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Abstra
tWe 
onsider the Poisson Boolean model with unit radius in the hyper-boli
 dis
 H 2 . Let � be the intensity of the underlying Poisson pro
ess, andlet NC denote the number of unbounded 
omponents of the 
overed region.We show that there are two intensities �
 and �u, 0 < �
 < �u < 1, su
hthat NC = 0 for � 2 (0; �
℄, NC = 1 for � 2 (�
; �u), and NC = 1 for� 2 [�u;1). Corresponding results, due to Benjamini, Lyons, Peres andS
hramm, are available for Bernoulli bond and site per
olation on 
ertainnonamenable transitive graphs, and we use many of their te
hniques in ourproofs.Keywords: Bernoulli per
olation, Continuum per
olation, Dependentper
olation, Double phase transition, Hyperboli
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The number of unbounded 
omponents in thePoisson-Boolean model in H 2Johan Tykesson�O
tober 4, 2005Abstra
tWe 
onsider the Poisson-Boolean model with unit radius in the hyperboli
dis
 H 2 . Let � be the intensity of the underlying Poisson pro
ess, and letNC denote the number of unbounded 
omponents of the 
overed region. Weshow that there are two intensities �
 and �u, 0 < �
 < �u < 1, su
hthat NC = 0 for � 2 (0; �
℄, NC = 1 for � 2 (�
; �u), and NC = 1 for� 2 [�u;1). Corresponding results, due to Benjamini, Lyons, Peres andS
hramm, are available for Bernoulli bond and site per
olation on 
ertainnonamenable transitive graphs, and we use many of their te
hniques in ourproofs.1 Introdu
tionWe begin by des
ribing the unit radius version of the so 
alled Poisson-Booleanmodel in R2 , arguably the most studied 
ontinuum per
olation model. For a detailedstudy of this model, we refer to [15℄. Let X be a Poisson point pro
ess in R2 withsome intensity �. At ea
h point of X, pla
e a 
losed ball with unit radius. LetC be the union of all balls, and V be the 
omplement of C. The sets V andC will be referred to as the va
ant and 
overed regions. We say that per
olationo

urs in C (respe
tively in V ) if C (respe
tively V ) 
ontains unbounded (
onne
ted)
omponents. For the Poisson-Boolean model in R2 , it is known that there is a 
riti
aldensity �
 2 (0;1) su
h that for � < �
, per
olation o

urs in V but not in C, andfor � > �
, per
olation o

urs in C but not in V . Furthermore, if we denote by NCand NV the number of unbounded 
omponents of C and V respe
tively, it is the
ase that (NC ; NV ) = (0; 1) a:s: for � < �
 and (NC ; NV ) = (1; 0) a:s: for � > �
.It is also known that (NC ; NV ) = (0; 0) at �
. This means that if there is someunbounded 
omponent in C or V , it is ne
essarily unique. All these results are alsovalid for the Poisson-Boolean model in Rd for d � 3.It is possible to 
onsider the Poisson-Boolean in more exoti
 spa
es than Rd , andone might ask if there are spa
es for whi
h several unbounded 
omponents 
oexistwith positive probability. The main result of this paper is that this is indeed the
ase for the hyperboli
 dis
, H 2 . We show that there are intensities for whi
h there�Resear
h supported by the Swedish Natural S
ien
e Resear
h Coun
il1



are almost surely in�nitely many unbounded 
omponents in both the 
overed andva
ant regions. It turns out that the main di�eren
e between R2 and H 2 whi
h
auses this, is the fa
t that H 2 has a positive linear isoperimetri
 
onstant. Thismeans that the ratio between the 
ir
umferen
e and area of a ball goes to somestri
tly positive 
onstant as the radius goes to in�nity. In R2 however, this ratiogoes to 0.In many aspe
ts, the proof is similar to a proof by Benjamini, Lyons, Peres andS
hramm. They showed that for a 
lass of nonamenable planar transitive graphs,there are in�nitely many in�nite 
lusters for some parameters in Bernoulli bondper
olation. We will give the proper de�nitions below.The rest of the paper is organized as follows. Se
tion 2 gives a short review ofuniqueness and non-uniqueness results for in�nite 
lusters in Bernoulli per
olationon graphs, in
luding the results by Benjamini, Lyons, Peres and S
hramm. Then inSe
tion 3 the most elementary properties of the hyperboli
 dis
 are given. Finally,we give our proofs in Se
tion 4.2 Dis
rete per
olationLet G = (V;E) be an in�nite 
onne
ted graph with vertex set V and edge set E. Inp-Bernoulli bond per
olation on G, ea
h edge in E is kept with probability p anddeleted with probability 1 � p, independently of all other edges. All verti
es arekept. Let Pp be the probability measure on the subgraphs of G 
orresponding top-Bernoulli per
olation. (It is also possible to 
onsider p-Bernoulli site per
olationin whi
h it is the verti
es that are kept or deleted, and all results we present in thisse
tion are valid in this 
ase too.) In this se
tion, ! will denote a random subgraphof G. Conne
ted 
omponents of ! will be 
alled 
lusters.Let C be the event that p-Bernoulli bond per
olation 
ontains in�nite 
lusters.One of the most basi
 fa
ts in the theory of dis
rete per
olation is the followingtheorem, a proof of whi
h 
an be found in [12℄.Theorem 2.1 There exists a 
riti
al probability p
 = p
(G) 2 [0; 1℄ su
h thatPp(C) = � 0; p < p
1; p > p
A natural question to ask is: How many in�nite 
lusters are there? The answerobviously depends on G and p. We will 
onsider only transitive graphs.Definition 2.2 Let G = (V;E) be an in�nite graph. A bije
tion g : V ! V su
hthat [g(u); g(v)℄ 2 E if and only if [u; v℄ 2 E is 
alled a graph automorphism. Thegraph G is 
alled transitive if for any u; v 2 V there exists a graph automorphismmapping u to v.For a transitive graph, the degree of the graph is the number of edges in
ident toea
h edge. The set of graph automorphisms of G is a group under 
omposition andwe denote this group by Aut(G). In the 
ase of transitivity, the following theorem,see [12℄, gives the possible answers to the question pre
eding De�nition 2.2.2



Theorem 2.3 If G is transitive and ! is a p-Bernoulli bond per
olation on G, thenumber of in�nite 
lusters in ! is an almost sure 
onstant whi
h is either 0, 1 or1.Theorem 2.3 gives reason to introdu
e another quantity of interest, alongside p
.We let pu = pu(G) be the in�mum of the set of p 2 [0; 1℄ su
h that p-Bernoullibond per
olation has a unique in�nite 
luster a:s: S
honmann [16℄ showed for alltransitive graphs that for all p > pu, one has uniqueness. In view of Theorem 2.3this means there are at most three phases for p 2 [0; 1℄ regarding the number ofin�nite 
lusters, namely one for whi
h this number is 0, one where the number is1and �nally one where uniqueness holds.A problem whi
h in re
ent years has attra
ted mu
h interest is to de
ide forwhi
h graphs p
 < pu. It turns out that whether a graph is amenable or not is
entral in settling this question:For K � V , the inner vertex boundary of K is de�ned as �VK := fy 2 K : 9x =2K; [x; y℄ 2 Eg and the edge boundary is de�ned as �EK := f(x; y) : [x; y℄ 2 E; x 2V; y 2 V nKg. The vertex-isoperimetri
 and edge-isoperimetri
 
onstants for G arede�ned as�V (G) := infW j�VW jjW j and �E(G) := infW j�EW jjW jwhere the in�mum ranges over all �nite 
onne
ted subsets W of V .Definition 2.4 A bounded degree graph G = (V;E) is said to be amenable if�V (G) = 0 (or equivalently �E(G) = 0). If instead �V (G) > 0 we say that the graphis nonamenable.Benjamini and S
hramm [6℄ have made the following general 
onje
ture:Conje
ture 2.5 If G is transitive, then pu > p
 if and only if G is nonamenable.Burton and Keane [7℄ solved one part of Conje
ture 2.5:Theorem 2.6 Assume that G is transitive and amenable. If ! is a p-Bernoulliper
olation on G with p > p
, then ! 
ontains a unique in�nite 
luster a:s:In fa
t, they only proved Theorem 2.6 in the 
ase when G is the graph with vertexset Z2 and whose edge set is all pairs of verti
es at Eu
lidean distan
e 1 from ea
hother, but their argument was qui
kly realized to work for all amenable transitivegraphs. To illustrate the role of amenability, we in
lude the main ingredients of theproof. For full details we refer to [12℄.Proof. By Theorem 2.3, it is enough to rule out the 
ase of in�nitely manyin�nite 
lusters, so suppose for 
ontradi
tion that the number of in�nite 
lusters isin�nite. We may assume without loss of generality that the degree of the graph isat least three. A vertex v 2 V is said to be a trifur
ation if1. v is in an in�nite 
luster;2. there exist exa
tly three edges in
ident to v in !; and3



3. the deletion of x and these three edges splits the in�nite 
luster into exa
tlythree disjoint in�nite 
lusters and no �nite 
lusters.Let t be the probability that a given vertex is a trifur
ation (by transitivity, t is inde-pendent of the 
hoi
e of vertex). Sin
e there are in�nitely many in�nite 
lusters wemay 
hoose a vertex v and W 3 v so big that �W with positive probability 
ontainsat least three verti
es belonging to three disjoint in�nite 
lusters. Conditioned onthis, there is positive probability that all edges of W are 
losed ex
ept three disjointpaths in ! leading from three su
h verti
es to v. But then v is a trifur
ation. Sot > 0.Next suppose A is a �nite set of trifur
ations belonging to the same in�nite
luster K. A member of A is said to be an outer member if at least two of thedisjoint in�nite 
lusters resulting from its removal 
ontain no other member of A. Itis not diÆ
ult to show that A must 
ontain at least one outer member. We will nowshow by indu
tion on jAj that the removal of all trifur
ations in A will divide K intoat least jAj+ 2 disjoint in�nite 
lusters. The 
laim is trivial for jAj = 1. Assume itholds for jAj = j and suppose A is a set of j + 1 trifur
ations in the same in�nite
luster. Let v be an outer member of A. The removal of all verti
es in Anfvg splitsthe in�nite 
luster into at least j + 2 disjoint ones. Sin
e v is outer the removal ofit gives one more in�nite 
luster, 
ompleting the indu
tion.Hen
e an in�nite 
luster with j trifur
ations in a �nite set W � V must interse
t�W in at least j + 2 verti
es, and therefore W 
annot 
ontain more than j�W j � 2trifur
ations. Denote by T (W ) the number of trifur
ations in W . Then, by thetransitivity of G, E[T (W )℄ = jW jt. Sin
e T (W ) � j�W j � 2, this givest � j�W j � 2jW j :By the amenability of G, we may 
hoose W so that the right hand side of the abovebe
omes arbitrarily small. Thus t = 0, a 
ontradi
tion. 2The other dire
tion of Conje
ture 2.5 has only been partially solved. Here is onesu
h result that will be of parti
ular interest to us, due to Benjamini and S
hramm[5℄. This 
an be 
onsidered as the dis
rete analogue to our main theorem. First,another de�nition is needed.Definition 2.7 Let G = (V;E) be an in�nite 
onne
ted graph and for W � V letNW be the number of in�nite 
lusters of G nW . The number supW NW where thesupremum is taken over all �nite W is 
alled the number of ends of G.Theorem 2.8 Let G be a nonamenable, planar transitive graph with one end. Then0 < p
(G) < pu(G) < 1 for Bernoulli bond per
olation on G.We will not dis
uss the 
ondition that G 
an only have one end in Theorem 2.8further. However, a homogeneous tree has in�nitely many ends and pu = 1.We now review some of the results used in the proof of Theorem 2.8. In Se
tion4 we will prove 
ontinuous analogues to several of them.The study of a 
ertain kind of dependent per
olation has produ
ed results thathave been of great help in the study of independent (Bernoulli) per
olation.4



Definition 2.9 A random subgraph ! of G = (V;E) is said to be an automorphisminvariant bond per
olation on G if ! has the same distribution as g! for ea
hg 2Aut(G) and the vertex set of ! is V .Clearly, usual Bernoulli bond per
olation is in
luded in this de�nition.A powerful tool for handling automorphism invariant per
olation is the so 
alledmass transport prin
iple.Let m(u; v; !) be a nonnegative fun
tion with three arguments; two verti
es uand v and ! a subgraph of G. Also suppose m(u; v; !) = m(gu; gv; g!) for allu; v 2 V , all subgraphs ! and all g 2 Aut(G). One should think of m(u; v; !) asthe amount of mass transported from u to v when the per
olation results in !. Wepresent the mass transport prin
iple for a 
ertain 
lass of transitive graphs only,namely Cayley graphs, sin
e the proof in this 
ase is simple, and will later be moreeasily related to the proof of the 
ontinuous analogue, Theorem 3.4.Definition 2.10 Let � be a �nitely generated group and let S = fg�11 ; :::; g�1n g be a�nite symmetri
 set of generators for �. The (right) Cayley graph of � is the graphG = (V;E) where V := � and [g; h℄ 2 E if and only if g�1h 2 S.Note that for ea
h pair of elements u; v 2 � there is a unique element g 2 � su
hthat u = gv. Therefore, all Cayley graphs are transitive, and � 
an be identi�edwith a subgroup of Aut(G).Theorem 2.11 (The mass transport prin
iple) If G is a Cayley graph, ! anautomorphism invariant bond per
olation on G, then for any u 2 VXv2V E[m(u; v; !)℄ =Xv2V E[m(v; u; !)℄:Theorem 2.11 and the proof we present below is due to Benjamini, Lyons, Peresand S
hramm [3℄. The same authors [4℄ prove the mass transport prin
iple for awider 
lass of transitive graphs. The �rst version of the mass transport prin
iplewas proved by H�aggstr�om [11℄, for homogeneous trees. In words, the mass transportprin
iple says that the expe
ted amount of mass transported out of the vertex v isthe same as the expe
ted amount of mass transported into it.Proof. Using the automorphism invarian
es of ! and m and the remarksfollowing De�nition 2.10 we getXu2V E[m(u; v; !)℄ =Xg2� E[m(u; gu; !)℄ =Xg2� E[m(g�1u; u; g�1!)℄=Xg2� E[m(g�1u; u; !)℄ =Xu2V E[m(v; u; !)℄;
ompleting the proof. 2Choosing the fun
tion m in di�erent ways, the mass transport prin
iple is used inthe proofs of the following theorems from [3℄.5



Theorem 2.12 Let G = (V;E) be a nonamenable Cayley graph with vertex degree dand ! an automorphism invariant bond per
olation on G. If P[e 2 !℄ > 1��E(G)=dfor all e 2 E, then ! 
ontains in�nite 
lusters with positive probability.Theorem 2.13 Let G be a nonamenable Cayley graph and ! a p-Bernoulli bondper
olation. If p = p
(G) there are almost surely no in�nite 
lusters in !.Later in Se
tion 4, we will see that Theorems 2.12 and 2.13 are similar in spiritto Theorems 4.8 and 4.16 that in turn are major parts in the proof of our maintheorem, Theorem 4.2.3 The Hyperboli
 Dis
 H 2The hyperboli
 dis
 H 2 is the open unit dis
 in C equipped with the hyperboli
metri
. The hyperboli
 metri
 is the metri
 whi
h to a 
urve 
 = f
(t)g1t=0 assignslengthL(
) = 2 Z 10 j
0(t)j1� j
(t)j2dt;and to a set E assigns area�(E) = ZE d�(z)where d�(z) = 4 dx dy(1�(x2+y2))2 and z = x + iy. The linear isoperimetri
 inequality forH 2 says that for all measurable A � H 2 with L(�A) and �(A) well de�ned,L(�A)�(A) � 1: (3.1)Denote by d(x; y) the hyperboli
 distan
e between the points x and y. The 
losedhyperboli
 ball of radius r 
entered at x is the set S(x; r) := fy : d(x; y) � rg: Inwhat follows, area (resp. length) will always mean hyperboli
 area (resp. hyperboli
length). The formulas for the area and 
ir
umferen
e of S(0; r) are given byL(�S(0; r)) = 2� sinh(r) and �(S(0; r)) = 2�(
osh(r)� 1): (3.2)Note thatL(�S(0; r)) = 2�r + o(r2) as r! 0 (3.3)and �(S(0; r)) = �r2 + o(r3) as r! 0: (3.4)Thus, at small s
ale, hyperboli
 length and area are 
lose to Eu
lidean length andarea. For more elementary fa
ts about H 2 , we refer to [8℄.6



3.1 Mass transportNext, we present the mass transport prin
iple for H 2 , due to Benjamini and S
hramm[5℄. It is essential for our results, thus we in
lude a proof. First some preliminaryde�nitions are needed.Definition 3.1 A bije
tive mapping of H 2 onto itself that preserves (hyperboli
)distan
es is 
alled an isometry.The set of isometries of H 2 forms a group under 
omposition, and we denote thisgroup by Isom(H 2).Definition 3.2 If A is some random subset of H 2 , we say that the distribution ofA is Isom(H 2)-invariant if gA has the same distribution as A for all g 2Isom(H 2).For example, a Poisson pro
ess in H 2 has an Isom(H 2)-invariant distribution.Definition 3.3 A measure � on H 2 � H 2 is said to be diagonally invariant if forall measurable A; B � H 2 and g 2Isom(H 2)�(gA� gB) = �(A� B):Theorem 3.4 (Mass Transport Prin
iple in H 2) If � is a positive diagonallyinvariant measure on H 2 � H 2 su
h that �(A � H 2) < 1 for some open A � H 2 ,then �(B � H 2) = �(H 2 � B)for all measurable B � H 2 .In all our appli
ations of this theorem, it turns out that � is absolutely 
ontinuouswith respe
t to � � �. Below we present a proof using this assumption. It turnsout that the 
ondition �(A � H 2) <1 for some open A 
an then be dropped. For� 2 H 2 , let g�(z) := (z � �)=(1� ��z). The set of fun
tions fg�g�2H2 is a subset ofIsom(H 2). Our proof requires only the diagonal invarian
e of � under this subset.Note that g� Æ g��(z) = z. The full proof of Theorem 3.4 is more involved, and werefer to [5℄.The intuition behind the mass transport prin
iple 
an be des
ribed as follows.One may think of �(A � B) as the amount of mass (or, in the 
ase that � is anexpe
tation, the expe
ted amount of mass) that goes from A to B. Thus the masstransport prin
iple says that the amount of mass that goes out of A equals the massthat goes into A.Proof. Suppose � � �� �. By the Radon-Nikodym theorem there is f su
h that�(A � B) = RA�B f d(� � �) for all measurable A � B � H 2 � H 2 . By Fubini'stheorem,�(A�B) = ZA ZB f(a; b)d�(b)d�(a):7



Also for any g 2 Isom(H 2) we have, by Isom(H 2)-invarian
e of �,�(gA� gB) = ZgA ZgB f(a; b)d�(b)d�(a) = ZA ZB f(g(a); g(b))d�(b)d�(a):Sin
e � is diagonally invariant, it follows that f(x; y) = f(g(x); g(y)) a:e: for allg 2 Isom(H 2). Also, using Isom(H 2)-invarian
e of � again,ZH2 f(b; x)d�(x) = ZH2 f(b; g(x))d�(x) and ZH2 f(x; b)d�(x) = ZH2 f(g(x); b)d�(x)for all b 2 H 2 and g 2 Isom(H 2). Therefore,ZH2 f(b; x)d�(x) = ZH2 f(0; gb(x))d�(x) = ZH2 f(0; x)d�(x)= ZH2 f(gx(0); gx(x))d�(x) = ZH2 f(�x; 0)d�(x) = ZH2 f(x; 0)d�(x)= ZH2 f(g�b(x); g�b(0))d�(x) = ZH2 f(g�b(x); b)d�(x) = ZH2 f(x; b)d�(x):Using Fubini again we get�(B� H 2) = ZB ZH2 f(b; x)d�(x)d�(b) = ZB ZH2 f(x; b)d�(x)d�(b) = �(H 2 �B)
ompleting the proof.24 The Poisson-Boolean model in H 2Definition 4.1 A point pro
ess X on H 2 distributed a

ording to the probabilitymeasure P su
h that for k 2 N, � � 0, and every measurable A � H 2 one hasP[jX(A)j = k℄ = e���(A) (��(A))kk!is 
alled a Poisson pro
ess with intensity � on H 2 . Here X(A) = X \ A and j � jdenotes 
ardinality.In the Poisson-Boolean model in H 2 , just like in the 
orresponding model in R2 , atevery point of a Poisson pro
ess X we pla
e a ball with unit radius. More pre
isely,we let C = Sx2X S(x; 1) and V = C
 and refer to C and V as the 
overed andva
ant regions of H 2 respe
tively. For A � H 2 we let C[A℄ := Sx2X(A) S(x; 1) andV [A℄ := C[A℄
. For x; y 2 H 2 , let dC(x; y) be the length of the shortest 
urve
onne
ting x and y lying 
ompletely in C if there exists su
h a 
urve, otherwise letdC(x; y) =1. Similarly, let dV (x; y) be the length of the shortest 
urve 
onne
ting xand y lying 
ompletely in V if there is su
h a 
urve, otherwise let dV (x; y) =1. The
olle
tion of all 
omponents of C is denoted by C and the 
olle
tion of all 
omponentsof V is denoted by V. Let NC denote the number of unbounded 
omponents in C8



and NV denote the number of unbounded 
omponents in V . Next we introdu
e
riti
al densities as follows. We let�
 := inff� : NC > 0 a.s.g;�u = inff� : NC = 1 a.s.g;��
 = supf� : NV > 0 a.s. g;and ��u = supf� : NV = 1 a.s. g:Our main result is:Theorem 4.2 For the Poisson-Boolean model with unit radius in H 20 < �
 < �u <1:Furthermore, with probability 1,(NC ; NV ) = 8<: (0; 1); � 2 [0; �
℄(1;1); � 2 (�
; �u)(1; 0); � 2 [�u;1)A �rst step towards Theorem 4.2 is given by the below lemma.Lemma 4.3 For the Poisson-Boolean model in H 2 , ��
 <1 and �
 > 0.Proof. Let � be a regular tiling of H 2 into 
ongruent polygons of �nite diameter.The polygons of � 
an be identi�ed with the verti
es of a planar nonamenabletransitive graph G = (V;E). Next, we de�ne a Bernoulli site per
olation ! on G.We de
lare ea
h vertex v 2 V to be in ! if and only if its 
orresponding polygon�(v) is not 
ompletely 
overed by C[�(v)℄. Clearly, the verti
es are de
lared to bein ! or not with the same probability and independently of ea
h other. Now for anyv, lim�!1P[v is in !℄ = 0:Thus, by Theorem 2.8, for � large enough, there are no in�nite 
lusters in !. But ifthere are no in�nite 
lusters in !, there are no unbounded 
omponents of V . Thus��
 <1.To show �
 > 0 we adapt an argument due to Hall [13℄. Constru
t a bran
hingpro
ess, whose members are points in H 2 , as follows. The individual in the 0'th gen-eration is taken to be the 
enter of a ball with unit radius. Without loss of generalitythe 
enter 
an be taken to be the origin. Given individuals Zn1; Zn2; :::; ZnNn in then:th generation, the (n+ 1):th generation is de�ned as follows. For l = 1; :::; Nn letXnl be a Poisson pro
ess with intensity �, independent of the previous history of thebran
hing pro
ess and also ofXnl0 for l 6= l0 . At ea
h point ofXnl 
enter a ball of unitradius. The progeny of Znl is then taken to be the points of Xnl whose asso
iatedballs interse
t that of Znl. The number of des
endants of Znl 
learly has a Poisson9



distribution with expe
tation ��(S(0; 2)). Therefore, the expe
ted number of in-dividuals in generation n is given by �n�(S(0; 2))n and 
onsequently, the expe
tednumber of individuals in the whole bran
hing pro
ess equals P1n=1 �n�(S(0; 2))n.Thus if � < �(S(0; 2))�1 � 0:0567, the expe
ted total number of individuals is�nite. However, the expe
ted number of individuals in the bran
hing pro
ess isgreater than or equal to the expe
ted number of balls in a 
omponent of the 
overedregion in the Poisson-Boolean model. Thus �
 > 0:056. 24.1 FKG inequalityAs in the theory for dis
rete per
olation, a 
orrelation inequality for in
reasing andde
reasing events turns out to be very useful. If ! and !0 are two realizations of aPoisson-Boolean model we write ! � !0 if any ball present in ! is also present in !0.Definition 4.4 An event A is said to be in
reasing (respe
tively de
reasing) if! � !0 implies 1A(!) � 1A(!0) (respe
tively 1A(!) � 1A(!0)).Here we present the FKG inequality for the �xed radius version of the Poisson-Boolean model in H 2 . The proof is very similar to the proof of the 
orrespondingtheorem in R2 , Theorem 2.2 from [15℄, but requires a minor modi�
ation.Theorem 4.5 (FKG inequality) If A and B are both in
reasing or both de
reas-ing events, then P[A \B℄ � P[A℄P[B℄.Proof. Let fGng1n=1 be a sequen
e of tilings of H 2 into 
ells of equal area su
h thatGn is obtained by splitting the 
ells of Gn�1 into smaller 
ells, andlimn!1(supfdiam(�) : � is a 
ell in Gng) = 0:We may take G1 to be the same as in the proof of Lemma 4.3. For ea
h 
ell � inGn, let Nn(�) = 1 if there is a Poisson point in � and 0 otherwise. Let Fn be the�-algebra generated by the random variables fNn(�) : � is a 
ell in Gng. Then, forany event A whi
h is de�ned in terms of the Poisson pro
ess, fE[1AjFn℄g1n=1 is amartingale with respe
t to the �ltration fFng1n=1. Set F1 := �([1n=1Fn). ClearlyA is measurable with respe
t to F1. Now L�evy's upwards theorem giveslimn!1E[1AjFn℄ = E[1AjF1℄ = 1A a.s. (4.1)It is 
lear that for any n, any ! � !0, and any in
reasing event A, E[1AjFn℄(!) �E[1AjFn℄(!0). Also it is obvious that the random variables Nn(C) are all indepen-dent. Therefore, for any two in
reasing events A1 and A2, the usual (dis
rete) FKGinequality (see Theorem 2.4 in [10℄) givesE[E[1A1jFn℄E[1A2 jFn℄℄ � E[E[1A1jFn℄℄E[E[1A2jFn℄℄= E[1A1℄E[1A2℄:10



The dominated 
onvergen
e theorem and (4.1) givelimn!1E[E[1A1jFn℄E[1A2jFn℄℄ = E[1A11A2 ℄;
ompleting the proof. 2We will also use the following simple 
orollary to Theorem 4.5, the proof of whi
h
an be found in [10℄.Corollary 4.6 (The square root tri
k) If A1; A2; :::; Am are in
reasingevents with the same probability, thenP[A1℄ � 1� (1�P[[mi=1Ai℄)1=m :The same holds when A1; A2; :::; Am are de
reasing.4.2 The number of unbounded 
omponentsThe aim of this se
tion is to determine the possible values of (NC ; NV ). The �rstlemma is an appli
ation of the mass transport prin
iple. First, some notation isneeded. We write H 2 H if H is a union of elements from C and V su
h that itsdistribution is Isom(H 2)-invariant, and let H denote the 
olle
tion of all 
omponentsof H. For h 2 H and sets A; B � H 2 we write A h! B if h interse
ts both A andB.Lemma 4.7 If H 2 H 
ontains only �nite 
omponents a.s., then for any measurableA E[�(A \H)℄ � E[L(A \ �H)℄:Before the proof we des
ribe the intuition behind it: We pla
e mass of unit densityin all of H 2 . Then, if h is a 
omponent of H, the mass inside h is transported to theboundary of h. Then we use the mass transport prin
iple: the expe
ted amount ofmass transported out of a subset A equals the expe
ted amount of mass transportedinto it. Finally we 
ombine this with the isoperimetri
 inequality (3.1). Proof. ForA; B � H 2 and H 2 H, let�(A� B; H) := Xh2H :A h!B �(B \ h)L(A \ �h)L(�h) :and let �(A � B) := E[�(A � B; H)℄. Sin
e the distribution of H is Isom(H 2)-invariant, we get for ea
h g 2Isom(H 2)�(gA� gB) = E[�(gA� gB; H)℄ = E[�(gA� gB; gH)℄= E[�(A� B; H)℄ = �(A�B): 11



Thus, � is a diagonally invariant positive measure on H 2�H 2 . We have �(H 2�A) =E [�(A \H)℄ and�(A� H 2) = E24 Xh2H :A h!H2 �(h)L(A \ �h)L(�h) 35 � E[L(A \ �H)℄where the last inequality follows from the linear isoperimetri
 inequality. Hen
e, the
laim follows by Theorem 3.4. 2We remark that obviously Lemma 4.7 holds for many other obje
ts, that have adistribution whi
h is Isom(H 2) invariant.Lemma 4.8 Suppose H 2 H. If P[0 2 H℄ > (1 + 1=e)=(�1 + e) � 0:796 then H
ontains unbounded 
omponents with positive probability.Note that P[z 2 H℄ is the same for all z 2 H 2 sin
e H 2 H. Proof. We assume thatH 
ontains only �nite 
omponents almost surely and use Lemma 4.7. Obviously wehave lim�!0P[S(0; �) \ �H 6= ;℄ = 0and lim�!0P[S(0; �) � H℄ = P[0 2 H℄:Therefore, using (3.4), we 
on
ludeE[�(S(0; �) \H)℄ = P[0 2 H℄��2 + o(�2) as �! 0: (4.2)In the same way, for small � > 0, the probability that S(0; �) interse
ts more thanone 
omponent of H is small 
ompared to the probability that S(0; �) interse
ts one
omponent. Also when � is small, 
onditioned on the event fS(0; �) \ �H 6= ;g,S(0; �) \ �H will be 
lose to a straight line su
h that the distan
e from its middlepoint to the origin is uniformly distributed between 0 and �. ThusE[L(S(0; �) \ �H)jS(0; �) \ �H 6= ;℄ =Z �0 2p�2 � x2� dx+ o(�) = �2 � + o(�) as �! 0: (4.3)Using the independen
e of the Poisson pro
ess, the obvious fa
t that �H � �C andformulas (3.2) we getP [S(0; �) \ �H 6= ;℄ � P [S(0; �) \ �C 6= ;℄� P[fjX(S(0; 1 + �)nS(0; 1� �))j > 0g \ fjX(S(0; 1� �))j = 0g℄= P[jX(S(0; 1 + �)nS(0; 1� �))j > 0℄P[jX(S(0; 1� �))j = 0℄= (1� exp (���(S(0; 1 + �)nS(0; 1� �))) exp (���(S(0; 1� �)))12



= exp (�2��(
osh(1� �)� 1))� exp (�2��(
osh(1 + �)� 1))= 4 exp (2�� � 2�� 
osh(1))�� sinh(1)�+ o(�2) as �! 0: (4.4)Hen
e, by (4.3) and (4.4),E [L(S(0; �) \ �H)℄ � 2 exp (2�� � 2�� 
osh(1))��2 sinh(1)�2+o(�2) as �! 0: (4.5)By Lemma 4.7, E[�(S(0; �) \ H)℄ � E[L(S(0; �) \ �H)℄, so by (4.2) and (4.5) itfollows thatP[0 2 H℄ � 2 exp (2�� � 2�� 
osh(1))�� sinh(1): (4.6)By straightforward 
al
ulations, the right hand side in (4.6) is at most (1+1=e)=(�1+e) for all �. This 
ompletes the proof. 2Lemma 4.9 NC is an almost sure 
onstant whi
h equals 0, 1 or 1.Proof. First we show, following [12℄, that NC is an a:s: 
onstant. For n 2f0; 1; 2; :::g [ f1g let Dn be the event that NC = n. Assume for 
ontradi
tionthat there is n su
h that0 < P[Dn℄ < 1 (4.7)and �x su
h an n. For a point z in H 2 and a positive integer k, let1n;z;k := � 0 if P[DnjX(S(z; k))℄ � 1=21 if P[DnjX(S(z; k))℄ > 1=2Thus 1n;z;k is the best guess of 1Dn given the 
on�guration of the Poisson pro
essin S(z; k). By L�evy's 0-1-law (see [9℄, page 263) we get for �xed z thatlimk!11n;z;k = 1Dn a.s. (4.8)Let z1; z2; ::: be a sequen
e of points su
h that for ea
h k, S(z; k) and S(zk; k) donot interse
t. Sin
e (1Dn; 1n;zk;k) has the same joint distribution as (1Dn ; 1n;z;k), weget from (4.8) that 1n;zk;k 
onverges in probability to 1Dn as k !1. Thuslimk!1P[1n;zk;k = 1n;z;k = 1Dn ℄ = 1: (4.9)But sin
e S(z; k) and S(zk; k) are disjoint, 1n;z;k and 1n;zk;k are independent randomvariables. Thus, using (4.7), we getlimk!1P[1n;zk;k = 1 = 1� 1n;z;k℄ = limk!1P[1n;zk;k = 1℄P[1n;z;k = 0℄= P[Dn℄(1�P[Dn℄) > 0:This 
ontradi
ts (4.9), thus the assumption (4.7) is false, and there is n su
h thatP[Dn℄ = 1. Next, we show that this n must be in f0; 1;1g. Suppose 2 � n <1. Sin
e n is �nite, it is possible to pi
k a large R > 0 su
h that the event13



fS(x;R) interse
ts every unbounded 
omponent of Cg has positive probability forx 2 H 2 . With this R, we 
an then pi
k � > 0 small su
h that the eventA := fS(x;R+1� �) interse
ts every unbounded 
omponent U of C[S(x;R)
℄ghas positive probability. Let E := fS(x;R+1��) � C[S(x;R)℄g. Clearly P[E℄ > 0.Sin
e A depends only on X(S(x;R)
) and E depends only on X(S(x;R)), they areindependent. Hen
e, P[A \ E℄ > 0. But on A \ E, there is only one unbounded
omponent of C, a 
ontradi
tion. Therefore, n 2 f0; 1;1g. 2Corollary 4.10 For the Poisson-Boolean model in H 2 , �
 < 0:407.Proof. Sin
e P[0 2 C℄ = P[jX(S(0; 1))j > 0℄ = 1� exp (�2��(
osh(1)� 1))> 2 exp (2�� � 2�� 
osh(1))�� sinh(1)if � > 0:4063, the desired 
on
lusion follows from (4.6) and Lemma 4.9.2The next Lemma is proved in the same fashion as Lemma 4.9.Lemma 4.11 NV is an almost sure 
onstant whi
h equals 0, 1 or 1.Proof. If Dn is the event that NV = n, it follows in the same way as in the proofof Lemma 4.9 that there is n su
h that P[Dn℄ = 1, and it remains to show that thisn 2 f0; 1;1g. Suppose 2 � n <1 is an integer and NV = n a.s. Pi
k R > 0 su
hthat the eventA := fS(0; R) interse
ts all unbounded 
omponents U of V ghas positive probability, whi
h is possible sin
e n is �nite. Removing �nitely manypoints from X and asso
iated balls does not in
rease the number of unboundedva
ant 
omponents. ThusB := fS(0; R) interse
ts all unbounded 
omponents U of V [S(0; R + 1)
℄g:also has positive probability. Let D = fjX(S(0; R + 1))j = 0g. Sin
e B and D areindependent and D has positive probability, B \D has positive probability. But onB \ D there is only one unbounded 
omponent of V . This 
ontradi
ts the initialassumption, 
ompleting the proof. 2Lemma 4.12 For H 2 H, H and/or H
 
ontains unbounded 
omponents almostsurely.Proof. Suppose H and D := H
 
ontains only �nite 
omponents, and let in thisproof H0 and D0 be the 
olle
tions of the 
omponents of H and D respe
tively.Then every element h of H0 is surrounded by a unique element h0 of D0, whi
h inturn is surrounded by a unique element h00 of H0. In the same way, every elementd of D0 is surrounded by a unique element d0 of H0 whi
h in turn is surrounded by14



a unique element d00 of D0. Indu
tively, for j 2 N , let Hj+1 := fh00 : h 2 Hjg andDj+1 := fd00 : d 2 Djg. Next, for r 2 N , letAr := r[j=0(fh 2 H0 : supfi : h 2 Hig = jg [ fd 2 D0 : supfi : d 2 Dig = jg):In words, Hj and Dj de�ne layers of 
omponents from H and D. Thus Ar is theunion of all layers of 
omponents from H and D that have at most r layers insideof them. Obviously Ar 2 H for all r andlimr!1P[0 2 Ar℄ = 1:Hen
e, by (4.8), there is R su
h that for r � R,P[Ar has unbounded 
omponents℄ > 0:But by 
onstru
tion, for any r, Ar has only �nite 
omponents. Hen
e the initialassumption is false.2Lemma 4.13 The 
ases (NC ; NV ) = (1; 1) and (NC ; NV ) = (1;1) have probability0.Proof. Suppose NC =1. First we show that it is possible to pi
k R > 0 su
h thatthe eventA(x;R) :=fS(x;R) interse
ts at least 2 disjoint unbounded 
omponents of C[S(x;R)
℄ghas positive probability for x 2 H 2 . Suppose S(x; r) interse
ts an unbounded 
om-ponent of C for some r > 0. Then if S(x; r) does not interse
t some unbounded
omponent of C[S(x; r)
℄, there must be some ball 
entered in S(x; r+2)nS(x; r+1)being part of an unbounded 
omponent of C[S(x; r + 1)
℄, whi
h is to say thatS(x; r + 1) interse
ts an unbounded 
omponent of C[S(x; r + 1)
℄. Clearly 
an �nd~R su
h thatB(x; ~R) :=fS(x; ~R) interse
ts at least 3 disjoint unbounded 
omponents of Cg:By the above dis
ussion it follows that P[A(x; ~R) [ A(x; ~R + 1)℄ > 0, whi
h provesthe existen
e of R su
h that A(x;R) has positive probability. Pi
k su
h an R and letE(x;R) := fS(x;R) � C[S(x;R)℄g. E has positive probability and is independentof A so A \ E has positive probability. By planarity, on A \ E, V 
ontains at least2 unbounded 
omponents. So with positive probability, NV > 1. By Lemma 4.11,NV =1 a.s. This �nishes the �rst part of the proof.Now instead suppose NV =1 and pi
k R > 0 su
h thatA(x;R) := fS(x;R) interse
ts at least two unbounded 
omponents U of V g15



has positive probability. LetB(x;R) := fC[S(x;R + 1)
℄ 
ontains at least 2 unbounded 
omponentsg:On A, CnS(0; R) 
ontains at least two unbounded 
omponents, whi
h in turn impliesthat B o

urs. Sin
e P[A℄ > 0 this gives P[B℄ > 0. Sin
e B is independent ofF (x;R) := fjX(S(x;R + 1))j = 0g whi
h has positive probability, P[B \ F ℄ > 0.On B \ F , C 
ontains at least two unbounded 
omponents. By Lemma 4.9 we getNC =1 a.s. 2Lemma 4.14 The 
ase (NC ; NV ) = (1; 1) has probability 0.Proof. Assume (NC ; NV ) = (1; 1) a.s. Fix x 2 H 2 . Denote by AuC(R) (respe
-tively AdC(R), ArC(R), AlC(R)) the event that the uppermost (respe
tively lower-most, rightmost, leftmost) quarter of �S(x;R) interse
ts an unbounded 
omponentof CnS(x;R). Clearly, these events are in
reasing. Sin
e NC = 1 a.s.,limR!1P[AuC(R) [ AdC(R) [ ArC(R) [ AlC(R)℄ = 1:Hen
e by Corollary 4.6, limR!1P[AtC(R)℄ = 1 for t 2 fu; d; r; lg. Now let AuV (R)(respe
tively AlV (R), ArV (R), AlV (R)) be the event that the uppermost (respe
tivelylowermost, rightmost, leftmost) quarter of �S(x;R) interse
ts an unbounded 
om-ponent of V nS(x;R). Sin
e these events are de
reasing, we get in the same way asabove that limR!1P[AtV (R)℄ = 1 for t 2 fu; d; r; lg. Thus we may pi
k R1 so bigthat P[AtC(R1)℄ > 7=8 and P[AtV (R1)℄ > 7=8 for t 2 fu; d; r; lg. LetA := AuC(R1) \ AdC(R1) \ AlV (R1) \ ArV (R1):Bonferroni's inequality implies P[A℄ > 1=2. On A, CnS(x;R) 
ontains two disjointunbounded 
omponents. Sin
e NC = 1 a.s., these two 
omponents must almostsurely on A be 
onne
ted. The existen
e of su
h a 
onne
tion implies that there areat least two unbounded 
omponents of V , an event with probability 0. This givesP[A℄ = 0, a 
ontradi
tion. 2Proposition 4.15 Almost surely, (NC ; NV ) 2 f(1; 0); (0; 1); (1;1)g.Proof. By Lemmas 4.9 and 4.11, ea
h of NC and NV is in f0; 1; 1g. Lemma4.12 with H � C rules out the 
ase (0; 0). Hen
e Lemmas 4.13 and 4.14 implythat it remains only to rule out the 
ases (0;1) and (1; 0). But sin
e every twounbounded 
omponents of C must be separated by some unbounded 
omponent ofV , (1; 0) is impossible. In the same way, (0;1) is impossible. 24.3 The situation at �
 and ��
It turns out that to prove the main theorem, it is ne
essary to investigate whathappens regarding NC and NV at the intensities �
 and ��
. Our proofs are inspiredby the proof of Theorem 1.1 in [3℄, whi
h says that 
riti
al Bernoulli per
olationon nonamenable Cayley graphs does not 
ontain in�nite 
lusters. Notably, for thePoisson Boolean model in R2 , it is the 
ase that (NC ; NV ) = (0; 0) a.s. at �
 (see[1℄). By Proposition 4.15, this is not possible in H 2 .16



Theorem 4.16 At �
, NC = 0 a.s.Proof. We begin with ruling out the possibility of a unique unbounded 
omponentof C at �
. Suppose � = �
 and that NC = 1 a.s. Denote the unique unbounded
omponent of C by U . By Proposition 4.15, V 
ontains only �nite 
omponentsa.s. Let � > 0 be small and remove ea
h point in X with probability � and denoteby X� the remaining points. Furthermore, let C� = [x2X�S(x; 1). Sin
e X� is aPoisson pro
ess with intensity �
 � � it follows that C� will 
ontain only bounded
omponents a.s. Let C� be the 
olle
tion of all 
omponents of C�. We will now
onstru
t H� as a union of elements from C� and V su
h that the distribution ofH� will be Isom(H 2)-invariant. For ea
h z 2 H 2 we let U�(z) be the union of the
omponents of U \C� being 
losest to z. We let ea
h h from C� [ V be in H� if andonly if supz2h d(z; U) < 1=� and U�(x) = U�(y) for all x; y 2 h. It is now 
lear foralmost every realisation of the underlying Poisson pro
ess X,lim�!0P[0 2 H�jX℄ = 1:Hen
e the Bounded Convergen
e Theorem giveslim�!0P[0 2 H�℄ = 1:Sin
e H� is not a union of elements from C and V, Lemma 4.8 is not dire
tly appli
a-ble. However, as �! 0, (�C[�C�) # �C. By inspe
ting the proof of Lemma 4.8 (the
al
ulation leading to (4.4)), we see that this is enough to 
on
lude that if P[0 2 H�℄is 
lose enough to 1, H� 
ontains unbounded 
omponents with positive probability.Suppose h1; h2; ::: is an in�nite sequen
e of distin
t elements from C� [ V su
h thatthey 
onstitute an unbounded 
omponent of H�. Then U�(x) = U�(y) for all x; y inthis 
omponent. Hen
e U \ C� 
ontains an unbounded 
omponent (this parti
ular
on
lusion 
ould not have been made without the 
ondition supz2h d(z; U) < 1=� inthe de�nition of U�(z)). Therefore we 
on
lude that the existen
e of an unbounded
omponent in H� implies the existen
e of an unbounded 
omponent in C�. Hen
eC� 
ontains an unbounded 
omponent with positive probability, a 
ontradi
tion.We move on to rule out the 
ase of in�nitely many unbounded 
omponents of Cat �
. Assume NC = 1 a.s. at �
. As in the proof of Lemma 4.13, we 
hoose Rsu
h that for x 2 H 2 the eventA(x;R) :=fS(x;R) interse
ts at least 3 disjoint unbounded 
omponents of C[S(x;R)
℄ghas positive probability. Let B(x;R) := fS(x;R) � C[S(x;R)℄g for x 2 H 2 . Sin
eA and B are independent, it follows that A\B has positive probability. On A\B,x is 
ontained in an unbounded 
omponent U of C. Furthermore, UnS(x;R + 1)
ontains at least three disjoint unbounded 
omponents. Now let Y be a Poissonpro
ess independent of X with some positive intensity. We 
all a point y 2 H 2 aen
ounter point if� y 2 Y ;� A(y; R) \ B(y; R) o

urs; 17



� S(y; 2(R+ 1)) \ Y = fyg.The third 
ondition above means that if y1 and y2 are two en
ounter points,then S(y1; R + 1) and S(y2; R + 1) are disjoint sets. By the above, it is 
lear thatgiven y 2 Y , the probability that y is an en
ounter point is positive. We now moveon to show that if y is an en
ounter point and U is the unbounded 
omponent ofC 
ontaining y, then ea
h of the disjoint unbounded 
omponents of UnS(y; R + 1)
ontains a further en
ounter point.Letm(s; t) = 1 if t is the unique en
ounter point 
losest to s in C, andm(s; t) = 0otherwise. Then let for measurable sets A; B � H 2�(A� B; X; Y ) = Xs2Y (A) Xt2Y (B)m(s; t)and �(A�B) = E[�(A� B; X; Y )℄:Clearly, � is a positive diagonally invariant measure on H 2 �H 2 . Suppose A is someball in H 2 . Sin
e Pt2Y m(s; t) � 1 we get�(A � H 2) � E[jY (A)j℄ < 1. On the other hand, if y is an en
ounter pointlying in A and with positive probability there is no en
ounter point in some of theunbounded 
omponents of UnS(y; R + 1) we get Ps2Y Pt2Y (A)m(s; t) = 1 withpositive probability, so �(H 2 � A) =1, whi
h 
ontradi
ts Theorem 3.4.The proof now 
ontinues with the 
onstru
tion of a forest F , that is a graphwithout loops or 
y
les. Denote the set of en
ounter points by T , whi
h is a.s.in�nite by the above. We let ea
h t 2 T represent a vertex v(t) in F . For a givent 2 T , let U(t) be the unbounded 
omponent of C 
ontaining t. Then let k be thenumber of unbounded 
omponents of U(t)nS(t; R+1) and denote these unbounded
omponents by C1, C2,..., Ck. For i = 1; 2; :::; k put an edge between v(t) and thevertex 
orresponding to the en
ounter point in Ci whi
h is 
losest to t in C (thisen
ounter point is unique by the nature of the Poisson pro
ess).Next, we verify that F 
onstru
ted as above is indeed a forest. If v is avertex in F , denote by t(v) the en
ounter point 
orresponding to it. Supposev0; v1; :::; vn = v0 is a 
y
le of length � 3, and that dC(t(v0); t(v1)) < dC(t(v1); t(v2)).Then by the 
onstru
tion of F it follows that dC(t(v1); t(v2)) < dC(t(v2); t(v3)) <::: < dC(t(vn�1); t(v0)) < dC(t(v0); t(v1)) whi
h is impossible. Thus we must havethat dC(t(vi); t(vi+1)) is the same for all i 2 f0; 1; ::; n � 1g. The assumptiondC(t(v0); t(v1)) > dC(t(v1); t(v2)) obviously leads to the same 
on
lusion. But ify 2 Y , the probability that there are two other points in Y on the same distan
e inC to y is 0. Hen
e, 
y
les exist with probability 0, and therefore F is almost surelya forest.Now de�ne a bond per
olation F� � F : De�ne C� in the same way as above.Let ea
h edge in F be in F� if and only if both en
ounter points 
orresponding toits end-verti
es are in the same 
omponent of C�. Sin
e C� 
ontains only bounded
omponents, F� 
ontains only �nite 
onne
ted 
omponents.For any vertex v in F we let K(v) denote the 
onne
ted 
omponent of v in F�and let �FK(v) denote the inner vertex boundary of K(v) in F . Sin
e the degree of18



ea
h vertex in F is at least 3, and F is a forest, it follows that at least half of theverti
es in K(v) are also in �FK(v). Thus we 
on
ludeP[x 2 T; v(x) 2 �FK(v(x))jx 2 Y ℄ � 12P[x 2 T jx 2 Y ℄:The right-hand side of the above is positive and independent of �. But the left-handside tends to 0 as � tends to 0, sin
e when � is small, it is unlikely that an edge inF is not in F�. This is a 
ontradi
tion.2By Proposition 4.15, if NC = 0, then NV = 1 a:s. Thus we have an immediate
orollary to Theorem 4.16.Corollary 4.17 At �
, NV = 1 a:s:Next, we show the 
orresponding results for �u. Obviously, the nature of V is quitedi�erent from that of C, but still the proof of Theorem 4.18 below di�ers only indetails to that of Theorem 4.16. We in
lude it for the 
onvenien
e of the reader.Theorem 4.18 At �u, NV = 0 a.s.Proof. Suppose NV = 1 a.s. at �u and denote the unbounded 
omponent of V by U .Then C 
ontains only �nite 
omponents a:s: by Proposition 4.15. Let � > 0 and letZ be a Poisson pro
ess independent of X with intensity �. Let C� := [x2X[ZS(x; 1)and V� := C
� . Sin
e X [ Z is a Poisson pro
ess with intensity �u + � it follows thatC� has a unique unbounded 
omponent a.s. and hen
e V� 
ontains only bounded
omponents a.s. Let V� be the 
olle
tion of all 
omponents of V�. De�ne H� in thefollowing way: For ea
h z 2 H 2 we let U�(z) be the union of the 
omponents of U\V�being 
losest to z. We let ea
h h 2 C[V� be in H� if and only if supz2h d(z; U) < 1=�and U�(x) = U�(y) for all x; y 2 h. Then,lim�!0P[0 2 H�℄ = 1:As in the proof of Theorem 4.16 this is enough to 
on
lude that for � small enough,H� 
ontains an unbounded 
omponent with positive probability, and therefore V�
ontains an unbounded 
omponent with positive probability, a 
ontradi
tion.Now suppose that � = �u and NV = 1. Then also NC = 1 by Proposition4.15. Therefore, for x 2 H 2 , we 
an 
hoose R > 1 su
h that the interse
tion of thetwo independent eventsA(x;R) :=fS(x;R) interse
ts at least 3 disjoint unbounded 
omponents of C[S(x;R)
℄gand B(x;R) := fjX(S(x;R))j = 0g has positive probability. Next, suppose that Yis a Poisson pro
ess independent of X with some positive intensity. We 
all y 2 H 2an rendezvous point if� y 2 Y ;� A(y; R) \ B(y; R) o
urrs; 19



� S(y; 2R) \ Y = fyg.By the above dis
ussion,P[y is an rendezvous point j y 2 Y ℄ > 0:If y is a rendezvous point, y is 
ontained in an unbounded 
omponent U of V andUnS(y; R) 
ontains at least 3 disjoint unbounded 
omponents. In the same way asin the proof of Theorem 4.16 an in�nite forest F in whi
h every vertex has degreeat least three is 
onstru
ted, the only di�eren
e being that the verti
es in this 
ase
orrespond to the rendezvous points.Again we de�ne a bond per
olation F� � F . Let V� be de�ned as above. Ea
hedge of F is de
lared to be in F� if and only if both its end-verti
es are in the same
omponent of V�. Then F� 
ontains only �nite 
onne
ted 
omponents a.s. Now withthe same notion as in the proof of Theorem 4.16,P[y 2 T; v(y) 2 �FK(v(y))jy 2 Y ℄ � 12P[y 2 T jy 2 Y ℄:Letting �! 0 leads to the desired 
ontradi
tion. 2Again, Proposition 4.15 immediately implies the following 
orollary:Corollary 4.19 At �u, NC = 1 a:s:4.4 Proof of Theorem 4.2Here we 
ombine the results from the previous se
tions to prove our main theorem.Proof of Theorem 4.2: If � < �u then Proposition 4.15 implies NV > 0 a.s.giving � � ��
. If � > �u the same proposition gives NV = 0 a.s. giving � � ��
.Thus �u = ��
 : (4.10)By Theorem 4.16 NC = 0 a.s. at �
, so NV > 0 a.s. at �
 by Proposition 4.15. Thusby Theorem 4.18�
 < ��
: (4.11)Hen
e the desired 
on
lusion follows by (4.10), (4.11) and Lemma 4.3. 2Obviously, we 
an also 
onsider the Poisson-Boolean model in H 2 with any �xedradius R. However, the proof given here of Theorem 4.2 does not work for all R.Consider the proof of Lemma 4.8. That proof gives that if H 2 H and H only
ontains bounded 
omponents a:s, thenP[0 2 H℄ � 2 exp(2�� � 2�� 
oshR)�� sinhR:Some 
al
ulus gives that this is bounded by 1 for all � only ifR � 
osh�1(1� 2=(1� e2)) � 0:772:20



Thus if we 
onsider a model with R < 
osh�1(1� 2=(1� e2)) there are intensities,for whi
h Lemma 4.8 does not give anything.However, given R, we strongly believe it is possible to show that if P[S(0; ~R) �H℄ is 
lose enough to 1 for some suitable ~R, whi
h would be the 
ase in our ap-pli
ations, then H 
ontains unbounded 
omponents with positive probability. Theproof would be more involved than the proof of Lemma 4.8, sin
e, for example, theprobability that S(0; ~R) interse
ts more than one 
omponent of H is not negligable.In Rd there is a s
aling argument for the Poisson-Boolean model with �xed radiusthat makes it unne
essary to 
onsider radii other than 1, see Proposition 2.10 in [15℄.This is not the 
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