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Abstract
This thesis deals with inference problems related to the Renshaw-Särkkä

growth interaction model (RS-model). It is a continuous time spatio-temporal
point process with time dependent interacting marks, in which the immigration-
death process (a continuous time Markov chain) controls the arrivals of new
marked points as well as their potential life-times. The data considered are
marked point patterns sampled at fixed time points.

First we propose three edge correction methods for discretely sampled
(marked) spatio-temporal point processes. These are all based on the idea
of placing an approximated expected behaviour of our process at hand (based
on simulated realisations) outside the study region, which in turn interacts
with the data during the estimation. We study the methods and evaluate them
numerically in the context of the RS-model. The parameters related to the
development of the marks are estimated using the least-squares approach.

Secondly, we propose (approximate) maximum likelihood (ML) estimators
for the two parameters of the immigration-death process; the arrival intensity
and the death rate. The arrival intensity is assumed to be constant and the
death rate is assumed to be proportional to a function of the current mark size
of a point. The arrival intensity estimator is constructed to compensate for the
(unobserved) individuals arriving and dying between two sampled time points.

When assumed that the death rate is constant we can derive the transition
probabilities of the immigration-death process. These in turn give us the exact
likelihood of its parameter pair. We are able to reduce the likelihood maximi-
sation problem from two dimensions to one dimension. Furthermore, under the
condition that the parameter pair lies in some compact subset of the positive
part of the real plane, we manage to show the consistency and the asymptotic
normality of its ML-estimator under an equidistant sampling scheme. These
results are also evaluated numerically.

Keywords: Asymptotic normality, Consistency, Edge correction,
Immigration-death process, Least squares estimation, Maximum likelihood
estimation, Spatio-temporal marked point process, Transition probability.

iii



Acknowledgments

To start with I would like to thank my advisor Aila Särkkä for her great support,
inspiration, friendship and our many nice conversations. I would also like to
thank my co-advisor Jun Yu for his support and inspiration. Furthermore, I
would like to thank my co-advisor Anastassia Baxevani for her moral support
and friendship.

Other people who I would like to show gratitude for ideas and inspiration
related to the writing of this thesis include Claudia Redenbach, Eric Renshaw,
Gerald van den Boogaart, Kenneth Nyström, Patrik Albin and Serik Sagitov.

Also, a general thank you goes out to all the people at the department of
Mathematical Sciences in Gothenburg. A person at the department who holds
a special place in my heart is Daniel Ahlberg - Thank you for your friendship
and support. Other people at the department who I would like to thank on
a personal note include Alexandra Jauhiainen, Carl Lindberg, Dmitrii Zholud,
Emilio Bergroth, Erik Broman, Erik Jakobsson, Frank Eriksson, Fredrik Lind-
gren, Hermann Douanla Yonta, Jan Lennartsson, Marcus Isaksson, Marcus
Warfheimer, Mattias Sundén and Sofia Tapani.

To all my friends outside the department (You know who you are!). Unfortu-
nately you are too many to be mentioned here. Thank you! You have helped
me in the process of becoming me.

Finally, to the people who mean the most to me; My family. I love you. Thank
you for your eternal love and support!

iv



List of Papers

The licentiate thesis includes the following papers.

I. Cronie, O. (2010). Some edge correction methods for marked spatio-
temporal point process models. Preprint.

II. Cronie, O., Yu, J. (2010). Maximum likelihood estimation in a dis-
cretely observed immigration-death process. Research Report 2010:1,
Centre of Biostochastics, Swedish University of Agricultural Sciences.

v



vi



Contents

1 Introduction 1

2 The process 5

2.1 The immigration-death process . . . . . . . . . . . . . . . . . . 5

2.2 The RS-model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 The natural death rate . . . . . . . . . . . . . . . . . . . 9

2.2.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Remarks about the competitive death . . . . . . . . . . 10

3 Parameter estimation 11

3.1 Estimation of the RS-model parameters . . . . . . . . . . . . . 11

3.2 Estimation in the immigration-death process . . . . . . . . . . 15

3.2.1 The ML-estimators . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Asymptotic properties of the ML-estimators . . . . . . . 16

3.2.3 Application to the RS-model . . . . . . . . . . . . . . . 17

4 Future work and extensions 19

5 Summary of Papers 21

vii



viii CONTENTS

Paper I: Some edge correction methods for marked spatio-temporal
point process models . . . . . . . . . . . . . . . . . . . . . . . . 21

Paper II: Maximum likelihood estimation in a discretely observed
immigration-death process . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 22



Chapter 1

Introduction

In many different instances in our surrounding world we find point patterns of
different kinds. Such patterns include galaxy locations, locations of earthquake
epicentres, locations of cell centres and locations of trees in a forest stand. In
order to help analysing point patterns the field of spatial statistics has lent a
helping hand and has simultaneously also been developing through it. The field
of spatial statistics incorporates a few different disciplines within the field of
stochastic mathematics and in this thesis we will focus on the parts played by
stochastic geometry (the study of random geometrical objects) and spatial point
processes (the study of random point structures) (see e.g. [4, 5, 13, 14, 25]).

Sometimes one does not solely record the locations of the points in a point
pattern but also some additional feature connected to each point, such as the
radii of the trees in a forest stand or the amount of seismic energy in earth-
quakes. This additional variable, called a mark, can often be quite helpful in
explaining the behaviour of the point pattern in question. When focusing on
the statistical analysis of these point patterns or marked point patterns, we em-
ploy spatial point processes or marked spatial point processes, respectively (see
e.g. [4, 7, 13, 25, 26]). However, to a large extent, the field of spatial (marked)
point processes has mainly concentrated on treating marked point patterns
within a purely spatial framework. In such a setting one fully ignores that the
patterns studied, in fact, almost always are results of evolutionary processes in
which the changes occurring among the marks are time dependent. Such situ-
ations motivate a change of regime to an approach where one instead considers
spatio-temporal marked point processes (see e.g. [8, 18, 28]). To fully take the
evolution of these marked patterns into consideration it is reasonable to de-
mand that the models describing them should incorporate interaction between
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2 1. Introduction

marks during the development phases.

The application motivating the work presented in this thesis is found in forestry.
Treating a forest stand which is recorded at a specific time point as a static
entity, thus ignoring the temporal aspects, the literature offers a wide range
of statistical tools for analysing and drawing conclusions about its inherent
features, whether one includes marks or not (see e.g. [7, 13, 10, 26] to mention
a few). However, here we are interested in modelling the development of a
forest stand in both space and time. Figure 1.1 illustrates the type of recorded
time series of marked point patterns we refer to – a data set of Swedish Scots
pines recorded in 1985, 1990 and 1996 where we have scaled the radii (our
marks) for more clear visualisation.

Figure 1.1: Locations and sizes (measured in metres) of Swedish Scots pines
recorded in 1985 (left), 1990 (middle) and 1996 (right). The radii of the trees
(marks) are scaled by a factor of 10.

A clear risk when formulating the type of spatio-temporal models we are in-
terested in is that the models easily become too involved and we loose both
transparency, interpretability and tractability (see e.g. [9]). A spatio-temporal
marked point process which manages well to describe this type of spatio-
temporal behaviour of a marked population is the so called Renshaw-Särkkä
growth-interaction model (RS-model) (see [22, 23, 24] or Paper I), which is a
combination of stochastic and deterministic components. It has been used to
study, among other things, the development of forest stands [24]. Since this
model, in spite of being very flexible, is both tractable and easily interpreted
it is quite natural to further assess its potential. In the coming chapters we
will present and discuss the RS-model together with different statistical tools
developed for it (and other models of this type).

In the process of fitting (spatio-temporal) point process models to data sets of
the kind presented in Figure 1.1 the following problem emerges. When mea-
surements are made in some bounded study region, the structure of the spatial
dependences and interactions existing between points outside and inside the
study region remains unobserved. This phenomenon, which in particular con-
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cerns those points inside the study region who are close to its boundary, is
generally referred to as edge effects. In the context of estimation, if the study
region contains a large number of points, the edge effects may not have a large
impact on the estimates. However, tree data are often collected in study regions
which contain only a small amount of data. In such cases there is a substantial
risk that the edge effects generate quite severe biases and we therefore need
some type of edge correction method when estimating the model parameters
and other summary statistics of interest. In the case of non-temporal analy-
ses a number of methods for edge correction have been devised (see e.g. [13])
but these are, however, not so easily generalized to the spatio-temporal set-
ting. In Paper I we propose three edge correction methods for spatio-temporal
marked point processes which all are based on the same idea. By placing an ap-
proximated expected behaviour of our spatio-temporal marked point processes
outside the study region we let this approximation interact with the data during
the estimation. We estimate this expected behaviour by simulating realisations
of the process, under a parameter choice based on some non-edge corrected ini-
tial estimates, and for each such realisation we generate new edge corrected
estimates which we average over to get our edge corrected estimates.

Before we can utilise the edge correction methods developed, we must find
estimators which allow us to fit the RS-model. Since this process deals with
both space and time we need to be able to fit, not only, the stochastic process
controlling the arrivals and deaths of new marked points in time, but also the
mechanism controlling the growth of and interaction between the marks. In
the RS-model the arrivals and deaths are controlled by a so-called immigration-
death process – a continuous time Markov chain. In both Paper I and Paper
II we will develop estimators for the two parameters of this model and we
also present how the growth and interaction parameters of the RS-model are
estimated.

In Chapter 2 we introduce the immigration-death process and the RS-model.
Then, in Chapter 3, we discuss how we estimate the parameters of the RS-
model in an edge corrected setting (see Paper I). In Chapter 3 we also present
how maximum likelihood (ML) estimation is carried out in a discretely sampled
immigration-death process (Paper II). Finally, in Chapter 4, we look at possible
extensions and future work related to the work carried out in Paper I and Paper
II.
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Chapter 2

The process

We will here define the RS-model, X(t) = {[Xi,mi(t)] : i ∈ Ωt}, which is a
spatio-temporal point process with interacting and size changing marks (see
e.g. [24]). It is defined on [0,∞) in time and spatially we consider it on
some region of interest, W ⊆ Rd (usually d = 2, 3), supplied with the Eu-
clidean metric/norm. However, we will start with the immigration-death pro-
cess, {N(t)}t≥0, since this process is the basis of the RS-model.

2.1 The immigration-death process

The immigration-death process, {N(t)}t≥0, is a time-homogeneous irreducible
continuous-time Markov chain (see e.g. [16]) where the possible states for which
transitions i → j are possible are supplied by the state space E = {0, 1, . . .}.
It is governed by the parameter pair θ = (α, µ) which we here assume to take
values in some compact parameter space Θ ⊆ R2

+.

One way of viewing {N(t)}t≥0 is to treat it as a special case of a birth-death
process where the birth rates are given by λi = α, i = 0, 1, . . ., and the death
rates are given by µi = iµ, i = 0, 1, . . ., (see [11], p. 268-270). Within this
framework the interpretation of {N(t)}t≥0 is the following. By letting the
arrivals of new individuals to a population occur according to a Poisson process
with intensity α and upon arrival assigning to all individuals independent and
exponentially distributed lifetimes with mean 1/µ, N(t) gives us the number
of individuals alive at time t. Another possibility is to view it as an M/M/∞
queuing system; each customer (arriving according to a Poisson process with

5



6 2. The process

intensity α) is being handled by its own server so that its sojourn time in the
system is exponential with intensity µ and independent of all other customers.

Being a Markov process, the finite dimensional distributions of {N(t)}t≥0 are
controlled by its transition probabilities, pij(t; θ) which are given in Paper II.

Proposition 1. The transition probabilities of the immigration-death process
are given by

pij(t; θ) =
e−

α
µ (1−e−µt)

j!

j∑
k=0

(
α

µ

)k (
j

k

)
e−(j−k)µt

(1− e−µt)j−2k−i
i!

(i− (j − k))!

=
j∑

k=0

f
Poi(ρ)(k)f

Bin(i,e−µt)
(j − k) =

i∧j∑
k=0

fPoi(ρ)(j − k)fBin(i,e−µt)(k),

where i, j ∈ E = N, θ = (α, µ) ∈ Θ ⊆ R2
+, fPoi(ρ)(·) is the Poisson density with

parameter ρ = α
µ (1− e−µt), and f

Bin(i,e−µt)
(·) is the Binomial density with

parameters i and e−µt. Moreover, we have that

E[N(s+ t)|N(s) = i] = i e−µt +ρ
E[N2(s+ t)|N(s) = i] = i(i− 1) e−2µt +(1 + 2ρ)i e−µt +ρ2 + ρ.

The interpretation of pij(t; θ) is quite clear. Note that

fPoi(ρ)(j − k) = P(j − k new arrivals during (h, h+ t))
fBin(i,e−µt)(k) = P(k of the i individuals alive at time h survive (h, h+ t)),

so that pij(t; θ) expresses the sum of the probabilities of all possible ways
in which we can decrease i individuals to j individuals. Furthermore, when
i ≤ j, we get that pij(t; θ) simply represents the convolution of the Bin(i, e−µt)-
density and the Poi(ρ)-density. One can easily show that for the marginal
distributions of {N(t)}t≥0 we have that P(N(t) = j|N(0) = 0) = e−ρ ρj/j!, i.e.

(N(t)|N(0) = 0) ∼ Poi
(
α
µ (1 − e−µt)

)
, and that (N(t)|N(0) = 0) d→ Poi(α/µ)

as t→∞.

Note that this invariant distribution is unique due to the positive recurrence,
and it is also the same as its asymptotic distribution since every asymptotic
distribution is an invariant distribution.

A further characterisation of {N(t)}t≥0 which sometimes is useful to exploit is
to consider {N(t)}t≥0 as a Markov jump process (see Paper II).

Proposition 2. Let θ = (α, µ) ∈ Θ ⊆ R2
+. {N(t)}t≥0 is a Markov jump

process with state space E = N, jump intensity function

λ(θ; i) = α1 {i = 0}+ min{α, iµ}1 {i > 0} i ∈ E,
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and transition kernel {r(θ; i, j) : i, j ∈ N}, where

r(θ; i, j) =
1

α+ µi
(α1{j = i+ 1}+ µi1{j = i− 1}) i, j ∈ E.

2.2 The RS-model

The process X(t) = {[Xi,mi(t)] : i ∈ Ωt} can be described as follows. As
time elapses, the arrivals in time of new individuals to W ⊆ Rd and the time
these individuals live in W are governed by an immigration-death process,
N(t), having parameter θ = (αν(W ), µ) ∈ Θ, where ν(·) denotes volume in
Rd and Θ ⊆ R2

+ is compact. We here denote the (Poisson) arrival process
by B(t) and the death process by D(t) so that N(t) = B(t) − D(t), where
N(0) = 0. Furthermore, upon arrival at time t0i , individual i is assigned a
location Xi ∼ Uni(W ) (thus far, at each fixed time t this constitutes a spatial
Poisson process with intensity α

µ (1− e−µt), restricted to W ) together with an
initial mark, mi(t0i ) = m0

i , which is taken either as some fixed positive value (as
will be the case here), or as a value drawn from some suitable distribution ([24]
considers m0

i ∼ Uni(0, ε), ε > 0). When an individual’s (Exp(µ)-distributed)
life time has expired we say that the individual has suffered a natural death.

Once individual i has arrived it starts growing deterministically according to

mi(t) = m0
i +

∫ t

t0i

dmi(s), t0i ≤ t, (2.1)

where

dmi(t) = f(mi(t);ψ)dt−
∑
j∈Ωt
j 6=i

h (mi(t),mj(t),Xi,Xj ;ψ) dt.

Here Ωt = {i ∈ {1, . . . , B(t)} : individual i is alive at time t}, ψ is a param-
eter vector, the function f (mi(t);ψ) determines the individual growth of
mark i in absence of competition with other (neighbouring) individuals and
h (mi(t),mj(t),Xi,Xj ;ψ) is a function handling the individual’s spatial inter-
action with other individuals.

In addition to the natural death, an individual can die competitively which we
consider to happen as soon as mi(t) ≤ 0.

The literature offers a wide range of possible choices for the individual growth
function, f(mi(t);ψ) (see e.g. [24]). Two examples are the so-called linear
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growth function,

f(mi(t);ψ) = λ

(
1− mi(t)

K

)
,

and the logistic growth function,

f(mi(t);ψ) = λmi(t)
(

1− mi(t)
K

)
.

Here ψ = (λ,K, c, r) ∈ R2
+ × R × R+ and the two parameters λ > 0 and

K > 0 are, respectively, the growth rate of a mark and its upper bound (car-
rying capacity). These functions are both special cases of the Von Bertalanffy-
Chapman-Richards growth function (see [22]) which has previously been used to
model the development of the radii of isolated Scots pines [17]. Since the shape
of the logistic growth function resembles the shape of the Von Bertalanffy-
Chapman-Richards growth function fitted in [17] we consider it both a good
and a tractable candidate for our forestry purposes (see e.g. [22, 24]).

Just as for the individual growth function the possible choices of spatial inter-
action functions are many (c.f. [15, 22, 24] for examples of interaction functions
and related discussions). One example is given by (see [24])

h (mi(t),mj(t),Xi,Xj ;ψ) = c1 {B [Xi, rmi(t)] ∩B [Xj , rmj(t)] 6= ∅} ,

where c ∈ R is the force of interaction and r > 0 is the scale of interaction.
Furthermore, B [Xi, rmi(t)] denotes a closed ball with centre Xi and radius
rmi(t) and it is referred to as the ’influence zone’ of individual i. Since com-
petition for resources takes place only within influence zones ([2, 29]), individ-
uals i and j will compete only when their influence zones intersect, i.e. when
B [Xi, rmi(t)] ∩ B [Xj , rmj(t)] 6= ∅. This symmetric interaction function has
the effect that small individuals have the same impact on large (neighbouring)
individuals as the large individuals have on small individuals. Unless our forest
stand consists of individuals of similar size this interaction function becomes
unrealistic. In order to circumvent this problem we here consider instead the
so called area interaction function, given by

h (mi(t),mj(t),Xi,Xj ;ψ) = c
ν (B [Xi, rmi(t)] ∩B [Xj , rmj(t)])

ν (B [Xi, rmi(t)])
, (2.2)

This non-symmetric soft core interaction has the effect that large marks influ-
ence small marks more than the other way around, yet allowing the small marks
to play their part. This interaction model is more realistic in tree modelling ap-
plications than symmetric interaction models (see [22, 24]). Depending on the
choice of parameters, this area interaction function has the ability to generate
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regular as well as aggregated point patterns (despite the underlying uniform
distribution of the locations) [21]. Note that the parameter r determines how
large the range of interaction is and c mainly determines how regular the point
patterns are.

2.2.1 The natural death rate

As previously mentioned the so called natural deaths are governed by the death
process, D(t). In situations where it seems plausible that the natural deaths
depend on an individual’s size we may let the death rate be given by some
function µγ(·), µ > 0, where γ(·) is a function of the marks. This means that as
time passes the Exp(µγ(mi(t)))-distributed remaining lifetime of an individual
will change with its size. An alternative way of expressing the behaviour of
the death process is to say that the conditional probability that an individual
i dies naturally during (t, t+ dt) given mi(t) equals µγ(mi(t)) dt+ o(dt). Note
that if γ(·) ≡ 1, we retrieve the ordinary immigration death process. In Paper
I, we choose to evaluate the RS-model under γ(mi(t)) = 1/(1 + mi(t)) which
implies that individuals become more viable as they grow; a choice motivated
by our forestry applications. In Paper II, as well as in [21, 22, 23, 24] the model
is chosen to have γ(·) ≡ 1.

2.2.2 Simulation

For clarity, the simulation algorithm given in [24] is presented below, where
W ⊆ R2 is rectangular. Let dt be small, e.g. dt = 0.01, fix the final time Tn > 0
and let W = [a, b] × [c, d]. Decide on sample time points 0 < T1 < . . . < Tn.
Set k = 0.

• Cycle over times t = dt, 2dt, . . . , bTn/dtc

• For all individuals i ∈ Ωt and for {Z}i=1,...,|Ωt|, a sequence of iid
Uni(0, 1) random numbers:

1. Natural death: If Z ≤ µγ(mi(t)) remove i from Ωt, set
mi(t+ dt) = 0 and let i belong to the set A

2. New mark size: If i ∈ Ωt still, calculate mi(t+dt) = mi(t)+
dmi(t) (i.e. calculate (2.1))

3. Competitive death: If i ∈ Ωt still andmi(t+dt) ≤ 0 remove
i from Ωt, set mi(t+ dt) = 0 and let i belong to the set B



10 2. The process

• Immigration: Generate a Poi(α(b− a)(d− c)dt)-random number
N . If N > 0:
Simulate pairs (xk+1, yk+1), . . . , (xk+N , yk+N ) where xi is a random
number from Uni(a, b) and yi is a random number from Uni(c, d).
Set mk+1(t) = m0

k+1, . . . ,mk+N (t) = m0
k+N (which will either all be

fixed as m0
i = ε > 0 or Uni(0, ε)-random numbers).

Let Ωt+dt = {k + 1, . . . , k +N} ∪ Ωt.
Update k to k +N .

• Printing: If t = Ti for some i = 1, . . . , n, print
Xt = {(i,xi,mi(t))}i∈Ωt , XA

t = {(i,xi,mi(t))}i∈A and XB
t =

{(i,xi,mi(t))}i∈B

2.2.3 Remarks about the competitive death

As previously mentioned, one of the possible death occurrences present in the
RS-model is the competitive death. Consider the infinitesimal-size interval
(t, t+ dt) and recall that we classify an individual as having died from compe-
tition in (t, t + dt) if mi(t) > 0 and mi(t + dt) ≤ 0. Let us call this scenario
1. Consider now an alternative approach, which we call scenario 2, where the
individual suffers a competitive death if mi(t) > 0 and dmi(t) < 0. Now a rea-
sonable question emerges, namely, which of the two scenarios should be used to
represent competitive/interactive death for tree data. In a tree stand model one
could argue that scenario 1 is a more appropriate view than scenario 2 since
trees do not disappear immediately after they die. This thus indicates that
they should not be removed as soon as dmi(t) < 0, since dead trees occupy the
ground where they have been standing some time after their deaths. Also, to
some extent, dead trees inhibit the nutrient access and light absorption of other
trees close to it. On the other hand it might not seem plausible that a tree,
after dying, keeps fighting until it has reached size mi(t) = 0. Furthermore, it
is not reasonable that a new tree would end up very close to the centre of a
recently deceased one, shortly after the death of the deceased tree. Although a
bit artificial in its nature we thus have chosen to use of scenario 1 to represent
competitive deaths, just as in [24].

It may also seem troublesome is that the uniform distribution of the locations,
Xi ∼ Uni(W ), does not prohibit newcomers to end up "within" other individ-
uals, i.e. B [Xi,mi(t)] ⊆ B [Xj ,mj(t)]. This however, provided that c > 0 is
not very small, only causes such newcomers’ instantaneous death.



Chapter 3

Parameter estimation

Assume now that we sample the process at times 0 = T0 < . . . < Tn =
T . Then, for each k = 1, . . . , n, this gives rise to a sampled marked point
configuration Xobs(Tk) =

{
[xi,mi(Tk)] : i ∈ ΩobsTk

}
(Figure 1.1 illustrates such a

scenario). In this chapter we start by presenting the methods used to estimate
the parameters in the RS-model. This includes the presentation of the least
squares approach used to estimate the mark related parameters, ψ, and the
general idea behind the edge correction methods proposed in Paper I. We then
look at ML-estimation in the discretely sampled immigration-death process,
these estimators’ asymptotic properties, and how they can be applied to the
RS-model.

3.1 Estimation of the RS-model parameters

The following least squares approach for estimating the mark related param-
eters, ψ = (λ,K, c, r) ∈ R2

+ × R × R+, and method for the labelling of
naturally dead individuals originally was suggested in [24]. Let X̃obs(Tk) ={
m̃i (Tk+1;ψ,Xobs(Tk)) : i ∈ ΩobsTk

}
denote the set of predictions of the actual

data marks,
{
mi(Tk+1) : i ∈ ΩobsTk

}
, generated by equation (2.1) under the

regime of ψ, based on the configuration Xobs(Tk) (in practise we employ the
simulation algorithm presented in [24] in order to create each predicted set
X̃obs(Tk) from each set Xobs(Tk)). Once having produced X̃obs(Tk), if the pre-
dicted mark indicates that the individual is alive but the the individual is dead
in reality, this predicted individual will be treated as having died by natural

11



12 3. Parameter estimation

causes in (Tk, Tk+1). The least squares estimates are then found by minimising

S (ψ) :=
n−1∑
k=1

∑
i∈ΩobsTk

1{i ∈ ΩobsTk+1
} [m̃i (Tk+1;ψ,Xobs(Tk))−mi (Tk+1)]2

with respect to ψ = (λ,K, c, r) ∈ R2
+ × R × R+, where 1{i ∈ ΩobsTk+1

} is an
indicator function being 1 if the actual data individual i is alive at time Tk+1.

In order to minimize S (ψ) some optimization procedure is required. The ap-
proach used in [24] is to create a grid of parameter values for each of the
parameters in ψ = (λ,K, c, r) and then calculate S (ψ) for all combinations of
values taken from these grids. One then lets ψ̂ = (λ̂, K̂, ĉ, r̂) be given by the
combination of grid values which gives rise to the smallest value of S (ψ) and
either accepts ψ̂ as one’s final estimate or one creates a new, finer, grid centred
around the estimated parameter values in ψ̂ and repeats the procedure a num-
ber of times until no change in ψ̂ takes place and the grids have all become very
dense. This procedure encounters the problem that the actual optimal combi-
nation of parameters may fall outside the grids, as the grids are becoming finer,
if the initial grid is not chosen correctly. Another approach which is similar
in its nature to the grid search, still avoiding the aforementioned problem, is
to repeatedly draw parameter values ψ = (λ,K, c, r) where λ ∼ Uni(λL, λU ),
K ∼ Uni(KL,KU ), c ∼ Uni(cL, cU ), r ∼ Uni(rL, rU ) and for each such com-
bination calculate S (ψ), choosing as final estimate the parameter combination
giving rise to the smallest S (ψ). This MCMC type of method, however, has the
drawback that one needs to make a choice on the upper and lower bounds in
the uniform distributions being drawn from. One could handle this by choosing
initial intervals on which we sample while successively extending the intervals
if candidates near the boundaries are the ones minimizing S (ψ). Note that
we do not have to bother too much about the lower bounds since most of the
parameters are bounded below by 0.

Paper I adopts an MCMC-type method (see [20]) where we start by choosing
initial parameter estimates, i.e. let λ = λ0 > 0, K = K0 > 0, c = c0 ∈ R and
r = r0 > 0, for which we calculate S (ψ) = S (λ,K, c, r). We also define the
step sizes δλ > 0, δK > 0, δr > 0, and δc > 0. Now, in each round we

1. randomly choose one of the parameters λ,K, r, c;

2. for our parameter of choice, say λ, let λ′ = λ + Z, for Z drawn from
Uni(−δλ, δλ);

3. calculate S (ψ′) = S (λ′,K, r, c);

4. if S (ψ′) < S (ψ) let λ = λ′, otherwise let λ = λ;
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5. return to step 1.

We continue to run the algorithm until either S (ψ) is less than some predefined
minimum value, say, Smin = 10−5 or until we have not seen any decrease in
S (ψ) for a predefined number of consecutive runs, say, Nmax = 200. We let our
final estimates ψ̂ = (λ̂, K̂, ĉ, r̂) be given by the last ψ obtained in the algorithm
above. Note that we here utilize the information obtained in the previous step
in order to stepwise get closer to the final estimate.

When minimizing S (ψ), in the case of a simulated data set, it can be seen
that S (ψ) may not attain its minimum at the true parameter set but instead
at some biased ψ. This ’incorrect’ shape of S (ψ) is mainly due to edge effects
and dependence between certain parameters. This phenomenon is illustrated
in Figure 3.1, a plot of S(ψ) as a function of only λ and K where c and r
are kept fixed at their actual values. It is clear from the graph that S(ψ) is
decreasing as λ moves away from its actual value 0.2.

Figure 3.1: Plot of S(ψ) as a function of only λ and K. c and r are kept fixed
at their actual values, where (λ,K, r, c) = (0.2, 0.1, 1.5, 0.1).

Note that, for instance, two different sets of c and r may result in similar
interactions, due to the form of (2.2). In order to control the estimation routine,
so that this risk of bias is reduced, the approach of Paper I is to find good
starting values, (λ0,K0, c0, r0), (as opposed to arbitrarily chosen ones) and to
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choose sensible step sizes, δλ, δK , δc, δr.

Paper I presents estimators for α and µ when γ(mi(t)) = 1/(1 + mi(t)). The
estimator for α partially compensates for the unobserved individuals who arrive
and die in the same sample interval, (Tk, Tk−1).

When sampling real data, {Xobs(Tk)}nk=1, one usually considers all individuals
within some region A (in Figure 1.1 circular) which is part of some larger region
W . The individuals in A interact with each other but simultaneously also with
the individuals present outside A, i.e. the individuals in B = W \A. So, if one
were to estimate some statistics and/or model parameters in a situation where
the interaction among (neighbouring) individuals plays a role, by only taking
into consideration the individuals in A the estimators may generate biased
estimates since the interaction between the individuals in A and those in B
would be neglected. The effects of the absence of the information regarding
this interaction are commonly referred to as edge effects. The risk that the edge
effects generate biases rapidly increases when one deals with small quantities
of data in A, as is the case with our tree data set introduced in Figure 1.1.
Hence, some type of correction method is needed (see e.g. [7, 13, 30]).

We here give the idea behind the edge correction methods proposed in Paper
I. One starts by finding initial (possibly biased) estimates of the model param-
eters, Θ̂∗, based on our original data set (region A). Then, under the regime
of Θ̂∗, we wish to find the expected model behaviour when restricted to region
B (possibly conditioned on the actual data in A), EΘ̂∗

[X[0,T ]|B ]. By doing so
we wish to establish the expected interaction between EΘ̂∗

[X[0,T ]|B ] and the
individuals in region A. With EΘ̂∗

[X[0,T ]|B ] at hand we now re-estimate the
model parameters from the actual data (region A), however, this time allowing
for EΘ̂∗

[X[0,T ]|B ] to interact with the actual data during the estimation. Once
these new estimates have been obtained, we let them replace Θ̂∗ and repeat
the above procedure again. By continuing in this fashion we have an iterative
procedure which we stop once it has fulfilled a given predefined convergence
criterion.

The three edge correction methods presented in Paper I are explained for
the RS-model but they may be applied to other spatial and spatio-temporal
(marked) point processes as well. In the algorithms presented in Paper I the
large rectangular window W will be wrapped onto a torus when we generate
the individuals in the outer region, B, (see e.g. [7, 19, 23, 30]).
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3.2 Estimation in the immigration-death process

We will here look at estimation of (α, µ) when the immigration-death process,
{N(t)}t≥0, is considered as its own entity and as an application we see how
this estimation can be applied to the RS-model. The results presented in this
section can be found in Paper II.

Assume now that we sample {N(t)}t≥0 as N1, . . . , Nn at the respective times
0 = T0 < T1 < . . . < Tn. Since the likelihood function for θ = (α, µ) ∈ Θ,
Ln(θ), is given by the joint density of the distribution of (N(T1), . . . , N(Tn)),
by the Markov property of N(t) it can be factorised into a product of transition
probabilities, i.e. Ln(θ) = P(N(T1) = N1)

∏n
k=2 pNk−1Nk

(t; θ). By assumption
we condition on N(T0) = 0, so that the log-likelihood will be given by

ln(θ) =
n∑
k=1

log p
Nk−1Nk

(∆Tk−1; θ), (3.1)

where ∆Tk−1 = Tk−Tk−1. In the case of equidistant sampling, i.e. ∆Tk−1 = t
for each k = 1, . . . , n, the log-likelihood takes the form

ln(θ) =
∑
i,j∈E

Nn(i, j) log pij(t; θ), (3.2)

where Nn(i, j) =
∑n
k=1 1 {(Nk−1, Nk) = (i, j)}.

Hereby, for each of the sampling schemes, the likelihood estimator of θ =
(α, µ) ∈ Θ (obtained by replacing Nk by N(Tk), k = 0, 1, . . ., in the expressions
(3.1) and (3.2)) will be defined as

(α̂n, µ̂n) = θ̂n = arg max
θ∈Θ

ln(θ). (3.3)

3.2.1 The ML-estimators

The ML-estimator for θ = (α, µ) is given by solving the system of equations{
∂
∂α ln(θ) =

∑
i,j∈E Nn(i, j) ∂

∂α log pij(t; θ) = 0
∂
∂µ ln(θ) =

∑
i,j∈E Nn(i, j) ∂

∂µ log pij(t; θ) = 0.

As no closed form solution can be found by solving theses likelihood equations,
numerical methods have to be employed in order to get ML-estimates. What
is possible, however, is to express the estimator of α as a function of both
the sample and the parameter µ, hence reducing the maximisation to a one
dimensional problem.
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Proposition 3. The ML-estimator, θ̂n = (α̂n, µ̂n), is found by maximising
ln(α̂n(µ), µ) over Θ2 ⊆ R+ (the projection of Θ onto the µ-axis), i.e.

µ̂n = arg max
µ∈Θ2

ln(α̂(µ), µ)

α̂n = α̂n (µ̂n) ,

where

α̂n(µ) :=
µ/(1− e−µt)

2
(

1−e−µt

µt − e−µt
)
− 1

1
n

∑
i,j∈E

Nn(i, j)(j − i e−µt)

=
µ

2
(

1−e−µt

µt − e−µt
)
− 1

1
n

(
e−µtNn −N0

1− e−µt
+

n∑
k=0

Nk

)
.

3.2.2 Asymptotic properties of the ML-estimators

Assume now that we sample N(t) at the times Tn = nt, n ∈ N, t > 0 (equidis-
tant sampling). The following two results show that the ML-estimator (3.3) is
strongly consistent (Proposition 4) and asymptotically Gaussian (Proposition
5). We denote by θ0 = (α0, µ0) ∈ Θ the true parameter pair of the immigration-
death process. These results can be found in Paper II. For further discussions
on ML-estimation in Markov processes and asymptotic properties thereof, see
e.g. [1, 3, 6, 12, 27].

Proposition 4. Let Θ be any compact subset of R2
+. Then the maximum

likelihood estimator for the immigration-death process satisfies

(α̂n, µ̂n) a.s.−→ (α0, µ0)

as n→∞, where (α0, µ0) ∈ Θ is the true parameter pair.

Proposition 5. Let Θ be any compact subset of R2
+. Furthermore, assume that

(log(α0 + µ0) − log(α0))/µ0 ≥ 2t. Then, as n → ∞,
√
n ((α̂n, µ̂n)− (α0, µ0))

converges in distribution to the two-dimensional zero-mean Gaussian distribu-
tion with covariance matrix, I(θ0)−1, given by

I(θ0)−1 =
µ0

t ((1 + e−µ0t) ρ0(Ξ− 1)− 1)

×

ρ0(2τ0−µ0t(1−e−µ0t))+
ρ20
µ0t

(Ξ−1)(τ0−µ0t)
2

(1−e−µ0t)2
1 + ρ0

µ0t
(Ξ− 1)(τ0 − µ0t)

1 + ρ0
µ0t

(Ξ− 1)(τ0 − µ0t) 1
µ0t

(Ξ− 1) (1− e−µ0t)2

 .
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where Ξ =
∑
i,j∈E

(pi(j−1)(t;θ0))2

pij(t;θ0) πθ0(i), τ0 = 1 − e−µ0t−µ0t e−µ0t and ρ0 =
α0
µ0

(1− e−µ0t). Here πθ0(·) = P(Poi(α0/µ0) ∈ ·) is the invariant distribution of
the immigration-death process.

3.2.3 Application to the RS-model

By the definitions of Ωt and N(t), the number of individuals alive at time t is
given by

|Ωt| = N(t)− C(t) = B(t)−D(t)− C(t), (3.4)

where |A| denotes the cardinality of the set A and C(t) ≥ 0 denotes the inter-
active death process, i.e. the process counting the total number of individuals
who have suffered a competitive death in the time interval (0, t]. We will assume
that C(T0) = 0 so that |ΩT0 | = 0.

In the minimisation of S(ψ), if m̃i (Tk+1;ψ,X(Tk)) ≤ 0 for an individual i ∈
ΩobsTk , it will be labelled as having died from competition in (Tk, Tk+1). We let
the total number of such individuals be denoted by (C(Tk)− C(Tk−1))ψobs and
we use it as an estimate of C(Tk) − C(Tk−1). Note that by expression (3.4)
we can write N(Tk) = N(Tk−1) + |ΩTk | − |ΩTk−1 | + C(Tk) − C(Tk−1) where
|ΩT1 | = C(T0) = 0. The observed version of this is given by

Nobs(Tk) = Nobs(Tk−1) + |ΩobsTk | − |Ω
obs
Tk−1
|+ (C(Tk)− C(Tk−1))ψobs,

where |ΩobsT1
| = 0.

When we here find the estimate θ̂ = (α̂ν(W ), µ̂) with our new likeli-
hood approach we use (Nobs(T1), . . . , Nobs(Tn)) as observation of the sampled
immigration-death process, (N(T1), . . . , N(Tn)), and hence the log-likelihood
is given by

ln(θ) =
n∑
k=1

log p
Nobs(Tk−1)Nobs(Tk) (Tk − Tk−1;αν(W ), µ) .



18 3. Parameter estimation



Chapter 4

Future work and extensions

Regarding possible extensions of Paper I, a thorough study of the RS-model’s
applicability in forestry should be made. Note further that the RS-model here is
presented for a single species. However, it can easily be extended to include the
scenario where interaction takes place also between different species, living and
interacting within the same study region. This extension is made by letting
each species be governed by both its unique individual growth function and
mark interaction function which can be different within and between species.
Hereby the amount an individual is affected by its neighbours depends both
on the distance to the neighbours and their sizes and also on these neighbours’
species.

The motivation for the work in Paper II comes from the need of improving
the estimation of (α, µ) in the RS-model, compared to the estimators given in
[24] and one should numerically study the possible improvement achieved. A
further extension of the RS-model is given by adding a Brownian noise in the
mark growth function of the RS-model, i.e. letting the marks be controlled
by dMi(t) = dmi(t) + dBi(t) where the Bi(t)’s are independent Brownian
motions, so that it incorporates uncertainties in the mark sizes. Having made
this extension we hope to find a full likelihood structure for this multivariate
diffusion type RS-model, where L(α, µ) constitutes a part of the likelihood
structure. A further improvement of Paper II that possibly can be made is
to improve the invertibility condition given in Proposition 5 in Chapter 3 so
that asymptotic normality holds for all (α0, µ0) ∈ Θ. Furthermore, in order
to become more realistic in applications, N(t) could be extended by letting
the arrival intensity, α, and the death rate, µ, be non-constant functions of
time, or in themselves Markov chains (in the latter case N(t) thus becomes a
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hidden Markov model) whereby, possibly, results similar to the ones found in
Paper II can be established and the type of modelling done in Paper I can be
developed.



Chapter 5

Summary of Papers

Paper I: Some edge correction methods for
marked spatio-temporal point process models

In this paper we consider the RS-model where the death rate of the underlying
immigration-death process depends on each individual’s mark size, as opposed
to the approach used in [24] where the death rate was constant.

We then discuss the estimation of the parameters when the process is sampled
discretely in time. Since we let the death rate depend on the size of the individ-
ual, a new estimator is derived which takes the size changes of the individuals
into consideration. Also a new estimator is suggested for the arrival inten-
sity, which compensates for the unobserved arrivals and deaths of individuals
arriving and dying between two consecutive sample time points.

To improve the estimation of the growth and interaction parameters, three edge
correction methods for (marked) spatio-temporal point processes are proposed.
They are all based on the idea of placing an approximated expected behaviour
of the process at hand outside the study region. We then let these simulated
realisations outside the study region interact with the data during the estima-
tion. We estimate this expected behaviour by simulating realisations of the
process, under a parameter choice based on some non-edge corrected initial
estimates, and for each such realisation we generate new estimates which we
average over to get our final estimates. By rerunning the whole procedure and
using our edge corrected estimates to generate the surrounding realisations, we
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have created an iterative procedure which we stop once some given stopping
criterion is fulfilled. Furthermore, we discuss three different approaches to run
this type of edge correction and we present each of them in the context of the
RS-model. When we numerically evaluate our edge corrected estimation proce-
dures for the RS-model we see that we manage to reduce the bias substantially,
compared to when no edge correction is applied.

Paper II: Maximum likelihood estimation in a dis-
cretely observed immigration-death process

In this paper we consider the immigration-death process, N(t), and specifically
we treat the ML-estimation of the parameter pair governing it, θ = (α, µ) ∈
Θ ⊆ R2

+, when Θ is compact and N(t) is sampled discretely in time; 0 = T0 <
T1 < . . . < Tn, N(T0) = 0.

In order to find the likelihood structure of this continuous time Markov chain
we derive its transition probabilities, and further, we manage to reduce the
likelihood maximisation from a two dimensional problem to a one dimensional
problem, where we maximise the likelihood, L(α, µ) = L(α̂n(µ), µ), over the
projection of Θ onto the µ-axis.

Furthermore, by considering N(t) as a Markov jump process we have shown
that, under an equidistant sampling scheme, Tk = kt, t > 0, k = 1, . . . , n,
the sequence of ML-estimators, θ̂n(N(T1), . . . N(Tn)), is consistent and asymp-
totically Gaussian. The asymptotic normality requires the Fisher information
matrix invertability condition (log(α0+µ0)−log(α0))/µ0 ≥ 2t, where (α0, µ0) is
the underlying parameter pair. These results are further corroborated through
simulations. In the simulations we see that the estimates approach the ac-
tual parameters and also that the empirical distribution of the estimates show
strong indications of Gaussianity, even when the invertability condition is not
fulfilled. We discuss how the ML-estimator, θ̂n(N(T1), . . . N(Tn)), could be
applied to the RS-model when N(t) controls the arrivals of new marked points,
as well as their potential life-times. The motivation for this work comes from
the need of improving the estimation of α and µ in the RS-model, compared
to the estimators given in [24] and in Paper I.
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Abstract:

We propose three edge correction methods for (marked) spatio-
temporal point processes. They are all based on the idea of placing
an approximated expected behaviour of the process at hand (simulated
realizations) outside the study region which interacts with the data dur-
ing the estimation. These methods are applied to the Renshaw-Särkkä
growth-interaction model (RS-model) presented in [16]. The specific
choices of growth function and interaction function made are purely mo-
tivated by the forestry application considered here. A new estimator has
been derived for the death rate (since the distribution of the life-time of
an individual is allowed to depend on its current size) and, furthermore,
we propose a new estimator for the (Poisson process) arrival intensity
which compensates for the (unobserved) individuals arriving and dying
between two sample time points without having been observed. The pa-
rameters related to the development of the marks are estimated using
the same least-squares approach as proposed in [16]. Finally, the edge
corrected estimation methods, in the context of fitting the RS-model,
are applied to a data set of Swedish Scots pines.

Key words: Edge correction, Spatio-temporal marked point process,
Least squares estimation, Maximum likelihood estimation
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1 Introduction

Many of the spatial point structures, with appurtenant marks, which are
encountered in nature and in our surrounding environments, are in fact
results of evolutionary processes which have been developing over time.
One example of such a process is a forest stand which, from once being an
empty piece of land, grows and changes over time to become the full stand
observed at a later time point. Often these marked spatial structures are
measured only at one specific time point, thus containing no information
regarding the temporal aspects of the evolutionary process responsible
for the generation of the data. Hence, in situations such as these, tree
stands and other marked patterns are treated as realizations of marked
point processes (see e.g. [18] and [6]).

However, if one wants a more thorough understanding of the de-
velopment process and its inherent interaction mechanisms one cannot
ignore the collective development of the locations and the marks (sizes)
through time. This new scenario makes us to take on a somewhat differ-
ent approach where one treats recorded time series of marked patterns
as outcomes of the development of spatio-temporal marked point pro-
cesses. This second approach has been less studied, however. As the
aspect of time enters the model the level of complexity quickly increases
and formulating involved models, which try to cover every aspect of the
development, usually has the drawback of creating decrease in tractabil-
ity, applicability and interpretability (see e.g. [5]). It is therefore neces-
sary to formulate models which are tractable and easily interpreted but
yet manage to cover the relevant aspects of spatio-temporal modelling.
One such model is what here will be referred to as the Renshaw-Särkkä
growth-interaction model (RS-model) which has been studied in a series
of papers, most recently in [15], [13], [16] and [14].

When measurements are made in some bounded study region, the
structure of the spatial dependences and interactions existing between
individuals outside and inside the study region remains unobserved. This
phenomenon, which in particular concerns those individuals inside the
study region who are close to its boundary, is generally referred to as
edge effects. In the context of estimation, if the study region contains a
large number of individuals the edge effects may not have a large impact
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on the estimates. However, it may be the case that we deal with a small
study region which contains only a small amount of data, which often
is the case with tree data. In such cases there is a substantial risk that
the edge effects generate quite severe biases and we therefore need some
type of edge correction method when estimating the model parameters
and summary statistics of interest. In the case of non-temporal analyses
a number of methods for edge correction have been devised (see e.g. [7])
but these are not so easily generalized to the spatio-temporal setting.
Hence, our main objective here is to develop methods which correct for
these edge effects in the spatio-temporal setting.

We consider three edge correction methods which all, more or less,
are based on the same idea. Initially one makes a first estimation (with-
out edge correction) of the parameters of interest, Θ, thereby generating
a set of biased parameter estimates, Θ̂∗. Once these estimates have been
found one re-estimates the parameters, although, this time placing the
”expected behaviour” of our spatio-temporal process, under the regime
of Θ̂∗, in a buffer zone which surrounds the study region. During the
re-estimation the individuals in this buffer zone have the purpose of in-
teracting with the individuals (trees) at the boundary of the observation
window, hence affecting the new estimates. These new edge corrected
estimates will now replace Θ̂∗ and will then in turn be used to generate
a new expected behaviour of the process. By letting this new expected
behaviour take the place of the previous one we re-run the whole proce-
dure, hence producing a new set of estimates. We iteratively continue in
this fashion until we see convergence in the estimates. Now the question
still remains regarding what is meant by and how to find this so called
”expected behaviour” of the spatio-temporal process. The three edge
corrections presented in this paper are basically three ways of estimating
this expected behaviour and they are all based on successive simulations
of an interacting process living outside our study region.

All three edge corrections presented in this paper will be applied to
a slightly modified version of the RS-model (see [16]). The model consid-
ered here differs from its predecessor in that it allows the (exponential)
distribution of each individual’s life-time to vary with its size. This
slight change of the process has had the consequence that a new maxi-
mum likelihood (ML) estimator for the death rate parameter has been
derived, which takes into account that the size of an individual influences
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its viability. Furthermore, a new ML-estimator has been derived for the
arrival intensity of the immigration process (Poisson process) governing
the arrivals in time of new individuals. This new arrival intensity estima-
tor tries to compensate for the unobserved births and deaths occurring
between the time points at which the process is sampled. The parame-
ters related to the growth of the marks and the interaction between the
marks, just as in [16], will be estimated separately from the arrival in-
tensity and the death rate. [16] presents an approach where these mark
related parameters are estimated using the least-squares method and we
here choose to follow the exact same approach.

The paper is set up as follows. In Section 2 we will present the
slightly modified version of the RS-model, in which the distributions of
the life-times are allowed to vary with the sizes of the individuals. The
least squares approach used in the estimation will be presented in Sec-
tion 3 together with the new death rate estimator and the new arrival
intensity estimator mentioned above. Further, in Section 4, we present
the data set of Swedish Scots pines considered. In section 5 we describe
in detail the three previously mentioned edge correction methods devel-
oped for spatio-temporal point processes (with interacting marks). In
Section 5 we will also present the results obtained in the evaluation of
the methods and once these methods have been presented and evaluated
(in the context of the RS-model), they are applied to our Scots pine data
set.

2 The model

The spatio-temporal growth-interaction model has recently been studied
by Renshaw and Särkkä in [15] and [16] and by Renshaw et al. in [14].
We here investigate the model given in [16], with the modification that
the distribution of an individual’s lifetime is allowed to depend on its
size. The process is defined as follows.

The base of the process can be described as an immigration-death
process where the immigration part governs arrivals of new individuals
to a region of interest, W ⊆ R2, and a death part handling the number
of ’natural deaths’ occurring. Additionally, upon arrival, individuals are
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assigned locations and appurtenant marks (sizes) which change deter-
ministically over time.

More precisely, individuals enter W randomly in time according
to a homogeneous Poisson process with intensity αν(W ), α > 0, where
ν(W ) denotes the area of W . As individual i arrives at time t0i it is
assigned a location xi ∼ Uni(W ). Together with its location each in-
dividual is also given an initial mark (size) mi(t0i ) = m0

i which can be
taken as some fixed positive value (suitable when individuals are not ob-
served until they have reached a certain size). Alternatively, one could
draw m0

i from some distribution, for example the Uni(0, ε)-distribution,
ε > 0, as in [16]. Note that at this stage, at each fixed t, the point pro-
cess generated by the xi’s corresponds to a homogeneous spatial Poisson
process with intensity αt, observed on W .

Once an individual arrives atW it instantly starts changing its size
deterministically according to mi(t) = m0

i +
∫ t
t0i
dmi(s), t ≥ t0i , where

dmi(t) = f (mi(t); θ) dt+
∑
j∈Ωt
j 6=i

h (mi(t),mj(t),xi,xj ; θ) dt. (1)

Here Ωt is the index set comprising the individuals alive at time t,
f (mi(t); θ) is a function determining the individual growth of mark i
in absence of competition with other (neighbouring) individuals and
h (mi(t),mj(t),xi,xj ; θ) is a function handling the individual’s spatial in-
teraction with other individuals. Note that it may happen thatmi(t) ≤ 0
and once this happens we consider an individual to have died ’competi-
tively’, just as in [16].

As previously mentioned the so called natural deaths are governed
by the death process which is defined as a simple death process having in-
tensity function µρ(·), µ > 0, where ρ(·) is a function of the marks. This
means that as time passes an individual’s Exp(µρ(mi(t))) -distributed
remaining lifetime will change with its size. An alternative way of ex-
pressing the behaviour of the death process is to say that the conditional
probability that an individual i dies naturally during (t, t+dt) givenmi(t)
equals µρ(mi(t)) dt+o(dt). While [16] uses ρ(mi(t)) ≡ 1 we here consider
ρ(mi(t)) = 1/(1 +mi(t)), implying that individuals become more viable
as they grow; a choice motivated by our forestry applications. If, on the
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contrary, one wishes to consider individuals who become less viable as
they grow in size then, for instance, ρ(mi(t)) = mi(t)/(1 +mi(t)) would
be a better candidate.

The Von Bertalanffy-Chapman-Richards growth function has pre-
viously been used to model the development of the radii of isolated Scots
pines [10]. This growth function has as special case the logistic growth
function [14] and its shape resembles the shape of the Von Bertalanffy-
Chapman-Richards growth function fitted in [10]. We therefore consider
the logistic growth function, given by

f (mi(t); θ) = λmi(t)
(

1− mi(t)
K

)
, (2)

both a good and a tractable candidate for our purposes (see e.g. [14]
and [16]). Expression (2) contains the two parameters λ > 0 and K > 0
which, respectively, denote the growth rate of a mark and its upper
bound (carrying capacity). If we consider an individual in absence of
interacting neighbouring individuals then (1) together with (2) gives rise
to the ordinary differential equation dmi(t)/dt = λmi(t) (1−mi(t)/K)
for which the solution is given by

mi(t) =
K

1 +
(
K/m0

i − 1
)

e−λt
. (3)

Note that (3) (and thereby (2)) requires that m0
i > 0.

Just as for the individual growth function the possible choices of
spatial interaction functions are many (c.f. [8], [14] and [16] for examples
of interaction functions and related discussions). Here, we consider the
so called area interaction function, given by

h (mi(t),mj(t),xi,xj ; c, r) = −c ν (B [xi, rmi(t)] ∩B [xj , rmj(t)])
ν (B [xi, rmi(t)])

, (4)

where c ∈ R is the force of interaction and r > 0 is the scale of interaction.
Furthermore, B [xi, rmi(t)] is a closed disk centred at xi with radius
rmi(t) and it is referred to as the ’influence zone’ of the individual.
Since competition for resources takes place only within influence zones
([3] and [20]), individuals i and j will compete only when their influence
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zones overlap, i.e. when B [xi, rmi(t)] ∩ B [xj , rmj(t)] 6= ∅. This non-
symmetric soft core interaction has the effect that large marks influence
small marks more than the other way around, yet allowing the small
marks to play their part. This interaction model is more realistic in tree
modelling applications than symmetric interaction models ([14] and [16]).
Depending on the choice of parameters, this area interaction function
has the ability to generate regular as well as aggregated point patterns
(despite the underlying uniform distribution of the locations) [13].

3 Estimation

An expression of the full likelihood function is not known for this model
and although likelihood methods are generally highly desirable due to
their asymptotic properties, under certain regularity conditions (see e.g.
[2] and [19]), other more tractable estimation methods often generate
estimates of similar quality. We here follow [16] by estimating θ =
(λ,K, c, r) using the least squares approach. The death rate, µ, and
the arrival intensity, α, are estimated separately by the ML-method.

Regarding the simulation of the process, [16] presents an algorithm
where W is the unit square wrapped onto a torus and ρ(mi(t)) ≡ 1,
which is easily modified to suite any choice of ρ(mi(t)) (in particular
ρ(mi(t)) = 1/(1 + mi(t))) and any W ⊆ R2. When computing mi(t) it
should be noted that one does not have to include all j ∈ Ωt \ {i} in the
sum in expression (1), rather only those within the maximal interaction
range, i.e. j ∈ Ωt \ {i} such that ||xi − xj || ≤ 2rK.

Given that Tj and NTj , j = 1, . . . , n, respectively, denote the jth
sample time and the total number of individuals observed by time Tj ,
we let our data set be represented by
X = {X(Tj)}nj=1 =

{(
xij ,mij , Iij

)
: i = 1, . . . , NTj

}n
j=1

, where xij =
xi(Tj),mij = mi(Tj) and Iij = Ii(Tj). The functions Ii(·), i = 1, . . . , NTn ,
are indicator functions such that Ii(t) = 1 if individual i is alive at time
t and Ii(t) = 0 if the individual is dead at time t. As before xi(·) and
mi(·) denote the location and the size of individual i, respectively. Note
also that the index set comprising the individuals alive at time t can be
written as Ωt = {i ∈ {1, . . . , Nt} : Ii(t) = 1}.

7



3.1 Least squares estimation of λ, K, c, and r

Considering a set of parameters θ = (λ,K, c, r) and a configuration
X(Tj), let m̃i (Tj+1; θ,X(Tj)), i ∈ ΩTj+1 , denote the prediction of mi(j+1)

from X(Tj), based on calculating equation (1). If an individual has
m̃i (Tj+1; θ,X(Tj)) > 0 while Ii(j+1) = 0 it will be treated as having died
by natural causes during (Tj , Tj+1). Our least squares estimates are then
found by minimizing

S (θ) :=
n−1∑
j=1

∑
i∈ΩTj

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
,

with respect to θ = (λ,K, c, r) ∈ R+ × R+ × R× R+.

In order to minimize S (θ) some optimization procedure is required.
We here adopt an MCMC-type method (see [12]) where we start by
choosing initial parameter estimates, i.e. let λ = λ0 > 0, K = K0 > 0,
c = c0 ∈ R and r = r0 > 0, for which we calculate S (θ) = S (λ,K, c, r).
We also define the step sizes δλ > 0, δK > 0, δr > 0, and δc > 0. Now,
in each round we

1. randomly choose one of the parameters λ,K, r, c;

2. for our parameter of choice, say λ, let λ′ = λ + Z, for Z drawn
from Uni(−δλ, δλ);

3. calculate S (θ′) = S (λ′,K, r, c);

4. if S (θ′) < S (θ) let λ = λ′, otherwise let λ = λ;

5. return to step 1.

We continue to run the algorithm until either S (θ) is less than some
predefined minimum value, say, Smin = 10−5 or until we have not seen
any decrease in S (θ) for a predefined number of consecutive runs, say,
Nmax = 200. We let our final estimates θ̂ = (λ̂, K̂, ĉ, r̂) be given by the
last θ obtained in the algorithm above. Note that we here utilize the
information obtained in the previous step in order to stepwise get closer
to the final estimate.
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When minimizing S (θ), in the case of a simulated data set, it can
be seen that S (θ) may not attain its minimum at the true parameter set
but instead at some biased θ. This ’incorrect’ shape of S (θ) is mainly due
to edge effects (discussed further in Section 5) and dependence between
certain parameters. For instance, two different sets of c and r may result
in similar interactions, due to the form of (4). In order to control the
estimation routine, so that this risk of bias is reduced, our approach is
to find good starting values, (λ0,K0, c0, r0), (as opposed to arbitrarily
chosen ones) and to choose sensible step sizes, δλ, δK , δc, δr. The exact
forms and derivations of these are given in Appendix A.1 and A.2.

3.2 Estimation of µ

Let fLk
(tk|µ), k = 1, . . . , nT , denote the densities of the random life-

times L1, . . . , LnT (observed as t1, . . . , tnT ) of the nT individuals who
have died from natural causes by time T (determined during the min-
imization of S(θ)), given some natural death rate function µρ(mi(t)),
and let t0i(L1), . . . , t

0
i(LnT

) denote the birth times of the individuals hav-
ing these life times. Also, under the same natural death rate regime, let
S1, . . . , SmT denote the mT random lifetimes of the individuals who are
still alive at time T (observed as s1, . . . , smT ). Then the likelihood of
the death rate, µ, is (approximately) given by

L(µ) =
nT∏
k=1

fLk
(tk|µ)

mT∏
l=1

P(Sl > sl|µ)

=
nT∏
k=1

µρ
(
mi(Lk)

(
t0i(Lk) + tk

))
exp

{
−µρ

(
mi(Lk)

(
t0i(Lk) + tk

))
tk

}
×
mT∏
l=1

e−µρ(mi(Sl)
(T ))sl ,

where mi(Lk)(t) denotes the observed mark, at time t, of the individual
having life time Lk. Similarly mi(Sl)(T ) denotes the observed mark size
at time T , of the individual having lived time Sl at time T . By solving
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with respect to µ in d log (L(µ)) /dµ = 0 we get the ML-estimator

µ̂ = nT

/(
nT∑
k=1

ρ
(
mi(Lk)

(
t0i(Lk) + tk

))
tk +

mT∑
l=1

ρ(mi(Sl)(T ))sl

)
.(5)

In the case of ρ(mi(t)) ≡ 1 this reduces to the estimator, µ̂0, found in
[16]. Since we sample the process only at 0 = T0 < T1 < . . . < Tn = T ,
neither the actual death times, t0i(Lk) + tk, k = 1, . . . , nT , nor the sizes
at these death times, mi(Lk)(t0i(Lk) + tk), k = 1, . . . , nT , will be known.
Recall that we label an individual as naturally dead once the predicted
mark m̃i (Tj+1; θ,mi(Tj)) > 0 while Ii(j+1) = 0, during the calculation
of S(θ). Let Tj,i(Lk) be the last sample time at which individual i(Lk)
was observed alive and let m̃i(Lk)(Tj,i(Lk)) denote the prediction of its
mark at Tj,i(Lk). This censoring forces us to approximate (5) by

µ̂1 = nT

/(
nT∑
k=1

ρ
(
m̃i(Lk)

(
Tj,i(Lk)

)) (
Tj,i(Lk) − t0i(Lk)

)
(6)

+
mT∑
l=1

ρ(mi(Sl)(T ))
(
T − t0i(Sl)

))
.

As pointed out earlier, the process is observed only at the sampled
time points 0 = T0 < T1 < . . . < Tn = T so that the actual birth times
(and death times) of the individuals remain unknown. Conditioned on
the number of individuals arriving during (Tj−1, Tj ] the arrival times
of the individuals will be uniformly distributed on (Tj−1, Tj) (see e.g.
[9]). Thus, when estimating µ, for each interval (Tj−1, Tj ], we simulate
∆NTj−1 = NTj −NTj−1 birth times having a Uni(Tj−1, Tj) distribution,
provided that ∆NTj−1 > 0, which in turn are assigned to all individuals
being observed for the first time at Tj . The question regarding which
arrival time to assign to which individual is solved by giving the first
arrival time to the individual who is the largest at time Tj , the second
arrival time to the individual which is the second largest at time Tj and so
forth. This will have the consequence that the life times will be random.
Hence, by repeating this procedure a suitable number of times, each time
simulating new random birth times, we generate a set of estimates of µ
which are used to estimate a standard error for µ̂.
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3.3 Estimation of α

Let B(t) ≥ 0 denote the actual number of immigrants by time t and
let NTj =

∣∣∣∪nj=1ΩTj

∣∣∣, j = 1, . . . , n, denote the number of individuals
observed at sample times up to Tj . Concerning the estimation of α,
the approach of [16] is to ignore all the unobserved individuals who
arrive and die within the same time interval (Tj , Tj+1), resulting in
the immigration-increments ∆B(Tj−1) = ∆NTj−1 , j = 1, . . . , n, where
∆B(Tj−1) = B(Tj) − B(Tj−1) and ∆NTj−1 = NTj − NTj−1 . Since B(t)
is a Poisson(αν(W ))-process, its (independent) increments are
Poi (α(Tj+1 − Tj)ν(W ))-distributed. This being the scenario, an ML-
estimator for α (see [16]) is provided by

α̂0 =
NTn

Tnν(W )
. (7)

This estimator is unbiased under the hypothesis that Nobs(t) = B(t)
since E[NTn/Tnν(W )] = E[NTn ]/Tnν(W ) = αTnν(W )/Tnν(W ) = α.
This approach, however, underestimates α since we do not account for
the individuals who arrive and die in the same sample interval, (Tk, Tk−1),
(see [16]).

One possible way of partially compensating for this bias is to add
to each increment of the observed process, ∆NTj−1 , the expected number
of individuals suffering a natural death among the expected number of
individuals arriving during (Tj−1, Tj). Since the expected number of
arrivals during (Tj−1, Tj) is unknown it will be replaced by an estimate
hereof, provided by expression (7). Regarding the expected number of
natural deaths, provided by µ, it will be governed by µ̂, the estimate of
µ found in the previous subsection. The estimator takes the form

α̂ =
NTn

Tnν(W )︸ ︷︷ ︸
=α̂0

+
1

Tnν(W )

n∑
j=1

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂ρ(m0

i )∆Tj−1

)⌋
,

where bxc denotes the integer part of x and ∆Tj−1 = Tj − Tj−1. The
derivation of the estimator as well as some characteristics of it and its
relation to α̂0 can be found in Appendix A.3.
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4 Data

Before presenting the edge correction methods we will introduce the spe-
cific tree data set under consideration. The data set we consider consists
of measurements of locations and diameters at breast height (dbh) in a
west Swedish Scots pine stand1. Recordings have been made in the years
T1 = 1985, T2 = 1990, and T3 = 1996 and the approximate age of the
stand in 1985 was 22 years, thereby setting T0 = 1963. Note that only
the time intervals in which births and deaths occur are known, leaving
the actual birth and death times unknown. All measurements have been
made on a circular region of radius 10 meters where trees having reached
0.01 m dbh are included in the data set. Figure 1 illustrates plots of
the data set with scaled radii (factor 10), for improved visualization,
together with the appurtenant radius histograms.

Figure 1: Swedish Scots pines recorded in 1985 (left), 1990 (middle) and
1996 (right). Upper row: Histograms of the radii. Lower row: Locations
of the pines with scaled radii (factor 10).

Note how the size histogram tends to change as time elapses, with
an increasing number of large trees. This is further confirmed by Table
1.

1Area number ("Trakt") 1562, Stand number ("Pålslag") 2060 - The "Lilla Edet"
area.
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Tj 1984 1990 1996
NTj 13 26 43
Mean radius 0.0557 0.0619 0.0640
Radius s.d. 0.0050 0.0074 0.0096
maxi∈ΩTj

mij 0.0645 0.0775 0.0860

Table 1: Total number of trees, estimated mean, estimated standard
deviation (s.d.) and maximum of the Scots pine radii at each sample
time.

The RS-model has previously been fitted to data sets such as this
[16]. However, since the number of trees present at each time point is
fairly low it is important to take the edge effects into account, i.e. we
have to somehow, for each sample time, estimate the behaviour of the
unobserved trees surrounding our region of interest. Given this estimated
information one can then correct the estimates such that the unobserved
interaction between the region of interest and its surrounding area is
compensated for.

5 Spatio-temporal edge correction

When sampling real data, X, one usually considers all individuals within
some region A (here circular) which is part of some larger regionW . The
individuals in A interact with each other but simultaneously also with
the individuals present outside A, i.e. the individuals in B = W \ A.
So, if one were to estimate some statistics and/or model parameters
in a situation where the interaction among (neighbouring) individuals
plays a role, by only taking into consideration the individuals in A the
estimators may generate biased estimates since the interaction between
the individuals in A and those in B would be neglected. The effects of
the absence of the information regarding this interaction are commonly
referred to as edge effects. The risk that the edge effects generate biases
rapidly increases when one deals with small quantities of data in A, as
is the case with our tree data set introduced in Section 4. Hence, some
type of correction method is needed (see e.g. [4], [7] and [21]).
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A simple edge correction method would be the so called minus
sampling method (see e.g. [17]). First one finds all individuals who fall
within a buffer zone, C ⊆ A, consisting of all points x ∈ A located less
than some distance d0 > 0 from the boundary of A. Then one carries
out the estimation based only on the individuals in A \ C, yet taking
into account the locations and marks of the individuals in C. In doing
this we let the individuals in C and A \ C affect each other, yet basing
the computation of the statistic or the parameter estimate in question
only on the individuals in A \ C. However, in situations where there is
a limited amount of data in region A, as in our pine data set, removing
data is not an option and this method therefore is not applicable.

A more sensible way of doing (spatio-temporal) edge correction in
situations where there is little data available is to utilize the features
of the parametric model which one attempts to fit to the data. We
here give the idea behind the edge correction methods presented in this
section. One starts by finding initial (possibly biased) estimates of the
model parameters, Θ̂∗, based on our original data set (region A). Then,
under the regime of Θ̂∗, we wish to find the expected model behaviour
when restricted to region B (possibly conditioned on the actual data in
A), EΘ̂∗

[X[0,T ]|B]. By doing so we wish to establish the expected in-
teraction between EΘ̂∗

[X[0,T ]|B] and the individuals in region A. With
EΘ̂∗

[X[0,T ]|B] at hand we now re-estimate the model parameters from
the actual data (region A), however, this time allowing for EΘ̂∗

[X[0,T ]|B]
to interact with the actual data during the estimation. Once these new
estimates have been obtained, we let them replace Θ̂∗ and repeat the
above procedure again. By continuing in this fashion we have an iter-
ative procedure which we stop once it has fulfilled a certain predefined
convergence criterion.

The question still remains, however, regarding how to find the ex-
pected behaviour, EΘ̂∗

[X[0,T ]|B]. We here suggest three methods based
on the idea described above where EΘ̂∗

[X[0,T ]|B] is estimated from suc-
cessive simulations of a (possibly interacting) version of our parametric
model, restricted to region B. All three methods are similar to the ideas
presented by Geyer in [1] in the sense that they all use simulated data
as interacting data in region B. At each iteration step, at the sample
times T1, . . . , Tn, all three methods sample a series of simulated process
realisations which all live in region B. Thereafter each such sampled
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simulated outer realisation is combined with the actual data, X, to form
a full data set, X∗, on W = A ∪ B. From each new data set X∗ we
carry out our estimation procedure, however, as opposed to using the
full data set X∗ in the estimation we here only include X (region A) in
the calculation of the estimates/statistics while we simultaneously let the
(simulated) individuals in B interact with X (thereby influencing the es-
timates generated from X). Now, in a given iteration step, by averaging
over all estimates generated from each simulated outer realisation we get
the final estimates for that specific iteration (this is how the simulated
outer regions are considered to create an estimate of EΘ̂∗

[X[0,T ]|B] and
its interaction with X). This averaged set of estimates now replaces Θ̂∗
and by repeating the whole procedure once again we have executed the
next iteration step.

A further question, yet to be explained in detail, is the stop-
ping criterion used in the algorithms. Note that the estimates may be
vector-valued. For each of the algorithms, given that we use N simu-
lated outer realisations in each iteration, we will keep running it until
the estimates, Θ̂∗, generated in two consecutive iterations differ by at
most a distance ε > 0. Once this has occurred we save these estimates
and run the algorithm for another M − 1 iterations and average over
the M estimates hereby generated, in order to get our final estimates.
Another possible stopping criterion which may be used is the follow-
ing. We run M iterations of our edge correction, hence generating a set
of M estimates, Ξ1 = {Θ̂1

∗, . . . , Θ̂
M
∗ }, for which we estimate the vari-

ance, σ̂2
1 = ̂V ar(Ξ1), component wise. By running one more iteration

of the edge correction, thus getting a new vector of estimates, Θ̂M+1
∗ ,

we create the set Ξ2 = {Θ̂2
∗, . . . , Θ̂

M
∗ , Θ̂

M+1
∗ } for which we estimate the

variance, σ̂2
2 = ̂V ar(Ξ2). We continue in this fashion, i.e. creating

Ξi+1 = (Ξi \ {Θ̂i
∗}) ∪ {Θ̂M+i

∗ }, i = 2, 3, . . ., to get σ̂2
i+1 = ̂V ar(Ξi+1),

until ||σ̂2
i+1|| < ε for some ε > 0, where || · || is the Euclidean norm. Since

the second approach considers the variation of a large number of esti-
mates it is generally preferable to the first method. However, the first
stopping criterion is less computationally demanding than the second
one (since we have to wait M iterations before we can judge whether to
stop or not in the second one) and it does a good enough job for the
illustrative purposes we have here. Hence, in what follows we choose to
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apply the first of the two stopping criteria.

We will use the remainder of the section to present, discuss and
evaluate the different methods.

5.1 Edge correction methods

The three edge correction methods we will present are explained for
the RS-model but they may be applied to other spatial and spatio-
temporal (marked) point processes as well. In the algorithms presented
here the large rectangular window W will be wrapped onto a torus when
we generate the individuals in the outer region, B, (see e.g. [4], [15],
[11] or [21]). Recall that we sample the process as X = {X(Tj)}nj=1 ={(

xij ,mij , Iij
)

: i = 1, . . . , NTj

}n
j=1

, where xij = xi(Tj), mij = mi(Tj)
and Iij = Ii(Tj) is an indicator function such that Ii(t) = 1 if individual
i is alive at time t and Ii(t) = 0 if the individual is dead at time t.
Also recall that m̃i (Tj+1; θ,X(Tj)), i ∈ ΩTj+1 , denotes the prediction of
mi(j+1) from X(Tj) generated by equation (1), under θ = (λ,K, c, r) ∈
R+ × R+ × R× R+.

For a general process the three edge correction methods would
have been presented in such a way that the whole parameter set would
have been considered in each iteration. But in the case of the RS-model
we may in fact omit the re-estimation of µ and α since their estimates
tend not to change significantly between two iterations, despite the fact
that we anew label individuals as naturally dead once S(θ) is evaluated
for a new set of parameters θ, possibly leading to other life-times (of
the naturally dead individuals) used in the estimator generating the new
estimate µ̂ (hence also leading to a new estimate α̂). Note that below
||θ̂∗ − θ̂|| represents the Euclidean distance between θ̂∗ and θ̂.

5.1.1 Simple simulation of the outer region

We here present the first of the three methods; an algorithm which illus-
trates the basic idea on which all three methods are based.

1. Choose some small ε > 0 and positive integers M and N .
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2. Estimate the parameters from the data set X (region A) to generate
a set of (non-edge-corrected) estimates θ̂∗ =

(
λ̂∗, K̂∗, ĉ∗, r̂∗

)
.

3. For i = 1, . . . , N :

(a) Simulate the process on W = A ∪B, based on θ̂∗ and (µ̂, α̂),
and sample it at T1, . . . , Tn (where W is wrapped onto a
torus).

(b) Create the data set X∗ by removing what has been simulated
in region A (for the sample times T1, . . . , Tn) and then replac-
ing it with the data, X.

(c) Least squares estimation of θ = (λ,K, c, r) based on X∗:
Minimize

S (θ) =
n−1∑
j=1

∑
i∈ΩTj

∩{k∈Z+:xk∈A}

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
w.r.t. θ to get the estimates in this iteration, θ̂i = (λi,Ki, ci, ri).
Note that we include only the individuals in X (region A) in
the sum of squares S(θ). Also note that we must generate
the predictions m̃i (Tj+1; θ,X(Tj)) for all the individuals in
X∗ (the individuals in B in A hereby interact) each time we
evaluate S(θ) for a new θ.

4. Calculate θ̂ =

(
1
N

N∑
i=1

λi,
1
N

N∑
i=1

Ki,
1
N

N∑
i=1

ci,
1
N

N∑
i=1

ri

)
.

5. If
∣∣∣∣∣∣θ̂∗ − θ̂∣∣∣∣∣∣ < ε set θ̂(1) = θ̂ and go to step 6, otherwise go to step

3. Also set θ̂∗ = θ̂.

6. For j = 1, . . . ,M − 1:

(a) Repeat steps 3 and 4 to generate the estimates θ̂ and set
θ̂∗ = θ̂.

(b) Denote these estimates by θ̂(j) =
(
λ(j),K(j), c(j), r(j)

)
.
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7. Let the final estimates be given by

θ̂ =

(
1
M

M∑
i=1

λ(j),
1
M

M∑
i=1

K(j),
1
M

M∑
i=1

c(j),
1
M

M∑
i=1

r(j)

)
.

Since the algorithm averages over all estimates θ̂1, . . . , θ̂N in a given
iteration, it reduces the risk of having surrounding areas of too artificial
nature generating the estimates. For instance, it is possible that some
large individual(s) in B, close to the boundary of A, end up within the
interaction range of some large individual(s) in A for a given simulated
surrounding area. Such a scenario would not be encountered if the two
individuals had been interacting naturally with each other throughout
time. The algorithm above, through its averaging effect, reduces the
strong impact which an extreme situation such as the aforementioned
may have on some of the estimates.

5.1.2 Rotations of the outer region

We now consider a modifications of the previous algorithm which differs
in the way it generates the surrounding realisations. Instead of simulat-
ing several outer realisations at each iteration, the idea here is that we
instead use only one simulated outer region which we rotate a number of
times, relative to the actual data, X. By combining X with each rotation
of the outer region we get a series of full data sets on W on which we
base the estimation.

More specifically we replace step 2 and step 3 in the algorithm
presented in Section 5.1.1 by

2∗. Estimate the parameters from the data set X (region A) to generate
a set of (non-edge-corrected) estimates θ̂∗ =

(
λ̂∗, K̂∗, ĉ∗, r̂∗

)
.

Choose the angles ω1 < . . . < ωN either according to ωi+1 − ωi =
2π/N or ωi ∼ Uni(0, 2π). For all i = 1, . . . , N , perform coun-
terclockwise rotations (around the centre of A) of all locations,
xk = (xk, yk), in X:

xk(ωi) = (xk cos(ωi)− yk sin(ωi), xk sin(ωi) + yk cos(ωi)) .
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We get the rotated data sets Xω1 , . . . ,XωN .

3∗. Simulate the process on W = A ∪ B, based on θ̂∗ and (µ̂, α̂), and
sample it at T1, . . . , Tn (where W is wrapped onto a torus).

For i = 1, . . . , N :

1. Create the data set X∗ωi
by removing what has been simu-

lated in region A (for the sample times T1, . . . , Tn) and then
replacing it with the rotated data, Xωi .

2. Least squares estimation of θ = (λ,K, c, r) based on X∗ωi
:

Minimize

S (θ) =
n−1∑
j=1

∑
i∈ΩTj

∩{k∈Z+:xk(ωi)∈A}

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
w.r.t. θ to get the estimates in this iteration, θ̂i = (λi,Ki, ci, ri).
Note that we include only the individuals in X (region A) in
the sum of squares S(θ). Also note that we must generate
the predictions m̃i (Tj+1; θ,X(Tj)) for all the individuals in
X∗ωi

(the individuals in B in A hereby interact) each time we
evaluate S(θ) for a new θ.

As mentioned in step 2∗ one possibility is to use random angles.
Although this adds an extra component of randomness to the procedure
it has the drawback of allowing for situations where two or more of the
angles become nearly the same, hence increasing the risk of the type of
extreme estimates mentioned in Section 5.1.1. We therefore choose not
to evaluate the version with random angles any further.

5.1.3 Outer region influenced by the growth of the data

Instead of rotating the surrounding area to avoid estimates based on the
artificial surroundings described in Section 5.1.1 one may choose to con-
dition on the development of the individuals in X (region A) when gener-
ating the surrounding individuals in region B. Our third edge correction
method tries to overcome the problem of these artificial surroundings
by letting the actual data individuals enter region A and directly start
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growing, alongside the simulation of the surrounding individuals which
takes place in region B. During this growth the individuals in region A
are allowed to influence the development of the individuals in region B
but not the other way around. By doing this we try to mimic the actual
underlying growth scenario.

Since the actual arrival times and the exact growth patterns re-
main unknown, an individual will enter A at an arrival time simulated
uniformly over the sample time interval in which it was first observed
(jumps of a Poisson process are uniformly distributed over time intervals)
and then grow linearly between its observed sizes at the sample times so
that it (possibly) affects the growth of the simulated surrounding indi-
viduals. The exact algorithm is given by replacing steps 2 and 3 in the
algorithm of Section 5.1.1 by

2∗∗. Estimate the parameters from the data set X (region A) to generate
a set of (non-edge-corrected) estimates θ̂∗ =

(
λ̂∗, K̂∗, ĉ∗, r̂∗

)
.

For each time interval (Tj−1, Tj ], j = 1, . . . , n, we observe ∆Nj−1

new individuals. Simulate Uni(tj−1, tj)-distributed birth times
bj1 < . . . < bj∆Nj−1

and assign these to the individuals in X (re-
gion A) who have arrived in (Tj−1, Tj ] in such an order that the
largest individual gets the smallest time, going upwards until the
smallest individual has received the largest time.

3∗∗. For i = 1, . . . , N :

(a) Simulate the process, based on θ̂∗ and (µ̂, α̂), but now only
on the region B = W \A (where W is wrapped onto a torus)
and sample it at T1, . . . , Tn. Furthermore, during the simula-
tion, let each individual in X (region A) enter at its simulated
birth time, bjk, k = 1, . . . ,∆Nj−1, j = 1, . . . , n, and grow lin-
early between the sample time points until the last sample
time point, Tj , it has been observed alive. This will have the
consequence that these linearly growing individuals will have
their actual (observed) sizes at the sample times. The effect
acquired here is that the data, X, will affect the growth of the
simulated individuals in B (but not the other way around).
Refer to this (partially) simulated data set as X∗. Note that
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the only individuals in X∗ located in A are the ones found in
X.

(b) Least squares estimation of θ = (λ,K, c, r) based on X∗:
Minimize

S (θ) =
n−1∑
j=1

∑
i∈ΩTj

∩{k∈Z+:xk∈A}

Ii(j+1)

[
m̃i (Tj+1; θ,X(Tj))−mi(j+1)

]2
w.r.t. θ to get the estimates in this iteration, θ̂i = (λi,Ki, ci, ri).
Note that we include only the individuals in X (region A) in
the sum of squares S(θ). Also note that we must generate
the predictions m̃i (Tj+1; θ,X(Tj)) for all the individuals in
X∗ (the individuals in B in A hereby interact) each time we
evaluate S(θ) for a new θ.

5.2 Evaluation of the estimation methods

In order to be able to evaluate the estimation methods previously pre-
sented we simulate what we here will refer to as a ’test set’, consisting of a
simulated realisation of the process onW = [0, 30]×[0, 30] (wrapped onto
a torus), using step size dt = 0.01. We include those individuals alive at
the sample times T1 = 22, T2 = 27, T3 = 33 (the age of our pine stand
at its sample time points) who are located within the circular region
A = {y ∈W : ||y − (15, 15)|| ≤ 10}. The parameters used are K = 0.1,
λ = 0.08, c = 2, r = 2, α = 0.007, µ = 0.02, and m0

i = 0.05. In order
to check the accuracy of our estimation techniques we re-estimate the
parameters generating the test set. We do not estimate m0

i , but instead
treat it as known since in forest stands one mostly knows the minimal
tree radius from which measurements are being made (see Section A.1
for its estimation). The specific choice of parameters used to generate
the test set was made since it generates realisations which resemble our
tree data set. However, all methods we here apply have been evaluated
for a range of different parameter values and the results obtained have
been similar to those obtained for the test set.

If one gradually decreases the size of W in a series of edge cor-
rections the distance on the torus between some of the individuals in B
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gradually decreases. This is particularly the case for those individuals
located close to and on opposite sides of the boundary of A (the indi-
viduals interacting the strongest with X). In this gradual decrease these
individuals start interacting more strongly with each other and thereby
increasingly inhibit each other’s growths, resulting in a gradual decrease
in the edge correcting effect. Hence, a small W results in a slow con-
vergence to the final estimates, whereas, a very large W makes the edge
corrections computationally demanding. When we edge correct the re-
estimation of the test set parameters we have chosen W to be a square
region with side length 25, a choice purely based on trials.

Standard error estimates are obtained by re-running the edge cor-
rection procedure of choice a large number of times. However, in situ-
ations where this is computationally demanding, some resampling tech-
nique may be used to obtain the standard error estimates. For each
edge correction method we have considered 10 different estimation runs
where each of these uses the lastM = 4 iterations, once ||θ̂∗−θ̂|| < ε = 1,
in order to create the averaged final estimates and in each iteration we
have considered N = 3 simulated surroundings (N = 3 angles in the case
of the rotation-correction). Furthermore, on the basis of trials we have
concluded that for each simulated surrounding it is sufficient to run the
edge corrected estimation procedures until no change in S(θ) has been
observed for Nmax = 50 consecutive runs.

Table 2 presents both the initial estimates (see Appendix A.1),
the final estimates found when applying no edge correction (stopping
criterion for the minimisation of S(θ), Nmax = 3000) and the estimates
found for each of the edge corrections. The estimates of µ and α are given
by µ̂ = 0.0113 and α̂ = 0.00637 ((µ̂− µ)/µ = −43.5% and (α̂− α)/α =
−9.0%).
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λ K c r

True value 0.08 0.1 2 2
Initial 0.1006 0.0933 0.007 2.75
Bias 0.0206 −0.0067 −1.9930 0.75
Bias (%) 25.8% -6.7% -99.7% 37.5%
Uncorrected 0.0822 0.0995 5.4991 1.8301
Bias 0.0022 −0.0005 3.4991 −0.1699
Bias (%) 2.80% -0.50% 174.96% -8.50%
Simple
Est. mean 0.0822 0.0996 2.7978 1.8694
Bias 0.0022 -0.0004 0.7978 -0.1306
Bias (%) 2.80% -0.43% 39.89% -6.53%
Est. s.e. 0.0001 0.0001 0.7755 0.1572
Rotations
Est. mean 0.0821 0.0995 2.8364 1.7614
Bias 0.0021 -0.0005 0.8364 -0.2386
Bias (%) 2.58% -0.46% 41.82% -11.93%
Est. s.e. 0.0004 0.0001 0.5439 0.1416
Influenced growth
Est. mean 0.0823 0.0996 2.7499 1.7926
Bias 0.0023 -0.0004 0.7499 -0.2074
Bias (%) 2.86% -0.36% 37.50% -10.37%
Est. s.e. 0.0005 0.0002 0.5422 0.1437

Table 2: Test set estimates: Initial estimates, non-edge corrected esti-
mates (Nmax = 3000) and estimates obtained through the different edge
corrections. We have run each edge correction 10 times in order to get
the estimated mean values and standard errors (s.e.). In each run we
have used N = 3 (simulated surroundings/rotations), Nmax = 50 (stop-
ping criterion for the minimisation of S(θ)), ε = 1 (convergence criterion)
and M = 4 (number of final iterations).

As one can see in the uncorrected estimation, the biases for the
estimates of λ, K, r and α are fairly moderate. This, however, cannot be
said about c and µ and regarding the under-estimation of µ there is little
to be done. The large over-estimation obtained for c in the uncorrected
estimation, however, is mainly a result of the edge effects which we cor-
rect for. Furthermore, we also see that the small biases of the estimates of
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λ and K tend not to change significantly from the uncorrected estimates.
The influenced growth correction manages to reduce the bias of ĉ slightly
more than the other two methods but this comes with a trade off in the
form of an increased under-estimation of r, compared to both the uncor-
rected estimates and the simple correction estimates (the main reason
being the strong dependence between c and r). A possible reason that
the influenced growth generally performs the best in the estimation of c
is that it actually takes into consideration the (approximate) behaviour
of the actual data and it therefore restricts the previously mentioned
artificial surroundings more than the other two methods. The simple
correction is the only one of the three methods which reduces the r-bias
but it is also the method giving the highest standard error estimates for
c and r. As we see the rotation correction performs slightly worse than
the other two methods but it has the advantage of reducing the com-
putational time compared to the other two methods. By increasing the
number of rotations one may be able to decrease the bias, but this comes
with an increase in computation time. If no edge corrections are used,
the points of the (data) point patterns likely will have less close neigh-
bours than in reality. This will result in too large estimates of c, which
in turn will result in more regular point patterns since c to a large extent
controls the regularity of the point patterns generated by the process.

Table 3 gives us the results obtained after the first iteration. Note
that the large bias generated by the uncorrected estimate of c directly is
reduced by each of the methods.

Since our main concern is correcting the estimate of c, choosing
ε = 1 more or less implies that the finalM iterations start once |ĉ∗− ĉ| <
ε = 1. By increasing ε a bit one may think that the final estimates
get very different. However, since a substantial reduction takes place
already after the first iteration and since we average over the final M
iterations, if we were to choose ε a bit larger than 1 this in fact does not
change the results drastically. Note further that one can start with a
given ε and then increase it after a couple of iterations if the fluctuations
between consecutive iterations are larger than initially believed (i.e. if
||θ̂∗ − θ̂|| < ε does not occur). The average number of iterations that
were needed in order to reach ||θ̂∗ − θ̂|| < ε = 1 in the 10 runs are 2.6
for the simple correction, 3.2 for the rotation correction and 2.8 for the
influenced growth correction.
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Iteration 1 λ K c r

True value 0.08 0.1 2 2
Uncorrected 0.0822 0.0995 5.4991 1.8301
Bias 0.0022 -0.0005 3.4991 -0.1699
Bias (%) 2.80% -0.50% 174.96% -8.50%
Simple 0.0822 0.0995 3.3362 1.7991
Bias 0.0022 -0.0005 1.3362 -0.2009
Bias (%) 2.81% -0.46% 66.81% -10.05%
Rotations 0.0822 0.0995 3.1342 1.8770
Bias 0.0022 -0.0005 1.1342 -0.1230
Bias (%) 2.72% -0.46% 56.71% -6.15%
Influenced growth 0.0821 0.0996 3.6874 1.8697
Bias 0.0021 -0.0004 1.6874 -0.1303
Bias (%) 2.64% -0.44% 84.37% -6.54%

Table 3: Results obtained for the edge corrected estimation of the test
set parameters after the first iteration. We have used N = 3 (simu-
lated surroundings/rotations) and Nmax = 50 (stopping criterion for the
minimisation of S(θ)).
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5.3 Fitting the model to the Scots pines

In Section 4 we introduced our data set, a stand of Swedish Scots pines
measured at three time points. In Table 4 we give the estimates found
after having run the non-edge corrected estimation procedure, together
with the results obtained in the three edge corrected estimation pro-
cedures. Just as for the test set, in the uncorrected estimation we
have run the estimation until no change in S(θ) has been observed for
Nmax = 3000 consecutive runs whereas in all the corrected ones we have
used Nmax = 50. In the edge corrections we have chosen W to be a
square region with side length 25 and for each edge correction method
we have considered 10 different estimation runs where each of these uses
the lastM = 4 iterations to create its final estimates and in each iteration
we have considered N = 3 simulated surroundings/rotations. However,
here we have chosen the less restrictive value 2 for ε. In the uncorrected
estimation we found α̂ = 0.004148 and µ̂ = 0 and these will be taken as
final estimates for α and µ.

Note that, as expected, for all three methods, the edge corrected
estimates are quite close to the uncorrected ones, except for c. The
estimated values of c show that the point patterns are less regular than
the uncorrected estimate suggests.

6 Discussion

We have recalled the Renshaw-Särkkä growth-interaction model (RS-
model) – a spatio-temporal point process with interacting marks. The
death rate of the underlying immigration-death process here depends
on each individual’s mark size, as opposed to the approach used in [16]
where the death rate is constant.

We have then discussed the estimation of the parameters of the
model when the process is sampled discretely in time. The parameters
which control the marks’ growth and interaction, λ, K, c, and r, are
estimated using the same least-squares approach as proposed in [16].
Related to the least-squares estimation, we specify how we minimise
the sum of squares numerically and discuss some issues related to that.
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λ K c r

Initial 0.0350 0.0860 0.0195 8.0
Uncorrected 0.0790 0.0943 6.3314 3.7325
Simple
Est. mean 0.0781 0.0949 3.1626 4.0680
Est. s.e. 0.0019 0.0017 1.0327 0.6351
Rotations
Est. mean 0.0794 0.0944 3.1010 3.9396
Est. s.e. 0.0025 0.0015 0.7992 0.3802
Influenced growth
Est. mean 0.0778 0.0954 3.5054 3.6151
Est. s.e. 0.0026 0.0016 0.7911 0.7229

Table 4: Parameter estimates found for the Scots pines: Initial estimates,
non-edge corrected estimates (Nmax = 3000) and estimates obtained
through the different edge corrections. We have run each edge correc-
tion 10 times in order to get the estimated mean values and standard
errors (s.e.). In each run we have used N = 3 (simulated surround-
ings/rotations), Nmax = 50 (stopping criterion for the minimisation of
S(θ)), ε = 2 (convergence criterion) and M = 4 (number of final itera-
tions).
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Parallel to this, a new estimator is derived which takes the size changes
of the individuals into consideration. Also a new estimator is suggested
for the arrival intensity, which compensates for the unobserved arrivals
and deaths of individuals arriving and dying between two consecutive
sample time points.

We finally propose three edge correction methods for (marked)
spatio-temporal point processes which all are based on the idea of plac-
ing an approximated expected behaviour of the process at hand outside
the study region. We estimate this expected behaviour by simulating
realizations of the process, under a parameter choice based on some non-
edge corrected initial estimates, and for each such realisation we generate
new edge corrected estimates which we average over to get our edge cor-
rected estimates.

We finally fit the RS-model to a data set of Swedish Scots pines. A
thorough study of the RS-model’s applicability in forestry will be made
later. Regarding further developments, note that the RS-model here is
presented for a single species. However, it can easily be extended to
include the scenario where interaction takes place also between different
species, living and interacting within the same study region. This ex-
tension is made by letting each species be governed by, on one hand, its
own individual growth function and, on the other hand, its own mark
interaction function. Hereby the amount an individual is affected by
its neighbours depends, not only on the distance to the neighbours and
the sizes of these neighbours, but also on the species of the neighbours.
Another interesting extension would be to add a (Brownian) noise in
the mark growth function of the RS-model, for example by letting the
marks be governed by dMi(t) = dmi(t) + dBi(t), where the Bi(t)’s are
independent Brownian motions, so that it incorporates uncertainties in
the mark sizes. We then hope to find a full likelihood structure for this
multivariate diffusion type RS-model.
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A Appendix

A.1 Initial estimates for λ, K, c and r

Since K represents the carrying capacity, an upper bound of the marks,
it is sensible to use the largest observed mark value as starting value K0.

Having found K0 we can find an initial estimate of λ. Since the
least interaction among individuals takes place at early time points, i.e.
dmi(t) ≈ f(mi(t))dt for small t, by neglecting the interaction term in (1)
one ends up with expression (3). By solving w.r.t. λ in (3), where K0

replaces K and the largest observed individual at the first sample time
point, mmax, replaces mi(t), we get as initial estimate of λ

λ0 = − 1
T1

log

m0
i (1− mmax

K0
)

mmax(1− m0
i

K0
)

 .

Recall thatm0
i > 0 is the initial size which, if unknown, can be estimated

by the smallest size of all individuals observed throughout all time points.

In the case of r and c, however, no obvious choices of initial values
are present. What is possible, though, is to construct appropriate bounds
for r, r ∈ [rl, ru], which control the optimization and then choose the
starting value for r to be, say, r0 = (ru + rl)/2. Once this is done we
choose our starting value for c to be

c0 = arg max
c∈R

S (λ0,K0, r0, c) .
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There is a natural lower bound for r, namely rl = 1, since two trees
cannot grow inside each other. To determine the upper bound, consider
the mark correlation function of a stationary marked point process in R2

(see [7]), defined as

k(r) =
Eor[mimj ]

µ2
m

for r > 0.

Here µm is the mean mark of the process and Eor[mimj ] denotes the
conditional expectation of the mark-product of a pair of (marked) points
of the process, given the existence of two such points distance r apart.
It is a measure of dependence between the marks of two arbitrary points
of the process a distance r apart. If, for some r, k(r) = 1 then the
marks having inter-point distance r are uncorrelated whereas values of
k(r) smaller than 1 indicate inhibition (competition) at distance r and
k(r) > 1 is a sign of mutual stimulation (points benefit from having
inter-point distance r). Figure 2 illustrates idealized shapes of k(r).

Denote by r∗ the smallest value of r > 0 for which k(r) = 1.
This is the shortest inter-point distance at which there are indications of
uncorrelated marks. In the context of the RS-model, for a fixed time t,
r∗ indicates where the expected influence zone ends, i.e. E[rmi(t)] ≤ r∗.
Consider now a time point at which the marked point pattern generated
by the RS-model has stabilised, here taken as the last sample time point
available, Tn. We get that

r ≤ ru = r∗/E[mi(Tn)].

We estimate the mean mark at time Tn, E[mi(Tn)], by m̄(Tn), the
average size of the marks present at time Tn. In the case of our test set
(see Section 5.2) the mark correlation plot at T3 = 33 is given by Figure
2. The mean mark size for T3 = 33 is given by m̄(T3) = 0.0743 and, as
can be seen in Figure 2, r∗ ≈ 1/3, implying that ru = r∗/m̄(T3) ≈ 4.5
thus leading to r0 = 2.75.

A.2 Choosing step-lengths

Another issue of importance here are the step-lengths δλ, δK , δc, δr. The
simplest way of choosing δλ, δK , and δr is to choose δλ = λ0, δK = K0,
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Figure 2: Left: Idealized shapes of different mark correlation functions.
Mutual stimulation (dashed), uncorrelated marks (solid) and inhibition
(dotted). Right: Mark correlation plot of our test set (see Section 5.2)
at time T3 = 33 (λ = 0.08, K = 0.1, c = 2, r = 2, α = 0.007, µ = 0.02)
where r∗ = 1/3.

and δr = r0 − rl since this way we allow for the estimates of these pa-
rameters to reach their minimum values. However, since c ∈ R, choosing
δc = c0 is not in any way self-evident. Choosing a too small δc would be
more or less equivalent to keeping it fixed which certainly is not desir-
able. Although letting δc be too big may result in slower convergence,
trials have shown that it does not affect the convergence of the esti-
mation as much as keeping it too small. Since c and r do not have as
natural choices of initial estimates as λ and K do and because of the
strong dependence between them, new starting values for c and r can be
found by starting the minimization, keeping λ = λ0 and K = K0 fixed,
and then run the procedure a few times (say Nmax = 50) with δc chosen
big. This generates new estimates of c and r which in turn can be used
as new starting values, c0 and r0, and we can then choose δc to be this
new c0, which we keep throughout the remaining estimation procedure
(including the edge correction parts).
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A.3 The estimator for α

When constructing our α-estimator we wish to somehow compensate for
the unobserved individuals who arrive and die during the same interval
(Tj−1, Tj), j = 1, . . . , n.

For each j = 1, . . . , n, let NTj be the number of individuals ob-

served at sample times up until Tj , i.e. NTj =
∣∣∣∪ji=1ΩTi

∣∣∣, where Ωt

consists of the indices of the individuals alive at t and |A| denotes the
cardinality of a set A. Further, let B(t) ≥ 0 denote the number of ar-
rivals toW by time t. Instead of considering ∆B(Tj−1) = ∆NTj−1 , where
∆B(Tj−1) = B(Tj) − B(Tj−1) and ∆NTj−1 = NTj −NTj−1 , and let our
likelihood be based on these independent Poi (α(Tj − Tj−1))-distributed
increments, as was done in [16], we here consider

∆B(Tj−1) = ∆NTj−1 (8)

+ E

∆B(Tj−1)∑
k=1

1 {Individual k dies in (Tj−1, Tj)}


︸ ︷︷ ︸

I

,

where 1 {·} is an indicator function. In other words, we add to the
observed increments the expected number of individuals arriving and
dying during (Tj−1, Tj).

Let η∆Tj−1

k denote the lifetime of individual k ∈ {1, . . . ,∆B(Tj−1)}
in (8) and recall that m0

k is its (deterministic) initial size and t0i ∼
Uni(Tj−1, Tj) its arrival-time (since the jumps of a Poisson process oc-
curring in a given time interval are uniformly distributed on that interval
[9]). By the lack of memory property of the exponential distribution and
by Fubini’s theorem the expectation in expression (8) can be written as
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I = E

∆B(Tj−1)∑
k=1

1
{
Tj−1 < t0k + η

∆Tj−1

k < Tj

} (9)

= E

E

∆B(Tj−1)∑
k=1

1
{
Tj−1 < t0k + η

∆Tj−1

k < Tj

} ∣∣∣∣∣∆B(Tj−1)


= E

∆B(Tj−1)∑
k=1

1
∆Tj−1

∫ Tj

Tj−1

E
[
1
{
Tj−1 < xk + η

∆Tj−1

k < Tj

}]
dxk


= E

∆B(Tj−1)∑
k=1

1
∆Tj−1

∫ Tj

Tj−1

P
(
η

∆Tj−1

k < Tj − Tj−1

)
dxk


≈ E

∆B(Tj−1)∑
k=1

(
1− e−µρ(m0

i )∆Tj−1

)
= αν(W )∆Tj−1

(
1− e−µρ(m0

i )∆Tj−1

)
.

Since the actual µ is unknown we will replace it by its estimate, µ̂,
found in expression 6. Furthermore, expression (9) also contains α, the
parameter we want to estimate. We deal with this by replacing α by an
initial estimate, namely, α̂0 = NTn/(Tnν(W )), given by (7).

In order for expression (8) to be treated as an actual Poisson pro-
cess increment it needs to be integer valued, hence

∆B(Tj−1) = ∆NTj−1 +
⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂ρ(m0

i )∆Tj−1

)⌋
, (10)

where bxc denotes the integer part of x. For convenience we will denote
the right hand side of (10) by H(∆Tj−1,∆NTj−1 , µ̂, NTn). We end up
with the likelihood function

L(α) =
n∏
j=1

P
(
∆B(Tj−1) = H(∆Tj−1,∆NTj−1 , µ̂, NTn)

)
=

n∏
j=1

e−αν(W )∆Tj−1(αν(W )∆Tj−1)H(∆Tj−1,∆NTj−1
,µ̂,NTn )

H(∆Tj−1,∆NTj−1 , µ̂, NTn)!
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and by evaluating d log(L(α))/dα = 0 we finally arrive at the estimator

α̂ =
NTn

Tnν(W )︸ ︷︷ ︸
=α̂0

+
1

Tnν(W )

n∑
j=1

⌊
NTn

∆Tj−1

Tn

(
1− e−µ̂ρ(m0

i )∆Tj−1

)⌋
. (11)

Since µ̂ > 0, ∆Tj−1 > 0 and ρ(x) > 0, for all x > 0, and since
f(x) = 1− e−x is strictly increasing and bounded below by 0 and above
by 1, for x > 0, it is clear that α̂ is increasing with µ̂ and

α̂0 = lim
µ̂→0

α̂|µ̂ < α̂ < lim
µ̂→∞

α̂|µ̂ = α̂0 +
1

Tnν(W )

n∑
j=1

⌊
NTn

∆Tj−1

Tn

⌋
.

For a random variable Z = X + Y it holds that Var(Z) = Var(X) +
Var(Y ) + 2 Cov(X,Y ). Let now X = α̂0 and let Y be the sum in expres-
sion (11). Since X and Y are positively correlated (both contain NTn)
and since Var(Y ) ≥ 0 it is clear that Var(α̂) > Var(α̂0) for all µ̂ > 0.
This implies that the trade off for using α̂ instead of α̂0 is a higher
standard error. Furthermore, as α̂ is increasing with µ̂, so is Var(α̂).

Table 5 gives us the estimated means and standard errors (s.e.) of
α̂ (and α̂0) for a few values of µ̂, based on 30 simulated realisations from
the same parameters as the test set (recall that α = 0.007; see Section
5.2).

In estimations of µ based on simulated realisations it has been
observed that there seems to be no indication of over-estimation of µ.
As one can see in Table 5, on average α̂0 under-estimates α more than
α̂ does when µ̂ ≤ µ, in the above scenario indicating that α̂ is preferred
to α̂0. Note also the smaller standard error of α̂0.
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α = 0.007 Est. mean Est. s.e. Est. bias (%)
α̂0 = limµ̂→0 α̂|µ̂ 0.0060 0.0008 -0.00099 (-14%)
α̂ (µ̂ = 0.0002) 0.0060 0.0008 -0.00099 (-14%)
α̂ (µ̂ = 0.002) 0.0061 0.0009 -0.00089 (-13%)
α̂ (µ̂ = 0.02) 0.0074 0.0011 0.00044 (6%)
α̂ (µ̂ = 0.1) 0.0102 0.0014 0.00320 (46%)
α̂ (µ̂ = 0.2) 0.0111 0.0016 0.00411 (59%)
α̂ (µ̂ = 5) 0.0119 0.0017 0.00489 (70%)
limµ̂→∞ α̂|µ̂ 0.0119 0.0017 0.00489 (70%)

Table 5: Estimated means, standard errors (s.e.), and biases of α̂ (and
α̂0), based on 30 simulated realisations from the same parameters as the
test set (see Section 5.2; recall that α = 0.007, µ = 0.02, λ = 0.08,
K = 0.1, c = 2, and r = 2).
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1 Introduction

In the case of continuous time Markov chains, the likelihood theory based on
continuous observations of sample paths has been covered quite extensively in
the literature (see e.g. [2, 3, 13]; see [10] for inference related to branching pro-
cesses). However, in the case of maximum likelihood (ML) estimation based
on processes sampled according to a discrete sampling scheme much less is
done. But in later years general results for the asymptotic properties of ML-
estimators based on discretely sampled Markov jump processes have emerged
(see [5]) and these can be used to establish properties such as strong consis-
tency and asymptotic normality of the ML-estimators for discretely sampled
Markov chains.

In this paper we are considering the ML-estimation of the parameters of
a particular discretely sampled Markov chain, namely the immigration-death
process - sometimes also referred to as the M/M/∞-queue (see e.g. [1] or [9];
see [8] for the problem of parameter estimation for immigration-death models
when only death times are observed). It is a useful tool which can be used for
describing, not only a queue (where the customers arrive according to a Poisson
process and get served immediately upon arrival during iid exponential times),
but also the dynamics of a population size. Regarding the latter application,
one such instance is the role of the immigration-death process in the Renshaw-
Särkkä growth-interaction model (RS-model) (see [16], [17] and [4]), which has
been used to study, among other things, the development of forest stands in
time and space [17]. More specifically, the RS-model is a spatio-temporal
marked point process, X(t) = {[Xi,mi(t)] : i ∈ Ωt}, t ≥ 0, Xi ∼ Uni(W ),
W ⊆ Rd. Here Ωt is an index set giving the points present in W at time t and
the marks, mi(t) ≥ 0, are allowed to interact with each other while growing.
The arrivals of new marked points, [Xi,mi(t)], and the potential lifetimes of
these marked points (they may also die from competition) are governed by
an immigration-death process (see e.g. [11] and [18] for general treatments of
spatial point process statistics and e.g. [7], [15], and [19] for an overview of
spatio-temporal point processes).

We start by finding the transition probabilities of the immigration-death
process which give us the likelihood function. Furthermore, we derive its
jump intensity function and its transition kernel when viewed as a Markov
jump process (Section 2). Treating the process as a Markov jump process, we
then proceed to derive the strong consistency and the asymptotic normality
of the ML-estimators obtained by sampling the process at equidistant sample
times (Section 3). We finally evaluate the ML-estimators numerically (Section
3) and finish off by assessing how these ML-techniques can be used in the
RS-model (Section 4).
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2 The immigration-death process

The immigration-death process, {N(t)}t≥0, is a time-homogeneous irreducible
continuous-time Markov chain where the possible states for which transitions
i → j are possible are supplied by the state space E = {0, 1, . . .}. It is
governed by the parameter pair θ = (α, µ) which we henceforth, for technical
reasons, assume to take values in some parameter space Θ which is a compact
subset of R2

+. One way of viewing {N(t)}t≥0 is to treat it as a special case
of a birth-death process for which the infinitesimal transition probabilities are
given by

pij(t; θ) := P (N(h+ t) = j|N(h) = i) =






λit+ o(t) if j = i+ 1
1− (λi + µi)t+ o(t) if j = i
µit+ o(t) if j = i− 1
o(t) if |j − i| > 1,

where the birth rates are given by λi = α, i = 0, 1, . . ., and the death rates
are given by µi = iµ, i = 0, 1, . . ., ([9], p. 268-270). Within this framework
the interpretation of {N(t)}t≥0 is the following. By letting the arrivals of new
individuals to a population occur according to a Poisson process with intensity
α and upon arrival assigning to all individuals independent and exponentially
distributed lifetimes with mean 1/µ, N(t) gives us the number of individuals
alive at time t. Another possibility is to view it as an M/M/∞ queuing
system; each customer (arriving according to a Poisson process with intensity
α) is being handled by its own server so that its sojourn time in the system is
exponential with intensity µ and independent of all other customers.

Being a Markov process, the finite dimensional distributions of {N(t)}t≥0
are controlled by its transition probabilities, pij(t; θ). The exact form of
pij(t; θ) is given by the following proposition.

Proposition 1. The transition probabilities of the immigration-death process
are given by

pij(t; θ) =
e−

α
µ (1−e−µt)

j!

j�

k=0

�
α

µ

�k �j

k

�
e−(j−k)µt

(1− e−µt)j−2k−i

i!

(i− (j − k))!

=
j�

k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k), (2.1)

where i, j ∈ E = N, θ = (α, µ) ∈ Θ ⊆ R2
+, f

Poi(ρ)
(·) is the Poisson density

with parameter ρ = α
µ

�
1− e−µt

�
, and f

Bin(i,e−µt)
(·) is the Binomial density
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with parameters i and e−µt. Moreover, we have that

E[N(s+ t)|N(s) = i] = i e−µt+ρ (2.2)

E[N2(s+ t)|N(s) = i] = i(i− 1) e−2µt+(1 + 2ρ)i e−µt+ρ2 + ρ.

Proof. Given the probability generating function (p.g.f.), GX (s) = E
�
sX

�
, of

a discrete random variable X it possible to find P (X = k) by evaluating

P (X = k) =
1

k!

∂k

∂sk
GX (s)

����
s=0

. (2.3)

Hence, one possible way of finding pij(t; θ) = P (N(h+ t) = j|N(h) = i), h ≥
0, is to evaluate expression (2.3) for the p.g.f. of (N(h+ t)|N(h) = i), G (s) :=
GN(h+t)|N(h)=i (s), which is given by ([9], p. 299)

G (s) =
�
1 + (s− 1) e−µt

�i
exp

�
(α/µ)(s− 1)

�
1− e−µt

��

=
�
1 + (s− 1) e−µt

�i
eρ(s−1), (2.4)

where we for convenience have defined ρ = α
µ (1− e−µt).

Considering the first three derivatives G(k)(s) = ∂kG(s)/∂sk, k = 1, 2, 3,
we get

G(1)(s) = G(s)

�
i

eµt−1 + s
+ ρ

�
(2.5)

G(2)(s) = G(s)

�
i(i− 1)

(eµt−1 + s)2
+ 2ρ

i

eµt−1 + s
+ ρ2

�

G(3)(s) = G(s)

�
i(i− 1)(i− 2)

(eµt−1 + s)3
+ 3ρ

i(i− 1)

(eµt−1 + s)2
+ 3ρ2

i

eµt−1 + s
+ ρ3

�
.

This suggests that

G(j)(s) = G(s)
j�

k=0

ρk
�
j

k

�
1

(eµt−1 + s)j−k

i!

(i− (j − k))!
(2.6)

and thus

pij(t; θ) =
G(j)(0)

j!

=

�
1− e−µt

�i
e−ρ

j!

j�

k=0

ρk
�
j

k

�
1

(eµt−1)j−k

i!

(i− (j − k))!

=
e−

α
µ (1−e−µt)

j!

j�

k=0

�
α

µ

�k �j

k

�
e−(j−k)µt

(1− e−µt)j−2k−i

i!

(i− (j − k))!
.
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Now we prove (2.6) by induction. Assume that (2.6) holds for j and let
a(s) = eµt−1 + s. It follows from (2.5) and (2.6) that

G(j+1)(s) = G(1)(s)
j�

k=0

ρk
�
j

k

�
1

a(s)j−k

i!

(i− (j − k))!

−G(s)
j�

k=0

ρk
�
j

k

�
j − k

a(s)j+1−k

i!

(i− (j − k))!

= G(s)

�
i

a(s)
+ ρ

� j�

k=0

ρk
�
j

k

�
1

a(s)j−k

i!

(i− (j − k))!

−G(s)
j�

k=0

ρk
�
j

k

�
j − k

a(s)j+1−k

i!

(i− (j − k))!
.

Thus,

G(j+1)(s)

G(s)
=

j�

k=0

ρk
�
j

k

�
i− (j − k)

a(s)j+1−k

i!

(i− (j − k))!

+
j�

k=0

ρk+1

�
j

k

�
1

a(s)j−k

i!

(i− (j − k))!

=
j�

k=0

ρk
�
j

k

�
1

a(s)j+1−k

i!

(i− (j + 1− k))!

+
j+1�

k=1

ρk
�

j

k − 1

�
1

a(s)j+1−k

i!

(i− (j + 1− k))!

=
j�

k=0

ρk
�
j + 1

k

�
1

a(s)j+1−k

i!

(i− (j + 1− k))!

j + 1− k

j + 1

+
j+1�

k=1

ρk
�
j + 1

k

�
1

a(s)j+1−k

i!

(i− (j + 1− k))!

k

j + 1

=
j+1�

k=0

ρk
�
j + 1

k

�
1

a(s)j+1−k

i!

(i− (j + 1− k))!

�
j + 1− k

j + 1
+

k

j + 1

�

which implies that (2.6) holds for j + 1, and therefore completes the proof by
induction.

To describe pij(t; θ) as a sum of products of Poisson densities and Binomial
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densities, recall that ρ = α
µ (1− e−µt) and rewrite pij(t; θ) as

pij(t; θ) =
j�

k=0

ρk e−ρ

k!

e−(j−k)µt

(1− e−µt)j−k−i

k!
�j
k

�
i!

j!(i− (j − k))!

=
j�

k=0

ρk e−ρ

k!

�
i

j − k

��
e−µt

�j−k
(1− e−µt)i−(j−k)

=
j�

k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) =
i∧j�

k=0

f
Poi(ρ)

(j − k)f
Bin(i,e−µt)

(k).

Also, the first two moments of (N(h+ t)|N(h) = i) are given by

E[N(h+ t)|N(h) = i] = lim
s↑1

G(1)(s) = i e−µt+ρ

E[N2(h+ t)|N(h) = i] = lim
s↑1

[G(1)(s) +G(2)(s)]

= i e−µt+ρ+ i(i− 1) e−2µt+2ρi e−µt+ρ2

= i(i− 1) e−2µt+(1 + 2ρ)i e−µt+ρ2 + ρ.

We will make use of the following recursive expression for the transition
probabilities.

Corollary 1. The transition probabilities can be expressed recursively as

pi(j+1)(t; θ) =
1

j + 1

�
i− j

eµt−1
+ ρ

�
pij(t; θ) +

1

j + 1

ρ

eµt−1
pi(j−1)(t; θ)

=
1

(j + 1)(eµt−1)

��
i− j + ρ(eµt−1)

�
pij(t; θ) + ρpi(j−1)(t; θ)

�
,

where i, j ∈ E = N and ρ = α
µ

�
1− e−µt

�
, and consequently

pi(j−1)(t; θ)

pij(t; θ)
=

(j + 1)(eµt−1)

ρ

pi(j+1)(t; θ)

pij(t; θ)
+

j − i

ρ
− eµt+1.

Proof. From the proof of Proposition 1 we have that

G(j+1)(s) =

�
i− j

a(s)
+ ρ

�
G(j)(s)

+
j!

a(s)

G(s)

j!

j�

k=0

kρk
�
j

k

�
1

a(s)j−k

i!

(i− (j − k))!
,
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where a(s) = eµt−1 + s, and by noting that

pij(t; θ)k :=
j�

k=0

kf
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
j�

k=1

k
ρk e−ρ

k!

�
i

j − k

��
e−µt

�j−k
(1− e−µt)i−(j−k)

l=k−1
= ρ

j−1�

l=0

ρl e−ρ

l!

�
i

j − 1− l

��
e−µt

�j−1−l
(1− e−µt)i−(j−1−l)

= ρpi(j−1)(t; θ).

we get that

pi(j+1)(t; θ)

pij(t; θ)
=

j!

(j + 1)!

G(j+1)(0)

G(j)(0)

=
1

j + 1

�
i− j

eµt−1
+ ρ+

j!

G(j)(0)(eµt−1)
pij(t; θ)k

�

=
1

j + 1

�
i− j

eµt−1
+ ρ+

ρ

eµt−1

pi(j−1)(t; θ)

pij(t; θ)

�

=
1

j + 1

�
i− j

eµt−1
+ ρ

�
+

1

j + 1

ρ

eµt−1

pi(j−1)(t; θ)

pij(t; θ)

=
ρ

(j + 1)(eµt−1)

�
i− j

ρ
+ eµt−1 +

pi(j−1)(t; θ)

pij(t; θ)

�
.

In practice it is often natural to condition on N(0) = 0. In this situa-
tion one can easily find that the marginal distribution of N(t) is given by the
Poisson distribution with parameter ρ(t) = α

µ

�
1− e−µt

�
since P (N(t) = j) =

�∞
i=0 pij(t; θ)P (N(0) = i) = p0j(t; θ) = e−ρ(t) ρ(t)j/j!. Furthermore, in this

case we get that N(t)
d→ Poi(α/µ) as t → ∞ since limt→∞ ρ(t) = α/µ. Ex-

tending this, the following proposition (see [1]) establishes the ergodicity of
{N(t)}t≥0 (which together with the irreducibility gives us its positive recur-
rence) and its invariant distribution.

Proposition 2. The immigration-death process is ergodic with invariant dis-
tribution given by the Poisson distribution with mean α/µ.

Note that this invariant distribution is unique due to the positive recur-
rence, and it is also the same as its asymptotic distribution since every asymp-
totic distribution is an invariant distribution.
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On the interpretation of pij(t; θ) = P (N(h+ t) = j|N(h) = i; θ) =�i∧j
k=0 fPoi(ρ)(j − k)fBin(i,e−µt)(k), note that

fPoi(ρ)(j − k) = P(j − k new arrivals during (h, h+ t))

fBin(i,e−µt)(k) = P(k of the i individuals alive at time h survive (h, h+ t)),

thus implying that pij(t; θ) expresses the sum of the probabilities of all pos-
sible ways in which we can decrease i individuals to j individuals. Further-
more, when i ≤ j, we get that pij(t; θ) simply represents the convolution of
a Bin(i, e−µt)-density and a Poi(ρ)-density, hence expressing the probabil-
ity that the sum of i iid Exp(e−µt)-distributed random variables added to a
Poi(ρ)-distributed random variable takes the value j.

A further characterisation of {N(t)}t≥0 which we will exploit when we
establish the asymptotic properties of the ML-estimators is to consider
{N(t)}t≥0 as a Markov jump process.

Proposition 3. Let θ = (α, µ) ∈ Θ ⊆ R2
+. {N(t)}t≥0 is a Markov jump

process with state space E = N, jump intensity function

λ(θ; i) = α1 {i = 0}+min{α, iµ}1 {i > 0} i ∈ E,

and transition kernel

r(θ; i, j) =
1

α+ µi
(α1{j = i+ 1}+ µi1{j = i− 1}) i, j ∈ E.

Proof. Let {N(t)}t≥0 be adapted to some suitable filtered probability space�
Ω,F , {Ft}t≥0 ,P

�
. Since a continuous-time Markov chain by definition is a

Markov jump process ([12], p. 243) it holds that {N(t)}t≥0 is a Markov jump
process with state space E = N.

Let 0 = τ0 < τ1 < τ2 < . . . (limn→∞ τn = ∞) be the jump-times of N(t) =
N(0) +

�∞
k=1 Yk1{τk ≤ t}, having appurtenant jump-sizes Y1, Y2, . . ., where

Yk = N(τk)−N(τk−1) ∈ {−1, 1}, k = 1, 2, . . . (we consider a right continuous
version of {N(t)}t≥0). This is the embedded jump chain of {N(t)}t≥0.

Since {N(t)}t≥0 is a Markov jump process, each increment τk − τk−1 will
be independent of Fτk−1 and, given that N(τk−1) = i, it holds that τk −
τk−1 is Exp (λ(θ; i))-distributed. Noticing that the lifetimes of all individuals
generated by N(t), ξ1, ξ2, . . ., are iid Exp(µ)-distributed and also that an inter-
jump-time, τα, of the (Poisson) arrival process, B(t), is Exp(α)-distributed we

get that τk−τk−1
d
= min{τα, ξ1, . . . , ξi} for i ∈ Z+, and clearly τk−τk−1

d
= τα if

i = 0. Since the minimum of n independent exponential random variables with
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parameters λ1, . . . ,λn is exponentially distributed with parameter
�n

i=1 λi (see
[6]) this implies that the jump intensity function is given by

λ(θ; i) =
�
Eθ[τk − τk−1|N(τk−1) = i]

�−1

= α1 {i = 0}+min{α, iµ}1 {i > 0} , i ∈ E,

where Eθ[·] denotes expectation under the parameter pair θ = (α, µ). Applying
again the arguments above we get that

r (θ; i, i+ 1) = P (N(τk) = i+ 1|N(τk−1) = i)

= P (τα < min (ξ1, . . . , ξi) |N(τk−1) = i)

=

� ∞

0

�
1− e−αy

�
fmin(ξ1,...,ξi)|N(τk−1) (y|i) dy

= 1− E
�
e−αmin(ξ1,...,ξi)

���N(τk−1) = i
�

= 1−
�
1 +

α

µi

�−1

=
α

α+ µi
,

since a random variableX ∼ Exp(γ) has moment generating functionmX(t) =
E[etX ] = (1 − t/γ)−1. Therefore the transition kernel of the Markov jump
process, r(θ; ·) = {r(θ; i, j) : i, j ∈ E}, is determined by

r(θ; i, j) = P (N(τk) = j|N(τk−1) = i)

= 1{j = i+ 1}P (N(τk) = i+ 1|N(τk−1) = i)

+ 1{j = i− 1, x > 0} (1− P (N(τk) = i+ 1|N(τk−1) = i))

=
1

α+ µi
(α1{j = i+ 1}+ µi1{j = i− 1}) ,

for all i, j ∈ E since |N(τk)−N(τk−1)| = 1 for all k = 1, 2, . . .

3 Maximum likelihood estimation of α and µ

Assume now that we sample {N(t)}t≥0 as N1, . . . , Nn at the respective times
0 = T0 < T1 < . . . < Tn. Since the likelihood function for θ = (α, µ) ∈ Θ,
Ln(θ), is given by the joint density of the distribution of (N(T1), . . . , N(Tn)),
by the Markov property of N(t) it can be factorised into a product of tran-
sition probabilities, i.e. Ln(θ) = P(N(T1) = N1)

�n
k=2 pNk−1Nk

(t; θ). Since by

assumption we condition on N(T0) = 0, the log-likelihood will be given by

ln(θ) =
n�

k=1

log pNk−1Nk
(∆Tk−1; θ), (3.1)
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where ∆Tk−1 = Tk−Tk−1. In the case of equidistant sampling, i.e. ∆Tk−1 = t
for each k = 1, . . . , n, the log-likelihood takes the form

ln(θ) =
�

i,j∈E
Nn(i, j) log pij(t; θ), (3.2)

where Nn(i, j) =
�n

k=1 1 {(Nk−1, Nk) = (i, j)}.
Hereby, for each of the sampling schemes, the likelihood estimator of θ =

(α, µ) ∈ Θ (obtained by replacing Nk by N(Tk), k = 0, 1, . . ., in the expressions
(3.1) and (3.2)) will be defined as

(α̂n, µ̂n) = θ̂n = argmax
θ∈Θ

ln(θ). (3.3)

3.1 The ML-estimators

The ML-estimator for θ = (α, µ) is given by solving the system of equations

�
∂
∂α ln(θ) =

�
i,j∈E Nn(i, j)

∂
∂α log pij(t; θ) = 0

∂
∂µ ln(θ) =

�
i,j∈E Nn(i, j)

∂
∂µ log pij(t; θ) = 0.

(3.4)

As no closed form solution can be found by solving theses likelihood equations,
numerical methods have to be employed in order to get ML-estimates. What
is possible, however, is to express the estimator of α as a function of both
the sample and the parameter µ, hence reducing the maximisation to a one
dimensional problem.

Proposition 4. The ML-estimator, θ̂n = (α̂n, µ̂n), is found by maximising
ln(α̂n(µ), µ) over Θ2 ⊆ R+ (the projection of Θ onto the second dimension of
R2), i.e.

µ̂n = arg max
µ∈Θ2

ln(α̂(µ), µ) (3.5)

α̂n = α̂n (µ̂n) ,

where α̂n(µ) is given by expression (3.6).

Proof. The derivatives ∂
∂α log pij(t; θ) and ∂

∂µ log pij(t; θ) are given, respec-
tively, by (A.1) and (A.2) in Appendix A. Plugging these into the system
of equations (3.4) we first get

1

α

�

i,j∈E
Nn(i, j)

pij(t; θ)k
pij(t; θ)

− ρ

α

=n� �� ��

i,j∈E
Nn(i, j) = 0
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which gives us (recall that ρ = α
µ

�
1− e−µt

�
)

�

i,j∈E
Nn(i, j)

pij(t; θ)k
pij(t; θ)

=
α

µ

�
1− e−µt

�
n.

Furthermore,

0 =
ρτ

(1− e−µt)µ

=n� �� ��

i,j∈E
Nn(i, j)−

µt

(1− e−µt)µ

�

i,j∈E
Nn(i, j)(j − i e−µt)

+
τ − µt

(1− e−µt)µ

�

i,j∈E
Nn(i, j)

pij(t; θ)k
pij(t; θ)

which gives us (recall that τ = 1− e−µt−µt e−µt)

�

i,j∈E
Nn(i, j)

pij(t; θ)k
pij(t; θ)

=
ρτn− µt

�
i,j∈E Nn(i, j)(j − i e−µt)

µt− τ
.

By putting these two expressions together we get

α = α̂n(µ) :=
µ/(1− e−µt)

2
�
1−e−µt

µt − e−µt
�
− 1

1

n

�

i,j∈E
Nn(i, j)(j − i e−µt)

=
µ

2
�
1−e−µt

µt − e−µt
�
− 1

1

n

�
e−µtNn −N0

1− e−µt
+

n�

k=0

Nk

�
. (3.6)

3.2 Asymptotic properties of the ML-estimators

We now wish to establish the consistency and the asymptotic normality of the
sequence of estimators (3.3). We do this by showing that the immigration-
death process fulfils the conditions under which the related theorems in [5]
hold. We first present the theorems of [5] and then give the results for
{N(t)}t≥0 as corollaries to the theorems.

The general setting is the following. Let X(t) be a Markov jump
process with countable state space E, having transition kernel r(θ; ·) =
{r(θ; i, j) : i, j ∈ E} and intensity function λ(θ; i), which are controlled by the
parameter θ = (θ1, ..., θp) ∈ Θ ⊆ Rp. We let θ0 denote the actual value of
the underlying controlling parameter. Assume now that we sample X(t) at
the times Tn = nt, n ∈ N, t > 0 (equidistant sampling). From the Markov
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property of X(t) the observation chain, Z = (Zn)
∞
n=1 ≡ (X(Tn))

∞
n=1, will also

be a Markov chain having transition kernel q(θ; ·) = {q(θ; i, j) : i, j ∈ E} =
{P(X(Tn) = j|X(Tn−1) = i) : i, j ∈ E}. The log-likelihood of (Z1, . . . , Zn),
given that Z0 = X(0) = z, is given by

ln(θ) =
n�

k=1

log q(θ;Zk−1, Zk) =
�

i,j∈E
Nn(i, j) log q(θ; i, j),

where Nn(i, j) =
�n

k=1 1 {(Zk−1, Zk) = (i, j)}. The likelihood estimator will
be defined as

θ̂n = argmax
θ∈Θ

ln(θ).

In the sequel we denote the partial derivatives of a function ψ(·) of θ by
Duψ = ∂ψ/∂θu and D2

uvψ = ∂2ψ/∂θu∂θv, u, v = 1, ..., p.
Consider now the following series of conditions put on (Zn)n∈N.

General conditions (G):

Call any function γ(·) defined on [0,∞) a continuity modulus if it is in-
creasing and limx→0 γ(x) = γ(0) = 0.

(G1) Under θ0 the Markov chain (Zn)n∈N has a unique invariant proba-
bility measure πθ0 having moments of order a, for some a ≥ 1, i.e.�

i∈E |i|aπθ0(i) < ∞.

(G2) For any πθ0-integrable function φ : E → R, the following strong law of
large numbers holds:

1

n

n�

k=1

φ(Zk)
a.s.−→

�

i∈E
φ(i)πθ0(i) as n → ∞.

(G3) Θ is a compact subset of Rp.

(G4) For all θ ∈ Θ, r(θ; ·) is an irreducible kernel and λ(θ; ·) is positive.

(G5) For some constant C and for all i, j ∈ E,

| log q(θ0; i, j)| ≤ C(1 + |i|a/2 + |j|a/2)

(G6) There exists a continuity modulus γ(·) such that, for all i, j ∈ E and
θ, θ

� ∈ Θ,

| log q(θ; i, j)− log q(θ
�
; i, j)| ≤ γ(|θ − θ

� |)(1 + |i|a/2 + |j|a/2).
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Identifiability condition (I):

(I) For any θ �= θ0, q(θ; ·) �= q(θ0; ·).

Normality conditions (N):
Assume that θ0 is an interior point of Θ and that there is a neighbourhood

Λθ0 of θ0 such that, for any θ ∈ Λθ0 and for any (i, j) ∈ E2, the mapping
θ �→ g(θ; i, j) := log q(θ0; i, j)− log q(θ; i, j) is twice continuously differentiable
and satisfies the following conditions for all u, v = 1, . . . , p :

(N1) (i) max
�
|Du log q(θ0; i, j)|, |D2

uv log q(θ0; i, j)|
�
≤ C(1+ |i|a/2+ |j|a/2);

(ii) there exists a continuity modulus σuv such that, for θ ∈ Λθ0 , (i, j) ∈
E2,

|D2
uv log q(θ0; i, j)−D2

uv log q(θ; i, j)| ≤ σuv(|θ0−θ|)(1+|i|a/2+|j|a/2);

(N2) for every i ∈ E, the family of transition kernels {q(θ; i, ·) : θ ∈ Λθ0} is
regular at θ0, in the sense that

(i)
�

j∈E
(Du log q(θ0; i, j)) q(θ0; i, j) = 0;

(ii)

Iuv(θ0; i) =
�

j∈E
(Du log q(θ0; i, j)) (Dv log q(θ0; i, j)) q(θ0; i, j)

= −
�

j∈E

�
D2

uv log q(θ0; i, j)
�
q(θ0; i, j).

(N3) The matrix I(θ0; i) = (Iuv(θ0; i))u,v=1,...,p is the Fisher information ma-
trix at θ0 associated with the family of distributions {q(θ; i, ·) : θ ∈ Λθ0}.
The (asymptotic) Fisher information of (Zn)n∈N,

I(θ0) =
�

i∈E
I(θ0; i)πθ0(i),

is invertible.

Theorem 1. Let assumptions (G) and (I) hold. Then the maximum likelihood
estimator θ̂n is strongly consistent, i.e. θ̂n

a.s.−→ θ0 as n → ∞.

Theorem 2. Let assumptions (G) and (N) hold. Then
√
n
�
θ̂n − θ0

�
con-

verges in distribution to the p-dimensional zero-mean Gaussian distribution
with covariance matrix I(θ0)−1, as n → ∞, for every weakly consistent esti-
mator θ̂n of θ0.
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In the case of {N(t)}t≥0 these theorems translate into the following corol-
laries. We start with the consistency (Corollary 2) and then show the asymp-
totic normality (Corollary 3).

Corollary 2. Let Θ be any compact subset of R2
+. Then the maximum likeli-

hood estimator for the immigration-death process satisfies

(α̂n, µ̂n)
a.s.−→ (α0, µ0)

as n → ∞, where (α0, µ0) ∈ Θ is the true parameter pair.

Corollary 3. Let Θ be any compact subset of R2
+. Furthermore, assume that

(log(α0 + µ0) − log(α0))/µ0 ≥ 2t. Then, as n → ∞,
√
n ((α̂n, µ̂n)− (α0, µ0))

converges in distribution to the two-dimensional zero-mean Gaussian distribu-
tion with covariance matrix, I(θ0)−1, given by expression (3.11).

Remarks: Note that the results in these corollaries still may hold for N(t)
under a different sampling scheme than equidistant sampling, although the
approach used to prove the results may be different.

Regarding the condition given in Corollary 3, g(α0, µ0) :=
log(α0+µ0)−log(α0)

µ0
≥ 2t, by the mean value theorem we get that

1
α0+µ0

< g(α0, µ0) < 1
α0
. This means that the condition will be ful-

filled if 2t(α0 + µ0) ≤ 1, which is to say that we may sample the process
relatively sparsely when both α0 and µ0 are small and, conversely, we have
to follow a tight sampling scheme when max(α0, µ0) becomes large. In other
words, if there is a lot of activity going on in the process we need to monitor
it more frequently, compared to when arrivals and deaths occur rarely, in
order to ascertain that the condition is fulfilled. Note further that when α0

increases, with µ0 kept fixed, we are required to sample the process more
densely in order for the condition to hold (limα0→∞ g(α0, µ0) = 0) and when
we decrease α0, with µ0 fixed, it is more likely that the condition is fulfilled
(limα0→0 g(α0, µ0) = ∞). Furthermore, when we let µ0 increase while keeping
α0 fixed, we move towards a situation where the condition will not be fulfilled
(limµ0→∞ g(α0, µ0) = 0). When we decrease µ0, with α0 fixed, so that N(t) is
approaching a Poisson process, we get that limµ0→0 g(α0, µ0) = 1/α0 so that
the condition will be fulfilled provided that α0 is not too big (note, however,
that when N(t) is a Poisson process, by exploiting its Lévy process properties
and the central limit theorem, one can easily show that the ML-estimator,
α̂n, is asymptotically Gaussian).

Proof of Corollary 2. Let Θ be a compact subset of R2
+ (hence (G3) holds),

where (α, µ) = θ ∈ Θ. Furthermore, consider the observation chain of
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{N(t)}t≥0, (Zn)n∈N, where Zn = N(Tn) = N(nt), and define q(θ; i, j) :=
pij(t; θ), i, j ∈ E = N, which constitute the transition kernel q(θ; ·).

By Proposition 2 the invariant distribution of {N(t)}t≥0 under θ0 =
(α0, µ0), πθ0 , is given by the Poi(α0/µ0)-distribution. Since πθ0 = πθ0P(t)
for any t ≥ 0, where P(t) = (pij(t))i,j∈N is the matrix of transition proba-
bilities for the time increment t, we see that πθ0(·) = P (Poi(α0/µ0) ∈ ·) is
also the invariant probability measure for (Zn)n∈N, which has moments of all
orders a ∈ N. Hence, condition (G1) is fulfilled.

Due to the positive recurrence of {N(t)}t≥0 (provided by Proposition 2),
by an ergodic theorem (e.g. Theorem 1.10.2 in [14]) condition (G2) will be
fulfilled.

By Proposition 3 the Markov jump process {N(t)}t≥0 has intensity
λ(θ; i) = α1 {i = 0} + min{α, iµ}1 {i > 0} which clearly is positive for all
θ ∈ Θ. Since {N(t)}t≥0 is irreducible if and only if its embedded jump chain,
(Yn)n≥1, is irreducible ([12], p. 244) we get that its transition kernel r(θ; ·) =
{r(θ; i, j) : i, j ∈ E}, r(θ; i, j) = 1

µi+α (α1{j = i+ 1}+ µi1{j = i− 1}), is ir-
reducible for all θ ∈ Θ and thereby condition (G4) is fulfilled.

Since q(θ0; i, j) > 0 for all i, j ∈ E we have that | log q(θ0; i, j)| < ∞ for
all i, j ∈ E. Furthermore, the free choice of a ∈ N allows us to create an
arbitrary large bound (1 + |i|a/2 + |j|a/2), when i, j ∈ {2, 3, . . .}. Hence, by
choosing, say, C = maxi,j∈{0,1} |q(θ0; i, j)| we have shown that condition (G5)

holds since there are a ∈ N such that | log q(θ0; i, j)| ≤ C(1 + |i|a/2 + |j|a/2).
We now wish to show that there is a continuity modulus, γ(·), such that

| log q(θ; i, j)− log q(θ
�
; i, j)| ≤ γ(|θ − θ

� |)(1 + |i|a/2 + |j|a/2),

for all θ, θ
� ∈ Θ and for all i, j ∈ E. Denoting by Θ1 and Θ2 the projections

of Θ onto the first and the second dimension, respectively, by the compact-
ness of Θ ⊆ R2

+ we have that αmin := inf Θ1 > 0, αmax := supΘ1 < ∞,
µmin := inf Θ2 > 0 and µmax := supΘ2 < ∞. By using the bounds given by
expressions (A.3) and (A.4), we get that

|D1 log q(θ; i, j)| < t+
j

α
≤ t+

j

αmin
< ∞

|D2 log q(θ; i, j)| <
αt2 + (3j + i)t

1− e−µt
≤ αmaxt2 + (3j + i)t

1− e−µmint
< ∞.

Letting Λ = (αmin,αmax)× (µmin, µmax) we have, by the mean value theorem
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and the Schwarz-inequality, for θ, θ
� ∈ Θ and some 0 < c < 1, that

���log q(θ; i, j)− log q(θ
�
; i, j)

��� (3.7)

≤
���θ − θ

�
���
���∇ log q

�
(1− c)θ + cθ

�
; i, j

����

=
���θ − θ

�
���
�

(D1 log q((1− c)θ + cθ� ; i, j))2 + (D2 log q((1− c)θ + cθ� ; i, j))2

≤
���θ − θ

�
���
�
|D1 log q((1− c)θ + cθ

�
; i, j)|+ |D2 log q((1− c)θ + cθ

�
; i, j)|

�

≤
���θ − θ

�
��� sup
θ,θ�∈Λ̄

�
|D1 log q(θ; i, j)|+ |D2 log q(θ

�
; i, j)|

�

<

�
t+

j

αmin
+

αmaxt2 + (3j + i)t

1− e−µmint

� ���θ − θ
�
��� (1 + |i|a/2 + |j|a/2),

where Λ̄ denotes the closure of Λ. Since the free choice of a ∈ N (the order of
the moment of πθ0) allows us to make (1 + |i|a/2 + |j|a/2) as large as required,
provided that i ≥ 2 and/or j ≥ 2, we only have to take into consideration the
cases where i, j ∈ {0, 1}. Since the right hand side of (3.7) is maximised when
i = j = 1 (given that i, j ∈ {0, 1}) we choose as continuity modulus

γ(|θ − θ
� |) =

�
t+

1

αmin
+

αmaxt2 + 4t

1− e−µmint

�
|θ − θ

� |

and we have shown that condition (G6) holds.
To check the identifiability condition (I) consider the probability gener-

ating (p.g.f.) function of (N(h + t)|N(h) = i) under θ ∈ Θ, Gi (s; θ), given
by (2.4). If Gi (s; θ) �= Gi (s; θ0), for θ �= θ0, it follows that {pij(t; θ) : i, j ∈
E} �= {pij(t; θ0) : i, j ∈ E}. We check whether the assumption 1 = Gi(s;θ0)

Gi(s;θ)
contradicts any of the three possible scenarios where θ �= θ0. Note that
GX(1) = E[1X ] = 1 for all random variables X so we assume s �= 1.

1. Assume α �= α0 and µ = µ0:

1 =
Gi (s; θ0)

Gi (s; θ)
= exp

�
(α0 − α)(s− 1)

�
1− e−µt

�
/µ

�

holds iff α0 = α.

2. Assume α = α0 and µ �= µ0:
Since (1− e−x)/x is a strictly decreasing function

1 =

�
1 + (s− 1) e−µ0 t

1 + (s− 1) e−µt

�i

� �� �
=1 iff µ0=µ or i=0

exp

�
αt(s− 1)

�
1− e−µ0 t

µ0t
− 1− e−µt

µt

��

can hold iff µ0 = µ.
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3. Assume α �= α0 and µ �= µ0:

1 =

�
1 + (s− 1) e−µ0 t

1 + (s− 1) e−µt

�i

� �� �
=1 iff µ0=µ or i=0

exp

�
(s− 1)

�
α0

µ0
(1− e−µ0 t)− α

µ
(1− e−µt)

��

� �� �
=(∗)

.

If α0
µ0

= α
µ we get (∗) = 0 iff µ = µ0 (by the monotonicity of 1 − e−x),

and if 1− e−µt = η(1− e−µ0t), where η = α0µ
αµ0

> 0, we also must require
µ = µ0.

Hence, there is a one-to-one correspondence between θ and the kernel q(θ; ·).
The corollary hereby follows from Theorem 1.

Proof of Corollary 3. Let Θ be a compact subset of R2
+ and let θ0 = (α0, µ0)

be an interior point of Θ. Furthermore, consider the observation chain of
{N(t)}t≥0, (Zn)n∈N, where Zn = N(Tn) = N(nt), and define q(θ; i, j) :=
pij(t; θ), i, j ∈ E = N. From Corollary 2 we know that the estimators (3.3),

θ̂n = (α̂n, µ̂n), are strongly consistent and that the general conditions (G)
hold.

Since the expression for q(θ; i, j), given by (2.1), contains the term e−ρ

where ρ = α
µ

�
1− e−µt

�
, we get that, for all (i, j) ∈ E2 and for all θ ∈ Θ,

log q(θ; i, j) is infinitely many times continuously differentiable w.r.t. θ. This
in particular implies that the mapping θ �→ g(θ; i, j) := log q(θ0; i, j) −
log q(θ; i, j) is twice continuously differentiable for all θ in some neighbour-
hood Λθ0 ⊆ Θ of θ0.

Regarding condition (N1) we only have to be concerned with the cases
where i, j ∈ {0, 1} since we may choose a as any positive integer, implying
that (1 + |i|a/2 + |j|a/2) can be made as large as required when i ≥ 2 and/or
j ≥ 2.

Expressions (A.3), (A.4), (A.6), (A.10) and (A.13) in the appendix give us
bounds for |Du log q(θ0; i, j)| and |D2

uv log q(θ0; i, j)|, u, v = 1, 2, from which
we get (recall from the proof of Corollary 2 the definitions of Θ1, Θ2, αmin,
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αmax, µmin and µmax)

max
(i,j)∈{0,1}2

|D1 log q(θ0; i, j)| < max
j∈{0,1}

sup
α∈Θ1

�
j

α
+ t

�
=

1

αmin
+ t =: C1 < ∞,

max
(i,j)∈{0,1}2

|D2 log q(θ0; i, j)| < max
(i,j)∈{0,1}2

sup
µ∈Θ2

sup
α∈Θ1

�
αt2 + (3j + i)t

1− e−µt

�

=
αmaxt2 + 4t

1− e−µmint
=: C2 < ∞,

max
(i,j)∈{0,1}2

|D2
11 log q(θ0; i, j)| < max

(i,j)∈{0,1}2
sup
α∈Θ1

j + 2(j + αt)2

α2

<
1 + 2(1 + αmaxt)2

α2
min

=: C11 < ∞,

max
(i,j)∈{0,1}2

|D2
12 log q(θ0; i, j)| = max

(i,j)∈{0,1}2
|D2

21 log q(θ0; i, j)|

< max
(i,j)∈{0,1}2

sup
µ∈Θ2

sup
α∈Θ1

�
(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j)

+
j + i

µ
t+

(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

�

<
2t

αmin
+ αmaxt

3 +
2t

(1− e−µmint)αmin
+ 2t2

+
2

µmin
t+

(1 + αmaxt)(4 + αmaxt)

(1− e−µmint)αmin
t =: C12 < ∞,

max
(i,j)∈{0,1}2

|D2
22 log q(θ0; i, j)| <

< max
(i,j)∈{0,1}2

sup
µ∈Θ2

sup
α∈Θ1

��
αt2 + (3j + i)t

1− e−µt

�2

+ t2
�
j2 + 2(j + i)j +

�
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

�
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
��

<

�
αmaxt2 + 4t

1− e−µmint

�2

+ t2
�
6 + 10αmaxt+ α2

maxt
2 + µ2

maxt
2(6 + 3αmaxt)

�

=: C22 < ∞,
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so that by choosing C = max{C1, C2, C11, C12, C22} we have that

max
�
|Du log q(θ0; i, j)|, |D2

uv log q(θ0; i, j)|
�
< C(1 + |i|a/2 + |j|a/2),

for all u, v = 1, 2 and all (i, j) ∈ E2.
By the mean value theorem and the Schwarz-inequality it holds that

��D2
uv log q(θ; i, j)−D2

uv log q(θ0; i, j)
��

|θ − θ0|
≤

��∇D2
uv log q ((1− c)θ + cθ0; i, j)

��

≤ |D1D
2
uv log q((1− c)θ + cθ0; i, j)|

+ |D2D
2
uv log q((1− c)θ + cθ0; i, j)|

where θ and θ0 are in some open subset of R2 (in particular θ, θ0 ∈ Λθ0) and
0 < c < 1. Since, for all θ ∈ Θ, by expressions (A.15), (A.16), (A.17) and
(A.18), there are bounds such that (by the compactness of Θ)

D3
111 log q(θ; i, j) < B111(α, µ, t, j, i) < ∞

D3
112 log q(θ; i, j) < B112(α, µ, t, j, i) < ∞

D3
122 log q(θ; i, j) < B122(α, µ, t, j, i) < ∞

D3
222 log q(θ; i, j) < B222(α, µ, t, j, i) < ∞,

by choosing the continuity indices according to

σ11(z) = max
(i,j)∈{0,1}2

�
sup
µ∈Θ2

sup
α∈Θ1

B111(α, µ, t, j, i) + sup
µ∈Θ2

sup
α∈Θ1

B112(α, µ, t, j, i)

�
z

σ12(z) = σ21(z)

= max
(i,j)∈{0,1}2

�
sup
µ∈Θ2

sup
α∈Θ1

B112(α, µ, t, j, i) + sup
µ∈Θ2

sup
α∈Θ1

B122(α, µ, t, j, i)

�
z

σ22(z) = max
(i,j)∈{0,1}2

�
sup
µ∈Θ2

sup
α∈Θ1

B122(α, µ, t, j, i) + sup
µ∈Θ2

sup
α∈Θ1

B222(α, µ, t, j, i)

�
z

we have shown that condition (N1) holds.
Turning now to condition (N2), with ρ0 = α0

µ0
(1 − e−µ0t) and τ0 = 1 −

e−µ0t−µ0t e−µ0t, we have that

(D1 log q(θ0; i, j)) q(θ0; i, j) =
ρ0
α0

�
pi(j−1)(t; θ0)− pij(t; θ0)

�

and

(D2 log q(θ0; i, j)) q(θ0; i, j) =
ρ0τ0

(1− e−µ0t)µ0

�
pij(t; θ0)− pi(j−1)(t; θ0)

�

−
�
j − i e−µ0t

�
t

1− e−µ0t
pij(t; θ0) +

ρ0t

1− e−µ0t
pi(j−1)(t; θ0)
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so that, by considering expression (2.2) and noticing that

∞�

j=0

pij(t; θ0) =
∞�

j=0

pi(j−1)(t; θ0) =
∞�

j=0

pi(j−2)(t; θ0) = 1,

we find that

�

j∈E
(D1 log q(θ0; i, j)) q(θ0; i, j) =

ρ0
α0




∞�

j=0

pi(j−1)(t; θ0)−
∞�

j=0

pij(t; θ0)



 = 0

and
�

j∈E
(D2 log q(θ0; i, j)) q(θ0; i, j) =

=
ρ0τ0

(1− e−µ0t)µ0




∞�

j=0

pij(t; θ0)−
∞�

j=0

pi(j−1)(t; θ0)





− t

1− e−µ0t

� ∞�

j=0

jpij(t; θ0)

� �� �
(2.2)
= ρ0+i e−µ0t

−i e−µ0t

�
+

ρ0t

1− e−µ0t

∞�

j=0

pi(j−1)(t; θ0) = 0.

Since

D2
uv log q(θ0; i, j) =

D2
uvq(θ0; i, j)

q(θ0; i, j)
− (Du log q(θ0; i, j)) (Dv log q(θ0; i, j)) ,

checking the condition

Iuv(θ0; i) =
�

j∈E
(Du log q(θ0; i, j)) (Dv log q(θ0; i, j)) q(θ0; i, j)

= −
�

j∈E

�
D2

uv log q(θ0; i, j)
�
q(θ0; i, j).

is equivalent to checking

�

j∈E
D2

uvq(θ0; i, j) = 0,

which, according to expressions (A.7), (A.11) and (A.14), holds for all combi-
nations of u, v ∈ {1, 2}. Thus condition (N2) holds.
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Considering expressions (B.1), (B.2) and (B.3), we get that the Fisher
information matrix at θ0 associated with {q(θ; i, ·) : θ ∈ Λθ0} is given by

I(θ0; i) =

�
I11(θ0; i) I12(θ0; i)
I21(θ0; i) I22(θ0; i)

�

= A(θ0) +B(θ0)i+ C(θ0)




∞�

j=0

�
pi(j−1)(t; θ)

�2

pij(t; θ)
− 1





where

A(θ0) =

�
0 − t

µ0

− t
µ0

α2
0µ0t(2τ0−µ0t)

ρ0µ4
0

�
, B(θ0) =

�
0 0

0 α0t2 e−µ0t

µ0ρ0

�
,

C(θ0) =




ρ20
α2
0

ρ0(µ0t−τ0)
µ2
0

ρ0(µ0t−τ0)
µ2
0

α2
0(τ0−µ0t)

2

µ4
0



 ,

which implies that the (asymptotic) Fisher information is given by

I(θ0) = A(θ0) +B(θ0)
�

i∈E
iπθ0(i) + C(θ0)




�

i,j∈E

�
pi(j−1)(t; θ0)

�2

pij0(t; θ)
πθ0(i)− 1





= A(θ0) +
α0

µ0
B(θ0) + (Ξ− 1)C(θ0), (3.8)

where Ξ =
�

i,j∈E
(pi(j−1)(t;θ0))

2

pij(t;θ0)
πθ0(i). It holds that I(θ0) is invertible iff

det(I(θ0)) =
t2

µ2
0

�
ρ0(1 + e−µ0t) (Ξ− 1)− 1

�
�= 0,

which is to say

Ξ �= 1 + ρ0(1 + e−µ0t)

ρ0(1 + e−µ0t)
. (3.9)

By Corollary 1 we get that

Ξ =
�

i,j∈E

�
(j + 1)
α0
µ0

e−µ0t

pi(j+1)(t; θ0)

pij(t; θ0)
+

j − i

ρ0
− (eµ0t−1)

�
pi(j−1)(t; θ0)πθ0(i)

=
1

α0
µ0

e−µ0t

�

i,j∈E
(j + 2)

pi(j+2)(t; θ0)

pi(j+1)(t; θ0)
pij(t; θ0)πθ0(i)

+ (1− eµ0t)
∞�

j=0

∞�

i=0

pij(t; θ0)πθ0(i) +
1

ρ0

∞�

i=0

∞�

j=0

(j + 1− i)pij(t; θ0)πθ0(i)

=: S1 + S2 + S3.
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Since πθ0(·) = P(Poi(α0/µ0) ∈ ·) is the invariant distribution under θ0 we
have that

S2 = (1− eµ0t)
∞�

j=0

∞�

i=0

pij(t; θ0)πθ0(i)

� �� �
=πθ0

(j)

= 1− eµ0t

and

S3 =
1

ρ0

�
1 +

=α0/µ0� �� �
∞�

j=0

j
∞�

i=0

pij(t; θ0)πθ0(i)

� �� �
=πθ0

(j)

−

=α0/µ0� �� �
∞�

i=0

iπθ0(i)
∞�

j=0

pij(t; θ0)

� �� �
=1

�
=

1

ρ0

so that

Ξ = S1 + 1− eµ0t+
1

ρ0
= S1 +

1 + e−µ0t+ρ0(e−µ0t− eµ0t)

ρ0(1 + e−µ0t)
,

whereby condition (3.9) is translated into

0 �= S1 −
1 + ρ0(1 + e−µ0t)− (1 + e−µ0t+ρ0(e−µ0t− eµ0t))

ρ0(1 + e−µ0t)

= S1 +
e−µ0t−ρ0(1 + eµ0t)

ρ0(1 + e−µ0t)
. (3.10)

Clearly S1 > 0 and since ρ0(1 + e−µ0t) > 0 we get that the right hand side
of (3.10) is positive if e−µ0t ≥ ρ0(1 + eµ0t) = α0

µ0
(eµ0t− e−µ0t), which can be

expressed as e−2µ0t(α0 + µ0) ≥ α0. Taking logarithms on both sides of the
latter inequality we end up with (log(α0+µ0)− log(α0))/µ0 ≥ 2t, which holds
by assumption. This implies that I(θ0) is invertible and we conclude that
condition (N3) is fulfilled. Its inverse is given by

I(θ0)
−1 =

µ0

t ((1 + e−µ0t) ρ0(Ξ− 1)− 1)
(3.11)

×




ρ0(2τ0−µ0t(1−e−µ0t))+ ρ20

µ0t
(Ξ−1)(τ0−µ0t)2

(1−e−µ0t)2
1 + ρ0

µ0t
(Ξ− 1)(τ0 − µ0t)

1 + ρ0
µ0t

(Ξ− 1)(τ0 − µ0t)
1

µ0t
(Ξ− 1)

�
1− e−µ0t

�2





so that
√
n ((α̂n, µ̂n)− (α0, µ0))

d→ N
�
0, I(θ0)−1

�
, as n → ∞.
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3.3 Numerical evaluations

We here consider two different sets of parameter pairs, (α0, µ0) = (2, 0.05) and
(α0, µ0) = (0.4, 0.01), each from which we simulate 50 independent sample
paths of the immigration-death process, N(t), on [0, T ], T = 150, N(0) =
0. Thereafter each sample path is sampled at times Tk = kt, t = 1, k =
1, . . . , 150. For each sample path, based on these discrete observations, we
estimate (α0, µ0) three times; up to time 50, up to time 100 and up to time
150. Figures 1 and 2 give us normal probability plots of the estimates of our
two sets of parameter pairs based on the simulated trajectories. Furthermore,
Table 1 and Table 2 display the estimated means, biases, standard errors (s.e.),
covariances, skewness (the skewness of a normal distribution is 0) and kurtosis
(the kurtosis of a normal distribution is 3) for each parameter pair, (α0, µ0),
based on its 50 discretely sampled sample paths.

Figure 1: Normal probability plots of the estimates of (α0, µ0) = (2, 0.05)
based on 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .
Upper row: The estimates of α0 at final times T = 50 (left), T = 100 (middle)
and T = 150 (right). Lower row: The estimates of µ0 at final times T = 50
(left), T = 100 (middle) and T = 150 (right).

From Figure 1 we can see, not only that the empirical distributions more
or less are centred around the actual parameter values, but also how the tails
stepwise become lighter, approaching the behaviour of a normal distribution.
We can also see how the skewness of the data goes through a stepwise reduction
for every additional 50 time units we utilise in the estimation, which further is
also verified in Table 1. As a measure of the heaviness of the tails we consider
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Table 1: Estimated moments of the estimator for (α0, µ0) = (2, 0.05), based
on the 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .

Mean Bias (%) Std error Skewness Kurtosis
T = 50: α̂T 2.0305 1.5 0.4406 1.3284 5.0738

µ̂T 0.0503 0.6 0.0175 1.1350 4.4391
T = 100: α̂T 2.0605 3.0 0.3729 0.4076 2.6461

µ̂T 0.0511 2.2 0.0112 0.5632 2.6832
T = 100: α̂T 2.0640 3.2 0.2667 0.1881 2.4832

µ̂T 0.0517 3.4 0.0081 0.4088 2.2849

the kurtosis estimates given in Table 1; we see a strong reduction after the first
50 time units, going from something fairly heavy tailed to something a bit more
light tailed than a Gaussian distribution (note that there are robustness issues
with kurtosis estimators based on sample fourth moment estimators). From
Table 1 we also see that already after 50 sampled time units the biases are quite
small. Hence, the consistency of the estimator (α̂n, µ̂n) becomes clear quite
quickly and although the parameter pair (α0, µ0) = (2, 0.05) does not fulfil the
invertibility condition of Corollary 3, (log(α0 + µ0)− log(α0))/µ0 ≥ 2t = 2, it
asymptotically seems to behave Gaussian, thus indicating that the condition
may be improved.

Table 2: Estimated moments of the estimator for (α0, µ0) = (0.4, 0.01), based
on the 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .

Mean Bias (%) Std error Skewness Kurtosis
T = 50: α̂T 0.4751 18.8 0.1372 -0.1604 2.1189

µ̂T 0.0137 37.0 0.0080 0.4021 2.3971
T = 100: α̂T 0.4251 5.4 0.1412 1.1873 4.4208

µ̂T 0.0126 26.0 0.0057 0.6537 3.2866
T = 150: α̂T 0.4166 4.2 0.1314 0.1742 2.9146

µ̂T 0.0123 23.0 0.0064 0.6493 2.8343

As opposed to the previous choice of parameters, the choice (α0, µ0) =
(0.4, 0.01) does fulfil the invertibility condition of Corollary 3. In Figure 2,
just as in Figure 1, we can see that each empirical distribution centres around
the actual parameter value and the tails approach those of a normal distribu-
tion (further verified by the estimated means/biases and kurtoses in Table 2).
Regarding the skewness of the estimates, we see from Table 2 that we end up
at values fairly close to 0, i.e. close to that of a Gaussian distribution. Hence,
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Figure 2: Normal probability plots of the estimates of (α0, µ0) = (0.4, 0.01)
based on 50 sample paths sampled at times Tk = kt, t = 1, k = 1, . . . , T .
Upper row: The estimates of α0 at final times T = 50 (left), T = 100 (middle)
and T = 150 (right). Lower row: The estimates of µ0 at final times T = 50
(left), T = 100 (middle) and T = 150 (right).

as expected, also here we see that (α̂n, µ̂n) approaches the actual parameter
pair and at T = 150 we have strong indications of approximate Gaussianity
of (α̂n, µ̂n).

4 Application: The RS-model

We now turn our focus to a spatio-temporal point process with interacting
and size changing marks which here is defined in accordance with [17]. It
is defined on [0,∞) in time and spatially we consider it on some region of
interest, W ⊆ Rd, supplied with the Euclidean metric/norm.

More specifically, the process X(t) = {[Xi,mi(t)] : i ∈ Ωt} can be described
as follows. As time elapses, the arrivals in time of new individuals to W and
the time these individuals live in W are governed by an immigration-death
process, N(t), having parameter θ = (αν(W ), µ) ∈ Θ, where ν(·) denotes
volume in Rd and Θ ⊆ R2

+ is compact. We here denote the (Poisson) arrival
process by B(t) and the death process by D(t) so that N(t) = B(t) − D(t),
where N(0) = 0. Furthermore, upon arrival at time t0i , individual i is assigned
a locationXi ∼ Uni(W ) (thus far, at each fixed time t this constitutes a spatial
Poisson process with intensity α

µ (1− e−µt), restricted to W ) together with an
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initial mark, mi(t0i ) = m0
i , which is taken either as some fixed positive value (as

will be the case here), or as a value drawn from some suitable distribution ([17]
considers m0

i ∼ Uni(0, �), � > 0). When an individual’s (Exp(µ)-distributed)
life time has expired we say that the individual has suffered a natural death.

Once individual i has received its initial mark it starts growing determin-
istically according to

mi(t) = m0
i +

� t

t0i

dmi(s), t0i ≤ t, (4.1)

where

dmi(t) = f(mi(t);ψ)dt−
�

j∈Ωt
j �=i

h (mi(t),mj(t),Xi,Xj ;ψ) dt.

Here Ωt = {i ∈ {1, . . . , B(t)} : individual i is alive at time t}, the function
f (mi(t);ψ) determines the individual growth of mark i in absence of com-
petition with other (neighbouring) individuals and h (mi(t),mj(t),Xi,Xj ;ψ)
is a function handling the individual’s spatial interaction with other individu-
als.

In addition to the natural death, an individual can die competitively which
we consider to happen as soon as mi(t) ≤ 0.

Numerous candidates can be thought of for the individual growth function
and the spatial interaction function , depending on the application in question
(see [17] for some examples), and here, motivated by the model’s forestry
applications (see [4]), we will focus on the logistic individual growth function,

f(mi(t);ψ) = λmi(t)

�
1− mi(t)

K

�
, (4.2)

where ψ = (λ,K, c, r) ∈ R2
+×R×R+, λ is the growth rate and K is the upper

bound (carrying capacity) of the individual’s mark size. Further, we choose
to consider the so called area interaction function,

h (mi(t),mj(t),Xi,Xj ;ψ) = c
ν (B [Xi, rmi(t)] ∩B [Xj , rmj(t)])

ν (B [Xi, rmi(t)])
, (4.3)

where B [x, �] denotes a closed ball in Rd with center x and radius � > 0.
This non-symmetric soft core interaction function has the effect that smaller
individuals affect larger individuals less than the other way around. Note that
r ≥ 1 implies that the marks are not allowed to intersect whereas r < 1 implies
that some intersection between the marks will be allowed before interaction
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takes place. c < 0 implies that individuals gain in size from being close to each
other and c > 0 has the effect that individuals inhibit each other’s growths
once B [Xi, rmi(t)] ∩B [Xj , rmj(t)] �= ∅.

By the definitions of Ωt and N(t), the number of individuals alive at time
t is given by

|Ωt| = N(t)− C(t) = B(t)−D(t)− C(t), (4.4)

where |A| denotes the cardinality of the set A and C(t) ≥ 0 denotes the inter-
active death process, i.e. the process counting the total number of individuals
who have suffered a competitive death in the time interval (0, t]. We will
assume that C(T0) = 0 so that |ΩT0 | = 0.

4.1 Estimation

Assume now that we sample the process at times 0 = T0 < . . . < Tn =
T . Then, for each k = 1, . . . , n, this gives rise to a sampled marked point

configuration Xobs(Tk) =
�
[xi,mi(Tk)] : i ∈ Ωobs

Tk

�
.

For clarity we here present the least squares approach which we employ
for the estimation of ψ = (λ,K, c, r) ∈ R2

+×R×R+ and also, connected to it,
the way in which we label individuals as naturally dead. This approach was
originally suggested in [17] wherein it was shown to generate estimates of ψ of
good quality.

Let X̃obs(Tk) =
�
m̃i (Tk+1;ψ,Xobs(Tk)) : i ∈ Ωobs

Tk

�
denote the set of predic-

tions of the actual data marks,
�
mi(Tk+1) : i ∈ Ωobs

Tk

�
, generated by equation

(4.1) under the regime of ψ, based on the configuration Xobs(Tk) (in practise we
employ the simulation algorithm presented in [17] in order to create each pre-
dicted set X̃obs(Tk) from each set Xobs(Tk)). Once having produced X̃obs(Tk), if
m̃i (Tk+1;ψ,X(Tk)) > 0 for an individual i ∈ Ωobs

Tk
but yet i /∈ Ωobs

Tk+1
, this pre-

dicted individual will be treated as having died by natural causes in (Tk, Tk+1).
Our least squares estimates are then found by minimising

S (ψ) :=
n−1�

k=1

�

i∈Ωobs
Tk

1{i ∈ Ωobs
Tk+1

} [m̃i (Tk+1;ψ,Xobs(Tk))−mi (Tk+1)]
2 (4.5)

with respect to ψ = (λ,K, c, r) ∈ R2
+ × R × R+, where 1{i ∈ Ωobs

Tk+1
} is an

indicator function being 1 if the actual data individual i is alive at time Tk+1.
Regarding the possible edge effects encountered, [4] suggests some edge

correction methods which manage to reduce biases generated in the estima-
tion of ψ. Furthermore, [4] also deals with numerical issues related to the
minimisation of S (ψ).
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The way in which [17] estimates α and µ is to estimate them separately
by approximate ML-estimators which we present here for the purpose of com-
parison. The ML-estimator used to estimate µ in [17] is given by

µ̂0 = nT /




nT�

i=1

ti +
mT�

j=1

sj



 , (4.6)

where t1, . . . , tnT and s1, . . . , smT denote, respectively, the lifetimes of the nT

individuals who have been labelled as dead from natural causes by time T and
the mT individuals who are still alive at time T . Since the exact arrival times
and death times of the individuals remain unknown, with the only informa-
tion available being the intervals in which arrivals and deaths occur, the exact
lifetimes will remain unknown. The way [17] deals with this is to indepen-
dently draw each birth time occurring in (Tk−1, Tk) from the Uni(Tk−1, Tk)-
distribution while considering the death of an individual to occur at the last
sample time at which the individual has been observed.

Note that when estimating α we actually need only to consider the case
ν(W ) = 1 since we can write α as α� = αν(W ), find the estimate �α� and then
get the estimate of α by considering α̂ = �α�/ν(W ). The approach of [17] is to
ignore all deaths occurring by setting C(Tk) = D(Tk) = 0, thereby generating
the following ML-estimator

α̂0 =

���
�n

k=0Ω
obs
Tk

���
Tn

. (4.7)

However, using this approach has the consequence that we ignore the interplay
between B(t) and C(t) and underestimate α and µ (see [17]). In the case of α
this comes from paying no regard to the deaths, which will reduce the number
of observed individuals.

A more correct, and thus more sensible, way of estimating µ and α, as
opposed to the above approach, is to incorporate the interplay between the
deaths and the arrivals of individuals in the estimation by utilising the actual
multivariate distribution of (N(T1), . . . , N(Tn)) in the ML-estimation, i.e. us-
ing the likelihood approach developed in the previous sections.

In the minimisation of S(ψ), if m̃i (Tk+1;ψ,X(Tk)) ≤ 0 for an individual
i ∈ Ωobs

Tk
, it will be labelled as having died from competition in (Tk, Tk+1) and

the total number of such individuals is denoted by (C(Tk)− C(Tk−1))
ψ
obs and

is used as an estimate of C(Tk) − C(Tk−1). Note that by expression (4.4)
we can write N(Tk) = N(Tk−1) + |ΩTk | − |ΩTk−1 | + C(Tk) − C(Tk−1) where
|ΩT1 | = C(T0) = 0. The observed version of this is given by

Nobs(Tk) = Nobs(Tk−1) + |Ωobs
Tk

|− |Ωobs
Tk−1

|+ (C(Tk)− C(Tk−1))
ψ
obs,
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where |Ωobs
T1

| = 0.
When we here estimate θ = (αν(W ), µ) ∈ Θ with our new likeli-

hood approach we use (Nobs(T1), . . . , Nobs(Tn)) as observation of the sampled
immigration-death process, (N(T1), . . . , N(Tn)), and hence the log-likelihood
is given by

ln(θ) =
n�

k=1

log p
Nobs(Tk−1)Nobs(Tk)

(Tk − Tk−1;αν(W ), µ) .

5 Discussion

In this paper we have considered the immigration-death process, N(t), and
specifically we have treated the ML-estimation of the parameter pair governing
it, θ = (α, µ) ∈ Θ ⊆ R2

+, when Θ is compact and N(t) is sampled discretely in
time; 0 = T0 < T1 < . . . < Tn, and N(T0) = 0. In order to find the likelihood
structure of this Markov process we have derived its transition probabilities,
and further, we have managed to reduce the likelihood maximisation from a
two-dimensional problem to a one-dimensional problem, where we maximise
the likelihood, L(α, µ) = L(α̂n(µ), µ), over the projection of Θ onto the second
dimension of R2 (µ-axis). Furthermore, by considering N(t) as a Markov jump
process we have managed to show that, under an equidistant sampling scheme,
Tk = kt, t > 0, k = 1, . . . , n, the sequence of estimators, θ̂n(N(T1), . . . N(Tn)),
is consistent and asymptotically Gaussian. The asymptotic normality requires
the invertibility condition (log(α0 + µ0) − log(α0))/µ0 ≥ 2t, where (α0, µ0)
is the underlying parameter pair. These results have been further corrob-
orated through simulations which also indicate that the estimates approach
the actual parameter pair. Furthermore, we see that the empirical distribu-
tion of the estimates show strong indications of Gaussianity, even when the
invertibility condition of Corollary 3 is not fulfilled. An interesting applica-
tion for the immigration-death process is the so called RS-model – a spatio-
temporal point process with time dependent interacting marks in which N(t)
controls the arrivals of new marked points to our region of interest, W ⊆ Rd,
as well as their potential life-times – and we discuss how the ML-estimator,
θ̂n(N(T1), . . . N(Tn)), could be applied to the RS-model.

The motivation for this work comes from the need of improving the esti-
mation of (α, µ) in the RS-model (compared to the estimators given in [17])
and, as a note on future work, one should numerically study the possible
improvement achieved. A further extension is given by adding a Brownian
noise in the mark growth function of the RS-model (i.e. letting the marks
be controlled by dMi(t) = dmi(t) + dBi(t) where the Bi(t)’s are independent
Brownian motions) so that it incorporates uncertainties in the mark sizes.
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Having made this extension we hope to find a full likelihood structure for
this SDE-driven RS-model, where L(α, µ) constitutes a part of the likelihood
structure. A further improvement that possibly can be made is to improve
the invertibility condition given in Corollary 3 so that asymptotic normality
holds for all (α0, µ0) ∈ Θ. Furthermore, in order to become more realistic in
applications, N(t) could be extended by letting the arrival intensity, α, and
the death rate, µ, be non-constant functions of time or in themselves Markov
chains (in the latter case N(t) thus becomes a hidden Markov model) whereby,
possibly, results similar to the ones found in this paper can be established.
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Appendix

A Derivatives

Recall that

pij(t; θ) =
e−

α
µ (1−e−µt)

j!

j�

k=0

�
α

µ

�k �j

k

�
e−(j−k)µt

(1− e−µt)j−2k−i

i!

(i− (j − k))!

=
j�

k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k),

where i, j ∈ E = N, f
Poi(ρ)

(·) is a Poisson density with parameter ρ = α
µ (1− e−µt)

and f
Bin(i,e−µt)

(·) is a Binomial density with parameters i and e−µt. Note further that

pij(t; θ)k2 :=
j�

k=0

k2f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
j�

k=1

k2
ρk e−ρ

k!

�
i

j − k

��
e−µt

�j−k
(1− e−µt)i−(j−k)

l=k−1
= ρ

j−1�

l=0

(1 + l)
ρl e−ρ

l!

�
i

j − 1− l

��
e−µt

�j−1−l
(1− e−µt)i−(j−1−l)

= ρpi(j−1)(t; θ) + ρ
j−1�

l=1

l
ρl e−ρ

l!

�
i

j − 1− l

��
e−µt

�j−1−l
(1− e−µt)i−(j−1−l)

k=l−1
= ρpi(j−1)(t; θ) + ρ2

j−2�

k=0

ρk e−ρ

k!

�
i

j − 2− k

��
e−µt

�j−2−k
(1− e−µt)i−(j−2−k)

= ρpi(j−1)(t; θ) + ρ2pi(j−2)(t; θ)

from which we see that

pij(t; θ)k :=
j�

k=0

kf
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k) = ρpi(j−1)(t; θ).
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With τ = (1− e−µt −µt e−µt) we get that

∂

∂α
f
Poi(ρ)

(k) =
k − ρ

α
f
Poi(ρ)

(k)

∂

∂µ
f
Poi(ρ)

(k) =
τ(ρ− k)

(1− e−µt)µ
f
Poi(ρ)

(k)

∂2

∂α∂µ
f
Poi(ρ)

(k) =
τ(ρ− (k − ρ)2)

(1− e−µt)αµ
f
Poi(ρ)

(k)

∂2

∂α2
f
Poi(ρ)

(k) =
ρ2 + k2 − k(1 + 2ρ)

α2
f
Poi(ρ)

(k)

∂2

∂µ2
f
Poi(ρ)

(k) =

�
−2ρτ(1− e−µt) + ρ(1− e−µt)µ2t2 e−µt

(1− e−µt)2µ2

+
ρ2τ2

(1− e−µt)2 µ2
+ k2

τ2

(1− e−µt)2µ2

+ k
−2ρτ2 + (1− e−µt)2 − µ2t2 e−µt

(1− e−µt)2 µ2

�
f
Poi(ρ)

(k)

∂

∂µ
f
Bin(i,e−µt)

(j − k) =
−(j − k − i e−µt)µt

(1− e−µt)µ
f
Bin(i,e−µt)

(j − k)

∂2

∂µ2
f
Bin(i,e−µt)

(j − k) =
((j − k)− i e−µt)2µ2t2 + ((j − k)− i)µ2t2 e−µt

(1− e−µt)2µ2

×f
Bin(i,e−µt)

(j − k).

Below we will make use of expression (2.2),

∞�

j=0

pi(j−2)(t; θ) =
∞�

j=0

pi(j−1)(t; θ) =
∞�

j=0

pij(t; θ) = 1

and (by expression (2.2))

∞�

j=0

jpi(j−1)(t; θ) =
∞�

j=0

(j + 1)pij(t; θ) = E[N(s+ t)|N(s) = i] + 1 = i e−µt +ρ+ 1.
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A.1 First order derivatives of pij(t; θ) and log pij(t; θ) with bounds

∂pij(t; θ)

∂α
=

j�

k=0

∂f
Poi(ρ)

(k)

∂α
f
Bin(i,e−µt)

(j − k) =
j�

k=0

k − ρ

α
f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
pij(t; θ)k − ρpij(t; θ)

α

∂ log pij(t; θ)

∂α
=

1

pij(t; θ)

∂pij(t; θ)

∂α
=

1

α

�
pij(t; θ)k
pij(t; θ)

− ρ

�

=
ρ

α

�
pi(j−1)(t; θ)

pij(t; θ)
− 1

�
(A.1)

∂pij(t; θ)

∂µ
=

j�

k=0

∂f
Poi(ρ)

(k)

∂µ
f
Bin(i,e−µt)

(j − k) + f
Poi(ρ)

(k)
∂f

Bin(i,e−µt)
(j − k)

∂µ

=
j�

k=0

�
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− k

τ − µt

(1− e−µt)µ

�

× f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
ρτ

(1− e−µt)µ
pij(t; θ)−

(j − i e−µt)µt

(1− e−µt)µ
pij(t; θ)−

τ − µt

(1− e−µt)µ
pij(t; θ)k

∂ log pij(t; θ)

∂µ
=

1

pij(t; θ)

∂pij(t; θ)

∂µ

=
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− τ − µt

(1− e−µt)µ

pij(t; θ)k
pij(t; θ)

=
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− ρ(τ − µt)

(1− e−µt)µ

pi(j−1)(t; θ)

pij(t; θ)
(A.2)

Note first that ρ = αt 1−e−µt

µt < αt, τ < µt, τ < µ2t2, 0 < τ < 1, pij(t; θ)k ≤ j

and pij(t; θ)k2 ≤ j2 since k ≤ j for all k = 0, . . . , j. Using the triangle inequality and
that α, µ, t, i, j > 0 together with these bounds we get that

����
∂pij(t; θ)

∂α

���� ≤
j + ρ

α
<

j

α
+ t

����
∂ log pij(t; θ)

∂α

���� =
1

α

����
pij(t; θ)k
pij(t; θ)

− ρ

���� ≤
j + ρ

α
<

j

α
+ t (A.3)
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����
∂pij(t; θ)

∂µ

���� <
ρτ + |j − i e−µt |µt+ ρ(µt− τ)

(1− e−µt)µ
<

(j + i+ ρ)t

1− e−µt
=

(j + i)t

1− e−µt
+

α

µ

����
∂ log pij(t; θ)

∂µ

���� < αt2

<1� �� �
τ

(µt)2
+
|i e−µt −j|
1− e−µt

t+
t

<1����
τ/µt+t

1− e−µt
j
pij(t; θ)

pij(t; θ)

<
αt2(

<1� �� �
1− e−µt) + (i+ j)t+ 2jt

1− e−µt
<

αt2 + (3j + i)t

1− e−µt
(A.4)

A.2 Second order derivatives of pij(t; θ) and log pij(t; θ) with bounds

The expressions related to ∂2

∂α2 :

∂2pij(t; θ)

∂α2
=

j�

k=0

ρ2 + k2 − k(1 + 2ρ)

α2
f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
ρ2pij(t; θ) + pij(t; θ)k2 − pij(t; θ)k(1 + 2ρ)

α2

=
ρ2

α2

�
pi(j−2)(t; θ)− 2pi(j−1)(t; θ) + pij(t; θ)

�

�
∂ log pij(t; θ)

∂α

�2

=
ρ2

α2

�
pi(j−1)(t; θ)

pij(t; θ)
− 1

�2

(A.5)

∂2 log pij(t; θ)

∂α2
=

1

pij(t; θ)

∂2pij(t; θ)

∂α2
−

�
∂ log pij(t; θ)

∂α

�2

����
∂2pij(t; θ)

∂α2

���� < 2
ρ2

α2
= 2

�
1− e−µt

µt

�2

t2 < 2t2

1

pij(t; θ)

����
∂2pij(t; θ)

∂α2

���� ≤ ρ2 + j2 + j(1 + 2ρ)

α2
<

j

α2
+

�
j

α
+ t

�2

����
∂2 log pij(t; θ)

∂α2

���� ≤ 1

pij(t; θ)

����
∂2pij(t; θ)

∂α2

����+
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∂ log pij(t; θ)

∂α
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j
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�2

(A.6)
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∞�

j=0

∂2pij(t; θ)

∂α2
=

ρ2

α2




∞�

j=0

pi(j−2)(t; θ)− 2
∞�

j=0

pi(j−1)(t; θ) +
∞�

j=0

pij(t; θ)



 = 0

(A.7)

The expressions related to ∂2

∂α∂µ :

∂2pij(t; θ)

∂α∂µ
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�
− k2

τ − µt

(1− e−µt)αµ
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2ρτ − ρµt− (j − i e−µt)µt
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pi(j−1)(t; θ)

pij(t; θ)
− 1

�2

=
t

ρµ

�
pij(t; θ)k
pij(t; θ)

− ρ

��
pij(t; θ)k
pij(t; θ)

−
�
j − i e−µt

��
− t2

ρ

τ

(µt)2

�
pij(t; θ)k
pij(t; θ)

− ρ

�2

(A.8)

∂2 log pij(t; θ)

∂α∂µ
=

1

pij(t; θ)

∂2pij(t; θ)

∂α∂µ
− ∂ log pij(t; θ)

∂α

∂ log pij(t; θ)

∂µ
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����
∂2pij(t; θ)

∂α∂µ

���� <
µt− τ

(µt)2
(1 + ρ) t2 + ρt2

τ

(µt)2
+

t

µ
+

ti

µ
+

t

µ
j

<

�
(1 + ρ)

µt
− 1

�
t2 +

(1 + j + i)t

µ

<
t

µ
(1 + ρ− µt+ 1 + j + i)

<
t

µ
(2 + αt− µt+ j + i) (A.9)

����
∂ log pij(t; θ)

∂α

∂ log pij(t; θ)

∂µ

���� <
j + αt

α

αt2 + (3j + i)t

1− e−µt

1

pij(t; θ)

����
∂2pij(t; θ)

∂α∂µ

���� <
µt− τ

(1− e−µt)αµ

����
pij(t; θ)k2 − pij(t; θ)k

pij(t; θ)

����+
����−

ρτ

(µt)2
t2
����

+
|− (j − i e−µt)|µt
(1− e−µt)αµ

pij(t; θ)k
pij(t; θ)

+
τ

(µt)2
t2
�
1 +

pij(t; θ)k
pij(t; θ)

�

+
|j − i e−µt |

µ
t

<
(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j) +

j + i

µ
t

+
(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

����
∂2 log pij(t; θ)

∂α∂µ

���� ≤ 1

pij(t; θ)

����
∂2pij(t; θ)

∂α∂µ

����+
����
∂ log pij(t; θ)

∂α

∂ log pij(t; θ)

∂µ

����

<
(j2 + j)t

α
+ αt3 +

j(j + i)t

(1− e−µt)α
+ t2(1 + j) +

j + i

µ
t

+
(j + αt)(αt2 + (3j + i)t)

(1− e−µt)α
(A.10)
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∞�

j=0

∂2pij(t; θ)

∂α∂µ
=

ρ(τ − µt)

(1− e−µt)αµ




∞�

j=0

pij(t; θ)−
∞�

j=0

pi(j−1)(t; θ)





+
ρ2(τ − µt)

(1− e−µt)αµ




∞�

j=0

pi(j−1)(t; θ)−
∞�

j=0

pi(j−2)(t; θ)





+
ρ2τ

(1− e−µt)αµ




∞�

j=0

pi(j−1)(t; θ)−
∞�

j=0

pij(t; θ)





− ρµti e−µt

(1− e−µt)αµ




∞�

j=0

pij(t; θ)−
∞�

j=0

pi(j−1)(t; θ)





+
ρµt

(1− e−µt)αµ

∞�

j=0

pij(t; θ)

+
ρµt

(1− e−µt)αµ

� ∞�

j=0

jpij(t; θ)

� �� �
=E[N(s+t)|N(s)=i]

−
∞�

j=0

jpi(j−1)(t; θ)

� �� �
=1+E[N(s+t)|N(s)=i]

�

= 0 (A.11)

The expressions related to ∂2

∂µ2 :

∂2pij(t; θ)

∂µ2
=

ρ2

α2

j�

k=0

f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

�
k2 (τ − µt)2

+k
�
2µtτ(j − i e−µt)− 2µ2t2(j − i e−µt)

�

+k
�
−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

�

+
�
ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt −2τ)

�

+
��

j − i e−µt
�2

µ2t2 − 2ρµtτ
�
j − i e−µt

�
+ (j − i)µ2t2 e−µt

��

=
ρ2

α2

�
(τ − µt)2 pij(t; θ)k2 + 2µt (τ − µt) (j − i e−µt)pij(t; θ)k

+
�
−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

�
pij(t; θ)k

+
�
ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt −2τ)

�
pij(t; θ)

+
��

j − i e−µt
�2

µ2t2 − 2ρτµt
�
j − i e−µt

�
+ (j − i)µ2t2 e−µt

�
pij(t; θ)

�
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�
∂ log pij(t; θ)

∂µ

�2

=
ρ2

�
τ − (j − i e−µt)µt/ρ− (τ − µt)

pi(j−1)(t;θ)
pij(t;θ)

�2

(1− e−µt)2µ2

=
ρ2

�
τ
�
1− pi(j−1)(t;θ)

pij(t;θ)

�
+ µt

�
pi(j−1)(t;θ)

pij(t;θ)
− j−i e−µt

ρ

��2

(1− e−µt)2µ2

=
ρ2τ2

�
1− pi(j−1)(t;θ)

pij(t;θ)

�2

(1− e−µt)2µ2
+

ρ2(µt)2
�

pi(j−1)(t;θ)
pij(t;θ)

− j−i e−µt

ρ

�2

(1− e−µt)2µ2

+
2ρ2τµt

�
1− pi(j−1)(t;θ)

pij(t;θ)

��
pi(j−1)(t;θ)

pij(t;θ)
− j−i e−µt

ρ

�

(1− e−µt)2µ2
(A.12)

∂2 log pij(t; θ)

∂µ2
=

1

pij(t; θ)

∂2pij(t; θ)

∂µ2
−

�
∂ log pij(t; θ)

∂µ

�2

����
∂2pij(t; θ)

∂µ2

���� < t
(1− e−µt)2

(µt)2

�
µ2t2j2

<1� �� �
(µt− τ)2

(µt)2
+2µ2t2j(j + i)

<1� �� �
µt− τ

µt

+
� <αt����
2ρτ2 +

<1� �� �
(1− e−µt)2 +

<2αt� �� �
2ρµt(1− e−µt)+

<2(1+αt)
� �� �
2µ2t2 e−µt(1 + ρ)

�
j

+

<1����
ρ2τ2 +

<αt� �� �
ρ(1− e−µt)

<2� �� �
(2τ − µ2t2 e−µt)

+ (j + i)2µ2t2 + 2(j + i)

<αt����
ρτµt+(j + i)

<1� �� �
µ2t2 e−µt

�

< t
�
µ2t2

�
j2 + 2j(j + i) + (j + i)2

�
+ αt (7j + 2i+ 2) + 4j + i+ 1

�

1

pij(t; θ)

����
∂2pij(t; θ)

∂µ2

���� < t2
�
j2 + 2(j + i)j +

�
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

�
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
�
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����
∂2 log pij(t; θ)

∂µ2

���� ≤ 1

pij(t; θ)

����
∂2pij(t; θ)

∂µ2

����+
�
∂ log pij(t; θ)

∂µ

�2

< t2
�
j2 + 2(j + i)j +

�
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

�
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
�

+

�
αt2 + (3j + i)t

1− e−µt

�2

(A.13)
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α2

ρ2

∞�

j=0

∂2pij(t; θ)

∂µ2
=

= (τ − µt)2
∞�

j=0

pij(t; θ)k2 + 2µt (τ − µt)
∞�

j=0

(j − i e−µt) pij(t; θ)k� �� �
=ρpi(j−1)(t;θ)

+
�
(1− e−µt)2 − 2ρτ2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

� ∞�

j=0

pij(t; θ)k

+
�
ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt −2τ)

� ∞�

j=0

pij(t; θ)

+
∞�

j=0

��
j − i e−µt

�2
µ2t2 − 2ρµtτ

�
j − i e−µt

�
+ (j − i)µ2t2 e−µt

�
pij(t; θ)

= (τ − µt)2
∞�

j=0

�
ρpi(j−1)(t; θ) + ρ2pi(j−2)(t; θ)

�

+ 2µt (τ − µt) ρ
�
E[N(s+ t)|N(s) = i] + 1− i e−µt

�
� �� �

(2.2)
= ρ(i e−µt +ρ+1−i e−µt)=ρ(ρ+1)

+ ρ
�
−2ρτ2 + (1− e−µt)2 + 2ρµt(1− e−µt)− 2µ2t2 e−µt(1 + ρ)

�

+ ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt −2τ)

+ µ2t2 E
�
N(s+ t)2 − 2x e−µt N(s+ t) + i2 e−2µt |N(s) = i

�
� �� �

(2.2)
= i(i−1) e−2µt +(1+2ρ)i e−µt +ρ2+ρ−2x e−µt(i e−µt +ρ)+i2 e−2µt

=(1−e−µt)i e−µt +ρ(ρ+1)

+ − 2ρµtτ
�
E[N(s+ t)|N(s) = i]− i e−µt

�
� �� �

(2.2)
= i e−µt +ρ−i e−µt=ρ

+ µ2t2 e−µt
�
E[N(s+ t)|N(s) = i]− i

�
� �� �
(2.2)
= i e−µt +ρ−i=ρ−i(1−e−µt)

= (τ − µt)2 ρ(ρ+ 1) + 2µt (τ − µt) ρ(ρ+ 1)

− 2ρ2τ2 + ρ(1− e−µt)2 + 2ρ2µt(1− e−µt)− 2µ2t2 e−µt ρ(1 + ρ)

+ ρ2τ2 + ρ(1− e−µt)(µ2t2 e−µt −2τ) + µ2t2 e−µt(ρ− i(1− e−µt))

+ µ2t2((1− e−µt)i e−µt +ρ(ρ+ 1))− 2ρ2µtτ

= ρ
�
1− e−µt −µt e−µt +2µt

�
ρ+ e−µt

�
− τ

� �
1− e−µt −µt e−µt −τ

�

= ρ
�
τ + 2µt

�
ρ+ e−µt

�
− τ

�
(τ − τ) = 0 (A.14)
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A.3 Third order derivatives of pij(t; θ) and log pij(t; θ) with bounds

The expressions related to ∂3

∂α3 :

Since ∂pij(t;θ)
∂α = ρ

α

�
pi(j−1)(t; θ)− pij(t; θ)

�
, we get

∂3pij(t; θ)

∂α3
=

ρ2

α2

�
∂

∂α
pi(j−2)(t; θ)− 2

∂

∂α
pi(j−1)(t; θ) +

∂

∂α
pij(t; θ)

�

=
ρ3

α3

�
pi(j−3)(t; θ)− 3pi(j−2)(t; θ) + 3pi(j−1)(t; θ)− pij(t; θ)

�

=
ρ3

α3

�
pi(j−3)(t; θ)− 2pi(j−2)(t; θ) + pi(j−1)(t; θ)

�

− ρ3

α3

�
pi(j−2)(t; θ)− 2pi(j−1)(t; θ) + pij(t; θ)

�

=
ρ

α

�
∂2pij(t; θ)

∂α2
−

∂2pi(j−1)(t; θ)

∂α2

�

∂3 log pij(t; θ)

∂α3
=

1

pij(t; θ)

∂3pij(t; θ)

∂α3
− 3

1

pij(t; θ)

∂2pij(t; θ)

∂α2

∂ log pij(t; θ)

∂α

+

�
∂ log pij(t; θ)

∂α

�3

1

pij(t; θ)

����
∂3pij(t; θ)

∂α3

���� ≤

≤ ρ

α

1

pij(t; θ)

����
∂2pij(t; θ)

∂α2

����+
ρ

α

pi(j−1)(t; θ)

pij(t; θ)

1

pi(j−1)(t; θ)

����
∂2pi(j−1)(t; θ)

∂α2

����

< αt

�
j

α2
+

�
j

α
+ t

�2
�

+
ρ

α

1

ρ

pij(t; θ)k
pij(t; θ)

�
j − 1

α2
+

�
j − 1

α
+ t

�2
�

<
j + (j + αt)2

α
t+

j

α

�
j − 1

α2
+

�
j − 1

α
+ t

�2
�
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����
∂3 log pij(t; θ)

∂α3

���� ≤

≤ 1

pij(t; θ)

����
∂3pij(t; θ)

∂α3

����+ 3
1

pij(t; θ)

����
∂2pij(t; θ)

∂α2

����

����
∂ log pij(t; θ)

∂α

����

+

����
∂ log pij(t; θ)

∂α

����
3

<
j + (j + αt)2

α
t+

j

α

�
j − 1

α2
+

�
j − 1

α
+ t

�2
�

+ 3
j + (j + αt)2

α2

�
j

α
+ t

�
+

�
j

α
+ t

�3

=: B111(α, µ, t, j, i) (A.15)

The expressions related to ∂3

∂α2∂µ :
Since

∂2pij(t; θ)

∂α2
=

ρ2pij(t; θ) + pij(t; θ)k2 − pij(t; θ)k(1 + 2ρ)

α2

=
ρ2

α2

�
pij(t; θ) +

1

ρ2
pij(t; θ)k2 − 1 + 2ρ

ρ2
pij(t; θ)k

�

=
ρ2

α2

�
pi(j−2)(t; θ)− 2pi(j−1)(t; θ) + pij(t; θ)

�

and ∂
∂µ

ρ2

α2 = −2 ρτ
αµ2 we get

∂3pij(t; θ)

∂α2∂µ
=

∂

∂µ

∂2pij(t; θ)

∂α2

= −2
ρτ

αµ2

�
pij(t; θ) +

1

ρ2
pij(t; θ)k2 − 1 + 2ρ

ρ2
pij(t; θ)k

�

+
ρ2

α2

�
∂

∂µ
pi(j−2)(t; θ)− 2

∂

∂µ
pi(j−1)(t; θ) +

∂

∂µ
pij(t; θ)

�

∂3 log pij(t; θ)

∂α2∂µ
=

1

pij(t; θ)

∂3pij(t; θ)

∂α2∂µ
− 2

1

pij(t; θ)

∂2pij(t; θ)

∂α∂µ

∂ log pij(t; θ)

∂α

+
∂ log pij(t; θ)

∂µ

��
∂ log pij(t; θ)

∂α

�2

− ∂2 log pij(t; θ)

∂α2

�
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1

pij(t; θ)

����
∂pij(t; θ)

∂µ

���� =

����
ρτ

(1− e−µt)µ
− (j − i e−µt)µt

(1− e−µt)µ
− τ − µt

(1− e−µt)µ

pij(t; θ)k
pij(t; θ)

����

<
ρτ

(1− e−µt)µ
+

(j + i)µt

(1− e−µt)µ
+

µt+ τ

(1− e−µt)µ
j

< αt+
(j + i+ 1)t

1− e−µt
+ j

1

pij(t; θ)

∂3pij(t; θ)

∂α2∂µ
=

= −2
τ

αµ2

�
ρ+

1

ρ

pij(t; θ)k2

pij(t; θ)
− 1 + 2ρ

ρ

pij(t; θ)k
pij(t; θ)

�
+

ρ2

α2

1

pij(t; θ)

∂

∂µ
pij(t; θ)

+
ρ2

α2

pi(j−2)(t; θ)

pij(t; θ)

1

pi(j−2)(t; θ)

∂

∂µ
pi(j−2)(t; θ)

−2
ρ2

α2

pi(j−1)(t; θ)

pij(t; θ)

1

pi(j−1)(t; θ)

∂

∂µ
pi(j−1)(t; θ)

= −2
τ

αµ2

�
ρ+

1

ρ

pij(t; θ)k2 − pij(t; θ)k
pij(t; θ)

− 2
pij(t; θ)k
pij(t; θ)

�
+

ρ2

α2

1

pij(t; θ)

∂

∂µ
pij(t; θ)

+
1

α2

pij(t; θ)k2 − pij(t; θ)k
pij(t; θ)

1

pi(j−2)(t; θ)

∂

∂µ
pi(j−2)(t; θ)

−2
ρ

α2

pij(t; θ)k
pij(t; θ)

1

pi(j−1)(t; θ)

∂

∂µ
pi(j−1)(t; θ)

1

pij(t; θ)

����
∂3pij(t; θ)

∂α2∂µ

���� <

< 2
t2

α

�
αt+

µ(j2 + j)

α(1− e−µt)
+ 2j

�
+ t2

�
αt+

(j + i+ 1)t

1− e−µt
+ j

�

+
j2 + j

α2

�
αt+

(j + i− 1)t

1− e−µt
+ j − 2

�
+ 2t

j

α

�
αt+

(j + i)t

1− e−µt
+ j − 1

�
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����
∂3 log pij(t; θ)

∂α2∂µ

���� ≤

≤ 1

pij(t; θ)

����
∂3pij(t; θ)

∂α2∂µ

����+ 2
1

pij(t; θ)

����
∂2pij(t; θ)

∂α∂µ

����

����
∂ log pij(t; θ)

∂α

����

+

����
∂ log pij(t; θ)

∂µ

����

�����

�
∂ log pij(t; θ)

∂α

�2

− ∂2 log pij(t; θ)

∂α2

�����

< 2
t2

α

�
αt+

µ(j2 + j)

α(1− e−µt)
+ 2j

�
+ t2

�
αt+

(j + i+ 1)t

1− e−µt
+ j

�

+
j2 + j

α2

�
αt+

(j + i− 1)t

1− e−µt
+ j − 2

�
+ 2t

j

α

�
αt+

(j + i)t

1− e−µt
+ j − 1

�

+ 2

�
j

α
+ t

��
(j2 + j)t

α
+ αt3 +

j(j + i)t+ (j + αt)(αt2 + (3j + i)t)

(1− e−µt)α

+ t2(1 + j) +
j + i

µ
t

�
+

αt2 + (3j + i)t

1− e−µt

�
j

α2
+ 2

�
j

α
+ t

�2
�

=: B112(α, µ, t, j, i) (A.16)

The expressions related to ∂3

∂α∂µ2 :
Since

∂pij(t; θ)

∂α
=

pij(t; θ)k − ρpij(t; θ)

α
=

ρ

α

�
pi(j−1)(t; θ)− pij(t; θ)

�

and
∂2

∂µ2

ρ

α
=

ρ

α

2τ − (µt)2 e−µt

(1− e−µt)µ2

we get

∂3pij(t; θ)

∂α∂µ2
=

�
∂2

∂µ2

ρ

α

��
pi(j−1)(t; θ)− pij(t; θ)

�
+

ρ

α

�
∂2

∂µ2
pi(j−1)(t; θ)−

∂2

∂µ2
pij(t; θ)

�

=
2τ − (µt)2 e−µt

(1− e−µt)µ2

∂pij(t; θ)

∂α
+

ρ

α

�
∂2

∂µ2
pi(j−1)(t; θ)−

∂2

∂µ2
pij(t; θ)

�

∂3 log pij(t; θ)

∂α∂µ2
=

1

pij(t; θ)

∂3pij(t; θ)

∂α∂µ2
− 2

1

pij(t; θ)

∂2pij(t; θ)

∂α∂µ

∂ log pij(t; θ)

∂µ

+
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∂α∂µ2
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α
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1
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∂µ2
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− ρ

α

1
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∂µ2
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1
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����
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α
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�
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�
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�

+ t3
�
j2 + 2(j + i)j +

�
2αt+ 1 + 2αt+ 2µ2t2(1 + αt)

�
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
�
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1
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1
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�
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�

+ 2
αt2 + (3j + i)t
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�
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α
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j(j + i)t
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+ t2(1 + j) +
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µ
t
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�
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�
j

α
+ t

��
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�2
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�
j

α
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��
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�
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�
j

+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
�

=: B122(α, µ, t, j, i) (A.17)

The expressions related to ∂3

∂µ3 :
Since

∂

∂µ

ρ2

α2
=

ρ2

α2

�
6

µ2
− 8τ e−µt

(1− e−µt)2µ
t− 2(1 + 2 e−µt) e−µt

(1− e−µt)2
t2
�

pij(t; θ)k3 :=
j�

k=0

k3f
Poi(ρ)

(k)f
Bin(i,e−µt)

(j − k)

=
j�

k=1

k3
ρk e−ρ

k!

�
i

j − k

��
e−µt

�j−k
(1− e−µt)i−(j−k)

l=k−1
= ρ

j−1�

l=0

(1 + 2l + l2)
ρl e−ρ

l!

�
i

j − 1− l

��
e−µt

�j−1−l
(1− e−µt)i−(j−1−l)

= ρpi(j−1)(t; θ) + 2ρ2pi(j−2)(t; θ) + ρpi(j−1)(t; θ)k2

= ρpi(j−1)(t; θ) + 3ρ2pi(j−2)(t; θ) + ρ3pi(j−3)(t; θ)
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∂pij(t; θ)km
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∂µ
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where m = 0, 1, 2, . . . and pij(t; θ)k0 = pij(t; θ), we get
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∂2pij(t; θ)
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∂µ2
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∂
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∂µ

�
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�
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∂2pij(t; θ)

∂µ2
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where

A ∂2pij(t;θ)

∂µ2

=

�
6

µ2
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2(1− 2ρ+ µt) + 2τ e−µt(1 + (µt)2)

(1− e−µt)µ
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+
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<1� �� �
|τ − e−µt |(µt+

<1����
τ ) < 2t3(µt+ 1)

���A ∂
∂µpij(t;θ)k2

��� =

<t2����
ρ2

α2

<(1+µt)2

� �� �
(τ − µt)2 < t2(1 + µt)2

���A ∂
∂µpij(t;θ)k

��� ≤

<t2����
ρ2

α2

�
2µt

<1+µt� �� �
|τ − µt|

<j+i� �� �
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+ 3
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+ α2t2 + αt(µ2t2 + 2) + (j + i)2µ2t2 + 2αt(j + i) + (j + i)µ2t2
�

=: B222(α, µ, t, j, i) (A.18)

B Derivation of the Fisher information matrix

See Section 3.2 for definitions.
The Fisher information matrix at θ0 associated with {q(θ; i, ·) : θ ∈ Λθ0} is given

by

I(θ0; i) =

�
I11(θ0; i) I12(θ0; i)
I21(θ0; i) I22(θ0; i)

�
.

By expression (2.2) we have that

∞�

j=0

(j − i e−µt)pi(j−1)(t; θ0) = 1 + Eθ0 [N(s+ t)|N(s) = i]− i e−µ0t = 1 + ρ0

∞�

j=0

(j − i e−µt)pij(t; θ0) = Eθ0 [N(s+ t)|N(s) = i]− i e−µ0t = ρ0

∞�

j=0

(j − i e−µt)2pij(t; θ0) = Eθ0 [N(s+ t)2|N(s) = i] + i2 e−2µ0t

−2i e−µ0t Eθ0 [N(s+ t)|N(s) = i]

= (1− e−µ0t)i e−µ0t +ρ20 + ρ0,

where Eθ0 [·] denotes expected value under θ0 = (α0, µ0). Using these results and by
considering expressions (A.5), (A.8) and (A.12), we get that the entries of I(θ0; i) are
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given by

I11(θ0; i) =
�

j∈E

(D1 log q(θ0; i, j))
2 q(θ0; i, j) (B.1)
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(1− e−µ0t)i e−µ0t +ρ0(ρ0 + 1)

ρ20
− 1− 2

ρ0

�

=
α2
0 (τ0 − µ0t)

2

µ4
0




∞�

j=0

(pi(j−1)(t; θ0))
2

pij(t; θ0)
− 1



+
α0t2 e−µ0t

µ0ρ0
i+

α2
0µ0t(2τ0 − µ0t)

ρ0µ4
0

.
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