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Abstract

This thesis investigates the possible improvements to indexing �les
stored on servers in a local network; it is a known fact that the task
of indexing is very time demanding and network consuming. At the
same time the servers possess potentially unused processing capabili-
ties. The proposed improvement given by this thesis is to distribute
the tasks of text extraction and data processing to the idle process-
ing capabilities of the servers. In addition to the theoretical basis of
the improvement a working java prototype is also constructed. The
prototype is designed to be capable of interoperability with virtually
any existing indexing service via a unison adapter interface. It's also
constructed to be able to handle any �le type by an extractor interface.
In addition the system also provides network synchronization and load
distribution mechanisms. The result of the investigation indicates that
the gains from the constructed system are substantial, especially re-
garding decreasing the magnitude of generated network tra�c as well
as reducing the overall time needed to perform the indexing operation.
Relieving the index server of some work also implies that less power-
ful server con�guration is necessary to e�ectively perform the indexing
task.
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Sammanfattning

Denna uppsats undersöker möjlig förbättring av att samla in nätverk-
slagrade �ler för indexering. Det är ett känt faktum att indexering
är en mycket tidskrävande och nätverksbetungande uppgift, samtidigt
som servrar som lagrar �ler har potentiellt stora mängder outnyttjade
resurser. De föreslagna förbättringarna i denna uppsats baseras på
att fördela ut textutvinning och databehandling till ledig processer-
ingskapacitet på servrarna. Utöver undersökningar av den teoretiska
grunden för förbättringarna har även en applikation skrivits i java.
Prototypen är utformad för att vara kapabel att samverka med i prin-
cip alla be�ntliga indexeringstjänster via ett adaptergränssnitt. Den är
också byggd för att potentiellt kunna hantera samtliga �ltyper via ett
textextraheringsgränssnitt. Utöver distribuering så tillhandahåller sys-
temet även nätverkssynkronisering och belastningsdelning. Resultatet
av undersökningen visar att vinsten från distribuering är betydande,
särskilt när det gäller att minska nätverkstra�ken men även på den
totala tidsåtgången för indexeringen. Den minskade belastningen på
indexservern leder även till att en mindre kraftfull server kan användas
för att utföra indexeringen.
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1 Introduction

1.1 Background

Many companies and organizations today have large amounts of data spread
over a multitude of locations. It is common that the set of data is continu-
ously growing with time, in both quantity and complexity. When both users
and data may be widespread, any local technique of accessing the needed
documents may not be adequate; which violates the need for a document to
be easily accessible by the end user. That is, it should be easy to �nd and
access a speci�c piece of data that is requested. Typical examples of data
are documents, images or videos. In the cases relevant for this thesis, any
data is considered to be stored on any number of computers in a network.
The terms �le server, content provider or node will be used interchangeably
to describe a computer containing data. A fundamental problem is that in
order to acquire a speci�c piece of data, the �le server which hosts the �le
will have to be identi�ed �rst in order to retrieve it.

To be able to locate where a speci�c �le is stored, it is desirable to have a
simple interface to be able to search through an entire set of data, denoted as
a collection. A collection can span over many �le servers and may contain an
arbitrary amount of data. For a search to be done e�ectively, the data needs
to be indexed. An index is a database containing searchable information
about a �le along with a way of accessing it. The main approaches for
generating an index is to have a centralized server either fetch or push �les
one by one and extract all the searchable information. This approach puts
almost all the work on a single point in the system, and this is particularly
bad since the server may also provide the searching service. Secondly the
fetching of large amounts of data puts a lot of pressure on the network and
might interfere with other services using it.

1.2 Purpose

This thesis looks at the possibility to remove a substantial amount of work
from the indexing server by distributing work to the available servers in the
network. This will also lead to a lowered utilization of the network since less
information is propagated due to that extracted data can be sent instead of
sending entire �les.

The �rst part is to utilize the surplus processing capacity of the servers
to perform information extraction and leave the index server to perform
the indexing and o�er the searching service. Since only searchable data is
sent the amount of data on the network will decrease. The second part is
to make all the �le servers cooperate with the processing to maximize the
utilization of the capacity of a group of �le servers. Another improvement
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from cooperation is the option to synchronize the network access in order
to achieve a steady load on the index server. These enhancements provide
a more natural boundary where the central servers can focus on providing
service directly to the users. At the same time the �le server resources are
better utilized and network bandwidth is exploited more conservatively.

1.3 Goal

Other than this report itself the output from the thesis also includes de-
veloping a Java-based prototype to interface with a number of preexisting
indexing systems with respect to network communication. This consists of
algorithms for information extraction and an algorithm to share data be-
tween nodes and merge indexing results at the central node. The system
will be designed primarily to be used by the �le servers to be able to share
data and communicate e�ectively. This software should be general enough
to be able to be plugged in into most indexing systems via a system speci�c
adapter. It should also be possible to add processing capability for new types
of �les via plug-ins.

1.4 Delimitations

The context of this thesis is concerned with how document processing can
be enhanced in the scope of an indexing system. A number of generic mech-
anisms will be introduced and evaluated based on system- and network ar-
chitecture. This dissertation is not to be considered a guide to any existing
indexing system, although some major vendors will be examined for the pur-
pose of comparison and evaluation. The thesis will be backed by software
designed to provide a general mechanism to interface a number of indexing
services. Each �le server in the network will run an instance of the software
responsible for propagating any information to the indexing server. It is
assumed that any data of interest are located as a �le on the �le server. Al-
though it is possible to perform indexing of data which are not �les, this will
not be considered as any data can always be represented in the intermediate
form of a �le.

It is useful to de�ne what is considered by the term enhancement in this
context. For instance, the diverse indexing system implementations, ranging
from open source to enterprise indexing engines, already o�er suitable en-
vironments for most scenarios. The enhancement focused on here is within
the gathering and propagation of information to the indexing engine, with
attributes such as workload distribution and directives to limit network traf-
�c and thus congestion. In short, we will examine how to e�ectively feed
the indexing engine with data over a local network. This does not imply a
responsibility to provide the end user, upon a search query to the indexing
engine, with the data itself. The method to retrieve any data from a �le
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server is for the server administrator to con�gure by an appropriate tech-
nique, such as network �le sharing, applying a web server, or similar.

1.5 Disposition

The contents of the report are organized as follows. In section 2 we present
an analysis of the problem statement and provide general theory to support
some of the cornerstones in distributed computing. In section 3 we describe
the choices made regarding the implementation of the system as well as
identifying the chosen solution. The following section 4 examines how the
system can be benchmarked in comparison to existing solutions. Section 5
provides a discussion of the key results and their validity. Finally, section 6
contains a short summary of the system key �ndings as well as application
areas and issues of further development
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2 Analysis

The introduction identi�es the need of information retrieval and addresses
why it may be a complicated procedure. To begin the analysis, it's important
that the basic concepts are well understood. For thoroughness, the user is
de�ned as an employee of any organization where the persons job details ne-
cessitates frequent access to documents or �les spread over the organizations
network. The user is presented with a consistent user interface accessible
over any major browser vendor which serves as the front end of the search
engine; which in turn ranges from enterprise class to well-established open
source vendors. This demarcates the users' view of the system, which will
not be examined further in this thesis.

Next the search engine scope is de�ned. It, as already presented, provides
a consistent user interface for locating documents and �les. A search engine
is a complex system with many modules, from which we identify three key
elements: the feeder, the indexer and the search front end. The feeder and
indexer can be combined into the indexing server. The indexing server,
visited in the following sections, provide a uniform API to transform a �le
into a searchable entity. Although the API's di�er between vendors, they
each provide a method to receive �les from network. This is the point where
our application interfaces with the indexing system.

The basic means to provide the indexing server with �les is to arrange
a method of accessing the �les over a network connection and then de�ne
rules for the indexing server used to fetch data. The approach seems well
supported, relatively easy to con�gure, and straight forward. On the down-
side, it's very in�exible and ine�ective as each �le manually needs to be
retrieved from the network.

Since any data is considered to be located within an organizations internal
network, the problem is not locating the �le servers, but actually retrieving
the data e�ectively. To combat the limitations of fetching data, we consider
various techniques for pushing data to the indexing service by interfacing
its API directly. For this purpose, the term feeding is introduced to de�ne
the operation of transferring data from a content provider to the indexing
server.

From a practical perspective, the indexing system and �le servers combined
perform a system of data retrieval, communication, processing and indexing.
The �le servers that are a part of the system are considered as resources
which are completely or partly available to perform tasks designed to im-
prove system throughput. Section 2.1-2.4 examines methods for e�cient
communication throughout this system, while 2.5-2.6 threats techniques to
which a �le server can serve as preprocessors for the indexer as well as the
introduction of some of the functionality of an indexing server.

The analysis section thoroughly describes some of the most important
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properties of distributed system and how they can realized. The interested
reader is encouraged to study those sections, however it is not necessary to
be able to understand the concepts of the systems as presented in section 3
and forwards.

2.1 File- and index server communication

The primary function of the �le servers is to feed the indexing server with
data. The communication is inherently important in order to provide e�ec-
tive service. There are a number of potential approaches, each with respec-
tive drawbacks that are important to consider in order of maximizing system
performance. Two basic types of communication principles will be examined
below.

2.1.1 Direct Connection

The �rst and most straightforward approach is to let all the �le servers con-
nect to the indexing server and forward its data without any coordination to
the other �le servers. While simple, this technique imposes congestion issues
to the network adapters. As the number of �le servers' increase, connection
multiplexing overhead, bandwidth contention and memory issues leaves a
lot to desire. Since the system is designed with the compatibility with basi-
cally any indexing system, there can be no consideration of any server-end
solutions for these problems. Naturally, each �le server will be prevented
to �ood the indexing server by the protective mechanisms of TCP. However,
given enough simultaneous open connections a server may exceed its memory
boundary and in the worst case even halt the o�ending application. In ap-
plications not bound to the use of TCP, the network is even more susceptible
to uncontrolled �ooding. Consider the use of UDP with an application level
resend mechanism for network data; theoretically this mechanism could �ll
the index servers' network bu�er and cause application malfunction.

2.1.2 Intermediate Server

The second approach is an attempt to remedy some of the shortcomings of
the direct connection by introducing an intermediate application that all the
�le servers are connected to; denoted as a connector.
An immediate advantage is identi�ed in the way that the �le server system
becomes pluggable to virtually any indexing system by having the connector
adapt any information received from the �le servers into a format accepted
by the indexing system. In the absence of a connector, this adapter has to
be present in each �le server directly.

Since the nature of the connector association allows central coordina-
tion, techniques such as bu�ering and sequential access control can be im-
plemented to conform to a steady stream of data. However, this also has
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some major drawbacks. In the case when the connector is located on a sep-
arate computer than the index server, the network tra�c will increase due
to the fact that all tra�c sent to the connector also will be forwarded to the
indexing system. The advantage of this setup is that some of the workload
is distributed between the two computers. Another reason may be if the in-
dexing server is bundled with proprietary hardware that does not allow the
addition of new software. Due to the fact that sending batches of messages
is more advantageous than sending them one by one, the connector would
have to bu�er data which puts a memory requirement on the machine. In
the case were the connector and the index server is run on the same machine
this memory requirement is added to the requirements already present for
the indexing.

2.2 File server synchronization of network access

The two presented methods of interacting with the indexing server each pre-
sented �aws rooted mainly by the lack of interaction between �le servers for
coordination. This section examines means of synchronization between the
�le servers. We denote the set of �le servers as a cluster . Coordination of-
fers semantics to create a synchronous approach towards data propagation;
allowing the �le servers to send data sequentially, one at a time, with respect
to each other. Several techniques to perform this separation will be intro-
duced below. Further, section 2.3 will address additional exploits of cluster
synchronization.

2.2.1 Time division

Time division in this context is used to create time spans in which par-
ticipating nodes may perform arbitrary work in their respective slots. In
practice every node is given a speci�c time slot, ranging from times τstart

to τend, where the node may utilize the network. If a node does not have
anything to send the time slot is wasted if using pure time division. The
method also has signi�cant requirements on time synchronization across the
network. It requires frequent clock synchronization between all nodes to limit
clock skew and mitigate the e�ect of clock drift. To provide timely delivery
of data, it's important that all nodes share the same view of the timeslots,
and that no nodes exceeds its end time τend The shorter each time slot is,
the increased demand is put on accurate temporal synchronization but less
waste on idle operation. Assigning a timeslot needs to be performed with
great care. Neither the direct connection nor the intermediate connector
can propagate fragmented tasks to an index server e�ectively. Ideally, the
length of a timeslot is proportional to the time necessary to perform a given
number of complete �le transfers. Unfortunately it proves a hard condition
to meet due to varying �le sizes, network anomalies and run time network
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contention.

2.2.2 Token time division

By introducing a token system the time division technique can be extended
to avoid wasting time slots during periods of inactivity. The token speci�es
which node is allowed to have network access and supersedes the time di-
vision by clock synchronization mechanism. Associated with the token is a
maximum time, or other condition, by which it may be held. For instance, a
token may expire for a node after a given amount of milliseconds or whenever
a network transfer limit has been reached. Whenever a token expires it needs
to be forwarded to next waiting node. The advantage of token time division
is that clock synchronization is of no importance in order to synchronize
network access. Once a token is received, a node may utilize the network for
duration speci�ed by the token. An inactive node may thereby forward the
token immediately to grant next node earlier access to the network. The ap-
proach does however increase the need for robustness against node failures,
since a new token must be created if the node holding the token should fail.

2.2.3 Global queue time division

Global queue time division uses the idea of a global network arbitration
queue shared among all the nodes in the cluster. When a node desires net-
work access it places a request token at the end of the queue. Whenever
a nodes request reaches the head of the queue that node is eligible to use
the network. The privilege is granted for a certain time limit or until some
condition is met, whereas the request token is removed from the queue and
the access is transferred to the next node.
An advantage with this approach is that it doesn't pursue a strict round-
robin approach, which usually is the case of the token time division technique.
The queue can be an implementation which allots, for instance, a larger time
window to busy nodes, or arranges the ordering of tokens based on priority
constraints. At the same time, unwanted properties such as starvation must
be guarded against whenever priorities are part of the access control mech-
anism. With an increasing amount of algorithm negotiation patterns, the
implementation complexity quickly grows.

Although the approach is more versatile than the token time division
technique, it also introduces consensus overhead. A global queue requires
an implementation where all nodes in the cluster share the same view of
the queue. Without a centralized solution, a continuous coordination be-
tween clients is required and thus presents some communication overhead.
However, once established, it can serve as a basis to extend functionality to
include complex and desirable features such as load balancing.

The queue can also be implemented centrally by revisiting the connector
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procedure. This would relieve some of the communication overhead and
signi�cantly decrease algorithm complexity. Another advantage arises in the
form of managementability. The connector could serve as a central location
to administrate the system. Still, the queue implementation realized with a
connector would introduce a single point of failure; a property which is most
undesirable.

2.3 Group service

To induce the characteristics of a dynamic system which adapts to envi-
ronmental changes, a number of services must act together to create a dy-
namic bind. A node must be able to locate other nodes in the system,
detect changes in the environment and adapt to these. The orchestration
and coordination of activities require communication directives resting on
the principal pillars of the group membership service. Hence the group ser-
vice provides an abstraction to communicate arbitrary messages between
any amounts of peers in the group. To satisfy a distributed view shared
among all peers in group, the network should employ a synchronous mes-
sage passing mechanism. Synchronous in this sense refers to that there is an
upper bound of the delay of the arrival times for messages in the network.
It guarantees that messages sent will eventually be delivered to the receiver.
The usefulness of this comes in play when a piece of information needs to
be shared by all nodes in the network. An excellent implementation is to
maintain a distributed table of all members currently in the group, allowing
new nodes to join or leave at any time. To maintain a consistent view of
the table throughout all nodes in the network, certain guarantees must be
made to the messaging system. The guaranties will each be considered in
the following section.

2.3.1 Discovery service

The �rst challenge of maintaining a dynamic group relationship arises when
new nodes must locate an existing group, if one exists. This is usually not
a problem if a central server can perform this lookup service, similar to how
e.g. a Dynamic Naming Service (DNS) is implemented today. If a system is
considered distributed in its entirety this entity cannot exist. There are two
main variants to serverless discovery which we denote as push and pull. Using
the push methodology, nodes already participating in a group advertise their
presence regularly. A newcomer to a network can pick up this message and
establish contact to the group. The immediate drawback of this approach is
that messages must be sent regularly for each multicast enabled location. A
larger interval induces increased delay to any node possibly listening, while
shorter intervals increase network tra�c. A node may initiate the �rst point
of contact by a precon�gured set of acceptable nodes, or retrieve it from
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a service like DHCP . Although using external services is a clever way to
discover a group, it is also limited to physical subnet to where e.g. the
DHCP server resides.

The pull method works opposite to the push implementation. The multi-
cast expanding ring [1] exploits this scheme. A new client sends a multicast
query to an address designed to locate existing groups. Any peers subscrib-
ing to this address may responde. If no response is returned, the node can
form a new group with initially only itself being a member. The new node
also subscribes to the multicast address to be able to respond to queries from
other newcomers. The concept of such procedure can be examined in Figure
1.

The expanding ring concept entail a method of sending the multicast
request multiple times with increasing time to live values (TTL) until enough
responses are collected. The TTL value is a limit to the number of router-
hops a message can survive before being discarded. The multicast principles
examined here are applicable to the speci�c case of IP multicast and requires
dedicated router support; namely an implementation of the Internet Group
Message Protocol stack (IGMP). A known java service implementing group
discovery by multicast is the Jini system [2].

Figure 1: A demonstration IP multicast discovery mechanism. The initiator
sends a unicast message to the multicast enabled router, which forwards the
multicast to any registered clients. In this example a coordinator node C is
responsible to reply to the initiator. After contact, the initiator can issue a
join message and register itself to the multicast address

Nodes known to coexist only on a local network can employ a number
of means of locating a group other than IP multicast. A simple approach is
to let each node listen to messages from the network on a prede�ned port.
Arriving nodes is then given the opportunity to contact any node in the
group by performing a local broadcast. The issue becomes more complex
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when nodes are physically separated by an internet connection. By the
fundamental design limitation of the internet protocol and the way it utilize
sub-netting, there are no wholly distributed discovery service that we know
of which doesn't rely on a central naming service or prede�ned node contact
information.

2.3.2 Message propagation

A well known algorithm family used to solve many di�cult problems in
distributed systems is Propagation of Information with Feedback (PIF)[3, 4]
. It is used to propagate a message to all nodes in a group, which upon
termination lets the algorithm initiator know that the message have reached
all nodes in the system. When invoked by a node, a message is propagated
to all its neighbors. A neighbor is considered to be a node with a physical
bi-directional network connection to the node in question.

Let a leaf node be a node with only one neighbor. Further, let �rst link
denote the communication channel where a node received its �rst message
from. Every node, upon receiving a message, forwards it to its other respec-
tive neighbors in turn as depicted in Figure 2. When a leaf node receives
the message, or when a node has received the message from all its neighbors,
an acknowledgement message is generated and returned to the �rst link as
illustrated in Figure 3. Eventually the initiating node will receive a response
to the message from all its neighboring nodes. When all responses are col-
lected the message has reached all nodes currently in the group. This type
of algorithm reside under the category of �ooding algorithms and serves as
natural way to propagate a message to every node in group; constituting for
the �rst essential part of creating a distributed group membership service.

Figure 2: Illustrates the propagation
path taken for a message m sent by
the initiating node A.

Figure 3: Note the feedback path
where the acknowledgement message
is only propagated via each nodes �rst
link
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2.3.3 Message ordering

Communicating a message to a group doesn't by itself provide any guarantees
to ordering. Ordering is an essential property needed to provide a consis-
tent group view. Consider a node A sending two consecutive messages, a
join message followed by a leave message, to a node B. Since an Ethernet
network doesn't provide any built in ordering mechanism, the leave message
can arrive at node B before the join message; leading to an obvious inconsis-
tency between how the two nodes perceive the group state. Ordering will be
considered in a multicasting environment. The reason multicasting is consid-
ered is because it's a natural approach to propagating a message to multiple
recipients. In the most trivial sense, multicasting is implemented as sequen-
tial routine by sending a message one by one to each intended recipient. A
better use would be to employ IP multicast , which is not considered here,
but provides equivalent but more e�ective functionality for this discussion.
Let's borrow the de�nition from [5, Pp.484-496] to de�ne ordering in the
context of multicasting. The routine multicast(g,m) represents a multicast
of the message m to the group g.

FIFO ordering: If a correct process issues multicast(g,m) and then
multicast(g,m′), then every correct process that delivers m′ will de-
liver m before m′.

Causal ordering: If multicast(g,m) → multicast(g,m′), where → is the
happened-before relation induced only by messages send between the
members of g, then any correct process that delivers m′ will deliver m
before m′.

Total ordering: If a correct process delivers message m before it delivers
m′, then any correct process that delivers m′ will deliver m before m′.

The essential property of the distributed group service is that every node
shares the same view without the presence of a centralized server. Neither of
the two initial ordering de�nitions proves su�cient to produce a consistent
distributed group view. To see why, a set of events have been derived which
illustrates a case where FIFO- and causal ordering are insu�cient. The
example can be observed in Figure 4.

Note that causal ordering implies FIFO ordering while total ordering,
which is the most restrictive of the three, doesn't necessarily have to. To
attain a better understanding of the causal property its semantics requires
more in-depth examination. We begin by expanding the de�nition of the
happened-before '→' relation as de�ned by Leslie Lamport, one of the pio-
neers of distributed systems, using the following three conditions [6]:

• If a and b are events in the same process, and a comes before b, then
a→ b.
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• If a is the sending of a message by one process and b is the receipt of
the same message by another process, then a→ b.

• If a → b and b → c then a → c. Two distinct events a and b are said
to be concurrent if a 9 b and b 9 a.

The de�nition of concurrent implies that if there are two events a and b,
and they are not causally related to each other, they are considered concur-
rent in a distributed system. Even though the two events can occur at two
distinctly di�erent points in time they are still considered concurrent. The
problem resides in the way computers perceive the notion of time. Clock
synchronization is a well known problem which explains the di�culties in
synchronizing clocks between computers in a network. As a result time
stamping messages using physical clocks is not su�cient to demonstrate a
global absolute time. In causal systems however, a node can only decide or-
der by observing messages communicated between nodes in the group. Thus
the notion of time used in systems of this type is thereby, for a node k, based
on sent and arriving messages mk

1,m
k
2, ...,m

k
n.

Figure 4: Demonstrates a set of events for which FIFO- and causal ordering
are insu�cient to provide a consistent delivery of messages such that all
nodes will perceive the same order.

Total ordering protocols can deliver messages in an arbitrary order, alas
with a guarantee that every node in the group delivers each message in the
same order. A protocol can however adapt to respect e.g. FIFO order. Lam-
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port de�ned a method to achieve total ordering by time stamping messages
with logical clock values [6], which is also considered by e.g. [7, 8]. Let
Li(e) be the logical clock value at node i for the event e. As stated before,
an event can be e.g. to send or receive a message. The logical clock value
does not need to relate to physical time, but can be an arbitrary number
implemented using i.e. an incrementing counter. Using the notion of logical
clocks we can de�ne correctness of time based on the order in which events
occur. We repeat the clock condition presented in [6]:

Clock condition: For any events a, b:
if a→ b then L(a) < L(b).

It follows that:

1. A node i increments Li for each successive event.

2. If e1 is the event of sending a message from a node i, and e2 to receive
the message at node j, Li(e1) < Lj(e2).

The condition is enough to satisfy the happened-before relationship, as
presented above, using logical clocks. To conform to (2), each message sent
must contain a timestamp Tm = Li(e1). The receiving node j can then assign
its logical clock value to max{Tm, Lj} + 1. The �nal condition needed to
provide total order is to break ties when two events are seemingly concurrent.
A deterministic approach is to extend the happened-before relationship using
the following condition for nodes i and j:

e1 → e2 if

{
Li(e1) < Lj(e2)
Li(e1) = Lj(e2) ∧ i < j

What's been examined is a logical clock system independent of physical
time. As a side note it is however possible to prove the correctness of total
order multicast using synchronized physical clocks with an upper bound on
the clock skew [6, 9].

2.3.4 Multicast reliability

The semantics of total order does not assume or imply reliability. For ex-
ample, if a correct node i delivers message m and then m′ to a correct node
j, then node j can deliver message m without delivering message m′ or any
other subsequent messages. An algorithm which provides total ordering as
well as reliability is commonly referred to as atomic broadcast [10, 11]. What
constitutes reliability in multicast is de�ned by Hadzilacos and Toueg [12]
using the following three properties:
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Validity: If a correct node multicast a messagem, then it eventually delivers
m.

Agreement: If a correct node delivers message m, then all correct nodes in
the group where m was multicasted eventually delivers m.

Integrity: For any message m, every correct node in the group delivers m
at most once, and only if m was previously multicasted by sender(m).

The term deliver is used to denote that a message has been received by
the correct process in the node and that any content in the message can
be applied. For instance, on receiving, the node places the message in a
hold-back bu�er. After all nodes have agreed to the conditions for which the
message contents can be processed, and once those requirements are ful�lled,
the message is delivered and possibly consumed.

There are two primary methods used when designing totally ordered re-
liable multicast. The �rst employs the concept of a sequencer node to aid
the global ordering of events. The model was �rst introduced by Chang and
Maxemchuk [13]. An actual implementation of a sequencer protocol for the
Amoeba system was proposed by Kaashoek et al. a few years later [14, 15].
Figure 5 and 6 illustrates the typical operation of such system for both un-
reliable and reliable operation. Since the message is initially multicasted to
all members in the group, it can be noted that the latter of the two modes
of operation allows for node failures in the group. During a failure, it is nec-
essary for the group to agree on a new group view and assign a coordinator
to it. This topic will be examined in the next subsection.
Any messages received during this recovery procedure must be stored locally
by each node. Once a new group has been de�ned with an appointed coordi-
nator, the nodes can synchronize their operation in time by replicating their
message bu�ers internally in the group. The coordinator can then resume
its duties by forwarding acknowledgement messages for all messages in the
bu�er.

The second technique considered to induce reliability to totally ordered
multicasting is similar to the ISIS algorithm de�ned by Birman and Joseph
[16, 5]. It requires no coordination e�orts by a single node, but instead
moves this chain of responsibility to each node in the group. A node i upon
multicasting a message includes a sequence number Ti. The sequence number
is calculated as the largest observed sequence number so far, plus one. For
any node k receiving the message, a response is generated containing the new
sequence number Tk = max{Ti, Tk} + 1. The originator collects all replies
and selects the largest one m as the �nal sequence number. In the last step,
m is multicasted to all nodes in the group by which it is used to set to the
de�nite order of initial message sent by the originator. The procedure in
general is outlined in Figure 7.
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Figure 5: A typical operation of unre-
liable message communication where a
coordinator node C acts as a sequencer
and node I as the initiator.

Figure 6: A reliable message path us-
ing a coordinator as sequencer. Mes-
sage m1 can be considered a request,
m2 an acknowlededgement and m3 an
accept message.

Some details have been left out explaining the algorithm. For instance,
each message must be equipped with a unique timestamp to be able to sep-
arate messages apart. The �nal message must likewise carry an identi�er to
the message of the originator to be able to assign it the �nal agreed upon
sequence number. Compared to the coordinator-in�uenced reliable multi-
casting algorithm as presented above, the algorithm induces more tra�c and
is thereby subject to network congestion in a more direct way. However the
tra�c is evenly distributed and does not introduce a bottleneck at the co-
ordinator; neither regarding processing capabilities and contention. From a
practical standpoint, the implementation of a coordinator in distributed sys-
tems is slightly more complicated than constructing a system where all nodes
are considered equal in operation; particularly during failures where state re-
covery and coordinator assignment are considered. It is clear by observing
the algorithm that for all correct nodes, the message is either consumed by
all nodes or by none. A failing node will result in incompleteness of any
of the protocol steps. Just like the algorithm involving a coordinator, any
change to the group must result in the distribution of a new group view.

2.3.5 Group management

So far we have considered how a group can be located by new nodes and
how reliable messaging can be used to provide a consistent view of shared
objects. The following section examines how to maintain a dynamic shared
group state in the presence of failures. We start by introducing the con-
cept of virtual synchrony as de�ned by Birman and Joseph [16]. The term
synchronous is used to describe an environment with totally ordered reliable
multicasts, and where events such as node joining, node failures etc. occur in
the same order on every node. As seen before, such properties are expensive
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Figure 7: Reliable total order protocol without a coordinator node. The
initiating node i communicates message m1 to the members of the group.
Each node generates a response message m2. The initiator, after collecting
all replies, sends a message m3 to the members of the group containing the
�nal sequence number to assign message m1. At this point each node can
continue and consume the message m1.

in terms of the number of messages which has to be communicated between
all nodes. It is however bene�cial in terms of simplicity when processing
events such as node crashes. Even keeping a request queue to access e.g. a
mutably exclusive resource is no more complicated than maintaining a sim-
ple distributed FIFO queue. Equivalent logic applies to a node joining or
leaving the group.

Failures in a distributed system are most of the time masked by mecha-
nisms such as message retransmissions. To detect node failures, we make the
assumption that a node can only fail by crashing, an assumption reasonable
to most systems. Bring in mind from the synchronous de�nition that there is
an upper bound on message delays, implying that a node can be considered
to have crashed after exceeding this timeout due to some event. Although
the synchronous property allows reliable failure detectors [5, Pp.469-472],
it's not of great importance. Stelling et al [17] argues that unreliable failure
detectors has advantages in that they are more scalable, simpler, and more
e�ective due to that no atomic message protocol is needed to provide the
service. For this purpose it is often enough to suspect that a node has failed.
In a virtually synchronous system, all nodes will share this suspicion and can
collectively discard the faulty node from the group.

Assuming the group has a coordinator; a special case occurs if the coor-
dinator su�ers a crash. At this point, electing a new coordinator should be
given precedence. Leader election is a well known problem, and there exist a
wide variety of algorithms [18, 19, 20]; although they will not be considered
here.
In previous sections, it was shown that the coordinator can act as a se-
quencer. It may also be useful for other purposes. Consider the event of a
node joining the group. Then it's the responsibility of the coordinator to
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supply the new node with any shared data as well as the current state of the
system. Technically this service can be performed by any node in the group.
However it's often convenient for the implementer to have prede�ned soft-
ware component perform this operation without having to decide which node
should take the responsibility from case to case. This software component is
only active on the node currently acting as the coordinator.

A fundamental problem using Ethernet is its unreliability. At any time an
intermediate connection between peers may be lost due to e.g. congestion or
the malfunction of a network router or switch. Figure 8 depicts a particular
scenario where nodes become physically separated due to a malfunctioning
router. Even though the nodes may reside physically close to each other,
the inability to reach each other would lead to the creation of subgroups. In
this case the subgroup without a coordinator would elect a new one. The
problem arises when the router becomes functional again, the two groups
needs to merge back into one group, discard one of the coordinators and
synchronize the state. An alternative approach is to let one group continue
their operation, while the other is suspended until contact can be reestab-
lished again. One such algorithm is based on quorum consensus [21]. Upon
a network partition, the groups must decide for themselves which group may
continue operation. The privileged group can be established using majority,
or in other words by acquiring quorum. More advanced usage is de�ned as
well. In a system with replicated data, read quorum R and write quorum W
can be considered as two weighted operations following two simple rules: W
> half of the votes and R+W > total number of votes for the group. These
properties ensure only one group can perform changes to shared objects.

Figure 8: The malfunction of a communication link can lead to network par-
titions. The two virtual subgroups depicted may be the result of a malfunc-
tioning router or switch. As a result, to groups would exist simultaneously
without the possibility to communicate with each other.
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2.4 Load distribution

A primary motivation to use distributed systems is to be able to exploit load
distribution in any of its forms. Throughout the thesis we will use the terms
load distribution and load sharing interchangeably. A distributed system
can be constructed with respect to properties such as scalability, reliability,
robustness etc. Consider by which means these properties are ful�lled using
variants of load sharing in existing web technology, where the hosting of a
single web service may employ servers in the thousands. Let's recite three
desirable load distribution properties as presented by Wang and Morris [22]:

i. Optimal overall system performance-total processing capacity maxi-
mized while retaining acceptable delays.

ii. Fairness of service - Uniformly acceptable performance provided to
jobs regardless of the source on which the job arrives.

iii. Failure tolerance - Robustness of performance maintained in the pres-
ence of partial failures in the system.

We classify load-sharing systems into three categories: centralized, de-
centralized and hierarchical. A system can possess either of these character-
istics, or combine several in a hybrid model. Figure 9 depicts the topology
to which each of the classes belongs. Note that we consider ring-networks to
be a special case of the decentralized system. The topology sets the basic re-
strictions to which type of load distribution algorithm can be designed. The
hierarchical model is commonly seen in web servers, where a server acting as
the front end receives the initial request and forwards it down the hierarchy
to an available server. An immediate drawback of this scheme is the need
for load managers to arbitrate work between its children; alas nodes are not
uniformly assigned the same principles of operation. We focus on the de-
centralized topology as it enables maximum �exibility while not introducing
any single point of failure by employing a centralized server.

Figure 9: Network topologies for systems of (left-to-right) centralized, de-
centralized and hierarchical type.
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The next distinction that we make to load distribution relate to how it's
initiated. If a node determines which peer to distribute to, we denote this
source-initiated distribution. On the other hand, if a node decides to acquire
tasks from another peer, we call this peer-initiated distribution. In the latter
case, a node possessing surplus processing capacity can request tasks from
any nodes in the network. An advantage to this approach is that a node
doesn't need to maintain a global status vector for each node in the group
to decide if there exist distributable tasks, but can issue a query to a set of
nodes at any time. During stale times, the operation experiences the char-
acteristics of a polling operation. This e�ect is mitigated in source-initiated
distribution in that a node only needs to locate a distribution peer when
there are distributable tasks available. Locating a node can be performed
either by a query multicast to the group or by maintaining a local vector car-
rying surplus capacity of each peer. The vector can be implemented based
the techniques for reliable multicast visited in previous sections. Updates
to the vector may be performed either by dedicated messages for changing
status or by piggybacking information on existing messages.

2.4.1 Granularity

Distributing the workload between peers in a group can be performed dif-
ferently based on the origins of the data characteristic, the semantics of the
network connection, and the degree of separation of the problem that can be
attained. Any means of distribution must be justi�ed in order to increase
e�ciency. It is not intuitively obvious for which data sets a performance
increase can be at all observed. If not carefully engineered, the result may
have the opposite e�ect on performance. To examine what degree of distri-
bution can be applied, we use the following two terms de�ned by Berger et
al [23].

Load distribution - A load distribution is an assignment of work to a set of
processing elements

Load balancing - Load balancing is the process of transferring units of work
among processing elements during execution to maintain balance across
processing elements.

We consider load distribution in the dynamic sense. That is assigning
tasks to processing elements at run time, in contrast to static scheduling
where tasks are assigned before the program execution is started. The ratio-
nale is that events in the back-end of the indexing system cannot be decided
beforehand; �les may enter or leave the system at any point during an ex-
ecution. Note that the term load distribution is su�cient to describe the
exposure to the degree of distribution to apply in this context. Load balanc-
ing implies a �ner granularity aiming to even out (CPU) activity among the
nodes in the system.
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2.4.2 Distributable tasks

At this point it's useful to remember that the indexing engine likely is of
proprietary license and thus cannot be modi�ed, which means that the sys-
tem backing this report is concerned with the gathering of �les from any �le
servers in the system. Previous sections outline the main tasks of the system.
In short, the steps can be summarized as data retrieval, extraction, process-
ing, and �nally the propagation of the result to the indexing server using a
well-de�ned structure. To this attaches the desire to reduce bandwidth. The
two actions, data extraction and data processing, can immediately be rec-
ognized as tasks possibly being subject to load distribution. The extraction
process can logically only be split up into several smaller tasks by separation
of its input data. At the �nest granularity, this has the impact that a �le is
split into several small pieces and handed out to free nodes in the system.
On the opposite end, �les are communicated as a whole to other nodes in
the system. Both imply sending at least the full content of the �le over the
network, working against the bandwidth reduction requirement. In addition
there is the overhead associated with creating a connection to a neighboring
node as well as the overhead induced by the packet-header; which becomes
increasingly prevalent as the data size is reduced.

The second task which has the potential to gain from load distribution is
the data processing task. Without further investigation of what constitutes
a processing step, we can conclude that it performs some data manipulation
and thus requires the complete data set as generated from the extraction
phase. If this task is to be distributed combined with the extraction process,
it must thereby logically be a requirement to facilitate both steps at the same
node with the granularity of complete �les.

To conserve as much bandwidth as possible, we expose only the process-
ing steps to load distribution; sending only the minor dataset produced by
the extractors onto the network. The alternative approach would be to dis-
tribute the extraction process as well, however the additional network tra�c
induced is severly increased. As the processing step grows in complexity and
execution time, the magnitude of performance gains by load distribution is
increased.

A typical index system usually returns a response message to each �le
received, expressing the status of the indexing operation. This message needs
to reach the originator of a �le, regardless of if load distribution is enabled or
not. Figure 10 illustrates a typical routing behavior supporting this action,
following the characteristics of a peer-initiated distribution. It is assumed
that originator node is aware of the status of the neighboring nodes and can
utilize the information to establish a distribution channel to a peer.
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Figure 10: Illustrates a scenario where the result of a message must be routed
back to the originator node O after it's been processed by neighboring node
N. In the �rst step, a �le is retrieved from the local �le system by node
O. Any desired content is extracted and the resulting text propagated to
the neighboring node. A number of processing steps for the content may
commence before the �le is sent to the indexing server which also returns a
response message upon indexing the �le. This response message is forwarded
to the originator in the �nal step which can upon examining the message
content decide if the operation was successful or not.

2.5 Information extraction

As was mentioned in the introduction, the thesis aspires to reduce network
load and o�oad the indexing server by exporting as much of its work else-
where. Information extraction is a technique to address both these issues.
A �le stored on a computer contains alot of diverse information and a great
deal of this might be of little or no interest for the purpose of indexing. For
example a PowerPoint document contains a lot of style information, images,
backgrounds etc. The main information of interest is the text component and
various elements like author, �le size, creation date etc. The term metadata
will be used for this collection of information about a document.

There are two fundamental approaches to retrieving the desired text com-
ponents. The �rst technique is to remove all irrelevant information from the
�le before passing it to indexing server. This method is called information
stripping. We de�ne this term as to remove all the irrelevant data from a
�le. When supplying information to an indexer the information stripping
method have some disadvantages. First of all the relevant information is
considered as the data content in a �le, but this is unfortunately not a well
de�ned term for this purpose. Many �le formats are just containers which
host a combination of textual data and binary data such as an image. The
main problem associated with information stripping is that indexing a �le
should not violate the properties de�ned for that �le type format; neither
should the original �le be subject to any changes. Hence, the information
stripping method will have to create a copy of the �le either in memory or
disk before any data can be discarded. Alternatively the �le can be copied
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while ignoring the undesirable parts of the �le if they are known beforehand.
The second approach involves locating and extracting relevant informa-

tion from a �le and to store this in some internal data structure used as
a representation of the �le. We denote this procedure as information ex-
traction and de�ne it as to extract relevant information and store it in a
speci�ed structure. This e�ectively removes any need to create a copy of a
�le. Moreover it is often possible to better control memory consumption.
Consider a �le combining textual data with binary data. The textual data
can be located using a search routine without allocating any memory bu�ers,
and thus su�ers less overhead than the information stripping approach. This
method is arguably more intuitive as well in terms of implementation.

2.5.1 Character encoding

The text component of a �le is stored using a character encoding scheme such
as UTF-8 or ISO 8859-1 for Swedish text literals. The primary problem is
that it is essential to interpret the contents of a �le using the correct charac-
ter encoding scheme. Fortunately this information is commonly stored in the
�le format container. At a low level, a character is described by a sequence
of bytes. Each character encoding scheme gives di�erent meaning to how
this sequence should be interpreted. Moreover, each character may be real-
ized by varying length for di�erent encodings. Some schemes requires each
character to be of 16 bits in length, allowing up to 36,536 unique character
combinations, while others are limited to 8 bits allowing only 256 unique
combinations. The 16 bit (2 bytes) encoding requires twice the amount of
physical storage to represent one character compared to an 8 bit (1 byte)
encoding scheme. Character encoding has been a problem for a long time
which led to the birth of Unicode.

The Unicode standard was devised to contain multilingual support, and
does so very well with more than 100,000 di�erent characters de�ned [24].
Unicode is commonly implemented by the UTF-8 encoding scheme which
is widely supported. The problem is that many aging documents are often
produced using legacy encoding schemes. Unfortunately it is never a trivial
operation to convert characters between di�erent encoding styles. Although
any character de�ned in e.g. the 8-bit ASCII code set can be represented
using i.e. UTF-8 encoding, the converse is not true. An implication to this
is that the indexing server must accept documents encoded using a modern
scheme such as UTF-8 to be able to express the many special characters
unique for many languages. This forces the need to perform proper character
encoding of �le content already during the parsing phase.
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2.5.2 Di�erent �le structures

Regardless of which method is used to retrieve information from a �le there
is need for some method to di�erentiate the relevant information from the
irrelevant. In order to decide which sections of a �le contain useful infor-
mation, the structure of the �le type must be known in advance. We will
examine the major types of structures used today to represent �les: raw text,
binary data, formatted text and xml structured text. Each of these structures
requires di�erent types of techniques in order to di�erentiate relevant data
from irrelevant data. The process of separating data is henceforth called
parsing.

Raw text. A �le stored in a �le system by the structure of raw text com-
prises of a stream of characters terminated by an end-of-�le marker. Files
of this type are intended to be directly human readable and contains only
textual data. This structure is very advantageous to parse since all informa-
tion is already stored as a sequence unformatted text. The main component
of work behind �les of this type is simply to extract the desired metadata
and send the full contents of the �le to the indexing server. Examples of
�les stored in raw text are �les with the .txt pre�x and various log- and
con�guration �les.

Binary data �les are a �les designed to be interpreted by some software
before any useful information can be attained. Each binary format has its
own, often proprietary, container format which needs to be interpreted. Ex-
amples of �les that fall under this category are the Microsoft O�ce (97 -
2003) �le formats: doc, xls, and ppt to mention a few. The Microsoft O�ce
�les are of special interest since this is a binary format designed for contain-
ing text data and are very commonly used. The �les use a technology called
OLE2 (Object Linking and Embedding) which itself is built upon Compound
�les [25]. Both of these structures is developed internally by Microsoft and
were previously closed standards. However the speci�cations were released in
public on June 30, 2008 [26]. The structure in these �les can be compared to
a miniature �le system containing two basic elements, storages and streams
which correspond to directories and �les respectively. A storage object may
contain other storage objects or streams while a stream is a container for
data only. The entire �le could be viewed upon as one large array. The
storage object contains a collection of pointers to the contained streams and
storages. A stream is a sequence of elements each ending with a pointer to
the next element in the stream as illustrated in Figure 11.

Consider a PowerPoint document which �le type container include �ve
streams [27]:

1. Current User Contains information about which user last accessed the
document
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Figure 11: An illustration of the relationship between elements in a stream
for a MS O�ce document. At the end of each element a pointer is used to
indicate the start of the next element.

2. PowerPoint Document Contains the text and document layout prop-
erties

3. Pictures Data in the form of embedded objects

4. Summary Information A set of metadata elements describing the doc-
ument

5. DocumentSummaryInformation An optional extra information about
the document

While Summary Information, DocumentSummaryInformation and Cur-
rent User contain metadata that might be of interest to an indexing system,
it requires a relatively high amount of e�ort to locate and extract. The build-
ings blocks of a stream is quite complex but can, just like the document type
itself, be viewed upon as a miniature �le system. It contains a number of
container objects which in turn host objects called atoms. The atom-objects
can be of many di�erent types and can contain information about texts, lay-
out, animations etc. The resemblance between other �le type formats in the
Microsoft O�ce family prior to 2007 is very closely interrelated and o�er
similar characteristics. The intuitive way to gather the text content from
such a �le is to �nd the atoms that are de�ned as containing text and ex-
tract their content. This would of course presume that an interpreter with
knowledge of the binary format is being used.

Formatted text �les are �les which commonly are human-readable text
surrounded by tags or object descriptors used to de�ne attributes such as
fonts, weight, style etc. The �les can be viewed in any text editor although
it may be impractical to read them this way. This type of �les can be
compared to the source code in a programming language, in the sense that
they provide code to be compiled by the viewer in order to view it correctly.
A document type which conforms to the metrics of formatted text is the
Portable Document Format (PDF) [28]; although the text components in
PDF are usually stored as hexadecimal form or embedded into a type of
stream concept which can accommodate text in many formats.

The source code of a PDF-document consists of a number of objects
which can be of 8 types: booleans, numbers, strings, names, arrays, dictio-
naries, streams and the null object. The object types most relevant to text
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extraction are the string and stream objects. It should be noted that some
objects can contain nested objects; hence an array- or dictionary object still
has to be examined for relevant textual content. Strings in the PDF source
code are written in literal form as (text) or <text> in hexadecimal form.
The simplest form of text gathering would consist of collecting these areas.
However this would ignore the actual order the text is presented, as text
component need not necessarily be written in the order they appear in the
document. For completeness, it would also require that any textual content
are extracted from the mentioned stream containers.

Objects in the PDF format are de�ned as 10obj, 20obj and so on and can later
be referenced to as 10R and 20R respectively. The main structure of a PDF
document starts with a Catalog object. The object in turn contains a Pages
object which is a collection of Page objects. Each of these Page objects have
a variable called contents which is a collection of content-holding objects such
as strings. Below is an example of a very simple PDF document structure
with one page containing one string. Note that the code has been stripped
to provide only the essential information for text representation and cannot
be considered complete in the sense that it's not interpretable by a PDF
viewer.

1 0 obj
<< /Type /Catalog
/Pages 2 0 R>>

endobj
2 0 obj

<</Type /Pages
/Kids [ 3 0 R ]>>

endobj
4 0 obj

<< /Type /Page
/Contents 5 0 R >>

endobj
5 0 obj

(Hello World)
Endobj

The '��' notation represents the Dictionary object and is a method of
associating an object with a key. The other notation '[]' is the Array structure
which is an ordered collection of objects. With this level of knowledge is
should be possible to interpret the source code and gather the document
text components in the correct order, presuming that all text content is
stored as human readable format. It is however much more common to save
the text content as streams.
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4 0 obj
<</Filter/FlateDecode/Length 1726>>

stream
x��XÛ�ÛF}_`ÿ��RQÏê2ºA rE [...]

endstream
endobj

In order to convert the stream-content to text the �ag '/Filter' must be
present which speci�es what �lters have been applied to the stream. The
�lters need to be applied in reverse order to extract the actual content of the
stream. There are a number of standard �lters de�ned in the PDF reference
manual, and the speci�cation of these must be known in order to interpret
PDF streams objects. The exact speci�cation of each �lter is however beyond
the scope of this summary.

XML structured text is text formatted using a speci�c structure. XML
stands for eXtensible Markup Language and is a speci�cation to create cus-
tom data storage languages. The syntax of the language is very simple, com-
prising of one start element with a set of nested sub tags. An element can
be extended to create elements suitable to the situation. The basic element
structure can be outlined like: <name attribute="attr"> data </name>, or
in the more verbose form of <name><attribute>attr</attribute><value>
data </value></name>. Hence the data content can be either the text
itself or an arbitrary structure of nested tags. By using custom elements to
build e.g. a tree-structure, the language can be extended to handle compli-
cated data structures. Consider the following example where a basic library
system is represented by XML notation.

<Library>
<Book language=" eng l i s h ">

<Ti t l e>Bui ld ing Search App l i ca t i ons</ T i t l e>
<Author>M. Konchady</Author>

</Book>
<Book language=" eng l i s h ">

<Ti t l e>Di s t r ibu ted Systems: concept and Design</ T i t l e>
<Author>G. Coulor i s , J . Dol l imore , T. Kindenberg</Author>

</Book>
[ . . . ]

</Library>

XML can also be used to create structures very similar to formatted text
where the text content is the data surrounded by xml-tags with attributes
such as bold text or a custom font. An example of a �le type employing this
methodology is the Microsoft O�ce Open XML suite. Instead of creating a
rich data structure with a very high level of complexity, the approach has
been to split information into separate XML �les. These �les are compressed
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into a single ZIP archive with a speci�c folder structure. For example, a
docx �le includes a folder named docProps which stores XML �les conveying
document metadata. Most of the contained �les specify styles and other
settings, but there is also a �le named document.xml which outlines the
general document structure by an XML representation. The document is
structured so that text content is always surrounded by a <w:t></w:t>
tag. This is very useful fact as it makes the text-extraction process next
to trivial. Similar metrics can be observed for the other �le types in the
OOXML suite as well.

2.6 Indexing server

An indexer is one of the three major parts of a search engine, the other two
being the feeder and the search front end. The �le feeder is the mechanism
that provides the indexer with �les for indexing and the search front end is
a user interface which supplies the search service to the user.
The purpose of the indexer is to generate what is known as an index , which
can be de�ned as creating structured information from unstructured text.
The exact nature of an index depends on its implementation, but more gen-
erally it can be said that it's the storage of document information optimized
for fast and accurate lookup. The information in the index is utilized by the
search engine to �nd matching documents on the users request. The search
engine strives to give the user the most relevant document by searching for
documents matching a set of given keywords, combined with factors such
as ranking or popularity ratings. The purpose of the index is to simplify
and speed up the search process by supplying an organized structure that
can speedily be scanned instead of iterating the contents of a large set of
documents directly.

Before the index is generated the text are organized into a set of weighted
terms. The common approach is to locate reoccurring words and phrases.
Certain words that are interpreted as having a special meaning can be as-
signed higher priority; for example names or email addresses. The structur-
ing of the text into a set of relevant words and phrases is called tokenizing.
Certain document types contain data supplied only for the only purpose of
providing indexers with prede�ned relevant words. This information is called
metadata.

Some of the �rst indexers and search engines were devised to operate
solely based on the metadata while ignoring the rest of the document. For ex-
ample, metadata tags were included in the HTML-format speci�cally for the
purpose of accommodating indexing services [29] . Although the technique
using prede�ned metadata tags for indexing is straightforward, it proves fal-
lacious in the sense that it's easily abused. A major impact is how HTML
documents could be designed to appear on top of many search results by
clever engineering standpoints such as keyword spamming. As a result search
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engine ranking system has become increasingly intelligent over the years, in
some cases, including several hundredths aspects in each decision. In inter-
nal systems however, this �aw might be of less relevance as metadata can be
deterministically generated from the content of a document itself.

There is a multitude of possibilities to rank the set of terms for each doc-
ument in order to construct a highly searchable index. One of the more
common approaches is based on the generation of a list of all words in each
document combined with their frequency. The selection of words should ex-
clude the most common words such as a, and, of, the, is etc., as they usually
pose no value to the search query. To exclude irrelevant terms an interval
of terms somewhere in the middle to high- range in the frequency list is se-
lected. Each term in the set are given a value representing its frequency in
the document, where higher values implies more frequently occurring terms.
The method of ranking words based on frequency is called Term Frequency
(TF) .

The outcome of applying the Term Frequency technique alone tends to
in�ict poor results since ignoring low frequency words reduces precision for
queries regarding uncommon words and ignoring high frequency words po-
tentially discards expressions of relevance. To create a better balanced out-
put, the term frequency can be combined with Inverse Document Frequency
(IDF): which is the inverse of the number of documents that the word occurs
in. Konchady [30] suggests using a formula to deterministically calculate the
IDF:

IDF = log

(
N

n

)
+ 1

where N is the total number of documents in the set and n is the number
of documents where the word occurs in. Each document is associated a
weight for each term based on for the product of TF for the document and
the IDF for the set.

Wi,j,k = TFi,j ∗ IDFi,k

i = term, j = document, k = documentset

The method is commonly known as TF/IDF indexing. There exist also
other methods for generating indexes worth mentioning; among these are
Latent Semantic Indexing (LSI) which is based on building matrixes of terms,
documents and relations between words in similar contexts [31], and Okapi
BM25 which utilizes probabilistic models [32].

The generated weights (Wi,j,k) are used when calculating the relevance
of a document for a speci�c user query. The most conspicuous method
commonly used together with TF/IDF, is called the vector space model [33].
Let each queried term be a dimension in a graph and draw a vector from
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origin to the calculated point for each document. Let the length of each
vector denote the relevance for the corresponding document. The document
that receives the highest relevance value is considered as the most suitable
answer for the query. Figure 12 illustrates a query for the words relevant and
document. We observe that since the relevance value of 6.3 for document B is
more prominent than the relevance value of 5.09 for document A, document
B would be the best suited answer to the query.

Figure 12: A query for the words relevant and document in a set consisting
of two documents.
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3 Method

During the analysis, a number of principles have been addressed to appoint
general distributed techniques to the current problem domain. At this point
the reader is assumed to have an understanding of which logical entities of
the indexing service this thesis is focused on. We will continue to study the
realization of the distributed system by careful examination of each logical
subsystem; starting with �le crawling and ending with the handover proce-
dure to the indexing server. All aspects of the system is implemented using
the Java programming language and is thereby operating system indepen-
dent.

To aid the understanding of the system in general, an illustration is
devised to depict the key components of the system as can be observed
in Figure 13. It's produced in a custom format intended to give a brief
overview of the system without including the full set of entities and their
complex relationships. Note that the arrows represent part of the program
�ow rather than dependencies. We let this illustration guide each of the
following subsections.

Figure 13: A conceptual view of the developed system. The illustration is
largely simpli�ed where only key �ow components are outlined.
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3.1 System summary

It's a di�cult task to trivialize a complex system. Still, we feel that a short
summary would aid the illustration of Figure 13. The starting point of the
system is the dispatcher which on a regular basis schedules new crawler
jobs. The crawler iterates the local �le system and passes the �les by a
shared queue to the �le feeder which in turn forwards the �le to the work
controller. Assume for completeness a con�guration where all modules are
active. The controller contains the plumbing to route the �le to di�erent
locations based on a large number of factors. First, the processing facade is
contacted which performs the information extraction and processing of all
�les. Once complete, the �le can either be forwarded to the distribution
handler or an adapter based on decisions from e.g. the group membership
service module. If passed to the distribution handler, the contents of the �le
are shared with other members in the group which collaborates in performing
additional computations. The alternative is to forward the �le to the adapter
proxy which provides a uniform interface to accessing an indexing server as
well as a batching routine. The proxy in turn controls an adapter which is
the direct interface to the currently used index server.

Once a �le has been pushed onto the network, a callback will be returned
and caught by the callback handler. The contents are examined and a de-
cision is made to either start the re-processing mechanism upon failure, or
to mark the �le as indexed in the database. Further, there is management
component which is intended to provide remote control of the application
and to facilitate mechanisms to generate e.g. remote logging events.

3.2 Crawling

The term crawling is used interchangeably with traversing, and is considered
in the context of iterating �les in the local �le system. We are only concerned
with �le crawling, although there are other potential applications like web-
or email crawling. In the end each document or element is inherently a �le,
and as such a �le crawler is su�cient to locate this information.

There are two approaches to e�ciently crawl a �le system. The process
can be performed iteratively or recursively. The latter can be considered
more intuitive to implement, however it also impose the risk of stack over�ow
during deep recursion. Since a �le system can be of arbitrary depth in terms
of directories, and each directory can contain an arbitrary amount of �les,
the risk of over�ow is abundant. Thereby an iterative approach to traversing
the �le system is chosen as the primary method.

The crawling can be controlled by a number of con�gurable options sup-
plied in advance of a system execution. The relevant options are: publicDirs,
localStartdirs, skipDirs, skipFiles and readyQueueSize, where the former are
comma-separated list items. The variable publicDirs is used to select the
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entry point(s) to the �le system, allowing the user to hand-pick the direc-
tories to crawl. The second variable localStartDirs is intended to be used
in conjunction with publicDirs to control how �les should be exposed ex-
ternally; i.e. to be accessible to a user upon querying the search front-end.
This enables the freedom to select whether �les should be accessible by e.g.
HTTP-requests, FTP transfers or network �le sharing. The relationship is
best explained by observing Table 1. The two properties skipDirs and skip-
Files are used to exclude �les and directories from the �le traversal. Both are
powered by regular-expressions, which is useful to ignore �les based on their
pattern. Consider the usefulness of skipping �les such as *.jpg, Thumbs.db
or [Pp]rivate*. Once a �le has been captured by the crawler, it's forwarded
onto a queue instance shared with the rest of the system. The property
readyQueueSize de�nes the size of the queue and thus limits the number of
�les crawled at a time. It acts as a guarantee to not crawl more �les than
the system can serve in any time frame.

Table 1: Mapping of resources from local to public access.
LocalDir File PublicDir Resulting location

C:/path1/ C:/path1/a.txt http://host/foo http://host/foo/a.txt
C:/path2/ C:/path1/b.txt ftp://host/foo ftp://host/foo/b.txt
C:/d1/d2 C:/d1/d2/d3/a.txt �le://host/foo �le://host/foo/d3/a.txt
C:/d1/d2 C:/d1/d2/d3/b.txt �le://host/foo �le://host/foo/d3/b.txt

The crawler is essentially its own system executed by a dedicated thread.
It's instantiated regularly by the dispatcher based on predetermined input of
the user. The scheduling employs the UNIX familiar Cron expressions [34,
35] to launch the crawler with a high level of con�gurability. It's internally
con�gured to not issue multiple crawling instances simultaneously. Instead
missed events will up to a certain point become scheduled in a sequence
following the termination of the currently violating job.

A desirable property is to obtain a stateful notion of the �le system which cor-
responds to maintaining state information for each crawled �le. The records
can be used to track which �les have already been submitted to the index
server and thus requires no additional action. The current implementation
is backed by a SQLite [36] database storing records of �le location, indexed
status and a MD5 digest. The digest algorithm spans the size of a �le com-
bined with last modi�ed timestamp, thereby producing an e�ective method
to discover changes to a �le. The database records enable the discovery of
missing �les, inclusion of �les, and the modi�cation of �les. A mapping is
created to generate corresponding instructions to the indexing server. Hence,
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the crawler is able to intelligently distinguish state records to only inform
the indexing server of changes to a document when necessary. The technique
is based on the assertion that database records are not persisted until a re-
sponse has been received from the index server. This notion of robustness
has the direct implication that a server failure will not result in incorrect �le
records or missed documents in subsequent crawls.

3.3 Internal �le routing

The crawler exposes �les to the rest of the system by an internal routing
mechanism. The mechanism resides in the work controller as depicted in
Figure 13, and is activated whenever the �le feeder forwards �le objects to
it. The routing mechanism is layered into three tiers based on if the user has
enabled the network synchronization or load sharing mechanisms. The choice
of active modules should re�ect the needs of the user, e.g. if there only exist
one �le server there is no need to enable group services or load distribution.
However the highest level of complexity arises when both options are enabled.
In this scenario the controller needs to collect advice from the group service
in order to decide where to route the �le. It may be instructed to �ll up
a queue of �les to pass to the load distribution mechanism, or it may be
temporally suspended until it can access the network, or the �le can be
enqueued to be a part of a batch routine intended for communicating �les
to the index server.

One of the main responsibilities of the controller is to synchronize the
access for more than a handful of threads at worst. Internally this is im-
plemented by a series of java monitors. Some of the threads which require
synchronization are the feeder, the re-processing mechanism, membership
services, the distribution mechanism etc.

3.4 Information extraction

As de�ned in the analysis, information extraction is the task of extracting
relevant information and storing it in some internal data structure. Since
the system should be able to facilitate all document types the data struc-
ture comprises of a modular design which enables associating any type of
document to it. The system currently supports some of the more commonly
found formats, namely pdf, doc, docx, xls, xlsx, ppt, pptx, html, txt and
images. Each �le type is associated with a dedicated extractor implementa-
tion. An extractor is based on a well-de�ned interface providing a uniform
data-retrieval routine. File types with no pre-de�ned extractor are subject
to a default extractor providing generic routines to extract metadata from
a �le. The default extractor o�ers two modes of operation based on if the
index server supports receiving �les as binary content. If enabled, the entire
�le is stored in KB-sized chunks in a bu�er and transmitted to the index
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server. Otherwise only the metadata component is used to represent the �le.
The interface for creating a new extractor poses no limitations to what

types of metadata can be stored. Each element is represented by a <key,
value> pair. Before passing the metadata elements to the indexing server
they are subject to another mapping, allowing the administrator to con�gure
exactly which name each element should be stored by. Using this highly con-
�gurable approach, adding or removing metadata elements brings no further
implications than adding or removing a line of text in the mappings docu-
ment. Moreover, the extractor con�guration itself is largely �exible. We've
developed a framework where a �le type can be mapped to an extractor us-
ing an external XML con�guration �le. The extractor implementation can
be provided either as a java class or as a java jar �le, in the sense of build
once use anywhere. A syntactic excerpt outlining this procedure is given by
the following example. Note that there must exist a HTMLExtractor.class
or a HTMLExtractor.jar in the prede�ned class path.

<ex t r a c t o r c on f i g u r a t i o n>
<ex t r a c t o r>

<f i l e t y p e>html</ f i l e t y p e>
<f i l e t y p e>htm</ f i l e t y p e>
<f i l e t y p e>j sp</ f i l e t y p e>

<c l a s s>HTMLExtractor</ c l a s s>
</ ex t r a c t o r>
[ . . . ]

</ ex t r a c t o r c on f i g u r a t i o n>

A restrictive approach to memory utilization is an integral part of the
system design philosophy, and the extractor interface is no di�erent. Two
quanti�ers are supplied with the interface to control contrasting aspects of
the memory utilization in terms of data size for the working set as well as
the maximum data size for each �le. Although the restrictions are provided,
the implementer is not obligated to enforce them. The entire system is
constructed with Postel's law in mind: �Be conservative in what you do;
be liberal in what you accept from others� [37]. The law is mirrored in our
design philosophy; the system provides a strict rules set, however if a module
disobeys one or more of these rules, the system shall still retain operation as
close as possible to the intended speci�cation.

The text extraction process is for some �le types an operation of high
complexity. Where due, we've decided to not reinvent the wheel again. Hence
a number of open source libraries have been used to aid the text extraction
for some of the more complex �le format speci�cations. As an example the
open source PDFBox [38], under the Apache License v2 [39], is used to in-
terface with pdf �les. Further Apache POI [40], also released under the same
license, is used as a façade for �les in the MS O�ce suit based on the OLE2
standard. It is of course also possible to implement extractors without the
use of an external library.
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The OOXML based MS O�ce 2007 series is an excellent example of how the
java standard library is su�cient to perform the text extraction. The for-
mat is more closely examined in the previous analysis section; however we'll
formulate a summary of the necessary steps to perform the text extraction:

1. Extract the ZIP archive

2. Locate �les with text contents, i.e. word/document.xml for docx

3. Parse the selected �le for areas surrounded by <w:t></w:t> tags

4. Return the extracted areas in the same order of occurrence as in the
�le

There are also other �les of relevance. For instance to locate the title meta-
data element in a docx document, the �le docProps/core.xml can be scanned
for the <dc:title></dc:title> tag.

3.5 Information processing

After the textual information is extracted from a document it may be desir-
able to perform additional processing on the contents. Processing steps are
based on receiving text and metadata in an internal data structure, create
or alter some of its contents and return it to the caller. They are character-
istically computational intensive and may perform actions such as character
encoding conversion, sorting, or directly act as a replacement for any of
the possible steps traditionally performed at the indexing server; such as
spellchecking, stemming, ranking or categorization.

Analogous to the extractor con�guration, processing steps as well sup-
ports dynamic invocation using an xml con�guration �le. The usefulness ap-
pears in that the application can be tailored to the needs of each individual
customer while maximizing component reuse. The con�guration is however
a little more elaborate this time. The order in which processing steps appear
in does make a di�erence. Secondly, processors are categorized based on if
their operation must be performed locally or if they can be distributed to
another server in the group. Consider the following con�guration:

<p i p e l i n e c o n f i g u r a t i o n>
<p i p e l i n e>

<f i l e t y p e>doc</ f i l e t y p e>
<f i l e t y p e>docx</ f i l e t y p e>

<mstep>ACLProcessor</mstep>
<dstep>UTF8Processor</dstep>
<dstep>WordCountProcessor</dstep>

</ p i p e l i n e>
[ . . . ]

</ p i p e l i n e c o n f i g u r a t i o n>

The pipeline step associates �les with the doc or docx extension to three
processors. The ACLProcessor, which extracts ACL information from a �le,
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is de�ned as a mandatory step and must be performed locally. There are
mainly two motivations to de�ne a mandatory step. Either the processor
needs direct access to the �le itself, not just its previously extracted con-
tents, or the step requires very little processing time and would thereby not
bene�t from being distributed. Performing character decoding and encoding
is however a more demanding task and can be performed elsewhere, hence
the UTF8Processor is de�ned as a distributable step. The distribution ben-
e�ts increase as the number of distributable steps grows. It's been identi�ed
that in a real scenario, the number of distributable steps may be signi�cant,
as well as the associated computational demands. There's also a mechanism
to assign default processing steps to all �le types which has no explicit pro-
cessor declaration. The routine responsible to perform the distribution is
studied in more detail in the load sharing section.

3.6 Adapters

Whether a �le is distributed or not it will eventually be forwarded to an
adapter. The adapter is an implementation speci�cally intended to bridge
the communication with the indexing server. Each index server thereby re-
quires a custom adapter implementation to perform the necessary adaptation
of data into a form interpretable by that server. An adapter implements an
interface allowing it to be controlled by a proxy class. The proxy employs
a batching routine which is useful for two reasons. It o�ers a more e�ec-
tive approach to propagate data onto the network and secondly it's used in
conjunction with the network synchronization mechanism. That is, while
waiting to access the network the batch is �lled. Once accessed, the batch
is emptied and its contents sent to the index server before passing on the
network access token. The adapter proxy also contains routines to handle
network failures. If the network becomes unavailable the proxy will enter a
state where it's attempting to detect network access again. Once the network
is available a routine will be invoked in the adapter which reestablishes con-
nection to the index server again. Hence the act of unplugging the network
cable and inserting it again will only cause a delay in the software.

Before passing the metadata for a �le to the indexing server a mapping is
performed to transform each entry into an acceptable format for that speci�c
index sever. Each of the internal metadata elements requires a matching
entry in the mapping table or they will be automatically discarded by the
system.

The system supplies two adapter implementations bridging the communi-
cation between the application and indexing server. They will be considered
in the following sections.
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3.6.1 FAST ESP

FAST ESP [41] (Fast Search & Transfer Enterprise Search Platform) is a
proprietary search platform for corporate search solutions. ESP supplies a
complete search engine by supplying feeding capabilities, an indexer and a
search front end. There are a number of di�erent components for feeding the
index server available but the one relevant to this thesis is the �le traverser.
It works by fetching �les from content providers over a network connection
and exposing these to the indexing server which performs data extraction,
processing and indexing. The ESP index server accepts most �le types di-
rectly using built in text extraction techniques. It's also possible to supply
extracted text contents or metadata directly to the indexing server. ESP
provides a java API for connecting via an object which accepts �les in either
binary form or as pairs of <key, value> elements representing a �le. Using
the latter approach, a mandatory key representing the �le contents need to
be supplied. Regardless of method, ESP utilizes a container object known as
IDocument to store the contents of a �le. The following code snippet gives
a brief overview of its usage:

IDocument document = DocumentFactory . newDocument ( " id " ) ;
document . addElement (DocumentFactory . newString ( "data" , " t ext example" ) ;
document . addElement (DocumentFactory . newString ( " author " , " Sture " )
[ . . . ]

The IDocument is upon completion forwarded to the indexing server
via prede�ned API routines. ESP performs the indexing according to a
prede�ned pipeline on the indexing server. The functionality to alter the
pipeline is provided by a web interface. Once all �les have been indexed, they
will be subject to a routine responsible to make the �le searchable through
the search front end. When an object has been processed the indexer will
return a callback-object specifying the result of the indexing. The callback
contains a variable which denotes if the indexing was successful or not as
well as a collection of possible errors and warnings. The callback object is
adapted to a standardized internal representation of a callback object used
within our system and forwarded to a callback handling routine capable of
interpreting the results and taking appropriate action.

After a batch of data is sent the main adapter thread will block until all
callbacks for that particular batch has been received. Disconnects and con-
nection errors are reported as exceptions and can occur at any time either
when sending or during the blocking operation. In the event of an exception
the adapter will automatically generate failed callbacks for all �les which no
callback was received for prior to the exception. After the exception is han-
dled locally the adapter will continuously try to re-establish the connection
and resume operation.
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3.6.2 Apache Solr

Apache Solr [42] is an open source enterprise search server based on the
Apache Lucene search library. In contrast to ESP, which is backed by a
major company o�ering a complete range of functionality, Solr o�ers just
the basic. It provides an API to propagate formatted or unformatted text to
the indexing server which performs the index operation by a set of prede�ned
rules. An XML representation of the matching data is returned upon a search
query. An excerpt of a search result is outlined below:

<doc>
<s t r name=" fi lename_s ">pre t ty sunset . jpg</ s t r>
<s t r name=" id ">C:/ share / pre t ty sunset . jpg</ s t r>
<s t r name=" las tmod i f i ed_s ">Wed Feb 11 15 : 5 1 : 1 0 CET 2009</ s t r>
<s t r name=" l ink_s ">f t p : // host / pre t ty sunset . jpg</ s t r>
<in t name=" popu la r i ty ">0</ in t>
<s t r name=" s ize_s ">71189</ s t r>
<s t r name="sku">f t p : // host / pre t ty sunset . jpg</ s t r>
<date name="timestamp">2009−04−23T14:23:27 .489Z</date>
<s t r name=" t i t l e_ t ">pre t ty sunset . jpg</ s t r>
<s t r name=" truncated_s">f a l s e</ s t r>
<s t r name="content_t">This i s the t ex tua l content [ . . . ]</ s t r>

</doc>

As obvious by now, Solr doesn't provide much usability for free. In order
to prove useful a search front end needs to be constructed to wrap the XML
data; which is not treated in this thesis. Most entries are custom created by
appending a symbol after the name. For instance �lename_s corresponds
to an entry of the type string, title_t of type text etc., due to the control
sequences '_s', '_t'.

The communication with Solr is in essence non-stateful. Transferring
content to Solr is nothing more complicated than sending a HTTP request
containing the data content. Thereby there is no active connection need-
ing to be maintained which simpli�es handling network outages. Solr di�ers
from ESP in yet another aspect as it doesn't provide any callback mecha-
nism. Data errors are instead masked in the process of locally translating
the content into Solr XML format. Communication errors are noti�ed as
exceptions when issuing the HTTP request. The implication is that the
Solr adapter itself creates virtual callbacks which are passed directly to the
callback handler. The implementation speci�c challenge turns out to be to
avoid deadlocks in the system. In contrast to ESP where the client spawn
new threads as incoming callbacks are received, the Solr callbacks are gen-
erated by the thread which executes adapter code. Technically this thread
resides in the �le feeder, thereby o�ering quite a di�erent approach to as-
signing thread responsibility.
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3.7 Callback handling

Handling callbacks are performed by the callback handler denoted in Fig-
ure D. A generic structure is used to represent a callback internally. Each
successful event will result in the �le associated with the callback to be
persisted in the database, which is the �rst time a �le is considered to be
indexed. Upon a failure, a state machine approach is initiated to reprocess
the �le. The �rst failed event will result in the re-extraction and reprocessing
of the �le in the same manner as was performed for the �le the �rst time.
During a second or third failure, two levels of base extractors will be used
which succeedingly extracts more primitive data from the �le. The receipt
of yet another failed callback will result in the �le being dropped from the
current crawl operation entirely.

A dedicated thread is used to perform the re-extraction and reprocessing
routines. The callback handler merely adds a failed callback to the scheduling
mechanism after updating its internal state. After enough failed callbacks
have been scheduled, or after a timeout, the actual mechanism will start
which synchronizes the reprocessing operation with respect to the regular
batch routine. The reason is that treating a failed callback is equivalent to
using the framework already in place for processing and extraction, only with
a control parameter used to decide which extractor con�guration to employ
for the current case.

3.8 Communication

When deciding the communication backbone technology for a cluster of �le
servers there are a number of available options. The �rst option, to write
a custom implementation, is discarded due to the complexity of the task as
it would likely make up an entire thesis by itself. Since there already exist
a number of available middleware systems designed for distributed systems,
one of these would likely o�er a more be�tting choice.

One option is to use the popular CORBA (Common Object Request Bro-
ker Architecture) [43] for communicating within a group of clients. CORBA
supplies a wide variety of functions; most prominent are the ability of remote
method invocation and programming language interoperability. Due to its
generic object structure and communication mechanisms, it's an excellent
choice to provide communication between e.g. a C- and java client regard-
less of operating system. There are however no built in group membership
capabilities, alas the entire group service protocol would need to be devised
on top of the CORBA stack.

Another toolkit is Ensemble [44] which o�ers satisfactory membership
capabilities as well as a wide range of programming language interoperability.
However the major disadvantage is that it must be run as an external service
on every participating node. This is both its greatest strength and greatest
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weakness depending on the situation. Combined with its academic nature,
the usage of Ensemble is rejected as well in this project.

A third alternative is the Internet Communication Engine (ICE) [45]
which closely resembles the CORBA architecture but with less complexity.
Although Ice seems to provide all necessary functionality it has an open
source license which doesn't permit it to be interleaved with proprietary
software. A commercial license is o�ered as well, but this alternative is
discarded in favor of an open source solution.

JGroups [46] is a toolkit speci�cally designed for reliable multicast and group
handling. Its protocol stack is con�gured externally by an XML �le which
can easily be adapted to the situation. Total order protocols, with or without
a coordinator, is supported. Due to its multifaceted operation, JGroups is
chosen as the communication provider for group services in the system. To
reduce network contention, a coordinator controlled approach to message
delivery is selected. It's a variant of the reliable coordinator scheme presented
in the analysis section 2.3.4. A node wanting to propagate a message sends a
unicast transmission to the controller which sequences the incoming messages
and performs the multicast on behalf of the peer. As the number of nodes
increase, the controller will be faced by an increased amount of work. This
is not an immediate problem in a server environment where not more than
a dozen servers are considered to be part of the system at any one time.

Another advantage of JGroups is that it's considerably less complex to
use than e.g. CORBA. All that's needed is to construct a class which im-
plements an interface consisting of a few routines for sending and receiving
messages. Any other routines, such as delivering a new group view or pass-
ing control messages are already taken care of by the respective layer in the
de�ned protocol stack. Hence the implemented class can be compared to
the application layer of the OSI model, commonly used to represent the dif-
ferent protocol layers a message is exposed to before being transmitted over
the network.

3.8.1 Membership service

The purpose of group membership is to provide controlled communication
between all nodes participating in the system. It is desirable to synchronize
access to the network and to perform services like load sharing. Each of these
implementations requires a node to maintain a few data structures which
must be kept synchronized between all nodes in the group. A group ser-
vice o�ering ordered reliable multicast can facilitate this need. The JGroups
membership service is con�gured to be handled internally by the sequencer
protocol which employs the concept of a coordinator to accomplish total or-
dering. The method for choosing a coordinator is simply to pick the node
that appears �rst in the view, e.g. the node that created the group. A new
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node joins the group by the following algorithm:

find existing members
if no members found:

create a singleton group and become coordinator
else:

determine the coordinator of the group
send JOIN request to coordinator
wait for JOIN response
if JOIN response received:

node has joined the group
else:

wait for 5 seconds and restart

Each node receives a new view object each time the group is updated.
The object is delivered to the implementing class which compares the new
view to the last view received to detect changes to the group. Detecting
group changes is necessary to maintain a correct view of the distributed
data structures. The nature of these data structures will be considered in
the network synchronization and load sharing chapters respectively.

In the special case were there exist two or more coordinators, each in a
subgroup, the coordinators need resolve this as soon as the other group is
discovered; leading to a merge of the subgroups. The details of this action
are at the discretion of the JGroups implementation which performs this
service internally.

3.8.2 Network synchronization

In addition to maintaining a list of all nodes every member of the group
stores its own copy of a global request queue. The queue is used to control
network access to nodes by granting access only to the node at the head of the
queue according to the global queue time division described in section 2.2.3.
Somewhat confusing, the network access mechanism is used to control access
to the indexing server and not the network per say. When a node desires to
forward all processed �les from the batch queue to the index server, a request
multicast message is issued which appends the request at the tail of the
queue. The node which request is at the head of the queue is currently eligible
to communicate with the index server. Once the operation is complete the
node revokes its own access by issuing a release message, allowing the next
node in the queue to access the network.

When a new node connects to the group it receives a copy of the queue
from the coordinator. From that point on, the queue is kept synchronized
across the group by the mechanism provided by the totally ordered multicast.
In the event of a node failure, or if a node leaves the group, a routine will
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be performed on each remaining node in the group to remove the faulting
node from any data structures. The routine relates to the view delivery
mechanism mentioned in the previous section. If a node is no longer found
in the current group upon a view delivery, and the node is present in e.g.
the network access queue, it can safely be removed.

3.8.3 Load distribution

In the Information Extraction section the term distributable processing steps
are de�ned. During an execution, the contents of a �le are �rst extracted
before the mandatory processing steps are performed. At this point a load
queue is used to store all elements which have not yet had its distributable
steps processed. Once the load queue reaches its capacity ceiling a load
distribution request can commence.

The �rst step requires the node to locate an available peer. The technique
used to perform this lookup is integrated into the implementation of the
membership service. This time a distributed hash table is used to track the
status of each member in the group. A status entry is de�ned to carry either
the value free or busy. The value free corresponds to that a node is currently
not performing a crawl or processing job of any kind, while busy relates to
the opposite. Each node that �nds itself in a position where it is able to
perform work for another node sends out a multicast message notifying that
it is free to the group. The status entries are kept synchronized by dedicated
changeStatus multicast messages.

Since the set of available peers are known, a distribution request is for-
warded to one of the peers according to the source-initiated distribution
technique visited in the analysis. The originator collects the response and
accepts it upon a positive reply. If an answer is negative or missing, the
node will continue to listen to changeStatus messages until another node is
marked as free and the request procedure can be repeated. Once a peer is
veri�ed to perform the distributable steps, the contents of the load queue will
be forwarded to that peer and the node can continue processing elements lo-
cally as well as preparing to perform another distribution batch. The details
of the distribution protocol are illustrated in Table 2. Note that distribution
mechanism corresponds to the technique visualized in Figure 10.

Sockets are selected as the primary means of distributing workload. Al-
though the membership service supports unicast messaging, there are ar-
guably less overhead associated with socket communication. Lastly, if the
connection should fail in any way the distributor resumes the responsibility
for all the �les that it did not receive any callback for.
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Table 2: The �le distribution procedure as viewed by the initiator.
Distributor Peer

(1) Open socket on speci�ed port
(2) Accept connection

(3) Send speci�ed amount of data
followed by end-of-queue

(4) Receive all data
(5) Start processing of data and for-
ward the results to the index server
(6) For each callback from the index
server, send callback to distributor

(7) Receive callbacks
(8) When all �les are processed and
all callbacks from the index server
are forwarded, send end-of-queue

(9) Close connection
(10) Close connection

3.9 Security

The system is foremost intended to be used in a local area network where
security implications are not as severe as were there an intermediary inter-
net connection between the servers. Nevertheless the ambition regarding
security is to implement the highest level possible for each communication
component throughout the system. By the term security we mean security
in the aspect of avoiding eavesdropping (con�dentiality) and unauthorized
modi�cation (integrity) of the network tra�c. The communication system
can be divided into three categories regarding security: internal data trans-
fer, group communication and index server speci�c communication where
each category has its own security implementation.

The internal data transfer communication, or socket based communica-
tion, is the tra�c generated by distributing data between nodes. It has
the option to enable SSL/TLS encryption by the option Security.ssl in the
systems primary con�guration �le. Since SSL/TLS employ the concept of
asymmetrical keys, every node needs to have its own private key and a copy
of every other nodes public key. By using SSL/TSL, the communication is
considered secure in the aspect of both con�dentiality and integrity; trans-
lating to that only an authorized node is able to read and write data while
being aware of any modi�cations to the original contents. However the pro-
cedure of generating and distributing all keys might be a tedious task and in
order to simplify the process we have created a tool that generates keys and
helps import the public keys on every node. For group communication there
is the option to use symmetrical encryption. In order to enable encryption
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in the system the con�guration variable Security.groupComm can be set to
true.

Since the encryption is symmetrical an identical key must be present
at every partaking node. Having symmetrical encryption means that ev-
ery node in the group can read every message, but this is not regarded as
any weakness since multicast is used as the basis of operation for the group
communication. The communication with the index server is naturally de-
pendent on the current choice of index server, leaving the security issue to
the implementer of the speci�c adapter. Certain index servers such as Solr
provide no security functionality while FAST ESP is fully capable of com-
municating over SSL/TLS. Implementation of security over these links is
beyond the scope of this thesis.
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4 Results

As the system is intended to replace existing crawler implementations, a com-
parative benchmark analysis is useful to interpret the system e�ciency. Of
the two indexing systems examined in the thesis, only one provides crawler
software. The FAST ESP system supplies proprietary software named File
Traverser, denoted simply as ESP in the following tests. We refer to our
implementation as DDP, short for Distributed Document Processing. The
DDP crawler is intended to be run on each content provider in the network,
while the ESP traverser is always performing its execution on the index-
ing server itself. The data set selected to be used for crawling are chosen
as a pseudo-random collection of documents somewhat representable to a
real world scenario. All documents have been retrieved from Google by us-
ing context search. For example the query �letype:docx returns a number
of documents in the docx-format. The number of �les, their �le size and
distribution can be observed in table 3.

Table 3: Ratio of documents used to produce the collection of test data.
File type Num. �les Avg. size (KB) Total size (MB)

Doc 85 156 13
docx 73 301 21.6
html 20 19 0.38
jpg 21 2004 4.19
pdf 40 7498 289
ppt 120 2176 255
pptx 44 1198 51.5
txt 16 266 4.17
xls 41 191 7.65
xlsx 23 74 1.68
Total 484 1375 650

Our goal is to perform tests which can be used as a representative means
to compare key aspects of the system. Di�erent aspects hold varying im-
portance depending on the deployment scenario. The two we consider of
greatest importance are the document throughput and network bandwidth.
We use the total time to index the entire collection of �les as a measurement
of the document throughput. Network bandwidth is in both systems mea-
sured at the amount of network tra�c which passes the network interface
card located at the indexing server.

The tests are conducted in a local area network using up to �ve com-
puters, where four computers are available to perform crawling and the �fth
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being the Fast ESP indexing server. All communications are performed by
cable o�ering speeds of 100 Mbps with a 1000 Mbps enabled switch. The
tests take place in an o�ce environment where tra�c from other components
than the test system is negligible. During the testing, all non-essential soft-
ware is disabled to provide reliable results during the replicated test runs.
Furthermore, both ESP and DDP are con�gured to not utilize any security
modules, such as SSL, throughout the test runs. The computer speci�cations
as well as the architecture and operations systems are speci�ed in table 4.

Both the ESP- and DDP-system has the requirement that all �les in the
collection should be indexed; no �les are allowed to be omitted to provide
for comparable results. During all test runs, the DDP system was restricted
to heap space of a maximum of 500 MB. ESP had no con�gurable coun-
terpart and is left unknown. Each test is performed a number of times to
achieve reliable results. As the system relies on an operating system to run,
a large number of tests are required to observe the accuracy of the test runs.
Although events such as operating system context switches never can be con-
trolled, we expect that the impact will be of less importance to the crawling
operation which extends over a large enough period of time. The test will be
performed with varying number of participants and con�gurations and will
be treated by a sub section each.

Table 4: The con�guration of the test servers.
Role CPU family CPU freq. Memory OS (32-bit)

File server 1 Intel Pen-
tium Dual

2 GHz 3 GB Win. Vista
Home Basic

File server 2 Intel Core 2
Duo

1,66 GHz 1 GB Windows
XP Pro

File server 3 Intel Pen-
tium M.

1,86 GHz 1 GB Archlinux

File server 4 AMD Tu-
rion 64 X2
Mobile

1,81 GHz 2 GB Windows
XP Pro

Index server Intel Pen-
tium 4

3 GHz 4 GB Windows
Server 2003

4.1 Testing with one �le server

Both systems have been tested independently of each other a number of
times using di�erent con�guration settings. The purpose of these tests has
been to derive a con�guration optimal to each of the systems for the current
data set. Although the tests were conducted only on �le server 1, we consider
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the con�guration settings to be satisfactory for any of the other �le server
as well. The resulting values will be used on all servers when conducting the
tests, and they can be observed for ESP and DDP respectively in tables 5
and 6. Note in the DDP system that since the test runs are performed by
a single content provider only, both network synchronization and load dis-
tribution are disabled. The ESP traverser is set up to perform its operation
sequentially, as running two copies of the program simultaneously resulted
poor results for the index server which was not equipped with multiprocessor
technology.

The tables 5 and 6 also outline the resulting indexing time and bandwidth
usage for the derived con�guration. The most signi�cant observation is the
conservation of bandwidth by the DDP system of approximately 60 times, or
1.65% of the total tra�c generated by ESP. In addition, the total execution
time for the ESP �le crawler is on average 1.42 times longer than the DDP
execution time, by the added length of 1 minute and 20 seconds. It should
be noted that the results are speci�c to the chosen data set and may well
provide di�erent results for di�erent collections of data. The DDP crawler
endured an average CPU load of 40-60% during the execution with a memory
usage of approximately 230-240 MB. Since the ESP traverser is running on
the same server which performs the indexing, we have not deduced a reliable
metric for the CPU load which can be used for comparison.

Table 5: ESP con�guration and test
results using one �le server.

Variable Value

queue 100 MB
batch length 300
batchSize 75 MB
max �leSize 5000 KB

Time for indexing 4:31 Min
Network tra�c 676 MB

Table 6: DDP con�guration and test
results using one �le server. Note, the
�rst three elements should be pre�xed
with '�leCrawler.'.

Variable Value

readyQueueSize 200
maxDataSizeMB 50 MB
maxFileSizeMB 50 MB
BatchQueue.size 200
BatchQueue.sizeMB 200 MB

Time for indexing 3:11 Min
Network tra�c 11.16 MB

4.2 Testing with multiple �le servers

The con�guration used for each of the �le servers is the same con�guration
which was found close to optimal during the tests with a single server. Tests
performed with additional content providers are con�gured using �le server
setups {1,2}, {1,2,3} and {1,2,3,4}. The requirements are the same as the
case with one �le server; all �les must be indexed at the end of the run by
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all participating nodes. DDP is speci�cally designed to require the network
synchronization module when multiple servers coexist on the same network,
hence this module will be active throughout the test runs where more than
one server is utilized. A test was also conducted using two �le servers simul-
taneously without network synchronization. The result in terms of indexing
time was as expected worse since performing several tasks at the same time
is usually ine�cient on uniprocessor systems. The load sharing functionality
was tested to the extent that it ful�lled its purpose in routing the data and
performing processing steps on another �le server. There is however no rele-
vant gains to be determined by enabling load distribution as there currently
are no distributable processing steps which compares to functionality of the
ESP implementation. Hence, any load sharing tests are deferred from the
scope of this thesis.

Estimation of indexing time. The total indexing time for the FAST
traverser is roughly equivalent to the indexing time of one content provider
multiplied by the total number of content providers in the system. This is
intuitively realized as the basic traverser implementation is only concerned
with retrieving �les as a whole and forwarding them directly to the indexing
server. Fluctuations in the execution time of the FAST system originate
mainly from network contention, disk speed and the underlying protocol
used for �le retrieval. The network propagation time is based on the size of
the entire collection, as each �le is transferred over the network as a whole.
We de�ne the following formula to derive an estimate of the indexing time
for the ESP system using n content providers:

tFAST =
n∑

i=1

[Ti + α ∗ β]

Ti denotes the time to required for the index server to index the data set
located at node i, α is the time required to send one byte on the network
(assuming negligible packet overhead) and β is the total size in bytes for the
data collection.

Since the DDP system performs work at each content provider before
passing each �le to the indexing server, it becomes a little more complex to
estimate the time of a test run. Hardware plays a larger role as the total
time taken for the run is depending on the CPU capabilities, memory assets,
disk speed and network capacity. The content provider which is the slowest
at performing its extraction will de�ne the base time T , where an additional
T ′

i will be added for each other content provider in the system. As opposed
to the ESP traverser, the network propagation time will be based on the size
of the extracted data instead of entire �les. We derive for the DDP system
the upper bound to perform the total indexing and crawler operation by the
formula:
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t̂DDP ≤ max {T1...Tn}+
n∑

i=1

[
T ′

i + α ∗ βi

]
Ti is the total extraction time for �le server i, T ′

i is the time it takes for
the indexing server to index the data set at node i, α is the time for sending
one byte on the network and βi is the total size in bytes for the data set at
node i.

4.3 Test results

Using the de�ned con�guration, the result in terms of total time taken to
perform the indexing is illustrated in Figure 14. It's clear that the total
e�ciency for the DDP system increase drastically as the numbers of content
providers are introduced in the system. More interesting is the bandwidth
ratio observed in Figure 15. Although the bandwidth requirement for the
DDP crawler appears to be constant, it is only the e�ect of major di�erences
presented by the two systems. Since load distribution is disabled, the tra�c
between the �le servers is considered negligible. Note also that both curves
are close to linear. This is natural since in the test case, adding more �le
servers' acts as a linear increase of identical collections. Further, the average
amount of extracted text compared to the entire �le size is illustrated for
each document type of the test collection in Figure 16.

Figure 14: Statistics comparing the indexing times for ESP and DDP for the
given data set.

The values obtained for the tests are the average values obtained over sev-
eral test runs. These are statistically veri�ed using the measure of standard
deviation σ. Using four servers with an average sample mean of µ = 5.30
minutes gives the standard deviation σ = 17.47 seconds over 10 test runs for

54



Figure 15: Statistics comparing the network tra�c generated by FAST and
DDP for the given data set.

the DDP system. The corresponding values for ESP using four servers are
µ = 17.14 minutes and σ = 26.7 seconds over 5 simulations.

Figure 16: Illustrates the text-to-�lesize ratio for the documents in the tested
data set. Note that txt- and html �les are not included in the �gure, but
that their ratio is approximately 99.8% and 67% respectively.

4.4 Program status

The constructed software is in essence a complete work. All necessary steps
to produce network synchronization, load distribution, batching, indexing
etc. are �nished. There is support for approximately a dozen �le formats.
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Both index servers FAST ESP and Solr are fully compatible with the system.
It's a recommendation upon deployment to produce additional extractor
implementations to support an increased variety of �le formats. There are
some basic processors in place, like UTF-8 encoder, which can be used with
any project. Although the scheme of processors is in no way required for the
system to perform its work, it may still be desirable to produce processors
to match the needs of each individual customer. A �nal remark is that
the system has been stress-tested for continuous operation during four days
with all features enabled without system failure. Still, it's our sincerest
recommendation to test the system in a real production environment to
work out any possible quirks prior to deploying the system commercially.
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5 Discussion

This thesis is concerned with the improvement of indexing �les stored on �le
servers; it's a known fact that the task of indexing is very time consuming
and network exhaustive. The proposed improvement given by this thesis is
to distribute the tasks of text extraction and data processing to �le servers
in the system which retain surplus processing capacity.

A series of tests have been conducted to justify the e�ectiveness of the
system. The �rst observation is that the tests are very speci�c for the collec-
tion of test data used. Although we've strived to create a document diversity
that represents that of an actual company, there is no doubt that a di�erent
data set would yield divergent results. Still, the margins of more than 300%
speed increase and 1.67% network utilization seen by our constructed system
compared to the existing ESP system using four �le servers still conveys the
likelihood of favourism towards our system. Reducing the total time taken
to perform the indexing is an important goal in itself; however the emphasis
lies on the vast bandwidth reduction, as bandwidth contention is an essen-
tial problem in many corporations. Consider the bene�ts from applying the
system over a virtual private network (VPN) where �le servers may spread
over several distant sites.

During the test suite, bandwidth never became a major limitation to
the system. It is clear that the performance gains would be substantially
higher where the network poses a more severe limitation. The trend for both
time consumption and network utilization presented in the results section
is theoretically not limited to the four computers used for testing. The
limitation was due to a practical standpoint rather than of physical nature.
We make the theoretical assumption that the roughly linear characteristics
will be retained to some degree when adding more �le servers to the system,
up to the point where the number becomes unmanageable due to network
overhead for group communication etc.

Even though tests indicate bene�ts for the constructed system, it is still nec-
essary to deploy the application on each �le server to obtain the best system
wide characteristics. Servers su�ering of already heavy load will reduce the
bene�ts of the system. The vast majority of all processing capabilities are
needed during the initial indexing run. If no �les are updated or there is no
addition of �les to the system, any subsequent crawler iterations will produce
neither more work nor require any bandwidth. Generally the system obtains
its most favorable characteristics, compared to the ESP �le traverser, when
all nodes desire access to the indexing server. Obtaining an even spread of
data across the �le servers also serves the purpose of limiting the impact of
a node failure.

The system o�ers additional functionality beyond the scope of the test
results. The load distribution module was deactivated during all test runs
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due to the lack of useful distributable processing steps. Tasks can be derived
to o�er functionality unchallenged by similar systems. If desirable, some of
the processing steps traditionally performed internally by an indexing server
can be performed as a distributable step, thereby reducing the amount of
work that needs to be performed centrally by the indexing server.

The system maintenance is considered relatively low as once the system is
started it requires little manual intervention. Occasionally the logs need to
be accessed to determine the state of the application and to detect possible
errors. The deployment procedure is nothing more complicated than copying
the bundle of �les to the desired location and adapt a few variables in the
projects main con�guration �le. Some complexity is added to the task if the
system is intended to be used with SSL security as a set of keys must be
distributed among the servers.
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6 Conclusion

We have seen some of the problems found in indexing a set of �les located on
di�erent servers in a network, and the bene�ts found in applying distributed
techniques to mitigate those. The theory is backed by a program which
has been the entry point to all tests performed. The system, which foremost
employs distributed text extraction, shows how the bandwidth requirement is
reduced by more than 60 times for the selected data collection of documents
with a total size of 650 MB. Compared to the commercial system of the
Microsoft subsidiary FAST ESP, the distributed system completes the entire
indexing operation 1.42 times faster using one content provider. Moreover
the system o�ers suberb scalability as using two content providers provide
2.14 times faster operation, 3 content providers 2.63 times faster, etc. In
fact the performance �gures are derived without taking full advantage of the
constructed load sharing mechanism.

Although the performance �gures are derived using close to optimal set-
tings for both systems, they are still subject to the hardware con�guration
of the servers and to the data set used throughout the tests. However, the
collection of data is selected to be somewhat representative to that of an
average corporation. We consider that the constructed system can favorably
be used to replace virtually any existing system concerned with gathering
data for an indexing server presuming the servers have surplus processing ca-
pabilities; particularly as the application provides a unison interface allowing
compatibility with multiple types of index servers.

Naturally there is room for improvements to the system. The constructed
system is basically only applicable to �le types with a matching extractor
de�ned. It's possible that increased performance characteristics can be ob-
tained by providing slightly overlapping network access rather than strictly
sequential. Moreover the e�ects of WAN multicasts are untested for the
current implementation. It may also be considered to provide a guided user
interface to the application, allowing easy con�guration as well as a graceful
restart mechanism. Lastly, a monitoring server could be used with the sys-
tem to provide alarm generation on e.g. database failures and to provide a
point of central administration.

We conclude that the techniques of distributed systems well can be utilized
to improve the quality and performance of many traditional systems and
in particular systems which provides its service using a communication net-
work.
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Glossary

Apache License v2 A free-software license authored by the
Apache Software Foundation (ASF), 39

API Application Programming Interface, 9
ASCII American Standard Code for Information In-

terchange, 27

Consensus To reach agreement in a decision, 12

Deadlock A deadlock is a situation wherein two or more
competing actions are waiting for the other to
�nish, 43

DHCP Dynamic Host Con�guration Protocol, 13

Facade A design pattern which provides a uni�ed in-
terface to a set of interfaces in a subsystem,
35

File crawler A computer program traversing a �lesystem
in a methodical, automated manner, 35

Flooding Algorithms Algorithm for distributing material to every
part of a connected network, 15

FTP File Transfer Protocol, 36

HTML HyperText Markup Langugage, 32

MD5 Message-Digest algorithm 5, a widely used
cryptographic hash function with a 128-bit
hash value, 37

Metadata Data about data, 25
Multicast Sending data to a speci�c group of destina-

tions at once, 13

Network congestion Occurs when a link or node is carrying so
much data that its quality of service deteri-
orates, 22

Piggybacking To attatch contents to a message already
scheduled for delivery, 23

Proxy A design pattern which provides a surrogate
or placeholder for another object to control
access to it, 35
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State machine The state in a state machine is only dependent
on the series of previous states and inputs, 43

UTF-8 Unicode Transformation Format-8, 27

ZIP The ZIP �le format is a data compression and
archive format., 31
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Clock condition, 18
Clock synchronization, 17
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Peer-initiated, 24
source-initiated, 24

Ensemble, 44

Failure tolerance, 23
Fairness, 23
File server, 6
Flooding, 15

Happened-before, 16

Index, 32
Information extraction, 27
Information stripping, 26
Integrity, 19
Inverse Document Frequency, 33
ISIS algorithm, 19

JGroups, 45

Latent Semantic Indexing, 33
Load balancing, 24
Load distribution, 24, 25
Logical clocks, 18

Memberrship, 44
Metadata, 32, 38

Multicast, 13, 16
Multicast expanding ring, 14
Multicast reliability, 18

Node, 6

Okapi, 33
Ordered reliable multicast, 45
Ordering

Causal, 16
FIFO, 16
Total, 16

Pipeline, 40
Distributable step, 41
Mandatory step, 41

PIF, 15

Quorum consensus, 22
Read quorum, 22
Write quorum, 22

Robustness, 38

Scheduling, 37
Sequencer, 19
SSL, 48
TLS, 48
Synchronization, 38
synchronous, 13
Synchronous network, 21

Term Frequency, 33
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Topologies

Centralized, 23
Decentralized, 23
Hierarchical, 23

Total ordered reliable multicast, 19

Validity, 19
Vector space model, 33
Virtual Synchrony, 20
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