

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden, March 2009

Developing a Single Sign-On System
A Java-based authentication platform aimed at the web.

Master of Science Thesis in Software Engineering

HENRIK JERNEVAD

The Author grants to Chalmers University of Technology and University of Gothenburg the non-

exclusive right to publish the Work electronically and in a non-commercial purpose make it

accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not

contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher

or a company), acknowledge the third party about this agreement. If the Author has signed a

copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she

has obtained any necessary permission from this third party to let Chalmers University of

Technology and University of Gothenburg store the Work electronically and make it accessible on

the Internet.

Developing a Single Sign-On System

A Java-based authentication platform aimed at the web.

HENRIK JERNEVAD

© Henrik Jernevad, March 2009.

Examiner: Andrei Sabelfeld

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden March 2009

4

5

Abstract

A typical computer user today, spends a lot of her time on the Web. As a part of this, she often needs

to type her username and password at a dozen different sites or more every day. To cope with this,

users typically choose simple passwords or reuse a few ones. This lowers the security of the system

and increases the risk of an attacker being able to compromise the user’s account(s).

The goal of this thesis is to build a so called single sign-on system which solves these problems. The

result is NaviBase, a system based on the Java technology stack, which uses the Security Assertion

Markup Language to provide single sign-on services to applications and users.

The system consists of two primary components; NaviBase, the server component which holds all

information and processes requests; and SamlLib, a slimmed-down implementation of the SAML

protocol.

In retrospect, a focus on sound development principles and using well known design patterns proved

successful and preliminary security auditing suggest the system is sufficiently secure. On the flip side,

much time was spent on unplanned activities and the system is somewhat hurt by a lack of focus on

usability.

6

7

Sammanfattning

En typisk datoranvändare idag tillbringar mycket av sin tid på webben. Som en del av detta behöver

hon ofta skriva in sitt användarnamn och lösenord på dussintals sidor varje dag. För att orka med

detta använder användare vanligtvis enkla lösenord eller återanvänder ett fåtal. Detta sänker

säkerheten i systemet och ökar risken för en attack som äventyrar användarens konton.

Målet med detta arbete är att bygga ett så kallat ”single sign-on”-system som löser dessa problem.

Resultatet är NaviBase, ett system baserat på Java-teknikplattformen, som använder Security

Assertion Markup Language för att tillhandahålla ”single sign-on”-tjänster till applikationer och

användare.

Systemet består av två huvudsakliga komponenter; NaviBase, en serverkomponent som håller all

information och bearbetar förfrågningar; samt SamlLib, en nedbantad implementation av SAML-

protokollet.

I efterhand visade sig en fokus på sunda utvecklingsprinciper och välkända design-mönster vara

framgångrik och en preliminär säkerhetsgranskning antyder att systemet är tillräckligt säkert. Dock

spenderades mycket tid på oplanerade aktiviteter och systemet är något lidande av en avsaknad av

fokus på användbarhet.

8

9

Preface

This report was performed as a Master of Science Thesis at Chalmers University of Technology. It

covers the development of a software system dealing with authentication and security. My examiner

at Chalmers was Andrei Sabelfeld, Associate Professor at the Department of Computer Science and

Engineering.

The system was developed for MindValue AB, a company which specializes in developing software

for interaction, knowledge management and business. This includes software such as communities

and Content Management Systems.

The system as well as any documentation is available in the form of demonstration by the author.

10

11

Table of Contents

1 Introduction ... 12

1.1 The Problem .. 12

1.2 Objectives .. 13

1.3 Limitations ... 13

2 Theory .. 14

2.1 General Software Security ... 14

2.2 Single Sign-On .. 16

2.3 Security Assertion Markup Language (SAML) ... 17

2.4 Software Design and Methodology ... 21

2.5 Frameworks and Libraries ... 22

3 Method .. 24

3.1 Planning ... 24

3.2 Execution ... 24

4 Analysis .. 26

4.1 Concepts .. 26

4.2 Functional Requirements .. 27

4.3 Non-Functional Requirements .. 31

4.4 Security Threats ... 32

4.5 Architecture ... 34

5 Result ... 37

5.1 Overview ... 37

5.2 NaviBase .. 39

5.3 SamlLib .. 45

5.4 ClientLib ... 47

5.5 ClientWebService .. 47

5.6 Supporting Components ... 48

6 Discussion .. 49

6.1 Objectives .. 49

6.2 Planning and Analysis .. 49

6.3 Execution and Results ... 50

7 Conclusion ... 54

7.1 Achievements .. 54

7.2 Lessons Learned .. 54

7.3 Future Work .. 54

8 References ... 55

12

1 Introduction

The introduction describes the problem discussed in this report and motivates why it is important. It

further describes the specific objectives for the solution described in this report. Finally, the

limitations on the project and report as well as earlier attempts at solving the problem are discussed.

1.1 The Problem

A typical computer user today, spends a lot of her time on the Web. Anything from entertainment

such as games , and videos and picture sharing, to private economy with banking and income-tax

return forms are available online, or social web pages such as communities and chats. Then of

course, there are email clients, and even more traditional productivity software such as word

processors and spreadsheet programs seems to be moving online. Ever more data is stored in “the

cloud” rather than on the user’s own computer. You can access anything from anywhere.

Most of these different sites, services, and applications require some kind of membership. You need

to prove who you are, so the system knows what resources you have access to. Typically today, you

gain access to a site by the means of a username and password. For the user, this means that during

a typical day, she might have to type in her username and password at a dozen different sites or

more. This problem is referred to as password fatigue (Wikipedia 2007).

To achieve good security, a unique password should be chosen for every site the user becomes a

member at. However, because a typical user finds it very hard to remember a lot of random

sequences of characters, users tend to reuse the same password at many different sites. This means

that the load on the user’s memory becomes lower. However, security also gets lower. A malicious

site owner, or an attacker breaking in to a site, could get hold of the user’s password. If they did, the

security of all of the user’s other sites would have been compromised too.

Thus, to summarize, we really have two problems. One is the fact that today, a user typically has to

authenticate a lot of times per day. Secondly, because of how often the user is required to

authenticate, the user often chooses passwords which are cryptographically weak.

One possible solution to these problems is for the user to have a unique password for every site, and

let her computer store the passwords in a special password store. This password store could then be

protected by a single cryptographically strong password. The user would get unique and strong

passwords, but only have to remember one and specify it only every once in a while.

An attacker breaking into one of the sites in question only can gain access to the user’s account on

that site. In order to get access to the user’s accounts on other sites, the attacker needs to break into

the password store. That in turn requires the user to first gain access to the user’s computer, and

then also break into the password store. If the attacker can do this, there are probably even worse

things she can do.

The downside of this approach is that since the password store is now located on a specific

computer, the user might not be able to access a site from another computer. This is a major

drawback with this solution. The solution to this problem is to move the password store away from

13

the user’s computer to a special server accessible from anywhere the user might want to access it.

Such a special server is called a single sign-on system. (Wikipedia 2009)

1.2 Objectives

The goal of the work described in this report is to solve the two problems mentioned above. That is,

the objective is to build a sign-on system which saves the user from repeating her authentication

credentials many times during a short period of time, and increases the security by stopping an

attacker which breaks in to one site from being able to access a user’s account on other sites.

Thus, we have two primary goals for the system. It should be easy to use and at the same time be

secure. As these two goals are often conflicting with each other, prioritizing is needed among

different possible solutions.

1.3 Limitations

While the system has two goals, usability and security, the primary focus of this report is on security.

Description and discussion of analysis and results is from a technological and security viewpoint. A

number of aspects of the system such as visual presentation are not given as much space unless they

directly affect security (which they sometimes do).

14

2 Theory

This section describes the “technological landscape” for the work and the background theory needed

to understand the report. It covers diverse topics ranging from development best practices and

design patterns to digital signatures and hashing algorithms. Things that the reader is supposed to be

familiar with (e.g. basic data structures and algorithms) or where detailed knowledge isn’t required

(e.g. RSA encryption) are not mentioned, or mentioned very briefly.

2.1 General Software Security

This section describes theory regarding general security concepts covered by this thesis. Basic

knowledge about some concepts including encryption, digital signatures, and hashing algorithms, is

assumed. Thus, these topics are only covered if further details are required for understanding this

work.

2.1.1 Authentication vs. Authorization

Authorization and authentication, while very similar in name and often used in combination, are

really two quite different things.

Authentication, commonly abbreviated “authn”, is about identifying who someone is. This can be

done in many different ways, depending on the context. In “real life”, you typically authenticate by

showing your photo ID, or perhaps writing your signature. On the web, the without doubt most

common way of doing this is through a username and password. However, many other options are

available, such as various kinds of two-factor authentication.

As a second step, after authentication, comes authorization (often abbreviated “authz”).

Authorization is the process of deciding whether a specific user has rights to access a specific

resource. Thus, you can be authenticated but still not authorized.

2.1.2 Password Security

The purpose of a password is to be a secret combination of characters known to only one or a few

people authorized to access a resource. Thus, it should not be a sequence easily guessed by others,

such as a name, phone number, birth date or other information with some connection to real world

entities. Instead a more or less randomly chosen sequence is typically used.

Excluding attacks such as tricking someone to reveal a password, eavesdropping, or other types of

“social” techniques, the typical way of cracking a password resolves to some form of brute force

search. That is, an attacker repeatedly tries possible combinations until the right one is found.

In order to make it as difficult as possible for the attacker to figure the password out, we want to

force the attacker to search through an as large set of possible passwords as possible. Increasing the

password space can be done in two ways; having a long password, and include characters from an as

large set of possible characters as possible. For example, a password with 5 characters is easier to

crack than one with 10, and a password with only letters is easier than one with both letters and

numbers.

15

Table 1 displays a few examples of how long time it would take to search through the full set of

possible passwords, given the parameters password length, and number of possible characters. We

assume that a computer can try 1,5 million passwords per second. (PlayStation a hacker's dream

2007) Of course, if we had access to a 1000 computers, the times could be divided by roughly as

much.

 4 characters 8 characters 16 characters
Numbers only (10) <1 second 1 minute 210 years

Letters only (50) 4 seconds 10 months 3,2*10^13 years

Letters and numbers (60) 9 seconds 3,5 years 6,0*10^14 years

Letters, numbers, and
special characters (75) 21 seconds 21 years 2,1*10^16 years

TABLE 1: TIME TO CRACK PASSWORDS

Password storage

Again, excluding attacks where the attacker gets hold of the password unencrypted, a typical brute

attack is performed against the password storage. Obviously, an attacker shouldn’t be allowed to

access it, but it can still happen. In fact, early UNIX implementations allowed anyone to read the

encrypted password store assuming it would be safe. This assumption was made based on the vast

computing power required to crack a password. However, this assumption no longer holds given

modern computer equipment.

Because of the vulnerability of short passwords, various techniques are used to improve their

security when stored. Using a salt is the most typical solution. A randomly generated string of

characters is appended to the password before encryption. This also helps in that two identical

passwords are hashed into two different values, because while the passwords are the same their

salts are not.

2.1.3 Two-Factor Authentication

The primary way of authenticating on the Internet today is using a username and password. For most

uses this is a solution which provides adequate security, especially given a cryptographically strong

password.

However, no matter how secure the password is, if an attacker gets hold of it, he can access the

resource it was protecting. For high-security applications, this is not acceptable. There is thus a need

for a higher level of security. One way to achieve this is through so called two-factory authentication

where the user needs to provide not only one security credential (e.g. a password), but two. This

raises the bar as the attacker needs to get hold of both these security credentials.

For two-factor authentication to be truly effective, two different kinds of credentials should be used.

A password is something you know. Thus, the second credential should be something else, for

example something you have or something you are. (Viega and McGraw 2002)

Also using something you have for authentication makes it much harder for an attacker to

compromise the security of the system. Not only does the attacker need to get hold of the user’s

password, but they also need to physically get hold of something the user is in possession of.

16

There are many kinds of credentials which are based on something you have. The most common is

perhaps a smart card, a pocket-sized card with embedded integrated circuits which in combination

with a card reader can store and process a digital certificate used to authenticate the user carrying it.

Another common type of ‘something you have’ is a mobile phone. Much like a smart card, it can

carry a digital certificate. A third common type is one time password token which generates a

pseudo-random number that change at pre-determined intervals.

What provides an arguably even higher level of security is requiring authentication based on

something you are. This could be a fingerprint scan, a retina scan, or any other kind of biometric. In

order to break this kind of authentication, the attacker needs to either get hold of an actual part of

the user’s body(!), force the user to authenticate, or somehow be able to fool the biometric scanner.

While the first and second alternatives can obviously be done, it comes with a much greater risk for

the attacker. Thus, the most likely type of attack is fooling the sensor. How hard this is depends on

what biometric is used, and the quality of the sensor. Especially some fingerprint scanners have been

proven to be quite easy to fool, while other scanners have proved to be very reliable.

2.1.4 Attack Trees

An attack tree is a conceptual graph for representing threats and possible attacks to a computer

system, suggested by (Schneier 1999). They are derived from ”fault trees” in software safety. An

attack tree is structured to correspond to of the decision-making process of an attacker.

Structure of an Attack Tree

Potential goals that an attacker wants to achieve acts as root nodes for one or more trees. First level

nodes under the root nodes correspond to high-level ways in which a goal could be achieved. The

leaves of the trees represent the details of the different ways of achieving these goals. The lower in

the tree you go, the more specific the attacks get.

Given a complete attack tree, one can make it more useful by annotating its nodes with values

representing the perceived risk of that attack. This includes estimating how feasible the attack is in

terms of time (effort), cost, and risk to the attacker.

Building an attack tree

The first step of constructing an attack tree is to identify the data and resources of a system that may

be targeted in an attack. These targets become the root nodes in the attack tree. After that, all

components, communication channels between the components, and all the types of users of the

system, are considered. Together, these tend to include the most likely failure points (Viega and

McGraw 2002).

Furthermore, not only the software developed in-house is included, but also any components used

by the software developed elsewhere. Also included in the analysis are the computers on which the

software runs, the network which they use, etcetera.

2.2 Single Sign-On

To recap from the introduction, a single sign-on system builds on the notion that one special server

holds the responsibility to authenticate users to a number of different sites or services. To put it from

the user’s perspective, a user can authenticate once to one single server, and then gain access to

multiple sites.

17

In the terms of SAML (Security Assertion Markup Language, see details below), a service provider is a

site which provides some functionality or service to a user. This could be a webmail client, a

newspaper, an online banking system, or just about any site on the Web. The special server

responsible for authenticating the user to these service providers is called an identity provider.

(OASIS 2006)

To provide a typical scenario of how single sign-on systems usually work, we look at a user who

wants to access a certain web page (service provider). In this case, the service provider requires the

user to authenticate in order to function properly. The service provider asks the identity provider to

authenticate the user in question through a request which is (at least in theory) completely

transparent to the user.

It is then up to the identity provider to perform the actual authentication. If the identity provider

does not currently know who the user is – i.e. there is no session established between them – it is

forced to ask the user to provide some suitable security credentials (typically username and

password). Given correct security credentials, a session can be established, and the identity provider

can return the identity of the user to the service provider. The service provider can then continue

serving the user the requested resource.

However, if another service provider recently has asked about the identity of the user, the identity

provider already has a session established for that user. In that case, there is no reason to ask the

user for security credentials, and the identity provider can just return the identity of the user to the

service provider without bothering the user at all. This is the main benefit from single sign-on from a

usability perspective.

2.3 Security Assertion Markup Language (SAML)

SAML stands for Security Assertion Markup Language. In essence, it is an XML-based framework for

asking questions and making assertions about the authentication and authorization of users between

security domains. The standard is developed by the Security Services Technical Committee of the

Organization for the Advancement of Structured Information Standards, abbreviated OASIS. (OASIS

2005)

SAML consists primarily of four main components; the Core, Protocols, Profiles, and Bindings

specifications. Each of these is described in further detail in the following chapters. While there are a

few more components in SAML, they are out of scope for this thesis and are thus not covered.

2.3.1 History

Since its first version, 1.0, SAML has gone through one minor and one major update. These are

versions 1.1 and 2.0, respectively. The following sections provide an overview of all three versions of

SAML.

SAML v1.0

SAML was put together as an effort to “to define an XML framework for exchanging authentication

and authorization information.” (Maler 2001) The results of a number of earlier related projects were

contributed, and after almost two years, in November 2002, SAML version 1.0 was adopted as an

OASIS standard. (OASIS 2007)

18

It aims to define a data format for authentication assertions, as well as authorization attributes in a

secure fashion. The following are the main scenarios for which it is developed.

 Single Sign-On over the Web – a web user after authenticating with a web site can access
secured resources at another web site, without directly authenticating to that web site.

 Authorization Service – one business entity can ask another entity to make authorization

decision on its behalf.

 User Session – two applications can share a common user session.

SAML v1.1

Work continued, and version 1.1 of SAML was ratified as an OASIS standard in September 2003. It is a

minor update to 1.0 and contains only smaller reorganizations, improvements and a few

deprecations. It is today widely implemented and deployed.

SAML v2.0

A major overhaul of the standard came in March 2005, when SAML version 2.0 was standardized. It

represents a significant upgrade in terms of features, compared to version 1.1. The enhancements

came from not only normal feature request, but also from the Liberty Alliance Identity Federation

Framework (ID-FF) V1.2 specification that was contributed to the standards committee in 2003, and

features in Internet2's Shibboleth architecture. The new version breaks backwards compatibility with

version 1.0. (trscavo@idp.protectnetwork.org 2007)

Many new features are introduced in SAML v2.0. Following is a list of the new features introduced

which are of interest for this thesis. (OASIS 2005)

 Pseudonyms –pseudo-random identifiers with no discernible correspondence with any
meaningful identifiers such as username or email.

 Identifier management –two providers can establish and manage the pseudonyms for the
principals for whom they are operating.

 Session management – a protocol by which all sessions provided by a particular session
authority can be near-simultaneously terminated.

2.3.2 Core Specifications

This and the subsequent sections specifically describe SAML v2.0, but the basic structure is the same

in earlier version as well although specific things may have been renamed or restructured.

At the very heart of SAML v2.0 lays the definitions of the messages that can be sent between various

entities. These are divided into two sub categories, the assertions which contain actual security

assertions that we want to communicate, and the protocols which contain the messages needed to

carry the assertions. (OASIS 2006)

Assertions

The assertions part of SAML is the very essence of what SAML is about. They describe one entities

assertion to another about a user. We could call them the nouns of the SAML language.

SAML defines three types of assertions: Authentication dealing with who a subject is, Attribute which

is about specifying information about subjects, and Authorization Decision handling the question of

what the subject is allowed to do. Shared among these assertion message types is a set of elements

which formalize concepts such as ids, names, subjects, conditions, encryption, and advice.

19

Figure 1 contains an example of a typical authentication assertion. To go through it from the top to

the bottom, the assertion was issued January 31st 2008 by navibase.com. It provides an assertion

about a user with e-mail address h.jernevad@example.com and is valid within a span of 24 hours.

The assertion also tells that the user has a global session with index 67775277772. This information

can be used later in order to achieve single sign-out. Finally, the assertion tells us that the user was

authenticated through the means of a password sent over a protected transport, such as TSL.

Protocols

The other part of the SAML core is the protocols. These are the verbs of the SAML language, so to

speak. Although there are a number of different messages, this section covers only the most basic

ones, which are needed in order to make a working SSO system. The messages are divided into two

broad categories, requests and responses.

The most typical request is the AuthnRequest by which a Service Provider (SP) can ask an Identity

Provider (IdP) to issue assertions about a specific user. The Identity Provider then returns a

Response message, containing either the requested assertions or a failure response. Such a

response can also be sent unsolicited by an Identity Provider. Thus, the process can be initiated by

either the SP or the IdP.

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

 Version="2.0"

 IssueInstant="2008-01-31T12:00:00Z">

 <saml:Issuer>

 navibase.com

 </saml:Issuer>

 <saml:Subject>

 <saml:NameID

 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">

 h.jernevad@example.com

 </saml:NameID>

 </saml:Subject>

 <saml:Conditions

 NotBefore="2008-01-31T12:00:00Z"

 NotOnOrAfter="2008-02-1T12:00:00Z">

 </saml:Conditions>

 <saml:AuthnStatement

 AuthnInstant="2008-01-31T12:00:00Z"

 SessionIndex="67775277772">

 <saml:AuthnContext>

 <saml:AuthnContextClassRef>

urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

 </saml:AuthnContextClassRef>

 </saml:AuthnContext>

 </saml:AuthnStatement>

</saml:Assertion>

FIGURE 1: EXAMPLE OF SAML ASSERTION

20

Another common request and response pair is ManageNameIDRequest and

ManageNameIDResponse. A Service Provider can use these to request that the Identity Provider

uses a specific id (number, name, e-mail, etc) to identify a subject. This id is then only used for this

SP. It can also tell the Identity Provider to terminate a given identifier, thus “deleting” that user.

Yet other requests can be used to achieve near-simultaneous logout of a collection of related

sessions (“single logout”) or request a name identifier mapping between multiple service providers.

2.3.3 Bindings

Where the assertions and protocols specify what to send, the bindings tell how to. They map SAML

request-response message exchanges onto standard messaging or communication protocols. The

bindings specify exactly how the messages should be encoded, how to respond in various error cases,

and more. The SAML standard specifies a set of common bindings. These include bindings for e.g.

SOAP, HTTP Redirect, and HTTP POST.

All SAML protocols allow the requester to attach a so called relay state to a sent request. This is an

arbitrary string which the responder must include unaltered in the response. It can therefore be used

by the requester to keep state over the message exchange even if it has to give up control over the

user agent.

HTTP Redirect and HTTP POST

For this thesis, HTTP Redirect and HTTP POST are of special interest. They are similar in the regard

that they both operate over the HTTP protocol, and both are intended for cases in which the SAML

requester and responder need to communicate using an HTTP user agent as an intermediary. This is

typically needed when the responder (Identity Provider) needs to interact with the user in order to

authenticate her.

In HTTP Redirect a party sends a message to another party by returning a HTTP redirect to the user

agent, directing it to the other party’s “consumer” url which includes the actual request message and

attached relay state as parameters. HTTP POST works in the same way, but an auto-submitting

(through JavaScript) HTTP form is used instead of HTTP redirect. This allows for larger messages to be

transferred.

2.3.4 Profiles

The last part of the equation is profiles which define different uses of the SAML assertions, messages

and protocols in order to achieve some specific goal. Examples include the Web Browser SSO profile

which a users whishes to request a protected resource over the internet, or the Single Logout profile

where a authenticated user whishes to not only log out from the identity provider, but also from all

service providers to which she may be authenticated.

In this thesis, the Web Browser SSO profile is of primary interest.

2.3.5 Implementations

At the time when this thesis work was started, there only existed a single major implementation of

the SAML specification, namely OpenSAML produced by the Shibboleth team. OpenSAML is a set of

open source libraries, implemented in both C++ and Java, which implements the SAML specification.

(OpenSAML 2008)

21

The first version, available when this thesis work started, was OpenSAML 1 which provides support

for SAML 1.0 and 1.1. OpenSAML 2, a re-rewrite of OpenSAML 1 which also supports 2.0 was under

work but not yet finished.

2.4 Software Design and Methodology

This section describes a few concepts in software design and methodology which are used or

discussed in later sections.

2.4.1 Model View Controller (MVC)

The major design pattern underlying many, if not most, web applications is the Model View

Controller pattern (Reenskaug 1979). It suggests that a system is divided into three main blocks of

code; the model, the view, and the controller.

The model is the core of the system which holds state and all business related functionality. It knows

everything about the business domain such as what entities and concepts there are and what

operations are available. It holds all the data and is responsible for its integrity.

A view is responsible for displaying a subset of the model to a user of the system. This could be

anything from displaying a graphical user interface to a human user, an application programming

interface to another application, or any other type of interface.

The controller is the glue of the system, so to speak. It is responsible for putting the model and the

view together into an actual application. It contains all the wiring for the application and knows how

to map user requests into functionality. If model and views know “how” to do something, the

controller knows “what”, “why”, and “when”.

2.4.2 Don't repeat yourself (DRY)

Don't Repeat Yourself, or DRY, is a design principle which is both very basic and simple but at the

same time very powerful and applicable almost everywhere. To quote Hunt and Thomas from their

book The Pragmatic Programmer, it is the notion that "every piece of knowledge must have a single,

unambiguous, authoritative representation within a system". Put otherwise, it's a way of saying

"remove duplication". (Hunt och Thomas 1999)

The primary benefit of this principle is that code gets easier to read, understand, and maintain. It

helps us avoid problems which come from copy 'n paste-programming where you copy a section of

code, find a bug in it, correct it but forget to also correct it where you copied the code from. That is

great in itself, but it also gives a number of secondary benefits. For example, consider security. Not

only is code that is easier to understand also easier to keep free of security vulnerabilities, but

applying the DRY principle, you often get security related code in fewer places and thus better

opportunities to use patterns such as Barricade and Choke Point (discussed below).

2.4.3 Barricade and Choke Point

A useful defensive programming technique described by McConnell in Code Complete is called

barricade. It is the notion that you define some parts of the software that work with dirty data and

some that work with clean data. The latter parts, which typically are a majority, can be relieved of

the responsibility for checking for bad data. Instead, you only check data crossing the boundary (the

barricade) for validity. Inside its safe, but outside all bets are off. (McConnell 2004)

22

Choke point is a term which is derived from military strategy, where it is a geographical feature

where an opposite force is forced to pass, typically on a narrow front. It could conceptually be

described as a funnel. In software development, it refers to a piece of code through which every call

or bit of data of a certain type has to pass. This could be e.g. a method through which all user data

has to go in order to be validated, or all SQL queries in order to be properly escaped. A choke point

has much higher value if it is not possible, or at least very hard, to pass through it in an unwanted

way. (Wikipedia 2009)

These two techniques can be used together in a very natural way. A barricade keeps dirty data out of

the clean parts of the system, and is only let in through a choke point at which it can be cleaned

appropriately.

2.4.4 Test coverage

Test coverage is a measurement of how thorough a set of test cases actually verifies that some code

works as intended. It is typically measured in per cent, and describes how many lines of code are

exercised by at least one test case or how many of the possible program states or code branches that

are tested.

There are a number of theoretical ways of discussing this metric, and ways of deciding how many

(and which) test cases are needed in order to fully exercise the code under test. For example,

Cyclomatic complexity is a method of measuring complexity in code, developed by Tom McCabe. It

directly measures the number of linearly independent paths through a program's source code. While

it is often used as a number on how complex some piece of code is, it also is an upper bound for the

number of test cases that are necessary to achieve complete branch coverage. (McCabe 1976)

2.4.5 Simplicity

To some degree, programming is just mechanical work. We know what we want the computer to do,

and we just need to write down the instructions. However, although we normally know what we

want the computer to do, we don’t necessarily know the best way to do it. Figuring out a good way

to do this is what programming is all about.

Unfortunately, the simplest solution is not necessarily the first one that comes into our minds. The

saying goes that “less is more”, and this is very true when it comes to software design. By keeping

our system as simple as we can we gain one very important quality; it makes our system easier to

understand. This can all be summed up very nicely by a quote by Hoare. (Hoare 1981)

There are two ways of constructing a software design: One way is to make it so simple that

there are obviously no deficiencies, and the other way is to make it so complicated that there

are no obvious deficiencies. The first method is far more difficult.

While this is less tangible than many other principles or guidelines, it is nevertheless very important.

2.5 Frameworks and Libraries

A number of existing frameworks are available which help to speed up development and let

developers focus on the actual issues of their particular solution rather than the infrastructure.

23

2.5.1 Apache Tomcat

Apache Tomcat is a platform for developing and deploying web applications and web services which

implements the Java Servlet and Java Server Pages technologies. It is one of many available

implementations of these standards, and also one several available under an open source license.

(Apache Software Foundation 1999)

It provides an object model for basic HTTP-based communication which web applications can use as

a stable and scalable foundation. Primary concepts here are requests and responses, which

correspond to the concepts in HTTP traffic with the same names. Among many other concepts, one

noteworthy is that of filters. A filter dynamically intercepts requests and responses going in and out

of the application in order to transform or use the information they contain. These are typically used

for “auxiliary” functions such as authorization and logging.

2.5.2 Apache Struts

Apache Struts is an open source framework for building Java web applications based on the Model-

View-Controller (MVC) design paradigm. It runs on top of a Java Servlet-based web application

server. (Apache Software Foundation 2000)

The Struts web framework rests on the concept of “actions” and “forwards”. An action is a piece of

code designated to handle a single HTTP request from the user such as “get page A” or “post data to

page B”. Based on pre-defined “wiring”, an appropriate action is selected and run for each incoming

request. An action processes the incoming request and its data, modifies the model if necessary, and

generates a so called forward. A forward is simply a “link” to what view or other action the user

should be redirected based on as a response to the request.

Apache Tiles

To make the creation views easier, Struts incorporates library called Tiles which provides us with the

two related concepts of layouts and tiles. A layout is a template page, which holds the parts which

are common to more than one page. For example, all web pages in the same user interface can

typically use one layout, while rendering XML messages requires a completely different layout. A tile

is an interface component which may be used more than one time and is thus broken out into a

separate unit. Tiles are a clear way of incorporating the DRY principle in view building. Wiring various

tiles and layouts together is made through an external declarative configuration file. (Apache

Software Foundation 2001)

2.5.3 Hibernate

Hibernate is an open source object-relational mapping (ORM) framework for Java. It allows

developers to work with the (object) model and takes care of the details of storing and retrieving this

model to and from a relational database. (Red Hat Middleware 2006)

24

3 Method

This section describes the division of work for this thesis. It describes how the problem is analyzed,

data gathered, choice of methodology, and so on. Assumptions regarding choice of model and

method are explained and motivated.

Work is divided into two major parts, planning and execution. Planning handles the analysis work

performed before the system is created. Execution covers the actual implementation work.

3.1 Planning

The work performed during the planning phase is performed at the beginning, aimed at creating a

solid foundation for the following execution. Many questions need answers, especially regarding

“what” and “why”. The results of this planning are presented in the Analysis chapter.

3.1.1 Use cases and requirements

The very first step needed in order to figure out what system to build is collecting use cases and

requirements. For this thesis, two primary methods will be used, interviews and attack trees. These

two also correspond to the two primary goals of the work, achieving both great usability and

security.

Interviews collect the user-centered requirements such as requested functionality, usability features,

and much more. Also, interviews provide many non-functional requirements regarding things such as

performance and reliability.

Attack trees are a complement which provides a more security-based angle. Major areas of concern

regarding security are identified by looking at potential ways an attacker could compromise the

system as well as what measures of protection could be used to guard against them.

3.1.2 An iterative process

Secondly, with a huge number of use cases and requirements, much work is required in choosing

what and in which order to build it. Here, a highly iterative process will be used. At regular intervals

and in concert with stakeholders of the system, a batch of the currently most interesting features is

selected for implementation. When this batch is finished, the process is repeated. This procedure

results in a very flexible way of working which is highly adaptable to change in requirements and

needs of the stakeholders. The features which receive the lower priority are naturally done last or

even left out of the work in order to limit its scope.

While the design of the system naturally evolves as the system grows, decisions on architecture,

platform and more are decided in advance. The reason for this is to achieve a solid foundation for the

system to be built upon.

3.2 Execution

This section describes how everything after the planning is done, the actual detail design and

implementation of the system. Whereas the planning is more about “what” and “why”, this section is

about “how”. The results of the execution are presented in the Result chapter.

25

As described briefly in the previous section, all execution work will be performed iteratively. That

means that all phases of development, including design, coding, testing and so on, are performed

over and over again, in small chunks. These cycles, called iterations, typically last for two weeks. That

means that first two weeks worth of development work are chosen and performed. Then another

two weeks of development follows, and so on.

3.2.1 Domain Modeling

During development, much time is spent on designing the system. This work can be divided into two

major parts; domain modeling and system design. Domain modeling includes deciding what concepts

or entities exist in the system, how they relate to each other, and finally how they are represented in

code. This domain model can also easily be translated into a database schema. The domain model

will be based on the concepts identified through stakeholder interviews.

The other part of the design work is system design. This is focused on how the various blocks of code

needed to make the system run should be structured. That includes objects related to domain,

encryption, network communication, web controllers and much more. These objects and their

classes are divided into various packages, grouping them together logically. System design for this

work will rely on the guiding principles mentioned in the Theory section.

3.2.2 Test-Driven Development

To ensure, or at least increase the likelihood of, working code a technique called test-driven

development (abbreviated TDD) will be used. This practice means that an automated test displaying

the lack of the wanted functionality is always written before the functionality itself. As mentioned in

the Theory section, it has two noticeable features in that it forces using an interface before designing

it and it increases the test coverage.

Most TDD advocates claim it is not about tests, but about design. This is because of the first

noticeable feature, forcing use before design. While this may sound strange, it is in fact a very

powerful practice. Because a test should be written before the functionality is implemented, that test

in fact has to be written without a fixed interface for the new functionality. This means that while

writing the test, you are in fact also designing that interface. However, you do it with a focus of using

the interface, rather than what might be typical, that you design the interface based the technology

used to implement the feature. This helps getting a usable and practical interface.

The second feature of TDD is that it naturally creates many test cases. While many more tests cases

might need to be created in order to reach full test coverage, it creates a solid base for testing. It also

helps keeping testing in focus during development. Given the high-security nature of the system,

having a large set of automated tests covering as much of the system as possible is very important.

But arguably more important is that not only are the tests verifying the system, they do so

automatically, that is, without requiring human interaction.

26

4 Analysis

The analysis chapter describes the problem in further detail, what decisions were made and on what

grounds these decisions were made.

As noted in the Method section, most of the information available comes through interviews with

various stakeholders. Interview results give us three major parts; the concepts of the system, the

functional requirements, and the non-functional requirements. The results of the interviews are then

complemented through the use of attack trees. Each of these results are discussed below.

4.1 Concepts

The first result of the stakeholder interviews is a description of the concepts in the system, or the

domain model of the system. This includes users, applications, bookmarks, and much more, as

described below. This model also becomes the base for both the object model which is used

internally in the system as well as for the relational model used in the database.

First, a graphical representation of the concepts, or the domain, is provided (please refer to Figure 2:

An overview of the concepts). It is followed by a description of each concept and it’s relation to other

concepts.

NaviBase

 * member of *

 member

 User Application

Administrator

App. Owner

Member

owns *

 1

administers

owns Desktop links to 1

FIGURE 2: AN OVERVIEW OF THE CONCEPTS

27

NaviBase: Working name for the single sign-on system produced within the frame of this thesis.

User: A human being who utilizes the system. Can have different authorization levels. Has access to a

personally customizable desktop.

Member: A user of NaviBase who has no administrative rights. Can be a member of and log in to one

or more applications.

Administrator: A user who is authorized to add, edit, and remove users, applications and other

entities in the system.

Application owner: A user who manages and administers one or more applications.

Desktop: A start page which is customized for every user. Can be further personalized by the user.

Used to access applications, change settings, and perform other related tasks.

Application: An existing (third party) web site which uses NaviBase as single sign-on provider. Can

also use further services provided by NaviBase if available. No matter if the user goes directly to this

application or through the NaviBase user interface, the user will be automatically logged in.

4.2 Functional Requirements

Through interviews with project stakeholders, various functional requirements were gathered. These

requirements are organized into use cases, where each use case describes a typical scenario for what

a user might want to achieve. These use cases and requirements are summarized below.

It is worth to point out that these represent the original use cases captured during interviews, and

not necessarily the exact functionality of the implemented system.

4.2.1 Generic Use Cases

Use cases under this category can be performed by any user, no matter their access level.

1) Log in through an application

By logging in to any of the applications connected to NaviBase, the user also becomes logged into

the NaviBase itself, and thus indirectly all other connected applications.

2) Log in through NaviBase

A user can also log in to NaviBase through the NaviBase website (the desktop).

In this use case and the previous, special consideration was given to what means of

authentication NaviBase would rely on. Except from the standard username/password model,

various forms of two-factor authentication were examined. However, it was concluded that for

most applications, basic username/password authentication was secure enough. Some form of

two-factor authentication could be added later when applications requiring a higher degree of

security were added to the system.

3) Register new user

28

A user which is not yet a member of the site can register for membership through an easy

process. The user needs to provide a valid email address, a password, and some basic user

information to complete this process.

4) Go to user’s desktop

A user can view her desktop, which lists connected applications where the user is currently a

member.

5) Add/remove existing applications

At their desktop, the user can add and remove applications, that is, choose to become or stop

being a member at the applications connected to NaviBase.

6) Change password

Through the desktop, the user can change the password which she uses to get access to

NaviBase. In order to do this, the user needs to provide her old password.

7) Reset forgotten password

If the user cannot remember her password, she can set a new by re-verifying her email address,

that is by responding to an email which is sent to the email address she used to sign up.

8) Go directly to application

After having established a session with NaviBase, a user can go directly to an application through

any means (e.g. by typing the URL in their web browser) and become authenticated without

having to enter any information.

9) Go to application through desktop

A user can from her desktop choose to visit any site where she is, or wants to become, member

by clicking a simple link.

10) View user’s basic information

A user can from her desktop choose to view the basic information entered upon registration.

11) Modify user’s basic information

A user can from her desktop choose to update or otherwise modify the basic information she

filled out when registering.

12) Grant/revoke access to user’s contact information for application

A user can from her desktop grant or revoke different applications the right to read her basic

information. By accessing this information, an application can in most cases simplify their

registration process by requiring the user to enter less information.

13) Log out from NaviBase through the desktop

29

The user can from her desktop choose to end her NaviBase session. This also ends all sessions the

user currently have active on various applications.

4.2.2 Application Related Use Cases

These use cases can be performed by administrators or application owners, but not regular

members. An administrator does automatically have owner privileges over all applications, whereas

an application owner only over certain applications, as allotted by administrators. For all other

applications, they are just regular members.

14) List applications

From her desktop, an administrator can view a list of all applications connected to the system.

15) List owned applications

From her desktop, an application owner can view a list of application which she owns, i.e. have

administrative rights over. For users who are not application owners, this alternative does not

exist at all.

16) View application details

From above mentioned lists, an application owner or administrator can view a page with detailed

information about an application (name, url, owner, statistics, and more) as well as various

administrative tools for the application.

17) Edit application

From the page in case 16), an application owner or administrator can edit the applications details

(name, URL …). If the user is administrator, she can also change application owner.

18) Add new application

From her desktop, an administrator can choose to add a new application to the system.

19) Remove application

From her desktop, an administrator can choose to remove an existing application. This also

effectively terminates membership for all users, as NaviBase will no longer accept authentication

requests from this application.

20) List users registered through application

An administrator can through her desktop view a list of all users registered through a certain

application.

4.2.3 User Related Use Cases

Use cases related to handling of users.

21) List users

From her desktop, an administrator can view a list of all users in the system.

30

22) Search for user

From her desktop, an administrator can search for users in the system, based on multiple criteria

such as name, application membership, and other information available in the system.

23) View details about user

From the lists mentioned above, the user can view a page with information about a user

including basic information, and any application memberships or ownerships. Also, a number of

administrative tools are available.

24) Add new user

From her desktop, an administrator can add new users to the system.

25) Force password change

From the user detail page mentioned in case 23), an administrator can mark a user as having to

change password after the next successful login.

26) Delete user

From her desktop, an administrator is able to delete a user from the system, including any

information about that user and any memberships or ownerships.

4.2.4 System Use Cases

In these use cases, the main actor isn’t a human user, but NaviBase or a connected application.

1) Request authentication of user

An application can request that NaviBase authenticates a given user. If NaviBase already has

established a session with that user, a response can be issued directly; otherwise NaviBase will

first authenticate the user.

2) Request basi c information about user

An application can request basic information (name, address, and more) about a given user in

order to simplify registration or other processes where such information is needed. The user will

have to explicitly accept every such request.

3) Merge two users

If for some reason, a single human being ends up having multiple NaviBase accounts, these can

be merged into one.

4) Log out inactive user

After a certain amount of time during which a user with an established session has not

performed any action in NaviBase, she will be automatically logged out. This log out includes

logging out in any application to which she is recently authenticated.

5) Log system errors

31

If an unhandled error or exception occurs in the system, it should be logged to a special error log

file.

4.3 Non-Functional Requirements

Except for the functional requirements of the system, there is another important set of

requirements. These requirements are criteria that can be used to judge the operation of a system,

rather than specific behaviors. Below is a summary of the non-functional requirements.

4.3.1 User experience

User experience requirements are criteria established regarding the user experience of the system. A

few examples are provided below, but in general, these are left out of the thesis as the thesis rather

focuses on the system from a technology and security viewpoint.

 The graphical design of the system shall be consistent and comprehensible and intuitive for

experienced and inexperienced users alike.

 Navigation shall be effective and few clicks needed to reach frequently used functionality.

 The user interface shall adhere to Web Content Accessibility Guidelines, Priority 1, in order to

be accessible for people with various disabilities.

 The system shall support user agents compatible with Internet Explorer 5.5 or later, and

Mozilla Firefox 1.0 or later.

 The system shall be designed so that the risk of user errors becomes as low as possible while

keeping usability high.

4.3.2 Technical Platform

Except for the user experience requirements, there are a number of requirements about the

platform on which the system is built. These are used to make decisions in the Architecture section.

User and System Interface

 The graphical user interface shall be based on XHTML 1.0 and CSS 2.1 or newer.

 All communication between NaviBase and client applications shall be based on open and well

tried standards.

 All communication between NaviBase and client applications shall use SSL 3.0 / TSL 1.0 or a

more secure channel.

Documentation

 All application programming interfaces (APIs) shall be fully documented.

 A tutorial-style piece of documentation shall be produced which describes how an

application developer can adapt their software to use NaviBase for authentication.

 An example application which demonstrates the above shall also be created.

 All source code elements shall be documented.

 The database schema shall be documented.

Quality Assurance

1. Automatic tests with 100% statement coverage shall exist, that is, that every line of code is

exercised by at least one automatic test.

32

4.4 Security Threats

By creating attack trees, additional requirements can be found. These are naturally more security

related, focusing on what a potential attacker might want to achieve and then the different ways of

achieving that. Three main targets of the system are impersonation of a user identity, (ab)using a

client application or service, and getting hold of sensitive information about the system. These are

discussed in order below.

For each target, the various ways of achieving that goal are described. For each goal more details are

provided, as well as some notes on how dangerous that risk actually is and what can be done to

remedy the threat.

4.4.1 Impersonation and Identity Theft

An attacker may want to gain control over a user’s (online) identity. This can be done for a number of

reasons, such as using another's identity to obtain goods and services, or posing as another when

apprehended for a crime. Here, three major ways are described.

1) Getting hold of the user’s credentials, such as username and password.

a) By guessing credentials through the normal user interface.

So time-consuming that it is virtually impossible.

b) By tricking the user to provide it, through a so called phishing attack.

A serious risk, which is impossible to remedy through a technical solution only. Educating the

user and ensuring that it is easy to handle credentials in the system safely.

c) By getting access to the NaviBase database.

Hopefully hard to get access. Even if the database is compromised, passwords are hashed

together with a salt using a strong cryptographical hash. This makes this type of attack more

time consuming, but not impossible.

2) Using an already established session between the user and the server.

a) Get access to a logged-in session while the user leaves (temporarily) is away from the

computer.

Except from encouraging the user to log out after using the system, the most common way of

handling this problem is using a session timeout so that the session ends automatically after

a certain time of inactivity. However, the problem still exists if the attacker can access the

computer within that window. Another (or complementary) solution is to require password

re-entry even with an active session in order to perform certain, more sensitive, operations.

b) High-jack an logged-in session through the network.

Again, there exists not one single solution to this problem, but a range of partial solutions

may be used. For example, the server might store the IP address of the computer which

performed the authentication in order to ensure that no other computer replaces the first

one.

33

3) Trick the NaviBase SSO service into believing that a valid request was performed.

a) By using a security vulnerability in the open protocols on which the system is based.

We minimize this risk by relying on well known, published and reviewed, security algorithms

and protocols.

b) By using a security vulnerability in the implementation of the system.

Try to ensure, through extensive testing, that the implementation matches the specification.

4.4.2 (Ab)using a client application or service

An attacker might want to access an application or service which relies on NaviBase for

authentication. The reason for doing to do so might be to use a service for free or use a services to

which the attacker otherwise could not gain access. On the other hand, the goal can also be to

perform a denial of service (DOS) attack to hinder other users from using the service. Here, two

major ways of achieving this goal are described.

1) Trick the application by impersonating NaviBase as SSO service.

a) Performing a man-in-the-middle attack somewhere between the real SSO service and the

application.

Given that the communication protocols used are secure and used properly, this should be

impossible because messages should be encrypted and/or digitally signed.

b) Cracking NaviBase in order to be able to modify the messages sent by the server.

Again, try to en sure a bug free implementation through extensive testing.

c) Getting hold of NaviBase’s private key, with which the attacker can generate messages which

the application cannot tell apart from valid messages.

Apart from ensuring a correct implementation, we also need to ensure a secure computing

environment for the server as private encryption keys will exist in computer memory at most

times. Also, any backup locations (e.g. disc or tape based backups, possibly offsite) must be

secure in order to ensure that private keys are not compromised.

2) Crack the application to allow the unauthorized access.

a) Gain access to the client application through any of a variety of different means.

This is probably (hopefully!) a more likely scenario. While we certainly do not hope that any

application will or can be cracked, individual application developers most likely can or will not

perform as extensive testing and auditing for security related problems as would be needed

for a SSO solution such as NaviBase. In the end, these problems are out of scope for this work.

4.4.3 Getting hold of sensitive information

Finally, an attacker might want to, not gain control over any entity, but simply to get some

confidential or sensitive information about some part of the system, its users or connected

applications. This information could either be used directly by the attacker, perhaps to create a

competing service, or be sold by the attacker to a third party. Two major ways to reach this goal are

described.

34

1) Get the information directly from the server which stores it.

a) Cracking NaviBase in order to be able to read (or modify) the information.

As been mentioned previously, this type of problem is remedied by trying to en sure a bug

free implementation and a secure computing environment through extensive testing.

2) Collect information while it is in transit over the internet.

a) Eavesdrop and read the information as it passes through some node on the internet.

This problem is mostly avoided by encrypting sensitive data. Some statistical data is more or

less impossible from not leaking, since it is revealed by just communicating. For example, how

often applications contact the server and vice versa.

4.5 Architecture

Out of the requirements mentioned above, an architecture was constructed. For the most parts, it is

a rather conventional architecture and it follows most of the “best practices” available in the field.

Different aspects of the design are described below.

4.5.1 Client/Server

The most basic architectural paradigm in the system is that of the client/server model. This is quite

naturally inherited from the way Internet is constructed. In fact, this pattern occurs multiple times

within the system.

First, the system acts as a web server for its users, as is typical for services on the web. Clients here

are the users’ user agents (typically web browsers). Secondly, the single sign-on system is a server to

various client applications requesting authentication. These clients could be virtually anything from a

web site or rich client applications to web services and scripts.

In both of these cases, there were not really any other reasonable alternatives. Given that it is a SSO

system for the web and the use of SAML, the major blocks of the architecture are basically given.

4.5.2 Critera for Languages and Frameworks

The next major question is what programming language to develop the system in. Three major

factors were included in the evaluation; maturity of the language and libraries, available frameworks,

and previous experience (i.e. how well the developer knows it).

The maturity and stability of the chosen language is always important. In some cases, one can be a

make a bit more risky choice and go with a not yet, or not fully, proven solution. In this case,

however, security is of the highest importance. Thus, a stable language with proven track record and

well-tested security libraries was highly important.

Secondly, given a stable language, it is very helpful to be able to work with powerful frameworks to

speed up development. After all, it is more interesting to develop the project-specific parts than the

boiler plate code to accept and route HTTP requests.

In case multiple options fulfilled these two priorities, a selection was made based the developer’s

previous experience with and knowledge about the systems.

35

The Java Technology Stack

Based on the above selection process, the Java technology was chosen. Other alternatives such as

.NET, Python or Ruby fell either on the third criteria, or a combination of the first two. Java, on the

other hand, has a reputation for being a stable platform for business-critical applications and has

been used for many enterprise scale web projects.

Except from choosing the latest version of the Java language and virtual machine, which was version

5 at the time, a number of other frameworks to speed up development were also chosen.

Java web development is based on the Servlet specification. A servlet represents a service which

handles requests and provides responses. To run a Servlet, an application server is needed. There are

a number of web servers available. For this work, Apache Tomcat, which is a reference

implementation of the Servlet specification available under an open source license, was chosen.

(Apache Software Foundation 1999)

On top of this application server, which can run an arbitrary Servlet-based application, a web

framework is often used. While the Servlet specification already includes a basic object model for

handling requests and responses, it is further enhanced by the web framework. Here, the choice of

of the Apache Struts framework was made. It is a competent yet rather lightweight and unobtrusive

framework. The major benefit from using Struts is that it handles the internal information flow,

which includes request routing, separating model, views and controllers, and more. For more details

on this separation, see the description of the Model View Controller pattern in the Theory section.

(Apache Software Foundation 2000)

For persisting data, the highly competent relational database management system MySQL, available

under an open source license, was chosen. On top of this, open source persistence framework

Hibernate is used. This speeds up development by freeing the developer from communicating

directly with the database through SQL. Instead the domain model can be worked with directly.

4.5.3 Criteria For Single Sign-On Protocol

There are a number of goals for the single sign-on system. One of the major objectives is achieving

high security. To do this, it is important to stick to tried and true security protocols and solutions,

because creating good security algorithms is extremely hard. This suggests choosing an existing single

sign-on protocol rather than developing a proprietary one. (Viega and McGraw 2002)

A secondary but important consideration is the ability to be compatible with as many potential

clients as possible. This translates into favoring existing de jure or de facto standards, as it is more

likely that clients already use them or that high quality libraries exist.

The Security Markup Assertion Language Protocol

A quick survey of available such implementations reveals two primary options and a few other

solutions that didn’t quite fit. The two primary choices are the Security Assertion Markup Language

and the OpenID protocol.

As noted earlier, SAML is a unification of a set of different protocols. Thus, it is has become

somewhat of a de facto standard. It also relies on well known standards such as XML and uses RSA

encryption and the SHA hashing algorithm. These were the two major reasons behind finally

choosing SAML for this thesis.

36

The other major contender, OpenID is created with a somewhat different goal in mind. It is still a

single sign-on protocol, but the guiding idea behind it is to decentralize the identity management.

While this can be a strength for the protocol in general, it doesn’t encourage a single vendor to base

their technology on it unless it is already a established standard. Furthermore, it is somewhat lacking

in the security department, where a number of security issues have been reported. (Brands 2007)

Given the choice of SAML, the next question becomes that of finding an implementation of the

protocol which can be used. Here, we seem to be out of luck. At the time of writing, the only non-

proprietary implementation of the SAML protocol available is OpenSAML. (Internet2 2005) It does

however only support the version 1 branch of SAML. Work is under way to create a SAML 2 branch,

but no indications regarding when or even if it might be finished are available.

Because of the lack of available implementations of the SAML 2.0 protocol, the decision was made to

create an own implementation of the SAML protocol. Compared to reusing an existing

implementation this costs a lot of time and also has a higher risk (as noted about writing your own

security implementations, above). However, the newer version of SAML includes many useful

improvements, especially pseudonyms and session management. Regarding the higher risk of writing

an implementation from scratch, much of this risk can be tackled by using well-tested

implementations from the Java libraries of actual security algorithms such as RSA and SHA.

37

5 Result

This section describes the Single Sign-On system called NaviBase, which is the result of the execution

phase of this thesis. First, we get an overview of the system which will provide a broad view of the

system, and then each of the different components that make up the system are described in detail.

5.1 Overview

There are four major components and two supporting utilities in the system. The two primary

components, the components which are always in use, are listed below.

 NaviBase, the server component which holds all information and processes requests; and

 SamlLib, responsible for building, parsing, validating, and processing SAML messages.

Secondary components, components which may or may not be used depending on the circumstances

and configuration, include the following.

 ClientLib, creates requests and interprets responses according to the rules of SAML on behalf

of its client; and

 ClientWebService, which acts as a wrapper around ClientLib for all non-Java clients.

The supporting utilities, typically used by NaviBase system administrators, are as follows.

 KeystoreGenerator, used to generate private/public key pair containers; and

 Builder, used to build, package, and deploy the above components.

These components and utilities are first described briefly below in terms of responsibilities and

external communication. They are then described in further detail in separate sections further down,

including their design and detailed descriptions of their functionality.

5.1.1 Client applications

The server component NaviBase is responsible for handling client requests, holding state, providing

users and administrators with configuration user interfaces. It communicates with any number of

clients.

A client is typically written by a third party vendor to perform some work or provide some service.

Exactly what it does is irrelevant in this context, but they all have in common that they wish to

benefit from the Single Sign-On service provided by NaviBase.

On this level, communication between server and client is performed through the SAML protocol,

with HTTP as the carrying transport protocol, as specified by the SAML Web Browser SSO Profile.

More details on this protocol can be found in the Theory section.

Three Types of Clients

The clients using the Single Sign-On platform can be divided into three groups, depending on how

many of the optional components they make use of. These are displayed in Figure 3: Three types of

clients, where the clients labeled A, B, and C, represents the three types.

38

 Type A: As all clients communicate with the NaviBase server through the SAML protocol, a

client is required to master that protocol. Clients already proficient in this protocol are called

SAML-capable clients. They typically already use the SAML protocol to exchange information

about users and authentication in some capacity. Such applications have none or very little

need of modification to be able to use NaviBase’s Single Sign-On service.

 Type B: Most applications interested in starting to use a Single Sign-On solution do not have

support for the SAML protocol as they previously have had no need for it. These applications

can delegate the SAML processing related tasks to the helper library ClientLib. If the client is

written in Java, it can call ClientLib directly. Such clients are called Java clients.

 Type C: Many clients are not written in Java, but in other languages which typically have no

way of calling methods in a Java library directly. For such clients there is the

ClientWebService. It acts as a wrapper around ClientLib and exposes its methods as Web

Service methods. There is Web Service support available for every major programming

language. Clients using this method are called non-Java clients.

5.1.2 Server components

These six components and utilities are described briefly in terms of responsibilities and external

communication.

NaviBase

The most obvious responsibility for NaviBase is handling client requests. This includes receiving and

processing them, and finally issuing a response if appropriate. All communication between NaviBase

and its clients is performed through the sending of a SAML message. Typically this means one of

Navi

Base

Saml

Lib

Client

Lib

Client

(Java)
Saml

Lib

ClientW

eb

Service

Client

(non-

Java)

Client

Lib

Saml

Lib

SAML

SAML

SOAP

Client

(SAML

capable)

SAML

A

B

C

FIGURE 3: THREE TYPES OF CLIENTS

39

AuthnRequest, ManageNameIDRequest or Response. All messages are digitally signed with the

issuer’s private key. Any communication is also sent over Secure HTTP (HTTPS).

Secondly, the NaviBase server component is responsible for holding the state of the system. It is, in

essence, what enables the “single” part of the Single Sign-On system. It knows about all clients and

the users which use one or more of these applications. Except from credentials needed for

authentication, it also stores extra information about the user, such as contact information and other

types of meta information.

Finally, there is a user interface aspect to NaviBase. It needs to provide both normal users as well as

administrators of the system with a user interface which lets them use and configure various aspects

of the system.

SamlLib

The SamlLib contains the parts of both server and client components which directly deals with the

SAML protocol messages. This includes, constructing, modifying, and serializing/deserializing them

to/from XML.

The library also takes care of managing digital signatures attached to these messages. SamlLib

handles both signing messages as well as validating signatures attached to messages.

ClientLib

To ease client development, client developers have access to a Java-based helper library called
ClientLib which can process messages according to all the rules of the SAML protocol on behalf of the
client.

ClientWebService

If the client cannot call a Java-based library, it can use the ClientWebService to act as a Web Service
wrapper around the ClientLib.

5.2 NaviBase

NaviBase is the main component in the architecture. It is also the server component. It holds in its

database with information about all applications and users, and processes authentication requests

sent by applications.

This section first describes the general design of the NaviBase component. It then delves into all of

the major parts of the system and their functionality. Finally the minor components of the system are

briefly described. All of these sub-sections make references to actual classes and files in the code.

5.2.1 Design: Model View Controller

The major design pattern underlying NaviBase is the Model View Controller pattern, described in the

Theory section.

The Model

The code of the model lives inside the com.navibase.model package. It doesn’t at all concern
itself with the technicalities of persistence or storage of its information; it leaves all of that to the
controller. See Persistence under Supporting Functionality below.

40

User Management

Perhaps the most basic functionality contained in the model is user management. The user

functionality is needed in almost all aspects of the system and king of the user management classes is

the User class. It is the starting point to find every piece of information there is about a user. It

contains the unique email address, password, and contact information (such as first and last name)

of that user. It also has methods to retrieve the “application provided name” for that user for any

given application, but more about that below.

Two of the most important data members of the User class are email and password, represented by

classes Email and Password, respectively. Together they constitute the credentials needed to

authenticate a user in the system. Both classes contain functionality to check if a string is a valid

email address/password.

Because of the special importance of the password, a user’s actual password is never stored in plain

text; not in the database or in the object model. Instead, the Password class stores a salted hash of

the password at all times. Thus, to validate a password, one sends the candidate password into the

Password class, which adds the salt, hashes it, and compares it with the actual hash.

Applications

Another important aspect of the model is applications. They represent the client applications using

NaviBase to provide authentication and other SAML-based services for them. A client application is

represented by the Application class. It stores an application’s unique identifier (which is a URL), a

URL at which it expects SAML responses to be sent, the application’s public key, and a set of so called

application provided names.

To simplify adoption of the NaviBase authentication services an application is able to tell NaviBase

under what name it knows a certain user. This name is called an “application provided name” and is

used by NaviBase in all future communication with that application (and that application only). Such

a name is represented by the ApplicationProvidedName class.

Registration

The final major part of functionality in the model is related to registration of new users. Before a new

person wanting to use NaviBase is represented by a User object she must verify her email address.

During this process she is represented by a Registration object. This process is described in more

detail in the Registration section under Main Functionality below.

The View

The structure of the view layer in NaviBase is inherited from the Struts web framework on which

NaviBase is built. As it is a web framework it relies on the concept of pages, which should be familiar

to anyone who’s used the Internet. More specifically, the view consists of multiple Java Server Pages

(abbreviated JSP) pages.

Most of the views are part of the application’s graphical user interface, but some views are in XML

format which are intended for other computers to consume. This applies particularly to the SAML

library, discussed in greater detail elsewhere. The view code in NaviBase exists in the WebContent

folder but is not covered in detail in this report.

41

The Controller

Controller code is placed in the com.navibase.controller package with sub packages for

different types of functionality.

Actions and forwards

All actions are represented by Struts class Action. NaviBase then extends this base class with an

ActionBase class which is the base for all actions in NaviBase. It has a number of helper methods

which returns the current request’s user, the server’s keystore (containing its private and public

keys), a data access object (see section Persistence below), and a few other things. It is further

specialized by class ValidatingAction which encapsulates some forward processing logic.

User input to an action is typically processed through a so called action form. It is a data structure

which corresponds to the forms on web pages. The action forms become natural places for any type

of validation, parsing, or other type of pre-processing logic. The ActionFormBase class is the base

class for all action form classes and contains helper methods used by all or most action forms.

The wiring

While controller classes contain much functionality, the flow of the system is defined in a XML-based

configuration file called struts-config.xml. While it also contains other types of configuration,

the main part of the file consists of a set of action mappings. An action mapping links an action class

to a specific URL. It also specifies what possible forwards the action can make use of, what action

form is used (if any), and more.

The example given in Figure 4 describes a mapping for the AuthnRequestPreLoginAction which

is used to verify that a authentication request from a client application is valid. It is accessible

through the URL /SSO/Authenticate and makes use of the SamlRequestForm action form. It has

two forwards which it can use depending on the input given. The first one is called failure leads to

another action available at URL /SSO/SendSamlResponse and is used if the request is invalid and

it needs to send a failure response message. The second is called login which points at

<form-bean

 name="samlRequestForm"

 type="com.navibase.controller.saml.SamlRequestForm" />

<action

 path="/SSO/Authenticate"

 type="com.navibase.controller.saml.AuthnRequestPreLoginAction"

 name="samlRequestForm">

 <forward

 name="failure"

 path="/SSO/SendSamlResponse.do" />

 <forward

 name="login"

 redirect="true"

 path="/SSO/AuthenticateUser.do" />

</action>

FIGURE 4: AN EXAMPLE OF AN ACTION MAPPING WITH BELONGING ACTION FORM DEFINITION.

42

/SSO/AuthenticateUser and is used when the request is valid to continue with the next step of

the process, actually authenticating the user.

5.2.2 Main Functionality

This section goes through all parts of NaviBase describes what they are, their purpose, and how they

work. Some controller functionality has been skipped, as it technical level or importance to this

document is low. Providing a welcome page to the user is one such example.

Login and logout

This section describes the controllers handling authentication functionality such logging a user in or

out. Relevant code exists in com.navibase.controller.saml and

com.navibase.model.saml.

Any time a user wants to access a protected resource the system needs to authenticate the user and

determine if the user is authorized to access the resource. The resource could be a user’s personal

start page, some administrative functionality, or a SAML request consumer.

Authentication is currently based on username and password. These credentials are looked up in a

user database and the user’s identity is determined. A HTTP session is established for the user by a

unique cookie sent to the user. In this session the identity is stored for future authentication. If the

user cannot be found in the user database, he or she is returned to the login prompt with an

appropriate error message. The user also has the option to register as a new user. See the

Registration section below for more details on this.

If the user’s identity was established the next step is to determine if the user is authorized to access

the resource in question. All authorization in NaviBase is role based. That means that every user

belongs to one or more roles, and each resource requires a specific role to be accessed. The roles

available in the system are currently user and register used for normal users and users who have

started but not yet finished registration, respectively.

On authorization, the requested resource is displayed to the user. If authorization failed the user is

displayed HTTP status code 403 Forbidden. Specific actions or views also have the option to

customize material based on role membership. For example, after a normal login a normal user is

redirected to his or her personal start page while a user who haven’t finished registration is sent back

to the registration step.

When a logged in user does not use the system any more, the session for that user is destroyed. This

means that the next time the user wants to access the system he or she needs to re-authenticate in

order to establish a new session. Logging out a user can be triggered either by an explicit request

from the user or through a timeout. By default, the user is logged out after two hours of inactivity.

For more details on how user authentication and authorization is performed on a technical level see

Security under the Supporting Functionality below.

Registration

One of the first part of the system which a user gets in contact with is the registration system. The

registration process is divided into three parts, initial registration, email verification, and contact info

entry. The code resides in the com.navibase.controller.registration package.

43

First, the user is presented with a form, begin.jsp, where she can enter her email address and a

password of her choice. When the form is submitted, the information is passed through

RegisterUserForm which either rejects the information (based on e.g. an invalid email address)

and sends her back to the form, or forwards the user to the next step.

That next step is the SendRegistrationEmail controller which sends out an email to the address

he user specified. This leads us to part two of the registration process, namely email verification. For

multiple reasons, we want to verify that the email address that the user specifies is indeed valid.

While it does not guarantee that the user is indeed a human being, it at least makes it a bit harder to

create fake accounts. Furthermore, by assuming that only one person has access to that email

address, we can use this email in the future to verify that the same user is using the account. For

example, when the user forgets her password, she can prove her identity by once again verifying her

email address. Finally, a valid email address gives us way to reach the user with information.

In the email sent to the user, there is a so called ticket. It is a randomly chosen sequence of letters

and numbers which the user must enter. This ticket is generated when the email is sent and

associated with that account. The user enters this ticket at a page, ticket.jsp. The user also enters

her password, which she provided in step one. These two data items are sent to the ticket verifier,

VerifyTicketAction, where they are both matched against previously stored values. If they

match the email address is considered validated and the user can continue to the last step of the

registration process.

Before we let the user in as a member, we require the user to provide some basic information about

herself. The required information may vary depending on what the administrator wants, but would

typically include first name, surname, street address, city, zip code, and phone number. This

information can later be provided to applications, as described in the functional requirements in the

Analysis chapter. The files and classes involved here is a fairly typical view-form-controller sequence

including contact-info.jsp, ContactInfoForm, and FinishRegistrationAction.

SAML

One of the most critical pieces of the NaviBase server, both in terms of functionality and security, is

the SAML controllers. These handle authentication and communicating with client applications. For

more details on the requests and responses sent by these actions, please refer to the Theory section.

Code can be found in the com.navibase.controller.saml and com.navibase.model.saml

packages, as well as in the SamlLib described elsewhere.

Base functionality

As the foundation are a set of classes which handle SAML request and responses. The

SamlRequestActionBase is a super class for all actions dealing with SAML requests. It decodes the

incoming encoded request, parses it using the SamlLib library described below, validates it

according to the rules of the SAML protocol, and finally creates a SamlRequest object representing

it. If anything during this process goes wrong, such as if it is unable to decode the message or validate

its digital signature, the incident is logged, but message is dropped with no response to the

requester. This is done to prevent an attacker to perform a denial of service attack through sending

bogus requests which then force the server to generate a proper response, which is a non-trivial task

including digital signatures.

44

After the message has been parsed, the SamlRequestDispatcherAction is the first action to see

it. The dispatcher figures out the message’s type, such as authentication or name ID management,

and forwards control to an appropriate action.

Authentication Requests

An incoming authentication request from an application is first handled by the

AuthnRequestPreLoginAction class. It verifies that the authentication request is valid, using

rules specific to authentication. If everything is OK, it continues to verify whether the user is already

authenticated. If not, the user is sent to a login form to provide valid credentials needed for

authentication. When the user is authenticated, A AuthnRequestPostLoginAction continues to

generate a response to the requesting application. This response provides the application with

information about who the user is, when and how she was authenticated and more.

Applications can request authentication in a number of slightly different ways by providing a set of

flags. First, through the allowCreate flag an application can indicate that NaviBase is allowed not

only to show a login prompt, but also to let users go through a registration process if needed, before

returning control to the application. The isPassive flag tells NaviBase to not display any kind of

graphical user interface to the user. If the user is currently not authenticated, this means that

NaviBase will not be able to authenticate the user and will return a negative response. Finally,

applications can host the login form on their own domains if they want to. In that case, they can send

the username and password provided by the user, in encrypted form, to NaviBase which performs

the actual authentication.

NameID management

An incoming request might also be about management of a so called NameID which is what SAML

uses to identify a certain user. These requests are handled by the ManageNameIDAction.

 To protect the privacy of users, applications only know the user under a pseudo-random name which

does not reveal anything about the user’s actual name or location. This name is also unique for every

application. That means that two applications cannot combine their databases to figure anything out

about the user as they know the user under different names. The user can choose to allow the

application to receive more information, however.

To simplify the life of application developers, applications can also provide a name for each user

which NaviBase then will use in future communication with that application. Again, these names are

per application.

Also, to enable an application to host not only login form, but change password forms as well, the

application can provide (in encrypted form of course) a new password for NaviBase to use. This

requires a bit more trust between NaviBase and the application developer however, as the password

is not unique to that application but used for all applications. (It is a Single Sign-On system after all.)

5.2.3 Supporting Functionality

Apart from the functionality described above, there is quite some code which is more general

purpose, or of supporting character. This supporting functionality is made available to the other

functionality through what is called filters. A filter is a piece of code through which every request and

response must pass. Filters therefore have the ability to augment the request or response with extra

45

information or capabilities. This ability is used to provide actions with database access, access to

encryption keys and more. The functionality described below is implemented as filters.

Persistence

Persistence of the model in NaviBase relies upon the Hibernate framework, described in the Theory

section. In practice, it is done by annotating the model classes to tell Hibernate about relations

between different entities. Most classes can be mapped automatically by Hibernate in a rather

straightforward fashion. Typically, classes are represented by tables, fields of primitive data types by

columns, and fields of object types as foreign keys into other tables. Extra annotations may be

needed when creating more advanced associations between objects, however.

To simplify the database access even more and to encapsulate all database related code into a single

layer, NaviBase uses a DataAccessObject object as façade. This also means that all SQL code

generation is encapsulated in one place which allows us to ensure in one single place that all data

that goes into the database has been properly escaped. A simple implementation of the

DataAccessObject pattern was chosen over using the EntityManager pattern as it was judged overly

complex.

Most database tables are very straight forward. The only thing worth mentioning is that passwords of

course are salted and hashed before storage.

Security

There are a number of helper classes related to security, but the parts which are worth mentioning is

the key stores where private keys used for encryption are kept. NaviBase as well as every application

has their own pair of private and public keys. In all cases, they are stored in a so called key store, an

encrypted file in which the keys are kept safe from prying eyes. The format used for this keystore is

defined by Sun in their implementation of Java. The key store is secured by a password, which either

is entered when starting the application server, or stored in a file on disc, depending on the

computing environment. In the latter case, it is obviously of great importance to protect that file

from being read by an attacker.

Also, a file called securityfiler-config.xml is used to declare which actions require what

security roles. This file decides for example, that login is required to reach a user’s desktop, or that

not all users may access administrative tools, but only those who hold an administrator role.

Finally, rules regarding passwords are worth mentioning. As discussed in the Theory section,

passwords become harder to break the longer they are and the more kinds of characters they

contain. But they also become harder to remember. Therefore, it is not obvious where to draw the

line. A password is currently required to be at least six characters or longer with no demands

regarding what characters to use. Probably, administrators want to set a bit harder rules, such as at

least eight characters, and at least one letter, one number and one other character.

5.3 SamlLib

As discussed in the Analysis chapter, an implementation of the SAML 2.0 specification should be

created for the project due to lack of existing stable implementations. However, not all parts of SAML

2.0 were needed for the project, so only the parts which were actually needed should be

46

implemented. It could be described as “a slimmed-down ‘mission-specific’ partial SAML 2.0

implementation.”

This implementation is named SamlLib, short for SAML Library. It consists of two major parts, one for

creating messages and turning them into xml, and one part which takes care of the reverse. Both

parts are described below. Finally, security threats identified in the Analysis section are discussed.

5.3.1 SAML Object Model

The library contains an object model of (parts of) the SAML 2.0 specification. Ease of use was a higher

priority when designing that object model than exact adherence to the specification in terms of

names and concepts. The code resides in the com.navibase.saml package.

The foundation of this object model is the SamlObject class. It represents a generic SAML object

and takes care of the basics of XML generation such as namespaces and other more technical details.

It is extended by objects SignableSamlObject which represents objects which are to be digitally

signed, such as messages. It, quite naturally, takes care of all work relating to digital signatures.

Finally, there are a number of objects representing concepts in the specification. For example,

AuthnRequest represents an authentication request. Each object which is to be converted to XML is

responsible for doing so itself, with the help from the basics which are available in SamlObject. The

package also contains classes which represent profiles and bindings in the SAML specification. See

the Theory section for details.

5.3.2 SAML Parser

While the SAML object model itself is responsible for converting itself to XML (know as

unmarshalling), the reverse process is a bit more difficult. A lot more validation and conditional logic

is required to successfully convert XML into objects in the above object model. Therefore, that

responsibility was extracted into its own package, com.navibase.saml.parser.

The façade of this package is the SamlParser class which parses an incoming request in four steps.

At any step of this process, if a part of a message is found which the parser does not fully understand

and knows what to handle, the whole parsing is stopped. This is done in order to ensure that we do

not provide a response to a message in error.

1) Parse the XML string into an XML document object model. This gives us much better ability to

work with the XML document. It also performs basic XML well-formedness tests.

2) Not only does the XML string need to be valid, it has to validate against the SAML 2.0 schema.

This ensures that we know what to do with the information given to us, that it is a proper SAML

request.

3) Given valid XML, we want to create SAML objects out of the XML – a process know as

marshalling. Here, a number of rules are used to ensure a well structured object model.

4) If we could turn the request into an object model, we finish the process by validating all digital

signatures in the message. These signatures ensure that we know that the message was sent by

the application which claims to be the sender.

47

5.3.3 Handling identified security threats

In the Analysis section, a number of security threats were identified through the use of attack trees.

A number of these affected the implementation of this SAML library directly. These are discussed

below.

First, an attacker might try to impersonate a user by using an already established session between

that user and the server. For example, this type of attack could be performed if the user leaves her

computer while logged in. This problem is primarily dealt with through a session timeout. After a

given period of time, currently set to two hours, any session which has not been accessed is

invalidated. This period is easily changed if necessary. This is a typical question where security and

usability are at conflict with each other. The shorter timeout you use, the better, from a security

perspective. But for a user, it would be more convenient if the session never timed out. A second

solution to this problem would be to require re-authentication for certain sensitive actions, such as

changing password. This is planned for, but not yet implemented.

Another way to impersonate a user would be to hijack an existing session through the network. Here,

there’s not one single solution to this problem, but a range of partial solutions. The fundamental

protection here is based on a randomly generated key being hard for an attacker to guess. Other

solutions which are planned but not yet implemented are IP address checking, requiring all requests

to originate from the same IP as from which the authentication was performed. Also, the session key

could be changed to a new randomly generated value right after authentication, to stop an attacker

which somehow might have set the session key for a certain user.

Finally, an attacker might try to perform a man-in-the-middle attack somewhere between the SSO

service and the application. This is stopped by using well thought-out protocols and by encrypting

and/or digitally signing messages going back and forth.

5.4 ClientLib

In the beginning of this chapter, we discussed different types of clients. For any client not naturally

proficient in SAML, a Java based helper library called ClientLib is provided. It provides a simple

façade for the whole SamlLib in order to make creating SAML requests and parse SAML response as

simple as possible. For instance, it deals with all encryption key handling on behalf of its client. The

code for this library can be found in com.navibase.client.

It also enforces a few rules which the client application is required to do according to the SAML 2.0

specification. This includes things such as ensuring that the same response isn’t parsed twice if

received a second time and to ensure that the response was really intended for us.

5.5 ClientWebService

Again, in reference to the different client types, there are some client applications which neither

speak SAML nor are written in Java. Those applications cannot directly use the ClientLib.

However, they can use the client library through a XML web service based wrapper. This wrapper is

called ClientWebService and is available in the com.navibase.client package. It can be called

from virtually every programming language there is, as there almost always is a web service

implementation available.

48

This ClientWebService is in fact not simply a library called by the client, but an application in it’s

own right. It contains a small web server which listens to web service requests, translates them into

their corresponding ClientLib calls.

5.6 Supporting Components

A list of components which are not major or required parts of the architecture, but which are

important to ensure that the system is as easy to operate as possible.

5.6.1 KeystoreGenerator

In order to simplify the process of generating keystores for applications, a certain generator tool was

created. It takes as input names of server and client, and outputs a keystore containing private and

public key pair, required certificates and more. The code for this is available in

com.navibase.util.keystoregenerator.

5.6.2 Builder

As a tool for system administrators, the Builder component automates the build process after the

source code has changed. It automatically compiles the NaviBase server as well as the SamlLib,

ClientLib, and ClientWebService components. The new NaviBase server code is automatically

uploaded to the server (if desirable). It also regenerates any client kits (see below) complete with

new versions of the libraries and their keystore.

5.6.3 NaviBase Client Kit

For simple deployment and ease of use, every client gets a so called NaviBase Client Kit. It includes

any necessary software library and resource needed by clients to access the NaviBase server. The

complete content of the kit is as follows.

 ClientLib, ClientWebService, and SamlLib, described above;

 An encryption key store holding the client’s private key, and the NaviBase server’s public key;

and

 Possibly, client language specific tools to provide simplifications or avoid incompabilities

between the client’s platform and any of the components mentioned above.

Using the functionality of this kit is completely optional; it is up to the client developer to decide

what components might suit their client the best. The only thing that is really necessary in the kit is

the included encryption key store. Without it, there is no way to digitally sign a request, something

which is required in order for NaviBase to accept it.

49

6 Discussion

After descriptions on what the objectives were, how the construction was planned and executed,
and seeing the analysis and results, this section focuses on how things actually worked out. The
discussion starts by looking at the objectives, did we reach them? Then the planning and analysis is
investigated and finally we look at the execution and the actual results. We discuss the rationale
behind the choices made, and interpretations are made. This section is by its nature more
speculative than the previous and the author’s own thoughts will be expressed explicitly.

6.1 Objectives

In the Introduction section, we saw that the system had two primary objectives; security and

usability. We now look at these two one at a time and see how well the result fulfilled the promises.

Regarding security, the testing performed indicates that the system is indeed secure. Here, the focus

on Test-Driven Development was likely a big help. However, more extensive testing needs to be

performed before a more definitive conclusion can be drawn. See also notes on future work in the

Conclusion section. The thing that could have been done differently and might have a big impact on

security would have been to use an existing implementation of SAML. More on that further ahead.

While things look rather good from a security standpoint, the usability of the system doesn’t look

quite as bright. Usability simply didn’t get nearly as much attention as other aspects, and it suffered.

It became more a “mirror of the system”, than a “mirror of the user’s intentions.”

So, all in all, does the system do what it was supposed to? Unfortunately, the answer is no, not quite.

Two major reasons are unclear requirements, and optimistic time estimation. More on both of these

subjects further down.

6.2 Planning and Analysis

We now look at the planning phase, and the analysis that came out of it. We look first at how

requirements were gathered, through interviews and using attack trees, and then look at the initial

architecture and design, including the use of the SAML protocol.

6.2.1 Requirements

Requirements for the system were gathered in two primary ways, through interviews with project

stakeholders, and through the use of attack trees. I believe this structure works very well, covers the

whole area effectively, and gives us a good chance of finding requirements relevant to our objectives.

However, while interviews themselves might be good, they don’t help if stakeholders are unclear

about what they really want. The requirements gathered during the interviews were not completely

clear, and a close scrutiny of them would have revealed inconsistencies and various aspects of the

system that were never considered.

Here, I am at fault myself for settling with unclear requirements where I instead should have kept on

pressing harder to get to the core of what system was needed. Either I thought that I actually had a

clear view, or I had a moment of self-delusion and just wanted to think that I did. Either way, the

project would have benefited from a more extensive and thorough gathering of requirements.

50

Regarding attack trees, I believe again that they are a very helpful tool. They introduce a good way of

thinking, where you start with thinking about what is actually valuable and needs protection, then

how attacks could be performed, to finally delve into the details of such attacks. While I believe they

produced a number of highly relevant scenarios, I think an even more carefully constructed attack

tree could have revealed further types of attacks.

If I allow myself to second-guess myself, I can imagine a reason for the insufficient requirements

gathering. I believe that I at the time, might have been a bit too inspired by (and also partly

misunderstood) the Agile software development “revolution” which was raging at the time. That I

was a bit too optimistic thinking things “would sort themselves out”.

6.2.2 Architecture

The initial architecture and design planning consisted of two primary decisions; what programming

language and frameworks to use, and what Single Sign-On protocol to use. As we recall, the choices

med were Java with Tomcat/Struts, and the Security Assertion Markup Language, respectively.

Using Java for this project was the right choice, in my opinion. It is a highly competent language with

an extensive and well tested framework, including many security related features. Tomcat, Struts and

Hibernate also worked out very well. My only regret here is that I should have spent more time on

learning the frameworks rather than learning as I went along. That would have saved me from a few

somewhat painful experiences and partial rewrites.

Regarding SAML, it is very much the same story – I think it was the right choice. It is a joint effort to

create a complete SSO protocol, and it does its job well. Again, more time spent before

implementation to completely understand the specification would have saved me some headache.

On the subject of SAML, I also think we can find one of the major reasons for things taking longer

time than estimated. I underestimated the effort it took to develop an implementation of the SAML

specification. Tasks such as dealing with digital signatures in XML and getting every tiny detail of the

XML schema right proved to be very hard and tedious work. In retrospect, I should have tried harder

to use an existing implementation of the specification, even if it would have meant using an older

version of the protocol, or working with a library under development.

As a final note regarding architecture, I should have spent more time on an initial design of the

system. While the things that I did decide in advance (language, frameworks, protocol etc) were a

valuable, things could have been even smoother if I had planned the major elements of the system

design as well. Again, as noted regarding the requirements, I probably let myself to think that such

details would sort themselves out during development. I could point out however; that I don’t think

the end result was worse than had I planned more, I just think that I could have saved myself a lot of

rework.

6.3 Execution and Results

As the last block of the discussion, we look at the actual implementation of the system, and its

results. First, we go through a couple of techniques used during execution, and secondly each of the

components of there resulting system.

51

6.3.1 Domain Modelling

I believe that the key to a successful object oriented system is a strong and well functioning domain

model. The reason is that while controller code or a view is used in some places, the model is used in

all parts of the system. Here, I believe test-driven development serves a nice purpose in that it, as

described in the Theory section, tends to result in objects designed for use rather than for

implementation. After all, you implement them only once, but use them all the time.

Also, I believe using the Hibernate persistence framework was a very good idea. It makes changing

the domain much easier as there is no persistence code with hairy SQL statements which need to be

updated. Of course, there is no such thing as a free lunch, Hibernate comes with its own set of

problems, but overall it worked very well. One feature that I never got around to actually use, which

could have given even bigger benefits, is automatic schema generation. That is, where Hibernate not

only writes and stores to the database, but also generates and modifies the database schema if

necessary.

Rather little time was spent on areas which traditionally might have been more important, such as

database schema design, database normalization, and so on. The reason for this is that the database

design is pretty much given from the conventions of Hibernate.

6.3.2 Test-Driven Development

All development was done using Test-Driven Development. As described in the Theory section, its

goal is to improve design by focusing on use before implementation, and it increases test coverage.

The latter point is perhaps the most obvious, that it increases test coverage, and indeed it does. It

quickly helped building up a large set of fully automated tests. The exact number varies as tests are

restructured over time, but were at the end of the project in the 600 to 700 range. Altogether, they

took about one and a half minute to run. This is actually rather much, as you want to be able to run

the tests as often as possible. However, many of the tests relied on encryption and digital signatures,

which are computationally intensive processes, and it wasn’t possible to do very much about it.

Secondly, doing test-driven design forces you into designing “testable” code; code with fewer

dependencies and which rely less on the state of other objects or even global state. Unfortunately,

you cannot always control the design of the code you’re working with, such as when using libraries

and frameworks, and these were sometimes not quite designed for testability.

An unexpected (for me) side effect of doing test-driven development is that after a while, writing

code without tests felt very insecure, even unprofessional.

6.3.3 NaviBase

As the major component of the system, NaviBase quite naturally got most of the attention during

development. I also tried to incorporate a number of good principles and patterns while building the

system, some of them as described in the Theory section.

One such example is the DRY (“Don’t Repeat Yourself”) principle. This principle is used in places too

many to mention, but everywhere a common method is extracted from duplicated code, or a new

super class is created for classes that share much functionality, this principle is the driving spirit. Also,

using the Tiles library in Struts is an example of the DRY principle. It gives us the ability to reuse user

interface blocks which appear multiple times in different places.

52

Another pattern, or set of patterns, worth mentioning are Barricade and Choke Point. As described in

the Results section, every database request goes through the DataAccessObject. The class therefore

becomes a choke point for database queries and a perfect place to ensure that all SQL queries sent to

the database are safe. This keeps us free from SQL injections. It also works as a barricade in the

system – on one side, the data is assumed to be unescaped, on the other always escaped. This works

very well in this system, as the application code in front of the barricade doesn’t really care about

SQL injections. They aren’t a problem until we send the query into the actual database.

Another example of Barricade and Choke Point in cooperation is the various ActionForm subclasses

in the system. Every time a piece of information reaches the server, it goes through one of these

forms in order to be validated. Here we get an opportunity to remove potential XSS (Cross Site

Scripting) attacks before the data reaches the rest of the system.

Finally, we look at cryptography. Most of the issues here, such as choosing secure encryption and

hashing algorithms is taken care of by the SAML specification. Some implementation specific details

related to security however, still exists. For example, where do you store the password to the

keystore containing the server’s private encryption key? On one hand, you want to keep it as far

away from the keystore as possible, possibly not even in digital form. On the other hand, you want

the server to be able to start and restart without manual intervention, thus requiring it to be on a

medium which can be reached by the server. I don’t have a solution other than that to keep the

password in a file on the same or another server, and then ensure that an attacker cannot get hold of

that password. In the end, if an attacker can put their hands on the server running NaviBase, they can

probably get the encryption key anyway, without having to get the password.

6.3.4 SamlLib

The next biggest component, after NaviBase, is the SAML specification implementation called

SamlLib. As mentioned previously, pursuing an own implementation of the specification was

probably a mistake. I underestimated the amount of time it would take to build it, especially with

regards to digital signature handling and encryption.

If at all possible, I should have tried to use an existing SAML implementation, or at least base my own

implementation on an existing one. The main problem here was that no open source implementation

existed which implemented the SAML 2.0 specification which was needed for this project. Perhaps, a

reasonable solution would have been to use the OpenSAML implementation of SAML 2.0 which was

at the time under development. Then, one would simply have to hope that it had reached a mature

level before the end of the project. But that is also rather risky.

6.3.5 ClientLib and ClientWebService

Finally, we look quickly on the client application helper library ClientLib and its complementary

ClientWebService.

Regarding ClientLib, I can’t really say much more than it worked out very well. It was intended to be a

simple façade to the more complex SamlLib and encapsulate some of the SAML processing logic

required. That is just what it does.

Since ClientLib was implemented in Java, ClientWebService was meant as a way to ensure that

programs on any platform, written in any programming language, could benefit from ClientLib. It is

simply a XML Web Services wrapper around the client library. While this sounds nice in theory, it

53

turned out rather clumsy. It is currently a bit too hard to set up and use properly for it to be very

convenient.

54

7 Conclusion

This section provides a brief summary of the report, including conclusions and the most important

considerations from the discussion. We then briefly look into possible future work.

7.1 Achievements

While too much time was spent on unplanned things, the things that were actually built works as

expected. A focus on sound development principles and using well known design patterns proved to

be a successful recipe. The Don’t Repeat Yourself (DRY) principle helped in reducing duplication in

the project, and the Model View Controller (MVC) pattern gave a very good structure to the NaviBase

code base. Using Test-Driven Development we gained not only a comprehensive set of test cases, but

also code which is more usage-oriented.

7.2 Lessons Learned

The work described in this report was aimed at creating a Single Sign-On system which was both

secure and easy to use. In the end, a Single Sign-On system was produced which worked and

according to preliminary security testing is secure enough. However, it is lacking in the usability

department. The main reason for this was a lack of usability focus, and inadequate requirements.

Much time could have been saved by learning relevant frameworks and protocols better before

starting development – learning while doing did work, but proved to be rather inconvenient.

Finally, creating an own implementation of the SAML 2.0 specification was a hard choice, and while it

is hard to tell, it might have been a bad choice. The amount of time it would take to build was

underestimated and likely, a solution based on an existing SAML implementation (possibly one under

development) could have given better and quicker results.

7.3 Future Work

This section lists a few examples of work that would be suitable in a near future.

As noted above, usability aspects of the system did not get as much focus as they deserved. This

means that the system would benefit from having an overhaul. This would be everything from

deciding on a graphical profile to site structure and more.

Before the launch of a system which relies so much on security as a Single Sign-On provider,

extensive security testing needs to be performed. Thus, a suitable future step is to perform a

complete security audit, where every part of the system is evaluated from a security perspective.

Also, the system can become more capable as a Single Sign-On system. One interesting area is for

example so called federated identity, where two applications can combine their information about a

user to synthesize new information, unavailable to each application separately. This of course would

have to be performed with the consent of the user.

55

8 References

Apache Software Foundation. Apache Struts. 2000. http://struts.apache.org/ (accessed December 25,

2008).

—. Apache Tiles. 2001. http://tiles.apache.org/ (accessed December 25, 2008).

—. Apache Tomcat. 1999. http://tomcat.apache.org/ (accessed 25, December 2008).

Brands, Stefan. ”The problem(s) with OpenID.” The Identity Corner. den 22 August 2007.

http://idcorner.org/2007/08/22/the-problems-with-openid/ (accessed December 28, 2008).

Hoare, C.A.R. ”The Emperor’s Old Clothes.” Communications of the ACM, 1981: 75-83.

Hunt, Andrew, och David Thomas. The Pragmatic Programmer. Addison-Wesley, 1999.

Internet2. OpenSAML. 2005. http://www.opensaml.org/ (accessed December 28, 2008).

Maler, Eve L. Minutes of 9 January 2001 Security Services TC telecon. January 9, 2001.

http://lists.oasis-open.org/archives/security-services/200101/msg00014.html (accessed September

28, 2007).

McCabe, Thomas J. ”A Complexity Measure.” IEEE Transactions on Software Engineering SE-2, nr 4

(1976): 308-320.

McConnell, Steve. Code Complete. Second Edition. Microsoft Press, 2004.

OASIS. OASIS Standards and Other Approved Work. 2007. http://www.oasis-

open.org/specs/index.php (accessed September 28, 2007).

OASIS. SAML V2.0 Executive Overview. Edited by Paul Madsen and Eve Maler. April 12, 2005.

—. "Security Assertion Markup Language (SAML) V2.0 Technical Overview." OASIS Security Services

(SAML) TC. October 9, 2006. http://www.oasis-open.org/committees/download.php/20645/sstc-

saml-tech-overview-2%200-draft-10.pdf (accessed November 22, 2007).

OpenSAML. den 10 June 2008. https://spaces.internet2.edu/display/OpenSAML/Home/ (accessed

July 31, 2008).

”PlayStation a hacker's dream.” The Age. den 27 November 2007.

http://www.theage.com.au/news/security/playstation-a-hackers-

dream/2007/11/26/1196036813741.html (accessed February 17, 2008).

Red Hat Middleware. Hibernate. 2006. http://www.hibernate.org/ (accessed December 25, 2008).

Reenskaug, Trygve. "MVC." Trygve Reenskaug homepage. December 10, 1979.

http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf (accessed January 20, 2008).

Schneier, Bruce. "Schneider.com." Attack Trees. December 1999. http://www.schneier.com/paper-

attacktrees-ddj-ft.html (accessed February 9, 2008).

56

trscavo@idp.protectnetwork.org. Differences Between SAML V2.0 and SAML V1.1. February 5, 2007.

https://spaces.internet2.edu/display/SHIB/SAMLDiffs (accessed September 28, 2007).

Viega, John, and Gary McGraw. Building Secure Software. Addison-Wesley, 2002.

Wikipedia. Password fatigue. April 24, 2007. http://en.wikipedia.org/wiki/Password_fatigue

(accessed October 3, 2007).

—. Single sign-on. 2009. http://en.wikipedia.org/wiki/Single_sign-on (accessed January 1, 2009).

