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The number of unbounded omponents in thePoisson-Boolean model in H 2Johan Tykesson�Otober 4, 2005AbstratWe onsider the Poisson-Boolean model with unit radius in the hyperbolidis H 2 . Let � be the intensity of the underlying Poisson proess, and letNC denote the number of unbounded omponents of the overed region. Weshow that there are two intensities � and �u, 0 < � < �u < 1, suhthat NC = 0 for � 2 (0; �℄, NC = 1 for � 2 (�; �u), and NC = 1 for� 2 [�u;1). Corresponding results, due to Benjamini, Lyons, Peres andShramm, are available for Bernoulli bond and site perolation on ertainnonamenable transitive graphs, and we use many of their tehniques in ourproofs.1 IntrodutionWe begin by desribing the unit radius version of the so alled Poisson-Booleanmodel in R2 , arguably the most studied ontinuum perolation model. For a detailedstudy of this model, we refer to [15℄. Let X be a Poisson point proess in R2 withsome intensity �. At eah point of X, plae a losed ball with unit radius. LetC be the union of all balls, and V be the omplement of C. The sets V andC will be referred to as the vaant and overed regions. We say that perolationours in C (respetively in V ) if C (respetively V ) ontains unbounded (onneted)omponents. For the Poisson-Boolean model in R2 , it is known that there is a ritialdensity � 2 (0;1) suh that for � < �, perolation ours in V but not in C, andfor � > �, perolation ours in C but not in V . Furthermore, if we denote by NCand NV the number of unbounded omponents of C and V respetively, it is thease that (NC ; NV ) = (0; 1) a:s: for � < � and (NC ; NV ) = (1; 0) a:s: for � > �.It is also known that (NC ; NV ) = (0; 0) at �. This means that if there is someunbounded omponent in C or V , it is neessarily unique. All these results are alsovalid for the Poisson-Boolean model in Rd for d � 3.It is possible to onsider the Poisson-Boolean in more exoti spaes than Rd , andone might ask if there are spaes for whih several unbounded omponents oexistwith positive probability. The main result of this paper is that this is indeed thease for the hyperboli dis, H 2 . We show that there are intensities for whih there�Researh supported by the Swedish Natural Siene Researh Counil1



are almost surely in�nitely many unbounded omponents in both the overed andvaant regions. It turns out that the main di�erene between R2 and H 2 whihauses this, is the fat that H 2 has a positive linear isoperimetri onstant. Thismeans that the ratio between the irumferene and area of a ball goes to somestritly positive onstant as the radius goes to in�nity. In R2 however, this ratiogoes to 0.In many aspets, the proof is similar to a proof by Benjamini, Lyons, Peres andShramm. They showed that for a lass of nonamenable planar transitive graphs,there are in�nitely many in�nite lusters for some parameters in Bernoulli bondperolation. We will give the proper de�nitions below.The rest of the paper is organized as follows. Setion 2 gives a short review ofuniqueness and non-uniqueness results for in�nite lusters in Bernoulli perolationon graphs, inluding the results by Benjamini, Lyons, Peres and Shramm. Then inSetion 3 the most elementary properties of the hyperboli dis are given. Finally,we give our proofs in Setion 4.2 Disrete perolationLet G = (V;E) be an in�nite onneted graph with vertex set V and edge set E. Inp-Bernoulli bond perolation on G, eah edge in E is kept with probability p anddeleted with probability 1 � p, independently of all other edges. All verties arekept. Let Pp be the probability measure on the subgraphs of G orresponding top-Bernoulli perolation. (It is also possible to onsider p-Bernoulli site perolationin whih it is the verties that are kept or deleted, and all results we present in thissetion are valid in this ase too.) In this setion, ! will denote a random subgraphof G. Conneted omponents of ! will be alled lusters.Let C be the event that p-Bernoulli bond perolation ontains in�nite lusters.One of the most basi fats in the theory of disrete perolation is the followingtheorem, a proof of whih an be found in [12℄.Theorem 2.1 There exists a ritial probability p = p(G) 2 [0; 1℄ suh thatPp(C) = � 0; p < p1; p > pA natural question to ask is: How many in�nite lusters are there? The answerobviously depends on G and p. We will onsider only transitive graphs.Definition 2.2 Let G = (V;E) be an in�nite graph. A bijetion g : V ! V suhthat [g(u); g(v)℄ 2 E if and only if [u; v℄ 2 E is alled a graph automorphism. Thegraph G is alled transitive if for any u; v 2 V there exists a graph automorphismmapping u to v.For a transitive graph, the degree of the graph is the number of edges inident toeah edge. The set of graph automorphisms of G is a group under omposition andwe denote this group by Aut(G). In the ase of transitivity, the following theorem,see [12℄, gives the possible answers to the question preeding De�nition 2.2.2



Theorem 2.3 If G is transitive and ! is a p-Bernoulli bond perolation on G, thenumber of in�nite lusters in ! is an almost sure onstant whih is either 0, 1 or1.Theorem 2.3 gives reason to introdue another quantity of interest, alongside p.We let pu = pu(G) be the in�mum of the set of p 2 [0; 1℄ suh that p-Bernoullibond perolation has a unique in�nite luster a:s: Shonmann [16℄ showed for alltransitive graphs that for all p > pu, one has uniqueness. In view of Theorem 2.3this means there are at most three phases for p 2 [0; 1℄ regarding the number ofin�nite lusters, namely one for whih this number is 0, one where the number is1and �nally one where uniqueness holds.A problem whih in reent years has attrated muh interest is to deide forwhih graphs p < pu. It turns out that whether a graph is amenable or not isentral in settling this question:For K � V , the inner vertex boundary of K is de�ned as �VK := fy 2 K : 9x =2K; [x; y℄ 2 Eg and the edge boundary is de�ned as �EK := f(x; y) : [x; y℄ 2 E; x 2V; y 2 V nKg. The vertex-isoperimetri and edge-isoperimetri onstants for G arede�ned as�V (G) := infW j�VW jjW j and �E(G) := infW j�EW jjW jwhere the in�mum ranges over all �nite onneted subsets W of V .Definition 2.4 A bounded degree graph G = (V;E) is said to be amenable if�V (G) = 0 (or equivalently �E(G) = 0). If instead �V (G) > 0 we say that the graphis nonamenable.Benjamini and Shramm [6℄ have made the following general onjeture:Conjeture 2.5 If G is transitive, then pu > p if and only if G is nonamenable.Burton and Keane [7℄ solved one part of Conjeture 2.5:Theorem 2.6 Assume that G is transitive and amenable. If ! is a p-Bernoulliperolation on G with p > p, then ! ontains a unique in�nite luster a:s:In fat, they only proved Theorem 2.6 in the ase when G is the graph with vertexset Z2 and whose edge set is all pairs of verties at Eulidean distane 1 from eahother, but their argument was quikly realized to work for all amenable transitivegraphs. To illustrate the role of amenability, we inlude the main ingredients of theproof. For full details we refer to [12℄.Proof. By Theorem 2.3, it is enough to rule out the ase of in�nitely manyin�nite lusters, so suppose for ontradition that the number of in�nite lusters isin�nite. We may assume without loss of generality that the degree of the graph isat least three. A vertex v 2 V is said to be a trifuration if1. v is in an in�nite luster;2. there exist exatly three edges inident to v in !; and3



3. the deletion of x and these three edges splits the in�nite luster into exatlythree disjoint in�nite lusters and no �nite lusters.Let t be the probability that a given vertex is a trifuration (by transitivity, t is inde-pendent of the hoie of vertex). Sine there are in�nitely many in�nite lusters wemay hoose a vertex v and W 3 v so big that �W with positive probability ontainsat least three verties belonging to three disjoint in�nite lusters. Conditioned onthis, there is positive probability that all edges of W are losed exept three disjointpaths in ! leading from three suh verties to v. But then v is a trifuration. Sot > 0.Next suppose A is a �nite set of trifurations belonging to the same in�niteluster K. A member of A is said to be an outer member if at least two of thedisjoint in�nite lusters resulting from its removal ontain no other member of A. Itis not diÆult to show that A must ontain at least one outer member. We will nowshow by indution on jAj that the removal of all trifurations in A will divide K intoat least jAj+ 2 disjoint in�nite lusters. The laim is trivial for jAj = 1. Assume itholds for jAj = j and suppose A is a set of j + 1 trifurations in the same in�niteluster. Let v be an outer member of A. The removal of all verties in Anfvg splitsthe in�nite luster into at least j + 2 disjoint ones. Sine v is outer the removal ofit gives one more in�nite luster, ompleting the indution.Hene an in�nite luster with j trifurations in a �nite set W � V must interset�W in at least j + 2 verties, and therefore W annot ontain more than j�W j � 2trifurations. Denote by T (W ) the number of trifurations in W . Then, by thetransitivity of G, E[T (W )℄ = jW jt. Sine T (W ) � j�W j � 2, this givest � j�W j � 2jW j :By the amenability of G, we may hoose W so that the right hand side of the abovebeomes arbitrarily small. Thus t = 0, a ontradition. 2The other diretion of Conjeture 2.5 has only been partially solved. Here is onesuh result that will be of partiular interest to us, due to Benjamini and Shramm[5℄. This an be onsidered as the disrete analogue to our main theorem. First,another de�nition is needed.Definition 2.7 Let G = (V;E) be an in�nite onneted graph and for W � V letNW be the number of in�nite lusters of G nW . The number supW NW where thesupremum is taken over all �nite W is alled the number of ends of G.Theorem 2.8 Let G be a nonamenable, planar transitive graph with one end. Then0 < p(G) < pu(G) < 1 for Bernoulli bond perolation on G.We will not disuss the ondition that G an only have one end in Theorem 2.8further. However, a homogeneous tree has in�nitely many ends and pu = 1.We now review some of the results used in the proof of Theorem 2.8. In Setion4 we will prove ontinuous analogues to several of them.The study of a ertain kind of dependent perolation has produed results thathave been of great help in the study of independent (Bernoulli) perolation.4



Definition 2.9 A random subgraph ! of G = (V;E) is said to be an automorphisminvariant bond perolation on G if ! has the same distribution as g! for eahg 2Aut(G) and the vertex set of ! is V .Clearly, usual Bernoulli bond perolation is inluded in this de�nition.A powerful tool for handling automorphism invariant perolation is the so alledmass transport priniple.Let m(u; v; !) be a nonnegative funtion with three arguments; two verties uand v and ! a subgraph of G. Also suppose m(u; v; !) = m(gu; gv; g!) for allu; v 2 V , all subgraphs ! and all g 2 Aut(G). One should think of m(u; v; !) asthe amount of mass transported from u to v when the perolation results in !. Wepresent the mass transport priniple for a ertain lass of transitive graphs only,namely Cayley graphs, sine the proof in this ase is simple, and will later be moreeasily related to the proof of the ontinuous analogue, Theorem 3.4.Definition 2.10 Let � be a �nitely generated group and let S = fg�11 ; :::; g�1n g be a�nite symmetri set of generators for �. The (right) Cayley graph of � is the graphG = (V;E) where V := � and [g; h℄ 2 E if and only if g�1h 2 S.Note that for eah pair of elements u; v 2 � there is a unique element g 2 � suhthat u = gv. Therefore, all Cayley graphs are transitive, and � an be identi�edwith a subgroup of Aut(G).Theorem 2.11 (The mass transport priniple) If G is a Cayley graph, ! anautomorphism invariant bond perolation on G, then for any u 2 VXv2V E[m(u; v; !)℄ =Xv2V E[m(v; u; !)℄:Theorem 2.11 and the proof we present below is due to Benjamini, Lyons, Peresand Shramm [3℄. The same authors [4℄ prove the mass transport priniple for awider lass of transitive graphs. The �rst version of the mass transport priniplewas proved by H�aggstr�om [11℄, for homogeneous trees. In words, the mass transportpriniple says that the expeted amount of mass transported out of the vertex v isthe same as the expeted amount of mass transported into it.Proof. Using the automorphism invarianes of ! and m and the remarksfollowing De�nition 2.10 we getXu2V E[m(u; v; !)℄ =Xg2� E[m(u; gu; !)℄ =Xg2� E[m(g�1u; u; g�1!)℄=Xg2� E[m(g�1u; u; !)℄ =Xu2V E[m(v; u; !)℄;ompleting the proof. 2Choosing the funtion m in di�erent ways, the mass transport priniple is used inthe proofs of the following theorems from [3℄.5



Theorem 2.12 Let G = (V;E) be a nonamenable Cayley graph with vertex degree dand ! an automorphism invariant bond perolation on G. If P[e 2 !℄ > 1��E(G)=dfor all e 2 E, then ! ontains in�nite lusters with positive probability.Theorem 2.13 Let G be a nonamenable Cayley graph and ! a p-Bernoulli bondperolation. If p = p(G) there are almost surely no in�nite lusters in !.Later in Setion 4, we will see that Theorems 2.12 and 2.13 are similar in spiritto Theorems 4.8 and 4.16 that in turn are major parts in the proof of our maintheorem, Theorem 4.2.3 The Hyperboli Dis H 2The hyperboli dis H 2 is the open unit dis in C equipped with the hyperbolimetri. The hyperboli metri is the metri whih to a urve  = f(t)g1t=0 assignslengthL() = 2 Z 10 j0(t)j1� j(t)j2dt;and to a set E assigns area�(E) = ZE d�(z)where d�(z) = 4 dx dy(1�(x2+y2))2 and z = x + iy. The linear isoperimetri inequality forH 2 says that for all measurable A � H 2 with L(�A) and �(A) well de�ned,L(�A)�(A) � 1: (3.1)Denote by d(x; y) the hyperboli distane between the points x and y. The losedhyperboli ball of radius r entered at x is the set S(x; r) := fy : d(x; y) � rg: Inwhat follows, area (resp. length) will always mean hyperboli area (resp. hyperbolilength). The formulas for the area and irumferene of S(0; r) are given byL(�S(0; r)) = 2� sinh(r) and �(S(0; r)) = 2�(osh(r)� 1): (3.2)Note thatL(�S(0; r)) = 2�r + o(r2) as r! 0 (3.3)and �(S(0; r)) = �r2 + o(r3) as r! 0: (3.4)Thus, at small sale, hyperboli length and area are lose to Eulidean length andarea. For more elementary fats about H 2 , we refer to [8℄.6



3.1 Mass transportNext, we present the mass transport priniple for H 2 , due to Benjamini and Shramm[5℄. It is essential for our results, thus we inlude a proof. First some preliminaryde�nitions are needed.Definition 3.1 A bijetive mapping of H 2 onto itself that preserves (hyperboli)distanes is alled an isometry.The set of isometries of H 2 forms a group under omposition, and we denote thisgroup by Isom(H 2).Definition 3.2 If A is some random subset of H 2 , we say that the distribution ofA is Isom(H 2)-invariant if gA has the same distribution as A for all g 2Isom(H 2).For example, a Poisson proess in H 2 has an Isom(H 2)-invariant distribution.Definition 3.3 A measure � on H 2 � H 2 is said to be diagonally invariant if forall measurable A; B � H 2 and g 2Isom(H 2)�(gA� gB) = �(A� B):Theorem 3.4 (Mass Transport Priniple in H 2) If � is a positive diagonallyinvariant measure on H 2 � H 2 suh that �(A � H 2) < 1 for some open A � H 2 ,then �(B � H 2) = �(H 2 � B)for all measurable B � H 2 .In all our appliations of this theorem, it turns out that � is absolutely ontinuouswith respet to � � �. Below we present a proof using this assumption. It turnsout that the ondition �(A � H 2) <1 for some open A an then be dropped. For� 2 H 2 , let g�(z) := (z � �)=(1� ��z). The set of funtions fg�g�2H2 is a subset ofIsom(H 2). Our proof requires only the diagonal invariane of � under this subset.Note that g� Æ g��(z) = z. The full proof of Theorem 3.4 is more involved, and werefer to [5℄.The intuition behind the mass transport priniple an be desribed as follows.One may think of �(A � B) as the amount of mass (or, in the ase that � is anexpetation, the expeted amount of mass) that goes from A to B. Thus the masstransport priniple says that the amount of mass that goes out of A equals the massthat goes into A.Proof. Suppose � � �� �. By the Radon-Nikodym theorem there is f suh that�(A � B) = RA�B f d(� � �) for all measurable A � B � H 2 � H 2 . By Fubini'stheorem,�(A�B) = ZA ZB f(a; b)d�(b)d�(a):7



Also for any g 2 Isom(H 2) we have, by Isom(H 2)-invariane of �,�(gA� gB) = ZgA ZgB f(a; b)d�(b)d�(a) = ZA ZB f(g(a); g(b))d�(b)d�(a):Sine � is diagonally invariant, it follows that f(x; y) = f(g(x); g(y)) a:e: for allg 2 Isom(H 2). Also, using Isom(H 2)-invariane of � again,ZH2 f(b; x)d�(x) = ZH2 f(b; g(x))d�(x) and ZH2 f(x; b)d�(x) = ZH2 f(g(x); b)d�(x)for all b 2 H 2 and g 2 Isom(H 2). Therefore,ZH2 f(b; x)d�(x) = ZH2 f(0; gb(x))d�(x) = ZH2 f(0; x)d�(x)= ZH2 f(gx(0); gx(x))d�(x) = ZH2 f(�x; 0)d�(x) = ZH2 f(x; 0)d�(x)= ZH2 f(g�b(x); g�b(0))d�(x) = ZH2 f(g�b(x); b)d�(x) = ZH2 f(x; b)d�(x):Using Fubini again we get�(B� H 2) = ZB ZH2 f(b; x)d�(x)d�(b) = ZB ZH2 f(x; b)d�(x)d�(b) = �(H 2 �B)ompleting the proof.24 The Poisson-Boolean model in H 2Definition 4.1 A point proess X on H 2 distributed aording to the probabilitymeasure P suh that for k 2 N, � � 0, and every measurable A � H 2 one hasP[jX(A)j = k℄ = e���(A) (��(A))kk!is alled a Poisson proess with intensity � on H 2 . Here X(A) = X \ A and j � jdenotes ardinality.In the Poisson-Boolean model in H 2 , just like in the orresponding model in R2 , atevery point of a Poisson proess X we plae a ball with unit radius. More preisely,we let C = Sx2X S(x; 1) and V = C and refer to C and V as the overed andvaant regions of H 2 respetively. For A � H 2 we let C[A℄ := Sx2X(A) S(x; 1) andV [A℄ := C[A℄. For x; y 2 H 2 , let dC(x; y) be the length of the shortest urveonneting x and y lying ompletely in C if there exists suh a urve, otherwise letdC(x; y) =1. Similarly, let dV (x; y) be the length of the shortest urve onneting xand y lying ompletely in V if there is suh a urve, otherwise let dV (x; y) =1. Theolletion of all omponents of C is denoted by C and the olletion of all omponentsof V is denoted by V. Let NC denote the number of unbounded omponents in C8



and NV denote the number of unbounded omponents in V . Next we introdueritial densities as follows. We let� := inff� : NC > 0 a.s.g;�u = inff� : NC = 1 a.s.g;�� = supf� : NV > 0 a.s. g;and ��u = supf� : NV = 1 a.s. g:Our main result is:Theorem 4.2 For the Poisson-Boolean model with unit radius in H 20 < � < �u <1:Furthermore, with probability 1,(NC ; NV ) = 8<: (0; 1); � 2 [0; �℄(1;1); � 2 (�; �u)(1; 0); � 2 [�u;1)A �rst step towards Theorem 4.2 is given by the below lemma.Lemma 4.3 For the Poisson-Boolean model in H 2 , �� <1 and � > 0.Proof. Let � be a regular tiling of H 2 into ongruent polygons of �nite diameter.The polygons of � an be identi�ed with the verties of a planar nonamenabletransitive graph G = (V;E). Next, we de�ne a Bernoulli site perolation ! on G.We delare eah vertex v 2 V to be in ! if and only if its orresponding polygon�(v) is not ompletely overed by C[�(v)℄. Clearly, the verties are delared to bein ! or not with the same probability and independently of eah other. Now for anyv, lim�!1P[v is in !℄ = 0:Thus, by Theorem 2.8, for � large enough, there are no in�nite lusters in !. But ifthere are no in�nite lusters in !, there are no unbounded omponents of V . Thus�� <1.To show � > 0 we adapt an argument due to Hall [13℄. Construt a branhingproess, whose members are points in H 2 , as follows. The individual in the 0'th gen-eration is taken to be the enter of a ball with unit radius. Without loss of generalitythe enter an be taken to be the origin. Given individuals Zn1; Zn2; :::; ZnNn in then:th generation, the (n+ 1):th generation is de�ned as follows. For l = 1; :::; Nn letXnl be a Poisson proess with intensity �, independent of the previous history of thebranhing proess and also ofXnl0 for l 6= l0 . At eah point ofXnl enter a ball of unitradius. The progeny of Znl is then taken to be the points of Xnl whose assoiatedballs interset that of Znl. The number of desendants of Znl learly has a Poisson9



distribution with expetation ��(S(0; 2)). Therefore, the expeted number of in-dividuals in generation n is given by �n�(S(0; 2))n and onsequently, the expetednumber of individuals in the whole branhing proess equals P1n=1 �n�(S(0; 2))n.Thus if � < �(S(0; 2))�1 � 0:0567, the expeted total number of individuals is�nite. However, the expeted number of individuals in the branhing proess isgreater than or equal to the expeted number of balls in a omponent of the overedregion in the Poisson-Boolean model. Thus � > 0:056. 24.1 FKG inequalityAs in the theory for disrete perolation, a orrelation inequality for inreasing anddereasing events turns out to be very useful. If ! and !0 are two realizations of aPoisson-Boolean model we write ! � !0 if any ball present in ! is also present in !0.Definition 4.4 An event A is said to be inreasing (respetively dereasing) if! � !0 implies 1A(!) � 1A(!0) (respetively 1A(!) � 1A(!0)).Here we present the FKG inequality for the �xed radius version of the Poisson-Boolean model in H 2 . The proof is very similar to the proof of the orrespondingtheorem in R2 , Theorem 2.2 from [15℄, but requires a minor modi�ation.Theorem 4.5 (FKG inequality) If A and B are both inreasing or both dereas-ing events, then P[A \B℄ � P[A℄P[B℄.Proof. Let fGng1n=1 be a sequene of tilings of H 2 into ells of equal area suh thatGn is obtained by splitting the ells of Gn�1 into smaller ells, andlimn!1(supfdiam(�) : � is a ell in Gng) = 0:We may take G1 to be the same as in the proof of Lemma 4.3. For eah ell � inGn, let Nn(�) = 1 if there is a Poisson point in � and 0 otherwise. Let Fn be the�-algebra generated by the random variables fNn(�) : � is a ell in Gng. Then, forany event A whih is de�ned in terms of the Poisson proess, fE[1AjFn℄g1n=1 is amartingale with respet to the �ltration fFng1n=1. Set F1 := �([1n=1Fn). ClearlyA is measurable with respet to F1. Now L�evy's upwards theorem giveslimn!1E[1AjFn℄ = E[1AjF1℄ = 1A a.s. (4.1)It is lear that for any n, any ! � !0, and any inreasing event A, E[1AjFn℄(!) �E[1AjFn℄(!0). Also it is obvious that the random variables Nn(C) are all indepen-dent. Therefore, for any two inreasing events A1 and A2, the usual (disrete) FKGinequality (see Theorem 2.4 in [10℄) givesE[E[1A1jFn℄E[1A2 jFn℄℄ � E[E[1A1jFn℄℄E[E[1A2jFn℄℄= E[1A1℄E[1A2℄:10



The dominated onvergene theorem and (4.1) givelimn!1E[E[1A1jFn℄E[1A2jFn℄℄ = E[1A11A2 ℄;ompleting the proof. 2We will also use the following simple orollary to Theorem 4.5, the proof of whihan be found in [10℄.Corollary 4.6 (The square root trik) If A1; A2; :::; Am are inreasingevents with the same probability, thenP[A1℄ � 1� (1�P[[mi=1Ai℄)1=m :The same holds when A1; A2; :::; Am are dereasing.4.2 The number of unbounded omponentsThe aim of this setion is to determine the possible values of (NC ; NV ). The �rstlemma is an appliation of the mass transport priniple. First, some notation isneeded. We write H 2 H if H is a union of elements from C and V suh that itsdistribution is Isom(H 2)-invariant, and let H denote the olletion of all omponentsof H. For h 2 H and sets A; B � H 2 we write A h! B if h intersets both A andB.Lemma 4.7 If H 2 H ontains only �nite omponents a.s., then for any measurableA E[�(A \H)℄ � E[L(A \ �H)℄:Before the proof we desribe the intuition behind it: We plae mass of unit densityin all of H 2 . Then, if h is a omponent of H, the mass inside h is transported to theboundary of h. Then we use the mass transport priniple: the expeted amount ofmass transported out of a subset A equals the expeted amount of mass transportedinto it. Finally we ombine this with the isoperimetri inequality (3.1). Proof. ForA; B � H 2 and H 2 H, let�(A� B; H) := Xh2H :A h!B �(B \ h)L(A \ �h)L(�h) :and let �(A � B) := E[�(A � B; H)℄. Sine the distribution of H is Isom(H 2)-invariant, we get for eah g 2Isom(H 2)�(gA� gB) = E[�(gA� gB; H)℄ = E[�(gA� gB; gH)℄= E[�(A� B; H)℄ = �(A�B): 11



Thus, � is a diagonally invariant positive measure on H 2�H 2 . We have �(H 2�A) =E [�(A \H)℄ and�(A� H 2) = E24 Xh2H :A h!H2 �(h)L(A \ �h)L(�h) 35 � E[L(A \ �H)℄where the last inequality follows from the linear isoperimetri inequality. Hene, thelaim follows by Theorem 3.4. 2We remark that obviously Lemma 4.7 holds for many other objets, that have adistribution whih is Isom(H 2) invariant.Lemma 4.8 Suppose H 2 H. If P[0 2 H℄ > (1 + 1=e)=(�1 + e) � 0:796 then Hontains unbounded omponents with positive probability.Note that P[z 2 H℄ is the same for all z 2 H 2 sine H 2 H. Proof. We assume thatH ontains only �nite omponents almost surely and use Lemma 4.7. Obviously wehave lim�!0P[S(0; �) \ �H 6= ;℄ = 0and lim�!0P[S(0; �) � H℄ = P[0 2 H℄:Therefore, using (3.4), we onludeE[�(S(0; �) \H)℄ = P[0 2 H℄��2 + o(�2) as �! 0: (4.2)In the same way, for small � > 0, the probability that S(0; �) intersets more thanone omponent of H is small ompared to the probability that S(0; �) intersets oneomponent. Also when � is small, onditioned on the event fS(0; �) \ �H 6= ;g,S(0; �) \ �H will be lose to a straight line suh that the distane from its middlepoint to the origin is uniformly distributed between 0 and �. ThusE[L(S(0; �) \ �H)jS(0; �) \ �H 6= ;℄ =Z �0 2p�2 � x2� dx+ o(�) = �2 � + o(�) as �! 0: (4.3)Using the independene of the Poisson proess, the obvious fat that �H � �C andformulas (3.2) we getP [S(0; �) \ �H 6= ;℄ � P [S(0; �) \ �C 6= ;℄� P[fjX(S(0; 1 + �)nS(0; 1� �))j > 0g \ fjX(S(0; 1� �))j = 0g℄= P[jX(S(0; 1 + �)nS(0; 1� �))j > 0℄P[jX(S(0; 1� �))j = 0℄= (1� exp (���(S(0; 1 + �)nS(0; 1� �))) exp (���(S(0; 1� �)))12



= exp (�2��(osh(1� �)� 1))� exp (�2��(osh(1 + �)� 1))= 4 exp (2�� � 2�� osh(1))�� sinh(1)�+ o(�2) as �! 0: (4.4)Hene, by (4.3) and (4.4),E [L(S(0; �) \ �H)℄ � 2 exp (2�� � 2�� osh(1))��2 sinh(1)�2+o(�2) as �! 0: (4.5)By Lemma 4.7, E[�(S(0; �) \ H)℄ � E[L(S(0; �) \ �H)℄, so by (4.2) and (4.5) itfollows thatP[0 2 H℄ � 2 exp (2�� � 2�� osh(1))�� sinh(1): (4.6)By straightforward alulations, the right hand side in (4.6) is at most (1+1=e)=(�1+e) for all �. This ompletes the proof. 2Lemma 4.9 NC is an almost sure onstant whih equals 0, 1 or 1.Proof. First we show, following [12℄, that NC is an a:s: onstant. For n 2f0; 1; 2; :::g [ f1g let Dn be the event that NC = n. Assume for ontraditionthat there is n suh that0 < P[Dn℄ < 1 (4.7)and �x suh an n. For a point z in H 2 and a positive integer k, let1n;z;k := � 0 if P[DnjX(S(z; k))℄ � 1=21 if P[DnjX(S(z; k))℄ > 1=2Thus 1n;z;k is the best guess of 1Dn given the on�guration of the Poisson proessin S(z; k). By L�evy's 0-1-law (see [9℄, page 263) we get for �xed z thatlimk!11n;z;k = 1Dn a.s. (4.8)Let z1; z2; ::: be a sequene of points suh that for eah k, S(z; k) and S(zk; k) donot interset. Sine (1Dn; 1n;zk;k) has the same joint distribution as (1Dn ; 1n;z;k), weget from (4.8) that 1n;zk;k onverges in probability to 1Dn as k !1. Thuslimk!1P[1n;zk;k = 1n;z;k = 1Dn ℄ = 1: (4.9)But sine S(z; k) and S(zk; k) are disjoint, 1n;z;k and 1n;zk;k are independent randomvariables. Thus, using (4.7), we getlimk!1P[1n;zk;k = 1 = 1� 1n;z;k℄ = limk!1P[1n;zk;k = 1℄P[1n;z;k = 0℄= P[Dn℄(1�P[Dn℄) > 0:This ontradits (4.9), thus the assumption (4.7) is false, and there is n suh thatP[Dn℄ = 1. Next, we show that this n must be in f0; 1;1g. Suppose 2 � n <1. Sine n is �nite, it is possible to pik a large R > 0 suh that the event13



fS(x;R) intersets every unbounded omponent of Cg has positive probability forx 2 H 2 . With this R, we an then pik � > 0 small suh that the eventA := fS(x;R+1� �) intersets every unbounded omponent U of C[S(x;R)℄ghas positive probability. Let E := fS(x;R+1��) � C[S(x;R)℄g. Clearly P[E℄ > 0.Sine A depends only on X(S(x;R)) and E depends only on X(S(x;R)), they areindependent. Hene, P[A \ E℄ > 0. But on A \ E, there is only one unboundedomponent of C, a ontradition. Therefore, n 2 f0; 1;1g. 2Corollary 4.10 For the Poisson-Boolean model in H 2 , � < 0:407.Proof. Sine P[0 2 C℄ = P[jX(S(0; 1))j > 0℄ = 1� exp (�2��(osh(1)� 1))> 2 exp (2�� � 2�� osh(1))�� sinh(1)if � > 0:4063, the desired onlusion follows from (4.6) and Lemma 4.9.2The next Lemma is proved in the same fashion as Lemma 4.9.Lemma 4.11 NV is an almost sure onstant whih equals 0, 1 or 1.Proof. If Dn is the event that NV = n, it follows in the same way as in the proofof Lemma 4.9 that there is n suh that P[Dn℄ = 1, and it remains to show that thisn 2 f0; 1;1g. Suppose 2 � n <1 is an integer and NV = n a.s. Pik R > 0 suhthat the eventA := fS(0; R) intersets all unbounded omponents U of V ghas positive probability, whih is possible sine n is �nite. Removing �nitely manypoints from X and assoiated balls does not inrease the number of unboundedvaant omponents. ThusB := fS(0; R) intersets all unbounded omponents U of V [S(0; R + 1)℄g:also has positive probability. Let D = fjX(S(0; R + 1))j = 0g. Sine B and D areindependent and D has positive probability, B \D has positive probability. But onB \ D there is only one unbounded omponent of V . This ontradits the initialassumption, ompleting the proof. 2Lemma 4.12 For H 2 H, H and/or H ontains unbounded omponents almostsurely.Proof. Suppose H and D := H ontains only �nite omponents, and let in thisproof H0 and D0 be the olletions of the omponents of H and D respetively.Then every element h of H0 is surrounded by a unique element h0 of D0, whih inturn is surrounded by a unique element h00 of H0. In the same way, every elementd of D0 is surrounded by a unique element d0 of H0 whih in turn is surrounded by14



a unique element d00 of D0. Indutively, for j 2 N , let Hj+1 := fh00 : h 2 Hjg andDj+1 := fd00 : d 2 Djg. Next, for r 2 N , letAr := r[j=0(fh 2 H0 : supfi : h 2 Hig = jg [ fd 2 D0 : supfi : d 2 Dig = jg):In words, Hj and Dj de�ne layers of omponents from H and D. Thus Ar is theunion of all layers of omponents from H and D that have at most r layers insideof them. Obviously Ar 2 H for all r andlimr!1P[0 2 Ar℄ = 1:Hene, by (4.8), there is R suh that for r � R,P[Ar has unbounded omponents℄ > 0:But by onstrution, for any r, Ar has only �nite omponents. Hene the initialassumption is false.2Lemma 4.13 The ases (NC ; NV ) = (1; 1) and (NC ; NV ) = (1;1) have probability0.Proof. Suppose NC =1. First we show that it is possible to pik R > 0 suh thatthe eventA(x;R) :=fS(x;R) intersets at least 2 disjoint unbounded omponents of C[S(x;R)℄ghas positive probability for x 2 H 2 . Suppose S(x; r) intersets an unbounded om-ponent of C for some r > 0. Then if S(x; r) does not interset some unboundedomponent of C[S(x; r)℄, there must be some ball entered in S(x; r+2)nS(x; r+1)being part of an unbounded omponent of C[S(x; r + 1)℄, whih is to say thatS(x; r + 1) intersets an unbounded omponent of C[S(x; r + 1)℄. Clearly an �nd~R suh thatB(x; ~R) :=fS(x; ~R) intersets at least 3 disjoint unbounded omponents of Cg:By the above disussion it follows that P[A(x; ~R) [ A(x; ~R + 1)℄ > 0, whih provesthe existene of R suh that A(x;R) has positive probability. Pik suh an R and letE(x;R) := fS(x;R) � C[S(x;R)℄g. E has positive probability and is independentof A so A \ E has positive probability. By planarity, on A \ E, V ontains at least2 unbounded omponents. So with positive probability, NV > 1. By Lemma 4.11,NV =1 a.s. This �nishes the �rst part of the proof.Now instead suppose NV =1 and pik R > 0 suh thatA(x;R) := fS(x;R) intersets at least two unbounded omponents U of V g15



has positive probability. LetB(x;R) := fC[S(x;R + 1)℄ ontains at least 2 unbounded omponentsg:On A, CnS(0; R) ontains at least two unbounded omponents, whih in turn impliesthat B ours. Sine P[A℄ > 0 this gives P[B℄ > 0. Sine B is independent ofF (x;R) := fjX(S(x;R + 1))j = 0g whih has positive probability, P[B \ F ℄ > 0.On B \ F , C ontains at least two unbounded omponents. By Lemma 4.9 we getNC =1 a.s. 2Lemma 4.14 The ase (NC ; NV ) = (1; 1) has probability 0.Proof. Assume (NC ; NV ) = (1; 1) a.s. Fix x 2 H 2 . Denote by AuC(R) (respe-tively AdC(R), ArC(R), AlC(R)) the event that the uppermost (respetively lower-most, rightmost, leftmost) quarter of �S(x;R) intersets an unbounded omponentof CnS(x;R). Clearly, these events are inreasing. Sine NC = 1 a.s.,limR!1P[AuC(R) [ AdC(R) [ ArC(R) [ AlC(R)℄ = 1:Hene by Corollary 4.6, limR!1P[AtC(R)℄ = 1 for t 2 fu; d; r; lg. Now let AuV (R)(respetively AlV (R), ArV (R), AlV (R)) be the event that the uppermost (respetivelylowermost, rightmost, leftmost) quarter of �S(x;R) intersets an unbounded om-ponent of V nS(x;R). Sine these events are dereasing, we get in the same way asabove that limR!1P[AtV (R)℄ = 1 for t 2 fu; d; r; lg. Thus we may pik R1 so bigthat P[AtC(R1)℄ > 7=8 and P[AtV (R1)℄ > 7=8 for t 2 fu; d; r; lg. LetA := AuC(R1) \ AdC(R1) \ AlV (R1) \ ArV (R1):Bonferroni's inequality implies P[A℄ > 1=2. On A, CnS(x;R) ontains two disjointunbounded omponents. Sine NC = 1 a.s., these two omponents must almostsurely on A be onneted. The existene of suh a onnetion implies that there areat least two unbounded omponents of V , an event with probability 0. This givesP[A℄ = 0, a ontradition. 2Proposition 4.15 Almost surely, (NC ; NV ) 2 f(1; 0); (0; 1); (1;1)g.Proof. By Lemmas 4.9 and 4.11, eah of NC and NV is in f0; 1; 1g. Lemma4.12 with H � C rules out the ase (0; 0). Hene Lemmas 4.13 and 4.14 implythat it remains only to rule out the ases (0;1) and (1; 0). But sine every twounbounded omponents of C must be separated by some unbounded omponent ofV , (1; 0) is impossible. In the same way, (0;1) is impossible. 24.3 The situation at � and ��It turns out that to prove the main theorem, it is neessary to investigate whathappens regarding NC and NV at the intensities � and ��. Our proofs are inspiredby the proof of Theorem 1.1 in [3℄, whih says that ritial Bernoulli perolationon nonamenable Cayley graphs does not ontain in�nite lusters. Notably, for thePoisson Boolean model in R2 , it is the ase that (NC ; NV ) = (0; 0) a.s. at � (see[1℄). By Proposition 4.15, this is not possible in H 2 .16



Theorem 4.16 At �, NC = 0 a.s.Proof. We begin with ruling out the possibility of a unique unbounded omponentof C at �. Suppose � = � and that NC = 1 a.s. Denote the unique unboundedomponent of C by U . By Proposition 4.15, V ontains only �nite omponentsa.s. Let � > 0 be small and remove eah point in X with probability � and denoteby X� the remaining points. Furthermore, let C� = [x2X�S(x; 1). Sine X� is aPoisson proess with intensity � � � it follows that C� will ontain only boundedomponents a.s. Let C� be the olletion of all omponents of C�. We will nowonstrut H� as a union of elements from C� and V suh that the distribution ofH� will be Isom(H 2)-invariant. For eah z 2 H 2 we let U�(z) be the union of theomponents of U \C� being losest to z. We let eah h from C� [ V be in H� if andonly if supz2h d(z; U) < 1=� and U�(x) = U�(y) for all x; y 2 h. It is now lear foralmost every realisation of the underlying Poisson proess X,lim�!0P[0 2 H�jX℄ = 1:Hene the Bounded Convergene Theorem giveslim�!0P[0 2 H�℄ = 1:Sine H� is not a union of elements from C and V, Lemma 4.8 is not diretly applia-ble. However, as �! 0, (�C[�C�) # �C. By inspeting the proof of Lemma 4.8 (thealulation leading to (4.4)), we see that this is enough to onlude that if P[0 2 H�℄is lose enough to 1, H� ontains unbounded omponents with positive probability.Suppose h1; h2; ::: is an in�nite sequene of distint elements from C� [ V suh thatthey onstitute an unbounded omponent of H�. Then U�(x) = U�(y) for all x; y inthis omponent. Hene U \ C� ontains an unbounded omponent (this partiularonlusion ould not have been made without the ondition supz2h d(z; U) < 1=� inthe de�nition of U�(z)). Therefore we onlude that the existene of an unboundedomponent in H� implies the existene of an unbounded omponent in C�. HeneC� ontains an unbounded omponent with positive probability, a ontradition.We move on to rule out the ase of in�nitely many unbounded omponents of Cat �. Assume NC = 1 a.s. at �. As in the proof of Lemma 4.13, we hoose Rsuh that for x 2 H 2 the eventA(x;R) :=fS(x;R) intersets at least 3 disjoint unbounded omponents of C[S(x;R)℄ghas positive probability. Let B(x;R) := fS(x;R) � C[S(x;R)℄g for x 2 H 2 . SineA and B are independent, it follows that A\B has positive probability. On A\B,x is ontained in an unbounded omponent U of C. Furthermore, UnS(x;R + 1)ontains at least three disjoint unbounded omponents. Now let Y be a Poissonproess independent of X with some positive intensity. We all a point y 2 H 2 aenounter point if� y 2 Y ;� A(y; R) \ B(y; R) ours; 17



� S(y; 2(R+ 1)) \ Y = fyg.The third ondition above means that if y1 and y2 are two enounter points,then S(y1; R + 1) and S(y2; R + 1) are disjoint sets. By the above, it is lear thatgiven y 2 Y , the probability that y is an enounter point is positive. We now moveon to show that if y is an enounter point and U is the unbounded omponent ofC ontaining y, then eah of the disjoint unbounded omponents of UnS(y; R + 1)ontains a further enounter point.Letm(s; t) = 1 if t is the unique enounter point losest to s in C, andm(s; t) = 0otherwise. Then let for measurable sets A; B � H 2�(A� B; X; Y ) = Xs2Y (A) Xt2Y (B)m(s; t)and �(A�B) = E[�(A� B; X; Y )℄:Clearly, � is a positive diagonally invariant measure on H 2 �H 2 . Suppose A is someball in H 2 . Sine Pt2Y m(s; t) � 1 we get�(A � H 2) � E[jY (A)j℄ < 1. On the other hand, if y is an enounter pointlying in A and with positive probability there is no enounter point in some of theunbounded omponents of UnS(y; R + 1) we get Ps2Y Pt2Y (A)m(s; t) = 1 withpositive probability, so �(H 2 � A) =1, whih ontradits Theorem 3.4.The proof now ontinues with the onstrution of a forest F , that is a graphwithout loops or yles. Denote the set of enounter points by T , whih is a.s.in�nite by the above. We let eah t 2 T represent a vertex v(t) in F . For a givent 2 T , let U(t) be the unbounded omponent of C ontaining t. Then let k be thenumber of unbounded omponents of U(t)nS(t; R+1) and denote these unboundedomponents by C1, C2,..., Ck. For i = 1; 2; :::; k put an edge between v(t) and thevertex orresponding to the enounter point in Ci whih is losest to t in C (thisenounter point is unique by the nature of the Poisson proess).Next, we verify that F onstruted as above is indeed a forest. If v is avertex in F , denote by t(v) the enounter point orresponding to it. Supposev0; v1; :::; vn = v0 is a yle of length � 3, and that dC(t(v0); t(v1)) < dC(t(v1); t(v2)).Then by the onstrution of F it follows that dC(t(v1); t(v2)) < dC(t(v2); t(v3)) <::: < dC(t(vn�1); t(v0)) < dC(t(v0); t(v1)) whih is impossible. Thus we must havethat dC(t(vi); t(vi+1)) is the same for all i 2 f0; 1; ::; n � 1g. The assumptiondC(t(v0); t(v1)) > dC(t(v1); t(v2)) obviously leads to the same onlusion. But ify 2 Y , the probability that there are two other points in Y on the same distane inC to y is 0. Hene, yles exist with probability 0, and therefore F is almost surelya forest.Now de�ne a bond perolation F� � F : De�ne C� in the same way as above.Let eah edge in F be in F� if and only if both enounter points orresponding toits end-verties are in the same omponent of C�. Sine C� ontains only boundedomponents, F� ontains only �nite onneted omponents.For any vertex v in F we let K(v) denote the onneted omponent of v in F�and let �FK(v) denote the inner vertex boundary of K(v) in F . Sine the degree of18



eah vertex in F is at least 3, and F is a forest, it follows that at least half of theverties in K(v) are also in �FK(v). Thus we onludeP[x 2 T; v(x) 2 �FK(v(x))jx 2 Y ℄ � 12P[x 2 T jx 2 Y ℄:The right-hand side of the above is positive and independent of �. But the left-handside tends to 0 as � tends to 0, sine when � is small, it is unlikely that an edge inF is not in F�. This is a ontradition.2By Proposition 4.15, if NC = 0, then NV = 1 a:s. Thus we have an immediateorollary to Theorem 4.16.Corollary 4.17 At �, NV = 1 a:s:Next, we show the orresponding results for �u. Obviously, the nature of V is quitedi�erent from that of C, but still the proof of Theorem 4.18 below di�ers only indetails to that of Theorem 4.16. We inlude it for the onveniene of the reader.Theorem 4.18 At �u, NV = 0 a.s.Proof. Suppose NV = 1 a.s. at �u and denote the unbounded omponent of V by U .Then C ontains only �nite omponents a:s: by Proposition 4.15. Let � > 0 and letZ be a Poisson proess independent of X with intensity �. Let C� := [x2X[ZS(x; 1)and V� := C� . Sine X [ Z is a Poisson proess with intensity �u + � it follows thatC� has a unique unbounded omponent a.s. and hene V� ontains only boundedomponents a.s. Let V� be the olletion of all omponents of V�. De�ne H� in thefollowing way: For eah z 2 H 2 we let U�(z) be the union of the omponents of U\V�being losest to z. We let eah h 2 C[V� be in H� if and only if supz2h d(z; U) < 1=�and U�(x) = U�(y) for all x; y 2 h. Then,lim�!0P[0 2 H�℄ = 1:As in the proof of Theorem 4.16 this is enough to onlude that for � small enough,H� ontains an unbounded omponent with positive probability, and therefore V�ontains an unbounded omponent with positive probability, a ontradition.Now suppose that � = �u and NV = 1. Then also NC = 1 by Proposition4.15. Therefore, for x 2 H 2 , we an hoose R > 1 suh that the intersetion of thetwo independent eventsA(x;R) :=fS(x;R) intersets at least 3 disjoint unbounded omponents of C[S(x;R)℄gand B(x;R) := fjX(S(x;R))j = 0g has positive probability. Next, suppose that Yis a Poisson proess independent of X with some positive intensity. We all y 2 H 2an rendezvous point if� y 2 Y ;� A(y; R) \ B(y; R) ourrs; 19



� S(y; 2R) \ Y = fyg.By the above disussion,P[y is an rendezvous point j y 2 Y ℄ > 0:If y is a rendezvous point, y is ontained in an unbounded omponent U of V andUnS(y; R) ontains at least 3 disjoint unbounded omponents. In the same way asin the proof of Theorem 4.16 an in�nite forest F in whih every vertex has degreeat least three is onstruted, the only di�erene being that the verties in this aseorrespond to the rendezvous points.Again we de�ne a bond perolation F� � F . Let V� be de�ned as above. Eahedge of F is delared to be in F� if and only if both its end-verties are in the sameomponent of V�. Then F� ontains only �nite onneted omponents a.s. Now withthe same notion as in the proof of Theorem 4.16,P[y 2 T; v(y) 2 �FK(v(y))jy 2 Y ℄ � 12P[y 2 T jy 2 Y ℄:Letting �! 0 leads to the desired ontradition. 2Again, Proposition 4.15 immediately implies the following orollary:Corollary 4.19 At �u, NC = 1 a:s:4.4 Proof of Theorem 4.2Here we ombine the results from the previous setions to prove our main theorem.Proof of Theorem 4.2: If � < �u then Proposition 4.15 implies NV > 0 a.s.giving � � ��. If � > �u the same proposition gives NV = 0 a.s. giving � � ��.Thus �u = �� : (4.10)By Theorem 4.16 NC = 0 a.s. at �, so NV > 0 a.s. at � by Proposition 4.15. Thusby Theorem 4.18� < ��: (4.11)Hene the desired onlusion follows by (4.10), (4.11) and Lemma 4.3. 2Obviously, we an also onsider the Poisson-Boolean model in H 2 with any �xedradius R. However, the proof given here of Theorem 4.2 does not work for all R.Consider the proof of Lemma 4.8. That proof gives that if H 2 H and H onlyontains bounded omponents a:s, thenP[0 2 H℄ � 2 exp(2�� � 2�� oshR)�� sinhR:Some alulus gives that this is bounded by 1 for all � only ifR � osh�1(1� 2=(1� e2)) � 0:772:20
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