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Summary

This work considers longitudinal wave propagation in diacicylindrical rods adopting Bostrom'’s
power series expansion method in the radial coordinateatitims of motion together with consistent
sets of general lateral and end boundary conditions argedkeinn a systematic fashion up to arbitrary
order using a generalized Hamilton’s principle. Analyticamparisons are made between the present
theory to low order and several classic theories. Numeeixaiples for eigenfrequencies, displacement
and stress distributions are given for various sorts ofdirad structures. The results are presented for
series expansion theories of different order and varicassatal theories, from which one may conclude

that the present method generally models the rod accurately

1. Introduction

There exist many models which describe the longitudinatetiynamic wave propagation in finite circular
cylindrical rods. It has been treated at different levelenf a simple one-dimensional wave propagation
problem to the complete three-dimensional theory of ethstamics, see for exampld)(for a brief
review. The involved three-dimensional theory has beerp@dbin conjunction with various levels of
approximations when studying dynamic rod problems foedéht standard end boundary conditions. Most
such works consider eigenfrequency analyzes using fix &ecy There exists on one hand analytical
solutions based on expansion in terms of Bessel functi®n3, @, 5, 6, 7) where part of the boundary
conditions are satisfied approximately, and on the othed mamerical solutions such as the Ritz method

(8,9, 10, 11) or the finite element method 2, 13).
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However, the bulk of analysis has been on various approxinmatdels due to the complexity of the
exact theory. In these simplified theories, both the dynasgigations and the boundary conditions are
often derived using various kinds of simplifying kinematgsumptions. The most used approximate theory
is the simple one-dimensional wave equati@)) (vhere radial effects are neglected. If the rod radius is
much smaller than the wavelengths this approximation isvknim yield accurate results. The next level
is to include radial inertia in the derivation process didsat by Love (4). This leads to a slightly more
involved differential equation that has the undesireduesabf being nonhyperbolic. A more advanced
theory is due to Mindlin and Hermana%) (henceforth denoted the Mindlin-Hermann theory) wheriabo
radial inertia and radial shear are considered, resulting hyperbolic equation. Mindlin and McNiven
(16) schematically derived an expansion theory of arbitradeousing Jacobi polynomials, where the so
called second-order approximation involving three disptaent terms was presented in detail (henceforth
denoted the Mindlin-McNiven theory). Other such finite temod theories have been suggested ever since,
of which most are based on similar approaches as the onesdéetabovel(, 18, 19, 20).

A higher order power series expansion of both displacenamdrequencies was derived by Achenbach
and Fang 21) for an infinite rod using the three-dimensional equatiohsotion, resulting in the rod
frequency spectrum and the corresponding mode shapes. mirgge similar approach was adopted by
Bostrom @2) using a power series expansion of the displacement fielgswhich subsequently resulted
in a hierarchy of rod equations expressed in the time don@a@rides the mentioned work by Mindlin and
McNiven, Achenbach and Fang, and Bostrom, there exist ratrey series expansion techniques for elastic
structures (rods, plates, shells) that may be truncaterbttvary order e.g. 23, 24, 25, 26, 27, 28, 29, 30,

31, 32). Only a few of these works adopt the important concept obttging recursion relation2®, 21,

30, 31, 32), from which it is possible to reduce the number of displaestiields in a consequent manner.
These latter work derive the equations of motion throughl#teral boundary conditions, and hereby
have the appealing property of exactly fulfilling these dtinds. However, note that there are generally
several additional differences in the derivation procedamong the works using recursion relations, such
as the series expansion method, the procedure when coddetims or the truncation process as a whole.

One interesting exception here concerns isotropic platbgre the seemingly alternative method used
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by Losin 31) actually results in the same equations of motion as wheptadpthe Bostrom method
(33, 34). Besides rods and plates, the Bostrom procedure hasedsogeneralized to other structures such
as shells35), anisotropic rods36, 37), piezoelectric layers3g, 39) and porous plateg() (the latter work

is influenced by Losin’s method). In all these works, only diféerential equations describing the wave
propagation are derived without determining the pertie@gtboundary conditions. Hence, there are needs
to establish the corresponding boundary conditions in amalgsystematic manner.

Traditionally, variational formulation methods are useldew developing the end boundary equations.
Of the works on arbitrary order theories for rods, plates simglls cited above, such boundary conditions
have been presented in Refsl6(24, 27, 29). These cited works mainly derive boundary conditions
schematically for standard end conditions, where numiemésailts on finite structures are only presented
by Matsunagaq7). Among these works, only MedickR{) derives both the traction and displacement
boundary conditions in a equally systematic fashion usingeneralized Hamilton’s principle where
displacements, stresses and strains are varied indegbnden

The present paper aims at developing the end boundary ammslih a systematic fashion up to an
(in principle) arbitrary order for a rod according to the Bos theory. To this end a generalized
Hamilton’s principle is used, where both the displacememis the stresses are varied independently.
This results in traction and displacement boundary comti as well as the rod equation of motion.
The latter equation thus verifies that Bostrom’s rod equmais variationally consistent. Moreover, it
becomes more evident from the derivation procedure at wdtagpes this method deviates from other series
expansion theories adopting variational techniques. @wiieg the pertinent end and lateral boundary
conditions, these are presented in a quite general fashainntay be adopted on various sorts of rod
structures. Besides presenting a hierarchy of rod equsatitth end boundary conditions, a more detailed
comparison is performed between the lowest non-trivialtBos theory and the Mindlin-Hermann and
Mindlin-McNiven theories. The numerical results presdrg three lowest eigenfrequencies for two sets
of end boundary conditions, together with correspondisgldcement and stress distributions. Two more

involved boundary conditions are also briefly discussed.
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2. Hamilton’s principle

Consider a cylindrical rod with length and radiusz. The rod is homogeneous, isotropic and linearly
elastic with density and Lamé constangsandy. Cylindrical coordinates are used with axial coordinate
radial coordinate and circumferential coordinate The displacement field is rotationally symmetric with
axial component,, and radial component.. A generalized Hamilton’s principle can be used to deriee th
differential equation describing the motion of the rod amel¢orresponding boundary conditions. Here, the
variation is extended from the ordinary Hamilton’s prirleippy assuming simultaneous and independent
variations of displacements and stresses. The conceptai®deto combinations of the principles of
minimum energy and complementary energy, and has been nssal/éral different versions for both
elastostatics4l, 42) and elastodynamic4, 43, 44). The preferred method of presentation differs in some
respects to the ones cited above, but results in the sameefjnations as if adopting Refs24, 43, 44)

directly. The Hamilton’s principlel) states that
ty
5/ Ldt =0, L=T-U+W, (1)
to

whereT' is the kinetic energy/ is the potential energy arid’ is the work done by body forces and surface

tractions. The energy densitigsandU are defined as
T=p/20-0=p/2 (ui + uf) , U=1/20:€=1/2(00z€sx + Orr€rr + T09€00) + Oarar, (2)

whereo is the stressg is the strain and a dot denotes a time derivative. Note{th@te..o, €0, 020, 0r0}
are all zero due to the rotationally symmetric displacenfiefd. Naturally, the strains are expressed in
terms of the displacements accordingte 1/2(Vu+uV). By considering displacement terms and force

terms as independent, the variational expressions become

t1 ty

5/ Tdt:—1/2/ /p(U-6u+u-5U)dth, 3)
to to 14
t1 t1

5/ Udt = 1/2/ / (o:0€ + €:d0) dV dt, 4
to to 14
tl t‘l

5 Wdtzl/?/ (/p(f-§u+u-§f) dV+/(t-6u+u-6t) dS)dt, (5)
to to 174 S

whereV is the volume ands is the surface of the rod, respectively. Adopting the dieee theorem

on (4), together with prescribed displaceméntn S, and prescribed tractiohon S;, the generalized
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Hamilton’s principle (1) may be reduced to the following reguation on variational form:

/t1 (/ (V-J+pf—p[])-6udV+/(f—n~a)-6ud8+/ (G—u)~5tds)dt_0. (6)
to 174 St Sy

Since the virtual displacements, anddu,. are independent in the interior and at the boundaries, and th
virtual tractionsdt,, anddt,. are independent at the boundaries, equation (6) reducep#&oete equations
for each variational term. In the present case of rotatlgisginmetric fields, it is natural to assume tlsgt
andS; are composed of subregions such as cylindrical parts oatéeal surface = a and circular rings at
the bases = 0 andz = L. Let a prescribed tractior). be given at: € L, forr = a, atr € Ry, forz = 0,

and atr € R;, for x = L. Hence, the displacemeiiy is prescribed at the complementary parts denoted
by {L%, R},, R}, }. Similarly, t, is known at{ L,., Ry, R} while @, is known at the complementary part

{L}, R}, R, }. The equation (6) thus reduces to separate integrals

2.,
/ / (“)om BUIT + ar + pfs — pa dugzrdrdr =0, @)
or ot?
_ 2,
/ / aa" (“)om + L +pfr — pa ouyrdrdx = 0, (8)
T ot?
/ (t — am) Ougdr = / (Uy — ug) Otzdx = 0, r=a, (9)
L, :
/ (t~r — UTT) ou,dr = / (U — up) 0t,dz = 0, r=a, (10)
L, x
/ (fz + am) Ougrdr = / (thy — ug) Otyrdr =0, o =1{0,L}, (12)
RioLye Rioiye
/ (t~r + am) Ou,rdr = O/ (Up — uy) 6t,rdr =0, a={0,L}. (12)
Riovyr Rfo,L}T

The stresses in these equations may be expressed in terhesdi$placements through

10 Ouy Ouy B 10 Ouy Oou,

T = [?E(WH 3:17} 2 U”_A[FE(WH 31?} T (13)
10 8uz Uy aum 8“7“

099_/\{;5(””)4_ 6$:|+2 I UIT_H{(?T B:C}

3. Equations of motion

In conformity with 22) the fields are expanded in power series according to

Uy = uo(z, t)+rius(z, t)+riug(z, t)+. .., Uy = rug (2, t) Friug(x, ) +rous (2, t)+..., (14)
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where the even and odd expansions are due to a correct bebhtwie- 0. Here it is assumed that are

smooth with continuous derivative3(). Substituting these expansions in the stress expresdiBhgives
0jj = O'jj70($£', t) + 7‘20']']'72(1', t) + ... Ogr = TU$T71($, t) + T3UIT,3(?L‘, t) + ... (15)

wherej is {z, r, 0}, respectively. The terms are explicitly written

Opz 2k = (A + 2u)uby, + 2(k + 1) Augk1, Orrok = Mgy + (2(k + 1) (A + p) + 2kp) uzgt1,
(16)

00,2k = Augy, + (2(k + 1A + 2) uzky1, Oar2kt1 = Mgyt + 2(k + 1) pgg4o,

fork =10,1,2.... Here a prime denotes anderivative.

3.1 Recursion formulas

Now, the power series expansions may be used in (7) and (8)si@ from now on no volume forces;
f= = fr = 0. The expression inside the parentheses in (7) is an evetidanio » and denoted by
F, = Fy +r*F, + ..., while the corresponding parentheses in (8) is an odd fonatir and denoted by

F.=rF, +73F3+.... Hence, (7) and (8) hold provided that

/ (FO +r2Fy 4+ .. ) (5u0 +r20us + .. ) rdr =0, a7
0

/ (rFl +r3F; + .. ) (r5u1 +r30us + .. ) rdr = 0. (18)
0

For an expansion of equation (17) involving terms up to aradutting order2m, this involvesm + 1
unknowns{ Fy, . .., Fy,,, } andm + 1 equations due to independent virtual displacenfén, . . ., duam, }-

A corresponding situation holds for equation (18). Henke,unique solutions of these equation systems
are that each term in the series must vanish, kg.= 0 for £k = 1,2,3,.... Written in terms of the

displacements, each such term is expressed as

1

Uk2 = o), [pite — (A4 2p)uy, — (k + 2)(A + )ty ] k=0,2,...,
) (19)
Upt2 = GOk 20 [piir, — puy, — (k + 1)(A + p)uj] k=1,3,....

These equations are recursion formulas also given by @osf22). By using equation (19) all expressions
involving us, us, . .. and derivatives thereof may thus be written in termsi@fu; and their derivatives.

Note that the recursion formulas are exact provided thadidacement fields may be expanded in infinite
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power series (14). Moreover, no truncations of the displear@ terms have so far been performed, which

is of crucial importance for the present method.

3.2 Lateral boundary conditions

The lateral boundary conditions are obtained directly freopations (9) and (10). Adopting the power

series expansions (15), the tangential direction results i

aogr1(x,t) + agamyg(a:, t) + ... =t (z,1), r € L,, (20)

ug(x,t) + a®uz(z,t) + ... = fy(z, t), z €L

x)

(21)

and the normal direction in

orro(,t) + GQO'TT,Q(.T, t)+...= ET(.T, t), x € L,, (22)

auy(z,t) + dduz(z,t) + ... = (1), x e L. (23)

These lateral boundary conditions actually constitutehingerbolic rod equations of motion. Hence,
different parts along the rod will in the general case beesblysing different sets of differential equations.
By adopting the recursion formulas (19) it is clear that £f@)) involve even order time and space
derivatives onug, while (22)—(23) involve even order time and space dereatdnu;. To obtain consistent
sets of rod equations, a differential orden + 2 onug (that iSug,+2-terms) in (20)—(21) is to be paired
to a differential orde2m on u; (that iSus,,1-terms) in (22)—(23). This implies using + 1 terms in
(20), (22), (23) andn + 2 terms in (21), see further in Section 6.3. Equations (20) @2 for lower
order expansions are also given by Bostri@#)( Note that no truncations of the displacement terms are
performed within each expanded stress field. As an illustaseries expansion of,, up t0 o,y 2m+1
involves displacement terms up t@,,+2 according to (16). It is hereby important to initially keep a
sufficient numbers of displacement terms before perforriegsubsequent truncations. It could be noted
that the lateral boundary conditions are per definitionlfalfiexactly for the expansion order in question,

see more below.
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4. End boundary conditions

The end boundary conditions are obtained from (11) and (hRjally, it will be assumed that either, or
i, together with eithet,. or @,., are given throughout each end boundary. The more genesalvdaere
these end conditions are different for various subregiongg) will be discussed briefly in Section 6.3. As
both ends are to be treated in an analogous way, only theaight = L is discussed below. Moreover,
consider the case whep andt, are known, as given displacement end conditions are tréatbe same

general fashion. The integrals in (11) and (12) with, = R.,. = [0, a] hereby become

/ (fm — (Opz,0 + rzamg + .. )) (6u0 +720us + .. ) rdr =0, (24)
0

/ (t} — (rogr1 + 7‘303”,3 + .. )) (r6u1 +r38us + .. ) rdr = 0, (25)
0

using the series representations in (16). Consideringi{dd)thus straightforward to derive the + 1
unknowns{o ;.. 0, - - -, 0zz,2m } from the system ofn + 1 equations for independent virtual displacement
{dug,...,duam}. Itis interesting to note that the hereby obtained repitasiem of the boundary stress
function o, in power series is actually identical to the expansion ofdhven functiont,. in terms of
shifted Legendre polynomialB; (1 — 2(r/a)2) of orderm. This may alternatively be expressed using
Jacobi polynomials sincP,gO’O) (2) = Py (z). In a similar fashion, (25) solved as a systemnof+ 1
unknowns renders that the series expanded boundary stressoh o, /r is identical to expanding
t./r in Jacobi ponnomiaIsD,gl’O) (1 — 2(r/a)2) of orderm. Note that the functions,, ando,, may
also be obtained in a direct fashion through expandingnd ¢, in Zernike polynomialsR9, (r/a)
and R%,Hl(r/a), respectively. Clearly, this causes among others that fiem studied case where the
prescribed end boundary stresses (or displacements)rarevas the whole surface renders that each term
in the corresponding series expansion is hereby zero. lddminoted that the Mindlin-McNiven theory
(16) is based on expressing the series expansion fields correisygato (14) in Jacobi polynomials.

In line with the differential order system discussed abaetlie lateral boundary conditions, the end
boundary stresses should at most invalvderivatives of order@m + 1 on ug for o, and2m — 1 on
uy for o, (a negative order implies no contribution). This is equavdlto say one order less than in the

corresponding equation of motion. Henee+ 1 terms should be used in the normal direction (24) and
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m terms in the tangential direction (25). In the case of disptaent end conditions, the same division
holds between the number of terms in the normal and tandeintitions, respectively. Hereby, the end
boundary displacements involwederivatives of order&m onwg for u, and2m — 2 onw, for u, at the
most. This is as expected since being two order less thamrindiresponding equation of motion. The all
in all number of4m + 2 end boundary conditions are in line with the (20)—(23), lwirg differential orders
2m+ 2 onwug and2m onw;. Putin other words, by eliminating one of the fields, saythis results in one

differential equation fory expressed in terms of partial derivatives in space and tinoederdm + 2.

4.1 Coupling conditions

When homogeneous rods with different properties (mategdius, lateral boundary condition) are merged
together, there areén + 2 coupling conditions to be fulfilled» + 1 conditions on both,, ando ..., as well
asm conditions on both, ando .. Of course, exact theory requires pointwise continuity ispldcements
and stresses. For the expansion theory, the continuityitonslon normal stresses and displacement are

obtained from generalizations of (11)

! ,

/ " (ko120 o +..) (Buo + r2us + .Y rdr = / " (0Tag ) (Buo +..)rdr, (26)

Oa“‘ 0 e

/0 (ué + r2u12 + .. ) (603”70 + 7“2603”72 + .. ) rdr = /0 (ug +...) (60gz0+...)rdr. (27)
Here the superscript?” is for the left-hand fields andr” is for the right-hand fields, while the notation
a'" is min{a', a"}. The same procedure holds for the tangential direction (CBarly, the displacement
conditions result in termwise equality, = u} for k = 0,1,---,2m while the stress conditions are
generalized force continuity requirements. In the spemaks’ = ™ each stress component is equal on
both sides.

When calculating displacements and stresses anywhere indhthe number of terms used in (14)—(15)
could be chosen in two different ways. One possibility isdasequently adopt + 1 terms for even order
expanded field$u,, 0., orr, 090 } @ndm terms for odd order expanded fielfis,, o, }. Hereby the end
(and coupling) conditions are fulfilled in accordance tophesentation above, but the higher order lateral
boundary conditions are not treated properly. Anotheripdig is to use the same number of fields as in

the lateral boundary conditions, thatis+ 1 terms for all fields except, wherem + 2 terms are to be
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used. Consequently, terms umitg,,+2 are hereby taken into account in all fields. Naturally, ttaeses
the lateral boundary conditions to be fulfilled exactly, botrupts the end (and coupling) conditions except
for o,.,.. From the numerical examples in Section 6, it is shown thaldtier approach is clearly superior to
the former approach in the inner regions (including of ceuh® lateral boundary). Close to or even at the
end (and coupling) boundaries, the discrepancies due tetemterm in certain fields are either negligible

or small in most cases. Hence, the latter approach is recoiedeand adopted throughout the paper.

5. Analytical comparisons

This section compares the equations of motion and standtdeundary conditions using the present
theory and different classical theories such as the rod equation, the Love theory, the Mindlin-Hermann
theory, and the Mindlin-McNiven theory. For simplicity,sagne the standard situation with free lateral

surface.

5.1 Equations of motion
In the exact case, the three dimensional solutions canxed frequencw, be given as45)

Uy = [Aky Jo(gpr) cos kyx + BgsJo(gsr) sin k),

(28)
up = [CgpJi(gpr) cos kyx + Dk J1(gsT) sin kwx]e_i“’t,
whereJy and.J; are Bessel functions, while, is the wavenumber in the-direction and
QP:\/kg_k%v kp:WVP/(/\+2M)a (29)

.= VTR, k—wv.

Two things could be stressed in association with these ee@eations. Firstly, by performing a radial
Maclaurin series expansion of the Bessel functions in (83ulting in series like (14), these fields are
shown to fulfill the recursion formulas (19). Secondly, andrenimportant, by studying the dispersion
relations analytically for exact and Bostrom’s theo2@)(more in detail, it is seen that a series expansion
of the Pochhammer-Chree frequency equation renders the temms as for the present theory, at least for
the few lowest terms studied (see comparable situationlfdep 46)). Hence, this is an indication that
Bostrom'’s systematical approach probably is asymptibficarrect.

The present theory is obtained from the equations of mot®) énd (22) forL, = L, = (0,L)
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andt, = t, = 0 atr = a. Consider the case where two terms are included in eachieguat =
1), henceforth denoted the’-equation. These equations, although given2d)(are presented below to

simplify comparisons. Thus

9%y 0%uyg Ouy a2 3A+4u 84u0 02 0%uyg

A+20) 57 a2 P o + 2/\% 4 2 Ox?t 2/L ot* (30)
p(A2 + TAu + 8u?) 9*ug —Bh 2 O3y N p(AN% + 4\ + 2p2) 3wy _0
2u(\+2u)  0x20t? O3 (N +2p) Oz ot? ’
dug A+3u %o p(A+3p) Pug O%ur  p(2\ + 3u) 0%uy
- =0. (31
Aoz 20+ T2 o5 20gomomer Vo T axon o % G
Consider next the classical rod theory
2 2
28’&0_8’&0:07 (32)

Cox2  or
wherecg = \/E/pandFE is Young’s modulus. Taking radial inertia into account tessim the Love theory
D

9%u 9%u v2a? 0*u
9 0 0 0o _
a2 " o T2 aar (33)

wherev is Poisson’s ratio. Equation (32) is identical to the paftsroler a in equations (30) and (31)
when the fieldy; is eliminated 22). Hence, this is henceforth referred to as tfleequation. The Love
equation involves an extra term of order, which corresponds to a similar term when eliminatingin

(30) and (31), see further below. The Mindlin-Hermann tgg@6) considers both radial inertia and radial

shear
8 O ug aQUO Ouy _
8 2 282U1 (92’&1
k3 8— + 20\ + p)kaug + Z <—pm 52 +p 5 ) =0. (35)

Herex andkg are adjustments constants. In the numerical results, twestants are chosen as= 0.93
andxo = 0.69 as suggested irlf). It is interesting to compare this latter set of equatiomasigically to

the series expansion equations. Considering (34) thigittichl to thex’-expansion in (30). Equation (35)
(divided byx3) has the same’-terms as (31), while the?-terms only involveu;-terms which differ in
magnitude and even sign in the first term. Clearlyahderms are present in (34). Hence, there are several

differences between these two theories for an expansiordef a?.
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Finally, the three mode theory according to Mindlin-McNivg16) also considers axial shear
deformation. These equations, originally expressed ukegbi polynomials, are here formulated in terms

of the power series expansion (14) as

9%uy 8%uyg Ou;  a? 8%us 0%us
(-t 2w 2 p8t2+/\max+2((/\+ nie p(w) , (36)
ou a? 5 0%uy 5 0%uy ou
v 520 o + % (-t + T 2 - a0 Z2) <0, (@)
a 2 82’112 6 u9
/mza— + 2ukdus + — 1 (—()\4‘2#) 92 T PE i BrD ) =0, (38)

wherex; are adjustments constants generally chosen so as to ménihreaong wavelength error for the
three branches of the dispersion curves. In the numeriesethre chosen ag = 0.89, ko = 1.18,

k3 = 1.00 andk4 = 1.51 for v = 0.3 according to 16). There are several similarities between the first two
equations (36)—(37), the Mindlin-Hermann equations (885} and the present theory (30)—(31). These
similarities could have been seen more readily by writirgyMindlin-McNiven equations as a system of
two equations through elimination of thwg field. However, as there are numerous different ways to espre
such a set of equations (even for a common sef'e¢erms) @9) this process is not pursued here. Instead,
the set of equations are turned into one single equationrinste®f thew, field. Such representations
are also presented for the Mindlin-Hermann theorylif) @nd for the series expansiafi-theory in @2),

respectively. All these cases result in the following gahequation form

1 82’&0 82’&0 2 bl 84’&0 b2 84U0 84
2o y -z b : 39
e o2 Ox2 <c‘¥E ot 2 Ot2022 03 ! > +0(a") =0 (39)

Note that the Mindlin-Hermann case here involvesateterms contrary to the series expansion and
Mindlin-McNiven theories. It is seen that all theories aderitical concerning terms of ordef (the
classical wave equation), and involve the same differeotiders for the thre@?-terms. However, the
positive coefficientd,; differ somewhat in all the different theories. Using standdmaterial parameters,
e.g. steel, as well as the numerical valuesd@nd the various;, all three coefficients; in thea?-theory
are roughly twice as big as in the Mindlin-McNiven theory. ®fhcompared to the Mindlin-Hermann
theory, these coefficients are approximately four timestgrein thea?-theory. As a further comparison

between different theories, the tebmin the series expansion theory is approximately 16 timeatgrehan
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the corresponding term in Love’s theory (33). The effeatsrfithese discrepancies are further manifested

in the numerical results.

5.2 Standard end boundary conditions

Here comparisons are made between the different theoniesafmus standard end boundary conditions
such as combinations of free and fixed ends. As for the analygkpressions for the equations of motion
discussed above, only thé-theory is described for the series expansion theory. Ttaénomber of three
boundary conditions on each end are thus divided into twditions onu,, or o,..., as well as one condition
onu, oro,,. Arod fixed in thez-direction results inig = 0 andu, = 0, while a fixation in the--direction
results inu; = 0. Consequently, a rod free to move in thelirection results i, o = 0 andog, 2 = 0

which by using (16) becomes

(A =+ 2p)ugy + 2 ug = 0, (A =+ 2p)ub + 4Aug = 0, (40)
while the corresponding situation in thedirection results i, ; = 0 which corresponds to

uj + 2us = 0. (412)

When applying these boundary conditions for a solution ® ribd equation of motion, the recursion
formulas (19) are adopted on the terms involvingandus, giving boundary conditions in terms af,
andu; only.

The single boundary conditions on each end for both theicks®d theory and the Love theory only
considers the behavior in thedirection. Hence, a rod fixed in thedirection results inig = 0 while a
rod free to move in the-direction results iny, = 0. These well known results are found among the series
expansion relations above if only thg displacement is considered. (However, note that bhetAndus
actually involveuq implicitly through the recursion relations).

In the Mindlin-Hermann theory one needs two boundary caémust at each end comprising both
longitudinal and radial effects. Fixed ends in theor r-direction correspond tay = 0 andu; = 0,
respectively. Free ends in thedirection corresponds to\ + 2u)uf + 2Au; = 0 while free ends in the
r-direction returns:; = 0. Again, these cases are found among (40) and (41), provigedermsu, and

higher are omitted.
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Finally, there must be three boundary conditions at eacti@rte Mindlin-McNiven theory, just as for
the series expansion theory. As is expected, a rod fixed in-tieection results inig = 0 andus = 0,
while a fixation in ther-direction results int; = 0. For unrestrained motion in the-direction one has
(A 2p)ul + 2 k1u1 = 0 andul, = 0 while the corresponding situationirdirection gives: + 2us = 0.
Similar results are given in (40) and (41)f is disregarded. Note that the Mindlin-McNiven theory

involves the correction factor;, which is often chosen slightly less than unity.

6. Numerical examples

In this section, the eigenfrequencies and the stress lisvn for the series expansions theories are
compared with one another using different truncation @deFhese expansions are also compared to
other classical theories as well as the exact theory. Asétic®@e5 mainly a free lateral surface and simple
end boundary conditions are studied. Other more compticzdses are briefly discussed in Section 6.3.
Two different end conditions are considered in Sectiong@6d6.2: mixed boundary conditions where the
rod is fixed in axial direction and free in radial directionuiged ends), and clamped boundary conditions,
respectively. Such end conditions have been studied bytgng approximate techniques based on
three-dimensional analysis. Liew and Hur@) (sed the Ritz minimum energy principle, Buchanan
(13) used the finite element method while Kar) @dopted a wave guide model with mode matching.
The present paper calculates the three lowest eigenfretpsefor two different length to radius ratios:
a/L = 1/20 anda/L = 1/4. These cases are also studied in by Liew and H@gvwhich makes it
natural to use the same normalization frequefey wa/cg as in @). The comparisons are made in terms
of the relative error. When the absolute value of the redatitror is less tham0~—*, this is marked by a
star (x). Note that the three-dimensional mixed boundary case cavlved analytically rendering the
exact results, contrary to the clamped boundary case. fdrefecomparisons to the exact results in the
latter case are obtained using higher order approximathadstthat are expected to have converged to
an accurate level. The different series expansion thearg Sections 6.1 and 6.2 denoted through the
radius power?™ in line with (30)—(31), involving time and space derivavef order2m + 2 onug and

2m onuy, respectively.

When displaying the stress distribution in a rod, only thedst eigenfrequency with/L = 1/4 is
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presented for the two boundary cases, respectively. Tha neaison for this is that this case readily
illustrates the qualitative accuracies for the differéwtdries; features that are appearing in a similar way in
the higher modes and for other length to radius ratios. Ttis plill focus on the three stresses,, o,.- and
o Especiallyg,.. ando,, are of interest to illustrate whether the lateral stressidawy conditions are
adequately met for the classical theories. The eigenmaéegemerally normalized so that the maximum
longitudinal displacement, atr = 0 is equal to unity. For the boundary conditions considereskations

6.1 and 6.2, this occurs at= L /2 for the first eigenmode.

6.1 Mixed boundary conditions

Consider first the mixed boundary conditiop = 0 ando,,. = 0 atx = 0, L. For a series expansion
theory a®™ this implies at both ends that the + 1 termsuy, = 0 and them termso,, ox—1 = 0
for k = 0,---,m in accordance to Section 4. Table 1 presents the three I@igsnfrequencies for
a/L =1/20anda/L = 1/4, respectively. Here, the exact theory is compared to sexrgansion theories
of ordera®, a2, a* anda®. These results show how the accuracy of the series solwiimgroved as
the a®™ order is increased. It is also seen that the accuracies famoinfor higher eigenfrequencies as
expected. Moreover, the results for slender ragd, = 1,/20, are superior to the ones whepfiL = 1/4.
Of course, the results from thé-expansion are not affected by the ratitl. for fixed L.

Table 2 gives the eigenfrequencies for exact theory andeiagive error for the approximate theories:
Love, Mindlin-Hermann (M-H), and Mindlin-McNiven (M-McN)Here the results for the?-theory are
also included in order to clarify comparisons. These ressitiow that the:? series expansions theory
generally is superior to the traditional theories, esglyciar a slender rod:/L = 1/20. However, it is
surprising that the quite simple Love theory mainly rendamse accurate results than both the Mindlin-
Hermann and the Mindlin-McNiven theories. The high accycfdhe Love theory here is probably due to
the specific choice of boundary conditions with vanishinggststresses, as such stresses are not taken into
accountin this theory. Note that the accuracies using tativiindlin-Hermann and the Mindlin-McNiven
theories depend on the choice of adjustments constaentslx,;, see Section 5.1.

Next, the distribution of stresses is displayed usingdheand classical theories for the lowest mode

whena/L = 1/4. Figure 1(a) considers the variation®f. along the rod for = 0 for different theories.
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a/L Q Exact al a? at a’
1/20 || © || 0.3140| 6 x 104 * * *
Qs || 0.6269| 2.2 x 1073 * * *
Q3 | 0.9376] 5.2 x 1073 —1x1074 * *
1/4 || Q || 1.5467| 156 x 1072 | —1.4x 1073 | * x
Q, || 2.8857| 8.87 x 1072 —3.17x1072 | 3.2x 1073 —2x1074
Q3 || 3.7142| 2.688 x 107! | 3.30 x 1072 1.04x 1072 | =5 x 1074

Table 1 Mixed boundary conditions: The eigenfrequencies for etteaxtry and the relative error for series

expansion theories of ordef, a2, a* anda®.

a/L | Q | Exact Love M-H M-McN a?
1/20 || ©; || 0.3140| * —-3x107* | =3x 1074 *
Qo || 0.6269| —8x107% —6x 1074 *
Q3 || 0.9376| 2 x 1074 ~1.9%x107% | =1.4x 1073 | =1 x10~*
1/4 || @ || 1.5467| 1.7 x 1073 —52x107% | =41 x1073 | —1.4x 1073
Q, || 2.8857| 329x 1072 | —9.3x 1073 | —1.94 x 1072 | =3.17 x 1072
Q3 || 3.7142| 1.349 x 107! | 3.13 x 1072 | —2.44 x 1072 | 3.30 x 1072

Table 2 Mixed boundary conditions: The eigenfrequencies for exlaebry and the relative error for

approximate theories: Love, Mindlin-Hermann (M-H), MiimdMcNiven (M-McN) anda?-theory.

Thea?-theory is more accurate than the Mindlin-McNiven theorlyjeh in turn renders better results than
the Mindlin-Hermann theory. Note that th& and the Love theories do not model this stress component.
The same accuracy sequence between theories are obtaineg, fowhich botha” and Love theories
model) but here the variation between all the theories asegeonounced and thus not displayed, see more
below.

Figure 1(b) presents,,. along the rod for = a, and thus illustrates how well the different theories fulfil
the lateral shear boundary condition. It is seen that tharssteess using the Mindlin-McNiven theory is
considerably better that both the Mindlin-Hermann and toed_theories ° do not model this stress
component). However, the Mindlin-McNiven stresses arenegfigible, especially when compared to the

a?-theory that fulfils this boundary condition exactly. Nobat all displayed theories seem to fulfil the end
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boundary conditions for = a, see more below. The general situation is quite similartferrformal stress
o, along the lateral boundary (not displayed here), wheretkhbeory renders the exact result. Here both
the Mindlin-McNiven and the Mindlin-Hermann theories prasstress levels that are comparable to the
ones obtained for = 0 in Fig. 1(a), which thus implies a deterioration for the MinédMcNiven theory

when compared to the shear boundary condition in Fig. 1(b).

UTT/E 0w7'/E
R 0.3 =
0.3 4 ///) ' // L .
02 ///// 025 N SN
7 0.2 y ‘.
0.1 / U / N\
7 /'/ \
L x/L 0.15 y y
0.2 o 06 08 1 / / \
o1l - — - // 0.1 7/ N
: Z . .
_02 //'// 0.05 // \
s ’ K
— — S L
-03p T 02 —o# - — 06 — 08 1 l‘/
(@) orratr =0. (b) ozr atr = a.
Fig. 1 Mixed boundary conditions: —— Exact,—— a?, —— - —— M-McN, — - - — M-H, — - — Love.

The behavior at the end = L is given in Figures 2 for,, ando,.., respectively. Both figures show
the improved accuracy using the proposed series expartsionyt of order? compared to the classical
theories. Note that the results from th& and Love theories are on a common lowest horizontal line in
Fig. 2(a). Figure 2(b) also displays the behavior at thedhteoundaryr = a in a clear manner. As the
shear stress boundary conditions at the ends are fulfilteéraccurately for all theories, these results are
not presented here.

No displacement plots are given here as there are no signtifiifferences between the theories, albeit
thea? theory is the most accurate. As mentioned before, higheesiadd a more slender radL = 1/20
generally show the same mutual accuracy relations betvinetiveories as presented above. Surprisingly,
for certain stress terms the Mindlin-McNiven theory adyaénder less accurate results for the slender
rod casen/L = 1/20 compared to the/L = 1/4 case. This is the situation for the normal stress
along the central line = 0 for the first mode, where certain terms do not properly caaaeh other out

using the Mindlin-McNiven theory. Hence, the stress magtes due to Mindlin-McNiven are on the same
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U.L.L/E UT‘T'/E
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T r/a
b 0.2 0.4 0.6 0.8 1
(@) ozz @tz = L. (b) orr atx = L.
Fig. 2 Mixed boundary conditions: —— Exact—— a?, —— - —— M-McN, — - - — M-H, — - — Love, - - - a°.

level for botha/L = 1/20 anda/L = 1/4, see Fig.1(a), while the stress magnitudes for the otheriée
(including the exact) for the slender rod have decreased dme rihan a factor of ten. By choosing the
correction coefficients; differently (e.g. to unity) the result can be improved. Tétiwws that the choice
of the ;s that render accurate dispersion curves in the low freqqueggions does not necessarily result

in the optimal stress distribution for this lowest eigenfrency.

6.2 Clamped boundary conditions

Consider next the case when the rod is clamped in both axéaladfial directions at both ends;, = 0
andu, = 0 atz = 0, L. Of course, for a series expansion theaf{ this means at both ends, = 0 for

k =0,---,2m according to Section 4. As in the mixed boundary case, theetlowest eigenfrequencies
are studied fom/L = 1/20 anda/L = 1/4, respectively. Since the exact solution can not be solved
analytically, the eigenfrequencies using three dimeraitireory may be approximated by the methods
adopted inT, 9, 13) as well as a higher order series expansion theory. In thex ledise expansion of order
a** is used. Forn/L = 1/4 the two lowest eigenfrequencies are givening, 13) which is in accordance

to thea'? results. The third eigenfrequency is also given by Buchgn&) but here the third decimal
actually differs from our results. The rate of convergens|gl the series expansion approach is rather
slow in this case. However, as the final presented eigenérezyuis obtained for both the'? anda'4
theories, these results are assumed to have converged.ilarsituation occurs for/L = 1/20, where

Liew and Hung 9) presents eigenfrequencies that also differ in the thindal when compared to the
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a** results. Here the series expansion method converges wlusady thea* theory, and these results are
thus believed to be correct.

The series expansion theories of different order are coatpiarTable 3. These results are quite similar
to the mixed boundary case, see Table 1. The approximateigeesre compared in Table 4. As in the
previous case, these results show thatthseries expansion theory is generally superior to the toamit
theories. Here the accuracies for these latter theoriemfneor to the mixed boundary case. Moreover,
both the Mindlin-Hermann and the Mindlin-McNiven theorigse more accurate than Love’s theory as
expected. However, it is surprising that the simple clagsit-theory renders results on the same accuracy

level as the other more refined traditional theories.

a/L || Q att a’ a? at ab
1/20 || ©; | 0.3156] —4.4x 1073 | —3x10~* | « «

Q || 0.6302| —3.0x 1072 | =5 x 1074 * *

Q3 || 0.9427| -2 x 10~* -5 x 1074 * *
1/4 || Qp || 1.5942| —1.47x 1072 | —=1.1 x 1073 | * 2x 1074

Qs || 3.0261| 3.82 x 1072 —1.20 x 1072 | 2.7 x 1073 8x 1074

Q3 || 3.9300| 1.991 x 107! | —1.04 x 1072 | 2.42x 1072 | =1.9 x 1073

Table 3 Clamped boundary conditions: The eigenfrequencies fortthéheory and the relative error for

series expansion theories of orddy a2, a* anda’.

When presenting the distribution of stresses and displan&using the:? and classical theories for
the lowest mode whea/L = 1/4, these results are to be compared to the series expansimny thiea
high order. By inspection, the® plots are indistinguishable from theé* in the presumably worst case
displayed, and thus the lower order is used for a comparessimiplify the numerics. Just as in the classic
Filon’s problem in statics, there are known to be stressudargies in the corners. Of course, none of the
present rather low order theories are well suited for aniadythese effects. Hence, no plots are presented
for the fields in these regions. Such end effects may be studi@e in detail using various asymptotic
boundary expansion methods, see furtldér 48, 49).

The plots are generally more dramatic in this boundary chae the previous mixed case. Figure
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a/L || Q att Love M-H M-McN a?

1/20 || €, || 0.3156| —5.1x 10~® | 3.8 x 1073 | 2.5 x 1073 —3x 1074
0, || 0.6302| —5.2x 1073 3.0 x 1073 1.9x 1073 ~5x 1074
Qs || 0.9427| —=52x 1073 | 2.0x1073 | 1.2x 1073 —5x 1074

1/4 || Q|| 1.5942| —2.81x 1072 | 1.64 x 1072 | 1.03x 1072 | —1.1 x 1073
Q || 3.0261| —1.51x 1072 | 3.3 x 1073 —-2.2x1073 —1.20 x 1072
Q3 | 3.9300| 7.26 x 1072 —2.4x1073 | =1.60 x 1072 | —1.04 x 1072

Table 4 Clamped boundary conditions: The eigenfrequencies fortthéheory and the relative error for

approximate theories: Love, Mindlin-Hermann (M-H), MiimdMcNiven (M-McN) anda?-theory.

3(a) displays the variation af,.,. at the central line = 0 along the rod for different theories. In order
to visualize the accuracies for these theories, the highesses at the ends are not included for scaling
reasons. Instead such end effects are given in Figure 3¢h tBe Mindlin-McNiven and the? theories
are more or less equally correct in the interior Fig. 3(a)ijevimore pronounced discrepancies close to the
ends are illustrated in Fig. 3(b). Just as for the mixed bamdase, the stress., shows less pronounced

variations between all the theories and is thus not displaye

Orr | E Orr | E

x/L

0.4 \\\ 0.95 0.96 0.97 0.98 0.99 1
-02
02 \\ ~04
\\ A 06 -. — = ——
2>~ .. —04 0.6 0.8 ) =

-0.2

-0.4

\\\ -1.4

(@) orr atr =0.

(b) oz atr = 0.

Fig. 3 Clamped boundary conditions: —&%, ——— a2, —— - —— M-McN, — - - — M-H.

Figure 4 presents,, ando,. atz = 3L/4, respectively. These results behave like in the mixed
boundary case, albeit the? theory is less accurate here. Note that the top horizomtalili Fig. 4(a)
involves both the:® and the Love curves. As the rate of convergence is slowertharein the mixed

boundary case, it is instructive to study the results froneseexpansion theories of different order. This
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is illustrated foro,.. atz = 3L/4 in Fig. 5(a). No plots are presented o, ando,.. atr = q, since the

different theories generally behave in a similar fashiomake mixed case.
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-24 [ o o o :\\7\\7 o
-25 0.2 0.4 06 08 1 T/a
(@) oz atz = 3L/4. (b) orr atx = 3L/4.
Fig. 4 Clamped boundary conditions: —&®, ——— a?, —— - —— M-McN, — - - — M-H, — - — Love,- - - a°.

The clamped boundary case exhibits more variations in tattements between the theories than the
mixed boundary case, albeit these are still generally quitell. Figure 5(b) shows the behaviorwof at
x = 3L /4. Note that thex’-curve is obtained by including the;-term in accordance with the discussion
in Section 4. Hence, it is different to the constagtvalue obtained for classical wave equation adopting

the standard procedure. In the latter case the curve woeddlglbe on top the Love curve.
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(@ —a8 ———a% - —at, — - —ab. (b) — a8, ——— a2, —— - —— M-McN,

— .- —M-H, —- — Love, - - - af.

Fig. 5 Clamped boundary conditions;., andu, atx = 3L /4.
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6.3 Simple rod structures

In this section two sets of boundary/coupling conditions svestigated explicitly: lateral boundary
conditions varying along a homogeneous rod, and conneotisiwith varying radii. In both cases mixed
end boundary conditions (guided ends) are assumed in aréectirately verify the results in the limit of
a simple rod.

For the first case, consider an example where the rod is diviiie a laterally free and a laterally
clamped half. Hence, adopt equations (20) and (22).p5= L, = (0, L/2) with t, = ,, = 0, as well as
equations (21) and (23) i = L} = (L/2, L) with @, = @, = 0. Thedm+2 coupling conditions follow
from Section 4.1 as termwise continuity conditions. Wheltdating the eigenfrequencies, these are
converging at a slower rate than the standard cases prdser8ections 6.1-6.2. This expected behavior
is readily seen in Table 5 which presents the lowest eiggofrecy wher:/L = 1/4 for series expansion
theories of the lowest orders. The results show that then&igguency is higher than in the laterally free

case as expected, see Table 1.

a/L| Q@ | m=0|m=1|m=2|m=3

1/4 || ©Q || 2.2284| 2.4007| 2.4400| 2.4588

Table 5 The eigenfrequencies for series expansion theories dadrdiit order for laterally free/clamped

boundary conditions with guided ends.

The displacement and stress distributions become more lazatipg than for the laterally free rod.
For all the series expansion theories the lateral boundamgitions are exactly fulfilled along the rod,
just as in the previous cases. However, there will also beessisingularity atr = L/2 due to the
abrupt transition from a free to a clamped boundary. As leefeuch features are not captured by the low
order theories displayed here, even though pronouncessdereels are readily seen in the vicinity to this
point. In conformity with the discussions on coupling cdiadis in Section 4.1, there will generally be

discrepancies in the corresponding displacement andsdtedds for the two halves at= L /2, except for
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o.- Naturally, such discontinuities are zero wheg- 0 (except form = 0) and increase with the radius.
Still these differences are quite small away from the siagtyl pointr = a.

Figure 6(a) presents the variation®f. along the rod when = 0 for different series expansion theories.
Clearly, the stress distribution is more complex than fer [tterally free case Fig. 1(a). Concerning the
lowest order equations. = 0, there is a jump discontinuity at = L/2 aso,, is not modeled for a free
lateral surface. Moreover, it could be noted that the ldtecédamped rod equation in this simplest case is
actually a one-dimensional Klein-Gordon equation.

Next, consider the case when two laterally free rods witmiidal material parameters are merged
together atv = L/2: radiusa/2 for < L/2 and radius: for z > L/2. Using the4m + 2 coupling
conditions presented in Section 4.1, the lowest eigengeguwhena/L = 1/4 is given in Table 6 for

series expansion theories of different orders. These seeoniverge quicker than in the previous case.

a/L| Q | m=0|m=1|m=2|m=3

1/4 || © || 1.5708| 1.5491| 1.5503| 1.5506

Table 6 The eigenfrequencies for series expansion theories ddrdift order for two radii with guided

ends.

The displacement and stress distributions resemble in wasgs the situation for a single laterally free
rod, albeit being more complicating. Naturally, the latdraundary conditions are exactly fulfilled for
all the series expansion theories. Moreover, there will Iséress singularity at = L/2 for r = a/2
due to the abrupt radius transition. Considering the nostrakso,, overz = L/2, this stress is not
continuous as in the previous cases due to the generalireg dontinuity requirement. For higher order
theories these discrepancies are gradually becomingemallbeit at a slow rate. Consequently, there are
visible tendencies that both,, ando,.,. are gradually approaching an ultimate stress-free camdftr
r > a/2 atxz = L/2. Figure 6(b) presents the variation ®f,. along the rod whem = 0 for different
series expansion theories, and thus resembles Fig. 1(&.thit there are small jump discontinuities for

all orders atzr = L/2. The normalization used in Fig. 6 is such that the longitatidisplacement,, at
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r = 0 is equal to unity at = L/2. This is thus not its maximum value in either case, as thdightly

larger and occurs far-values less thafh /2.
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(a) Laterally free/clamped rod. (b) Two rods with different radii.

Fig. 6 o, atr = 0 with mixed end boundary conditions fay L = 1/4. —a®, - - - a°, ——— a?, — - — a™.

As a final remark on how to deal with various sort of end/couwladitions, we have also studied an
example of a laterally free homogeneous rod with guided andise inner radius < a/2 and free ends
at the outer radius > a/2. Using notations according to (11)—(12), this is to $&y .}, = [0, a] with
tr = 0,andRyq ), = [0,a/2) with @, = 0, as well asR}, ;,, = (a/2,a] wheret, = 0. However, this
case resulted in severe difficulties on several levels. Qustipn concerned how to mutually divide the
m + 1 normal end boundary conditions betwegnando,, on each end. Different combinations were
tried up to order'?, but all these resulted in numerical problems when ideiniifhe lowest mode and
its eigenfrequency. Moreover, the fulfilment of the prdsed end conditions were not adequately fulfilled
simultaneously on botlk, 1,;, and ijo,L}m- This problem was investigated in some detail adopting
various alternative approaches, without resulting inat#é results. Probably a much higher expansion
order is needed to deal with such an involved end boundargtiton. One alternative approach is here
to separate the structure into one rod surrounded by a halytimder, where the latter is modeled by the

higher order series expansion equations describegbn (

7. Conclusions

This work presents the rod equation and corresponding ryrmnditions to arbitrary order according to

the power series expansion theory proposed by Bostrom.midthod used is a generalized Hamilton’s
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principle resulting in variationally consistent equasothat seem to be asymptotically correct. The
equations are compared analytically to different tradiictheories, and numerical results are presented
for different rod structures. All theories are fairly adetgifor calculating the eigenfrequencies, but the
distribution of stresses varies considerably betweenribgo

Naturally the present approach for deriving both the défgial equation and the corresponding
boundary conditions can be applied to other structuresedas the experiences from the present work,
these results could thus be generalized systematicallyty existing series expansions theories where the
equations of motion and the recursion relations are knovwmbtthe end boundary conditions, e.g. for
plates 83), shells 85), anisotropic rods36, 37), porous layers40), and piezoelectric layer88, 39) . One
application of such theories for structural elements isiplement them in finite element codes. These
refined theories yield more accurate results than simpdelittonal equations and at the same time the
number of elements in a finite element code can be heavilycextloompared to using three-dimensional

elements.
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