
Reasoning and Language Generation in the SUMO
Ontology

Master of Science Thesis in the Programme Foundations of Computing –
Algorithms, Languages and Logic

RAMONA ENACHE

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, February 2010

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Reasoning and Language Generation in the SUMO Ontology

Ramona Enache

© Ramona Enache, February 2010.

Examiner: Prof. Aarne Ranta

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden February 2010

1

Abstract

We describe the representation of SUMO(Suggested Upper-Merged Ontology)
in GF(Grammatical Framework). SUMO is the largest open-source ontology,
describing over 10,000 concepts and the relations between them. In addition to
this, there are axioms that specify the behaviour of relations and the connections
between various concepts. The languages that are widely used for encoding
ontologies do not have a type system and have mainly descriptive purpose. For
checking the consistency of ontologies or generating natural language, other tools
are used. GF is a grammar formalism with support for dependent types, and has
built-in support for natural language generation and multilingual translation for
16 languages.

The benefits of the translation of SUMO to GF are the possibility to perform
type-checking on the content of the ontology, and the generation of syntactically
correct natural language. The representation of SUMO uses dependent types
for flexibility and better control of semantic actions. The current work provides
algorithms for type inference and type checking of the translated axioms. From
the concepts, relations and axioms from SUMO, we generate constructions in
natural language for English, Romanian and French.

The resulting GF files are further more translated to a first-order logic
format, TPTP-FOF and checked for consistency with an automated theorem
prover. The resulting set of axioms can be used for making inferences.

The representation of SUMO in GF preserves the expressivity of the original
ontology, adding to this the advantages of a type system and built-in support
for natural language generation.

2

Acknowledgements

I would like to thank my supervisor, Krasimir Angelov who introduced me to
GF, and guided me when implementing the GF resource grammar for Roma-
nian and the present master thesis. Thanks to his constant help, patience and
inspiring advice, I could complete these projects. Also I would like to express
my gratitude towards my examiner, Professor Aarne Ranta for his insightful
feedback on my work and constructive advice about writing a research article.
I would also want to thank Docent Koen Claessen for his help with the auto-
mated reasoning part of the thesis and the illuminating discussions we had on
first-order logic.

Moreover, I would like to thank the dearest grandmother in the world, Gica
for teaching me the ABC of life and being my best friend and role model.
My parents and my little brother, Bogdan who permanently encouraged and
supported all my plans and dreams have all my gratitude, also.

Last but not least, I would like to thank all the wonderful people that I met
in Gothenburg, who gave me a new perspective on life and research and made
me enjoy my stay here to the full.

Contents

1 Preliminaries 5
1.1 SUMO . 6
1.2 Grammatical Framework . 8
1.3 First-Order Logic . 10

2 Translating SUMO to GF 13
2.1 Basic GF Type System . 14
2.2 Translation of SUMO Axioms . 20
2.3 Translation of SUMO Higher-Order Functions to GF 23
2.4 Evaluation of the Translation of SUMO to GF 27

3 Natural Language Generation 35
3.1 Evaluation of NLG in SUMO . 35
3.2 NLG from SUMO to English . 39
3.3 NLG for Romanian and French 44

4 Automated Reasoning 47
4.1 Translation of GF to TPTP . 47
4.2 Applications of Automated Reasoning 51
4.3 Evaluation of the Translation of GF to TPTP 52

5 Evaluation 55

6 Related Work 57

7 Future Work 59

3

4 CONTENTS

Chapter 1

Preliminaries

The constantly growing amount of information brought about the necessity of
classifying it according to criteria such as meaning or domain of usage. Also,
there is need to represent the relations between various pieces of information.
An ontology is a formalism used for representing the abstract projections of in-
formation, named concepts and the relations between them. The behaviour of
relations can further more be expressed by axioms from the ontology, which are
logic formulas, written in a formal language. A taxonomy on domains would
separate ontologies in domain ontologies, which describe the concepts and re-
lations from a given area, and upper ontologies, which feature more general
concepts and the relation between them, and which do not belong to a specific
domain.

Ontologies were introduced in the 70’s. At the beginning, they were used
in Artificial Intelligence. Nowadays, ontologies are are an important field of
Semantic Web. Some of the most widely used ontologies are Cyc, DOLCE,
SUMO and Gellish. In addition to this, there exists a larger number of formats
for encoding ontologies, such as CycL, OWL, RDF, KIF and others. The most
widely used languages for formalizing ontologies are based on first-order logic
with predicates, allowing implicit or explicit higher-order logic constructions,
depending on the structure of the ontology and do not normally have a type
system.

The current work represents the content of the SUMO, the largest open-
source ontology in GF, showing the benefits of this over the usual languages for
encoding ontologies. GF is a grammar formalism based on type theory, and also
a domain-specific functional programming language used for building grammars.
It has mechanisms for rule-based machine translation and was used in various
applications that deal with multilingual translation and natural language gen-
eration. An analisys on SUMO is also performed and the work develops specific
techniques to represent its contents in GF and the advantages of this repre-
sentation. Further more from GF, a translation to a first-order logic format is
provided, and the GF projection of the ontology is checked for consistency and
is used for making various inferences, with the aid of an automated prover.

5

6 CHAPTER 1. PRELIMINARIES

From the total of 30 domain ontologies that SUMO provides, 17 were trans-
lated into GF. These are: Merge and Mid-level-ontology, the most general
ontologies, CountriesAndRegions, Communications, Economy, Elements, Engi-
neering, FinancialOntology, Geography, Government, Military, Mondial, QoSOn-
tology, Transportation, WorldAirportsA-K, WorldAirportsL-Z and WMD.

We describe the techniques used for converting definitions of concepts and
relations from SUMO to GF and of the axioms specifying properties and be-
haviours of the concepts and relations. A translation from an untyped system
to a strongly typed one is not straighforward, and further processing of the data
was needed.

The advantages of representing the SUMO ontology in GF are the possibility
to type check the axioms and definitions and also to generate higher-quality
natural language. The translation to GF, is also an in-depth analysis on SUMO,
showing its structure and the possible problems that the absence of a type
system brings about.

1.1 SUMO

SUMO (Suggested Upper-Merged Ontology)[7] is the largest freely-available
ontology, describing over 10.000 concepts and the relations between them. The
entries in SUMO are grouped in a hierarchy that ranges from the most gen-
eral concept – Entity to very particular instances such as Atoll. Functions,
predicates and relations are also descendants of Entity, since there is just one
tree that covers all the entries from the ontology. This will bring about some
difficulties when formalizing the relations between the concepts and checking
them for consistency in a logic framework, as it allows certain constructions in
higher-order logic and also the possibility to express paradoxes in the ontology.
The following picture describes the first 3 levels in the SUMO hierarchy, which
is the initial part of the taxonomy of concepts. The large number of ramifica-
tions shows the variety of the SUMO entries. Although this initial part has just
simple dependencies between concepts, further on in the hierarchy, a concept
can have multiple inheritance.

Figure 1.1: Hierarchy of concepts in SUMO

1.1. SUMO 7

SUMO covers areas that range from Graph Theory to Weapons of Mass
Destruction and Countries of the World. It features a main file, called Merge
which defines the main functions and basic concepts, such as Entity and Object

that represent the basis of the hierarchy. In addition to this, the file Mid-level-
ontology, takes one step further in defining basic notions, which represent general
concepts from various domains, such as Soldier, Atom, and EuropeanNation,
from ontologies such as Military, Elements and Mondial from SUMO. Merge
and Mid-level-ontology represent general ontologies, that cover almost 1,500
entries. SUMO also features some more specific domain ontologies. In the
current distribution there are 30 other ontologies that cover domains from world
airports to military concepts and transnational issues.

The content of the ontologies is expressed in a version of KIF(Knowledge
Interchange Format), called SUO−KIF , which permits the declaration of con-
cepts in a human-readable form, featuring support for expressing first-order
predicate calculus constructions. The axioms of the ontology that express re-
lations between concepts and relations that manipulate them are expressed in
this format. Due to the modeling of the hierarchy, considering functions and
relations along with all the other concepts, it is possible to express second-order
logic construction in SUO-KIF, as quantifications over a function or predicate.

In order to verify the consistency of the ontology, the declarations and axioms
from Merge and Mid-level-ontology have been translated to TPTP[8]— FOF (an
untyped first-order logic standard), and checked for consistency with various
theorem provers. There is an annual competition for finding an inconsistency in
the system of axioms. It is held at the CADE conference, which is the premier
conference on Automated Deduction.

SUMO has mappings to WordNet [16], which is a large open-source lexical
database, containing over 150,000 words. The WordNet entries are grouped in
synsets, which are sets of words with equivalent semantic meaning in a given
context. For example, the word school belongs to the following synsets (among
others):

(n) school, shoal (a large group of fish) ”a school of small glittering
fish swam by”
(n) school, schooling (the process of being formally educated at a
school) ”what will you do when you finish school?”
(v) educate, school,train,cultivate, civilize, civilise (teach or refine
to be discriminative in taste or judgment) ”Cultivate your musical
taste”; ”Train your tastebuds”; ”She is well schooled in poetry”

The synsets are classified considering the part of speech that the constituents
denote. The parts of speech considered are nouns, adjectives, verbs and adverbs.

The mappings to WordNet [4] was done for the entries from Merge and Mid-
level-ontology. In this way, every concept from one of the two general-purpose
ontologies corresponds to a number of synsets from WordNet. There are three
kinds of such mappings : synonymy, hypernymy and instantiation. Most of the
mappings are instantiations of a SUMO concept.

8 CHAPTER 1. PRELIMINARIES

For example: The BiologicalAttribute concept from Merge, corresponds
to 177 entries from WordNet denoting nouns, most of them being instances of
a biological attribute, such as

inanition | exhaustion resulting from lack of food – BiologicalAttribute

The mapping to WordNet makes SUMO valuable from linguistical point of
view, since it can be used in Natural Language Processing applications, while
the translation to TPTP makes it valuable from the point of view of automated
reasoning, since it can be used by applications that deal with first-order logic.

The SUMO ontology is intended to be an universal ontology, in the sense
that it should reflect universally common concepts and the relations between
them, without being biased towards a certain culture or philosophical system.
Every concept is followed by its documentation, in order to avoid ambiguities.

The SUMO ontology was originally written in English, but translations are
provided for Mandarin Chinese, Czech, Italian, Romanian, German and Taga-
log. There is an online browser, named KSMSA Ontology Browser1, for the
SUMO ontology and its connections to WordNet, which features translations
of the SUMO concepts in the above mentioned languages. In addition to this,
there are translations for French, Hindi and Arabic which are not featured in
the KSMSA browser. The translations are based on a set of templates, which
are combined by concatenation. They are hand-written, and partially cover the
Merge ontology.

Since 2001, when it was created, SUMO has been developed further more
every year. Over 70 papers have been written on SUMO and they analyzed
several aspects of the ontology.

SUMO has an associated knowledge engineering environment. It can be used
for intelligent browsing and developing new ontologies in SUO-KIF. The envi-
ronment features an older version of the Vampire theorem prover, for checking
the first-order logic for consistency.

1.2 Grammatical Framework

GF[1] is a grammar formalism, which uses type theory to express the semantics
of natural languages, for multilingual grammar applications. The GF resource
grammars are the basic constituents of the GF library, on top of which applica-
tions are built. Notable applications that use GF are the verification tool KeY,
for the generation of natural language from the formal language OCL, the dia-
logue systems research project TALK and the educational project WebALT, for
generating natural language for mathematical exercises in different languages,
and performing multilingual translations.

The two main operations that are regularly performed with resource gram-
mars are the generation of natural language, based on a term in the abstract
syntax (linearization) and parsing. Multilingual translation is achieved as a
combination of these two processes.

1http://virtual.cvut.cz/ksmsaWeb/main

1.2. GRAMMATICAL FRAMEWORK 9

A GF resource grammar basically consists of the abstract syntax, which is
a set of rules common to all grammars, and provides the structure of the gram-
mar, and the concrete syntax, which implements the elements of the abstract
syntax in the given language, considering its specific features. The abstract syn-
tax provides consistency for the resource library, also ensuring grammatically
correct multilingual translations. Resource grammars are general-purpose, as
they capture the basic traits of the language. Domain specific applications use
a more restricted domain ontology. In this case, there is more emphasis on the
semantic aspect, than in the case of general - purpose grammars. In both cases,
only syntactically correct constructions can be generated and parsed.

So far the resource library contains 16 languages: English, French, Italian,
Spanish, Catalan, Swedish, Norwegian, Danish, Finnish, Russian, Bulgarian,
German, Interlingua, Romanian, Polish and Dutch. The last three languages
were added in 2009.

The grammar features a complete set of paradigms for the inflectional mor-
phology of the main categories, namely nouns, adjectives, verbs, numerals and
pronouns.

In the abstract syntax, lexical entries are represented as nullary functions
(constants), which will be given a linearization in the implementation of the
concrete syntax, which consists of a table with all the inflection forms. For
example: For example:

fun airplane_N: N;

from the abstract syntax will be linearized in the Romanian resource grammar[9]
as:

lin airplane_N = mkN "avion";

where the function mkN will generate all the 12 flexion forms needed for the
concrete form of the abstract noun, also inferring the gender.

Special categories are the relational nouns, adjectives and verbs, where we
specify the case of the object, and the preposition that binds it with the rela-
tional category. For example:

fun forget_V2: V2;

will be linearized in the English grammar as

lin forget_V2 = dirV2

(irregDuplV "forget" "forgot" "forgotten");

where irregDuplV indicates that the verb is irregular, so all 3 forms are needed
in order to build the whole representation table. The function dirV2 indicates
that the verb is transitive, and the corresponding object will in the Accusative
case, with no binding preposition (direct object).

A small lexicon of almost 300 words is also included, for testing purposes.
It is based on the Swadesh list, and features the most common notions, which
are to be linearized in each language. Specific applications that use GF, usually
have their own dictionaries.

10 CHAPTER 1. PRELIMINARIES

1.3 First-Order Logic

The first-order logic is a basic formal logic system, which is widely used for
formalizing aspects of fields like computer science, mathematics, philosophy,
linguistics and others.

We will proced by shortly defining the two main dimenssions of the first-order
logic system - syntax and semantics.

Having S = (V ,C,PSig,FSig), where

• V is the set of variables

• C is the set of constants

• FSig is the set of function signatures, denoting the arities of the functions

• PSig is the set of predicate signatures, denoting the arities of the predi-
cates.

We define terms as:

• all variables and constants are terms

• if ti, 1≤i≤n are terms and f is a function of arity n, then f(t1, t2...tn) will
be a term, also.

We define first-order formulas as:

• if ti, 1≤i≤n are terms and p is a predicate of arity n, then p(t1, t2...tn)
will be a first-order formula.

• if α and β are first-order formulas, then α ∨ β, α ∧ β, α→ β, α↔ β and
¬α are first-order formulas, also.

• if x is a variable, and α is a first-order formula, then ∀xα and ∃xα are
first-order formulas, also.

First-order logic can also have a special predicate for equality =, which is
treated differently than the other predicates, on the semantical level.

There exists another variant of first-order logic which is typed, and the
inductive process of forming terms and first-order logic formulas ensure that
only well-typed constructions can be obtained.

The semantics of first-order logic assumes interpreting the variables and
constants with values from a set, like the set of natural number, or the set
{0,1}. The first-order connectors are translated into their equivalents from
the standard Boole algebra. Regarding the quantifiers, ∀ will be interpreted
as a conjunction over the elements of the set, and ∃ will be interpreted as a
disjunction over the elements of the set. Functions are mapped into functions
on the set, while predicates are intepreted as predicates taking elements from

1.3. FIRST-ORDER LOGIC 11

the set and returning whether True or False as a result. The equality, if present
is always interpreted as the equality from the set.

The interpretation of a first-order formula, typically assumes assigning values
to each of its atomic constituents(terms consisting of constants or variables), and
evaluating the formula, with the regard to the interpretations of functions and
predicates. The result of evaluating a first-order logic formula is either True or
False.

In this way, one might want to determine if a first-order formula is satisfiable
on some set, i.e. there exists an assignment of the variables of the formulas
to elements from the set, such that the evaluation of the formula yields to
True. The satisfiability of a formula is NP-complete problem for first-order
propositional logic and undecidable for first-order predicate logic.

Also, one could examine if a first-order formula is satisfiable in all interpre-
tations. In this case we call the formula, tautology. Verifying that an arbitrary
first-order formula is a tautology is theoretically undecidable, but in practice,
automated theorem provers manage to obtain good results for a fair amount of
first-order formulas.

Proving statements in first-order logic is the most mature and well-developed
branch of automated theorem proving so far. Various optimization techniques
are meant to increase the performance of tools that verify the validity of a
specific first-order formula.

TPTP[8](Thousands of Problems for Theorem Provers) is the largest database
of problems from various fields, related to Mathematics, which are formulated
in first-order logic, and also the name of the format in which the problems are
written, so that they can be processed by the various automated provers. There
is an annual competition for automated provers, the CADE ATP System Com-
petition, where various automate provers compete on solving TPTP problems.
The TPTP standard representation for first-order formulas, is called FOF and
works with untyped first-order logic. There is work in progress for defining a
standard for typed first-order logic2.

2http://www.cs.miami.edu/ tptp/TPTP/Proposals/TypedFOF.html

12 CHAPTER 1. PRELIMINARIES

Chapter 2

Translating SUMO to GF

The original ontologies are expressed in SUO-KIF, which is completely un-
typed, and has as primitive operations only the first-order logic operators and,
or, implies, equiv, not, forall, exists. Since all the SUMO concepts are
grouped in one hierarchy, it is possible to express constructions in second-order
logic, like quantifying over functions or predicates. This makes it more difficult
to automatically check for consistency, since a translation to first-order logic
would not be possible in all cases. All the concepts and relations from SUMO
are to be defined. This yields to the particular situation where the predicate
instance is defined in terms of itself:

(instance instance BinaryPredicate).

Also, there is no separation between types and instances, the instance predi-
cate, which is meant to reflect the relation between a variable and its type, is
defined as having 2 arguments of type Entity. In these conditions the expression
(instance x x) can be expressed. This opens a gate to potential self-referencial
paradoxes and constructions that might not make sense in a typed context. An-
other controversial construction in SUMO is the function KappaFn that denotes
the class of variables satisfying a given property. This approach fits the naive
way to define sets in set theory, and permits expressing Russell’s paradox in
SUMO.

This is one of the most well-known paradoxes of naive set theory and was
discovered in 1901 by the Bertrand Russell. It can be expressed as: we name
normal the sets X with the property that X /∈ X. In this conditions we can
prove that the set of normal sets is neither normal, nor non-normal.

Let S = { X | X /∈ X }.

• Assuming that S is normal, we have that S /∈ S, so S is not a member of
the set of normal sets, which is itself, hence it is non-normal.

• Assuming that S is non-normal, we have that then S ∈ S, hence S is a
member of the set of normal sets, so it is normal.

13

14 CHAPTER 2. TRANSLATING SUMO TO GF

The solutions to this paradox were the axiomatic set theory, introduced by
Zermelo and Fraenkel and a typed set theory, proposed by Russell.

In SUO-KIF Russell’s paradox can be expressed as:

(instance

(KappaFn "x" (not (instance x x)))

(KappaFn "x" (not (instance x x))))

where KappaFn "x" (not (instance x x)) is the class of normal elements, as
defined before. In a similar manner, one can show that the axiom is both True
and False.

The type system from GF does not use the predicate instance, which was
used to formulate Russell’s paradox in SUMO due to its peculiar signature, that
allows a form of self-reference.

2.1 Basic GF Type System

GF is a functional programming language based on Martin-Löf type theory. It
has strong static typing and provides support for dependent types.

Translating from an untyped system to a typed system is not straightforward,
and further modeling on the data was needed. An inconvenient in this process
is the fact that the SUMO ontologies have been written by hand, and not type-
checked in any way, since the language is mostly descriptive. Another difficulty
is the fact that the SUO-KIF framework where everything is expressed as a
predicate, and the task of checking the consistency is passed to the automated
prover. As seen from the definition of first-order terms and formulas, the only
type checking that can be done is that functions and predicates are applied
to the right number of arguments. Also, the representation of all concepts in
one hierarchy gives rise to constructions that belong ultimately to higher-order
logic, and cannot be translated and checked by a first-order automated prover.

The first step in the modeling of the data is to split the hierarchy into
types and instances of types: Class will denote the type of SUMO classes. For
instances of a certain type, two dependent types are used:

• El Class - for direct or indirect instances of a class used as argument of
a function;

• Ind Class - for direct instances of a class, defined as such, or obtained
from applying a function to its arguments.

• Var Class - variables which are direct or indirect instances of a class and
are used in the quantified formulae.

In SUMO the predicate immediateinstance corresponds to the Ind cate-
gory in GF and represents a direct instance of a particular class. The instance

predicate corresponds to the categories El and Var in GF and represents a direct
or indirect instance of a class. An indirect instance of a class signifies a direct

2.1. BASIC GF TYPE SYSTEM 15

instance of a subclass of that class. The different treatment of quantified vari-
ables is useful for the natural language generation and the automated reasoning
parts.

Examples of using these categories for declaring SUMO relations and con-
cepts:

fun RadiusFn: El Circle -> Ind LengthMeasure;

fun YearDuration: Ind UnitOfDuration;

A special type is Formula, which denotes the result type of a predicate.
Formula does not have instances or subclasses. For manipulating Formulas,
the following operators, inspired from first-order logic are provided:

fun not: Formula -> Formula;

fun and: Formula -> Formula -> Formula;

fun or: Formula -> Formula -> Formula;

fun impl: Formula -> Formula -> Formula;

fun equiv: Formula -> Formula -> Formula;

and for quantified predicates:

fun exists: (c: Class) -> (Var c -> Formula) -> Formula;

fun forall: (c: Class) -> (Var c -> Formula) -> Formula;

In the original files, these operators are the only predefined relations, while
all the other functions and predicates are to be subsequently defined.

In the original SUMO hierarchy Formula is a member of the hierarchy, but
also the type of the return value of a predicate. The first-order logic operators
from SUO-KIF are applied to Formulas, and there exist cases of quantification
over Formulas, also. This is an indirect second-order logic construction, as there
are no instances of Formula in SUMO. One could only get a value of this type
by applying a predicate to its arguments. So, a quantification over Formula,
assumes quantification over predicates and their possible arguments.

There are 27 functions in the total of 17 SUMO files considered, that take
an argument of type Formula. An idea to reduce the second-order logic con-
structions to first-order logic would be to replace a function call of any of these
functions, with the axiom specifying their definition. In this way, the result-
ing axioms would have the same meaning, and they could be used for auto-
mated reasoning. Unfortunately, only 3 of the 27 functions have an axiom
that specifies their behavior and that could be used as a macro, instead of
the function call. They are decreasesLikelihood, increasesLikelihood and
independentProbability. The rest of the functions depend on each other, or
do not have any axiom at all, as it is the case with hasPurpose which is the
most widely used in axioms, among the 27 functions.

In the GF type system, for these reasons, we do not provide the possibility
to quantify over Formula, because it would basically mean that the system will
not be first-order logic anymore.

In this typed framework, Russell’s paradox can no longer be expressed.

16 CHAPTER 2. TRANSLATING SUMO TO GF

The hierarchy of Classes is represented in GF, by the following dependent
categories:

cat SubClass (c1, c2: Class)

cat SubClassC (c1, c2: Class) -> (Var c2 -> Formula)

Examples:

fun Ice_Water: SubClassC Ice Water (\ICE -> attribute (var

Water Object ? ICE)(el PhysicalState Attribute ? Solid));

fun April_Class: SubClass April Month;

where el is a coercion function from Ind to El, that has the following signature:

fun el: (c1, c2: Class) -> Inherits c1 c2 -> Ind c1 -> El c2;

The function var is similar to el, as it ensures coercion from Var to El, and
was declared as following:

fun var: (c1, c2: Class) -> Inherits c1 c2 -> Var c1 -> El c2;

The semantics of SubClassC is that the condition that if an instance of
class c2 fulfills the given condition, then it is an instance of c1 - the subclass.
SubClass specifies a more general inheritance relations, where the above men-
tioned condition is not specified Most of the relations between classes are of the
type SubClass, while about 1% are SubClassC. When extending the ontology
with more concepts and relations, it is possible that the number of SubClassC

will increase.
The generic inheritance relation between instances is the reflexive-transitive

closure of SubClass and SubClassC, named Inherits (c1, c2: Class), which
can be formed with the following functions:

fun inhz: (c: Class) -> Inherits c c;

fun inhs: (c1, c2, c3: Class) -> SubClass c1 c2 ->

Inherits c2 c3 -> Inherits c1 c3;

fun inhsC: (c1, c2, c3: Class) -> (p: Var c2 -> Formula) ->

SubClassC c1 c2 p -> Inherits c2 c3 -> Inherits c1 c3;

The Inherits type corresponds to the SUMO concept of subclass, were
the SubClass and SubClassC correspond to the SUMO concept of immediate-
Subclass. The Inherits category is used for defining coercion functions be-
tween instances. For example:

fun NonnegativeRealNumber_RealNumber : SubClassC

NonnegativeRealNumber RealNumber (\NUMBER ->

greaterThanOrEqualTo (var RealNumber Quantity ?

NUMBER) (el Integer Quantity ? (toInt 0)));

2.1. BASIC GF TYPE SYSTEM 17

where greaterThanOrEqualTo: El Quantity -> El Quantity -> Formula.
The function var casts NUMBER from its type - Var RealNumber to El Quantity,
which is the type that greaterThanOrEqualTo expects. For double and in-
teger values, the built-in GF types Float and Int are used, and two func-
tion toRealNum and toInt convert from the GF types to Ind Double and Ind

Integer. Further on, the coercion function el casts the resulting value from
the resulting type to an El Quantity, which is the type of the second argument
that the function greaterThanOrEqualTo expects.

The first three arguments of var and el are not necessary for the type
checking phase, and they can be replaced with the wild-cart sign ?. The GF
type checker can infer the first two, but not the Inherits object, currently. If
an Inherits instance is provided, the type checker will determine its correctness,
however. The GF translation of SUMO uses the wild-cart sign for the first
three arguments of el, and the GF type checker infers the type of the first two
afterwards.

Because many SUMO concepts develop multiple inheritance, two operators
for creating derived types have been defined:

fun both: Class -> Class -> Class;

fun either: Class -> Class -> Class;

Their behaviour in the type system is described by the following functions:

fun bothL: (c1, c2: Class) -> Inherits (both c1 c2) c1;

fun bothR: (c1, c2: Class) -> Inherits (both c1 c2) c2;

fun bothC: (c1, c2, c3: Class) -> Inherits c3 c1 ->

Inherits c3 c2 -> Inherits c3 (both c1 c2);

fun eitherL: (c1, c2: Class) -> Inherits c1 (either c1 c2);

fun eitherR: (c1, c2: Class) -> Inherits c2 (either c1 c2);

fun eitherC: (c1,c2,c3: Class) -> Inherits c1 c3 ->

Inherits c2 c3 -> Inherits (either c1 c2) c3;

These functions that manipulate the types built with both and either, are
heavily inspired by the definitions of supremum and infimum in a partial ordered
set.

Actually the hierarchy of types, with the both and either operations has
the structure of a lattice having a least element - Entity, a supremum function -
either, and an infimum one - both, where the partial order relation is Inherits.
One can prove that the lattice is also distributive.

Although the SUMO ontology does not have an element which is the op-
posite of Entity, signifying the most particular element, that cannot have any
instances, in GF one can consider a special class, Nothing, which would mean
the empty type, in the Curry-Howard tradition, as it would not have any in-
stance, or subclasses. The additional construction makes the distributive lattice
a Boole algebra. As Boole algebras also have a negation unary operator, it is
also possible to define in GF the complement of a Class, but the behaviour of

18 CHAPTER 2. TRANSLATING SUMO TO GF

the complement is harder to model in the current type system. In traditional
type systems, the complement is modeled in terms of the implication and the
False object, but in the current setting, the only functions provided are the
equivalents of conjuction and disjunction.

As in SUMO, functions and predicates do not only take instances as argu-
ments, but also subclasses of a certain class, we use the dependent category
Desc Class to model this situation. The constructor for this type is:

data desc: (c1,c2: Class) -> Inherits c1 c2 -> Desc c2;

Hence, c1 belongs to Desc c2 (descendant of c2), if one can provide an Inherits

object from c1 to c2. So, only classes that inherit c2, directly or indirectly can
be used to build a Desc c2.

From a Desc object, one might extract the ancestor class and the proof of
inheritance.

fun descToClass: (c: Class) -> Desc c -> Class;

def descToClass _ (desc c _ _) = c;

fun descInh: (c: Class) -> (p: Desc c) -> Inherits

(descToClass c p) c;

It is possible that functions return a result of type Desc Class also. In this
case, one needs a coercion function for descendents:

fun descToDesc: (c1,c2: Class) -> Inherits c1 c2 -> Desc c1

-> Desc c2;

The function basically states that if c1 inherits c2, and we have a descendent of
c1, then the latter is also a descendent of c2.

With the aid of this types and functions that manipulate them, it was pos-
sible to translate the concepts and relations from the SUMO sources into GF.

In the original SUMO files, every concept, except for Entity, is defined
either as an instance of a type, or a subclass of another type. For relations -
functions and predicates, the following figure reflects the relations between these
special concepts from the ontology.

Figure 2.1: Hierarchy of relations in SUMO

The concept of Function represents functions with variable number of ar-
guments, and a similar situation holds for the Predicate concept. Instances

2.1. BASIC GF TYPE SYSTEM 19

of Relation, other than Predicate, have been interpreted as predicates, also,
providing additional axioms, where necessary. The types of the arguments and
of the result (for functions) is defined by the relations range, rangeSubclass,
domain, domainSubclass.

For example, in Merge-

(instance address BinaryPredicate)

(domain address 1 Agent)

(domain address 2 Address)

wiil be represented in GF as:

fun address: El Agent -> El Address -> Formula;

There is also a number of functions and predicates that are just defined as
subrelations, with or without specifying the types of the arguments. In this case
they have the same signature as their direct ancestor. If certain argument have
different types, the definition is updated subsequently.

For example, in SUMO -

(subrelation earthAltitude distance)

(instance distance TernaryPredicate)

(domain distance 1 Physical)

(domain distance 2 Physical)

(domain distance 3 LengthMeasure)

will be represented in GF as:

fun distance: El Physical -> El Physical -> El LengthMeasure

-> Formula;

fun earthAltitude: El Physical -> El Physical -> El

LengthMeasure -> Formula;

The is also the case of sub attributes, which are not defined as instance of a
class. In that case, they take the type of their direct ancestor.

For example, in SUMO-

(subAttribute Larval NonFullyFormed)

(instance NonFullyFormed DevelopmentalAttribute)

will be translated to GF as:

fun NonFullyFormed: Ind DevelopmentalAttribute;

fun Larval: Ind DevelopmentalAttribute;

It is the case that there are chains of such sub attributes. For example, in
FinancialOntology and Merge-

(subAttribute FinancialContract Contract)

(subAttribute Contract Promise)

(subAttribute Promise Obligation)

(instance Obligation DeonticAttribute)

20 CHAPTER 2. TRANSLATING SUMO TO GF

In this case all concepts will be instances of DeonticAttribute. The al-
gorithm that infers the type for sub attributes, takes care of chains of sub
attributes, for the whole workspace of 17 files. The same situation holds for the
algorithm that infers the right signature of sub relations.

Regarding difficulties of the translation of SUMO definitions to GF, we name
the presence of concepts that appear both as subclass and instance, in the same
file or in different files. For example, in Mid-level-ontology-

(subclass PoliticalFigure Celebrity)

(subclass ReligiousFigure Celebrity)

(instance Celebrity SocialRole)

This is an example of bad design of the ontology that should be overcome in
the translation to GF, as it is not possible in a type system that something could
be both a type and an instance of a type. In this case, we keep the problematic
concepts as classes, rather than instances, so that we preserve the inheritance
relations with the other concepts.

2.2 Translation of SUMO Axioms

Regarding the SUMO axioms, they are of two kinds: simple and quantified
formulas. In the 17 files that we considered there are 3,461 quantified axioms
and 37,222 simple ones.

An example of a simple axiom is the following one from CountriesAndRe-
gions:

(capitalCity MoscowRussia Russia)

where an example of quantified axiom, chosen from Mid-level-ontology is:

(<=>

(subCollection ?COLL1 ?COLL2)

(forall (?MEMBER)

(=>

(member ?MEMBER ?COLL1)

(member ?MEMBER ?COLL2))))

The variables in SUMO are written with ? in front of the name. In the axiom, we
have ?COL1, ?COL2 and ?MEMBER as variables, while member and subCollection

are predicates. ?MEMBER is a bound variable, while ?COL1 and ?COL2 are free.
The SUMO axioms are to be translated as GF abstract syntax trees. Since

GF is a strongly typed system, all the variables need to be typed also. It also
the case of the considered axiom. Also open expressions are not valid GF trees,
so the first step is to transform these expressions into closed ones. The above-
mentioned axiom will be interpreted as:

(forall (?COL1 ?COL2)

(<=>

2.2. TRANSLATION OF SUMO AXIOMS 21

(subCollection ?COLL1 ?COLL2)

(forall (?MEMBER)

(=>

(member ?MEMBER ?COLL1)

(member ?MEMBER ?COLL2)))))

The next step is to infer the type of variables. A predicate of the form
(instance ?X SetOrClass) indicates that the type of the variable ?X is an
instance of the class SetOrClass. For example,in Mid-level-ontology-

(=>

(instance ?P Wading)

(exists (?W)

(and

(instance ?W BodyOfWater)

(located ?P ?W))))

can be translated into GF straightforwardly as:

forall Wading (\P -> exists BodyOfWater (\W -> located

(var Wading Physical ? P) (var BodyOfWater Object ? W)))

where var is the previously defined coercion function for quantified variables.
The instance predicates have been removed, since they convey information
about the types of the variables, and in GF, this is done in a more direct
way. The axiom was pruned of this kind of type declarations, and the result
was translated using the GF equivalents to the first-order logic operators and
quantifiers. The first two arguments of the coercion function var were inferred
by the GF type checker.

However, type inference is not straightforward in many other cases. There
could be two or more type declarations of a variable in the same formula. For
example, in Elements-

(=>

(and

(instance ?ATOM Hydrogen)

(instance ?ATOM Atom))

(measure ?ATOM (MeasureFn 1.0079 Amu)))

and in Merge-

(=>

(instance ?PROC OrganOrTissueProcess)

(exists (?THING)

(and

(located ?PROC ?THING)

(or

(instance ?THING Organ)

(instance ?THING Tissue)))))

22 CHAPTER 2. TRANSLATING SUMO TO GF

In this case the both and either operators are used to express the derived types
of the variables:

forall (both Atom Hydrogen) (\ATOM -> measure (var (both Atom

Hydrogen) Object ? ATOM) (el PhysicalQuantity PhysicalQuantity

? (MeasureFn (el RealNumber RealNumber ? (toRealNum 1.0079))

(el UnitOfMass UnitOfMeasure ? Amu))))

forall OrganOrTissueProcess (\PROC -> exists (either Organ

Tissue) (\THING -> located(var OrganOrTissueProcess Physical ?

PROC) (var (either Organ Tissue) Object ? THING)))

However, as it is the case of the first quantified axiom from Mid-level-
ontology, there can be quantified axioms that do not have type declarations
for some of the variables. Since the type coercion function needs a convenient
type in order to build the right Inherits object, one should have a mechanism
of inferring the type of such variables.

A simple statistic shows that 58% of the quantified axioms from the total
of 17 files contain variables with no type declaration. SUMO ontologies like
Economy, have a percentage of 81% of quantified axioms with untyped variables.

The current work provides a type inference algorithm for dealing with such
cases. It keeps the signatures of the functions, from all files, as axioms do
not normally use only functions from the only one module. For every untyped
variable that appears in an axiom, the algorithm infers the type that it would
require, considering the functions that use it. The final type is the both combi-
nation of all such types. For example, in Economy-

(=>

(attribute ?AREA MajorIndustrialEconomy)

(economyType ?AREA DevelopedCountry))

while in GF-

forall (both Object Agent) (\AREA -> impl (attribute (var (both

Object Agent) Object ? AREA) (el EconomicDevelopmentLevel

Attribute ? MajorIndustrialEconomy)) (economyType (var (both

Object Agent) Agent ? AREA) (el UNEconomicDevelopmentLevel

EconomicAttribute ? DevelopedCountry)))

where the variable AREA is used by the function attribute as first argument,
and by the function economyType as first argument. The functions’ signatures
are:

fun attribute: El Object -> El Attribute -> Formula;

fun economyType: El Agent -> El EconomicAttribute -> Formula;

Having the definition of both, and the relation between it and the Inherits

type, one could see that the inferred type is enough to make the axiom type

2.3. TRANSLATION OF SUMO HIGHER-ORDER FUNCTIONS TO GF 23

check. Of course the inferred type could be simplified, as (both Object Agent)
is actually Agent, as Agent is a direct subclass of Object.

The algorithm also rejects some cases of ill-typed axioms, which can be
traced when inferring the type of some variables.

Regarding the simple axioms that do not contain quantified variables, their
translation to GF was more straightforward and less error-prone. The transla-
tion ratio is almost 90% and the main reason for leaving out some axioms is the
presence of instance with no previous declaration.

For example, the following axioms from CountriesAndRegions-

(capitalCity LondonUnitedKingdom UnitedKingdom)

will be translated to GF as:

capitalCity (el EuropeanCity City ? LondonUnitedKingdom)

(el (both Country Nation) GeopoliticalArea ? UnitedKingdom)

2.3 Translation of SUMO Higher-Order Func-
tions to GF

Special attention was given to the higher-order functions and the axioms that
use them. They are problematic, as their correspondent type signature from
GF would require more information on the types of the parameters, and also
type casting between on functions is not possible.

There is a relatively small number of significant higher-order functions. Some
of them just describe a pattern for applying the given function. The significant
functions specify a certain behaviour of the function-argument, such as commu-
tativity, associativity, etc.

For example, in GF-

fun capability: (c: Desc Process) -> (El Entity -> El

Entity -> Formula) -> El Object -> Formula;

which corresponds in SUMO to:

(=>

(and

(instance ?ROLE CaseRole)

(?ROLE ?ARG1 ?ARG2)

(instance ?ARG1 ?PROC)

(subclass ?PROC Process))

(capability ?PROC ?ROLE ?ARG2))

where CaseRole is a kind of binary predicate, so the meaning of the axioms is
applying the function to an instance of the first argument which is a type and
the second argument, which is an instance already. A possible interpretation of
the capability function would be the ability / possibility to perform a certain

24 CHAPTER 2. TRANSLATING SUMO TO GF

action. This interpretation would require a modal logic system, and a specific
modality operator.

For example, in Merge-

(=>

(instance ?CLOUD Cloud)

(capability Seeing patient ?CLOUD))

has been translated to GF as:

forall Cloud (\CLOUD -> forall Seeing (\SEEING -> patient

(var Seeing Process ? SEEING) (var Cloud Entity ? CLOUD)))

Approximately 6% of the axioms use capability. In the original SUMO
files, these axioms could not be processed by an automated reasoner because
capability is a higher-order function.

Other higher-order functions that express some special property of a func-
tion, such as TransitiveRelation, have been defined separately in the file
HigherOrder.gf . They have been given a more comprehensive signature, and
the axioms that define their behaviour have been rephrased.

The file HigherOrder.gf contains a total of 22 higher-order functions which
were given type-correct definitions. Axioms that use these functions were trans-
lated to GF separately. The higher-order functions considered are: Antisymme-
tricRelation, IntentionalRelation, ReflexiveRelation, SymmetricRela-
tion,EquivalenceRelation, TransitiveRelation, IrreflexiveRelation, A-
symmetricRelation, PropositionalAttitude, ObjectAttitude, Intransiti-
veRelation, PartialOrderingRelation, distributes, TrichotomizingRela-
tion, TotalOrderingRelation, inverse, OneToOneFunction, SequenceFunc-
tion, AssociativeFunction, CommutativeFunction, identityElement, sub-
Relation2El.

For example,in Merge-

(instance MultiplicationFn CommutativeFunction)

was translated into GF as:

CommutativeFunction Quantity Quantity (\x,y ->

MultiplicationFn x y)

where CommutativeFunction has the following definition:

fun CommutativeFunction: (c1,c2: Class) -> (El c1 -> El c1

-> Ind c2) -> Formula;

def CommutativeFunction c1 c2 f = forall c1 (\x -> forall c1

(\y -> equal (el c2 Entity ? (f (var c1 c1? x)

(var c1 c1 ? y))) (el c2 Entity ? (f (var c1 c1 ? y)

(var c1 c1 ? x)))));

2.3. TRANSLATION OF SUMO HIGHER-ORDER FUNCTIONS TO GF 25

For the relations from HigherOrder, the proper signature was chosen respect-
ing the mathematical conventions, since the SUMO original functions were very
vague about it. There is a flagrant case of improper use of such a higher-order
function - AsymmetricRelation. An asymmetric relation is a relation which is
irreflexive and antisymetric.

• forall x, ¬ R(x,x)

• forall x and y, R(x,y) & R(y,x) → x = y

It is normal, hence, to assume that the two arguments have the same type, or
at least there is an inheritance relation between the two types.

However, in SUMO it seems that the concept of AsymmetricRelation sig-
nifies the opposite of SymmetricRelation, with little concern for the types of
the arguments. For example,in Merge-

(instance frequency BinaryPredicate)

(instance frequency AsymmetricRelation)

(domainSubclass frequency 1 Process)

(domain frequency 2 TimeDuration)

where there is no inheritance relation between Process and TimeDuration. It
would be even awkward to assume that two objects of these types would ever
be equal.

The GF version of AsymmetricRelation assumes that the two arguments
have the same type:

fun AsymmetricRelation: (c: Class) -> (El c -> El c ->

Formula) -> Formula;

def AsymmetricRelation c f = and (AntisymmetricRelation c f)

(IrreflexiveRelation c f);

On translating higher-order axioms, a type checking is performed, to rule out
this kind of type mismatches. Because of the wide usage of AsymmetricRelation,
mainly, the percentage of higher-order axioms that could be translated is just
of almost 43%.

Another reason is that the signatures from HigherOrder are adapted for
arguments of type El c, but not for Desc c, Class or Formula. However, the
majority of functions and predicates take arguments of type El c. For better
coverage, one might define patterns for the other cases, but that would not
improve the statistics considerably.

A special case of the higher-order functions is subrelation, which takes two
other relations as arguments. Since in over 80% of its appearances, it defines a
relation between two binary predicates, its signature in GF was chosen as:

fun subRelation2El: (c1,c2,c3,c4: Class) -> Inherits c1 c3

-> Inherits c2 c4 -> (El c1 -> El c2 -> Formula) -> (El c3

-> El c4 -> Formula) -> Formula;

def subRelation2El c1 c2 c3 c4 i1 i2 f g = forall c1 (\x ->

26 CHAPTER 2. TRANSLATING SUMO TO GF

forall c2 (\y ->impl (f (var c1 c1 ? x) (var c2 c2 ? y))

(g (var c1 c3 ? x) (var c2 c4 ? y))));

The axiom requires that the types of the arguments of the subrelation are sub-
classes of the classes used by the ancestor relation, in an explicit way. For the
other cases, such as ternary predicates or kinds of function, another subrelation
can be defined in a similar manner. The subrelation2El function will be used
for the translation of SUMO subrelations into GF.

For example, in FinancialOntology-

(subrelation accountAt agreementMember)

where

fun accountAt: El FinancialAccount -> El FinancialOrganization

-> Formula;

fun agreementMember: El Contract -> El CognitiveAgent ->

Formula;

will be translated into GF as:

subRelation2El FinancialAccount Contract FinancialOrganization

CognitiveAgent ? ? (\x,y -> accountAt x y) (\x,y ->

agreementMember x y)

Other higher-order function were not translated, as they cannot be properly
used in a type system. For example AssignmentFn, which denotes the applica-
tion of a function to its arguments. In GF this was replaced by the mere function
assignment operation. Another example is playsRoleInEvent, the behaviour
of which is defined by the following axiom:

(=>

(playsRoleInEvent ?OBJ ?ROLE ?EVENT)

(?ROLE ?EVENT ?OBJ))

which states that the higher-order function simply denotes the application of
the second argument, which is a function to the other two arguments. A similar
situation occurs for playsRoleInEventOfType, the definition of which relies on
playsRoleInEvent:

(=>

(and

(playsRoleInEvent ?OBJ ?ROLE ?EVENT)

(instance ?EVENT ?CLASS)

(subclass ?CLASS Process)

(time ?EVENT ?TIME)

(located ?EVENT ?PLACE))

(playsRoleInEventOfType ?OBJ ?ROLE ?CLASS ?TIME ?PLACE))

2.4. EVALUATION OF THE TRANSLATION OF SUMO TO GF 27

Unlike capability, which was rather widely used, these function are not used
in other axioms, except the ones that specify their behavior. Consequently they
were not translated to GF.

A total figure of 78% of the axioms involving higher-order function from the
HigherOrder file were translated successfully from SUMO to GF.

2.4 Evaluation of the Translation of SUMO to
GF

A total of 17 files, including Merge and Mid-level-ontology were translated to
GF, but other SUMO ontologies can be added semi-automatically after the
processing of the initial files. There is a number of cases where the translation
was not possible due to reasons that we will explain further on.

Regarding the definitions of concepts and relations, a number of them could
not be translated to GF, due to insufficient information. It is the case of relations
and concepts which are not defined anywhere, but are just used in axioms. For
example:

• in Mid-level-ontology- partlyLocatedAtTime, Launcher, Tire

• in Geography: Swamp

• in Economy OtherChemicalAndFertilizerMineralMining

Also there are relations which are just defined as functions or predicates, but
no additional information is given on them. For example, in FinancialOntology-

(instance totalBalance BinaryPredicate)

In the first case, the unknown information along with the axioms that use it,
will not be represented in GF. For the second case, as we cannot infer any
information about the predicate, it will not be translated to GF, and the axioms
that use it will be ignored, also.

Regarding the translation of SUMO axioms, there are cases when inferring
the type declaration of a variable could not be covered by our approach are the
situation when an instance ocurrs negated. For example, in Merge-

(=>

(and

(instance ?LANG AnimalLanguage)

(agent ?PROC ?AGENT)

(instrument ?PROC ?LANG))

(and

(instance ?AGENT Animal)

(not (instance ?AGENT Human))))

or when an instance declaration appears as argument of another function, like
in Merge-

28 CHAPTER 2. TRANSLATING SUMO TO GF

(=>

(and

(instance ?Closing ClosingAnAccount)

(patient ?Closing ?Account))

(and

(holdsDuring

(ImmediatePastFn (WhenFn ?Closing))

(instance ?Account FinancialAccount))

(holdsDuring

(ImmediateFutureFn (WhenFn ?Closing))

(not (instance ?Account FinancialAccount)))))

These axioms are less than 0.05% of the total number and were not translated
to GF.

The occurences of negated instance declarations can be solved after defining
a complement operator for Classes. In this way the type of a variable would
be an element from the Boolean algebra that we previously described.

Another example of inconsistency in SUMO is the case when a relation is
declared with a given signature, but it is mostly used with a different number
of arguments. For example, earthAltitude, that was discussed previously.
Since earthAltitude did not have additional new type definitions for any of
the arguments, in GF the signature was inferred from the relation with distance.
However in all the axioms from Geography and mondial, earthAltitude is used
with just 2 arguments, instead of 3, as distance has.

In this case, we assume that the type definition is correct and reject the
axioms as ill-formed in the type checking phase. There are several other reasons
for which an axiom could be rejected as ill-typed. One of them is the remodeling
of the type system. In SUMO, Formula is a subclass of Sentence, while Class is
a subclass of SetOrClass. In the GF type system, Formula denotes the return
type of predicates, while Class represents the set of types. Several axioms
that use Class or Formula would not type check anymore, because of type
mismatches, like:

• implicit quantification on Formulas. For example, in Government-

(=>

(and

(agreementEffectiveDate ?AGR ?DATE)

(confersRight ?FORMULA ?AGR ?AGENT)

(instance ?TIME ?DATE))

(holdsDuring (ImmediateFutureFn ?TIME)

(holdsRight ?FORMULA ?AGENT)))

• impossibility to use a variable of type Formula and as instance of other
types such as Entity, which in the original SUMO would have been pos-
sible. For example, in Merge-

2.4. EVALUATION OF THE TRANSLATION OF SUMO TO GF 29

(=>

(and

(instance ?PREDICT Predicting)

(patient ?PREDICT ?FORMULA))

(exists (?TIME)

(and

(holdsDuring ?TIME ?FORMULA)

(or

(before ?TIME (WhenFn ?PREDICT))

(earlier ?TIME (WhenFn ?PREDICT))))))

• implicit quantification on Class

(=>

(exhaustiveDecomposition @ROW)

(=>

(inList ?ELEMENT (ListFn @ROW))

(instance ?ELEMENT Class)))

This axiom can be expressed directly in the type system, by making sure
that all elements of the list are instances of Class. In GF this is expressed
already, from the definition of exhaustiveDecomposition.

• mismatches between Class and other types

(=>

(instance ?Loan PiggybankLoan)

(equal (CardinalityFn

(KappaFn ?Lender (lender ?Loan ?Lender))) 2))

where KappaFn is a function returning a Class, while CardinalityFn

expects an argument of type El (either SetOrClass Collection).

Some of these missmatches caused by cutting the original hierarchy could
be solved by providing additional functions, like a kind of CardinalityFn that
takes an argument of type Class. The others are just collateral effects of the
redesigning of the ontology, and would need some extensions of the ontology,
that would fit the new design better.

There are other type errors of original SUMO axioms which have been dis-
covered at this phase:

• usage of functions with wrong number of arguments

(=>

(instance ?ORG Manufacturer)

(hasPurpose (exists (?MANUFACTURE)

(and

30 CHAPTER 2. TRANSLATING SUMO TO GF

(instance ?MANUFACTURE Manufacture)

(instance ?MANUFACTURE CommercialService)

(agent ?MANUFACTURE ?ORG)))))

where hasPurpose has the signature:

fun hasPurpose: El Physical -> Formula -> Formula;

• usage of relations and concepts that have not been defined (as mentioned
before)

• mismatches between subclasses and instances

– using a subclass instead of an instance For example, in Mid-level-
ontology-

(=>

(and

(instance ?C CavalryUnit)

(instance ?B Battle)

(agent ?B ?C))

(exists (?P ?V ?T)

(and

(attribute ?P Soldier)

(member ?P ?C)

(instance ?T Transportation)

(agent ?T ?P)

(instance ?V Vehicle)

(patient ?T ?V)

(during ?T ?B))))

where attribute has the signature:

fun attribute: El Object -> El Attribute -> Formula;

and Soldier is defined as a class, and not an instance.

– use an instance as a class For example, in Mid-level-ontology-

(=>

(instance ?X Theology)

(exists (?Y)

(and

(instance ?Y ReligiousProcess)

(refers ?X ?Y))))

where

fun Theology: Ind FieldOfStudy;

2.4. EVALUATION OF THE TRANSLATION OF SUMO TO GF 31

Further axioms that could not be straightforwardly translated into GF are
the ones containing the subclass, domain, domainSubclass, rangeSubclass,
range. Some of these axioms can be rephrased in the type system, but since
there is not pattern that would fit most of them, they were not translated to
GF. For example, in Merge-

(=>

(subclass ?X ?Y)

(and

(instance ?X SetOrClass)

(instance ?Y SetOrClass)))

The axiom states that the subclass predicate is applied to arguments which
are of type SetOrClass. This constraint can easily be implemented in the type
system, by properly setting the type of the operand to instances of SetOrClass.
Neither instance, nor subclass are used in GF, so implementing the constraint
in the type system is the only way to capture the meaning of this axiom.

There are axioms, for which the translation is not straightforward. For
example, in Merge-

(=>

(and

(parent ?CHILD ?PARENT)

(subclass ?CLASS Organism)

(instance ?PARENT ?CLASS))

(instance ?CHILD ?CLASS))

The axiom basically states that if ?PARENT is the parent of ?CHILD, then for any
Class ?CLASS, of which ?PARENT is an instance, ?CHILD must be an instance of
?CLASS also. Shortly, if the ?PARENT is a direct instance of some class, ?CHILD
should be a direct instance of a subclass of that class. This can be expressed
in the type system with the help of the Desc category, but this requires human
analyzing and cannot be done automatically.

Each axioms could follow a different pattern, that would require different
techiques for translating it into GF, and this cannot be done automatically, or
even semi-automatically, since one should manipulate directly the type system.

Higher-order quantified axioms, that contain variables of type Formula,
Class or a kind of Relation cannot be expressed in GF. Adding new functions
would make this possible, at the cost of making the type system more heavy
and complicated, and possibly not equivalent to first-order logic anymore.

Another distinctive aspect of SUO-KIF that cannot be translated into GF
is the use of the special variable @ROW, which denotes variable number of argu-
ments. The functions and predicates which take variable number of arguments,
use the GF built-in lists, when translated. However the GF list is not a normal
variable, so one cannot quantify over it.

For example:

(=>

32 CHAPTER 2. TRANSLATING SUMO TO GF

(and

(subrelation ?REL1 ?REL2)

(?REL1 @ROW))

(?REL2 @ROW))

which is the axiom that defines the behaviour of subrelation. It is higher-
order, as it implicitely quantifies over 2 relation, and it also uses the ROW vari-
able. In GF it has been rephrased as the definition rule of the subrelation2El

function.
The percentage of these axioms is about 11% of the total number of axioms.
Another special category of axioms that could not be translated into GF is

the ones where the type declaration of a variable comes as a consequence of the
usage of that variable in a particular situation. For example, in Merge-

(=>

(and

(instance ?DRINK Drinking)

(patient ?DRINK ?BEV))

(instance ?BEV Beverage))

By applying the normal transformation the GF correspondent would be:

forall Drinking(\DRINK -> forall Beverage (\BEV -> patient

(var Drinking Agent ? DRINK) (var Beverage Object ? BEV)))

The semantic difference is visible. This situation occurs when the left side of
an implication of equivalence relation contains an usage of a variable, while the
right side contains a type definition for the same variable. The conjunction and
disjunction are commutative, so they are not problematic. A statistics shows
that almost 12% of the axioms have this property, so they cannot be translated
to GF.

Other functions that rely on these higher-order definition were not translated
to GF, as reflexiveRelationOn, defined in SUMO as

(instance reflexiveOn BinaryPredicate)

(instance reflexiveOn AsymmetricRelation)

(domain reflexiveOn 1 BinaryPredicate)

(domain reflexiveOn 2 SetOrClass)

(=>

(reflexiveOn ?RELATION ?CLASS)

(forall (?INST)

(=>

(instance ?INST ?CLASS)

(?RELATION ?INST ?INST))))

As the function quantifies over a type, this feature cannot be expressed in the
GF type system. Further more, it has an implicit quantification over a relation,
which is a feature of second-order logic.

2.4. EVALUATION OF THE TRANSLATION OF SUMO TO GF 33

After the type checking phase an approximate of 64% of the quantified ax-
ioms, were accepted. The main classes of axioms that could not be translated
to GF are

• axioms where the type declaration of a variable is a consequence of a
specific behaviour of the variable — 12%

• axioms that use predicates which were not translated to GF, such as range,
domain and others — 11%

• axioms rejected by the type checker — 12%

• other cases — 1%

The presence of the type system does not affect the expressivity very much.
The benefit is that ill-typed axiom can be rejected before interacting with an
automated reasoner. The SUMO system appears to be very permissive from the
semantic point of view also, at the risk of allowing the construction of ill-typed
constructions.

The wide usage of higher-order functions has the disadvantage that these
constructions cannot generally be checked by an automated reasoner, since
higher-order logic is undecidable. GF has a better control over higher-order
functions.

The GF type checker is a very useful tool, as it provides another guarantee
on the type correctness of the axioms, inferring some of the types, so that the
axioms will be type checked, before their validity is questioned. It is very useful
to differentiate between mere type errors and more logical errors, and concerning
this aspect, GF makes the task of the automated reasoner a lot easier.

34 CHAPTER 2. TRANSLATING SUMO TO GF

Chapter 3

Natural Language
Generation

Apart from the advantages that the GF type system provides, for the natural
language generation the benefits of using GF are considerably more substantial.

As mentioned before, SUMO provides natural language generation of the
concepts for English, Mandarin Chinese, Czech, Italian, Romanian, German,
Tagalog, French, Hindi and Arabic. Also there are applications such as the
KSMSA browser that allow intelligent browsing of the SUMO ontology.

The present work deals with the generation of natural language for the two
biggest ontologies - Merge and Mid-level-ontology in 3 languages: English, Ro-
manian and French.

The SUMO templates are built manually, while the GF approach is com-
pletely automatic for concepts and semi-automatic for relations. The natural
language generation for relations relies on the SUMO solutions for relations,
which are processed automatically by GF. It is worth mentioning that the GF
solution can be more easily extended to other languages, and it guarantees syn-
tactic correctness.

For English, an approximate of 7,000 concepts and relations have been trans-
lated to natural language, while for Romanian and French, we show the limita-
tions of the templates and how the GF approach overcomes them.

3.1 Evaluation of NLG in SUMO

SUMO uses a set of templates for natural language. There are templates for
concepts and templates for relations that need to be combined with the natural
language representation of their arguments, offering the possibility of changing
the polarity. For example:

• the function age expressed in English-

(format en age "the &%age of %1 is %n %2")

35

36 CHAPTER 3. NATURAL LANGUAGE GENERATION

where %n will be replaced with ”not” for the negation of the predicate,
and with the empty string for the affirmative form.

• the concept SetOrClass expressed in German-

(termFormat de SetOrClass "Menge oder Kategorie")

The templates cover the largest part of Merge, but the other ontologies do
not have templates even for English.

There are some patterns for the logical connectors and, or, not, implies and
equivalence, but it appears as they are not used in the KSMSA browser, which
uses the English version for all languages. It is also the case that for many
languages, except English, the templates are just partly translated, the rest is
kept in English. For example for Czech, just approximately 25% of the templates
are translated, the rest is in English.

The structure of the templates is rather simple, and works reasonably just
for simple languages, such as English. The templates do not take into account
the presence of declension forms for nouns, of the gender agreement with verbs
and prepositions, the various moods of a sentence, depending on its usage.

We will proceed analyzing the difficulties of the SUMO approach in gener-
ating syntactically correct constructions in natural language.

Starting with Romanian, for example when expressing ”the tangent of the
square root of X” the combination of the templates for Romanian templates
would generate tangenta lui rădăcina pătrată a lui X from

(format ro SquareRootFn "rădăcina &%square%tpătrată a lui

%1")

(format ro TangentFn "&%tangent%ttangenta lui %1")

This construction is incorrect for two reasons. The first is that in Romanian
nouns have different declension forms and the possessive preposition lui (of)
requires Genitive case, which in Romanian demands a different form of the
noun phrase rădăcina pătrată a lui X, than the Nominative one which is used in
the templates as default. The second is the matter of the possesive preposition,
which in Romanian needs to agree with the object, that it will bind to. In this
case the possesive preposition has been translated with the masculine singular
form, but rădăcina pătrată a lui X is feminine singular in Romanian. The
correct form of the sentence would be tangenta rădăcinii pătrate a lui X, which
is considerably different compared to tangenta lui rădăcina pătrată a lui X.

The Romanian set of templates also features:

• words that do not exist in any Romanian dictionary:

(format ro EndFn "the &%end%t{sfanceputul} lui %1")

A correct linearization of EndFn in Romanian would be sfârşitul lui %1.

3.1. EVALUATION OF NLG IN SUMO 37

• literal translations that do not make sense:

(termFormat ro TemperatureMeasure "măsură de temperatură")

A correct linearization of this term would be unitate de măsură pentru
temperatură.

• obsolete words:

(format ro connected "%1 %n{nu} este &%connected%t

{imbinat} cu %2")

In this case the word imbinat is rather archaic, and is just used as a
regionalism nowadays. A more appropriate lineaziation would be conectat
cu.

• There is also a number of situations where the possesive preposition was
wrongly replaced by another preposition that requires the Accusative case,
which has the same form as the Nominative one:

(format ro attribute "%2 %n{nu} este un &%attribute%t

{atribut} pentru %1")

where pentru is the translation of ”for”.

For French, although nouns do not have multiple declension forms, there is
an agreement in gender and number between nouns and other parts of speech
that determines them. In this case, the templates cannot capture the agree-
ment either. For example, when expressing ”the union of the complement of Y
and X”, the combination of templates for French would generate l’union de le
complément de Y et X from the templates:

(format fr ComplementFn "le &%complement de %1")

(format fr UnionFn "l’ &%union de %1 et %2")

The possessive preposition de agrees in gender and number with the object in
French, similarly. It just keeps the form de when combined with a proper name
in singular, or with the feminine definite article. In the current construction, le
which is the masculine definite article, when combined with de gives rise to du.

Another distinctive feature of French, that is not handled well by the set of
templates that SUMO provides is the negation. In French, negation is expressed
with the particles ne and pas placed before and after the verb. For example:
je fais (I do), will be negated as je ne fais pas. In case the verb starts with a
vowel, a phonetical mutation occurs, and ne becomes n’. SUMO tries to handle
this mutation in an incorrect way. For the sentences that have the verb ”to be”
as predicate, the negation just uses the particle pas

(format fr agent "%1 est %n un &%agent de %2")

38 CHAPTER 3. NATURAL LANGUAGE GENERATION

will be negated as %1 est pas un agent de %2, which is not correct in standard
French. Also, for verbs beginning with a vowel:

(format fr origin "%1 %n{ne} a %n{pas} pour &%origine %2")

the negation would be %1 ne a pas pour origine %2, which is incorrect also.
The feature that shows best the advantage of a typed system in general, and

of GF, in particular, over sets of templates is the assignment of a gender to the
variables, according to the gender of their type. For example, if the variable f is
a number, which is masculine in French, f would have masculine gender also. If
instead of number, f would have been a function, which is feminine in French, f
would have feminine gender also. This is a very common feature for Romance
and Slavic languages, where there is gender differentiation.

The templates simply assume that all the variables have masculine gender,
while in GF, the wrapper function var, that has acces to the class of the variable
also, would assign a proper gender to the variable. Since variables can just be
used after being wrapped with var, they will have a correct gender for any usage
in a quantified formula.

This behaviour shows the importance of separating between variables and
known instances of a class. If Var and Ind or El would have been unified in
the same category, we could not use a wrapper function to change the gender,
since we might accidentaly change the gender of a known instance. For example,
Vietnam, which is masculine in Romanian would have the type Country, which
is feminine in Romanian. If we would change the gender according to the type,
it would have been used with feminine gender instead, which is not correct.

A solution to this problem would be to implement the variation of the gender
as a parameter, generating variants for both masculine and feminine, and choos-
ing one of them when quantifying, depeding on the gender of the class. This
would make the concrete representation of the categories heavier, and would
not cover the case when the verb agrees with both the subject and the direct
object, or just with the direct object. In French it is the case that some verbs
agree in gender with the direct object.

Therefore, keeping variables in a separate category is a more general solu-
tion, that would yield correct results, and would make it possible to handle the
addition of other languages, with potentially more complicated gender system
and agreement cases.

An example of how the gender variation feature works in current implemen-
tation is the GF axiom:

forall Animal (\A -> exists Animal (\B -> smaller

(var Animal Object ? B) (var Animal Object ? A)))

which would be linearized in French as:

pour chaque animal A il existe un animal B tel que B est plus petit
que A

where animal is of masculine gender in French. For a feminine noun, such as
house we would have that:

3.2. NLG FROM SUMO TO ENGLISH 39

forall House (\A -> exists House (\B -> smaller

(var House Object ? B) (var House Object ? A)))

which would be linearized in French as:

pour chaque maison A il existe une maison B telle que B est plus
petite que A

The difference can be observed for the forms of the adjective petit / petite
and also for the gender variation of the relative pronoun tel / telle and of the
indefinite article un / une. The axioms are not taken from SUMO, are just
two examples that ilustrate this linguistic feature, and would not probably hold
in general, as the set of animals and the set of houses are finite, and hence
noetherian.

The same feature of French also holds for Romanian, and show clearly that
the SUMO templates would not generate satisfactory natural language construc-
tions even for non-nested templates, as previously shown.

The current issues that are problematic for Romanian and French could make
even harder and error-prone the translation of SUMO into other languages, such
as the members of the Slavic family. One of the features of these languages is
the presence of declension forms for nouns, as Slavic languages, for instance,
have a rich inflectional morphology. Also the presence of moods and aspects,
that cannot be covered by the templates.

3.2 NLG from SUMO to English

For the generation of natural language in English, the GF resource grammar
for English was used, with the larger dictionary - ”Oxford advanced learner’s
dictionary of current English” of almost 50,000 entries. The linearizations of
the original types is the following:

Class = CN;

El = NP;

Ind = NP;

Var = PN;

SubClass = {};

SubClassC = {};

Inherits = {};

Desc = CN;

Formula = PolSentence;

[El] = {s1,s2: Case => Str; a: Agr};

[Class] = {s1,s2: Number => Case => Str; g: Gender};

where NP is the GF category for noun phrase, PN is the category fo proper nouns
and CN is the GF category for common noun.

The reason for linearizing types to common nouns is that when linearizing
an axiom of the sort

40 CHAPTER 3. NATURAL LANGUAGE GENERATION

forall Set (\X → ...) it will look like for every set X ...
exists Set (\X → ...) it will look like there exists a set X ...

where ”every” and the indefinite article ”a” are both determiners, and in
the type system of the GF resource grammars determiners are combined with
common nouns and not noun phrases.

PolSentence is a category defined especially for this purpose:

PolSentence = {s: SentForm => Pol => Str; flag: Flag};

where Pol is the parameter for Polarity, defined as:

Pol = Pos | Neg;

where the negative form is used with its informal variant(”don’t” instead of ”do
not”). SentForm and Flag are parameters that perform some optimizations on
the form of the sentence:

SentForm = Indep | Attrib;

Flag = ExistS | ForallS NumQuant | NothingS NumQuant;

NumQuant = One | Many;

The idea is best expressed by some examples.

(=>

(instance ?MIXTURE Mixture)

(exists (?PURE1 ?PURE2)

(and

(instance ?PURE1 PureSubstance)

(instance ?PURE2 PureSubstance)

(not (equal ?PURE1 ?PURE2))

(part ?PURE1 ?MIXTURE)

(part ?PURE2 ?MIXTURE))))

which is translated into GF as:

forall Mixture (\MIXTURE -> exists PureSubstance (\PURE1 ->

exists PureSubstance (\PURE2 -> and (not(equal (var

PureSubstance Entity ? PURE1)) (var PureSubstance Entity ?

PURE2)) (and (part (var PureSubstance Object ? PURE1) (var

Mixture Object ? MIXTURE)) (part (var PureSubstance Object ?

PURE2) (var Mixture Object ? MIXTURE)))))

and into natural language via GF as:

for every mixture MIXTURE there exists a pure substance PURE1
and a pure substance PURE2 such that PURE1 is not equal to
PURE2 and PURE1 is a part of MIXTURE and PURE2 is a part
of MIXTURE.

while the SUMO translation via the KSMSA browser is:

3.2. NLG FROM SUMO TO ENGLISH 41

for all mixture ?MIXTURE holds there exist pure substance ?PURE1,
pure substance ?PURE2 so that ?PURE1 is not equal to ?PURE2
and ?PURE1 is a part of ?MIXTURE and ?PURE2 is a part of
?MIXTURE.

Also:

(=>

(instance ?LIST UniqueList)

(forall

(?NUMBER1 ?NUMBER2)

(=>

(equal

(ListOrderFn ?LIST ?NUMBER1)

(ListOrderFn ?LIST ?NUMBER2))

(equal ?NUMBER1 ?NUMBER2))))

which is translated to GF as:

forall UniqueList (\LIST -> forall PositiveInteger (\NUMBER2

-> forall PositiveInteger (\NUMBER1 -> impl (equal (el Entity

Entity ? (ListOrderFn (var UniqueList List ? LIST) (var

PositiveInteger PositiveInteger ? NUMBER1))) (el Entity

Entity ? (ListOrderFn (var UniqueList List ? LIST) (var

PositiveInteger PositiveInteger ? NUMBER2)))) (equal (var

PositiveInteger Entity ? NUMBER1) (var PositiveInteger Entity

? NUMBER2)))))

and into natural language via GF as:

for every unique list LIST, every positive integer NUMBER2 and
every positive integer NUMBER1 we have that if the element with
number NUMBER1 in LIST is equal to the element with number
NUMBER2 in LIST then NUMBER1 is equal to NUMBER2

while the SUMO translation, via KSMSA is:

for all unique list ?LIST holds for all ?NUMBER1, ?NUMBER2
holds if ”h element of ?LIST” is equal to ”h element of ?LIST”,
then ?NUMBER1 is equal to ?NUMBER2

The NumQuant parameter allows an more elegant rendering of lists of con-
junctions of quantifications. For example, in Merge:

(=>

(and

(holdsDuring ?T1 (legalRelation ?A1 ?A2))

(instance ?A1 Organism)

(instance ?A2 Organism))

(holdsDuring ?T1 (relative ?A1 ?A2)))

42 CHAPTER 3. NATURAL LANGUAGE GENERATION

which will be translated to GF as:

forall Organism (\A1 -> forall Organism (\A2 -> forall

TimePosition (\T1 -> impl (holdsDuring (var TimePosition

TimePosition ? T1) (legalRelation (var Organism Human ?

A1) (var Organism Human ? A2))) (holdsDuring (var

TimePosition TimePosition ? T1) (relative (var Organism

Organism ? A1) (var Organism Organism ? A2))))))

and into natural language, via GF as:

for every organism A1 , every organism A2 and every time position
T1 we have that if ” A1 is a legal relation of A2 ” holds during T1
then ” A1 is a relative of A2 ” holds during T1 .

The commas avoid the repetition of the conjunction ”and”. This axiom was not
translated in the KSMSA browser.

The GF translations are more grammatically correct and comprehensive.
The purpose of the parameters, is to give a better looking construction when
combining two quantified axioms, as seen before. SUO-KIF offers the possibility
to keep the quantified variables in a list, while in the GF type system this is not
possible. Using the Flag and SentForm we avoid constructions like:

for every entity X we have that for every entity Y ...

Since PolSentence keeps too many intermediate forms in the state, a new
category was introduced for the purpose of parsing:

SS = {s: Str};

that can be built from PolSentence with

fun UsePolSentence: Pol -> PolSentence -> SS;

The function UsePolSentence takes the Indep form of a PolSentence, with a
polarity indicated by the Pol parameter. The two categories PolSentence and
SS resemble the Cl - clause and S - sentence from the GF resource grammars. Cl
differs from PolSentence as it has parameters for different tenses and moods,
while PolSentence has the special parameters for optimizing the natural lan-
guage generation, but features just the Indicative mood and Present tense. This
is an example of a domain specific category that handles a particular situation.

Besides axioms, we can also generate natural language for SubClass, SubClassC
and Ind declarations, with the aid of the following functions:

fun subClassStm: (c1,c2: Class) -> SubClass c1 c2 -> Stmt;

fun subClassCStm: (c1,c2: Class) -> (p: Var c2 -> Formula)

-> SubClassC c1 c2 p -> Stmt;

fun instStm: (c: Class) -> Ind c -> Stmt;

For example, from the GF declarations:

3.2. NLG FROM SUMO TO ENGLISH 43

fun Beverage_Class: SubClass Beverage Food;

fun Blue: Ind PrimaryColor;

we could generate the phrases

beverage is a subclass of food
and
blue is an instance of primary color.

from the following GF constructions:

subClassStm Beverage Food Beverage_Class

instStm PrimaryColor Blue

Regarding the SUMO concepts, they are written using the CamelCase con-
vention. For example, SetOrClass for set or class.

In this way the names of the concepts have been expanded and parsed in GF
using the dictionary as CN and NP. For this purpose, new functions have been
added to the GF resource grammar.

VerbToNounV2: V2 -> N2; -- discovering

VerbToNoun: V -> N; -- walking is healthy

VerbToGerundA: V -> A; -- singing bird

VerbToParticipeA: V -> A; -- the required number

The first two functions represent the way of forming a noun from a verb phrase.
While the last two represent ways of forming an adjective.

The first problem is a very interesting one, as for various languages there
are various ways of obtaining a noun form from a verb. In English the gerund
form of the verb is used as noun, signifying the process of performing the action
denoted by the verb. The other 2 languages considered for natural language
generation differ in this matter.

For functions the starting point was the set of templates from SUMO, but
it covered less than half of the total number of functions that were linearized in
GF. For the rest we used a similar procedure as for concept, but the automated
process stops there. The next step was to form clauses, inserting the arguments
in the right places and parse them with GF as clauses. There is a function that
builds a PolSentence from a GF clause afterwards.

A small statistic shows that:

• Merge: 1136 declarations – 158 not parsed → 14%

• Mid-level-ontology: 1568 declarations – 111 not parsed → 7%

The final result is that just 10% of the over 2.700 concepts and relations
could not be parsed. Typicall such examples are

• specific scientific terms: AlethicAttribute, where the term ”alethic” is not
in the lexicon

44 CHAPTER 3. NATURAL LANGUAGE GENERATION

• American English terms, since the dictionary just features the British
form: WatercolorPicture, where ”color” is written as ”colour” in British
English.

The higher-order functions from HigherOrder have been translated in a sim-
ilar manner - processed and parsed as NP in GF. Example:

(instance equal EquivalenceRelation)

has been translated to GF as

EquivalenceRelation Entity (\x,y -> equal x y)

and into natural language as:

”x is equal to y” is an equivalence relation

while in SUMO it is not linearized to natural language.
14 out of the 23 higher-order functions were linearized in English.
There is a SUMO predicate, names that maps a concept with its name in En-

glish. For the elements and mondial ontologies, there are names declarations for
almost all concepts. In this way, we could generated natural language for these
files also. Adding the number of linearizations from these two files we obtain a
total of almost 7.000 concepts that have a natural language correspondent.

3.3 NLG for Romanian and French

For Romanian and French the situation is different however, since we do not have
a resource as the extended English dictionary so we can just use the normal GF
lexicon. From the over 1.000 of concepts from Merge, just 28 could be linearized
using the lexicon. Another 24 were obtained from Mid-level-ontology.

The basic function from the type system were linearized in the two languages,
and same for the functions that extend the GF resource grammars. Regarding
the VerbToNoun, in Romanian, the participe form for masculine singular is taken
and it can further be combined with articles and other determiners. In French,
there is no such systematic way to get the noun form from a verb, so the
infinitive form can be used as default, but it cannot be combined with articles
and determiners. For the functions VerbToGerundA and VerbToParticipeA,
the gerund and participe forms of the verbs are takens, with the significant
difference, that for these languages forms for feminine singular, and masculine
and feminine plural are needed also. These forms are part of the representation
of a verb already, and can be extracted and used.

Further on, we will describe some approaches to achieve natural language
generation for these languages also. The starting point was the English trans-
lation which uses the GF categories and functions:

House = UseN house_N;

3.3. NLG FOR ROMANIAN AND FRENCH 45

This concept would clearly look the same in Romanian and French, also, by
taking the linearization of house N from the LexiconRon and LexiconFre.

Other cases are not so fortunate:

WaterCloud = ApposCN (UseN water_N) (MassNP (UseN cloud_N));

because in English appositions are more productive than in other languages.
In both Romanian and French the translation would look like

WaterCloud = AdvCN (UseN cloud_N) (PrepNP part_Prep

(MassNP (UseN water_N)));

A more interesting situation occurs when linearizing the function RoundFn
which means the rounding of a number. In Romanian it is expressed as val-
oarea rotunjită, while in French it is la valeur approchée. Since this is an idiom
the GF functions would look differently.

A better idea is to take the English linearizations and translate them with a
tool, like Google Translate, and then parse the result with the GF parser in that
language. This approach is not error free either, but it would yield to better
results for idioms, and in the context of robust parsing, the small error could be
corrected. Robust parsing in GF is currently work in progress. An important
condition is to have a sufficiently big lexicon for the languages. Currently GF
has extended lexicons for English, Bulgarian and Swedish, and larger lexicons
could be imported from open source projects for other languages also.

Compared to the SUMO approach, the GF one yields syntactically correct
sentences and is easier to reuse for adding more languages.

46 CHAPTER 3. NATURAL LANGUAGE GENERATION

Chapter 4

Automated Reasoning

Since SUMO offers a generous amount of information and axioms, but no
straightforward way to reason about them, it is normal to search for a trans-
lation to some format that would allow automated reasoning with the existing
data.

The two most general SUMO ontologies, Merge and Mid-level-ontology have
been translated to TPTP - FOF standard, and are used yearly in a competi-
tion held by CADE, that awards a prize for finding inconsistencies in the two
ontologies.

We translated the GF representations of the SUMO ontologies and the axiom
files to TPTP - FOF, checked them for consistency and solved small inferences.

4.1 Translation of GF to TPTP

There is a separation between the gf files that were generated from the SUMO
ontologies, and the additional files that contain axioms.

The .gf files contain declarations of classes, subclasses and direct instances.
Since TPTP is an untyped system, whereas GF is strongly typed, the informa-
tion about types has been translated as additional predicates, that ressemble
the original instance predicate from SUMO.

For subclasses, the translation reflects the possibility of converting from the
subclass to the superclass. For example, in Merge-

(subclass Adjective Word)

which in GF was translated as:

fun Adjective_Class: SubClass Adjective Word;

and would be further on translated to TPTP as:

fof(axMerge2, axiom,

(! [X]:

47

48 CHAPTER 4. AUTOMATED REASONING

(hasType(type_Adjective, X) =>

hasType(type_Word, X)))).

Also, for the SubClassC category-

fun NonnegativeRealNumber_RealNumber: SubClassC

NonnegativeRealNumber RealNumber (\NUMBER ->

greaterThanOrEqualTo (var RealNumber Quantity ? NUMBER)

(el Integer Quantity ? (toInt 0)));

will be translated to TPTP as:

fof(axMerge389, axiom,

(! [X]:

(hasType(type_NonnegativeRealNumber, X) <=>

(((hasType(type_RealNumber, Var_NUMBER)) &

(f_greaterThanOrEqualTo (Var_NUMBER,0))))))).

The axiom captures the meaning of SubClassC, as following:

• any NonnegativeRealNumber is a RealNumber and is ≥ 0

• if a RealNumber is ≥ 0, then it is a NonnegativeRealNumber.

For instance definitions, we have a simpler translation pattern.
For example, in Merge-

(instance Awake ConsciousnessAttribute)

which is translated into GF as:

fun Awake: Ind ConsciousnessAttribute;

will be translated to TPTP as:

fof(axMerge686, axiom,

(hasType(type_ConsciousnessAttribute, inst_Awake))).

The identifiersaxMerge2, axMerge686 are the names of the axioms, as TPTP
requires all axioms to be given unique names. ! signfies the universal quantifier
in TPTP, while ? represents the existential quantifier.

The typing rules for a variable or instance are expressed in TPTP by the
hasType predicate. The TPTP axiom, asserts the meaning of the original SUMO
predicate, by stating that for every variable that is of type type Adjective (is
an instance of the class Adjective), then it also has the type type Word (is an
instance of the class Word).

A more commonly used approach for expressing typing declarations in first-
order logic is to create a predicate for each type, like

type_ConsciousnessAttribute(inst_Awake)

4.1. TRANSLATION OF GF TO TPTP 49

. We did not choose this method, since the SUMO classes are not just used as
types, in typing declarations, but also as arguments for functions. For functions
taking arguments of type Desc c, using our approach, SUMO classes can be
used directly, and there is no difference between the SUMO class used as a
type, and the class passed as argument to a function.

TPTP assumes that identifiers starting with capital letters are variables,
while constants and functions should start with a small letter. Hence, when
translated to TPTP, classes are written with the prefix ”type ”, like Adjective

→ type Adjective. Instances are written with the prefix ”inst ”, like Yellow→
inst Yellow. Functions names get the prefix ”f ”, like property→ f property.
The last transformation was necessary as SUMO functions could sometimes start
with capital letter, also, like CardinalityFn. For variables that appear in quan-
tified formulas, they are written in TPTP with the prefix ”Var ” that ensures
the fact that they will be treated by the theorem prover as variables.

The functions that manipulate Formula objects, such as not, and,or, impl
and equiv have been translated into their corresponding first-order logic oper-
ators that are predefined in TPTP: ∼, &, |, and ⇒.

For the both and either functions, the built-in & and | are used again. For
example, in GF:

fun Australia: Ind (both Country Nation);

will be translated to TPTP as:

fof(axmondial5372, axiom,

(hasType(type_Country, inst_Australia) &

hasType(type_Nation, inst_Australia))).

where if a variable is of type both A B means that it is of type A and of type
B. A similar situation holds for either A B, where the variable is either of type
A or of type B.

The equality operator equal, the situation is more complicated. In SUMO,
because of the structure of the concepts, it could basically take any arguments,
like classes, and relations and instances. In GF, the equal function would
just take arguments of type El Entity, so it would not be possible to test
the equality of formulas, functions or classes. In SUMO, equal is defined as
an EquivalenceRelation, with some extra axioms, for the various kinds of
arguments that it might take. For instances, the axiom, that verifies a property
of equal objects:

(=>

(equal ?THING1 ?THING2)

(forall (?CLASS)

(<=>

(instance ?THING1 ?CLASS)

(instance ?THING2 ?CLASS))))

cannot be translated to GF, as it contains a variable type declaration and quan-
tification over a class. Moreover, a more solid interpretation of equality would be

50 CHAPTER 4. AUTOMATED REASONING

using at least a congruence relation, not just an equivalence one. SUMO does
not have the concept of congruence, while theorem provers that can process
first-order logic with equality, usually have optimized treatment of the built-in
equality from TPTP. For these reasons, the translation from GF to TPTP, uses
the default TPTP equality - = for the equal function.

The existential and universal quantifiers from SUMO and GF, were trans-
lated as the built-in quantifiers from TPTP. The type declarations are expressed
with the function hasType in a similar manner to the treatment of SubClass

declarations.
For example, in Mid-level-ontology-

(=>

(instance ?T Paragraph)

(exists (?S)

(and

(instance ?S Sentence)

(part ?S ?T))))

which is translated to GF as:

forall Paragraph (\T -> exists Sentence (\S -> part (var

Sentence Object ? S)(var Paragraph Object ? T)))

and further on, to TPTP as:

fof(axMidLem14, axiom,

(! [Var_T]:

(hasType(type_Paragraph, Var_T) =>

((? [Var_S]:

(hasType(type_Sentence, Var_S) & (f_part(Var_S,Var_T))))))).

A special case is the translation of higher-order axioms to TPTP. In this
case, the function call is replaced by the definition of the function, rendering a
construction in first-order logic.

For example, in Merge-

(instance AdditionFn CommutativeFunction)

which is translated in GF as:

CommutativeFunction Quantity Quantity (\x, y -> AdditionFn x y)

will be translated to TPTP as:

fof(axMergeHiO39, axiom,

(! [Var_x]:

(hasType(type_Quantity, Var_x) =>

((! [Var_y]:

(hasType(type_Quantity, Var_y) =>

(f_AdditionFn(Var_x,Var_y) = f_AdditionFn(Var_y,Var_x)))))))).

4.2. APPLICATIONS OF AUTOMATED REASONING 51

Also, for subrelations:

subRelation2El Organism Organism Organism

Organism ? ? (\x, y -> mother x y) (\x, y -> parent x y)

will be translated to TPTP as:

fof(axMergeSubRel75, axiom,

(! [Var_x]:

(hasType(type_Organism, Var_x) =>

((! [Var_y]:

(hasType(type_Organism, Var_y) =>

(f_mother(Var_x,Var_y) => f_parent(Var_x,Var_y)))))))).

In case that the subrelation takes arguments of different types, compared
to its ancestor, the types of the subrelation are kept for the representation in
TPTP, since they are more restrictive.

4.2 Applications of Automated Reasoning

The resulting files have been checked with the automated theorem prover for
first-order logic E[11]. It is a multiple award-winner theorem prover which is
freely available and is based on equational superposition calculus. It provides
support for first-order logic with equality. E has been used to check the con-
sistency of the largest ontology currently available - ResearchCyC [12]. The
TPTP translations of the GF files were tested for consistency with E, and no
contradiction was found, given the time limit of 1 hour per file.

A possible application for automated reasoning would be to certify a coercion
between two SUMO classes. For example, the coercion from AnimacyAttribute

to Attribute, which is not trivial. In SUMO we have that:

(subclass AnimacyAttribute BiologicalAttribute)

(subclass BiologicalAttribute InternalAttribute)

(subclass InternalAttribute Attribute)

This problem can be translated to TPTP as:

fof (conj2, conjecture,

(! [X]:

(hasType(type_AnimacyAttribute, X) =>

hasType(type_Attribute, X)))).

This time, the TPTP construction is not an axiom, but a conjecture, which
means that it has to be proved by the theorem prover. The disadvantage of most
high-performance theorem provers is that if they have more than one conjecture
in a file, they would not prove all of them, but would stop if they find one which
is provable. This mean that for every problem one must create a different file.
For this reason, one cannot prove all the type coercions which are used in the
axioms and where the Inherits object is not inferred by the type checker.

52 CHAPTER 4. AUTOMATED REASONING

Another possible application is to determine if an instance has a particular
type. For example, in SUMO-

(instance Volt CompositeUnitOfMeasure)

(subclass CompositeUnitOfMeasure UnitOfMeasure)

(subclass UnitOfMeasure PhysicalQuantity)

(subclass PhysicalQuantity Quantity)

The question if Volt is an instance of Quantity can be translated to TPTP as:

fof (conj1, conjecture,

(hasType(type_Quantity, inst_Volt))).

More complicated problems can be taken from the SUMO webpage 1. For
example, the problem, having the hypotheses:

(instance John Man)

(instance Jane Woman)

(instance Mary Woman)

(mother John Mary)

(sibling Jane John)

and the conclusion to be proved:

(mother Jane Mary)

This problem assumes the usage of 3 additional quantified axioms from Merge,
the commutativity of sibling and the fact that mother is a subrelation of
parent. The translation to GF includes some extra type constraints, that must
be proved first, like the coercion Man to Organism and to Object, which are re-
quired by the axioms. All these problems are sucessfully proved by the theorem
prover.

4.3 Evaluation of the Translation of GF to TPTP

All GF definitions were successfully translated to TPTP. Regarding the axioms,
an approximate figure of 94% of the the GF representations of SUMO axioms
were translated to TPTP.

The category of axioms that could not be represented in the first-order logic
format, is represented by the axioms containing nested predicates. For example,
in Merge-

(=>

(and

(instance ?EDUCATION EducationalProcess)

(patient ?EDUCATION ?PERSON))

(hasPurpose ?EDUCATION

1http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/KBs/tests/

4.3. EVALUATION OF THE TRANSLATION OF GF TO TPTP 53

(exists (?LEARN)

(and

(instance ?LEARN Learning)

(patient ?LEARN ?PERSON)))))

which is translated into GF as:

forall EducationalProcess (\EDUCATION -> forall Entity

(\PERSON -> impl (patient (var EducationalProcess Process ?

EDUCATION) (var Entity Entity ? PERSON)) (hasPurpose (var

EducationalProcess Physical ? EDUCATION) (exists Learning

(\LEARN -> patient (var Learning Process ? LEARN)(var Entity

Entity ? PERSON))))))

The nested predicates cannot be expessed as a valid formula in first-order logic,
as the inductive way of building formulas is the one we showed in an earlier
chapter, and can just accept predicates taking terms as arguments and not
other predicates.

A number of function that are not significant for the automated reasoning
part have not been translated to TPTP. These are function such as:

(abbreviation ArraburyQueenslandAirport "AAB")

that contain a constant of type String.
There exist two translations from Merge and Mid-level-ontology to TPTP2,

for an annual competitions, that awards a prize of 100$ to the contestants that
find inconsistencies in any of the two ontologies. These translations are done
into TPTP FOF also. Nested predicates and implicit or explicit quantifications
over Formula were not possible in this translation either. Also the functions
which were not significant for automated reasoning in the GF to TPTP trans-
lation were not translated to TPTP from SUMO either. The function KappaFn,
which is a class-forming function that was used to build Russell’s paradox, is not
translated to TPTP from SUMO, for instance. For higher-order functions and
subrelations, the definitions are used as a macro, hence the second-order con-
structions become first-order and can be used as axioms in TPTP. For functions
like capability and playsRoleInEvent, however, the definitions are not used
as a macro, and so, all axioms using these functions could not be expressed.

The category of axioms that the SUMO to TPTP translation can express
but not the GF to TPTP are

• axioms where the type declaration of a variable occurs as a consequence
of the previous usage of that variable

• axioms containing subclass, domain, range and the other predicates men-
tioned in the section about the limitations of the SUMO – GF translation.

• negative type declarations

2http://www.cs.miami.edu/ tptp/Challenges/SUMOChallenge/

54 CHAPTER 4. AUTOMATED REASONING

• quantification over classes

The loss is almost 23% of the total number of the axioms. However, the
SUMO to TPTP translation, would bring about some type errors, for functions
which are not applied to the right number of arguments, and which the TPTP
type checker would not accept.

The expressivity of the SUMO to GF to TPTP translation is comparable
to the direct SUMO to TPTP translation. It is worth mentioning that the
first translation yields to a slightly slower system because of the additional
type declarations that need to be checked by the theorem prover. However,
for a standard like typed FOF, the presence of types would make the theorem
proving and model finding processes more efficient.

Chapter 5

Evaluation

The translation of SUMO into GF, shows both the advantages of a type system
in the context of representing knowledge and reasoning about it, and the ex-
pressive power of GF in the field of natural language generation and processing
where it provides efficient and comprehensive solutions.

The benefits of translating the SUMO ontologies to GF, are notable for the
type checking part and the natural language generation one. Moreover, none of
the SUMO paradoxes can be expressed in the GF translation, which is closer to
the first-order logic formalism.

For the natural language generation part, the current approach had more
than twice the coverage of the existing results, with a higher degree of automa-
tion and re-usability. Also the benefits of a type system are considerable when
expressing some problematic cases of agreement, as shown.

For the automated reasoning part, it generated GF and TPTP translations
for all the files, and offered a more comprehensive diagnosis, rejecting SUMO
ill-typed axioms from the type checking phase, before they were translated to
TPTP. Without the higher-order axioms, the difference between the expressivity
of the direct TPTP translation of SUMO and the one from SUMO to GF and
further on to TPTP is not considerable.

The ongoing work on a typed version of FOF in TPTP1, would make the GF
translation of the axioms even more efficiently processed by a theorem prover,
because the type declarations can be easily extracted from the TPTP translation
of the GF axioms.

1http://www.cs.miami.edu/ tptp/TPTP/Proposals/TypedFOF.html

55

56 CHAPTER 5. EVALUATION

Chapter 6

Related Work

Since Semantic Web is a very popular field nowadays, there exists a large number
of applications dealing with ontologies and building various applications on top
of them.

Regarding the languages that are used to encode ontologies, as mentioned
before, the most popular ones, such as KIF, OWL, CycL or Gellish do not have
a type system. Since their role is mainly descriptive, they do not impose any
restrictions on the data they encode. Some primitive forms of type checking,
such as checking that a function is applied to the right number of arguments is
done on a higher level, such as when checking the ontology for consistency with
an automated prover.

The programming language prototype Zhi#1 is a novel language for encoding
ontologies, which has a static type-system and it is compiled further more to
C#. The type system is inspired from the Java and C# type systems, and it
benefits from using the C# built-in types and functions. However, the syntax
looks very much like the normal C# one, and it is not very intuitive for users
that do not have a reasonable imperative programming background.

To our knowledge, the current work is the first representation of an ontology
in a strongly typed system with dependent types. The benefits of dependent
types are visible when expressing the concepts and relations from SUMO in GF,
as they provide better control on their semantics. The usage of dependent types
gives elegance and robustness to the representation.

Regarding natural language generation, there are many notable applications
that verbalize ontologies. Most of them however, have only English as main
target, and do not provide multilingual translations. A notable example is
the KPML project [15], which provides natural language generation for 10 lan-
guages. Another interesting case is the Gellish ontology which provides direct
verbalization for the concepts and relations, and is available for English, Ger-
man and Dutch. However, for languages with a more complicated inflectional
morphology, or languages which feature clitics in the grammar, such as the

1http://www.alexpaar.de/zhimantic/ZhiSharp.pdf

57

58 CHAPTER 6. RELATED WORK

members of the Slavic or Romance families, the applications that generate nat-
ural language, do not usually render correct constructions for these problematic
situations. The GF approach has built-in mechanisms for verbalization via
the concrete syntax, and the translations it provides are syntactically correct.
Moreover, GF has support for multilingual translation for the languages in the
resource library.

Regarding automatic reasoning, there has been work for checking the con-
sistency of all the well-known ontologies. A notable example is the use of the E
theorem prover for the ResearchCyC ontology[12]. However, SUMO is the most
well-known case of an ontology which is checked for consistency every year, as
part of the CADE competition. Compared to the official SUMO translation
to TPTP, our approach has a comparable expressivity, rejecting the ill-typed
axioms at an earlier stage.

The project OntoNat[6] provides automated reasoning for the SUMO on-
tology with KRHyper, which is a theorem prover for first-order logic that im-
plements hyper tableaux. It provides better behaviour for non-provable tasks
than an ordinary theorem prover for first-order logic. It also features a special
treatment of equality from SUMO, which is weaker than the built-in equality
from TPTP. Moreover, the project provides a more elaborated treatment of
class-forming operators from SUMO and of first-order quantifiers. The project
can answer to a question posed in normal English, by using the WordNet map-
pings and a simple parser, in order to infer the SUMO expression that should
be checked.

Chapter 7

Future Work

The current work explores aspects of data modeling, compiling from an untyped
system to a typed one and from a typed system to first-order logic, type infer-
ence, natural language generation, and automated reasoning. Each of this can
be extended in a more comprehensive manner in the future.

Starting with data modeling, it is worth mentioning that there is a dimension
of SUMO concepts which was not treated in this project - time. As many
discussions on the SUMO forum point out, the 4th dimension, time, which brings
about many controversies. In case an object changes one of its attributes, that
would determine a change of type, is it the same object ? For example if Lamb
switches from NonFullyFormed to FullyFormed, then it becomes a Sheep. It
might be natural to assume that it is still the same object. However, if a Human

switches from Living to Dead, then one might argue that it is not the same
object anymore. It would be interesting to model the concept of time in the
type system, although it would make it more complicated, and probably, it
would not be possible to translate it to FOF anymore.

For the translation of SUMO to GF, one could think of alternative models
of the type system that would permit more axioms to be translated, or pattern
of rephrasing the higher-order functions and axioms from SUMO in a way that
would permit them to be checked by an automated reasoner in FOF.

For the type inference process, it would be interesting to solve a more general
problem, which is the inference of some classes of dependent types, such as
Inherits with the aid of a automated reasoner, on the GF type checking phase.

Regarding the natural language generation, there are many directions for
future work. One of them would be to to generate natural language for the
other two languages for which GF has a large lexicon, following the approach
described in the project, or to use other techniques for reusing the current
translations for English, in the process of adding new languages.

Another interesting project would be to generate higher-quality natural lan-
guage, following the idea1 that would require truncating the hierarchy even

1http://www.ontologyportal.org/student.html

59

60 CHAPTER 7. FUTURE WORK

more, separating Attributes and Processes. Instances of Attribute and its
subclasses can be linearized as adjective phrases, while instances and subclasses
of Process are to be linearized as verb phrases. In this way a predicate like

(attribute ?X NonFullyFormed)

would not be linearized as non fully formed is an attribute of X in the best case,
but as X is not fully formed. For a predicate like

(agent Reasoning ?A)

we would obtain A reasons instead of A is an agent of reasoning. This process
is not straightforward however, as there are instances of Attribute that are not
directly linearizable as adjectives. For example in WMD - Fever, which can
be transformed into an AP as suffering from fever, and in Merge - Contract

and Promise, which could even less obviously transformed into APs. However
the last two are not used in any axiom as attributes, they are just declared
as such. Using this approach, the functions that take processes and attributes
as arguments would have a better linearization into natural language. This
category covers the most widely used predicates, such as patient, agent and
other instances of CaseRole, and attribute.

Regarding the automated reasoning part, the GF abstract syntax trees repre-
senting SUMO axioms can also be translated to THF(typed higher-order logic)2,
as they are typed already, and check the higher-order axioms more thoroughly.
Other applications would be a more efficient translation of GF to TPTP, or
developing some interesting techniques for complete treatment of some subsets
of SUMO, such as arithmetics.

Another interesting application would be to build a user interface for the
translation of SUMO to GF, where users could ask questions like Is London the
capital of Great Britain ? in English or another language for which we have
provided natural language generation, and the GF parser would transform it
to a GF/TPTP axiom that could be checked by the theorem prover. Its result
would be processed by GF into a Yes/No answer, or the affirmative/negative
form of the interrogative clause. The result could be influenced by the ambiguity
of the parsing. For example, as strange as it seems this question would get a
negative answer. There are two concepts that are named London, in mondial -

(names "London" Countries-GB-provinces-GreaterLondon-cities-London)

(names "London" Countries-CDN-provinces-Ontario-cities-London)

The GF parser returns all the possbile parse trees in alphabetical order, so the
London city from Canada would be the first option. Ambiguities are very rare,
actually, but it is interesting to find a way to infer the more probable of the two.
Future development of the GF parser might feature user provided probabilities
to get the most probable parse tree. In the absence of a procedure to decide
the most probable parse tree, one might try all the possibilities, and return a
positive answer if one of them would lead to a positive result.

2http://www.cs.miami.edu/ tptp/TPTP/Proposals/THF.html

61

The current work gives an insight on these areas, but since they have so
many connections to other fields, and have so much potential to be developed,
it leaves many problems to be solved in the future. The result of this project
deals with some parts of these areas, for building application from SUMO to
GF and from GF to TPTP, along with an analysis of all these, that might make
open the way to other interesting projects.

62 CHAPTER 7. FUTURE WORK

Bibliography

[1] Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar
Formalism. Journal of Functional Programming 14(2) (March 2004)
145–189

[2] Ranta,A.: The GF Resource Grammar Library.Linguistic Issues in Lan-
guage Technology, 2009, to appear

[3] Angelov, K., Bringert, B., Ranta, A.: A Portable Run-Time Format
for Type-Theoretical Grammars. Journal of Logic, Language and In-
formation, 2009, to appear

[4] Niles, I., Pease, A.: Linking Lexicons and Ontologies: Mapping Word-
Net to the Suggested Upper Merged Ontology. In Proceedings of the
2003 International Conference on Information and Knowledge Engi-
neering (IKE 03), Las Vegas,2003, p. 23-26

[5] Sutcliffe, G., Schulz, S., Claessen, K., van Gelder, A.: Using the
TPTP Language for Writing Derivations and Finite Interpretations
. Proc. of International Joint Conference on Automated Reasoning
(IJCAR),Lecture Notes in Computer Science,Springer Verlag, August
2006

[6] Baumgartner,P. , Suchanek, F.M.: Automated Reasoning Support for
SUMO/KIF. Manuscript

[7] Niles, I., Pease, A.: Towards a standard upper ontology. In Proceedings
of the 2nd International Conference on Formal Ontology in Information
Systems(FOIS-2001)

[8] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastruc-
ture: The FOF and CNF Parts, v3.5.0, Journal of Automated Reason-
ing, p. 337-362, 2009

[9] Enache, R., Ranta, A., Angelov, K.: An Open-Source Computation
Grammar for Romanian, Proceedings of the CICLing 2010, LCNS
Springer, to appear

63

64 BIBLIOGRAPHY

[10] Johanisson, K.: Formal and Informal Software Specifications. PhD the-
sis, Goteborg University, Chalmers University of Technology, June 2005

[11] Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI communica-
tions 15(2/3):111-126, 2002

[12] Ramachandran, D., Reagan, P.,Goolsbey, K.: First-Orderized Re-
searchCyc: Expressivity and Efficiency in a Common-Sense Ontology.
AAAI Workshop on Contexts and Ontologies: Theory, Practice and
Applications. Pittsburgh, Pennsylvania, July 2005.

[13] Ranta, A.: Structures grammaticales dans le français mathématique.
Mathématiques, informatique et Sciences Humaines., vol. 138 pp. 5-56
and 139 pp. 5-36, 1997.

[14] Ranta, A.: Type-Theoretical grammar. Oxford Science Publications,
Clarendon Press, Oxford, 1994.

[15] Bateman, J.: Enabling technology for multilingual natural language
generation: the KPML development environment. Journal of Natural
Language Engineering, 3(1):15–55, 1997.

[16] Miller, G.: WordNet: A Lexical Database for English. Communications
of the ACM Vol. 38, No. 11: 39-41, 1995.

	Master of Science Thesis in the Programme Foundations of Computing � Algorithms, Languages and Logic
	Ramona enache

