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DYNAMIC HIGHER ORDER EQUATIONS FOR FINITE RODS

by Peter D. Folkow‡ andKarl Mauritsson§

(Department of Applied Mechanics, Chalmers University of Technology,
SE-412 96 G̈oteborg, Sweden)

[Received October 2009.]

Summary

This work considers longitudinal wave propagation in circular cylindrical rods adopting Boström’s

power series expansion method in the radial coordinate. Equations of motion together with consistent

sets of general lateral and end boundary conditions are derived in a systematic fashion up to arbitrary

order using a generalized Hamilton’s principle. Analytical comparisons are made between the present

theory to low order and several classic theories. Numericalexamples for eigenfrequencies, displacement

and stress distributions are given for various sorts of finite rod structures. The results are presented for

series expansion theories of different order and various classical theories, from which one may conclude

that the present method generally models the rod accurately.

1. Introduction

There exist many models which describe the longitudinal elastodynamic wave propagation in finite circular

cylindrical rods. It has been treated at different levels; from a simple one-dimensional wave propagation

problem to the complete three-dimensional theory of elastodynamics, see for example (1) for a brief

review. The involved three-dimensional theory has been adopted in conjunction with various levels of

approximations when studying dynamic rod problems for different standard end boundary conditions. Most

such works consider eigenfrequency analyzes using fix frequency. There exists on one hand analytical

solutions based on expansion in terms of Bessel functions (2, 3, 4, 5, 6, 7) where part of the boundary

conditions are satisfied approximately, and on the other hand numerical solutions such as the Ritz method

(8, 9, 10, 11) or the finite element method (12, 13).
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However, the bulk of analysis has been on various approximate models due to the complexity of the

exact theory. In these simplified theories, both the dynamicequations and the boundary conditions are

often derived using various kinds of simplifying kinematicassumptions. The most used approximate theory

is the simple one-dimensional wave equation (1), where radial effects are neglected. If the rod radius is

much smaller than the wavelengths this approximation is known to yield accurate results. The next level

is to include radial inertia in the derivation process described by Love (14). This leads to a slightly more

involved differential equation that has the undesired feature of being nonhyperbolic. A more advanced

theory is due to Mindlin and Hermann (15) (henceforth denoted the Mindlin-Hermann theory) where both

radial inertia and radial shear are considered, resulting in a hyperbolic equation. Mindlin and McNiven

(16) schematically derived an expansion theory of arbitrary order using Jacobi polynomials, where the so

called second-order approximation involving three displacement terms was presented in detail (henceforth

denoted the Mindlin-McNiven theory). Other such finite terms rod theories have been suggested ever since,

of which most are based on similar approaches as the ones discussed above (17, 18, 19, 20).

A higher order power series expansion of both displacementsand frequencies was derived by Achenbach

and Fang (21) for an infinite rod using the three-dimensional equations of motion, resulting in the rod

frequency spectrum and the corresponding mode shapes. A seemingly similar approach was adopted by

Boström (22) using a power series expansion of the displacement fields only, which subsequently resulted

in a hierarchy of rod equations expressed in the time domain.Besides the mentioned work by Mindlin and

McNiven, Achenbach and Fang, and Boström, there exist manyother series expansion techniques for elastic

structures (rods, plates, shells) that may be truncated to arbitrary order e.g. (23, 24, 25, 26, 27, 28, 29, 30,

31, 32). Only a few of these works adopt the important concept of developing recursion relations (22, 21,

30, 31, 32), from which it is possible to reduce the number of displacement fields in a consequent manner.

These latter work derive the equations of motion through thelateral boundary conditions, and hereby

have the appealing property of exactly fulfilling these conditions. However, note that there are generally

several additional differences in the derivation procedure among the works using recursion relations, such

as the series expansion method, the procedure when collecting terms or the truncation process as a whole.

One interesting exception here concerns isotropic plates,where the seemingly alternative method used
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by Losin (31) actually results in the same equations of motion as when adopting the Boström method

(33, 34). Besides rods and plates, the Boström procedure has also been generalized to other structures such

as shells (35), anisotropic rods (36, 37), piezoelectric layers (38, 39) and porous plates (40) (the latter work

is influenced by Losin’s method). In all these works, only thedifferential equations describing the wave

propagation are derived without determining the pertinentend boundary conditions. Hence, there are needs

to establish the corresponding boundary conditions in an equally systematic manner.

Traditionally, variational formulation methods are used when developing the end boundary equations.

Of the works on arbitrary order theories for rods, plates andshells cited above, such boundary conditions

have been presented in Refs. (16, 24, 27, 29). These cited works mainly derive boundary conditions

schematically for standard end conditions, where numerical results on finite structures are only presented

by Matsunaga (27). Among these works, only Medick (24) derives both the traction and displacement

boundary conditions in a equally systematic fashion using ageneralized Hamilton’s principle where

displacements, stresses and strains are varied independently.

The present paper aims at developing the end boundary conditions in a systematic fashion up to an

(in principle) arbitrary order for a rod according to the Boström theory. To this end a generalized

Hamilton’s principle is used, where both the displacementsand the stresses are varied independently.

This results in traction and displacement boundary conditions, as well as the rod equation of motion.

The latter equation thus verifies that Boström’s rod equation is variationally consistent. Moreover, it

becomes more evident from the derivation procedure at whichstages this method deviates from other series

expansion theories adopting variational techniques. Concerning the pertinent end and lateral boundary

conditions, these are presented in a quite general fashion that may be adopted on various sorts of rod

structures. Besides presenting a hierarchy of rod equations with end boundary conditions, a more detailed

comparison is performed between the lowest non-trivial Boström theory and the Mindlin-Hermann and

Mindlin-McNiven theories. The numerical results present the three lowest eigenfrequencies for two sets

of end boundary conditions, together with corresponding displacement and stress distributions. Two more

involved boundary conditions are also briefly discussed.
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2. Hamilton’s principle

Consider a cylindrical rod with lengthL and radiusa. The rod is homogeneous, isotropic and linearly

elastic with densityρ and Lamé constantsλ andµ. Cylindrical coordinates are used with axial coordinatex,

radial coordinater and circumferential coordinateθ. The displacement field is rotationally symmetric with

axial componentux and radial componentur. A generalized Hamilton’s principle can be used to derive the

differential equation describing the motion of the rod and the corresponding boundary conditions. Here, the

variation is extended from the ordinary Hamilton’s principle by assuming simultaneous and independent

variations of displacements and stresses. The concept is related to combinations of the principles of

minimum energy and complementary energy, and has been used in several different versions for both

elastostatics (41, 42) and elastodynamics (24, 43, 44). The preferred method of presentation differs in some

respects to the ones cited above, but results in the same finalequations as if adopting Refs. (24, 43, 44)

directly. The Hamilton’s principle (1) states that

δ

∫ t1

t0

Ldt = 0, L = T − U + W, (1)

whereT is the kinetic energy,U is the potential energy andW is the work done by body forces and surface

tractions. The energy densitiesT andU are defined as

T = ρ/2 u̇· u̇ = ρ/2
(

u̇2
x + u̇2

r

)

, U = 1/2 σ:ǫ = 1/2 (σxxǫxx + σrrǫrr + σθθǫθθ)+σxrǫxr, (2)

whereσ is the stress,ǫ is the strain and a dot denotes a time derivative. Note that{uθ, ǫxθ, ǫrθ, σxθ, σrθ}

are all zero due to the rotationally symmetric displacementfield. Naturally, the strains are expressed in

terms of the displacements according toǫ = 1/2(∇u+u∇). By considering displacement terms and force

terms as independent, the variational expressions become

δ

∫ t1

t0

Tdt = −1/2

∫ t1

t0

∫

V

ρ (ü · δu + u · δü) dV dt, (3)

δ

∫ t1

t0

Udt = 1/2

∫ t1

t0

∫

V

(σ:δǫ + ǫ:δσ) dV dt, (4)

δ

∫ t1

t0

Wdt = 1/2

∫ t1

t0

(
∫

V

ρ (f · δu + u · δf) dV +

∫

S

(t · δu + u · δt) dS

)

dt, (5)

whereV is the volume andS is the surface of the rod, respectively. Adopting the divergence theorem

on (4), together with prescribed displacementũ on Su and prescribed tractioñt on St, the generalized
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Hamilton’s principle (1) may be reduced to the following rodequation on variational form:

∫ t1

t0

(
∫

V

(∇ · σ + ρf − ρü) · δu dV +

∫

St

(

t̃ − n · σ
)

· δu dS +

∫

Su

(ũ − u) · δt dS

)

dt = 0. (6)

Since the virtual displacementsδux andδur are independent in the interior and at the boundaries, and the

virtual tractionsδtx andδtr are independent at the boundaries, equation (6) reduces to separate equations

for each variational term. In the present case of rotationally symmetric fields, it is natural to assume thatSu

andSt are composed of subregions such as cylindrical parts on the lateral surfacer = a and circular rings at

the basesx = 0 andx = L. Let a prescribed tractioñtx be given atx ∈ Lx for r = a, atr ∈ R0x for x = 0,

and atr ∈ RLx for x = L. Hence, the displacementũx is prescribed at the complementary parts denoted

by {L∗
x, R∗

0x, R∗
Lx}. Similarly, t̃r is known at{Lr, R0r, RLr} while ũr is known at the complementary part

{L∗
r, R

∗
0r, R

∗
Lr}. The equation (6) thus reduces to separate integrals

∫ L

0

∫ a

0

(

∂σxx

∂x
+

∂σxr

∂r
+

σxr

r
+ ρfx − ρ

∂2ux

∂t2

)

δuxrdrdx = 0, (7)

∫ L

0

∫ a

0

(

∂σrr

∂r
+

∂σxr

∂x
+

σrr − σθθ

r
+ ρfr − ρ

∂2ur

∂t2

)

δurrdrdx = 0, (8)

∫

Lx

(

t̃x − σxr

)

δuxdx =

∫

L∗
x

(ũx − ux) δtxdx = 0, r = a, (9)

∫

Lr

(

t̃r − σrr

)

δurdx =

∫

L∗
r

(ũr − ur) δtrdx = 0, r = a, (10)

∫

R{0,L}x

(

t̃x ± σxx

)

δuxrdr =

∫

R∗
{0,L}x

(ũx − ux) δtxrdr = 0, x = {0, L}, (11)

∫

R{0,L}r

(

t̃r ± σxr

)

δurrdr = 0

∫

R∗
{0,L}r

(ũr − ur) δtrrdr = 0, x = {0, L}. (12)

The stresses in these equations may be expressed in terms of the displacements through

σxx = λ

[

1

r

∂

∂r
(rur) +

∂ux

∂x

]

+ 2µ
∂ux

∂x
, σrr = λ

[

1

r

∂

∂r
(rur) +

∂ux

∂x

]

+ 2µ
∂ur

∂r
,

σθθ = λ

[

1

r

∂

∂r
(rur) +

∂ux

∂x

]

+ 2µ
ur

r
, σxr = µ

[

∂ux

∂r
+

∂ur

∂x

]

.

(13)

3. Equations of motion

In conformity with (22) the fields are expanded in power series according to

ux = u0(x, t)+r2u2(x, t)+r4u4(x, t)+. . . , ur = ru1(x, t)+r3u3(x, t)+r5u5(x, t)+. . . , (14)



6 F. AUTHOR

where the even and odd expansions are due to a correct behavior at r = 0. Here it is assumed thatui are

smooth with continuous derivatives (30). Substituting these expansions in the stress expressions(13) gives

σjj = σjj,0(x, t) + r2σjj,2(x, t) + . . . , σxr = rσxr,1(x, t) + r3σxr,3(x, t) + . . . , (15)

wherej is {x, r, θ}, respectively. The terms are explicitly written

σxx,2k = (λ + 2µ)u′
2k + 2(k + 1)λu2k+1, σrr,2k = λu′

2k + (2(k + 1)(λ + µ) + 2kµ)u2k+1,

σθθ,2k = λu′
2k + (2(k + 1)λ + 2µ)u2k+1, σxr,2k+1 = µu′

2k+1 + 2(k + 1)µu2k+2,

(16)

for k = 0, 1, 2 . . .. Here a prime denotes anx-derivative.

3.1 Recursion formulas

Now, the power series expansions may be used in (7) and (8). Consider from now on no volume forces;

fx = fr = 0. The expression inside the parentheses in (7) is an even function in r and denoted by

Fx = F0 + r2F2 + . . ., while the corresponding parentheses in (8) is an odd function in r and denoted by

Fr = rF1 + r3F3 + . . .. Hence, (7) and (8) hold provided that

∫ a

0

(

F0 + r2F2 + . . .
) (

δu0 + r2δu2 + . . .
)

rdr = 0, (17)

∫ a

0

(

rF1 + r3F3 + . . .
) (

rδu1 + r3δu3 + . . .
)

rdr = 0. (18)

For an expansion of equation (17) involving terms up to and including order2m, this involvesm + 1

unknowns{F0, . . . , F2m} andm+1 equations due to independent virtual displacement{δu0, . . . , δu2m}.

A corresponding situation holds for equation (18). Hence, the unique solutions of these equation systems

are that each term in the series must vanish, i.e.Fk = 0 for k = 1, 2, 3, . . .. Written in terms of the

displacements, each such term is expressed as

uk+2 =
1

(k + 2)2µ

[

ρük − (λ + 2µ)u′′
k − (k + 2)(λ + µ)u′

k+1

]

, k = 0, 2, . . . ,

uk+2 =
1

(k + 1)(k + 3)(λ + 2µ)

[

ρük − µu′′
k − (k + 1)(λ + µ)u′

k+1

]

, k = 1, 3, . . . .

(19)

These equations are recursion formulas also given by Bostr¨om (22). By using equation (19) all expressions

involving u2, u3, . . . and derivatives thereof may thus be written in terms ofu0, u1 and their derivatives.

Note that the recursion formulas are exact provided that thedisplacement fields may be expanded in infinite
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power series (14). Moreover, no truncations of the displacement terms have so far been performed, which

is of crucial importance for the present method.

3.2 Lateral boundary conditions

The lateral boundary conditions are obtained directly fromequations (9) and (10). Adopting the power

series expansions (15), the tangential direction results in

a σxr,1(x, t) + a3σxr,3(x, t) + . . . = t̃x(x, t), x ∈ Lx, (20)

u0(x, t) + a2u2(x, t) + . . . = ũx(x, t), x ∈ L∗
x, (21)

and the normal direction in

σrr,0(x, t) + a2σrr,2(x, t) + . . . = t̃r(x, t), x ∈ Lr, (22)

a u1(x, t) + a3u3(x, t) + . . . = ũr(x, t), x ∈ L∗
r . (23)

These lateral boundary conditions actually constitute thehyperbolic rod equations of motion. Hence,

different parts along the rod will in the general case be solved using different sets of differential equations.

By adopting the recursion formulas (19) it is clear that (20)–(21) involve even order time and space

derivatives onu0, while (22)–(23) involve even order time and space derivatives onu1. To obtain consistent

sets of rod equations, a differential order2m + 2 onu0 (that isu2m+2-terms) in (20)–(21) is to be paired

to a differential order2m on u1 (that isu2m+1-terms) in (22)–(23). This implies usingm + 1 terms in

(20), (22), (23) andm + 2 terms in (21), see further in Section 6.3. Equations (20) and(22) for lower

order expansions are also given by Boström (22). Note that no truncations of the displacement terms are

performed within each expanded stress field. As an illustration, series expansion ofσxr up toσxr,2m+1

involves displacement terms up tou2m+2 according to (16). It is hereby important to initially keep a

sufficient numbers of displacement terms before performingthe subsequent truncations. It could be noted

that the lateral boundary conditions are per definition fulfilled exactly for the expansion order in question,

see more below.
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4. End boundary conditions

The end boundary conditions are obtained from (11) and (12).Initially, it will be assumed that either̃tx or

ũx, together with either̃tr or ũr, are given throughout each end boundary. The more general case where

these end conditions are different for various subregions (rings) will be discussed briefly in Section 6.3. As

both ends are to be treated in an analogous way, only the rightendx = L is discussed below. Moreover,

consider the case wheñtx andt̃r are known, as given displacement end conditions are treatedin the same

general fashion. The integrals in (11) and (12) withRLx = RLr = [0, a] hereby become

∫ a

0

(

t̃x − (σxx,0 + r2σxx,2 + . . .)
) (

δu0 + r2δu2 + . . .
)

rdr = 0, (24)

∫ a

0

(

t̃r − (rσxr,1 + r3σxr,3 + . . .)
) (

rδu1 + r3δu3 + . . .
)

rdr = 0, (25)

using the series representations in (16). Considering (24)it is thus straightforward to derive them + 1

unknowns{σxx,0, . . . , σxx,2m} from the system ofm + 1 equations for independent virtual displacement

{δu0, . . . , δu2m}. It is interesting to note that the hereby obtained representation of the boundary stress

function σxx in power series is actually identical to the expansion of thegiven functiont̃x in terms of

shifted Legendre polynomialsPk

(

1 − 2(r/a)2
)

of orderm. This may alternatively be expressed using

Jacobi polynomials sinceP (0,0)
k (z) = Pk (z). In a similar fashion, (25) solved as a system ofm + 1

unknowns renders that the series expanded boundary stress function σxr/r is identical to expanding

t̃r/r in Jacobi polynomialsP (1,0)
k

(

1 − 2(r/a)2
)

of orderm. Note that the functionsσxx andσxr may

also be obtained in a direct fashion through expandingt̃x and t̃r in Zernike polynomialsR0
2k(r/a)

andR1
2k+1(r/a), respectively. Clearly, this causes among others that the often studied case where the

prescribed end boundary stresses (or displacements) are zero over the whole surface renders that each term

in the corresponding series expansion is hereby zero. It could be noted that the Mindlin-McNiven theory

(16) is based on expressing the series expansion fields corresponding to (14) in Jacobi polynomials.

In line with the differential order system discussed above for the lateral boundary conditions, the end

boundary stresses should at most involvex-derivatives of orders2m + 1 on u0 for σxx and2m − 1 on

u1 for σxr (a negative order implies no contribution). This is equivalent to say one order less than in the

corresponding equation of motion. Hence,m + 1 terms should be used in the normal direction (24) and
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m terms in the tangential direction (25). In the case of displacement end conditions, the same division

holds between the number of terms in the normal and tangential directions, respectively. Hereby, the end

boundary displacements involvex-derivatives of orders2m on u0 for ux and2m − 2 on u1 for ur at the

most. This is as expected since being two order less than in the corresponding equation of motion. The all

in all number of4m+2 end boundary conditions are in line with the (20)–(23), involving differential orders

2m+2 onu0 and2m onu1. Put in other words, by eliminating one of the fields, sayu1, this results in one

differential equation foru0 expressed in terms of partial derivatives in space and time of order4m + 2.

4.1 Coupling conditions

When homogeneous rods with different properties (material, radius, lateral boundary condition) are merged

together, there are4m+2 coupling conditions to be fulfilled:m+1 conditions on bothux andσxx, as well

asm conditions on bothur andσxr. Of course, exact theory requires pointwise continuity on displacements

and stresses. For the expansion theory, the continuity conditions on normal stresses and displacement are

obtained from generalizations of (11)

∫ al

0

(

σl
xx,0 + r2σl

xx,2 + . . .
) (

δu0 + r2δu2 + . . .
)

rdr =

∫ ar

0

(

σr
xx,0 + . . .

)

(δu0 + . . .) rdr, (26)

∫ alr

0

(

ul
0 + r2ul

2 + . . .
) (

δσxx,0 + r2δσxx,2 + . . .
)

rdr =

∫ alr

0

(ur
0 + . . .) (δσxx,0 + . . .) rdr. (27)

Here the superscript”l” is for the left-hand fields and”r” is for the right-hand fields, while the notation

alr is min{al, ar}. The same procedure holds for the tangential direction (12). Clearly, the displacement

conditions result in termwise equalityul
k = ur

k for k = 0, 1, · · · , 2m while the stress conditions are

generalized force continuity requirements. In the specialcaseal = ar each stress component is equal on

both sides.

When calculating displacements and stresses anywhere in the rod, the number of terms used in (14)–(15)

could be chosen in two different ways. One possibility is to consequently adoptm+1 terms for even order

expanded fields{ux, σxx, σrr, σθθ} andm terms for odd order expanded fields{ur, σxr}. Hereby the end

(and coupling) conditions are fulfilled in accordance to thepresentation above, but the higher order lateral

boundary conditions are not treated properly. Another possibility is to use the same number of fields as in

the lateral boundary conditions, that ism + 1 terms for all fields exceptux wherem + 2 terms are to be
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used. Consequently, terms up tou2m+2 are hereby taken into account in all fields. Naturally, this causes

the lateral boundary conditions to be fulfilled exactly, butcorrupts the end (and coupling) conditions except

for σxx. From the numerical examples in Section 6, it is shown that the latter approach is clearly superior to

the former approach in the inner regions (including of course the lateral boundary). Close to or even at the

end (and coupling) boundaries, the discrepancies due to an extra term in certain fields are either negligible

or small in most cases. Hence, the latter approach is recommended and adopted throughout the paper.

5. Analytical comparisons

This section compares the equations of motion and standard end boundary conditions using the present

theory and different classical theories such as the rod waveequation, the Love theory, the Mindlin-Hermann

theory, and the Mindlin-McNiven theory. For simplicity, assume the standard situation with free lateral

surface.

5.1 Equations of motion

In the exact case, the three dimensional solutions can, for fixed frequencyω, be given as (45)

ux = [AkxJ0(qpr) cos kxx + BqsJ0(qsr) sin kxx]e−iωt,

ur = [CqpJ1(qpr) cos kxx + DkxJ1(qsr) sin kxx]e−iωt,

(28)

whereJ0 andJ1 are Bessel functions, whilekx is the wavenumber in thex-direction and

qp =
√

k2
p − k2

x, kp = ω
√

ρ/(λ + 2µ),

qs =
√

k2
s − k2

x, ks = ω
√

ρ/(µ).

(29)

Two things could be stressed in association with these exactequations. Firstly, by performing a radial

Maclaurin series expansion of the Bessel functions in (28),resulting in series like (14), these fields are

shown to fulfill the recursion formulas (19). Secondly, and more important, by studying the dispersion

relations analytically for exact and Boström’s theory (22) more in detail, it is seen that a series expansion

of the Pochhammer-Chree frequency equation renders the same terms as for the present theory, at least for

the few lowest terms studied (see comparable situation for plates (46)). Hence, this is an indication that

Boström’s systematical approach probably is asymptotically correct.

The present theory is obtained from the equations of motion (20) and (22) forLx = Lr = (0, L)
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and t̃x = t̃r = 0 at r = a. Consider the case where two terms are included in each equation (m =

1), henceforth denoted thea2-equation. These equations, although given in (22), are presented below to

simplify comparisons. Thus

(λ + 2µ)
∂2u0

∂x2
− ρ

∂2u0

∂t2
+ 2λ

∂u1

∂x
+

a2

4

[

−
3λ + 4µ

2

∂4u0

∂x4
−

ρ2

2µ

∂4u0

∂t4

+
ρ(λ2 + 7λµ + 8µ2)

2µ(λ + 2µ)

∂4u0

∂x2∂t2
− (3λ + 2µ)

∂3u1

∂x3
+

ρ(λ2 + 4λµ + 2µ2)

µ(λ + 2µ)

∂3u1

∂x∂t2

]

= 0,

(30)

λ
∂u0

∂x
+2(λ+µ)u1 +

a2

4

[

λ + 3µ

2

∂3u0

∂x3
−

ρ(λ + 3µ)

2(λ + 2µ)

∂3u0

∂x∂t2
+λ

∂2u1

∂x2
+

ρ(2λ + 3µ)

λ + 2µ

∂2u1

∂t2

]

= 0. (31)

Consider next the classical rod theory

c2
E

∂2u0

∂x2
−

∂2u0

∂t2
= 0, (32)

wherecE =
√

E/ρ andE is Young’s modulus. Taking radial inertia into account results in the Love theory

(1)

c2
E

∂2u0

∂x2
−

∂2u0

∂t2
+

ν2a2

2

∂4u0

∂x2∂t2
= 0, (33)

whereν is Poisson’s ratio. Equation (32) is identical to the parts of ordera0 in equations (30) and (31)

when the fieldu1 is eliminated (22). Hence, this is henceforth referred to as thea0-equation. The Love

equation involves an extra term of ordera2, which corresponds to a similar term when eliminatingu1 in

(30) and (31), see further below. The Mindlin-Hermann theory (15) considers both radial inertia and radial

shear

(λ + 2µ)
∂2u0

∂x2
− ρ

∂2u0

∂t2
+ 2λ

∂u1

∂x
= 0, (34)

λκ2
0

∂u0

∂x
+ 2(λ + µ)κ2

0u1 +
a2

4

(

−µκ2 ∂2u1

∂x2
+ ρ

∂2u1

∂t2

)

= 0. (35)

Hereκ andκ0 are adjustments constants. In the numerical results, theseconstants are chosen asκ = 0.93

andκ0 = 0.69 as suggested in (15). It is interesting to compare this latter set of equations analytically to

the series expansion equations. Considering (34) this is identical to thea0-expansion in (30). Equation (35)

(divided byκ2
0) has the samea0-terms as (31), while thea2-terms only involveu1-terms which differ in

magnitude and even sign in the first term. Clearly, noa2-terms are present in (34). Hence, there are several

differences between these two theories for an expansion of ordera2.
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Finally, the three mode theory according to Mindlin-McNiven (16) also considers axial shear

deformation. These equations, originally expressed usingJacobi polynomials, are here formulated in terms

of the power series expansion (14) as

(λ + 2µ)
∂2u0

∂x2
− ρ

∂2u0

∂t2
+ 2λκ1

∂u1

∂x
+

a2

2

(

(λ + 2µ)
∂2u2

∂x2
− ρ

∂2u2

∂t2

)

= 0, (36)

λκ1
∂u0

∂x
+ 2(λ + µ)κ2

1u1 +
a2

4

(

−µκ2
2

∂2u1

∂x2
+ ρκ2

3

∂2u1

∂t2
− 2(µκ2

2 − λκ1)
∂u2

∂x

)

= 0, (37)

µκ2
2

∂u1

∂x
+ 2µκ2

2u2 +
a2

12

(

−(λ + 2µ)
∂2u2

∂x2
+ ρκ2

4

∂2u2

∂t2

)

= 0, (38)

whereκi are adjustments constants generally chosen so as to minimize the long wavelength error for the

three branches of the dispersion curves. In the numerics, these are chosen asκ1 = 0.89, κ2 = 1.18,

κ3 = 1.00 andκ4 = 1.51 for ν = 0.3 according to (16). There are several similarities between the first two

equations (36)–(37), the Mindlin-Hermann equations (34)–(35) and the present theory (30)–(31). These

similarities could have been seen more readily by writing the Mindlin-McNiven equations as a system of

two equations through elimination of theu2 field. However, as there are numerous different ways to express

such a set of equations (even for a common set ofa0-terms) (39) this process is not pursued here. Instead,

the set of equations are turned into one single equation in terms of theu0 field. Such representations

are also presented for the Mindlin-Hermann theory in (15) and for the series expansiona2-theory in (22),

respectively. All these cases result in the following general equation form

1

c2
E

∂2u0

∂t2
−

∂2u0

∂x2
+ a2

(

b1

c4
E

∂4u0

∂t4
−

b2

c2
E

∂4u0

∂t2∂x2
+ b3

∂4u0

∂x4

)

+ O
(

a4
)

= 0. (39)

Note that the Mindlin-Hermann case here involves noa4-terms contrary to the series expansion and

Mindlin-McNiven theories. It is seen that all theories are identical concerning terms of ordera0 (the

classical wave equation), and involve the same differential orders for the threea2-terms. However, the

positive coefficientsbj differ somewhat in all the different theories. Using standard material parameters,

e.g. steel, as well as the numerical values forκ and the variousκi, all three coefficientsbj in thea2-theory

are roughly twice as big as in the Mindlin-McNiven theory. When compared to the Mindlin-Hermann

theory, these coefficients are approximately four times greater in thea2-theory. As a further comparison

between different theories, the termb2 in the series expansion theory is approximately 16 times greater than
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the corresponding term in Love’s theory (33). The effects from these discrepancies are further manifested

in the numerical results.

5.2 Standard end boundary conditions

Here comparisons are made between the different theories for various standard end boundary conditions

such as combinations of free and fixed ends. As for the analytical expressions for the equations of motion

discussed above, only thea2-theory is described for the series expansion theory. The total number of three

boundary conditions on each end are thus divided into two conditions onux orσxx, as well as one condition

onur or σxr. A rod fixed in thex-direction results inu0 = 0 andu2 = 0, while a fixation in ther-direction

results inu1 = 0. Consequently, a rod free to move in thex-direction results inσxx,0 = 0 andσxx,2 = 0

which by using (16) becomes

(λ + 2µ)u′
0 + 2λu1 = 0, (λ + 2µ)u′

2 + 4λu3 = 0, (40)

while the corresponding situation in ther-direction results inσxr,1 = 0 which corresponds to

u′
1 + 2u2 = 0. (41)

When applying these boundary conditions for a solution to the rod equation of motion, the recursion

formulas (19) are adopted on the terms involvingu2 andu3, giving boundary conditions in terms ofu0

andu1 only.

The single boundary conditions on each end for both the classical rod theory and the Love theory only

considers the behavior in thex-direction. Hence, a rod fixed in thex-direction results inu0 = 0 while a

rod free to move in thex-direction results inu′
0 = 0. These well known results are found among the series

expansion relations above if only theu0 displacement is considered. (However, note that bothu2 andu3

actually involveu0 implicitly through the recursion relations).

In the Mindlin-Hermann theory one needs two boundary conditions at each end comprising both

longitudinal and radial effects. Fixed ends in thex- or r-direction correspond tou0 = 0 andu1 = 0,

respectively. Free ends in thex-direction corresponds to(λ + 2µ)u′
0 + 2λu1 = 0 while free ends in the

r-direction returnsu′
1 = 0. Again, these cases are found among (40) and (41), provided that termsu2 and

higher are omitted.
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Finally, there must be three boundary conditions at each endfor the Mindlin-McNiven theory, just as for

the series expansion theory. As is expected, a rod fixed in thex-direction results inu0 = 0 andu2 = 0,

while a fixation in ther-direction results inu1 = 0. For unrestrained motion in thex-direction one has

(λ+2µ)u′
0 +2λκ1u1 = 0 andu′

2 = 0 while the corresponding situation inr-direction givesu′
1 +2u2 = 0.

Similar results are given in (40) and (41) ifu3 is disregarded. Note that the Mindlin-McNiven theory

involves the correction factorκ1, which is often chosen slightly less than unity.

6. Numerical examples

In this section, the eigenfrequencies and the stress distribution for the series expansions theories are

compared with one another using different truncation orders. These expansions are also compared to

other classical theories as well as the exact theory. As in Section 5 mainly a free lateral surface and simple

end boundary conditions are studied. Other more complicated cases are briefly discussed in Section 6.3.

Two different end conditions are considered in Sections 6.1and 6.2: mixed boundary conditions where the

rod is fixed in axial direction and free in radial direction (guided ends), and clamped boundary conditions,

respectively. Such end conditions have been studied by others using approximate techniques based on

three-dimensional analysis. Liew and Hung (9) used the Ritz minimum energy principle, Buchanan

(13) used the finite element method while Kari (7) adopted a wave guide model with mode matching.

The present paper calculates the three lowest eigenfrequencies for two different length to radius ratios:

a/L = 1/20 anda/L = 1/4. These cases are also studied in by Liew and Hung (9), which makes it

natural to use the same normalization frequencyΩ = ωa/cE as in (9). The comparisons are made in terms

of the relative error. When the absolute value of the relative error is less than10−4, this is marked by a

star (∗). Note that the three-dimensional mixed boundary case can besolved analytically rendering the

exact results, contrary to the clamped boundary case. Therefore, comparisons to the exact results in the

latter case are obtained using higher order approximate methods that are expected to have converged to

an accurate level. The different series expansion theoriesare in Sections 6.1 and 6.2 denoted through the

radius powera2m in line with (30)–(31), involving time and space derivatives of orders2m + 2 onu0 and

2m onu1, respectively.

When displaying the stress distribution in a rod, only the lowest eigenfrequency witha/L = 1/4 is
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presented for the two boundary cases, respectively. The main reason for this is that this case readily

illustrates the qualitative accuracies for the different theories; features that are appearing in a similar way in

the higher modes and for other length to radius ratios. The plots will focus on the three stressesσxx, σrr and

σxr. Especially,σrr andσxr are of interest to illustrate whether the lateral stress boundary conditions are

adequately met for the classical theories. The eigenmodes are generally normalized so that the maximum

longitudinal displacementux atr = 0 is equal to unity. For the boundary conditions considered inSections

6.1 and 6.2, this occurs atx = L/2 for the first eigenmode.

6.1 Mixed boundary conditions

Consider first the mixed boundary conditionux = 0 andσxr = 0 at x = 0, L. For a series expansion

theory a2m this implies at both ends that them + 1 termsu2k = 0 and them termsσxr,2k−1 = 0

for k = 0, · · · , m in accordance to Section 4. Table 1 presents the three lowesteigenfrequencies for

a/L = 1/20 anda/L = 1/4, respectively. Here, the exact theory is compared to seriesexpansion theories

of ordera0, a2, a4 anda6. These results show how the accuracy of the series solution is improved as

thea2m order is increased. It is also seen that the accuracies are inferior for higher eigenfrequencies as

expected. Moreover, the results for slender rods,a/L = 1/20, are superior to the ones whena/L = 1/4.

Of course, the results from thea0-expansion are not affected by the ratioa/L for fixedL.

Table 2 gives the eigenfrequencies for exact theory and the relative error for the approximate theories:

Love, Mindlin-Hermann (M-H), and Mindlin-McNiven (M-McN). Here the results for thea2-theory are

also included in order to clarify comparisons. These results show that thea2 series expansions theory

generally is superior to the traditional theories, especially for a slender roda/L = 1/20. However, it is

surprising that the quite simple Love theory mainly rendersmore accurate results than both the Mindlin-

Hermann and the Mindlin-McNiven theories. The high accuracy of the Love theory here is probably due to

the specific choice of boundary conditions with vanishing shear stresses, as such stresses are not taken into

account in this theory. Note that the accuracies using both the Mindlin-Hermann and the Mindlin-McNiven

theories depend on the choice of adjustments constantsκ andκi, see Section 5.1.

Next, the distribution of stresses is displayed using thea2 and classical theories for the lowest mode

whena/L = 1/4. Figure 1(a) considers the variation ofσrr along the rod forr = 0 for different theories.
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a/L Ω Exact a0 a2 a4 a6

1/20 Ω1 0.3140 6 × 10−4 ∗ ∗ ∗

Ω2 0.6269 2.2 × 10−3 ∗ ∗ ∗

Ω3 0.9376 5.2 × 10−3 −1 × 10−4 ∗ ∗

1/4 Ω1 1.5467 1.56 × 10−2 −1.4 × 10−3 ∗ ∗

Ω2 2.8857 8.87 × 10−2 −3.17 × 10−2 3.2 × 10−3 −2 × 10−4

Ω3 3.7142 2.688× 10−1 3.30 × 10−2 1.04 × 10−2 −5 × 10−4

Table 1 Mixed boundary conditions: The eigenfrequencies for exacttheory and the relative error for series

expansion theories of ordera0, a2, a4 anda6.

a/L Ω Exact Love M-H M-McN a2

1/20 Ω1 0.3140 ∗ −3 × 10−4 −3 × 10−4 ∗

Ω2 0.6269 ∗ −8 × 10−4 −6 × 10−4 ∗

Ω3 0.9376 2 × 10−4 −1.9 × 10−3 −1.4 × 10−3 −1 × 10−4

1/4 Ω1 1.5467 1.7 × 10−3 −5.2 × 10−3 −4.1 × 10−3 −1.4 × 10−3

Ω2 2.8857 3.29 × 10−2 −9.3 × 10−3 −1.94 × 10−2 −3.17 × 10−2

Ω3 3.7142 1.349 × 10−1 3.13 × 10−2 −2.44 × 10−2 3.30 × 10−2

Table 2 Mixed boundary conditions: The eigenfrequencies for exacttheory and the relative error for

approximate theories: Love, Mindlin-Hermann (M-H), Mindlin-McNiven (M-McN) anda2-theory.

Thea2-theory is more accurate than the Mindlin-McNiven theory, which in turn renders better results than

the Mindlin-Hermann theory. Note that thea0 and the Love theories do not model this stress component.

The same accuracy sequence between theories are obtained for σxx (which botha0 and Love theories

model) but here the variation between all the theories are less pronounced and thus not displayed, see more

below.

Figure 1(b) presentsσxr along the rod forr = a, and thus illustrates how well the different theories fulfil

the lateral shear boundary condition. It is seen that the shear stress using the Mindlin-McNiven theory is

considerably better that both the Mindlin-Hermann and the Love theories (a0 do not model this stress

component). However, the Mindlin-McNiven stresses are notnegligible, especially when compared to the

a2-theory that fulfils this boundary condition exactly. Note that all displayed theories seem to fulfil the end
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boundary conditions forr = a, see more below. The general situation is quite similar for the normal stress

σrr along the lateral boundary (not displayed here), where thea2-theory renders the exact result. Here both

the Mindlin-McNiven and the Mindlin-Hermann theories present stress levels that are comparable to the

ones obtained forr = 0 in Fig. 1(a), which thus implies a deterioration for the Mindlin-McNiven theory

when compared to the shear boundary condition in Fig. 1(b).

0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0.1

0.2

0.3

σrr/E

x/L

(a) σrr at r = 0.

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

σxr/E

x/L

(b) σxr atr = a.

Fig. 1 Mixed boundary conditions: —— Exact,−−− a2, −− · −− M-McN, − · · − M-H, − · − Love.

The behavior at the endx = L is given in Figures 2 forσxx andσrr, respectively. Both figures show

the improved accuracy using the proposed series expansion theory of ordera2 compared to the classical

theories. Note that the results from thea0 and Love theories are on a common lowest horizontal line in

Fig. 2(a). Figure 2(b) also displays the behavior at the lateral boundaryr = a in a clear manner. As the

shear stress boundary conditions at the ends are fulfilled rather accurately for all theories, these results are

not presented here.

No displacement plots are given here as there are no significant differences between the theories, albeit

thea2 theory is the most accurate. As mentioned before, higher modes and a more slender roda/L = 1/20

generally show the same mutual accuracy relations between the theories as presented above. Surprisingly,

for certain stress terms the Mindlin-McNiven theory actually render less accurate results for the slender

rod casea/L = 1/20 compared to thea/L = 1/4 case. This is the situation for the normal stressσrr

along the central liner = 0 for the first mode, where certain terms do not properly canceleach other out

using the Mindlin-McNiven theory. Hence, the stress magnitudes due to Mindlin-McNiven are on the same
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(a) σxx atx = L.
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(b) σrr atx = L.

Fig. 2 Mixed boundary conditions: —— Exact,−−− a2, −− · −− M-McN, − · · − M-H, − · − Love, · · · a0.

level for botha/L = 1/20 anda/L = 1/4, see Fig.1(a), while the stress magnitudes for the other theories

(including the exact) for the slender rod have decreased by more than a factor of ten. By choosing the

correction coefficientsκi differently (e.g. to unity) the result can be improved. Thisshows that the choice

of theκi:s that render accurate dispersion curves in the low frequency regions does not necessarily result

in the optimal stress distribution for this lowest eigenfrequency.

6.2 Clamped boundary conditions

Consider next the case when the rod is clamped in both axial and radial directions at both ends:ux = 0

andur = 0 at x = 0, L. Of course, for a series expansion theorya2m this means at both endsuk = 0 for

k = 0, · · · , 2m according to Section 4. As in the mixed boundary case, the three lowest eigenfrequencies

are studied fora/L = 1/20 anda/L = 1/4, respectively. Since the exact solution can not be solved

analytically, the eigenfrequencies using three dimensional theory may be approximated by the methods

adopted in (7, 9, 13) as well as a higher order series expansion theory. In the latter case expansion of order

a14 is used. Fora/L = 1/4 the two lowest eigenfrequencies are given in (7, 9, 13) which is in accordance

to thea14 results. The third eigenfrequency is also given by Buchanan(13), but here the third decimal

actually differs from our results. The rate of convergence using the series expansion approach is rather

slow in this case. However, as the final presented eigenfrequency is obtained for both thea12 anda14

theories, these results are assumed to have converged. A similar situation occurs fora/L = 1/20, where

Liew and Hung (9) presents eigenfrequencies that also differ in the third decimal when compared to the
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a14 results. Here the series expansion method converges already using thea4 theory, and these results are

thus believed to be correct.

The series expansion theories of different order are compared in Table 3. These results are quite similar

to the mixed boundary case, see Table 1. The approximate theories are compared in Table 4. As in the

previous case, these results show that thea2 series expansion theory is generally superior to the traditional

theories. Here the accuracies for these latter theories areinferior to the mixed boundary case. Moreover,

both the Mindlin-Hermann and the Mindlin-McNiven theoriesare more accurate than Love’s theory as

expected. However, it is surprising that the simple classical a0-theory renders results on the same accuracy

level as the other more refined traditional theories.

a/L Ω a14 a0 a2 a4 a6

1/20 Ω1 0.3156 −4.4 × 10−3 −3 × 10−4 ∗ ∗

Ω2 0.6302 −3.0 × 10−3 −5 × 10−4 ∗ ∗

Ω3 0.9427 −2 × 10−4 −5 × 10−4 ∗ ∗

1/4 Ω1 1.5942 −1.47 × 10−2 −1.1 × 10−3 ∗ 2 × 10−4

Ω2 3.0261 3.82 × 10−2 −1.20 × 10−2 2.7 × 10−3 8 × 10−4

Ω3 3.9300 1.991 × 10−1 −1.04 × 10−2 2.42 × 10−2 −1.9 × 10−3

Table 3 Clamped boundary conditions: The eigenfrequencies for thea14-theory and the relative error for

series expansion theories of ordera0, a2, a4 anda6.

When presenting the distribution of stresses and displacements using thea2 and classical theories for

the lowest mode whena/L = 1/4, these results are to be compared to the series expansion theory of a

high order. By inspection, thea8 plots are indistinguishable from thea14 in the presumably worst case

displayed, and thus the lower order is used for a comparison to simplify the numerics. Just as in the classic

Filon’s problem in statics, there are known to be stress singularities in the corners. Of course, none of the

present rather low order theories are well suited for analyzing these effects. Hence, no plots are presented

for the fields in these regions. Such end effects may be studied more in detail using various asymptotic

boundary expansion methods, see further (47, 48, 49).

The plots are generally more dramatic in this boundary case than the previous mixed case. Figure
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a/L Ω a14 Love M-H M-McN a2

1/20 Ω1 0.3156 −5.1 × 10−3 3.8 × 10−3 2.5 × 10−3 −3 × 10−4

Ω2 0.6302 −5.2 × 10−3 3.0 × 10−3 1.9 × 10−3 −5 × 10−4

Ω3 0.9427 −5.2 × 10−3 2.0 × 10−3 1.2 × 10−3 −5 × 10−4

1/4 Ω1 1.5942 −2.81× 10−2 1.64 × 10−2 1.03 × 10−2 −1.1 × 10−3

Ω2 3.0261 −1.51× 10−2 3.3 × 10−3 −2.2 × 10−3 −1.20 × 10−2

Ω3 3.9300 7.26 × 10−2 −2.4 × 10−3 −1.60 × 10−2 −1.04 × 10−2

Table 4 Clamped boundary conditions: The eigenfrequencies for thea14-theory and the relative error for

approximate theories: Love, Mindlin-Hermann (M-H), Mindlin-McNiven (M-McN) anda2-theory.

3(a) displays the variation ofσrr at the central liner = 0 along the rod for different theories. In order

to visualize the accuracies for these theories, the higher stresses at the ends are not included for scaling

reasons. Instead such end effects are given in Figure 3(b). Both the Mindlin-McNiven and thea2 theories

are more or less equally correct in the interior Fig. 3(a), while more pronounced discrepancies close to the

ends are illustrated in Fig. 3(b). Just as for the mixed boundary case, the stressσxx shows less pronounced

variations between all the theories and is thus not displayed.
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Fig. 3 Clamped boundary conditions: ——a8, −−− a2, −− · −− M-McN, − · · − M-H.

Figure 4 presentsσxx and σrr at x = 3L/4, respectively. These results behave like in the mixed

boundary case, albeit thea2 theory is less accurate here. Note that the top horizontal line in Fig. 4(a)

involves both thea0 and the Love curves. As the rate of convergence is slower herethan in the mixed

boundary case, it is instructive to study the results from series expansion theories of different order. This



FINITE ROD EQUATIONS 21

is illustrated forσrr at x = 3L/4 in Fig. 5(a). No plots are presented forσxr andσrr at r = a, since the

different theories generally behave in a similar fashion asin the mixed case.
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Fig. 4 Clamped boundary conditions: ——a8, −−− a2, −− · −− M-McN, − · · − M-H, − · − Love, · · · a0.

The clamped boundary case exhibits more variations in the displacements between the theories than the

mixed boundary case, albeit these are still generally quitesmall. Figure 5(b) shows the behavior ofux at

x = 3L/4. Note that thea0-curve is obtained by including theu2-term in accordance with the discussion

in Section 4. Hence, it is different to the constantu0-value obtained for classical wave equation adopting

the standard procedure. In the latter case the curve would clearly be on top the Love curve.
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Fig. 5 Clamped boundary conditions:σrr andux atx = 3L/4.
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6.3 Simple rod structures

In this section two sets of boundary/coupling conditions are investigated explicitly: lateral boundary

conditions varying along a homogeneous rod, and connected rods with varying radii. In both cases mixed

end boundary conditions (guided ends) are assumed in order to accurately verify the results in the limit of

a simple rod.

For the first case, consider an example where the rod is divided into a laterally free and a laterally

clamped half. Hence, adopt equations (20) and (22) onLx = Lr = (0, L/2) with t̃x = t̃r = 0, as well as

equations (21) and (23) onL∗
x = L∗

r = (L/2, L) with ũx = ũr = 0. The4m+2 coupling conditions follow

from Section 4.1 as termwise continuity conditions. When calculating the eigenfrequencies, these are

converging at a slower rate than the standard cases presented in Sections 6.1–6.2. This expected behavior

is readily seen in Table 5 which presents the lowest eigenfrequency whena/L = 1/4 for series expansion

theories of the lowest orders. The results show that the eigenfrequency is higher than in the laterally free

case as expected, see Table 1.

a/L Ω m = 0 m = 1 m = 2 m = 3

1/4 Ω1 2.2284 2.4007 2.4400 2.4588

Table 5 The eigenfrequencies for series expansion theories of different order for laterally free/clamped

boundary conditions with guided ends.

The displacement and stress distributions become more complicating than for the laterally free rod.

For all the series expansion theories the lateral boundary conditions are exactly fulfilled along the rod,

just as in the previous cases. However, there will also be a stress singularity atx = L/2 due to the

abrupt transition from a free to a clamped boundary. As before, such features are not captured by the low

order theories displayed here, even though pronounced stress levels are readily seen in the vicinity to this

point. In conformity with the discussions on coupling conditions in Section 4.1, there will generally be

discrepancies in the corresponding displacement and stress fields for the two halves atx = L/2, except for
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σxx. Naturally, such discontinuities are zero whenr = 0 (except form = 0) and increase with the radius.

Still these differences are quite small away from the singularity pointr = a.

Figure 6(a) presents the variation ofσrr along the rod whenr = 0 for different series expansion theories.

Clearly, the stress distribution is more complex than for the laterally free case Fig. 1(a). Concerning the

lowest order equationsm = 0, there is a jump discontinuity atx = L/2 asσrr is not modeled for a free

lateral surface. Moreover, it could be noted that the laterally clamped rod equation in this simplest case is

actually a one-dimensional Klein-Gordon equation.

Next, consider the case when two laterally free rods with identical material parameters are merged

together atx = L/2: radiusa/2 for x < L/2 and radiusa for x > L/2. Using the4m + 2 coupling

conditions presented in Section 4.1, the lowest eigenfrequency whena/L = 1/4 is given in Table 6 for

series expansion theories of different orders. These seem to converge quicker than in the previous case.

a/L Ω m = 0 m = 1 m = 2 m = 3

1/4 Ω1 1.5708 1.5491 1.5503 1.5506

Table 6 The eigenfrequencies for series expansion theories of different order for two radii with guided

ends.

The displacement and stress distributions resemble in manycases the situation for a single laterally free

rod, albeit being more complicating. Naturally, the lateral boundary conditions are exactly fulfilled for

all the series expansion theories. Moreover, there will be astress singularity atx = L/2 for r = a/2

due to the abrupt radius transition. Considering the normalstressσxx overx = L/2, this stress is not

continuous as in the previous cases due to the generalized force continuity requirement. For higher order

theories these discrepancies are gradually becoming smaller, albeit at a slow rate. Consequently, there are

visible tendencies that bothσxx andσxr are gradually approaching an ultimate stress-free condition for

r > a/2 at x = L/2. Figure 6(b) presents the variation ofσrr along the rod whenr = 0 for different

series expansion theories, and thus resembles Fig. 1(a). Note that there are small jump discontinuities for

all orders atx = L/2. The normalization used in Fig. 6 is such that the longitudinal displacementux at



24 F. AUTHOR

r = 0 is equal to unity atx = L/2. This is thus not its maximum value in either case, as that is slightly

larger and occurs forx-values less thanL/2.
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(a) Laterally free/clamped rod.
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(b) Two rods with different radii.

Fig. 6 σrr atr = 0 with mixed end boundary conditions fora/L = 1/4. —— a6, · · · a0, −−− a2, − · − a4.

As a final remark on how to deal with various sort of end/coupleconditions, we have also studied an

example of a laterally free homogeneous rod with guided endsat the inner radiusr < a/2 and free ends

at the outer radiusr > a/2. Using notations according to (11)–(12), this is to sayR{0,L}r = [0, a] with

t̃r = 0, andR{0,L}x = [0, a/2) with ũx = 0, as well asR∗
{0,L}x

= (a/2, a] wheret̃x = 0. However, this

case resulted in severe difficulties on several levels. One question concerned how to mutually divide the

m + 1 normal end boundary conditions betweenux andσxx on each end. Different combinations were

tried up to ordera10, but all these resulted in numerical problems when identifying the lowest mode and

its eigenfrequency. Moreover, the fulfilment of the prescribed end conditions were not adequately fulfilled

simultaneously on bothR{0,L}x and R∗
{0,L}x. This problem was investigated in some detail adopting

various alternative approaches, without resulting in reliable results. Probably a much higher expansion

order is needed to deal with such an involved end boundary condition. One alternative approach is here

to separate the structure into one rod surrounded by a hollowcylinder, where the latter is modeled by the

higher order series expansion equations described in (35).

7. Conclusions

This work presents the rod equation and corresponding boundary conditions to arbitrary order according to

the power series expansion theory proposed by Boström. Themethod used is a generalized Hamilton’s
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principle resulting in variationally consistent equations that seem to be asymptotically correct. The

equations are compared analytically to different traditional theories, and numerical results are presented

for different rod structures. All theories are fairly adequate for calculating the eigenfrequencies, but the

distribution of stresses varies considerably between theories.

Naturally the present approach for deriving both the differential equation and the corresponding

boundary conditions can be applied to other structures. Based on the experiences from the present work,

these results could thus be generalized systematically to other existing series expansions theories where the

equations of motion and the recursion relations are known but not the end boundary conditions, e.g. for

plates (33), shells (35), anisotropic rods (36, 37), porous layers (40), and piezoelectric layers (38, 39) . One

application of such theories for structural elements is to implement them in finite element codes. These

refined theories yield more accurate results than simpler traditional equations and at the same time the

number of elements in a finite element code can be heavily reduced compared to using three-dimensional

elements.
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35. A.M. Hägglund and P.D. Folkow. Dynamic cylindrical shell equations by power series expansions.Int.

J. Solids Struct., 45:4509–4522, 2008.

36. P.A. Martin. Waves in wood: axisymmetric waves in slender solids of revolution.Wave Motion,

40:387–398, 2004.

37. P.A. Martin. On flexural waves in cylindrically anisotropicelastic rods.Int. J. Solids Struct., 42:2161–

2179, 2005.

38. G. Johansson and A.J. Niklasson. Approximate dynamic boundary conditions for a thin piezoelectric

layer.Int. J. Solids Struct., 40:3477–3492, 2003.

39. K. Mauritsson, A. Boström, and P.D. Folkow. Modelling of thin piezoelectric layers on plates.Wave

Motion, 45:616–628, 2008.

40. P.D. Folkow and M. Johansson. Dynamic equations for fluid-loaded porous plates using approximate

boundary conditions.J. Acoust. Soc. Am., 125:2954–2966, 2009.

41. K. Washizu.Variational methods in elasticity and plasticity. Pergamon Press, 1982.

42. R.B. Hetnarski and J. Ignaczak.Mathematical theory of elasticity. Taylor & Francis, 2004.
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