as a plugin to the firefox web browser.

 8

5. Analysis

5.1. Asynchronous JavaScript and XML AJAX

Ajax is a web development technique for creating interactive web applications. Ajax was born
because of the lack of RIA in conventional web applications. Users using conventional web
application cannot perform anything while waiting for a response. Ajax allows a more
responsive web page, by exchanging small amounts of data with the server so that the
complete web page does not have to be reloaded on every interaction by the user, i.e. Ajax
loads on demand. What happens is actually that HTML is locally generated within the
browser and only JavaScript calls and the data is brought down. As the payload is much
smaller the web pages appear to load faster.

Java is synchronous but Ajax is asynchronous and does not interfere with normal page
loading. The existing standards that are used are many but the programmer can choose to use
any language that works for him. The Ajax approach helps the programmer to clearly separate
methods and formats.

The standards that are most used are:

� JavaScript is used to write Ajax function call.
� XML is used to format the retrieved data. It is not necessary to use XML

other formats work also like plain text and JSON.
� CSS is used for formatting the style; of course XHTML and HTML can be

used instead if CSS is not preferred.
� DOM (Document Object Model) is a model representing HTML or XML

and related formats, i.e. the way that the JS sees its containing HTML page.
� XMLHttpRequest is the core of Ajax.

Since Ajax is based on open standards it can be used on different operating systems, computer
architectures and web browsers and hence it is a cross-platform technique.

Ajax is built on the XMLHttpRequest object which makes it possible to send HTTP
asynchronous calls from a web page to a web server with the help of JavaScript without
having to reload a page.
The benefits are many with Ajax; however there are some disadvantages also. One is that the
pages are dynamically created and can therefore not be registered in the browser history
engine. The consequence of this is that the back function doesn’t work as it is thought to
work. A related consequence is also that the user cannot bookmark a certain state of the
application.

A greater problem is that which JavaScript causes or rather the different web browsers
because JavaScript is implemented differently by different browsers. JavaScript code must
many times be written twice, since there are IE and Mozilla incompatibilities. However, many
of the JavaScript libraries handle this problem by abstracting differences from web developer.

Yet another problem is that it is difficult to test and find bugs in JavaScript, but IDE tools like
firebug and IE Developer Toolbar exists which can help the programmer a lot during
development.

 9

Implementing an AJAX oriented web application is often a very complex task and making use
of an AJAX framework can greatly simplify the work. One important aspect of an AJAX
framework is to abstract away the technical details of making asynchronous http requests. Not
only is this important so you don’t get lost in the details, but it’s also important to get a
common way of implementing code that runs the same on different web browsers. Most
AJAX frameworks today accomplish this.

Often, such frameworks not only provide the means to make AJAX requests but also ways of
coding the actual web pages in more dynamic and efficient ways. Examples of this are rich
components; such as tabbed panels, calendar pickers and tree components and on a lower
level there may be complete event systems and functionality for mapping data to and from
input fields and tables. A framework can also serve as a great resource for ideas and know-
how by providing examples and documentation for the framework in particular but also about
AJAX, JavaScript and web applications in general.

5.2. Direct Web Remoting – DWR

One of the prerequisites given by the company was to use the DWR framework, since that is
already used in other parts of the WMS. DWR is a Java and JavaScript library which allows
you to write highly interactive web applications and it is designed specifically with Java in
mind. Basically, DWR allows code in a browser to use Java methods running on a web server
just as if they were in the browser.

Previous techniques for developing web applications often enforced a synchronous approach
in which entire page reloads were required to make interactions with the server. DWR and
AJAX in general, allows for a more dynamic approach where incremental changes can be
made to a web page without requiring a full page reload.

DWR consists of two main parts, a Java Servlet, called DWRServlet, running on the server-
side and some JavaScript libraries running on the client-side. The DWRServlet handles
requests and responses made from the client and also exposes selected java classes so calls
can be made to them from the client. JavaScript libraries that the client should use are
dynamically exposed by the DWRServlet. There is also a debugger page that allows you to
test the interaction with the DWRServlet without having to write any client JavaScript at all.

The client-side imports the exposed JavaScript libraries, and using these, the client code can
directly make asynchronous calls to the exposed server code. When the server has finished
processing such a method call, the response is serialised and returned to the client were the
JavaScript callback function is invoked to further process the response. This is very much like
an RPC (remote procedure call) mechanism such as SOAP (Simple Object Access Protocol),
but without requiring something that’s not already available in the web-browser.

For handling complex return types such as basically any kind of java object, there are a
number of different converters that can be used. A converter serialises/deserialises a java class
and by configuring an appropriate converter for each class, any complex object graph can be
seamlessly transferred to the client in the desired way.

 10

When using DWR to asynchronously call a method on the server, you provide DWR with a
callback function that should be called when DWR has received the response from the server,
see Figure 1 for an example.

Figure 1: In this example, when the eventHandler() function is called, an asynchronous http request is
made to the server where the method AjaxService.getOptions() is invoked. When the server returns the
response, the callback method populateList(data) is called and the response data is supplied as an input
parameter. The populateList(data) function dynamically adds a number of options to a drop down list on
the web page.

DWR is a very competent framework when it comes to communicating data objects between
the client and the server, and it also manages the population of these data objects into plain
web page components very well. However, there are many aspects, in particular regarding the
user interaction on the client side, which DWR does not try to solve.

 11

5.3. JavaScript libraries
As the previous section identified that the DWR framework did not fully support all the
required functionality, this section will compare three JavaScript frameworks that do, and
choose which one to use as a complement to DWR in the development.

The comparison will emphasize general usability, support, documentation, licenses, and of
course the functionality necessary for the application. The functionalities required are mainly:

• a tab component
• a tree component
• a popup window

5.3.1. Yahoo User Interface - YUI

The Yahoo User Interface (YUI) is an open source JavaScript library that makes it easier to
build dynamic web applications. The YUI is released under a BSD license and free for all
uses. It was developed by Yahoo’s engineering team in the US.

The YUI provides both reusable utilities and controls that are very well documented. There is
a fully developed API, cheat sheets and a lot of different examples to follow, which makes it
easy to start using. The YUI also provides a blog, maintained by its developers, where the
latest information is shared and lots of useful discussions and examples are emphasized.

There are many utilities in the YUI that makes it easier to code e.g. events, drag and drop,
animation, etc. In addition to this, there are controls, or components, like e.g. menus,
calendars, and sliders as well as all components required for the application. It is important to
note that adopting the YUI doesn’t imply that you have to use everything that the YUI
provides, nor does it prevent the usage of other JavaScript libraries.

There is a tab component called TabView that makes it easy to create tabbed layouts in a
number of different ways; dynamically from the code, from marked up div containers, or from
external files. The option to create tabs from external files gives a good separation of
concerns, but might cause issues with JavaScript calls prior to page initialisation. By making
sure that the YUI gets a chance to initialise the tabs before executing application specific
initialisations, there should be no problem.

A tree component is implemented in the TreeView control. The TreeView control supports
dynamic loading of data when nodes are expanded, but not native rearrangement of nodes (as
is required in some of the trees)

Popup windows are easily implemented by using the Dialog control, which allows any DIV
container to be rendered as a popup window. The Dialog also allows custom callback
functions to be specified on the dialog buttons. A drawback of using the Dialog is that the
buttons cannot be assigned an individual CSS class, since they are grouped together. Any CSS
class is thus applied to all buttons.

 12

The YUI framework is divided into modules represented by separate JavaScript files. This
makes it easy to just include the functionality required on the html page, which in turn
improves download performance.

Integration to the server-side code is possible by using the ConnectionManager provided in
the YUI, or by using a DataSource abstraction that can retrieve data from a remote service e.g.
by using Ajax. However, the integration in this case is best done using DWR instead, since
that’s a prerequisite for this project. Using DWR is entirely possible, but it can put a
limitation on the usability of some heavy components that rely on e.g. the
ConnectionManager.

It’s easy to change the default CSS style of the YUI components by overriding the setting for
relevant CSS classes. However, in a case like this where common CSS guidelines are
provided by the company, one need to duplicate this style to adapt the YUI components. This
means that changes in the common CSS will need to propagate to the YUI specific CSS.

The YUI doesn’t promise to support every browser; however it does support IE 6.0 and IE
7.0, which are the important ones in this context. There is also a promise that all components
work well in all of what is called “A-Grade” browsers, see figure 2.

Figure 2: Browser compatibility chart.

5.3.2. YUI EXT – Ext

The YUI Ext started by Jack Slocum in early 2006 and was supposed to be a set of extension
utilities for the YUI. The YUI Ext grew in popularity and became an independent library. In
the early 2007 a company was formed and a new name was taken, Ext, thus it is now an
independent client-side JavaScript framework for building web applications and is dual-
licensed under the LGPL and a commercial license.

Ext is compatible with most server platforms that can process POST requests and return
structured data. DWR is a common choice for integration with Java Projects.

Ext can now be used alone since it includes a native Ext adapter. Before version 1.1 it was
necessary to use one of the following external base libraries: the YUI, jQuery or
Prototype/Script.aculo.us. Ext provides both tutorials, interactive demos, a fully developed
API, community manual and a blog.

A feature in the Ext that stands out from both the YUI and DOJO is the possibility to use
templates when building dynamic html within the JavaScript code. This feature is both fast

 13

performing as it doesn’t require string concatenation and the code gets cleaner because the
templates contain pure html which is easy to read.

Figure 3: Example of how to use the template functionality in YUI Ext to build dynamic html efficientl y.

5.3.3. DOJO

DOJO is an open source JavaScript library or rather a toolkit which makes it easy to build
dynamic web applications and is released under a BSD license and free for all uses. DOJO
provides a lot of different components that can be used to make web pages more useable,
responsive and functional. Dojo doesn’t call their outcome a library but a toolkit since it’s
more than just a library. However, Dojo still provides a lot of libraries but these are wrapped
in a package system which makes it more than just a collection of libraries. This package
system ensures that only code that is required will be included. The usage of DOJO in an
application does not prevent the possibility to use another JavaScript library in the same
application.

A benefit with Dojo is that the programmer can choose to include as little or as much of the
available API’s that is needed. The API contains units called modules that resemble packages
in Java except that modules can also include constructors and methods. A module is often
defined in a single JavaScript file, but can sometimes be divided into several files to enhance
the performance, since then the browser only needs to download the code that is necessary.

Dojo has a concept called Widgets, which is a functionality that enhances existing html
components making them e.g. more user-friendly or adds more functionality such as
searchable select boxes or input validation.

Dojo provides at the time no documentation or API description. However, they do provide
primitive code examples describing how to use some of the widgets.

Support is available for most of the existing modern browsers today, such as Safari, Opera,
IE, Firefox and Konqueror.

 14

There is a widget called TabContainer which can be used to get a tabbed user interface.
TabContainer primarily creates tabs from marked up div containers. Furthermore, Dojo
provides widgets for creating both a dialog and a tree, which works similarly like the
TabContainer. The TreeWidget can also be created programmatically. It is important to note
that the Dialog can only be placed in the centre of the window.

The CSS can be customised in a similar way as for YUI, i.e. by providing a separate CSS file
overriding the default setting for the relevant CSS-classes you whish to change. The drawback
is still that the company wide CSS standard will need to be duplicated and adapted for Dojo.

Figure 4: Overview of Dojo’s package system

5.4. Framework comparison

This chapter will compare the three different frameworks in order to choose which framework
to use for the development. The comparison will emphasize general usability, support,
documentation, and of course the parts from the framework that are necessary for the
application. These parts are mainly:

• a tab component
• a tree component
• a popup window

 15

5.4.1. Short overview comparison

Here follows a short comparison over what the three JavaScript libraries provides and does
not provides.

 Dojo YUI EXT
Manual Yes* No Yes*
API Yes* Yes Yes
Examples Yes* Yes Yes
License BSD** BSD** LGPL***

Blog Yes Yes Yes
Button component Yes Yes Yes
Tree component Yes Yes Yes
Tab component Yes Yes Yes
Full package needed No No No

Figure 5: Feature comparison of Dojo, YUI and EXT.

* At first ‘No’, but as of 2008 it is ‘Yes’
** The BSD License allows proprietary commercial use, and for the software released under
the license to be incorporated into proprietary commercial products. Works based on the
material may even be released under a proprietary license (but still must maintain the license
requirements).
*** Everyone is permitted to copy and distribute verbatim copies of this license document but
changing it is not allowed.

5.4.2. Comparison

All three JavaScript libraries provide almost the same functionality and the usage of the
components works in a similar way. There are some subtle differences between the
frameworks, such as e.g. the Dialog can only be positioned in the centre of the screen in Dojo,
but in YUI it can be arbitrarily positioned as well as dragged by the user. But such differences
are not of main importance. Another difference between them is the quality of the
documentation.

At first, the DOJO toolkit was chosen as it seemed to be the most popular and widely used
framework. The popularity of DOJO ensures that many people find it useful and a framework
is also likely to be further developed and supported in an active community. However, the
inadequate documentation of DOJO not only made it quite difficult to understand and to get

 16

started with, but it also made it harder to see the limitations and the benefits of DOJO. A
feature of DOJO is that one should only need to include the parts of DOJO that is being used
and leave out the rest, but figuring out what to include and what to leave out is really difficult
when the documentation doesn’t state dependencies explicitly. This is a problem as it either
takes time to figure out which dependencies to include or the footprint of the application
grows too big if you include too much.

There were also some technical problems with getting the TabWidget in DOJO to resemble
the look of the WMS application, which would be a problem since CaseBuild will be included
in the WMS.

YUI on the other hand has comprehensive documentation with many examples. It also turned
out to be easier to start using YUI with only a subset of its functionality than it was to get
DOJO up and running with a similar subset.

As a result of these problems, the decision was made to start using YUI instead, supported
with the template functionality from YUI Ext.

6. Result

The result will be explained by guiding you through the resulting application, screenshots will
be provided to enhance the comprehension.

Figure 6: This is what the user first will see.

To start administrating an errand the user must first select an errand, by first choosing group
and then the errand, of course the possibility to choose all groups exists. When a specific
group is selected a filter method in the service class called CaseBuildService is called. The
filter method returns a list of errands as a callback to populate the second select box. When,
the user selects one specific errand the server fetches the data requested from the database.
The data that is marshalled to the client is actually a composite object containing all data that
will be shown in all tabs.

 17

Figure 7: A case is selected and the first tab populated.

When the user has chosen an errand, two different tabs are displayed, Ärendetyp and
Tidslägen och Operationer. The first tab shows the characteristics of the particular errand e.g.
the name, the description, the group belonging and a control to other errands.
One requirement from the company was that every change from the user should be saved in
the database along with an audit comment. In this first tab the save button actually only saves
the name, the description and the group. When the user hits the save button another dialog
appears and the user is requested to write a comment. If the user whish to make a control
against other errands he can use the control feature, by selecting an errand and click on the
button to move the errand to the right. When pushing the button the user must write a
comment and the new state will be saved. The possibility to select more than one errand
exists. If the user wishes to have a date control on the selected errands he can mark a radio
button. When a radio button is marked a dialog appears and the users must fill in a comment.
When the user no longer wants a control to other errands he can select one or more errands in
the right select box and click on the button to move the errand to the left. And of course a
dialog will appear and the user will be requested to write a comment. After entering a
comment, a roundtrip to the server is made in the background to save the changed data. The
GUI maintains its state so no page refresh is necessary.

 18

Figure 8: The comment dialog box displayed.

The background is rendered while comment dialog is visible.

To create a new errand the user simply presses the button “Ny Ärendetyp”. When the user has
pressed the button the first tab will be activated and the heading of the second tab will be
disabled but visible. The new errand can not be saved before the user has filled the mandatory
field’s i.e. name, description and group.

Figure 9: The second tab displayed containing a tree with operations

and timestamp for the errand selected.

 19

The first tree that is visible is a static tree showing methods that are attached to the errand.
The second tree is showing the activities that are attached to the errand. The order of the items
in the tree is the order in which the activities will be executed in. The items are easily
rearranged by clicking the up and down arrows. For each click a comment dialog will be
shown and the user will be requested to write a comment. Each activity has a number of
operations which are displayed as children to the parent activity. By pressing the addition sign
on the left side of the tree the user can expand the tree, or by pressing the subtraction sign the
tree will collapse.

By pressing the big blank document in the right corner the user can add a new activity to the
tree. When the document is pressed a dialog window will be prompted were the user can
select the activity to add and also set some properties on the activity. When the user presses
the save button, a comment dialog will be displayed. By pressing the smaller blank document
the user can add a new operation to the activity. A new activity and operation will be added
on the end, and can then be moved using the arrows.

To view the properties for both the activities and the operation the user simply clicks on the
name and dialog with the properties will be displayed.

Figure 10: The dialog with the properties for an operation is displayed.

 20

7. Discussion

Let’s start by looking into what happens when the user first loads the application. What the
user sees is two select boxes and a button “Ny ärendetyp”. The item list that is displayed in
the first select box is actually fetched from a utility called ListBoxCacheManager, which is
loaded each time the user enters WMS. That means that no round trip to the database is
necessary for this which results in better performance. This approach works fine since the
group list can be seen as static because new groups are rarely added, so the chance that a new
group has been added since the ListBoxCacheManager was initialised is very low. Should any
list in the ListBoxCacheManager be changed anyway, it is refreshed in order to always stay
current. The same approach is made when the user selects the “all groups” choice. That is all
errands are fetched from the ListBoxCacheManager, this results in better performance since
the user don’t have to wait for an exhaustive search in the database. However, when a specific
group has been selected a filter method is called and a list of errand items is returned to the
client. The population of the list box is performed by DWR, or more specifically the
DWRUtil.addOptions utility which very easily can take the result from the service callback
and put it in a select box.

Apart from displaying the correct errand list when a group has been selected, the initialization
of the page is done. Initialising in the sense that the dialogs and the tabs are created, but they
are not displayed yet. Because of the way the browser works, no initialisation can be done
before all the libraries and the entire page are loaded, and as a result a forced initialisation is
done after the page has loaded properly. A consequence of this is that the first list box has to
fetch the list to display from the ListBoxCacheManager upon page generation, since neither
DWR nor YUI can be used. A positive outcome is that this approach resulted in better
performance as no further roundtrips to the server are required once the page is generated
because the page already contains all the initial data.

When an errand has been selected an entire composite object is fetched from the database.
The composite object contains all data of an errand in a complex object tree containing many
properties and different objects. This approach was a requirement from the company, as it was
regarded as giving better performance than making smaller but more server requests. To fetch
the whole composite object at the beginning have the positive effect that everything is
actually loaded from the beginning so when the user want to switch tab the data is already
present and a roundtrip to the server is not necessary. However, this approach also has some
negative effects.

One of the consequences is that the user has to wait a little longer because the amount of data
fetched from the database is superior. Because the UI is now done in an asynchronous
approach the UI is actually loaded before the data is presented and as an outcome it is
necessary to blur the other tabs while the data is fetched. If the user would have the possibility
to switch to another tab before all the data is fetched and loaded there would be nothing to
display.

Another consequence is that in order to prevent unnecessary reloads, the state of the
composite object must be maintained in JavaScript whenever changes are posted back to the
server. This design imposes an unnecessary level of complexity on the client as compared to
having small but fast asynchronous server roundtrips to fetch or store data in the database. It
also prevents the usage of some of the nice Ajax features of YUI/Dojo as this approach differs
from the main usage pattern of the frameworks, i.e. having fast and small server interactions.

 21

The filtered select box where you select groups is implemented with such small server
interactions, and the code for that is quite small and easy to understand.

The requirement of eagerly populating all data for a selected errand was not ideal for several
reasons. From a performance perspective, it adds to the start-up time before an errand can be
displayed because the database must retrieve data from many tables and also the amount of
data to transfer to the client can be fairly large. Not all this data is required to display the
errand on the first tab so fetching the data when needed would shorten the start-up time.
The design also adds a lot of complexity to the client as the entire errand must be maintained
in the JavaScript code while it is selected in the GUI. There is also the risk that the errand
loaded at one client gets outdated when the same errand is being worked on from another
client. Furthermore, this approach deviates somewhat from the Ajax-way of doing things in
multiple small server interactions. Granted, the save operations are performed using small
server interactions in the background but the large initialisation is not. If it was possible to
reconsider this requirement, it is likely that the large initialisation would be broken down into
smaller operations e.g. triggered by changes in the active tab. The large benefit from doing
that would be to simplify the GUI code.

Requiring the user to enter a comment after each update was a requirement for audit reasons.
However, in cases e.g. when changing the position of an operation within an activity multiple
times on the second tab, it can easily get annoying to enter a comment for each change. A
better solution might have been to have a save button that stores all changes made to the
arrangement of operations using one single comment.

The different parts of the UI are very well separated into different files, which make it quite
easy to maintain and further develop the application. For example, the html structure such as
the different dialogs and tabs each have their own JSP file that gets assembled into one main
application html. The approach used to assemble the files is the <jsp:include> tag. This was
chosen in favour of the static include-directive since each JSP file can have some dynamic
content upon page load, e.g. contents of select boxes. For each JSP file there is a JavaScript
file that defines the behaviour of the html components in it. Finally, there are a number of
CSS files that defines the visual properties of the components. A consequence of using
components from YUI, such as e.g. the popup Dialog, is that in order to have e.g. all buttons
look the same there must be CSS styles defined for both regular html buttons and for the CSS
classes that the YUI buttons have as default. This duplication of code is not ideal, but it is to
be expected when you make use of a JavaScript library such as YUI, or Dojo for that matter,
and mix it with ordinary html components.

However, sometimes the duplication is not the biggest problem, but the lack of possibility to
assign e.g. a button a CSS style. In order to give each button in a button group a custom CSS
class, a code modification of YUI had to be done (see appendix D). This code modification
has been placed on SourceForge as a feature request for YUI, since it can be useful for other
users as well, but also since modifying libraries does not help maintenance in the long run.

Even though YUI is very capable and has many features, it has its limitations, and some of the
functionalities required couldn’t be implemented with only the YUI library. One is the
functionality that handles the control against other errands on the first tab. But this is mainly
due to that the GUI and the data that is fetched and presented are so different from each other,
that the widget from YUI cannot handle it. And also because the requirement was that each
errand that is visible in the right should have a check box.

 22

The other functionality that YUI couldn’t handle was actually the tree and this because the
tree widget wasn’t built in the sense that there were parents with children. But in some odd
way which resulted in that everything was saved in an array where only the parent knew its
children but the children didn’t know its parent. However, parts of YUI could be used when
implanting the tree. The new release of YUI is changed and now the children know about
their parents, so the new widget could maybe used now.

 23

8. Conclusions

So to summarize the task is to;

• Improve the response time for the end users in an existing Java EE web application,
using DWR.

• Examine if it is beneficial to use other AJAX frameworks, in excess of DWR?
• Review some of the AJAX frameworks that are in the frontline and use one of them in

the application.

The task was to improve the response times for the end users in the WMS application by
using DWR. DWR is a framework that advocates asynchronous communication and makes it
possible to do lightweight server roundtrips without any complete page refresh. By the very
nature of the framework, the response times were improved.

All three JavaScript libraries have pros and cons. DOJO has a lot of features and gives the
impact of being a library to trust because of its diversity. However, since there is no
documentation or complete API it makes it really difficult and cumbersome to use. The key
feature with a JavaScript library should be ease of use, and by that also a time saver to
develop with when compared to other frameworks or no framework at all. DOJO lacks in
these areas, and is not the framework of choice largely because of these. The YUI on the other
hand not only has a lot of features, but comes with a comprehensive API complemented with
examples and cheat sheets. The Ext library was at first not as comprehensive as the other two
as it builds upon the YUI framework. However, it adds a key feature, namely a template
engine, which makes it motivated to use this framework together with the YUI framework.

Both frameworks also support abstraction from browser specific details so developers can
focus on the application instead of issues with different browsers.

It is difficult to get it exactly the way you want when using javascript frameworks, however it
is very timesaving when you have learned it completely. The time it takes to learn a
framework is well invested as you get a lot of functionality for free.

A drawback of using frameworks is that you often need to include more functionality than
you desire, which can lead to heavier pages and longer download times. To some extent this
reduces the motivation behind using a framework, i.e. to make a web application faster, but
the great functionality you get is very often worth this extra weight compared to if you were
to write all code by yourself. Of course it depends on which framework you use, and how you
use it, but many come with functionality to customize the packaging so only the necessary
parts are downloaded.

YUI e.g. has a light version in which all unnecessary code and comments have been removed.

It’s important to remember that using either of these JavaScript libraries fully means that the
application has to be built in ways compatible with the library. When using only some parts
from a library, it may be difficult at times to adapt it in the way you want.

 24

Note: At the same time as this evaluation, DOJO was chosen to be used in a smaller project in
the company. The outcome was the same, no documentation to lean on, time consuming and
works fine only when development is done in restricted areas and general workflows.

 25

9. Reference

Wellman, Dan (2008). Learning the Yahoo! User Interface Library. Birmingham: Packt
Publishing Ltd.

Howitt, Adam (2006). How to Design a large AJAX Application. Duo Consulting

McCarthy, Philip (2005). Ajax for Java developers: Ajax with Direct Web Remoting. IBM

Cloves Carneiro Jr. (2006) AJAX made simple with DWR. JavaWorld.com

The Book of Dojo
http://dojotoolkit.org/book/dojo-book-1-0 [2008-04-14]

Introduction to DWR (Direct Web Remoting)
http://www.javapassion.com/ajax/DWR.pdf [2008]

Why choose Dojo?
http://ajaxian.com/by/topic/dojo/ [2007-07-09]

The Yahoo! User Interface Library
http://simon.incutio.com/slides/2006/xtech/yui-notes.html [2006-05-16]

Surveying open-source AJAX toolkits
http://www.infoworld.com/article/06/07/31/31FEajax_3.html [2007-07-31]

AJAX tutorial
http://www.w3schools.com/Ajax/Default.Asp

Direct Web Remoting
http://directwebremoting.org/

DOJO the javascript toolkit
http://dojotoolkit.org/

The Yahoo! User Interface Library (YUI)
http://developer.yahoo.com/yui/

JavaServer Pages Technology
http://java.sun.com/products/jsp/

JavaScript tutorial
http://www.w3schools.com/jS/

Enterprise JavaBeans Technology
http://java.sun.com/products/ejb/

JavaForum
http://javaforum.se

Appendix A – Definitions, Acronyms and Abbreviation s

AJAX – Asynchronous JavaScript and XML
EJB – Enterprise Java Beans
CRUD – Create Read Update Delete
CSS – Custom Style Sheet
DOJO – JavaScript library
DWR – Direct Web Remoting
Errandhandler / Casebuild – the new application which is to be developed
ER – Entity Relation
HTML – HyperText Markup Language
IE – Internet Explorer
JS – JavaScript
JSP – Java Server Pages
RIA – Rich Internet Applications
SOAP – Simple Object Access Protocol
SQL – Structured Query Language
UI – User Interface
YUI – Yahoo User Interface
XML - eXtensible Markup Language

Appendix B – Requirement Specification

Kravspecifikation

1 (5)

Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other) Projekt namn – Project name Dokument ID – Document ID

Emanuella Wallin Casebuild DS CR 20071201
 Datum - Date Rev Produkt - Product

 2007-12-01 0.1 Casebuild

KRAVSPECIFIKATION 20071201

Casebuild

Sammanfattning

Underliggande arkitektur för Casebuild ska ändras, för att anpassas för
asynkrona anrop och därmed för att öka användarvänligheten. Samtidigt är
högsta prioritet att det ska vara lätt att underhålla och att all JavaScriptkod är
snyggt uppdelad och lätt att förstå.

Tidslägen, operationer och dylikts ska kunna sparas utan att sidan laddas om.

Innehållsförteckning

1 Versions historik 1
2 IntroduKtion 2
2.1 SYFTE 2
3 Preliminär Tidsestimering 2
4 Krav 2
4.1 Krav 1 – Filtrering av ärendetyp efter grupp 2
4.2 Krav 2 – Skapa ett nytt ärende 2
4.3 Krav 3 – kontrollera ärendet mot en utvald grupp 2
4.4 Krav 4 – kontroll av ärendet med Datumstämpel 3
4.5 Krav 5 – Kommentar för varje ändring 3
4.6 Krav 6 – Lägga till metoder på ärende 3
4.7 Krav 7– Lägga till aktivitet på ärende 4
4.8 Krav 8– Sortering av aktiviteter 4
4.9 Krav 9– Lägga till Operationer på aktivitet 4
4.10 Krav 9– Sortering av Operationer 4
5 References 5

1 VERSIONS HISTORIK

Revision Date Description

0.1 2007-12-01 First issue. / Emanuella Wallin

Kravspecifikation

2 (5)

Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other) Projekt namn – Project name Dokument ID – Document ID

Emanuella Wallin Casebuild DS CR 20071201
 Datum - Date Rev Produkt - Product

 2007-12-01 0.1 Casebuild

2 INTRODUKTION

2.1 SYFTE

Syftet med denna CR är att byta ut underliggande arkitektur för den del i
WMS som kallas för Casebuild. Dels för att det idag krävs en full sidladdning
för varje ändring som görs på sidan och dels för att undersöka huruvida ett
javascript bibliotek kan användas i befintlig arkitektur.

3 PRELIMINÄR TIDSESTIMERING

320 h

4 KRAV

4.1 KRAV 1 – FILTRERING AV ÄRENDETYP EFTER GRUPP

4.1.1 KRAV 1 KOMMENTAR

En filtrering som filtrerar ärenden efter dess grupp ska finnas. Ett val där man
kan se alla ärenden ska också finnas med, alltså en ”alla grupper” ska finnas
med.

4.1.2 BEGRÄNSNINGAR

Ett ärende måste ingå i endast grupp.

4.2 KRAV 2 – SKAPA ETT NYTT ÄRENDE

4.2.1 KRAV 2 KOMMENTAR

Nya ärenden ska kunna skapas och sparas. Obligatoriska fält är:

• Ärendetypens namn

• Beskrivning

• Grupp

4.2.2 BEGRÄNSNINGAR

4.3 KRAV 3 – KONTROLLERA ÄRENDET MOT EN UTVALD GRUPP

4.3.1 KRAV 3 KOMMENTAR

Kravspecifikation

3 (5)

Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other) Projekt namn – Project name Dokument ID – Document ID

Emanuella Wallin Casebuild DS CR 20071201
 Datum - Date Rev Produkt - Product

 2007-12-01 0.1 Casebuild

En kontroll med ärendet mot en egen utvald grupp (ej grupp i samma
betäckning som i krav beskrivna ovan). Den grupp som ärendet ska
kontrolleras mot är de ärenden som har valts till höger i en av två listor.

4.3.2 BEGRÄNSNINGAR

4.4 KRAV 4 – KONTROLL AV ÄRENDET MED DATUMSTÄMPEL

4.4.1 KRAV 4 KOMMENTAR

För att ange en datumstämpel på valda ärenden i kontrollgruppen ska det
finnas en radiobutton tillhörande till varje ärende i den högra listan.

4.4.2 BEGRÄNSNINGAR

4.5 KRAV 5 – KOMMENTAR FÖR VARJE ÄNDRING

4.5.1 KRAV 5 KOMMENTAR

En kommentar för varje ändring som görs på varje ärende ska göras. En
dialog ruta ska visas där ändvändaren ska kunna skriva in en kommentar om
ändringen som har gjorts på ärendet. Kommentaren, användarenamnet samt
ett datum ska sparas till följd av detta för loggning i databasen.
Bakomliggande information ska gråas ut och inte gå att editeras tills
kommentaren är ifylld och sparad.

4.5.2 BEGRÄNSNINGAR

Det kommer endast att krävas en kommentar vid skapandet av ett nytt ärende
enligt krav 4.2. En kommentar för varje ändring i relationer och operationer
fliken ska göras.

4.6 KRAV 6 – LÄGGA TILL METODER PÅ ÄRENDE

4.6.1 KRAV 6 KOMMENTAR

Ska visas på en egen del som tillhör ”Tidslägen och Operationer”. Metoderna
som tillhör ärendet ska visa i en lista i form av ett träd och kommer att vara
statiskt.

4.6.2 BEGRÄNSNINGAR

Kravspecifikation

4 (5)

Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other) Projekt namn – Project name Dokument ID – Document ID

Emanuella Wallin Casebuild DS CR 20071201
 Datum - Date Rev Produkt - Product

 2007-12-01 0.1 Casebuild

4.7 KRAV 7– LÄGGA TILL AKTIVITET PÅ ÄRENDE

4.7.1 KRAV 7 KOMMENTAR

Under det träd som uppstår från krav 4.6 ska en lista med trädstruktur
innehållande aktiviteter/tidslägen visas. Genom att trycka på en ikon till höger
om rubriken ”Aktivitet (antal operationer)” ska en ny aktivitet skapas. Den nya
aktiviteten ska placeras sist i listan

4.7.2 BEGRÄNSNINGAR

4.8 KRAV 8– SORTERING AV AKTIVITETER

4.8.1 KRAV 8 KOMMENTAR

Aktiviteter ska kunna sorteras med pilar och resultera i att ordningen ändras i
databasen. Ordningen av aktiviteter bestämmer följden av
tidslägena/aktiviteterna som ska utföras på ärendet. Varje ändring av
ordningen, alltså varje klick på pilarna, ska resultera i att en kommentardialog
visas och kräva en kommentar från användaren i enlighet med krav 4.5.

4.8.2 BEGRÄNSNINGAR

4.9 KRAV 9– LÄGGA TILL OPERATIONER PÅ AKTIVITET

4.9.1 KRAV 9 KOMMENTAR

Genom att trycka på en ikon till höger om aktivitet ska en ny operation
skapas. Den nya operationen

4.9.2 BEGRÄNSNINGAR

4.10 KRAV 9– SORTERING AV OPERATIONER

4.10.1 KRAV 9 KOMMENTAR

Operationer ska kunna sorteras med pilar och resultera i att ordningen ändras
i databasen. Varje ändring av ordningen, alltså varje klick på pilarna, ska
resultera i att en kommentardialog visas och kräva en kommentar från
användaren i enlighet med krav 4.5.

4.10.2 BEGRÄNSNINGAR

Kravspecifikation

5 (5)

Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other) Projekt namn – Project name Dokument ID – Document ID

Emanuella Wallin Casebuild DS CR 20071201
 Datum - Date Rev Produkt - Product

 2007-12-01 0.1 Casebuild

5 REFERENCES

Nedan visas ett exempel på en urvalsrapport, samt ett UM-underlag.

JSP/Javascript

DWR

DWR Facade

Struts action

Delegate

Session EJB

Oracle

OC4J

Data Access Objects

Appendix C - Database Diagram

Appendix D – Sourceforge.net – feature request

Jump to main content

Jump to project navigation

Jump to downloads for YUI Library

[1860983] [#2375428] Custom CSS for Dialog buttons

You may monitor this Tracker item after you log in (register an account, if you do not already have one)

Submitted By:

Ella - emanuella

Date Submitted:

2007-12-30 16:41

Changed to Closed status by:

sdezzi

Closed as of:

2008-12-12 23:18

Last Updated By:

sdezzi - Comment added

Date Last Updated:

2008-12-12 23:18

Number of Comments:

2

Number of Attachments:

0

Category: (?)

Container - Dialog

Group: (?)

None

Assigned To: (?)

Satyen Desai

Priority: (?)

5

Status: (?)

Closed

Summary: (?)

[#2375428] Custom CSS for Dialog buttons

Private: (?)

No

It would be nice if it was possible to specify a CSS class for a button

when creating a YAHOOO.widget.Dialog. The reason would be e.g. to provide

different button icons (Cancel/Save) or to align them other than the

default.

The CSS class could be specified in a new property, e.g. called

"styleClass", as in this example:

YAHOO.example.container.myDialog =

new YAHOO.widget.Dialog("myDialog",

{ width:"300px",

buttons: [

{ text:"Cancel", handler:handleCancel,styleClass:"dialogCancel"},

{ text:"Save", handler:handleSave, isDefault:true,

styleClass:"dialogSave" }

]

});

I have already made local customisations to "configButtons: function (type,

args, obj)" found in container.js to make this work:

for (i = 0; i < nButtons; i++) {

oButton = aButtons[i];

..

// Customisation begin

if (oButton.styleClass != null) {

oButtonEl.className += " " + oButton.styleClass;

}

// Customisation end

..

}

This is perhaps not the optimal way of solving it, but it works for me and

A new Tracker is available. Try it out.

SourceForge.net

A new Tracker is available. Try it out.

YUI Library Search Trackers Advanced

SourceForge.net: YUI Library: Detail: 1860983 - [#2375428] Custom ... file:///C:/Documents%20and%20Settings/Administrator/My%20Docum...

1 av 3 2009-02-08 22:03

I think others could benefit from this feature as well.

Add a Comment:

Tracker items submitted anonymously should include a valid email address in the detailed description field. You will not receive notification of changes to Tracker items

submitted anonymously.

DO NOT enter passwords or other confidential information!

Followups:

Comments

Date: 2008-12-12 23:18
Sender: sdezzi
Hi Ella,

Thanks for the post. Based on feature prioritization, marking this one
"wontfix". Container currently provides a way to walk through the buttons
(through getButtons), allowing you to access the created buttons and add
the classes if required.

Regards,
Satyen

Date: 2007-12-31 06:27

Sender: gpuckett
Logged In: YES
user_id=1793215
Originator: NO

Forwarding to component owner for consideration.

Attached Files:

 Name Description Download

No Files Currently Attached

Changes:

Field Old Value Date By

close_date - 2008-12-12 23:18 sdezzi

Please log in!

SourceForge.net: YUI Library: Detail: 1860983 - [#2375428] Custom ... file:///C:/Documents%20and%20Settings/Administrator/My%20Docum...

2 av 3 2009-02-08 22:03

status_id Open 2008-12-12 23:18 sdezzi

summary Custom CSS for Dialog buttons 2008-11-21 08:13 gpuckett

assigned_to nobody 2007-12-31 06:27 gpuckett

©Copyright 1999-2009 - SourceForge, Inc., All Rights Reserved

SourceForge.net: YUI Library: Detail: 1860983 - [#2375428] Custom ... file:///C:/Documents%20and%20Settings/Administrator/My%20Docum...

3 av 3 2009-02-08 22:03

