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Acoustic Traffic Classification using an Artificial Neural Network
Master’s Thesis in the Master’s programme in Sound and Vibration

RASMUS ELOFSSON BERNSTEDT
Department of Civil and Environmental Engineering
Division of Applied Acoustics
Chalmers University of Technology

Abstract

Traffic noise and/or community noise can be measured with an unmanned measure-
ment station which continuously records the sound pressure level (e.g. Symphonie
measurement system). If wanted or needed, the measurement equipment can be
configured to record all sounds exceeding a previously defined trigger level. For la-
beling or classification of the source type, from which the recorded sound originates,
the recording must be listened to and manually classified. The desire to render this
classification less time consuming suggests the development of an automatic method
for sound source classification. In this thesis, the development of such a method is
aimed at. The choice of an Artificial Neural Network as a classifier is motivated by
its design model; the human brain and nervous system, and furthermore; the human
ability to accurately distinguish between different sounds.

Sounds from heavy and light traffic (e.g. trucks and cars respectively) have been
recorded, preprocessed and successfully classified. The preprocessing techniques
used are filtering, resampling, signal modeling (ARMA-model) and Principal Com-
ponents Analysis. The Neural Network employed for source type selection is a Multi
Layer Perceptron with one hidden layer. One key issue is the extraction of features
which defines and separates the different source types.

Method performance is validated by simulation of new measurements and classifica-
tion thereof. The results show that the classification is 94 % accurate for the specific
measurement situation. For assessment purposes, the performances of two reference
methods are compared with the artificial classification. Manual classification of the
recorded sounds was 96 % accurate and a method utilising the euclidean distance
from new, unkown vehicles to the class average in feature space was 83 % accurate.

Keywords: traffic classification, artificial neural network, ARMA signal model,
principal component analysis
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Akustisk klassificering av trafik med ett artificiellt neuralt nätverk
Examensarbete inom Ljud och vibrationer

RASMUS ELOFSSON BERNSTEDT
Institutionen för bygg- och miljöteknik
Avdelningen för Teknisk Akustik
Chalmers tekniska högskola

Sammanfattning

Trafikbuller och/eller samhällsbuller kan idag mätas med en obemannad mätstation
som registrerar ljudtrycksniv̊a kontinuerligt (t.ex. mätsystemet Symphonie). Om
s̊a behövs kan systemet konfigureras till att spela in ljud som överstiger en viss,
i förväg inställd niv̊a. För att bestämma källan till de inspelade ljuden krävs att
de avlyssnas och manuellt klassificeras. För att minska tids̊atg̊angen vid denna
klassificering skulle en metod för automatisk klassificering vara önskvärd. Målet
med detta examensarbete är utvecklingen av en s̊adan metod. Valet av ett artificiellt
neuralt nätverk som klassificeringsmetod motiveras av dess förlaga; den mänskliga
hjärnan och dess förmåga att särskilja olika ljud.

Ljud fr̊an tung och lätt trafik (lastbilar respektive personbilar) har spelats in, data-
förbehandlats och framg̊angsrikt klassificerats. Dataförbehandlingen inbegriper tek-
niker s̊asom filtrering, omsampling, signalmodellering (ARMA-modell) och princi-
palkomponentanalys. Det neurala nät som använts för särskiljning av källtyp är en
perceptron med ett dolt lager. En viktig aspekt är framtagningen av karaktäristiska
egenskaper vilka kan definiera och åtskilja de olika källtyperna.

Metodens förmåga till korrekt klassificering är validerad med hjälp av simulerat nya
mätningar som klassificeras. Resultaten visar att metoden är till 94 % korrekt för den
situation i vilken mätningarna utförts. För att bedöma träffsäkerheten jämförs den
artificiella klassificeringen med tv̊a referensmetoder. Manuell klassificering av de in-
spelade ljuden visar sig vara 96 % korrekt, och en metod som utnyttjar det euklidiska
avst̊andet fr̊an nya, okända fordon till de olika klassernas egenskapsmedelvärde var
till 83 % korrekt i klassificeringen.

Nyckelord: klassificering, trafik, artifiellt neuralt nätverk, ARMA signal modell,
principal komponent analys
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1 INTRODUCTION

Background

Road noise and/or community noise can currently be measured with an unmanned
measurement station which continuously records the sound pressure level1. If wanted
or needed, the measurement equipment can be configured to record all sounds ex-
ceeding a previously defined trigger level. These recorded sounds are subsequently
listened to to determine the sound source type. This work is however rather time
consuming and since the desire to reveal the source type exists, a quicker and cheaper
method is strived for. Different types of source discrimination are requested such as
recognition of different vehicles or recognition of non-vehicle sources.

The present method of recognising sources by listening involves human perception,
memory and understanding the source behaviour. The fact that the mathematical
models of neural networks are inspired by human perception and nervous system
leads to the belief that acoustical classification can be achieved by such models. It is
however not a aim of this thesis to create an identification method which resembles
the human process in any qualitative way, meaning that no conclusions is to be made
on the human process of classification based on the function of the neural network.

Aim of the Thesis

A method for sound source classification is to be developed. Preferably, many dif-
ferent approaches to this task are to be tested and evaluated. Due to the idea of
using neural networks for classification, the choices of possible approaches is limited.
The chosen framework for further work is illustrated in Figure 1.1. A recorded sig-
nal from some event is assumed to be available for further evaluation. The process
of classification is then subdivided into i) pre-processing, ii) characteristics/feature
extraction and iii) neural network classification. Feasibly, this entire process is ulti-
mately fully automatic and implemented in different applications such as community
noise measurement. Apart from previously mentioned aims, a quite simple method
is desired.

Previous Work

Searching the scientific databases INSPEC and COMPENDEX for articles on sound
classification and artificial neural networks one finds fairly many articles concerning

1Symphonie measurement system
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Figure 1.1. Flow diagram illustrating the method framework.

classification of, for instance, insect sounds, heart sounds, respiratory sounds, under-
water sounds, earthquakes and nuclear bombs. One article on traffic classification
written by A. Y. Nooralahiyan and H. R. Kirby at the University of Leeds is to be
found.

Only a selection of articles within the realm of interest are studied with respect
to their chosen methods and specifically the three steps illustrated in Figure 1.1.
Regarding the neural network classification, most authors have chosen to use a
Multi Layer Perceptron (MLP) as a neural network classifier (Nooralahiyan and
Kirby 1998, Coggins and Principe 1998, Ham and Park 2002). The Multi Layer
Perceptron is trained according to the back-propagation algorithm or some modified
alternative thereof. Only one exception; a Gaussian classifier (Tzanetakis et al. 2001)
and one addition; a Self-Organising Map (SOM) used for pre-processing (Coggins
and Principe 1998) are found . SOM are also referred to as an unsupervised neural
networks or Kohonen network.

Characteristics extraction techniques encountered in the selected articles include:

I) Fast Fourier Transform (FFT) magnitudes (Greene and Field 1991),

II) Cepstral coefficients (Ham and Park 2002),

III) Linear Predictive Coding (LPC) coefficients (Nooralahiyan and Kirby 1998),

IV) Discrete Wavelet Transform (DWT) coefficients (Tzanetakis et al. 2001).

LPC is also referred to as Auto Recursive (AR) model or all pole model.
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Novelties

For feature extraction, AR or LPC coefficients are commonly used, not only by
Reference (Nooralahiyan and Kirby 1998), but for various tasks of classification. In
this thesis, the AR signal model is expanded to a ARMA (Auto Recursive Moving
Average) signal model.

Some have used Principal Component Analysis (PCA) as a tool for condensing the
amount of data, but the combined approach of Principal Component Analysis and a
perceptron neural network has not been tested in the context of traffic classification.
Moreover, the result of PCA is more thoroughly analysed in thesis and a method
for sorting data by a quality measure is introduced. Any equivalent data sorting
method has not been encountered in the mentioned articles.

Thesis Overview

Chapter 1 Introduction: introduces the reader to the research area by giving a
background and some examples of work of others. The used methods are
touched upon and how this work is different from the works of others.

Chapter 2 Notations: accounts for the most commonly used variables and nota-
tions used in the thesis.

Chapter 3 Measurements: describes the conducted measurements aiming to cre-
ate a training set for the neural network.

Chapter 4 Preprocessing: deals with the task of rectifying and condensing the
recorded data to a set of quantities with characteristic features which
describes the source of the recorded signal sufficiently detailed to enable
the subsequent classification.

Chapter 5 Principal Component Analysis: aims to describing and explaining
PCA as a tool for data reorganisation. A method for information quality
assessment is also described.

Chapter 6 Artificial Neural Networks: The algorithm for decision-making in
the classification process is described along with training methods and
chosen network design. Method performance is presented.

Chapter 7 Listening Test: describes a test aiming to provide a reference to the
developed classification method.

Chapter 8 Discussion: The results are discussed and analysed relative to other
peoples results and the performance of the reference methods.

Chapter 9 Conclusion: The conclusion briefly describes the problem, the methods
used and the results, followed by the conclusions made on basis of the
results.
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2 NOTATIONS

Abbreviations

ANN Artificial Neural Network
AR Auto Recursive
ARMA Auto Recursive Moving Average
HGV Heavy Goods Vehicle
MA Moving Average
MC Motor Cycle
MLP Multi Layer Perceptron
PCA Principal Component Analysis
PV Personal/Private Vehicle
SOM Self Organising Map
UV Utility Vehicle

Latin Abbreviations

cf. confer
e.g. exempli gratia
et al. et alii
etc. et cetera
i.e. id est
N.B. nota bene
No. numero
q.v. quod vide
vs. versus

Capital Letters

B Binomial distribution
Fs Sampling frequency [Hz]
I Identity matrix
L Level [dB]
M Number of individual observations
M Mach number
N Normal distribution
N Number of nodes
O Neural network output
T Period time, signal length [s]
V Projection / transformation matrix

5



6 Chapter 2 Notations

Small Letters

f Frequency [Hz]
i The imaginary unit i =

√
−1

p Number of feature vector elements
wi,j Synaptic weight

Greek Letters

α Momentum term coefficient
β Neural network noise (temperature) factor
Φ Distribution function
φ Neural network activation function
ϕ Frequency function of a distribution
γ Weight decay factor
η Steepest descent step size
µ Distribution expectancy value
θ Neuron threshold level
ξ Pattern; vector of characteristics
ζ Neural network class key (“correct” answer)

Subscripts

eq. equivalent
i, j, k Neuron index

Superscripts

µ Pattern number
n Neural network layer index
T Transpose

Diacritical marks

˜ transformed
~ vector
{ } vector

estimation
〈 〉 average
∼ distributed
× matrix multiplication
· scalar multiplication



3 MEASUREMENTS

To provide useful data for further analysis, measurements have been conducted in
three sessions. The purpose of collecting data is to setup a set of vehicles for training
of the neural network. Circumstances and setup vary between the three sessions,
and this is accounted for along with other conditions in the sections named by which
month the measurements were done.

A measurement is a procedure of sampling in a set of sample points or a population.
The set, in this case, consists of all possible vehicles that travel the roads. By choice
of measurement location and date (point of time) the set of all vehicles can no
longer be fully represented. The reader must bear in mind that all further analysis
is constrained by this statistical discrepancy.

Moreover, the sampling is carried out such that it complies with the adopted frame-
work as described in Chapter 1. The practical consequences of this framework, e.g.
that a recorded sound from one event is available for analysis, further limits the
possibilities of generalised sampling. Put differently, sound recordings of two vehi-
cles passing the microphone simultaneously are not included in the sampled subset
and the further analysis.

The following description shows the subsets chosen to define classes for the popu-
lation of vehicles: During the measurement, vehicle class is visually identified and

Class Description
PV Personal/Private Vehicle: small and medium size cars (Swe: personbil).
UV Utility Vehicle: vans, light trucks (Swe: lätt lastbil).
HGV Heavy Goods Vehicle: heavy trucks, tractors, buses (Swe: tung lastbil).
MC Motor Cycle: motor cycles, mopeds (Swe: motorcykel).

noted with reference to the recording of the vehicle sound signal.

The difficulty of obtaining sufficiently many measurements of motor cycles and
mopeds has led to the exclusion of the MC - class from classification attempt. Fur-
thermore, UV - class is excluded due to the difficulty of manually classifying such
vehicles during the actual measurements. The remaining two classes, PV and HGV,
cover light and heavy vehicles respectively, with PV including small and medium
size cars such as sedans and station wagons and HGV including all vehicles weighing
more than 3.5 metric tons.

A map pointing out the location for the measurements is provided for in Figure 3.1
(Västtrafik 2005).

Table 3.1 shows the total result of the sampling. Data collection has yielded a useful
set of 141 heavy vehicles and 141 cars.

7
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(a) Large scale

PSfrag replacements

⊗

�

(b) Small scale

Figure 3.1. Measurement location, indicated by ⊗ (June) and � (August,
September).

Class Samples
June August September

PV 125 0 16
UV 63 0 0
HGV 31 47 63
MC 7 5 6

Table 3.1. Sampled population

There are many variables in a measurement situation that can be considered, for
instance weather, distances and traffic situation. The measurements conducted for
this thesis however, does not aim to control all possible variables, but rather to
assimilate differing variables into the classification method with the intention of
achieving a more robust method than what might be the case, where all variables
fully controlled. In other words, the classification method is more likely applicable
to a “real life” measurement situation if all recorded signals are not from vehicles
traveling by the same speed.

A Note on the Equipment

Instruments are calibrated according to the Ingemansson quality standards which
comply with the demands stated in SS-EN ISO/IEC 17025. Dates for the latest
calibrations are listed in Ingemansson’s calibration log.
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3.1 Measurement Details

Measurements June 2005

Dates: 2005-06-07 2005-06-20 2005-06-22
Weather: 14◦ C, NW 5 m/s 20◦ C, S 6 m/s 19◦ C, W 6 m/s

Trigger level: 70-75 dB(A)
Recorded sample length: 4-6 s
Sampling frequency: 51.2 kHz
Location: Gullbergs strandgata, q.v. Figure 3.1

Equipment and Setup

The measurement system (Symphonie) used for data collection is the very same as
the one intended for implementation of the classification method. The symphonie
measurement system registers sound pressure level over a long strech of time. It is
configured to record sound when the level exceeds a predefined trigger level. The
system buffers the sound signal continuously, which allows for collecting data before
and after an event is established by exceeding the trigger level.

Item description Manufacturer Type Internal notation

Symphonie measurement
system

Spektrum GmbH, 01dB AL134

Microphone G.R.A.S. 26AF MK070
Rugged notebook Panasonic Toughbook D016

Table 3.2. Equipment, measurements June 2005
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(a) Photograph of actual setup

PSfrag replacements

microphone

Panasonic Toughbook

Symphonie system
h

d1

d2

(b) Schematic picture of the setup

Figure 3.2. Measurement Setup, June 2005

microphone height, h: 1.1 m ± 10 %
distance to closest lane, d1: 2.6 m ± 10 %
distance to farthest lane, d2: 7.4 m ± 10 %
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Measurements August 2005

Dates: 2005-08-23 2005-08-24
Weather: 19–22◦ C, SE 2 m/s 17–20◦ C, S–SW 1-3 m/s

Trigger: manual trigger
Recorded sample length: 2-6 s
Sampling frequency: 44.1 kHz
Location: Gullbergs strandgata, q.v. Figure 3.1

Equipment and Setup

Item description Manufacturer Type Internal notation

DAT recorder Sony B066
Microphone calibrator Brüel & Kjær 4231 KU051
Sound Level Meter Norsonic 116 LM058

Table 3.3. Equipment, measurements August 2005
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(a) Photograph of actual setup

PSfrag replacements

Norsonic 116

DAT / WAV recorder

h

d1

d2

(b) Schematic picture of the setup

Figure 3.3. Measurement Setup, August 2005

microphone height, h: 1 m ± 10 %
distance to closest lane, d1: 2.6 m ± 10 %
distance to farthest lane, d2: 7.4 m ± 10 %
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Measurements September 2005

Dates: 2005-09-05 2005-09-06
Weather: 17–20◦ C, SW 1–3 m/s 20-22◦ C, S 2–4 m/s

Trigger: manual trigger
Recorded sample length: 2-6 s
Sampling frequency: 44.1 kHz
Location: Gullbergs strandgata, q.v. Figure 3.1

Equipment and Setup

Item description Manufacturer Type Internal notation

WAV/MP3 recorder EDIROL R-1 B072
Microphone calibrator Brüel & Kjær 4231 KU047
Sound Level Meter Norsonic 116 LM058

Table 3.4. Equipment, measurements September 2005

Setup for measurements in September is equivalent to the setup in August as seen
in Figure 3.3, only the DAT recorder is replaced by the WAV/MP3 recorder.
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3.2 The Acoustics of a Moving Source

The behaviour of a moving source is different from a stationary one. Firstly, since
sound pressure is inversely proportional to distance, a moving source, or vehicle, will
be perceived as sounding more strongly at close range than at short range. Secondly,
the speed of the source relative to the receiver affects the sound signal envelope and
amplitude as well as the sound frequency. The latter is called Doppler effect 1 and
will not be considered in the following analysis.

Given the conditions illustrated in Figure 3.4: a source at position ~xs moving along
the x1 axis at speed ~vs and a receiver at position ~xr, the perceived sound signal at
the receiver position depends on the angle θ, the distance d according to:

p (~xr, t) =
A(τ)

4π r(τ) |1 − Ms cos(θ(τ))| (3.1)

Ms =
~vs

c
(3.2)

r(τ) = |~xr − ~xs(τ)| = c · (t − τ) (3.3)

sin(θ(τ)) =
d

r(τ)
(3.4)

where c is the speed of sound, A(τ) is the signal amplitude at source time τ , Ms is the
source Mach number as defined in Equation (3.2) and r(τ) fulfills the requirements
of Equation (3.3) (Ehrenfried 2004).

PSfrag replacements

~xs ~vs

~r d

~xr

x1θ

Figure 3.4. Illustration for the acoustics of a moving source.

Figure 3.5(a) shows a recorded signal (PV1.wav) from a light vehicle of class PV
and 3.5(b) shows the theoretical signal amplitude according to Equation (3.1) for
three different speeds; 30, 60 and 90 km/h.

1Named after its discoverer, the Austrian mathematician Christian Doppler.
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Figure 3.5. A recorded signal and signal envelope for three different vehicle
velocities according to Equation (3.1)

Plotted in Figure 3.5(b) is the absolute value of the highpass filtered recorded
recorded signal. The reason for filtering is to eliminate the effects on signal ap-
pearance of the overpressure in front of the vehicle and the underpressure after it
on the appearance of the signal amplitude.

The 60 km/h envelope displays a good resemblance to the recorded signal and it is
likely that the vehicle traveled at approximately 60 km/h.

The characteristics of a traveling sound source in terms of source speed influences
the human perception of the sound signal and therefore it is also likely to influence
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the possibility or performance of an artificial classification method. The choice to
disregard variables such as source speed renders further analysis of sound properties
in terms of source speed impossible. For this reason, the slightly varying speeds of
the vehicles at the measurement location is looked upon as a inherent variation in
the subset of recorded vehicle sounds.



4 PREPROCESSING

A major area of concern is the preprocessing of data and especially the means of
producing a very limited amount of data for each individual vehicle and still pre-
serve its characteristics. This chapter is focused on the basic signal processing tools
used in the classification method. Apart from reducing the amount of data for each
individual, the aim is to attain a general framework by which signals of new and un-
known vehicles can represented. In other words, trifles such as a sampling frequency
chosen differently than those of the method should not affect the performance of the
classification method.

4.1 Filtering and Resampling

Firstly, it is assumed that a sound event has occurred (a vehicle passing by) and
that it has been recorded. Such a signal is illustrated in Figure 4.1(a), and it is
measured according to circumstances described in the Measurement chapter (q.v.
page 7).

The signal y is a function of time y = y(t) and the sampled signal can be represented
as a discrete vector, such that yn is the function value at time tn for n = 1, 2, ..., N .
Sampling frequency and recording length, T determines the vector length N =
Fs × T .

The acquired signal is then bandpass filtered with cut-off frequencies flow = 100 Hz
and fhigh = 8000 Hz and resampled with sampling frequency Fs = 8 kHz; Figure
4.1(b). For this purpose a Finite Impulse Response, FIR filter is used. Matlab
function fir1.m, which implements a classical method of windowed linear-phase FIR
digital filter design (Mat 2004), is used to produce filter coefficients. The response
length of the filter is set to 211 = 2048 samples. The number of data points in this
case is reduced from N = 256000 to N = 40000.

Signal Spectrum and Information Content

To confirm the choice of filter cut-off frequencies average spectra of PV - and HGV
vehicles are calculated and plotted in Figure 4.2. Signal spectra in Figure 4.2(a)
are presented in standardised 1/3 octave bands1 and plotted versus a logarithmic
scale. In Figure 4.2(b), the signal spectrum is A-weighted2 and the frequency axis
logarithmic.

1Upper and lower frequency limits from Reference (Bodén 2001)
2Corrections for A-weighting from Reference (Fahy 2001)

17



18 Chapter 4 Preprocessing

0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

8

Time [s]

A
m

pl
itu

de
 [P

a]

Recorded signal (PV1.wav)

N = 256000

F
s
 = 51200 Hz

(a) Recorded signal

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

A
m

pl
itu

de
 [P

a]

Bandpass filtered, resampled signal (PV1.wav)

N = 40000

F
s
 = 8000 Hz

 [f
low

 f
high

]  = [100  4000] Hz

(b) Bandpass filtered, resampled signal

Figure 4.1. Recorded signal and preprocessing; bandpass filtering and resam-
pling.

Previous work including measurements on “coast by”3 vehicles show that the major
part of the sound energy is located between frequencies 100 Hz and 3 kHz in the
frequency domain (Andersson 2005).

It is believed that very little useful information can be extracted from the signal for
frequencies larger than 4 kHz. The properties of the human ear, with its decreased
perceptibility for lower frequencies, and the ability of humans to distinguish between
cars and trucks implies that vehicle classification is possible without signal informa-
tion below a certain frequency. Hence, the lower bound for information extraction
is chosen to 100 Hz.
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Figure 4.2. Average spectrum of recorded signals for PV - and HGV classes.

3Cars traveling with the engine turned off; all sounds generated by the tyres.
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4.2 Characteristics extraction

Although the signal has been resampled and now contains a lesser number of data
points than the original signal, data for a single vehicle is still too large to be
effectively used in further computations, i.e. the neural network classification. The
aim now is to find means of representing the signal in an adequate form. Most
importantly, it is imperative that this form of signal representation preserves any
characteristics which defines and separates the chosen vehicle classes (definitions of
vehicle classes, q.v. Chapter 3).

Defining an Event

As described in the Introduction, Chapter 1, a prerequisite for further evaluation is
a recorded signal of some event.

Even though an event can be established through triggering at predefined sound
pressure level4, the more well defined event of the precise passage of the vehicle is
wanted. This event is taken to be some time before and after the sound pressure level
is at its maximum value. To obtain the time of maximum SPL, a sliding average is
applied to the signal according to

yn =
1

2k + 1

n+k
∑

i=n−k

yi , n = k + 1, ..., N − k (4.1)

in which the sliding average length is set to k = N
100

. Signal data are collected both
before and after the signal envelope maximum and treated separately: signal parts
∆y1 and ∆y2 in Figure 4.3. In this case ∆y1 and ∆y2 consists of N = 213 = 8192
data points each. The dashed, vertical lines in Figure 4.3 defines the selected data.
With a sampling frequency of 8 kHz, each of the two signal portions has a duration
of ∆t = 1.0240 seconds.

Signal Model

Linear Predictive Coding (LPC) coefficients, also referred to as Auto Recursive or
AR coefficients have been successfully used by Reference (Nooralahiyan and Kirby
1998) for the purpose of acoustical classification. In the context of signal modeling,
an Auto Recursive process uses N signal samples to predict the subsequent sample
number N + 1. In terms of frequency analysis and filter design, the AR coefficients
are referred to as a spectrum estimator or an all-pole model.

A more general approach to signal modeling than an AR- process is the Auto Re-
cursive Moving Average or ARMA- process. Apart from modeling all poles of a

4Symphonie measurement system (described more thoroughly in the Measurements chapter on
page 9)
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Figure 4.3. Sliding average, as defined in Equation 4.1, applied to signal to find
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system or signal, the ARMA process includes a model of the zeros. The ARMA
approach yields a better model approximation to the signal than its components
AR and MA (Hayes 1996).
PSfrag replacements

x(n) y(n)
H(z)

Figure 4.4. System representation of an ARMA model.

The relation between the input, x, and output, y, variables for an ARMA process
is defined as:

y(n) = −
p
∑

k=1

ap(k) y(n − k) +

q
∑

k=0

bq(k) x(n − k) (4.2)

for discrete time steps tn, {n : tn+1 > tn} 5

Applying the z transform to Equation (4.2), the system transfer function in Figure
4.4 can be rewritten as:

H(z) =
∞
∑

n=0

h(n)z−n =

∑q

n=0
bq(n)z−n

∑p

n=0
ap(n)z−n

=
B(z)

A(z)
(4.3)

The spectrum of the signal model is obtained by setting z = eiω in Equation (4.3),

5Implies causality.
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which yields:

H(ω) =
∞
∑

n=0

h(n)e−inω (4.4)

Prony’s Method

To calculate the signal coefficients ap(k) and bq(k) in Equation (4.2) numerous meth-
ods have been developed, e.g. Least Mean Square, LMS- method and the Padé Ap-
proximation. Prony’s method6 to calculate the poles of the system, ap(k), involves
solving a set of linear equations which satisfy the Least Mean Square error crite-
rion. Once the poles have been calculated, the zeros, bq(k), are found by setting the
residue error to zero for q samples. Further details on Prony’s methods and more is
found in References (Parks and Burrus 1987) and (Hayes 1996). The algorithm for
calculating ARMA coefficients is taken from Reference (Hayes 1996).

ARMA- model of signal

After defining the two signal parts ∆y1 and ∆y2 one ARMA model for each part
is calculated using Prony’s method. For this application, it is found practical to
model the AR process with 32 poles, i.e. 32 coefficients and the MA process with
16 zeros, and a amplification factor, i.e. 49 feature vector elements for each of the
signal parts. In total, each of the two signal parts is modeled with a ARMA(48)
model. Using the notation in Section 4.2: p = 32 and q = 16.

To validate the signal model, the frequency response is superimposed onto the spec-
trum of each signal part, see Figure 4.5. The models show a generally good agree-
ment to the signal spectrum. Whether the details in the model frequency response
are related to actual physical quantities or not will not be evaluated.

The two ARMA(48) models are now combined to a single vector along with the
ratio Lmax/Leq. for each recording to create a feature vector, ξ, for every vehicle:

ξ =
[

{a1}k {b1}l {a2}k {b2}l Lmax/Leq.

]T
(4.5)

in which subscript 1 denotes signal part 1, subscript 2 denotes signal part 2, k =
1, 2, . . . , p and l = 1, 2, . . . , q.

The reason for including the ratio Lmax/Leq. and not the actual factors Lmax and Leq.

is to acquire a method fairly independent of the distance between the source (vehicle)
and the receiver (microphone or recording system). Based on Equations (3.1) to
(3.4), one can say the ratio Lmax/Leq. is a measure of source speed.

6In 1790, Prony derived formulations for the analysis of elastic properties in gases which pro-
duced linear equations (Parks and Burrus 1987)
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Figure 4.5. Comparison between the spectrum of the recorded signal PV1.wav
and the ARMA model spectrum for the two parts ∆y1 and ∆y2.



5 PRINCIPAL COMPONENT ANALYSIS

The purpose of Principal Component Analysis, PCA, is to identify the most sig-
nificant information within a set and extract a lesser amount of data, which still
contains a greater part of the information. Any set of statistically sampled data
is distributed around some ideal or theoretical value. Apart from the underlying
physical process this distribution depends on, for instance, sampling noise, natural
occurring variance within the set and most importantly, the variance due to true
variations between subsets or groups. The prerequisite for PCA is a matrix of indi-
vidually sampled vectors or signals (also referred to as feature vectors or patterns),
which defines the sampled set, or population. In this case, the matrix consists of vec-
tors of ARMA coefficients calculated using Prony’s method and the ratio Lmax/Leq.,
one vector for every recorded vehicle.

Figure 5.1. PCA illustration.

Figure 5.1 shows an illustration of principal component analysis. OA is the first
principal component direction of the distribution that generated the cloud of points.
The projection onto OA shows up more structure than the projection onto the other
direction OB (Hertz 1991)

5.1 PCA Calculation

Principal Component Analysis relies on eigenvalue and eigenvector decomposition
of a matrix and it is used to project a signal or vector onto a new basis. PCA
is computed through a Singular Value Decomposition, SVD. A matrix, X, size
m×n , m > n with m rows corresponding to observed variables and n columns cor-
responding to individual observations. The first step of PCA is to subtract variable

23
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mean from all individual observations in the following manner:

~xi → ~xi −
1

n

n
∑

j=1

xi,j (5.1)

where xi,j are the elements of X and ~xi is vector of equally computed or selected
variables (ARMA coefficients) in X for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Put
differently, the feature vectors are transformed from

~xi ∼ N(~µ, ~σ2) → ~xi ∼ N(0, ~σ2) (5.2)

In terms of signal analysis, the bias or offset is removed.

Now, the transformed matrix X is decomposed using a Singular Value Decomposi-
tion, such that

X = U × S × V T (5.3)

Here, U is an m × n matrix and V is an n × n square matrix, both of which have
orthogonal columns so that

UT × U = V T × V = I (5.4)

in which I is the identity matrix and S is an n×n diagonal matrix consisting of the
eigenvalues of X in the order of descending magnitude. The PCA transformation of
matrix X is obtained by either multiplying U × S or X × V .

The projection X̃ = X × V can subsequently be truncated by removing the rows of
X̃ starting with the last one; X̃m×n → X̃mt×n, mt < m. Through this, information
is conserved to a large extent. This truncation is equivalent to removing the smallest
eigenvalues in S firstly and then multiplying U × S. The matrix V is referred to as
the transformation matrix.

The projected and truncated matrix X̃ provides the best linear projection onto
a subspace in terms of preserving the signal energy. Preserving signal energy is
equivalent to preserving the largest fluctuations of the signal, or in other words: the
variance.

5.2 Performing PCA

For each recorded vehicle, one feature vector or pattern, ξµ, is compiled as described
in the Preprocessing chapter. Every pattern has p = 99 elements and it consists of
two ARMA(48) models and the ratio Lmax/Leq. according to

ξ =
[

{a1}k {b1}l {a2}k {b2}l Lmax/Leq.

]T
(5.5)
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in which subscript 1 denotes signal part 1, subscript 2 denotes signal part 2, k =
1, 2, . . . , 32 and l = 1, 2, . . . , 17. All M patterns are put into the matrix A according
to:

A =





| | | |
ξ1 ξ2 · · · ξµ · · · ξM

| | | |





p×M

(5.6)

Performing PCA on A, the projection Ã is obtained. For visualisation purposes, two
components or dimensions of the projected matrix Ã are plotted in a two dimensional
scatter plot in Figure 5.2. Each point (x, y) is determined by projected feature vector
elements (x, y) = (ξα, ξβ), where α and β are two chosen dimensions 1 and 2.
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Figure 5.2. Scatter plot of the two first principal dimensions.

Figure 5.2 clearly shows that individual patterns of the two different classes group
and form clusters. The plots above and to the left of the scatter plot show the
distribution of the two vehicle classes for each of the PCA dimensions. Comparing
the two principal dimensions, the two distributions are more separated for principal
component number 1 than for number 2. The overlap of one distribution onto the
other will make the classification process more difficult later in the process.

Were the two distributions in the first PCA dimension completely separated, i.e. no
overlap, perfect classification would be possible just by separating the classes with
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a simple lie or plane. The intention with PCA is to obtain as much separation as
possible, but to achieve this the global variation is maximised. This means that
even though the data points of the two classes in one PCA dimension contain much
information (widely spread), their distributions could overlap totally rendering this
particular PCA dimension useless for identification purposes. A large information
content, large global variation or energy, does not automatically provide information
which defines and separates the two vehicle classes.

To assess whether a principal component might be useful in the classification process,
the distribution overlap is integrated over and compared to the overlaps of the other
components. Figure 5.3 shows the overlap for one of the PCA dimensions and the
filled regions in the plot defines the overlap thereof.

 ← Distribution overlap 

PV
HGV

Figure 5.3. Illustration of the distribution overlap for one of the PCA dimensions.

Figure 5.4 shows the distribution overlap for all PCA components, and it shows
that for many of the PCA dimensions, data from the two vehicle classes overlap
substantionally. Also plotted is the overlap for the PCA dimensions, sorted by
increasing overlap (dashed line). Henceforth, the pattern components are ordered
by increasing overlap.

5.3 PCA Convergence

A reqirement for the successful application of PCA is the ability of generalisation,
which means that the projection obtained by the Singular Value Decomposition
must be applicable for patterns of ARMA coefficients not included in the original
decomposition. Also the mean value as given in Equation (5.1) must converge to
some quantity valid for the entire subset of vehicles.

To ensure PCA is a valid method for generalisation, the set of recorded vehicles is
divided into one training set and one validation set. The training set is now utilised
for the PCA decomposition and the validation set is used to ensure the validity of
the projection.

Figure 5.5 displays a scatter plot for which 75 % of the patterns are used for the
decomposition, and the remaining 25 % are projected onto the principal components
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Figure 5.5. Scatter plot with 25 % of the patterns used as validation set.

axis. new PV and new HGV denotes light vehicles and heavy vehicles respectively,
projected onto the PCA axis compiled with the remaining 75 % of the patterns, but
not used in the compilation. It shows that patterns not used in the decomposition
are projected to similar “positions” as the patterns used for obtaining the PCA
transformation. This means that a new pattern of ARMA coefficents from a heavy
good vehicle, HGV, pre-processed accordingly, will project close to the cluster of the
other HGVs.
N.B. Points (x, y) = (ξα, ξβ) in Figure 5.5 are projected feature vector elements
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(α, β) = (1, 5), and not (α, β) = (1, 2) as in Figure 5.2.

An additional means of assessing or analysing the convergence and generalisation of
PCA is to gradually increase the amount of patterns used for the PCA decomposition
and evaluate the difference between two transformations obtained with differently
many patterns. By this procedure it would be possible to see whether some addi-
tional or new patterns affects the transformation or not. Apart from the projection
matrix, the variable mean subtracted from the feature vectors in Equations (5.1)
and (5.2) is required to converge. This evaluation is made in the same manner as for
the projection matrix, i.e. by increasing the amount of patterns utilised for PCA.
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Figure 5.6. Evaluation of PCA convergence.

For this purpose, two errors are evaluated. Firstly, the error between the elements
of two projection matrices, obtained using PCA with differently many patterns:
Equation (5.7), and secondly the variable mean of differently many patterns: Equa-
tion (5.8).

et+1

V =
1

p · M

p,M
∑

i,j

(

V t+1

i,j − V t
i,j

)2
(5.7)

et+1

〈ξ〉
i

=
1

M

M
∑

j=1

(

〈ξj〉t+1

i
− 〈ξj〉ti

)2
(5.8)

The superscript t denotes the iteration for which the amount of patterns used for
PCA is kept constant. For increasing t, the number of patterns used for obtaining
the transformation matrix is increased. Subscript i denotes the pattern variables
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(the ARMA coefficients), j denotes an individual pattern or vehicle. Finally, 〈ξ〉i is
the variable mean for all patterns as defined in Equation (5.1).

In Figure 5.6, the two errors are plotted versus two different y-axis. The dots
represent the transformation matrix error as defined in Equation (5.7) and the solid
line shows the variable mean error as defined in Equation (5.8). The figure shows
the average error of 50 individual PCA decompositions, all with randomly ordered
and selected patterns.

It shows that as the amount of utilised patterns increase to more than 0.35 the
transformation matrix error converges to some error around 0.02 per matrix element.
The reason for this is that, when less than 0.35 ·M of the patterns are employed for
PCA, the matrix rank of V is less than the vector space dimensionality. The number
of patterns needed to completely define the vector space is equal to the number of
variables in each feature vector. Put differently, it seems that as soon as M > p the
transformation matrix converges.

The variable mean error is a steadily decaying function, and when 75 % of the
patterns are used for PCA, the error is less than 1.5 · 10−5 per vector element.

5.4 Euclidean Distance Classification

With pictures as in Figures 5.2 and 5.5 showing the two classes of vehicles forming
nearly separable clusters, the idea of using a geometrical rule for classification arises.
In the p- dimensional space defined by the elements of the vehicle patterns, it is
assumed that each of the two classes has a centre of gravity. Now, if the euclidean
distance from a pattern of an unknown vehicle to the centre of gravity of the light
vehicle class is smaller than the distance to the centre of gravity for the heavy vehicle
class, the vehicle is assumed to belong to the set of light vehicles and vice versa. For
statistical data the centre of gravity equals the expectancy value which is estimated
by the mean value.

For a pattern of an unknown vehicle, ξnew, the selection rule is based of which of
the euclidean distances in Equations (5.9) and (5.10) is the smallest.

‖〈ξi〉PV − ξnew
i ‖ (5.9)

‖〈ξi〉HGV − ξnew
i ‖ (5.10)

where i = 1, 2, . . . , p.

To test this approach for classification, 75 % of the patterns, randomly selected after
PCA decomposition, are used to calculate the centre of gravity, and the remaining
25 % are used as a validation set. The procedure of choosing patterns randomly
for validation is repeated for 50 times to produce results that keeps well from a
general point of view. This method of classification is on average 83 % accurate,



30 Chapter 5 PCA

and the probability of erroneous classification is then 17 %. The distribution of the
probability of erroneous classification is providied in Figure 5.7. Figure 5.8 shows
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Figure 5.7. Distribution of the probability of erroneous classification using all
PCA components (dimensions) and 25 % of the patterns as validation set.

how the classification performance is related to the number of PCA components used
in the selection rule defined in Equations (5.10) and (5.9). Apparently, the number
of components used in this classification approach does not affect the performance
significantly.
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Figure 5.8. Probability of erroneous classification using differently many PCA
components (dimensions) and 25 % of the patterns as validation set.



6 ARTIFICIAL NEURAL NETWORKS

In the field of neural computations the perceptron neural network is widely used as a
pattern classifier. Apart from the perceptron, the realm of neural network computing
include features as Self Organising Maps, or Kohonen networks, the Hopfield model,
Boltzmann machines and recurrent neural networks.

The perceptron, or Multi Layer Perceptron, MLP, is a feed-forward neural network
with simple processing elements or neurons whose connectivity resembles that of
the brain. Each neuron compiles a weighted sum of all its inputs and passes on a
signal through a non-linear activation function. In a layer, every neurons processes
all inputs from the previous layer, and by this the signals propagate from input layer
to hidden layers and finally to the output layer in a forward pass.

A Multi Layer Perceptron has the ability to learn arbitrarily complex non-linear
regressions by adjusting the synaptic weights using a training algorithm. The re-
sulting output of the perceptron is compared to a desired target output and errors
are propagated backwards. In this back-propagation, the synaptic weights are ad-
justed according to their contribution to the overall error. The algorithm employed
in the backward pass to minimise the output error involves gradient descent with a
momentum term.

The structure and complexity of the network is determined beforehand by choosing
number of input nodes, number of nodes in the hidden layer(s) and network noise
etc. The Multi Layer Perceptron tries to determine the best hyperplane to separate
partitions in the input feature space.

6.1 Neural Computation

The input to a perceptron is referred to as a pattern, one for each vehicle, which
consists of the PCA transformed ARMA coefficients. The different patterns are
denoted by the superscript µ. To every pattern a desired output is assigned, a
“correct answer”, referred to as ζµ.

Given pattern ξµ, a neuron in the first hidden layer receives an input

vn=1
j = −θn=1

j +

Nn=1
∑

k=1

wn=1
j,k ξµ

k (6.1)

where wn=1
j,k are the synaptic weights between input layer and the first hidden layer

connecting input unit k to neuron j, θn=1
j is the threshold level of neuron j and Nn=1

is the number of neurons in the first hidden layer n = 1. Neuron j then produces
an output of

V n=2
j = ϕ(vn=1

j ) (6.2)

31
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in which ϕ = ϕ(v) is the non-linear activation function

ϕ(v) = tanh(βv) (6.3)

The parameter β is a measure of how much noise is present during the neural network
computations. It is closely related to the Boltzmann factor for which β equals the
inverse temperature of a system of units (or neurons in this case).

For a neuron in any succeeding layer, n, the synaptic input is defined as

vn
j = −θn

j +
Nn
∑

k=1

wn
j,kV

n
k (6.4)

hence, the output of this neuron will be

V n
j = ϕ(vn−1

j ) = ϕ

(

−θn−1

j +

Nn−1
∑

k=1

wn−1

j,k V n−1

k

)

(6.5)

Finally, the output of the neural network, the perceptron, is denoted Oµ
j and defined

as

Oµ
j = ϕ(vn=Nl

j ) (6.6)

where Nl is the total number of hidden layers.

At the output of the neuron, the activation function, ϕ, is applied to produce the
output signal. Such activation functions include the Heaviside step function and the
Signum function, but applications such as this require the activation function to be
continuous and differentiable. Commonly used activation functions are:

I) the Logistic function

ϕ(v) =
1

1 + exp(−βv)
, β > 0 (6.7)

II) the Hyperbolic tangent function

ϕ(v) = tanh(βv) , β > 0 (6.8)

The amount of noise introduced by the factor β will influence the perceptron’s ability
to generalise and additionally ensure quick learning. Choosing a large beta means
less temperature noise which results in a more decisive perceptron, but also less
able to generalise. For this application, the hyperbolic tangent function is chosen as
activation function.
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6.2 Neural Network Training

The energy of the network is formed by the deviation of the output from the desired
or correct output squared. By training the network, a steepest descent minimisation
of this energy is performed with respect to network weights and thresholds. The
classification error propagates backwards, updating all the synaptic weights.

Given the perceptron output, Oµ
j , the energy cost function E = E(W ) is introduced

as a measure of error accordning to

E(W ) =
1

2

∑

µ,j

(

ζµ
j − Oµ

j

)2
(6.9)

utilising the desired or correct output, in this case class, ζµ
j . The dependent variable

W includes all synaptic weights and thresholds in the network. For this application,
the training is batch type, meaning that weight update is made for all patterns
simultaneously, hence the summation over µ. The alternative is sequential updating,
which may have advantages for some applications involving large sets of redundant
training data.

To minimise the classification energy (∼error) in the multi dimensional space defined
by W the gradient descent rule is applied according to (R̊ade and Westergren 2001):

~xt+1 = ~xt − λ∇f (~xt) (6.10)

A correction of the weights in the preceding layer is formed by

∆wj,k = −η
∂E

∂wj,k

= η
∑

µ

(

ζµ
j − Oµ

j

)

ϕ′(vµ
j )V µ

k = η
∑

µ

δµ
j V µ

k (6.11)

where the following definition of the local gradient of an output node is made:

δµ
j =

(

ζµ
j − Oµ

j

)

ϕ′(vµ
j ). (6.12)

For the hidden layers in the perceptron, the chain rule for derivatives/differentiation
is used, forming a general expression for the weight corrections of the synaptic
weights:

δn−1

j = ϕ′(vn−1

j )
Nn
∑

k=1

δn
k wn

j,k (6.13)

∆wn
j,k = −η

∂E

∂wn
j,k

= ηδn
j V n

k (6.14)

Subsequent to the calculations of weight corrections,∆wj,k, the synaptic connections
are updated according Equation (6.10):

wnew
j,k = wold

j,k + ∆wj,k (6.15)
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Neuron thresholds are updated analogously:

∆θn
j = η

Nn
∑

k=1

δn
j V n

k (6.16)

θnew
j = θold

j + ∆θj (6.17)

To achieve a faster convergence rate and avoiding local minima during training a
momentum term1 is added to the correction term. This addition also counteracts
any ocillating behaviour of the descent algorithm. The added momentum or inertia
is simply an addition of the correction term from the previous training iteration
according to

∆wt
j,k = η

(

∆wt
j,k + α∆wt−1

j,k

)

. (6.18)

where α is the momentum coefficient and t is the training iteration (epoch).

To further enhance the learning algorithm, weight elimination is introduced. The
elimination is referred to as pruning in literature (Haykin 1999, Hertz 1991) and
works as a complexity penalty which removes small, insignificant connections.

εj,k = 1 − γη
1

1 + w2
j,k

(6.19)

wnew
j,k = εj,kw

old
j,k + ∆wj,k (6.20)

When training is completed, i.e. desired or best performance is achieved, the up-
dating of the synaptic weights and thresholds is terminated.

6.3 Network Design

The design of the neural network highly influences the classification performance,
and there are many parameters that can be altered and tweaked to achieve the best
performance. The parameters that can be chosen and/or optimised are:

I) η – update rule step size, η ∈ [0, 1],

II) α – momentum term coefficient, α ∈ [0, 1],

III) γ – weight decay coefficient, γ ∈ [0, 1],

IV) β – network noise factor, β ∈ [0,∞]

V) the number of nodes in the input layer, hidden layer(s) and output layer and

VI) the number of hidden layers in the perceptron.

1Gradient descent algorithms with a momentum term are referred to as conjugate gradient
descent methods.
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Theoretically, any function or rule, and thereby classifier, can be realised using two
hidden layers, provided the underlying physical process is governed by this rule.
However, it shows that the best perceptron performance is obtained using only one
hidden layer.

Regarding the number of output nodes, two possibilities arise: i) training one per-
ceptron per class, or ii) training one perceptron to classify both classes. In this
report only the latter is considered.

PSfrag replacements
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output

ξµ
1

ξµ
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ξµ
N1

Figure 6.1. Neural network design with one hidden layer.

Figure 6.1 shows the chosen layout of the perceptron classifier. Input data is µ-
dimensional and the output is two-dimensional.

Perceptron Input and Output

The choice of activation function determines how output data are to be represented.
The nonsymmetric Logistic function, Equation (6.7), requires output data in the
range [0, 1], whilst the antisymmetric Hyperbolic tangent function, Equation (6.8),
requires output data to be [−1, 1]. The desired outputs for the two classes are:

[1 −1]T , for class PV

[−1 1]T , for class HGV
(6.21)

and thus, the output Oµ
j is two dimensional.

Perceptron input is scaled to have zero mean and unit variance

~ξ ∼ N(µ, σ2) → ~ξ ∼ N(0, 1) (6.22)
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Figure 6.2. Flow diagram for ANN
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From the collected data set, 75 % ran-
domly selected patterns are used for
training of the perceptron, and the re-
maining 25 % are used to simulate new
patterns. These patterns are not con-
tributing to the training of the percep-
tron and therefore, they can be used to
validate the classification performance
in a general sense.

This manner of classifying a validation
set is basicly equivalent to recording
new vehicles, preprocessing the record-
ings according to Chapter 4 and finally
presenting them to a readily trained per-
ceptron with fixed synaptic connections.

A flow diagram of this procedure is
presented in Figure 6.2, in which V
is the transformation matrix obtained
from the PCA used to transform the
simulated new vehicles. pe denotes the
probability of erroneous classification,
i.e. perceptron performance.

Parameter Optimisation

To choose the parameters listed above wisely is imperative for successful training
and classification. The number of input nodes is limited by the number of available
components in the pattern and the number of output nodes is set to two. Apart
from the number of outputs, the other parameters could be optimised with respect
to classification performance.

For the purpose of optimising the parameters, the classification error, i.e. the prob-
ability of misclassified vehicles, is analysed during training for a number of different
values for each parameter. Other parameters are kept constant during the evalu-
ation. A small classification error for a certain choice of parameter value suggests
that the performance is optimal. However, for a correct optimisation, this implies
that the other parameters are strictly independent of the evaluated one, which is
not the case. Hence, the result of the optimisation is decisive, but only taken into
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consideration when choosing parameter values.

Implementing a certain parameter value, the perceptron is trained for a period of
500 training epochs. The procedure is then repeated 30 times and averaged over.

Table 6.1 shows the perceptron parameter values chosen by aid of the optimisation
procedure. Enclosed in Appendix C are graphs of the evaluation results.

Parameter Value
α 0.95
β 0.38
γ 0.05
η 0.075
Nhidden 100
Ninput 90

Table 6.1. Parameter optimisation: chosen parameter values.

The parameter Ninput refers to the number of input elements presented to the per-
ceptron and Nhidden denotes the number of nodes in the hidden layer.

6.4 Classification Results

For deciding which class a pattern (vehicle) is adherent to, a decision rule is formed.
Given the binary nature of the classification answers, classification performance is
binomially distributed. For n independent trials of x with probability p, the binomial
distribution is defined as:

B(n, p) =

(

n
x

)

px(1 − p)n−x for x = 0, 1, . . . , n (6.23)

The probability of incorrect classification is estimated by

npe = Ne ⇔ pe =
Ne

n
(6.24)

where pe denotes the probability of erroneous classification, Ne are the number of
incorrectly classified vehicles and n are the number of trials.

Figure 6.3 shows the estimated probability of incorrect classification according to
(6.24) during training. Training is executed for 400 epochs and during each training
epoch all of the 75 % patterns in the training set are used. The remaining 25 % of
the patterns, the validation set, are tested as training progresses, q.v. the dashed
line in Figure 6.3.

For proof of the performance of the perceptron, training on the randomly selected
is done 250 times, each time with a differently chosen training set. The results of
these 250 independent runs are shown as a an average misclassification probability
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Figure 6.3. Classification error during training averaged over 250 independent
trainings.

in 6.3 and as a histogram in 6.4.
N.B. For each and every independent training, a new validation and training set is
randomly selected from the sample set and patterns in the validation set are not
included in the training.
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Figure 6.4. Distribution for the probability of erroneous classification.

Also seen in Figure 6.4, as the dotted line, is a normal distribution. This distribution
is only plotted as a visual aid. Distribution and histogram values are read on the
left y-axis and cumulative frequency functions are read on the right y-axis. It shows
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that if an error of 10 % is accepted, 90 % of all perceptron trainings will comply
with this demand.
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Figure 6.5. Classification error frequency for all recorded sounds.

For evaluation of which class is the more difficult to classify, the error frequency
for vehicle sounds in the validation set is displayed as a histogram in Figure 6.5.
Apparently, attempting to classify heavy vehicles provides for 64 % of the errors and
light vehicles for 36 %. The probability of erroneously classifying a heavy vehicle
as a light is pe,HGV = 7.7% and vice versa pe,PV = 4.4%. The combined probability
of misclassification is pe = 6.06%. On average, all vehicles occure 63 times in the
validation set for the 250 independent trainings computed to produce Figures 6.3,
6.4 and 6.5.
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7 LISTENING TEST

To provide a reference to the developed classification method, a listening test is
designed. In the test, participants are asked to identify heavy and light vehicles
when presented recorded sounds thereof. The test sounds are the very same as the
ones used in the training of the artificial neural network. Apart from the main
goal to acquire a reference, the purpose of the test is to investigate the accuracy
of manual sound classification. It is also desired to obtain a measure of the time
needed for classification.

7.1 Test Design

To fulfill all the stated requirements, a test is to be designed for the purpose of test-
ing manual classification accuracy and measuring the necessary time consumption
thereof. To attain these goals, an individual test is needed, in which the participants
perform the test autonomously1. For this type of test, the participants are tested
separately. Such a test has the advantages of: i) a good measure of accuracy, ii)
a good measure of the time needed to perform classification, iii) minimal influence
of sound sequence ordering on test outcome, and the disadvantage of iv) extensive
time usage for test execution.

However, to lessen the time needed for execution of the test, a test design which
tests all participants simultaneously is chosen. In this type, all participants execute
the test simultaneously. They will listen to the same sounds, in the same order and
they are asked to perform the vehicle classification simultaneously in a predefined
amount of time. The anticipated properties of such a test include: i) a good measure
of accuracy, ii) very little time usage for test execution, iii) no control over sound
sequence effects and iv) a restricted or limited measure of the individual time needed
to perform classification.

Preceding the test execution, participants are presented a response sheet and given
appropriate instructions. The response sheet is enclosed in the thesis as Appendix A.
To limit the effects of a steep learning curve, and accommodate the participants to
the test soundscape2, 4 test sounds are played, and the adherent class is given.

Apart from the 4 test sounds, the test consists of 160 sound recordings, randomly
selected from the subset of recorded vehicles. All sounds are preprocessed by band-
pass i) filtering, ii) re-sampling and iii) cropping to produce a set of uniform samples.
The preprocessing is performed by the same manner as in the Preprocessing section
4.1 on page 17. The parameters used are:

1By performing the test autonomously it is implied that participants are tested isolated, for
example at a PC workstation.

2The sonic environment; background noises at the recording site. (Schafer 1994)
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I) filter cut-off frequencies flow = 50 Hz and fhigh = 22 kHz,

II) sampling frequency Fs = 44 kHz,

III) sound clip length T = 3 seconds.

Succeeding every sound sample is a quiet period of 5 seconds in which the par-
ticipants are required to decide and note their decision. Each sound sample is also
preceded by a short tone to portend the next sound. The test procedure is described
by Table 7.1.

3 s 5 s 3 s 5 s
... sound i quiet + tone sound i + 1 quiet + tone ...

Table 7.1. Test procedure and time distribution during the test, i = 1, 2, 3, ..., 159

7.2 Sound Properties

As indicated in the previous sections, the test purpose is not to evaluate how manual
classification is achieved, but simply to attain a measure of accuracy. In this context,
a thorough analysis of the test sounds is not self-evident, but a general overview
in terms of psycho-acoustic measures can be clarifying. Physically and psycho-
acoustically, the test sounds can be described by a number of different quantities,
for instance:

I) maximum sound pressure level, Lmax [dB],

II) equivalent sound pressure level, Leq. [dB],

The maximum sound pressure level, Lmax is defined as the decibel value of the largest
pressure amplitude during a certain period of time, T = 3 seconds in this case. The
equivalent sound pressure level, Leq. is defined as the mean pressure squared during
a time interval, also 3 seconds. Mathematical definitions provided in Equation (7.1)
with pref. = 20µPa.

Lmax = 20 log10

(

max
p

(|p|) /pref.

)

(7.1)

Leq. = 10 log10

(

1

T

∫ T

0

p2(t)dt /p2
ref.

)

For the statistical description of the sounds in the test, some parameters which
characterises the sampled population are used. Which parameters that are useful
can vary between different distributions, but the most commonly used include:
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I) expectation or mean

II) variance

III) median

IV) range

All but items III and IV, of the statistical analysis is considerably simplified if
one assumes normally distributed quantities. A variable with a general normal
distribution, φ(x) ∼ N(µ, σ2) is described by the expectation, µ and the variance,
σ2 according to:

φ(x) =
1√

2πσ2
exp

(

−1

2

(

x − µ

σ

)2
)

(7.2)

For statistical data with n observations x1, x2, . . . , xn, the mean (expectation) is
defined:

x =
x1, x2, . . . , xn

n
=

1

n

n
∑

i=1

xi , (7.3)

and the variance:

s2 =
1

n − 1

n
∑

i=1

(xi − x)2 . (7.4)

The estimated mean, x, is t(n − 1) distributed, with n − 1 degrees of freedom, and
the estimated variance σ2 ∼ χ2(n − 1), also with n − 1 degrees of freedom.

The median is defined as the middle value of the observations and the range simply
consists of the difference between the largest, max(xi), and the smallest, min(xi),
values of the observations. Provided in Figure 7.1 are the distributions of Lmax

and Leq. of the sound recordings in the test subset. Not surprisingly, heavy vehicles
(HGV) generally have larger values than light vehicles (PV) for both properties,
Lmax and Leq.. The distribution overlap seems to be larger for Lmax (Figure 7.1(a))
than for Leq. (Figure 7.1(b)), which could indicate that light vehicles generally travel
faster than heavy ones at the measurement location. A high maximum sound pres-
sure level and a low equivalent level implies a narrower, steeper signal envelope.

For the purpose of describing the population, the statistical quantities described
earlier are calculated for the properties Lmax, Leq., and accounted for in Table 7.2
for the subsets PV and HGV.
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Figure 7.1. Distributions of Lmax and Leq. properties describing listening test
sounds.

Lmax [dB] Leq. [dB]
PV HGV PV HGV

mean 92.9 99.1 77.0 85.1
median 82.4 98.6 76.7 84.4
range 18.1 14.9 14.0 13.6
variance 14.2 9.9 6.4 11.0

Table 7.2. Statistical quantities describing the properties of the test sound
recordings.
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7.3 Test Result

With 22 test participants (students of ages 21 to 30) and 160 sounds, the test
comprises a total of 3520 answers. Included in the test are 80 randomly selected
sounds from each class. Due to the binary nature of the response alternatives, i.e.
a choice of either PV or HGV, the classification responses can be assumed to be
binomially distributed. For n independent trials of x with probability p, the binomial
distribution is defined as:

B(n, p) =

(

n
x

)

px(1 − p)n−x for x = 0, 1, . . . , n (7.5)

In Figure 7.2, the classification error for all participants is plotted in a histogram.
The skewed appearance of the distribution adheres from the properties of the bino-
mial distribution. It is also possible that the distribution in Figure 7.2 actually is a
skew gaussian or even an exponential distribution.

However, with 139 errors out of 3520 classifications, one could assume the errors
to be normally distributed by support of the Grand Mean Theorem, although the
superimposed normal distribution in Figure 7.2 should not be seen as estimate of
the true distribution, but as a visual aid only. It is of course impossible to achieve
less probability of error than 0, as the left ”tail” of the normal distribution indicates.
No further analysis of the test result in terms of distributions will be done.

The probability of incorrect manual classification for one participant is estimated
by

npe = Ne ⇔ pe =
Ne

n
(7.6)

where n is the number of classification trials and Ne is the number of erroneous
classifications.

In Figure 7.3 the performance of all participants is displayed. The performance
ranges from 2 to 12 erroneous classifications with an average of N e = 6.32. Judging
by the differently coloured patches in the histogram, classification of cars is more
difficult than of heavy vehicles. The total number of incorrectly classified cars is 94,
pe,PV = 0.053, whilst heavy vehicles are erroneously classified 45 times, pe,HGV =
0.026. Light vehicles seem twice as difficult to classify as heavy.

Figure 7.4 shows the total number of classification errors for each sound during the
listening test sequence. In this graph, learning- or fatigue effects on test perfor-
mance would be visible, where there any. No effects of learning during the test
is prominently visible, nor any effects of weariness or fatigue. It is however clear
that some sounds are much more difficult to classify correctly than others, sound
No. 67 for instance, was incorrectly classified as a heavy vehicle by 13 participants
(13/22 = 59%). The occurance of sound No. 67 in the listening test is justified by
the fact that the method, for which this test is a reference, might suffer from the
same difficulties.
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Figure 7.3. Number of classification errors for the test participants.

Manual Classification Conclusions

The performed listening test had the purpose of providing a reference to the neural
network classification method. It shows that manual classification is 96 % accureate
for the present circumstances.
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8 DISCUSSION

The developed method for acoustical classification of traffic, heavy and light vehi-
cles, is proved viable for the adopted framework with a performance of ca 94 %
correct classifications. Method performance is validated such that it applies from a
general point of view for the described conditions and circumstances. The statistical
sampling described in Chapter 3 and the method framework described in Chapter 1
limits the applicability of the results on an arbitrary traffic situation or location.

The conducted measurements have proven adequate in terms of measurement tech-
niques for the utilisation of data in the classification process. The influence of
varying vehicle velocities on classification performance is not evaluated but believed
to be negligible. Neglecting to control circumstances and variables such as wind and
weather does not influence the performance of the developed method.

Data reduction as described in Chapter 4 significantly reduced the number of data
points for each individual observation by a factor > 103. The successful application
of the neural network for the classification task proves that the data reduction
preserves the characteristics which separates the two classes.

Principal Component Analysis seems to be a viable tool for reorganising data and
bring out sets of data which are intrinsically separated. The resulting principal
components are however not evidently ordered by some measure of separation. It
seems that even though all distributions of pattern elements overlap, the perceptron
can find a decision rule utilising many components to attain the goal.

The employment of an artificial neural network, a perceptron, for the task of finding
a decision rule for the patterns of principal components proved quite successful.

Classification Performance

Regarding the classification performance, some comparable results can be found in
the articles mentioned in the introduction chapter, page 1. The article most closely
related to the work in this thesis, i.e. traffic classification, by Reference (Nooralahiyan
and Kirby 1998), presents classification performance of 84 %.

Classification of underwater sounds was roughly 70 % accurate (Greene and Field
1991), whilst infrasound classification was 100 % accurate (Ham and Park 2002).
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Comparison to Reference Methods

The reference methods considered in the thesis are i) manual classification (listening
test), q.v. Chapter 7 and ii) classification by distance to centre of gravity, q.v.
Section 5.4.

Not surprisingly, manual classification is more successful than its artificial adver-
sary. The difference in performance is however remarkably small; the probability
of erroneous classification is pe = 3.95% for manual classification and pe = 5.55%
for the artificial. The more linear approach to classification, utilising the euclidean
distance, rendered the much poorer result of pe = 16%.

Artificial classification performance is compared to manual for those sounds included
in the listening test, q.v. Figure 8.1(a) and Figure 8.1(b). The correlation histogram
in Figure 8.1(c) clearly shows that the artificial classification method is not qualita-
tively comparable to manual classification

Method pe

Manual 4 %
Euclidean length 17 %
Neural Network 6 %

Table 8.1. Probability of erroneous classification for the different methods.

Convergence of training

Figure 8.2 shows for which training epoch index the minimum classification error,
i.e. best performance, is obtained as a function of the number of input elements and
number of neurons in the hidden layer. To produce the plot, the perceptron is trained
25 times and averaged over. Training terminates after 200 epochs as decided a priori.
The training epoch index, for which the best performance is obtained is saved and
assigned to a colour shown in colourbar left of the square plot. The figure shows
under which conditions training converges. If minimum error is obtained close to
training termination, the training can be assumed to have converged. The similarly
coloured region on the left hand side of the plot marks for which combination of
inputs and hidden neuron convergence is achieved. The light coloured curve in the
figure indicates the convergence region limits and it is given by the condition in
Equation (8.1).

Ninput ≥ 50 ·
(

1 +
10

Nhidden

)

⇔ (8.1)

Nhidden ≥ 500

Ninput − 50
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Figure 8.2. Evaluation of perceptron training convergence: training epoch index
for minimum classification error in the validation set.

The vertical asymptote in Figure 8.2 shows that if less than roughly 50 input ele-
ments (PCA components) are provided for the classification task, training cannot
attain convergence unless the neural network design is altered.

Classification of Non Traffic Sounds

To test the redundancy of the classification method, non traffic sounds are recorded
and employed. These extra, non traffic sounds include sounds of laughter, shouting,
music from a radio and sound effects such as sirens and dial tones. Measurement
details are included in Appendix D.

For this test, the recorded, extra sounds are preprocessed in the same manner as
the traffic sounds and presented to a readily trained perceptron with fixed synaptic
weights. There is no change in the network design, which means that if a non traffic
sound is to be correctly classified, the perceptron response must be negative for both
classes.

The dash-dotted line in Figure 8.3 shows the classification error for sounds from
sources other than traffic. Apparently, classification of those sounds fails disastrously
when the perceptron chooses to label them as either heavy or light traffic. The
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Figure 8.3. Classification error including non traffic sounds.

probability of erroneous classification is approximately 1 97 % as training terminates
after 300 epochs. This result is believed to be inherent from the fact that such non-
traffic sounds are not included in the training and not assigned to any class of their
own. Introducing a class for secondary, non traffic sounds and including them in
the training does not seem to result in significantly better performance at this stage
however. It seems that the introduction of a secondary class must be accompanied by
modifications in the classification method in whole. Such modifications is believed to
include a more accurate sampling of secondary sounds and modified characteristics
extraction.

When a secondary class of non traffic sounds is incorporated, classification accuracy
of those sounds improve at the expense of classification accuracy of vehicle sounds.
This indicates that the feature extraction is insufficient to separate the classes in the
feature space. A slight improvement is can be expected if better and more extensive
sampling is undertaken.

At this point it seems as the developed classification method is most accurately
applied when all possible sound events can be sampled and included in the training.

It seems that the major disadvantage with this method is the deficiencies in the
statistical sampling and its inherent uncertainties.

1Not entirely reliable with an average of 50 independent trainings.
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9 CONCLUSION

Striving for a low cost method of obtaining source information from unmanned
noise measurements, an attempt to classify different source types using an artificial
neural network is made. The work conducted includes the stages of traffic noise
measurements, preprocessing, characteristics extraction and finally neural network
classification. Techniques considered in these stages are filtering and resampling,
signal modeling using an ARMA model, Principal Component Analysis, statistical
analysis, neural computation using a perceptron and supervised learning thereof.
Sounds from vehicles passing by a measurement station are recorded and subse-
quently classified as heavy or light traffic. A listening test is carried out to provide
a reference to the developed method.

Method performance is validated using simulated new measurements, which means
that a portion of the measured sounds are not used in the training of the percep-
tron. The developed stages in the classification method and the results are however
restricted to one certain, or an equivalent location, where the measured sounds
were recorded. Results show that the perceptron classification performs better than
the linear attempt for which the simulated new measurements are compared to the
average features of each class (Euclidean length), and slightly worse than manual
classification, see Table 9.1.

Method Accuracy

Manual 96 %
Euclidean length 83 %
Neural Network 94 %

Table 9.1. Accuracy of classification for the different methods.

On basis of these results, it is concluded that the preprocessing preserves vehicle
sound characteristics and the signal ARMA model contains sufficient information
for separating the two considered vehicle classes. Using an artificial neural network
decreases the number of erroneous classifications by 65 % compared to the Euclidean
length method. It seems that artificial and manual classification are of similar merit,
since classification of the same sounds is attempted by both.
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Coggins, Kevin M. and Principe, Jose (1998). Detection and classification of insect
sounds in a grain silo using a neural network. In: 1998 IEEE International
Joint Conference on Neural Networks Proceedings. IEEE World Congress on
Computational Intelligence (Cat. No.98CH36227). pp 1760–1765.
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A LISTENING TEST RESPONSE SHEET

Instructions

Welcome to this vehicle classification test. You are kindly asked to turn off your cellphone
before the test starts.

You will hear recorded sounds of vehicles; cars, trucks and buses et cetera, followed by a 5
second period of silence, during which you must select vehicle class. The next sound will
follow automatically. The two classes you must choose between are PV and HGV :

Class Description
PV Light Vehicles; Personal/Private Vehicle: small and medium size cars.
HGV Heavy Vehicles; Heavy Goods Vehicle: heavy trucks, tractors, buses.

Preceding each sound is a brief tone to call upon attention. Before every 10th sound the
number of the sound to be played next will be announced. The test consists of 160 sounds,
and the estimated time needed for the test is 22 minutes.

3 s 5 s 3 s 5 s
... sound i quiet + tone sound i + 1 quiet + tone ...

Test procedure and time distribution during the test, i = 1, 2, 3, ..., 159

Before the actual test, a short example sequence with two light and two heavy vehicles is
played. The purpose of this test sequence is to let you get acquainted with how typical
sounds of each class will sound during the test. No answering is needed during the test
sequence, the correct answers are provided for in the table below.

PV HGV

1 x

2 x

3 x

4 x

Thank you for your participation!
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60 Chapter A Listening Test Response Sheet

Classification Table

PV HGV

1

2

3

4

5

10

20

30

PV HGV

40

50

60

PV HGV

70

80

90

Table continues on one additional page.
Next page not included in Appendix.



B LISTENING TEST SOUNDS

The following table shows which sound were played during the listening test and in
which order.

Seq.

No.

Class Sound

No.

1 PV 39
2 HGV 116
3 PV 7
4 HGV 112
5 PV 49
6 HGV 54
7 PV 8
8 PV 87
9 HGV 41
10 HGV 30
11 HGV 87
12 PV 76
13 PV 93
14 PV 57
15 HGV 136
16 HGV 131
17 HGV 12
18 HGV 45
19 HGV 29
20 HGV 64
21 HGV 23
22 PV 103
23 PV 35
24 HGV 117
25 HGV 35
26 HGV 96
27 HGV 10
28 PV 122
29 HGV 99
30 PV 47
31 HGV 28
32 HGV 16
33 PV 64
34 HGV 21
35 PV 71
36 PV 20
37 PV 127
38 PV 134
39 HGV 119
40 PV 91

Seq.

No.

Class Sound

No.

41 HGV 83
42 HGV 22
43 HGV 49
44 PV 107
45 PV 124
46 PV 41
47 PV 112
48 HGV 133
49 HGV 27
50 HGV 111
51 PV 105
52 PV 63
53 HGV 53
54 PV 73
55 PV 45
56 HGV 100
57 PV 27
58 HGV 101
59 HGV 67
60 PV 12
61 HGV 132
62 PV 58
63 PV 10
64 HGV 118
65 PV 29
66 PV 135
67 PV 96
68 PV 140
69 PV 36
70 HGV 103
71 HGV 17
72 PV 82
73 PV 44
74 PV 42
75 HGV 14
76 PV 100
77 PV 2
78 PV 69
79 HGV 71
80 PV 110

Continued on the next page.
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Seq.

No.

Class Sound

No.

81 PV 141
82 PV 129
83 HGV 121
84 HGV 73
85 PV 119
86 HGV 48
87 PV 24
88 PV 16
89 HGV 36
90 HGV 55
91 HGV 82
92 PV 33
93 PV 81
94 HGV 114
95 HGV 5
96 PV 53
97 HGV 74
98 HGV 51
99 HGV 20
100 HGV 129
101 PV 32
102 PV 114
103 HGV 140
104 HGV 50
105 PV 125
106 HGV 137
107 HGV 2
108 PV 62
109 PV 94
110 PV 1
111 HGV 59
112 PV 80
113 PV 102
114 HGV 79
115 PV 30
116 HGV 72
117 HGV 139
118 HGV 57
119 HGV 77
120 HGV 92

Seq.

No.

Class Sound

No.

121 PV 117
122 PV 113
123 HGV 44
124 HGV 9
125 PV 116
126 PV 74
127 PV 106
128 HGV 32
129 PV 14
130 PV 132
131 PV 120
132 PV 84
133 PV 70
134 PV 99
135 HGV 84
136 HGV 6
137 HGV 125
138 HGV 86
139 PV 38
140 PV 75
141 HGV 38
142 HGV 15
143 PV 130
144 HGV 40
145 HGV 127
146 PV 121
147 HGV 61
148 HGV 123
149 PV 3
150 PV 5
151 HGV 62
152 PV 56
153 HGV 130
154 HGV 18
155 HGV 95
156 HGV 3
157 PV 59
158 HGV 1
159 PV 9
160 PV 13



C PARAMETER OPTIMISATION

For the purpose of optimising the parameters, the classification error, i.e. the prob-
ability of misclassified vehicles, is analysed during training for a number of different
values for each parameter. Other parameters are kept constant during the evalu-
ation. A small classification error for a certain choice of parameter value suggests
that the performance is optimal. However, for a correct optimisation, this implies
that the other parameters are strictly independent of the evaluated one, which is
not the case. Hence, the result of the optimisation is not decisive, but only taken
into consideration when choosing parameter values.

Implementing a certain parameter value, the perceptron is trained for a period of 500
training epochs. The procedure is then repeated 30 times and averaged over. The
parameter Ninput refers to the number of input elements presented to the perceptron
and Nhidden denotes the number of nodes in the hidden layer.

Table C.1 shows at which value remaining parameters are kept constant, unless
stated differently in the graph and figure legend.

Parameter Value
α 0.9
β 0.36
γ 0.05
η 0.08
Nhidden 60
Ninput 70

Table C.1. Parameter optimisation: constant parameter values.

Note that figures denoted (a) contain the same information as figures denotd (b),
only representation is changed (3-dimensional and 2-dimensional).
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(a) 3-D

(b) 2-D

Figure C.1. Evaluation of parameter α; classification error in validation set.
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(a) 3-D

(b) 2-D

Figure C.2. Evaluation of parameter β; classification error in validation set.
(N.B. the logarithmic scale on the β-axis.)
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(a) 3-D

(b) 2-D

Figure C.3. Evaluation of parameter γ; classification error in validation set.
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(a) 3-D

(b) 2-D

Figure C.4. Evaluation of parameter η; classification error in validation set.
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(a) 3-D

(b) 2-D

Figure C.5. Evaluation of parameter Ninput; classification error in validation set.



69

(a) 3-D

(b) 2-D

Figure C.6. Evaluation of parameter Nhidden; classification error in validation set.



D NON TRAFFIC SOUNDS

To test the redundancy of the classification method, non traffic sounds are recorded
and employed. These extra, non traffic sounds include sounds of laughter, shouting,
music from a radio and sound effects such as sirens and dial tones. Recordings are
made indoors with the Symphonie measurement system. A set of 39 extra sounds
is sampled.

Date: 2005-11-29
Weather: Indoors

Trigger level: 70 dB(A)
Recorded sample length: 5 s
Sampling frequency: 51.2 kHz
Location: Ingemansson Technology AB

Equipment

Item description Manufacturer Type Internal notation

Symphonie measurement
system

Spektrum GmbH, 01dB AL134

Microphone G.R.A.S. 26AF MK070
Rugged notebook Panasonic Toughbook D016
Calibrator Brüel & Kjær KU47

Table D.1. Equipment

Instruments are calibrated according to the Ingemansson quality standards which comply

with the demands stated in SS-EN ISO/IEC 17025. Dates for the latest calibrations are

listed in Ingemansson’s calibration log.
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