

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Göteborg, Sweden, June 2009

Developing Mobile Services for Joomla! 1.5

Master of Science Thesis in the Programme Software Engineering and

Technology

Patrik Strömvall Lundqvist

Malte Wannerskog

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Developing Mobile Services for Joomla! 1.5

Patrik Strömvall Lundqvist

Malte Wannerskog

© Patrik Strömvall Lundqvist, June 2009.

© Malte Wannerskog, June 2009.

Examiner: Sven-Arne Andreasson

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2009

Abstract

This master thesis has led to the development of a tool Mobile Base for
Joomla! which offers a library of functions as well as a graphical interface.
This tool is easily installed on a fresh Joomla! installation and can be used
by persons that want to develop extensions for Joomla! which should offer
mobile services such as sending and receiving SMS and MMS messages.

Mobile gateways can be used in order to send and receive SMS and MMS
messages. By using the functions provided by the library included in Mobile
Base a developer does not have to understand how to use mobile gateways,
instead he can focus on the unique functions that he wants to develop.

The library offers functions to send basic text and multimedia messages as
well as more advanced messages such as binary text messages and messages
that configure the settings in a mobile phone according to the Over-The-Air
Client Provisioning standard issued by the Open Mobile Alliance.

Keywords: Joomla!, Mobile Phone, SMS, MMS, Client Provisioning, Mo-
bile Gateways

Sammanfattning

Det här examensarbetet har lett fram till utvecklandet utav ett verktyg Mo-
bile Base för Joomla! Som dels erbjuder ett bibliotek med funktioner samt ett
grafiskt gränssnitt. Verktyget kan enkelt installeras på en ny Joomla! Instal-
lation och kan användas utav personer som vill utveckla tillägg för Joomla!
som ska erbjuda mobila tjänster som att skicka och ta emot SMS och MMS
meddelanden.

Mobilgateways kan användas för att skicka och ta emot SMS och MMS med-
delanden. Genom att använda funktionerna tillängliga i biblioteket i Mobile
Base behöver en utvecklare inte sätta sig in i hur man använder mobilgate-
ways utan kan istället fokusera på de unika funktioner som han vill utveckla.

Biblioteket erbjuder dels funktioner för att skicka enkla text- och multimedi-
ameddelanden men även mer avancerade meddelanden som binära textmed-
delanden samt meddelanden som konfigurerar inställningarna i en mobil-
telefon enligt standarden Over-The-Air Client Provisioning satt utav Open
Mobile Alliance.

Nyckelord: Joomla!, Mobiltelefon, SMS, MMS, Client Provisioning, Mo-
bilgateways

Preface

This master thesis is the result of our studies at Chalmers university of Tech-
nology were we have specialized in Software Engineering.

We would like to thank Crepido Systems AB for giving us the opportunity
to work with them on this thesis.

Our Special thanks go to Michael Walenius who is the regional manager
at Crepido Systems AB. He has been our mentor during this work and it
is his ideas that have made this work possible. During the months we have
spent on this work he has always supported our own ideas and thoughts and
it has been a great pleasure to work with him.

1

Contents
1 Introduction 4

1.1 Background . 4
1.1.1 Joomla! . 4
1.1.2 Mobile Gateways . 6

1.2 Problem Description . 6
1.3 Purpose . 7
1.4 Scope of Work . 7

2 Analysis and Methodology 8
2.1 Joomla! . 8
2.2 Mobilstart . 8

2.2.1 Send SMS . 9
2.2.2 Send MMS . 10
2.2.3 Receiving SMS and MMS 11

2.3 Sending SMS from Joomla! . 11
2.4 Mobile Base . 13

2.4.1 Gateways . 14
2.4.2 SMS and MMS Messages 15
2.4.3 Payment and Transaction Methods 16
2.4.4 Open Mobile Alliance Client Provisioning 21

2.5 Extensions . 26
2.5.1 Intra SMS . 27
2.5.2 Send MMS . 27
2.5.3 Send E-Mail and Browser Settings 27
2.5.4 Mobile Gallery . 28
2.5.5 Mobile Quote . 28

3 Results 28
3.1 Extensions . 28

3.1.1 Mobile Base . 28
3.1.2 Send SMS . 35
3.1.3 Send MMS . 36
3.1.4 Intra SMS . 37
3.1.5 Mobile Quote . 40
3.1.6 Mobile Subscription . 40
3.1.7 Mobile Gallery . 42
3.1.8 Send E-mail and Browser Settings 44

4 Discussion 47

2

5 Conclusion 48

6 References 50

7 Glossary 51

3

1 Introduction

1.1 Background

There are several ways in which a mobile device can communicate with a
server. Examples are:

• Trough a web browser.
• Trough a client application installed on the mobile device.
• Trough plain text messages (SMS) and multimedia messages (MMS).

While they are all reasonable solutions, using SMS and MMS messages has
two advantages over the others. It doesn’t require that the mobile device
is connected to the internet, and it is safe to say that the majority of the
mobile devices on the market today are capable of sending and receiving
these messages. In addition to a mobile device it is necessary to have a
server capable of sending and receiving SMS and MMS messages. Preferably
these services should be available trough an user-friendly graphical interface.

1.1.1 Joomla!

Joomla! is a web content management system, it’s open source and free for
everyone to use. It allows a user with no or little knowledge about software
development to easily manage a web site. The functionality of a Joomla! site
can easily be extended by using different extensions; components, modules,
plug-ins and templates.

In order to install Joomla! 1.5 an Apace HTTP server capable of running
PHP Hypertext Preprocessor (PHP) and a My Structured Query Language
(MySQL) database is required.

Joomla! is divided into a front-end and a back-end. The front-end contains
the content of the website that is accessible for the regular user.

The purpose of the back-end is to provide a section for administrators of the
site to use. From here an administrator can control the content that will
be displayed in the front-end as well as change the behaviour of the various
extensions that are used on the site.

4

Components
Components are the most essential extensions; they contain the main content
of a page. Joomla! is designed to run one component for each page. A
component could for example be an online gallery, forum or an e-commerce
system.

Modules
Modules are used for smaller tasks; any number of modules can be displayed
on a page. A module can be a stand-alone extension or it could work in
conjunction with a component. Usually a module is used for one simple task
such as displaying data.

Plug-ins
A plug-in is code that changes the core functionality of the Joomla! frame-
work. Plug-ins can be used when a piece of code is needed throughout a site.
Common usage is to format the output of a component or a module.

Templates
The graphical presentation of a Joomla! site can easily be changed with the
use of templates. A template defines everything that has to do with the
appearance of the site. A template contains at least one HTML file defining
the structure of the site, and one CSS file for the design. It defines where
on the page different extensions should be displayed, as well as the graphical
representation of them.

Application Framework
Software developers that want to develop their own extensions can take ad-
vantage of the application framework provided by Joomla!. Joomla! supports
the Model-View-Control (MVC) design to control the logic flow in software.

• The model handles the data of the application.
• The View consists of the user interface.
• The Controller controls the flow of data in the application. It retrieves

data from the model and sends it to the view to be presented to the
user.

5

Figure 1.1: Joomla! MVC [6]

By using the framework provided by the Joomla! team it’s easier for devel-
opers to produce well structured code that is easy to work with.

1.1.2 Mobile Gateways

It is possible to send and receive SMS and MMS messages from and to a
computer system by using mobile gateways. There exist mobile gateways
that provide this service at no additional fee except the cost of sending the
SMS or MMS message. The mobile gateways often provide an API in order
for developers to integrate the service in a software system.

1.2 Problem Description

The task is to develop a set of components and modules for Joomla!. These
extensions will provide SMS and MMS functionality to a Joomla! site when

6

installed.

In order to be able to provide mobile services, the developed extensions will
use a mobile gateway. The gateway chosen for this task is Mobilstart [5].

The extensions that are to be developed must be capable of handling com-
munication between mobile phones and the system in both directions. The
system must be able to send a message to a mobile phone as well as being
able to receive and process messages from a mobile phone. These messages
can be both plain text messages (SMS) and multimedia messages (MMS).

It is important that this communication is done in a secure way.

The system must be able to handle payment for both incoming and outgoing
traffic. There exist several methods for this; the problem is to find the most
suitable solution of payment for both incoming and outgoing traffic.

When a user sends an SMS or MMS message to the system there should be
a way to recognize which user it is depending on the telephone number.

1.3 Purpose

The result of this work is a community site where users will have access to
different mobile services. It will be possible for an administrator to change
the fee for a certain service, when a user uses a service that is not free he
will be charged for this. These mobile services will be available through the
use of various extensions. It will be possible to install one or several of these
extensions on another site in order to easily provide mobile services on that
site

By developing these extensions for Joomla! we will gain a deeper knowledge
about Joomla!.

Furthermore the developed extensions will either be of commercial use for
Crepido Systems, or can be used internally within the company.

1.4 Scope of Work

The focus of this master thesis is to make an attempt to find a good way
to integrate mobile services into Joomla!. While there exists a wide variety

7

of web content management systems we will only consider Joomla! for this
master thesis. The main reason for this is that Crepido Systems uses Joomla!.
We will not perform an analysis of Joomla! or compare it to other web content
management systems.

We are going use existing solutions for sending and receiving SMS and MMS
messages by using mobile gateways. While it is possible to connect directly
to operators this would be expensive and require more work and is thus not
suitable for this master thesis.

2 Analysis and Methodology

2.1 Joomla!

Before we could begin to analyze how to best integrate mobile services into
Joomla!, we first had to learn extension development in Joomla!, as well as
familiarize ourselves with Mobilstart.

By reading the book Learning Joomla! 1.5 Extension Development [2] we
learnt how to develop modules and components for Joomla!. In order to
be able to develop good extensions it is important to learn the application
framework provided by Joomla!. This allows us to create extensions that have
a good structure and that are easy to extend with additional functionality if
needed.

In addition to the book, the Joomla! documentation provides excellent ex-
amples that was of great help. In particular it contains a very good tutorial
of how to develop components that implements the MVC pattern [7].

2.2 Mobilstart

In order to use Mobilstart we first had to register an account on Mobilstart.
Once we had done this we could start using their services. Every account
on Mobilstart shares the same shortnumber that messages are sent to and
received from, Mobilstarts’ shortnumber is 72500. This means that when we
use Mobilstart to send a message, 72500 will be the number listed as sender.

Mobilstart provides a set of APIs which makes it possible to integrate mobile

8

services in your own webpage [17, 18, 19]. The first step we took was to
familiarize ourselves with these APIs by developing some basic scripts.

2.2.1 Send SMS

Mobilstart provides a HTTP POST service which is used to send SMS and
MMS messages.

When sending an SMS the following parameters are mandatory and have to
be included in the HTTP POST that is sent to the service;

• msisdn: Phonenumber of the mobile device that the message is being
sent to.

• msg: Data or Text.
• shortnumber: The shortnumber assigned by mobilstart.
• username: Mobilstart username.
• password: Mobilstart password.

In addition to the mandatory parameters there are some optional parameters
that may be included;

• sendername: Name of the sender.
• destport: Destination UDHPort.
• originport: Originator UDHPort.
• expiry: Expiry time.
• isdata: If this parameter is sent, the msg parameter will be sent as

data, otherwise it will be sent as regular text.

Example 2.1 illustrates how an SMS can be sent by using a simple HTML
form.

9

<html>
<body>
<form action="https://extsms.bozoka.com/messaging/api/SmsCPost"
method="POST" accept-charset="utf-8">
Username: <input type="text" name="username"/>

Password: <input type="password" name="userpassword"/>

Shortnumber: <input type="text" name="shortnumber"/>

Phone number: <input type="text" name="msisdn"/>
Text: <input type="text" name="msg"/>

<input type="submit" value="Send SMS">
</form>
</body>
</html>

Example 2.1: HTML form for sending SMS through Mobilstart

When a message is sent using the service, an ID is returned. This means
that the message is being processed; it does not guarantee that the message
has been delivered to the mobile device.

2.2.2 Send MMS

Sending an MMS using Mobilstart is very similar to sending an SMS. The
difference is that another HTTP service is used and different parameters are
sent.

The following parameters are supported;

• msisdn: Phonenumber of the mobile device that the message is being
sent to.

• subject: The ISO-8859-1 encoded MMS subject to be sent.
• shortnumber: The shortnumber assigned by mobilstart.
• username: Mobilstart username.
• password: Mobilstart password.

Additionally at least one file attachment must be sent.

Example 2.2 illustrates how an MMS can be sent by using a simple HTML
form.

10

<html>
<body>
<form action="https://extsms.bozoka.com/messaging/api/MmsCPost"
method="POST" enctype="multipart/form-data" accept-charset="utf-8">
Username: <input type="text" name="username"/>

Password: <input type="text" name="userpassword"/>

Shortnumber: <input type="text" name="shortnumber"/>

Phone number: <input type="text" name="msisdn"/>
Subject: <input type="text" name="subject"/>

Attachment 1: <input type="file" name="test1"/>

Attachment 2: <input type="file" name="test2"/>

<input type="submit" value="Send">
</form>
</body>
</html>

Example 2.2: HTML form for sending MMS through Mobilstart

2.2.3 Receiving SMS and MMS

Receiving SMS and MMS messages can be easily achieved by using mobil-
Forward which is an application provided by Mobilstart for forwarding SMS
or MMS messages sent to 72500 to an HTTP server [19].

When a person sends a message to 72500 a prefix must be included in the
message. Mobilstart uses this prefix to uniquely match incoming messages
to a specific account. Each account has one prefix which can be changed by
the owner of the account.

When using mobilForward an order code is added along with an associated
script. An order code is a combination of the prefix and another unique
code word. When a person sends a message to 72500 including an ordercode
mobilForward will check for matching codes and forward the message to the
associated script.

2.3 Sending SMS from Joomla!

In order to test how to integrate the functionality to send SMS messages
from Joomla! we decided to develop two basic components.

11

The first was a component where users should be able to send SMS messages
from the site to a mobile device. Since we follow the MVC pattern we
wanted to let the view present the form to the user while the model sends the
message to Mobilstart. This means that the message needs to be forwarded
to Mobilstart directly from the code instead of using a form like in example
2.3. This can be achieved by using the PHP library cURL. cURL allows us
to connect to and communicate with an HTTPS server located at Mobilstart
[8].

Example 2.3 illustrates how an SMS message can be sent from PHP by using
cURL.

<?php
$url = "https://extsms.bozoka.com/messaging/api/SmsCPost";
$ch = curl_init();
$parameters="username=myusername&userpassword=mypassword
&shortnumber=72500&msisdn=46703123456&msg=Message goes here";
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_VERBOSE, TRUE);
curl_setopt($ch, CURLOPT_POSTFIELDS, $parameters);
$response = curl_exec($ch);
curl_close(\$ch);
?>

Example 2.3: sending SMS through Mobilstart with cURL

We decided that the second component should provide the functionality that
users can subscribe to newsletters. An administrator should then be able to
send an SMS message to all users who are subscribing. The structure for this
component was very similar to the first one with the difference that this also
featured an administrator interface in the back-end. Figure 2.1 illustrates
the information flow for the component.

After the two components were finished we realized that the models for both
components were very similar. Both components contained similar methods
for forwarding the message to Mobilstart.

12

Figure 2.1: Shows how the components communicate with Mobilstart

This redundancy felt unnecessary and we got the idea to develop a library of
functions that can be used when developing extensions that supports mobile
services. This would increase the development speed for such extensions
and save the developer a lot of time. Gathering all functionality for mobile
services in a library will also eliminate the need for a developer to learn the
gateway APIs, instead he can focus on the functionality of his extension.

2.4 Mobile Base

We decided to develop a component Mobile Base which would contain a
library of functions. When a developer wants to create a new component
that supports mobile services he can installMobile Base and use the provided
functions.

We decided that Mobile Base should provide the following functionality;

• Send SMS.
• Send MMS.
• Receive SMS.
• Receive MMS.
• Send Binary SMS.

13

• Send OMA OTA Client Provisioning settings.
• Handle different payment methods for services.
• Support several gateways.
• Log activity.

We decided to focus our work on the development of Mobile Base and then
continue to rebuild the previously developed extensions as well as develop a
set of new extensions which all use Mobile Base.

Figure 2.2: Shows how components communicate with Mobilstart through
Mobile Base

2.4.1 Gateways

One functionality that Mobile Base should offer is to support several gate-
ways. The reason for this is that gateways differ in financial aspects and they
offer different services. Potential users of Mobile Base might find one of the
gateways more suitable for their needs. We have chosen that Mobilstart and
MO-SMS are the gateways that should be supported.

An administrator should easily be able to change settings of the gateways in
the back-end of Mobile Base and also be able to specify which gateway to use
by default. Another reason why we wanted to support several gateways is
that it simplifies the possible future integration of additional gateways since
Mobile Base already has the structure to support it.

Table 2.1 shows a comparison chart over the different services that Mobilstart
and MO-SMS offers. MO-SMS is similar to Mobilstart when it comes to API’s
and technical usage.

14

Mobilstart MO-SMS
Send SMS Yes (0,60 SEK) Yes (0,50 SEK)
Send MMS Yes (1,20 SEK) Partially1(1,20 SEK)
Send binary SMS Yes (0,60 SEK) No
Receive SMS Yes (33% provision) Yes (28% provision)
Receive MMS Yes (33% provision) Yes (28% provision)
Price range for in-
coming SMS and
MMS messages

0-199 SEK 5-200 SEK

Table 2.1: Mobilstart vs MO-SMS comparison chart.

Security
Outgoing connections from Mobile Base to the gateways are secured over
HTTPS, this protects against confidentiality-attacks since the connection is
secure and the transferred data is encrypted.

Since incoming connections from a gateway to Mobile Base doesn’t use user-
name, password or any other identification procedure it can easily be manip-
ulated and forged. The first step to protect against this is to check whether
the IP address of the call matches the IP range of the gateway. Since an
IP address can be spoofed we need an authentication process to provide the
extra security, we achieve this by adding an identification in the call from
the gateway. The authentication process checks whether the identification
included in the call matches the one stored on the server. Since we now
have included an identification in the incoming connection, the need for a
HTTPS server has increased compared to before but it is not as important
as for outgoing connections since the IP check still applies a fair amount of
security. If either of the authentication or IP check fails the connection is
ignored.

2.4.2 SMS and MMS Messages

By importing the library included in Mobile Base it should be possible for
developers to call a function in order to send a message to a mobile phone.
There should exist functions that can be used to send SMS, MMS and binary
SMS.

1An incoming SMS or MMS must first have been registered so MO-SMS knows what
operator that phone number uses.

15

When sending an SMS the parameter for the function should be the message
and the phone number of the receiver. The parameters that should be passed
when calling the function for sending an MMS are the subject of the message,
the telephone number of the receiver, and the attachments of the MMS. When
sending a binary SMS the parameters for the function should be the binary
encoded message along with the telephone number of the receiver.

When receiving SMS and MMS messages from Mobilstart and MO-SMS the
name of the incoming parameters differ. In order to make it as easy as
possible for developers we wanted Mobile Base to receive these messages and
process the data, and output a formatted message that will look the same
for all SMS and MMS messages. By doing this the same parameter names
will be used regardless if Mobilstart or MO-SMS is used.

2.4.3 Payment and Transaction Methods

Since the services provided by the gateways costs money, Mobile Base should
be able to provide the owner of the site with the possibility to charge users for
using the services on the site. This is solved by giving the users the possibility
to transfer money to an account and fill a balance stored on Mobile Base.

A users’ balance on Mobile Base is charged every time the user uses a service.
An administrator should be able to set the global price for both SMS and
MMS messages in the back-end of Mobile Base. It can be set to zero, which
means that all services are free of charge. If a price parameter is set when a
component calls Mobile Base the global price is overridden with the specified
price. If a user doesn’t have enough money on the account, he will be notified
of this and he will not be able to use the service until his account is refilled
with money.

It should be easy for a user of the site to transfer money to his account
on Mobile Base. It should also be easy for the owner of the site to review
transactions made by the users. Since money is involved it is important that
the transaction is executed in a secure manner. When we discussed different
solutions we decided that a good solution would be to use PayPal because
PayPal will handle the actual money transfer and we will just handle the
communication between Mobile Base and PayPal. This guarantees that the
most critical part of the transfer is protected by the security of PayPal.

Since neither of us had worked with PayPal integration before this was a
new experience but we had a pretty good idea on how the transaction should

16

transpire; a user enters the amount he wants to transfer, then continues to
PayPal where the actual money transfer takes place. When the transfer is
completed the user is redirected back to our site and the system should now
be notified about the transfer.

Buy Now Button with Instant Payment Notification
When investigating how the PayPal transaction should happen the first step
we took was to find out how to implement a PayPal button on our site that
initiates a payment. We found that the most logical solution to this step
would be to add a Buy Now [11] button on the site. To add a Buy Now
button to the site a button must be created on PayPal where the price and
purchase item name is entered. PayPal then generates the code for the button
that should go on the website [11]. The transaction flow for the Buy Now
button is described in figure 2.3.

Figure 2.3: PayPal Transaction: Checkout Flow with a Buy Now button [11]

17

This method also offers a return URL so a user can return to our site after a
successful transfer [11]. While this is a good solution for our PayPal transac-
tion implementation it does not completely fulfil our needs. What’s missing
is that Mobile Base has no idea that a transfer has occurred. To solve this
problem we use a service offered by PayPal called Instant Payment Noti-
fication (IPN). The IPN service notifies Mobile Base whenever a payment
transaction has been completed and informs who performed the purchase
and how much money he or she transferred [12]. The IPN flow is shown in
figure 2.4:

1. The payment is completed through the Buy Now button.
2. PayPal sends an IPN message to our system.
3. We respond with the exact same message. This is a security measure.
4. PayPal responds with either a success or failure message.

Figure 2.4: PayPal Transaction: Checkout Flow with IPN Message [12]

With the Buy Now button combined with IPN we have a functional PayPal
payment transaction; however this solution is insufficient to use in our system
due to these issues:

18

1. The Buy Now button must have specific shop items and prices linked
to it.

2. The Buy Now button must be generated at PayPal before use.

So even though this is an acceptable solution we wanted something that does
not require any setup at PayPal except the creation of an account.

Express Checkout
After some more research and reading of the PayPal developer documentation
we found a service called Express Checkout. Express Checkout offers more
control over the different stages of payment and more customization; most
important it solves the issues from the solution with the Buy Now button
and IPN.

The Express Checkout has an API with several operations that, when used
in conjunction with each other, allows us to control the payment and the
overall transaction flow. We use three of the operations; SetExpressCheckout,
GetExpressCheckoutDetails and DoExpressCheckoutPayment. [13].

The SetExpressCheckout API operation sets up the Express Checkout trans-
action. Here we can specify information to customize the look and feel of the
PayPal site and the information it displays. The GetExpressCheckoutDetails
obtains information about the buyer from PayPal. DoExpressCheckoutPay-
ment completes and finalize the Express Checkout transaction. Each API
call requires the caller to pass his or hers PayPal API account information.

Figure 2.5 shows the Express Checkout execution flow:

1. The SetExpressCheckout operation is the first to be called. Here the
configuration is set to specify how the PayPal page flow should be;
amount, currency, purchase description, where to go if the purchase
has succeeded, where to go if the purchase is cancelled and since this
is a digital purchase no shipping will be needed.

2. PayPal responds with a Token, which is a temporary identification
number for this transaction. A Token’s lifetime is approximately three
hours.

3. The system redirects the user to PayPal with the Token as a parameter
so that PayPal knows which payment that is to be processed.

4. The user then logs in and confirms the details and is redirected back
to the system with the Token as parameter.

19

5. Here the user doesn’t have to confirm the order because it has al-
ready been done at PayPal so there is no need. However we do call
the GetExpressCheckoutDetails in order to get information about the
transaction.

6. Finally a call to the operation DoExpressCheckoutPayment is made
which finalizes the payment; either successfully or unsuccessfully de-
pending on whether or not the security measures has been fulfilled.

Figure 2.5: PayPal Transaction: Express Checkout Execution Flow [13]

20

Express Checkout fulfills the demands we had on PayPal payment transac-
tions. All that is needed for Express Checkout is a PayPal account. No
interaction with PayPal is necessary such as Buy Now button generation or
IPN setups. It is also easy to use; both for developers, administrators and
end-users.

Security
As seen in figure 2.5, the communication with PayPal travels back and forth
like a real life conversation. This means that the system is exposed to Man-
In-The-Middle (MITM) attacks. Even though the traffic from the system to
PayPal is encrypted by HTTPS, we cant assure complete security. Even if
both directions were encrypted by HTTPS we still couldn’t assure complete
security and MITM attacks would still be possible. The possible result of
a MITM attack could be that the system could be fooled in to thinking
that money was transferred when in fact no transaction occurred. Before
we realised MITM attacks was possible we thought that a good idea would
be that as soon as a transfer was completed the users account should be
filled. The result of this could be that an attacker could fill his account
with money and spend it on the site before he is caught. To eliminate the
problem we changed the acceptance of money transfer to be done manually
by administrators. The general idea here is that an administrator checks
the PayPal account to make sure that an actual transfer was made. This
would result in that administrators would put a lot of work in to checking
the PayPal account continuously, but this is the only way to ensure complete
security which we think is necessary.

2.4.4 Open Mobile Alliance Client Provisioning

The system should be able to send e-mail and internet settings to a mobile
phone. Both of us were aware that this can be done, but we had no experience
in the development of it. The end-user has a mobile phone which he wants
to configure with e-mail settings. He can do this manually but if the user
is not familiar with how to do this it’s both easier and quicker to get the
settings sent to the phone instead of entering them manually. The user visits
a website and enters his settings such as username, password, mail-server,
etc. which is then sent to his phone. Once the mobile phone has received
the configuration the user accepts it and it is ready to be used.

We wanted Mobile Base to provide an easy way for developers to generate
correctly formatted SMS messages that will configure e-mail and internet

21

settings on a mobile phone. A developer should be able to create a HTML-
form where the user can enter his desired settings. These values should
then be forwarded to the correct function in Mobile Base where a correctly
formatted SMS will be generated.

In order to understand how to generate such SMS messages we studied the
documentation [14, 15, 16] provided by Open Mobile Alliance (OMA). The
Open Mobile Alliance is a standards organization which develops open stan-
dards for the mobile phone industry. Its mission is best described on their
website [3]:

"The mission of the Open Mobile Alliance is to facilitate global user adop-
tion of mobile data services by specifying market driven mobile service en-
ablers that ensure service interoperability across devices, geographies, ser-
vice providers, operators, and networks while allowing businesses to compete
through innovation and differentiation."

Client Provisioning
Client Provisioning (CP) is the process by which a mobile device is configured
with a minimum amount of user interaction. The term covers Over-The-Air
(OTA) provisioning. This provisioning process is initiated when a mobile
device receives a special formatted SMS containing the settings [10, 14].

Over-The-Air Provisioning
In order to send settings Over-The-Air a provisioning document must be cre-
ated. Provisioning documents are XML formatted documents that contains
the settings that are to be sent via SMS. Since it’s convenient to keep the
size of an SMS limited the Open Mobile Alliance have created a specification
that defines a compact binary representation of the XML language called
WAP Binary XML (WBXML). The binary XML content format is designed
to reduce the transmission size of XML documents, allowing more effective
use of XML data on narrowband communications channels without any loss
of functionality or semantic information. The binary format encodes the
parsed physical form of an XML document, i.e., the structure and content of
the document entities [15].

Provisioning Document Example
The XML Document Type Definition (DTD) defines two elements; a CHARECTER-
ISTIC element and a PARM element. The PARM element is used to provide
values for the individual parameters. The CHARECTERISTIC element is
used to group parameters to a specific characteristic [14].

22

Example 2.4 shows how a provisioning document, which configures the Data
Account on a Sony Ericsson mobile phone, could look like. The Data Account
is used to connect to a network connection [10].

1. <wap-provisioningdoc version="1.1">
2. <characteristic type="NAPDEF">
3. <parm name="NAPID" value="NAP1" />
4. <parm name="BEARER" value="GSM-GPRS" />
5. <parm name="NAME" value="Data account1" />
6. <parm name="NAP-ADDRESS" value="nap.address.com" />
7. <parm name="NAP-ADDRTYPE" value="IPV4" />
8. </characteristic>
9. </wap-provisioningdoc>

Example 2.4: XML Provisioning Document

1. Defines which version the provisioning document is.
2. Specifies that the data account is to be configured.
3. Sets the id of the data account.
4. Specify that the account uses GPRS to connect to the internet.
5. Sets the name of the data account.
6. Sets the address that is used to connect to a remote entity.
7. Defines the type of the NAP-ADDRESS.
8. End of characteristic tag.
9. End tag for the provisioning document.

As mentioned earlier a provisioning document is often encoded as binary
XML before being sent to a mobile phone Over-The-Air. How to encode a
provisioning document as binary XML can be found in the provisioning con-
tent specification [10]. Each mark-up element in the provisioning document
is represented by a hexadecimal token. Strings are encoded as hexadecimal
values where each character is represented by its hexadecimal value in the
ASCII table [4].

23

Figure 2.6: ASCII table [4]

Table 2.2 shows the WBXML encoding of the provisioning document in ex-
ample 2.4.

24

C5 Element <wap-provisioningdoc>
45 Attribute version...
03 ...encoded as a string
31 2E 31 The string "1.1"
00 End of string
01 End of attribute list for <wap-

provisioningdoc>
C6 Element <characteristic>
55 Attribute type NAPDEF
01 End of attribute list for <characteristic>
87 Element <parm>
11 Attribute name NAPID
06 End of attribute list for <parm>
03 Encode value as string
4E 41 50 31 The string "NAP1"
00 End of string
01 End of element <parm>
87 Element <parm>
10 Attribute name BEARER
06 End of attribute list for <parm>
AB Encode value GSM-GPRS
01 End of element <parm>
87 Element <parm>
07 Attribute name NAME
06 End of attribute list for <parm>
03 Encode value as string
44 61 74 61 20 61 63
63 6F 75 6E 74 31

The string "Data account1"

00 End of string
01 End of element <parm>
87 Element <parm>
08 Attribute name NAP-ADDRESS
06 End of attribute list for <parm>
03 Encode value as string
6E 61 70 2E 61 64 64
72 65 73 73 2E 63 6F
6D

The string "nap.address.com"

00 End of string
01 End of element <parm>
87 Element <parm>
09 Attribute name NAP-ADDRTYPE
06 End of attribute list for <parm>
85 Encode value IPV4
01 End of element <parm>
01 End of element <characteristic>
01 End of element <wap-provisioningdoc>

Table 2.2: XML to WBXML conversion.

25

Example 2.5 shows the provisioning document from example 2.4 encoded as
binary XML.

C5 45 03 31 2E 31 00 01 C6 55
01 87 11 06 03 4E 41 50 31 00
01 87 10 06 AB 01 87 07 06 03
44 61 74 61 20 61 63 63 6F 75
6E 74 31 00 01 87 08 06 03 6E
61 70 2E 61 64 64 72 65 73 73
2E 63 6F 6D 00 01 87 09 06 85
01 01 01

Example 2.5: WBXML provisioning document

When adding the functionality to generate a WBXML provisioning docu-
ment our first step was to create a set of functions which is used to generate
the XML provisioning document. This XML provisioning document is then
passed to a function which converts it to a WBXML provisioning docu-
ment. The biggest technical challenge with this was to perform the XML to
WBXML conversion. We found a free library called libwbxml [9] but found
that this did not fully suit our needs for the following reasons; First of all, not
all web servers allow execution of external programs. Furthermore depend-
ing on which operating system the server runs on the correct compilation of
libwbxml has to be used. We decided to create an XML to WBXML parser
in PHP by following the WBXML documentation [15]. Since the parser is in
PHP, every web server that is capable of running PHP can use it.

Security
To increase the security when creating a provisioning document, a security
header must be added. This header contains the Hash Message Authentica-
tion Code (HMAC) and information about what security method that is in
use. The HMAC is created from a SHA-1 algorithm based on the WBXML of
the provisioning document content and a 4-digit key. The HMAC is then en-
coded as a string of hexadecimal digits where each pair of consecutive digits
represent a byte [16].

2.5 Extensions

Once the first version of Mobile Base was finished we could continue to
develop extensions for Joomla!.

26

First we made some changes to the two components we previously created
so that they both use Mobile Base. This turned out to go very smoothly
since, Mobile Base handles the mobile functionality, that part of the code in
the components could simply be replaced by a call to the proper function in
Mobile Base.

Once this was done we began to plan other extensions to develop. The pur-
pose of these extensions are to demonstrate different mobile services, there-
fore we only specified their basic behaviour before we began the development.
Extra features of these extensions are of lesser importance.

2.5.1 Intra SMS

We had already developed a SMS component but we felt the need for a
more sophisticated SMS service where users can select one or more groups of
users and send SMS messages to one or several recipients. This can be very
useful for large or small organizations and can for example be installed in an
intranet.

2.5.2 Send MMS

A component where a user can select an image, enter a subject and then
enter a message and send this as an MMS to a specific phone number.

2.5.3 Send E-Mail and Browser Settings

Today it is common that when a customer is in contact with customer sup-
port they can send an SMS following the OMA OTA Client Provisioning
standard [14] which will automatically configure the mobile device with the
desired settings. With this component a user can send an SMS which will
automatically configure SMTP, IMAP and POP3 on a mobile device.

A user should also be able to send an SMS which will automatically configure
browser, and internet settings on a mobile device. This can be used to
configure a mobile device which currently is not configured to access the
internet. After the configuration has been made the device will be properly
configured and can access the internet.

27

2.5.4 Mobile Gallery

We wanted to a create a component where users has the possibility to send
an MMS which will be received by the system, the component would then
extract the image from the MMS and automatically add it to the gallery.
If the user has registered his name along with his telephone number he will
be displayed as the uploader of the image. It should also be possible to
not allow anonymous uploads (where the user has not registered his name)
to be added automatically to the gallery. This allows an administrator to
first review an uploaded images and eliminate the risk that users upload
inappropriate content.

2.5.5 Mobile Quote

Users should be able to send an SMS to the system. The system will then
reply with a famous quote from the component database.

3 Results

3.1 Extensions

3.1.1 Mobile Base

Mobile Base is a special component, it provides a library of functions for
developers to call in order to perform mobile tasks such as sending an SMS
or MMS. It also acts like a regular component where users can transfer money
through PayPal which can be spent when using mobile services.

Library
The library part of Mobile Base is a collection of functions that other com-
ponents can call. The library provide the following functionality:

• Support for Mobilstart and MO-SMS
• Send SMS
• Send MMS
• Send binary SMS

28

• Send OMA OTA Client Provisioning settings
• Receive SMS
• Receive MMS
• Generate OMA OTA XML for IMAP, SMTP, AP, Internet and Browser

settings.
• OMA OTA XML to WBXML conversion.

The functions of the library are connected to the gateway accounts that are
set up in the back-end of Mobile Base. Each call to a send function takes a
phone number, a price and message specific information as parameters. The
message specific information varies depending on if it’s an SMS, MMS or
binary SMS. SMS needs a message, MMS needs a list of attachments such as
text, image, audio or video, and binary SMS needs a WBXML string. Each
call will log the phone number, date, price and type of service, it will also
charge the user of the price. If the user doesn’t have enough money on his
account, an error code is returned and the message wont be sent.

The receive functions are a bit different, first a Forwarding Rule must be spec-
ified in the back-end. When a message is received, Mobile Base will extract
the information and forward the call to the correct component depending on
the Forwarding Rule.

The OMA OTA XML generation functions takes POST calls as input. The
POST calls should contain information about what the mark-up elements
should be set to. The functions return blocks of XML data so a user can
build the complete XML document from blocks of his choice. The document
needs a start-block and a end-block, everything in between is generated by
the user.

The OMA OTA XML to WBXML conversion takes an OMA OTA XML
formatted string as input and outputs the ready-to-be-sent WBXML string.

Front-End
In order to be able to use the services that cost money provided by Mobile
Base a user must set up an account on Mobile Base. This is easily done by
first selecting a country from the drop-down list and then by entering the
phone number. Once the information has been registered the user can see
his current account balance. If the balance is zero the user will not be able
to use any of the services that cost money.

29

Figure 3.1: Mobile Base Front-end - Personal Settings

Payment is handled by PayPal; by entering an amount and clicking on the
checkout button the user is directed to PayPal where he fulfils the payment
over a secure channel. When the payment is completed the user will be
redirected back to the system and an appropriate message will be displayed
whether the transaction was successful or not. The user can also see his
transactions history and the total amount of money transferred. Once the
transfer has been approved by an administrator the users’ account balance
will be updated.

Figure 3.2: Mobile Base Front-end - Paypal Transactions

30

Back-End
The back-end provides five interfaces; Settings, Log, Forwarding Rules, Users
and Paypal Transactions.

In the settings section an administrator can change the global configuration
that will be used by Mobile Base. Here an administrator can choose which
gateway that will be used as default, Mobilstart or MO-SMS. He must also
enter his account information for the gateway that he intends to use.

In order to increase the security a secret is used when a message is forwarded
from a gateway to mobile base.

The cost for outgoing SMS and MMS messages are also set, if no price is
specified for a service this is the price that will be used.

In order to be able to use PayPal to handle payments the correct settings for
PayPal must be entered.

31

Figure 3.3: Mobile Base Back-end - Settings

All incoming and outgoing traffic is logged. In the log section an administra-
tor can view information about which type of message was sent or received,
which gateway was used, what price was charged for the message and if it
was successfully sent or received, the phone number of the person using the
service is also displayed.

32

Figure 3.4: Mobile Base Back-end - Log

The forwarding rules interface contains a list of rules that defines where
incoming messages should be forwarded to. Here an administrator can add,
edit and delete forwarding rules.

Figure 3.5: Mobile Base Back-end - Forwarding Rules

The users interface contains a list of the users registered on the Mobile Base

33

component, the information shown is the name of the user, if he is enabled,
e-mail, balance, telephone number and country.

Figure 3.6: Mobile Base Back-end - Users

The PayPal transactions interface contains a list of transactions done by the
users of the system. The list contains all the necessary information about a
transaction; including username, status, amount, currency, date of transfer,
PayPal Payer ID, PayPal Transaction ID and IP of the payer.

When a user initiates a transaction at the front-end the status of the transac-
tion will be Pending/Cancelled. Since the lifetime of a PayPal transaction is
limited the transaction is Pending/Cancelled depending on how much time
has passed from the initiation. If the transaction is completed within the
lifetime of the transaction and the money has been transferred to the PayPal
account the status will be updated to Completed.

If the status of the transaction is Completed an administrator can either ac-
cept or deny the transaction, if accepted the user account balance will be up-
dated and the status changed to Accepted, if denied the user account balance
will remain the same and the status changed to Denied. The accept/deny
functionality is an extra security feature that prevents any potential tam-
pered PayPal transactions to be accepted by the system automatically since
a transaction must be confirmed by an administrator before money is added
to the account of the user.

The interface also shows statistics of the total amount of Accepted, Denied,
Completed and Pending/Cancelled transactions as well as the amount of
money in each status-category.

34

Figure 3.7: Mobile Base Back-end - Paypal Transactions

3.1.2 Send SMS

The component Send SMS allows the user to send an SMS from the system.

Front-End
The front-end provides a simple interface for a user to send an SMS. The
user writes the message in the message field and may then choose to either
enter the receivers’ phone number manually or by selecting a person from
the contact list. When the user presses send an attempt to send the message
as an SMS to the receiver is made and an appropriate message is displayed
to the user showing whether the SMS was successfully sent or not.

35

Figure 3.8: Send SMS - Front-end

3.1.3 Send MMS

The component Send MMS allows the user to send an MMS from the system.

Front-End
The front-end provides a simple interface for a user to send an image as
an MMS. The user browses for an image, enters a subject, a message and
may then choose to either enter the receivers’ phone number manually or
by selecting a person from the contact list. When the user presses send an
attempt to send the MMS to the receiver is made and an appropriate message
is displayed to the user showing whether the MMS was successfully sent or
not.

36

Figure 3.9: Send MMS - Front-end

3.1.4 Intra SMS

The component Intra SMS allows the user to send an SMS from the system
to one or several recipients.

Front-End
The front-end provides an interface for a user to send an SMS to one or
several recipients. In order to use the component a user must register his
phone number. Upon registration the user is added to the default group.
The phone number can be edited at a later stage by the user. The interface
is divided into three sections; groups, available recipients and recipients. The
user first selects the group or groups in which his recipients belongs to, the
users of this group or groups are then displayed in the available recipients
section. The user then selects which ones of these that should be moved to
the recipients section. The user is also able to move back recipients at any
time.

When the recipients’ selection is done, the user writes the message and presses
send; an attempt to send the SMSes to the receivers is made and an appro-
priate message is displayed to the users showing whether the SMSes were
successfully sent or not.

37

Figure 3.10: Intra SMS - Front-end

Back-End
The back-end provides three interfaces; Users, User Groups and Messages.
The user interface contains a list of registered users along with their personal
information. Here an administrator can move users between groups, add,
edit and remove users.

38

Figure 3.11: Intra SMS Back-end - Users

The user groups’ interface contains a list of groups that registered users can
belong to. Here an administrator can add, edit and delete groups and also
set the default group in which newly registered users are added to.

Figure 3.12: Intra SMS Back-end - User Groups

The messages interface is a log of sent messages. The system logs the message,
date and information about the sender.

39

Figure 3.13: Intra SMS Back-end - Messages

3.1.5 Mobile Quote

The component Mobile Quote allows the user to send in an SMS to the
system and get a famous quote in return.

Back-End
The back-end provides an interface where an administrator can add, edit and
delete quotes.

Figure 3.14: Mobile Quote Back-end

3.1.6 Mobile Subscription

The componentMobile Subscription allows a user to subscribe or unsubscribe
to various categories which will be sent to a mobile phone.

Front-End
From the-front the user chooses which category that he wants to subscribe

40

to along with the telephone number of the mobile phone that he wants to
receive the information.

The different categories that a user subscribes to are displayed and the user
has the possibility to change his telephone number for a specific topic, he
may also chose to unsubscribe to a specific topic.

Figure 3.15: Mobile Subscription Front-end

Back End
In the back-end an administrator can view all subscribers along with in-
formation about which categories they subscribe to and to which telephone
number they will receive the message.

Figure 3.16: Mobile Subscription Back-end - Subscribers

An administrator can create new categories which users can subscribe to.
Existing categories can be created or edited as well as published / unpub-
lished.

41

Figure 3.17: Mobile Subscription Back-end - Categories

From the back-end an administrator can chose a topic and send a message.
An SMS will then be sent to all users who subscribe to that specific topic.

Figure 3.18: Mobile Subscription Back-end - Send Message

3.1.7 Mobile Gallery

The extension Mobile Gallery allows a user to send an MMS containing an
image to the system which will then be displayed in a module.

Front-End
The front-end is represented by a module displaying images that have been
sent in to the system as MMS messages. If the user is registered on the
Joomla! site he can choose to register his telephone number, by doing this
his name will appear on the images that he sends to the system.

42

Back-End
In the back-end all uploaded images are shown, if the user who uploaded the
image is a registered user, information about that user is also shown. The
administrator can enable and disable images; by disabling an image that
image won’t be showed in the front-end. One or several images can also be
deleted; this will completely remove them from the system.

Figure 3.19: Mobile Gallery Back-end - Images

All users who have registered a phone number are shown. An administrator
has the ability to enable and disable a user, as well as edit the information
about that specific user. He can also delete a user completely.

Figure 3.20: Mobile Gallery Back-end - Users

In the parameters section several options exist to control the behavior of
the gallery. By editing the settings here an administrator can chose whether

43

newly added images will be enabled or disabled when they are uploaded. If
they are disabled they will not be shown unless an administrator manually
enables them, this gives the administrator the ability to review the content
before it is published in the system. He may also choose whether all images
uploaded by a user should be disabled if that user is deleted or disabled.

Figure 3.21: Mobile Gallery Back-end - Parameters

3.1.8 Send E-mail and Browser Settings

The component allows the user to send IMAP, SMTP, Access Point, Internet
and browser configurations from the system to mobile phones Over-The-Air
via SMS.

Front-End
The front-end provides two interfaces where the user can enter his desired ac-
count information, phone model and phone number. When the user presses
send an attempt to send the entered configuration is made and an appro-
priate message is displayed to the users showing whether the settings were
successfully sent or not.

44

Figure 3.22: Send E-mail Settings Front-end.

45

Figure 3.23: Send Browser Settings Front-end.
46

Back-End
In the back-end an administrator can set the default values of the fields
displayed in the front-end. He can also set more advanced settings that
require knowledge about the OMA Client Provisioning Specification [5]; these
settings are not displayed in the front-end.

Figure 3.24: Send E-mail Settings Back-end

4 Discussion

During our work we have encountered, for us, new areas in which we had no
prior knowledge. For example working with Joomla! was a new experience
for both of us. We found it to be relatively simple to both learn how to

47

use it as well as learning how to develop our own extensions. We find that
using installable extensions makes Joomla! very flexible. As developers we
think that this is very good since the components we have developed can be
installed on all systems running Joomla!.

Integrating mobile services into Joomla! wasn’t very difficult, however, if
developing extensions on regular basis that require mobile services we feel
that a tool Mobile Base that simplifies this process is needed. A developer
that is new to mobile services will save a lot of time by using the library
in Mobile Base. Another advantage is that if a Joomla! site uses a lot of
extensions where all provide mobile services, a lot of redundancy is avoided
by gathering this functionality into a library.

In addition to the development of Mobile Base we have developed a set of
extensions that all provide mobile services through the use of Mobile Base.
While some of these extensions may seam ludicrous the purpose of them
are to demonstrate different services that can be implemented by the use
of Mobile Base. For example the component Mobile Quote demonstrate the
behaviour where a user sends an SMS which is processed by the system and
receives an SMS as a response. This can be compared to a ticket buying
system.

At the moment only two mobile gateways are supported, however the original
problem description only stated the support for Mobilstart. The reason why
MO-SMS was added was to see how easily support for several gateways could
be implemented. In future implementations not much time would have to be
spent if support for more gateways is needed.

5 Conclusion

We feel that our work has successfully resulted in a tool that will aid develop-
ers interested in developing extensions for Joomla! that are to provide mobile
services. By installing and using Mobile Base developers will save a lot of
time, however we feel that some improvements can be made. The scenario
is most likely that not all of the functionality provided by Mobile Base is
needed for all web sites. For example, a developer might only be interested
in using the functionality to send messages provided by Mobile Base. By
installing Mobile Base he will now also get interfaces for receiving messages
and handling payments which for him might be unnecessary. Therefore if we
were to continue the development of Mobile Base our first step would be to

48

divide it into smaller packages. This would result in that a developer can
chose the package or packages that suit his needs.

49

6 References

[1] Hagen Graf, Building Websites with Joomla! 1.5. Packt Publishing,
Birmingham, United Kingdom, 2008. ISBN 978-1-847195-30-2.

[2] Joseph LeBlanc, Learning Jooma! 1.5 Extension Development Ű Cre-
ating Modules, Components, and Plug-Ins with PHP. Packt Publishing,
Birmingham, United Kingdom, 2007. ISBN 978-1-847191-30-4.

[3] Open Mobile Alliance, Homepage. [Fetched: May 13, 2009].
http://www.openmobilealliance.org/

[4] LookupTables, ASCII Table. [Fetched: May 26, 2009].
http://www.asciitable.com/

[5] Mobilstart, Telenor Mobilstart [Fetched: March 4, 2009].
http://www.mobilstart.se

[6] Joomla!, What is Joomla? [Fetched: March 7, 2009].
http://www.joomla.org/about-joomla.html

[7] Joomla!, Developing a Model-View-Controller Component [Fetched:
Juni 18, 2009]. http://docs.joomla.org/Developing_a_Model-View-
Controller_Component_-_Part_1

[8] PHP, PHP: cURL - Manual [Fetched: Juni 17, 2009].
http://se.php.net/curl

[9] Open Sync, libwbxml [Fetched: Juni 26, 2009].
https://libwbxml.opensync.org/

[10] Sony Ericsson Mobile Communications AB, OMA Client Provisioning
and Device Management for Sony Ericsson phones with DM client v.1
Ű 3. January 2008. Publication Number: EN/LZT 108 8469 R14A.

[11] PayPal, Website Payments Standard Integration Guide. April 2009. Doc-
ument Number: 100000.en_US-200904.

[12] PayPal, Instant Payment Notification Guide. March 2008. Document
Number: 10087.en_US-200903.

[13] PayPal, Express Checkout Integration Guide. April 2008. Document
Number: 100010.en_US-200904.

50

[14] Open Mobile Alliance, Provisioning Content. 26 February 2008. Docu-
ment Number: OMA-WAP-TS-ProvCont-v1_1-20080226-C.

[15] Open Mobile Alliance, Binary XML Content Format Specification. 25
July 2001. Document Number: WAP-192-WBXML-20010725-a.

[16] Open Mobile Alliance, Provisioning Bootstrap. 21 Apr 2009. Document
Number: OMA-WAP-TS-ProvBoot-V1_1-20090421-C.

[17] Bozoka.com AB, Bozoka SMS Send API 2.1. 13 February 2009.

[18] Bozoka.com AB, Bozoka MMS Send API 1.1. 13 February 2009.

[19] Bozoka.com AB, Bozoka mobilForward manual. 8 June 2009.

7 Glossary

CMS - Content Management System (A system for managing the content
of an application).
WCMS - Web Content Management System (A system for managing the
content of a web application).
Joomla! - Open-Source WCMS.
PHP - PHP Hypertext Preprocessor (A web server based script language
used to develop dynamic websites).
MySQL - My Structured Query Language (A relational database manage-
ment system).
SMS - Short Message Service (A communication service for exchanging short
messages via mobile communication systems).
MMS - Multimedia Messaging Service (A communication service for ex-
changing multimedia objects (images, audio, video, text) via mobile commu-
nication systems).
IMAP - Internet Message Access Protocol (An internet standard protocol
for e-mail retrieval).
SMTP - Simple Mail Transfer Protocol (An internet standard protocol for
e-mail transmission).
OMA - Open Mobile Alliance (A standards organization which develops
open standards for the mobile phone industry).
CP - Client Provisioning.
OTA - Over-The-Air.
PayPal - PayPal is an online business that allows users to transfer money

51

and do payments over the internet.
IPN - Instant Payment Notification (PayPal’s interface for handling real-
time purchase confirmation and server-to-server communications).
DTD - Document Type Definition (A DTD outlines the rules of a partic-
ular document structure. It lists the elements, attributes, and entities in a
document and it defines the relationships between the different elements and
attributes).
XML - Extensible Markup Language (A general-purpose specification for
creating custom markup languages).
WBXML - WAP Binary XML (A binary representation of XML).

52

	Introduction
	Background
	Joomla!
	Mobile Gateways

	Problem Description
	Purpose
	Scope of Work

	Analysis and Methodology
	Joomla!
	Mobilstart
	Send SMS
	Send MMS
	Receiving SMS and MMS

	Sending SMS from Joomla!
	Mobile Base
	Gateways
	SMS and MMS Messages
	Payment and Transaction Methods
	Open Mobile Alliance Client Provisioning

	Extensions
	Intra SMS
	Send MMS
	Send E-Mail and Browser Settings
	Mobile Gallery
	Mobile Quote

	Results
	Extensions
	Mobile Base
	Send SMS
	Send MMS
	Intra SMS
	Mobile Quote
	Mobile Subscription
	Mobile Gallery
	Send E-mail and Browser Settings

	Discussion
	Conclusion
	6 References
	Glossary

