V72 2 AR

’[*/ \'\\\i
117 Al
] SN
N Z
A0 ; }}’F’
) 2
AN

&

Fault-Tolerant Scheduling
A Model Proposal for Multiple Transient Faults

Master of Science Thesis in the Programme Secure & Dependable Computer Systems

XINGXING LIU

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Goteborg, Sweden, June 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Fault-Tolerant Scheduling
A Model Proposal for Multiple Transient Faults

Xingxing Liu

© Xingxing Liu, June 2009.
Examiner: Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden, June 2009

Abstract

In this thesis, we present a model which provides real-time scheduling with
fault-tolerance by time redundancy. By using this model, a feasibility test for
the EDF schedule of a task set with multiple transient faults is analyzed for
different error detection mechanisms including comparison, timer monitor and
HW/SW EDMs. A time redundancy mechanism TEM is employed to mask
errors caused by transient faults. Moreover, the success probability of a task
set is calculated based on schedulability tests for all possible error patterns. In
addition, we give example results from the model simulation.

Keywords: Real-Time System, Foult-Tolerant, Error Pattern, Recovery Pat-
tern, Success Probability, EDF Scheduling, Error Detection Mechanism, NLFT,
TEM

Contents

1 Introduction 3

2 Problem Statement 3

3 Concepts of Real-time and Fault-tolerate Systems 4

3.1 Real-Time Terminologies 4

3.1.1 Task, instanceand copy 5

3.1.2 Scheduling L. 5

3.2 Fault Tolerance Terminologies 5

3.2.1 Fault, error and failure 5

3.2.2 Error detection and temporal error masking 6

3.2.3 Fault injection and error detection 7

3.2.4 Node-level fault tolerance (NLFT) techniques 8

4 Related Work 8

5 System Model 10

5.1 TaskModel 10

5.2 Fault Model 11

5.2.1 Multinomial distribution or Poisson distribution 12

5.2.2 Effective errors and non-effective errors 13

5.2.3 Error patterns and recovery patterns 14

5.2.4 The ways to count error patterns and recovery patterns . 15

5.2.5 The number of error patterns and binomial coefficients . . 15

5.2.6 The number of recovery patterns 18

5.3 Error Free Execution Analysis. 19

5.4 Error Execution Probability Analysis 19

5.5 Limitations in This Fault Model 20

6 Schedulability and Success Probability Analysis 21

6.1 Processor-Demand Analysis 21

6.2 An Extension of Processor-Demand Analysis 21
6.2.1 Schedulability test if errors were detected by comparison

or timer monitoro oo 22

6.2.2 Schedulability test if errors were detected by HW/SW EDMs 22

6.3 Success Probability Analysis L0, 23

6.3.1 Formula to compute success probability 24

7 Algorithms 25

7.1 Feasibility Test 25

7.2 Computing the A of a Recovery Pattern to Keep a Schedule Feasible 26

7.2.1 Computing the execution time of erroneous copies 28

7.3 Calculating the Success Probability 28

8 Examples 30

81 Examplel 30

82 Example2. 31

9 Future Work 33

10 Conclusion
References

11 APPENDIX - Fault Injection Results

34

35

38

1 Introduction

Real-time systems are found in numerous embedded systems [1], ranging from
household machines, to car brake-by-wire systems, to aircrafts and spaceships.
The real-time systems differ from other general systems. In a hard real-time
system, if the output does not meet its deadline, catastrophes or very bad things
will happen. In a soft real-time system, although there is no catastrophic result
when deadlines are missed, the results will be useless or degraded.

Because transient faults are very common in digital products or systems,
the computer systems used in the real-time systems must be fault-tolerant [2].
Power fluctuations, electromagnetic interference, and particle radiation all can
cause transient faults [3]. Even in the presence of faults, it is desirable that the
computer systems still operate correctly and meet deadlines. These systems are
called fault tolerant computer systems, which have been used in many critical
systems, such as satellite launchers and spacecrafts[4]. When the time is am-
ple for the recovery procedure of faulty tasks, time redundancy can be used to
implement fault tolerance. In this case, the fault tolerance is achieved by com-
bining hardware and software error detection mechanisms (HW/SW EDMs)
with temporal error masking (TEM).

Schedulability analysis is usually used to measure a schedule for real-time
systems. However from the aspect of fault-tolerant, reliability and availability
are the measures of the systems. It will be a more complete description if we
combine the two aspects together and measure the success probability of a task
set by its reliability based on schedulability analysis.

2 Problem Statement

This thesis project is a part of a larger project about real-time fault-tolerate
scheduling with multiple transient faults. In previous sub-projects, other people
have studied RM scheduling with one fault [5], EDF scheduling with one fault
[6], and RM scheduling with multiple transient faults [8]. However, there is no
existed model as far as I know which combines real-time scheduling with fault-
tolerance. Therefore in this work, we will try to find a model which provides real-
time scheduling with fault-tolerance by time redundancy, and give the success
probability of a task set with multiple transient faults based on schedulability
test on all possible fault patterns. Firstly, a fault model which fits schedulability
analysis is given, then we describe how to perform the schedulability test in the
model. Lastly, we give two examples by presenting the results from model
simulation.

Previous research in real-time scheduling area has done a lot about vari-
ous kinds of task sets, including periodic tasks , aperiodic tasks, and sporadic
tasks, for multiprocessor systems and for uniprocessor systems. Previous mod-
els in the area of fault tolerance have concentrated on the time-redundancy
and space-redundancy based on different fault detection techniques and fault-
tolerant architectures. The performance measure of a real-time system in those
studies usually is schedulability analysis based on response-time analysis(RM
scheduling), or utilization based analysis(EDF scheduling). However, for fault-
tolerate systems, reliability and availability analysis are usually necessary. The
main aim of this work is to connect the analysis for real-time systems with the

analysis for fault-tolerant systems.

In this thesis, we will describe a model, which has the properties of real-time
task models and fault-tolerant system models. Based on schedulability analysis,
we will give the success probability of a task set in a uniprocessor system. If
a task set is schedulable with any possible fault pattern caused by f transient
faults, it will complete successfully.

Based on error distribution, we search exhaustively for all the possible com-
binations of erroneous copies, which are called error patterns, and analyze the
schedulability of the original task set with each error pattern, and then give
the success probability based on the number of error patterns that have passed
EDF scheduling test and on the other parameters from Art68-FT experiment
[9]-

Previous research projects have already studied a single or multiple faults by
RM scheduling for uniprocessor systems, and a single fault by EDF scheduling
for uniprocessor systems. Therefore in this work, we choose multiple faults by
EDF scheduling for uniprocessor systems. We choose processor demand analysis
for feasibility test on each possible recovery pattern.

Statistical analysis, as well as multinomial distribution, binomial coefficient
or Poisson distribution, is frequently seen in mathematics and thermal physics,
but it is not often used in real-time systems. However in this work we will use
statistical analysis frequently to compute the task success probability. Nonethe-
less this work is only a beginning and there is much room left to improve. Hope-
fully this work will inspire other research in future to advance our theories and
models presented hereby.

The rest part of this thesis is organized as the following: Chapter 3 introduces
some real-time and fault-tolerant terminologies and defines the terms used in
this thesis; Chapter 4 reviews related work in the area; In chapter 5, we present
the system model used to analyze fault occurrence probability and effective
error probability and so on; Chapter 6 and chapter 7 are other two important
parts. They include schedulability analysis and the algorithms to simulate the
system model and to analyze the system shedulability; In chapter 8 we give
some example results from model simulations. Chapter 9 suggests some further
work that can be done; In the last chapter we draw several conclusions.

3 Concepts of Real-time and Fault-tolerate Sys-
tems

In this section, we introduce some necessary terminologies used in real-time
systems and fault-tolerate systems. They are essential to understand the task
model and the fault model to be described in the following chapters of this
thesis.

3.1 Real-Time Terminologies

Some real-time terminologies referred in this thesis will be shortly described in
the following sub-sections.

3.1.1 Task, instance and copy

In this thesis, we mainly deal with periodic and critical tasks. A critical task
is usually processed by a hard real-time system. If a critical task misses its
deadline, it will cause a catastrophe[1]. On the other hand, a noncritical task
is usually handled by a soft real-time system. If a noncritical task misses its
deadline, the result will be useless or less useful. A periodic task arrives with
a specific pattern repeatedly; in contrast, a sporadic task arrives with a time
interval equal to or longer than a certain period; and for an aperiodic task, there
is no minimum time interval between two arrivals[1].

Task, instance and copy are frequently referred in this work. A periodic task
includes many subsequent arrivals. Each arrival is called an instance of the task.
Each task instance may execute several times. Each execution of the instance
is called a copy. Hence, a periodic task is composed of many instances, and an
instance in turn may have several copies.

3.1.2 Scheduling

For a certain run-time system and a given task set, a scheduling algorithm
generates a schedule, which reserves spacial and temporal resources for the task
set. Two classic scheduling algorithms are Rate-Monotonic (RM) scheduling
and Earliest-Deadline-First (EDF) scheduling, which were addressed by Liu
and Layland[10]. RM is a dynamic scheduling algorithm using static priority,
and the priority of a task or a task instance is decided by its frequency. A task
having a shorter period is assigned a higher priority. EDF is also a dynamic
scheduling algorithm, but it uses dynamic priority, and the priority of a task or
a task instance is determined by its absolute deadline. The task that has the
earliest deadline receives the highest priority.

Pathan studied tolerating multiple transient faults by using RM scheduling[8].
However in this work, we will use EDF scheduling to handle multiple transient
faults.

3.2 Fault Tolerance Terminologies

In this section, some fault tolerance terminologies and the methods used in this
thesis will be introduced.

3.2.1 Fault, error and failure

” A system failure occurs when the service provided by the system deviates from
the specified service. An error is a perturbation of the internal state of the sys-
tem that may lead to a failure”[11]. Usually, a failure occurs when the erroneous
state causes the whole system not working correctly. An active fault will cause
an error, otherwise the fault is said to be dormant.

One way to classify faults is according to their existing durations. A permanent fault
means that the faulty component needs to be repaired or replaced; An intermittent fault
usually occurs repeatedly at the same location; A transient fault only exists for
a short period of time and only occurs at specific time or in a specific situation
for various reasons [11].

[T [7 | .
\Comparison time

Figure 1: Fault free execution(FF).

§,Fault
[T[T | T |

Cc:n%pariso:\/oting

—
time

Figure 2: Error detected by the comparison between the two primary copies.

Since transient faults have a much larger occurrence probability than other kinds
of faults [12], and only transient faults are most likely to be fault-tolerated by
time redundancy, the aim of this work is to tolerate transient faults by time
redundancy and to improve the success probability of the whole task set.

3.2.2 Error detection and temporal error masking

Temporal Error Masking(TEM) is a mechanism proposed by Aidemark et al.[13]
[11] to tolerate faults using time redundancy and the comparison of results at the
node level. By TEM, each critical task instance executes twice, and the results
are compared to detect errors, or errors are detected by other mechanisms.
According to the result of comparison or error detection, an extra execution
maybe launched or not. In this way, the success probability of the system is
increased. The four different error detection and error masking cases discussed
in [13] [11] as examples of TEM are:

1. Fault free execution(FF)
As mentioned above, in TEM, each task instance executes twice at first.
We call these two executions primary copies. If the results of the two
primary copies match, a third copy, which is also called the recovery copy,
does not need to execute, and then the next task instance can start im-
mediately. This case is illustrated in Figure 1.

2. Error detected by the comparison between the two primary copies
After the execution of the two primary copies, their results are compared
to detect errors. If their results do not match, a third copy will execute.
The results of the three copies are then again checked by a majority vot-
ing. If any two results match, they are accepted as the correct results of
the task instance. Otherwise, no result will be delivered, and an omission
failure occurs. This case is shown by Figure 2.

3. Error detected by hardware(HW) /software(SW) EDMs
By using hardware and software EDMs, errors can be detected before the
two primary copies finish their execution. In this scenario, the defected
copy is aborted and a recovery copy starts immediately, as shown in Figure

ault

I s

Error ‘\Comparison
detected

—
time

Figure 3: Error detected by HW/SW EDM.

3. Thus, the recovery copy can use the time previously claimed by the
faulty copy, and the avaliable slack for recovery procedure increases.

4. Error detected by timer monitor

A timing error is detected by a timer monitor. Aidemark et al. suppose
that a timing error happens when the delivery time of a task copy differs
from that of a fault free run by more than 250us [13] . In this thesis,
we instead define the WCET of a task instance as the time-out value for
timer monitor. If the delivery time of a task copy exceeds its WCET, the
current execution is aborted and it is considered as a fault occurrence,
resulting in a similar recovery action as when an error was detected by
HW/SW EDMs, while it has the same execution manner as when an error
was detected by comparison from the aspect of execution time.

In this thesis, TEM is used to tolerate faults during task execution. During
the execution of the two primary copies, errors can be detected by comparison,
HW/SW EDMs, or timer monitor. If there is no error detected, the task instance
completes successfully. Otherwise, a recovery copy runs and tries to tolerate
errors. In references [13] [11], at most three copies of a task instance can execute.
In the current work, one task instance can execute many copies until its deadline
is reached. When an instance has enough time to execute, it is possible that
the 3 error-including situations out of the four cases listed above (excluding the
fault free one) all can be found in its execution. In our resolution, after the third
copy of a task instance finished, a voting or a comparison is taken. If there is
no matching result, a fourth copy, which is also called the second recovery copy,
is attached. If an error is detected in the fourth copy by HW/SW EDMs or
timer monitor, the fifth copy is dispatched, otherwise a comparison or voting is
taken after the fourth copy execution. If there is no matching between any two
results, an additional copy runs again until reaching its absolute deadline. If
there is still no match between any two copies of the task instance, an omission
failure occurs.

3.2.3 Fault injection and error detection

The main purpose of using fault injection is to find out the weakness of a
fault-tolerate system, as well as to test the fault tolerant function of the sys-
tem. A number of studies provide various fault injection techniques by using
different fault injection tools and methods[14]. Software implemented fault in-
jection(SWIFT) is one way to inject faults.

In this thesis, we use the fault injection results from [13] by Aidemark et al.,
in which SWIFI with GOOFT tool [15] was used to inject faults to a trap han-
dler and to a trace handler routine located in the system memory. After a fault
is injected to the system, Motorola MC68340 micro-controller and a program
routine written in programming language Ada95 detect errors. Furthermore,
we use both the fault injection and the error detection results from the exper-
iments by Artk68-FT to determine the parameters in calculating the success
probability of a task set. The results from Artk68-FT are shown in table 11 in
Appendix . If one uses different experiment results, which depend on the cho-
sen computer system and the fault injection mechanism, he may get a different
success probability.

Table 1 shows the error detection mechanisms used in the experiment Artk68-
FT. Table 2 gives the chosen parameters in the fault injection, error detection
and error masking experiments. Those values will be used in our further prob-
ability computing.

Selection of Ada run-time constraint checks

Ada access check Attempt to follow a null pointer

Ada range check Attempt to violate a range constraint of scalar value

Ada index check Attempt to access an index that is not in the range of the
array

Selection of motorola 68340 microcontroller hardware checks

Bus error Attempt to access non-existing memory

Address error Attempt to access a word or a long-word at an odd memory
address

Tllegal instruction Attempt to execute a non-existing instruction

Linel1010 Attempt to execute an unimplemented instruction

Division by zero Raised if a division instruction gives a divisor value of 0

Table 1: Error detection mechanisms

3.2.4 Node-level fault tolerance (NLFT) techniques

In [11], Node-Level Fault Tolerance (NLFT) techniques were introduced, includ-
ing hardware and software based techniques. As to software-implemented fault
tolerance at the Node-Level, error masking or error recovery techniques may be
adopted. In this work, we choose TEM to mask errors. For each task instance,
the voting may execute several times to mask errors.

4 Related Work

Here we only briefly mention the works that are closely or directly related to the
present work. More literature about fault-tolerant real-time scheduling research
can be found in Pathan and Tengdahl [8, 6] and in references therein.

Time redundancy has previously been studied in real time systems. Aide-
mark et al. investigated many projects and experiments about NLFT and time

| P, | Given that a fault occurs, an error is generated |

Ppg Given that an error is generated, the error is detected by
comparison after double execution (DE)

Pr Given that an error is generated, the error is detected by a
timer monitor (TM)

Pgp Given that an error is generated, the error is detected by a
hardware error detection mechanism (EDM)

Pnp Given that an error is generated, the error is not detected

Ppg v | Given that an error is detected by DE, the error is masked

by TEM

Pr | Given that an error is detected by TM, the error is masked
by TEM

Pgp,v | Given that an error is detected by EDM, the error is masked
by TEM

Table 2: Probability parameters

redundancy from fault-tolerant aspect [16, 11, 13, 15, 3, 9]. The goal of NLFT
is to tolerate the majority of the transient faults at the computer Node-Level in
order to reduce the probability of node-failure. TEM is a time redundancy tech-
nique, which achieves fault tolerance through recovery, re-execution and voting.
In this work, we use the results from Akr68-FT experiment, in which NLFT
and TEM were used to detect and mask errors.

From the viewpoint of real-time fault-tolerant scheduling, many researches
focused on multiprocessor systems. In [17, 18, 19], space redundancy is a com-
mon idea when multiprocessor computer systems were concerned. All those
studies talked about periodic tasks, and the way to achieve fault tolerance by
double executions. No error detection and error masking techniques were in-
volved in those studies.

Reference [20] gave a fault-tolerant scheduling scheme for periodic and ape-
riodic tasks in distributed real-time systems by time redundancy and space
redundancy. Double executions were employed to achieve fault tolerance, yet
it was only about double execution, without considering error detection and
recovery.

Aydin et al. proposed an optimal scheduling for imprecise computation tasks
in the presence of multiple faults in uniprocessor systems [21]. In their study,
a task is divided into two parts, a mandatory part (like critical task) and an
optional part (like non-critical task). Algorithm FT_optimal can tolerate up to
k faults without missing any deadline in the mandatory part by using the slack
from the optional part of the task.

In ref. [7], Pathan presented a fault-tolerant real-time algorithm RM-FT,
based on NLFT using TEM technique with RM scheduling to find out the upper
bound of a slack time for possible executions with a fixed number of errors.

In another study, multiple transient faults can be tolerated in aperiodic tasks
of hard real-time systems with EDF scheduling for uniprocessor systems [22].
In this study, the recovery time of each task is fixed and the model section
only concerned the task model. A recovery task is treated as a high priority
sporadic task with a fixed pre-known execution time. Only the worst case of

recovery patterns was considered. It was also assumed that faults never occur
in recovery procedures. Two algorithms were given. Algorithm ”Exact” was
used to determine the tasks that can be recovered from a certain fault pattern,
whereas algorithm ”Sufficient” shows whether an aperiodic task set can recover
from the worst case of fault patterns. It is a topic closely related to the second
half of this thesis. However, we will include all possible fault patterns instead
of a single specific fault pattern or the worst case fault pattern. In other words,
we will consider all possible fault patterns for periodic tasks to generate an
integrated more precise view.

In ref. [5], TEM was employed by Lou to tolerate a single fault in one plan-
ning cycle by RM scheduling in uniprocessor systems. The purpose of the study
was to give the success probability of a task set with a single fault. Response
time analysis was used in the feasibility test of a task set with each possible
fault pattern.

Lou’s job was extend by Pathan to tolerate multiple transient faults in
uniprocessor systems [8]. The author focused on the scheduling analysis on
the worst case of fault patterns. In the RM-FT-Any algorithm, the result of
feasibility test was obtained from the worst recovery case of each task instance.
It simplified the rather complicated fault pattern analysis by paying the price
of wasting a significant fraction of CPU resource. In the Recovery-Min-EDM
algorithm, the author prescribed a method to check whether the execution time
of a task is reducible based on HW/SW EDMs techniques.

Tengdahl studied tolerating a single transient fault in real-time systems with
EDF scheduling [6]. He also presented the minD _recovery algorithm with a
scaling factor A\ to calculate the minimum deadline of a recovery task copy.
Processor demand analysis was used to test the feasibility of the preemptive
EDF schedule for a task set with every possible fault patterns.

5 System Model

In this section, the task and fault models to be used in this thesis for scheduling
analysis and for success probability analysis are described. System restrictions
and some assumptions are also introduced in this section.

5.1 Task Model

A uniprocessor computer system and a task set T = {r,...,7,} including n
periodic tasks are considered in this work. Each task 7;(1 < ¢ < n) has a Worst-
Case-Execution-Time (WCET) Cj, a period T;, and a relative deadline D;. To
simplify the problem, D; < T; is assumed.

Some assumptions are made for the task set:
e All tasks are released at the same time.

e All tasks are independent to each other.

e Tasks are preemptive.

e All the tasks in the task set are periodic.

10

e Any task relative deadline is equal to or less than the task period.

A planning cycle (PC) is the least common multiple (LCM) of the task peri-
ods, that is , PC = LCM{T1,T>,...T,,}. Since all planning cycles are identical,
we only need to consider the first planning cycle.

Without loss of generality, we assume all tasks are released at time 0. For

each task 7;(1 <=1i <=n) , ZEM task instances are executed in one planning

T;
cycle, thus, there are in total >, LgM instances in one planning cycle. In our

further analysis, we define N= 37" | £&M

For a task set in which each task has D; = T;, the sufficient and necessary
condition for its EDF schedulable is that the total utilization of tasks is less or
equal to one, Ugprar = Zle % < 1. In this work, we choose a more general
case D; < T;, thus the feasibility of a schedule is verified by processor-demand
analysis. Furthermore, to achieve fault-tolerance, all critical task instances will
execute twice. If an error is detected by comparison, by timer monitor, or by
HW/SW EDM, a Temporal Error Masking (TEM) is employed to re-execute

the faulty task copy.

By the simulation of preemptive EDF scheduling, an instance set 7' =
{r, 74 e TN J(IN = 300, Lg’:M) is collected from the first planning cycle. Each
instance 7;(1 <= j <= N) is a tuple of d}, C}, P;, corresponding to its absolute
deadline, its WCET, and the fault occurrence rate for each copy of instance T]I-.
And we use 7} ; to label the i-th copy of the task instance 7. The priority of its
recovery copy is decided by the absolute deadline of task T]’-, that is , d}.

5.2 Fault Model

In previous research [5, 8, 6], uniform fault distribution and at most f fault
occurrences in one LCM period were considered. No fault propagation is as-
sumed, that is , one error is only caused by one fault, and the fault only affects
the executing task. Since the same transient fault can trigger many different
types of errors randomly, we assume all errors detected are different [8]. With
those assumptions, the probability for a fault occurrence in executing task 7; is
[5], (D; =T; is assumed)

_2xC; 2xCy
T, D;

However in this thesis, we consider the situation in which there are on average
f fault occurrences in one planning cycle, since in nature we usually know on
average how many faults will happen in a specific period, but do not know how
many faults exactly will happen in a period. We consider the fault generation
that follows the Poisson process. By Poisson process [23, 24], we assume faults
do not occur simultaneously. Because the process is memoryless, the number
of faults occurred in the previous instance would not affect the number of fault
occurrences in the next instance. This property can facilitate our analysis on
the probability for each fault combination to appear.

If there is on average one fault in LCM, the expected number of faults in

PU;)

11

the lifetime duration of a copy of instance 7] is

p= -
7 LCM

According to the Poisson distribution, the possibility for generating k faults in

the time period C" is,

J
Pk

PPoisson(k) = k_J'e_Pj (1)
For k = 0, there is no fault generated, which means the system did not
encounter any fault, and of course the system is still reliable. The possibility
for this case can be easily obtained by letting £ = 0 in the Poisson distribution

function,
PY
PPoisson(O) = O_J‘eipj = eipj (2)
cl
Thus its reliability, the probability of 0 fault occurrence is e~ zc = e~ where
C} can be understood as the time duration and 1~ as the faulty rate.

LCM

5.2.1 Multinomial distribution or Poisson distribution

Multinomial distribution is discussed in [26, 25]. For a sequence of N statistically
equivalent ”trials”, which comprises v different outcomes, the probability for the
i-th outcome is labeled by P;. Thus, in N trials, the probability for outcome 1
occurring np times, outcome 2 occurring ny times, outcome i occurring n; times,
and so on, (up to i = v) is:

N!

Pn1n2...nv(N) = m
: L7

n1 no Ty
x PM Py ... P

Where Y Y
ZP,-zland Z”iZN
i=1 i=1

and also

Z Pnlng...nu (N) = (Z Pj)N =1.
i=1

Based on the theorem of Multinomial distribution, the problem of distribut-
ing k errors to N task instances, T = {7{,...,7n}, seems equivalent to a se-
quence of k ”trials” including N different outcomes.

However, if we also consider the contribution from recovery copies, the errors
can also be in the recovery copies, and a recovery copy is only needed when an
error is detected. Thus, distributing k errors to N task instances is no longer
exactly a simple multinomial distribution problem, since the number of recovery
copies depends on the results of previous execution, and at most one error can
be detected in one task copy.

Moreover, if we know that there are exactly f faults in the planning cycle
LCM, we must observe this constraint when we derive the probabilities for
each fault combination to appear. It is a dependable process because the total
number of faults in the LC'M cycle is exactly f, including the faults happened

12

in the execution time and the faults happened in the idle time if there is any.
Analyzing the probabilities for fault combinations to appear in this case seems
to be cumbersome and less significant, while it can lead to a separate project.

In this work, the property of Poisson process is applied to obtain the weights
of all possible error patterns, or the probabilities for those patterns to appear.
Then their schedulabilities are checked to see if they are schedulable or how much
is the chance to be scheduable. If an error pattern is scheduable, it means that
the erroneous copies in the error pattern can be recovered before the deadlines
and the pattern contributes to the success probability.

In statistics and probability theory, Poisson distribution states the proba-
bility for a given number of events to occurre in a fixed period of time. These
events have a known average happening rate and they occur independently
along the time [27]. Based on Poisson distribution, we assume on average f
faults in one planning cycle. For each copy, the error free probability can be
obtained by considering the zero error probability in its execution time.

5.2.2 Effective errors and non-effective errors

Effective errors and non-effective errors are discussed in [3]. Effective errors
are the errors detected by various error detection mechanisms or escaped from
the mechanisms, whereas non-effective errors are the ones when faults are not
activated. Non-effective errors do not affect the system behavior. Non-effective
errors are around 80% of the injected faults for each different kernel function
[3]. Since non-effective errors are not real errors, in the following sections when
we talk about errors, we mean effective errors.

To facilitate our discussion, here we introduce a few terminologies. The
faults caused effective errors are called activated faults, and the faults caused
non-effective errors are called inactivated faults.

If a fault occurs during the execution of a task copy, the recovery will be
triggered if and only if an effective error is generated by the fault. Suppose that
a task copy catches 2 transient faults, and the 1st fault leads to a non-effective
error, at most one error will be detected in this copy. Thus, a faulty task copy
can have more than one fault, while only the last fault generates an effective
error.

Table 3 includes all the situations can happen when one task instance gets
two transient faults. Here ¢ stands for a copy to be correct; f means the copy
has an activated fault; f’ represents the copy has an inactivated fault, and NE
means the copy non-existed. The first row through the 3rd row include the three
different ways to distribute two activated faults to instance copies. From the 4th
row to the 11th row there are 8 different ways to distribute one activated fault
and one inactivated fault to the instance. The last three rows show the three
different methods to distribute two inactivated faults to the instance. The first,
the 4th, and the 5th rows are the same fault copy but they result in different
error copies. On the other hand, the 4th, the 6th, and the 11th rows represent
different fault copies but they result in the same error copy. It seems hard to
analyze our fault model by starting from different fault copy and error copy
combinations.

On the other hand, only erroneous copies need to be recovered. How many
recovery copies required depends on the number of erroneous copies, but not on
the number of faulty copies. So we can only analyze erroneous copies instead of

13

considering all the faulty copies.

[No. | 7, | 1y | 3| ml.4]| fault copies | error copies

2

1 f f c c 1,72 Ti1,Tio
2 f c f c 1,713 URTIGE,
3 c f f c T3 T2 Ti3 Tl
4 f £ ¢ | NE Ti1,Tio Tia

5 f’ f c | NE T, o Tio

6 f c f | NE Ti1,Ti3 Tia

7 f’ c f | NE 1,73 Ti3

8 f f |NE| 713,71 Ti o

9 f’ f | NE T3 Tl Ti3
10 c | f] ¢ | NE Ti o Ti o
11 | Of | ¢ ¢ | NE T T
12 F | F |[NE|NE| 7,7,

13 [PP | ¢ | NE | NE e

14 | ¢ | PP | NE | NE s

Table 3: One task instance with two transient faults . (c-correct, f-fault causing
an effective error, f’- fault causing a non-effective error, NE-Not Existed.)

As talked previously, if there is on average one fault in LCM, each copy of

c’
the instance 7; has probability e~ = e~ i to be fault free. Then, if there
are on average f faults in one planning cycle, each copy of instance T]I- has the

fc’

fault free probability e~ zom = e~ /Fi.
Moreover, if each fault has a possibility P, to generate an effective error
based on Aidemark’s Akr68-FT experiment [9], the average number of errors is

1

Py fC)
P, f. Thus, each copy of instance 7} has probability e~ zow = e=F=fFi to be
error free, which we call error free execution probability in this work. On the
other hand, each copy of instance T]’- has probability 1 —e~F=/F5 to be erroneous,

which we call error execution probability.

5.2.3 Error patterns and recovery patterns

An error pattern is a set that includes all erroneous task copies. For example,
the error pattern {7] 1,75 1,75 3} represents that the first copy of task instance
71, the first copy of task instance 74, and the third copy of task instance 75
are erroneous in a specific planning cycle. Each error pattern corresponds to
a recovery pattern that describes which task instances would run extra copies
besides primary copies. For example, the recovery pattern for the error pattern
{m1,1,72,1,73,3} 18 {71, 73, 75}. From a recovery pattern, it is easy to find out
which task instance needs recovery copies, and how many recovery copies of
that instance will run. An error pattern addresses the exact erroneous copies
of task instances, whereas a recovery pattern only includes the task instances
referred by the erroneous copies in the error pattern. Hence, several different
error patterns may have the same recovery pattern.

14

5.2.4 The ways to count error patterns and recovery patterns

We limit our consideration to that one fault can cause at most one error. Here
we show that one task copy can only have at most one detected error. Suppose a
task copy got two faults. If an error was generated when the first fault occurred,
the current execution will abort, thus there is no chance for the second fault
occurrence. Otherwise, if the first fault did not generate an error, it cannot be
detected. If a fault does not generate an error, the fault is said to be inactivated.
Although the non-generated error is called non-effective error, it actually does
not exist, and of course cannot be detected. In both cases, the number of
detected errors is not more than one.

In our fault model, if there are up to two errors in a task instance, at most
four copies of that instance can run, two primary copies and two recovery copies.
Let the names of each copy to be 7}, ,7/, ,7} 5, 7} ,. An error pattern can be
{r}1 ,Tj2 }, but cannot be {7}, ,7;,} because there are already two correct
copies, 7}, and 7} 5, prior to 7} 4, therefore 7], would not run.

If three errors in one planning cycle is assumed, at most three recovery copies
could run. All possible situations are shown in Table 4. All the instance copies
detected to be wrong are included in the error patterns. Recovery patterns are
shown in the rightmost column. Here, c represents a correct task copy, e stands
for an erroneous task copy, and NE for the task copy not existed according to
our error detection mechanisms. For this example, there are 9 error patterns
but only 3 recovery patterns.

Ti1 | T2 | Ti3 | Ti,a | Ti,5 | Possible copies in | possible instances
error pattern in recovery pattern
€ € € ¢ ¢ T{,laTll,277—{ 3 7-{77—{77—1,
e e c e ¢ | T4, ia 1,717
€ ¢ € € ¢ T{,laTll,37T{ 4 7-{77—{77—1,
C € € € C T{,ZaTll,377_{,4 T{:T{JTII
e e c ¢ |NE | 7,72 1,71
c e e c NE | 115,713 71,7
e c e ¢ |NE | 7,73 1,71
e c c |[NE|NE |7, T
c e ¢ |NE | NE |7, T
c c NE | NE | NE

Table 4: One task instance with at most three errors. c-correct, e-erroneous,
NE-Not Existed.

Table 5 gives all the error patterns and the corresponding recovery patterns
that can be generated by three task instances with two errors. From the table,
We can see that there are 21 error patterns, but only 6 different recovery pat-
terns.

5.2.5 The number of error patterns and binomial coefficients

The number of 7} included in a recovery pattern equals to the number of errors
detected in 7;. Hence, if the number of erroneous copies of 7} is k;, the number

15

91

! ! ! ! ! ! / ! ! ! !
| ra o | fs | falma | o] ms | ma | 11| 2| s | 4 | error pattern | recovery pattern
e e c c c | NE|NE| c c | NE | NE 11,71 2 4,7,
e c c c ¢c | NE|NE| ¢ ¢ | NE | NE URTUR 1,7
c e e c c ¢c |NE|NE| ¢ ¢ | NE | NE i 9,71 74,74
N ,3 1571
c ¢c |NE|NE| e e c ¢ | NE | NE Ty 1,Ta 9 T5,Th
c ¢c |NE|NE| e c c ¢ | NE | NE T5.1,T2.3 T, 7h
c ¢c | NE|NE| ¢ e c ¢ | NE | NE T3.9:T3 3 T, Ta
c c | NE|NE| ¢ c | NE|NE | e e T3.1,73.2 74,74
c c | NE|NE | ¢ c | NE|NE | e c T3,1,73.3 T§,T4
c c | NE|NE| ¢ c |[NE|NE| ¢ e T3.9,T3 3 74,4
e c ¢c |NE| e c ¢c |NE| ¢ ¢ | NE | NE T 1,91 1,79
2 2
e c ¢c |[NE| ¢ e c |NE | ¢ ¢ | NE | NE T{ 1,74 1,74
1,1572,2 1,72
c e ¢c |NE| e c ¢c |NE| ¢ ¢ | NE | NE T1 9,79 1 1,79
2 2
c e c |[NE| ¢ e c |[NE| ¢ ¢ | NE | NE Ti 9,752 T1,Th
e c ¢c |[NE| ¢ ¢c |NE|NE| e c ¢ | NE T 1,731 1,74
2 2
e c ¢c |[NE| ¢ ¢c |NE|NE| ¢ e ¢ | NE 11,732 1,74
c e ¢c |NE| ¢ ¢c | NE|NE| e c ¢ | NE T4 23T 1 1,74
2 2
c e ¢c |[NE| ¢ ¢c |NE|NE| ¢ e ¢ | NE 19,732 1,74
c ¢c | NE|NE| e c c | NE| e c ¢ | NE Ty 1574 Ty T
2,1:73,1 2,73
c ¢c |NE|NE| e c c |NE | ¢ e ¢ | NE T5.1,T3.2 TS, T4
c ¢c |NE|NE| ¢ e c |NE | e c ¢ | NE TS 5T TS,T4
2,2:73,1 2:73
c ¢c |[NE|NE| ¢ e ¢c |NE| ¢ e ¢ | NE T5.95T3 2 T5,T4

Table 5: All the possible ways for distributing two errors in three task instances, and the corresponding error patterns and recovery
patterns.(c-Correct, e-erroneous, NE-Not existed)

of the task instance 7{(1 < ¢ < N) appeared in the corresponding recovery
pattern is also k;.

Let 7], to be the last copy of the task instance 7;. If two primary copies
are both correct, 7/, , is 7, ,. If only one error was detected in 7/, 7/, will

be 7; 5. Since two correct coples are enough, 7/, ., is always the second correct
copy ‘of the task instance 1.

Thus, if k; errors are detected in 7}, in total of k; + 2 copies of 7§ would run.
Since 7] ;,4; » Which is 7], 5, should be correct, all k; faults must distribute in
other k + 1 copies. The number of ways for distributing k; faults in k; + 1 task
copies is a binomial coefficient problem.

Binomial coefficient from mathworld [28], ” in combinatorics, (})is inter-
preted as the number of k-element subsets (the k-combinations) of an n-element
set. It is the number of ways choosing k elements from a set of n elements.

(&) = mtm ®

From equation (3) , the ways of distributing k; errors in k; + 1 task copies of a
single task instance 7 is:

ki+1\ (ki +1)! _
(kz’)_kz’!x(k +1—k)! =kl

Next we consider two task instances, 7{ and 75. If k; errors are detected in
71, and ko errors are detected in 74, the number of possible ways to distribute
ky faults in 7{ and k; faults in 75 is (1) x (41) = (k1 +1) x (k2 +1).

k k
Similarly, in the model of this work, there are N task instances (11,73, ..., Tn).
Assuming the corresponding error occurrences are kf', k3, ..., k% (k} >0) in a

specific recovery pattern, recovery(h), the number of total ways of error distri-
bution is:

N
parameter(h) = (k" +1) x (k} + 1) x ... x (k} +1) = H kh +1) (4)

Furthermore, for a total of k errors distributing in N task instances, we need
all possible values of kft, k%, ..., k% thus the number of different error patterns
is,

Fk,N)y= > (kf+ 1)k +1)...(kj +1) (5)
kP k.. kR

The summation is over all the possible k? > 0 under the constraint &} + k} +
o+ kY =k
For 2 errors distributing in 3 instances, table 5 gives the exhaustive searching
result of error patterns. The number of error patterns is 21. This number can
be checked by equation (5). Let us compute the number of error patterns
for the example using equation (5) as shown in table 6. That is: F(2,3) =
Zk1,k2,k3 (kl + 1)(k2 + 1)(k3 + 1) = 21.

17

| k1 [k2 | ks | number of error patterns |
(kl + 1)(k2 + 1)(]93 + 1) =3
(kl + 1)(k‘2 + 1)(k3 + 1) =3
(kl + 1)(/(72 + 1)(k3 + 1) =3
(kl + 1)(k‘2 + 1)(k3 -+ 1) =4
()()()=4
()())=4

ki+1)(ko+1)(k3+1) =
ki +1)(ko +1)(ks +1) =
total : 21

Ol =IO
=IOl =OoIN
H=OoOINOO

Table 6: Computing the number of error patterns for 2 errors distributing into
3 task instances

5.2.6 The number of recovery patterns

The number of recovery patterns depends on the number of combinations of k;,
for which k; > 0 and (k1 + k2 + ...+ kv = k). Let R(k,N) to be the number
of ways for distributing k errors to N task instances, thus R(k,N) is also the
number of recovery patterns for k error occurrences in N task instances. It is
clear that R(k,1)=1. When N=2, suppose the first task gets m(0 < m < k)
errors, then the second task gets (k — m) errors, thus R(k,2)=k +1. For further
analysis, we write
(k+1)!

k!
And also, the number of ways for distributing k errors to 2 task instances, is
the sum of all the possible ways, from distributing 0 error to 1 instance to
distributing k errors to 1 instance, that is:

R(k,2)=k+1=

R(k’2):R(O’l)+R(1,1)+...+R(k,1):k+1:% ©)

Similarly, the ways of distributing & errors to 3 task instance, R(k,3) = R(0,2)
+ R(1,2) + ...+ R(k,2), that is

k k
Rk3)= Y Rm2)= Y)
m=0 m—0

And by the relationship of binomial coefficients $°F _ (mda)t _ (ktad Dl "y

m=0 mla! kl(a+1)!
we have .
_ (m+1)!_(k+2)!
R(k,3) = mZ::o mill k2! Q

From equation (6) and (7), we get the ways for distributing k errors to N
task instances,
(k+N-1)!
N T (8)

k(N —1)!

Table 5 shows that the number of recovery patterns for distributing 2 errors
into 3 instances is 6. Now we check it with equation (8).

R(2,3) = % = 6, which is exactly the same as the counting result from
the recovery patterns in table 5.

R(k,N) =

18

5.3 Error Free Execution Analysis

An error-free execution can be either that all transient faults occurred when no
primary copy was executing, or some faults occurred when the primary copies
were executing but no error was detected. If there is no error detected in one
planning cycle, it can be one of the following four different situations.

1. All faults occurred in idle time.
2. No fault generates an effective error.
3. Effective errors generated but not detected.

4. Part of faults occurred in idle time, but the others did not generate errors,
or errors were not detected.

The error free execution for an instance set can be considered as correspond-
ing to an empty error pattern. For f average faults in one planning cycle, we
already know that a copy of instance 7} has a probability of e~**/%3 to be cor-
rect, so the probability for executing twice both correctly is e=2F=/Fi_ Since
each instance needs to execute correctly twice, the error free execution proba-
bility is simply the probability that all primary copies execute correctly, which
is:

N
Pgp = e 2P IPr o7 2Pf P2 o 5 o7 2PefPN — He‘2P*fPJ' 9)
Jj=1

5.4 Error Execution Probability Analysis

Suppose there are on average f faults in one planning cycle which obeys the
Poisson distribution, for instance TJI- which has two correct copies, the probability
for these two correct copies is e 2F=FFi as discussed in the section of error
free execution. Now we consider erroneous copies. Each erroneous copy has a
probability (1 —e~"=/%7) to appear. If the number of erroneous copies of 7
is k! , then the probability for 7} having two correct copies and k' erroneous
copies is: e 2PefPi(1 — e~ PelPi)k] |

And furthermore the probability for an error pattern corresponding to a
recovery pattern, recovery(h), is:

N N
P’recovery(h) = H (e—szij (1 - e_mePj)k;}> = Ppr H (1 B e_mePj)k? .
j=1

J=1

In fact in each error pattern, any instance also needs to execute correctly twice,
so Pgr is a prefactor for all the error patterns.

As talked previously, we have a number of parameter(h) = Hf[:l(k? +1)
error patterns resulting in the same recovery(h). So the probability for all those

19

error patterns is:
N N "
parameter(h) X Precovery(h) = Pep H(k;l +1) x H (1—e P=FFi)%
j=1 j=1

Therefore, for all the R(k, N) recovery patterns which have k errors in the
pattern, the probability is:

R(k,N)
P(f,k,N) = Z parameter(h) X Precovery(h) (10)
h=1
R(k,N) N N "
=Pgr Y, JJF+1)xJ[(1-eIP)% . (11)
h=1 j=1 j=1

where kf* + k} + ... + k% = k. Obviously, P(f,0,N) = Pgr is the probability
for 0 error occurrence, or error free execution probability.

To obtain the total probability of error execution , we need to include all
possible k values. Recall that f is only the average number of faults, but the real
number of faults in one planning cycle can be any integer from one to infinity for
an error execution. Moreover, for considering the number of generated errors
by f faults, it is possible to be any number from 0 to the number of faults.
Therefore, the error execution probability for a task set with f average transient
faults in one planning cycle is:

k=1
s R(k,N)
= Z parameter(h) x Precovery(h) (13)
k=1 h=1
o R(k,N) N
=Por Y. > [+1)1 e IRk (14)

k=1 h=1 j=1

where kR kR kR >0, and kP + KR 4.+ KR =K.

The summation does not include k& = 0 because k¥ = 0 stands for error free
execution, in which k' = k} = ... = k% = 0. The summation runs to infinity
because the actual faults can be any number although on average it is f.

The sum of error free execution and those including 1 or more errors is unity,
Pgr + P(f,N) = 1. Tt is verified in the output of our simulations. Of course
we cannot sum up infinity terms in our code. Summing up a large number of
terms is good enough. By checking the output, we always get Pgr + P(f,N) >
0.999994 in our example runs. QObviously, one can increase the accuracy by
summing up more terms.

5.5 Limitations in This Fault Model

One limitation in our fault model is that when the number of task instances
and the number of faults in one planning cycle increase, the number of error

20

patterns and recovery patterns will increase dramatically. For example, if the
number of task instances is 100 and the number of faults is 10 in one planning
cycle, the number of recovery patterns will be around 6 x 10'°, and this number
exceeds the range of long integer in my machine, which is at the order of 10°,
and it will cause problems in computing the success probability.

6 Schedulability and Success Probability Anal-
ysis
6.1 Processor-Demand Analysis

After a schedule is generated, we need to check whether it is feasible. If a
schedule for a task set can fulfill all the requirements for the task set, then the
schedule is feasible. For RM, worst-case response-time analysis is usually applied
to check the feasibility of a schedule. For EDF, processor-demand analysis is
normally used to determine whether a task set is EDF _schedulable[29].

In processor-demand analysis, the amount of demanded processor time is
calculated at each absolute deadline. If the demanded time is equal to or less
than the available processor time at any point, then the schedule is feasible. In
other words, a task is EDF _schedulable for a uniprocessor computer system and
a given periodic task set T = {71, ..., 7}, if and only if the following equation

holds: .
VL:Z({L;DiJ +1) xC; <L

i=1 '

for any checking point L € {DF = kT, + D;, D} < LOCM{T\,..., T,},1 <i <
n,k > 0}. Here C; , T;, and D; are the Worst-Case-Execution-Time (WCET),
the period , and the relative deadline of each task, respectively. In this work,
the success probability of a periodic task set with f transient faults is calculated
from the first planning cycle of the EDF _schedule.

6.2 An Extension of Processor-Demand Analysis

For each recovery pattern, processor demand analysis is employed to check the
feasibility of schedule. When each instance executes twice, and D; = T; is as-
sumed, the formula of processor-demand analysis becomes the following equa-
tion given by M. Tengdahl [6]:

VL:ZQLZ)P"J +1) x 2C; < L

i=1 v

The function was modified by M. Tengdahl again to address the sufficient and
necessary condition for a task set with exactly one transient fault in one planning
cycle [6].

_ 0 if L <derec
(L — de,rec) - { 1 if L > derec

VL:ZQL_D"JH)x20i+5(L—de,rec)xcegL (15)
=1

D;

21

Here we use dg re. and C, to denote the absolute deadline and the execu-
tion time of a recovery copy, and checking points L € {DZ’c = kT; + D;, Df <
LCM{Ty,...,Ty},1 <i<n,k > 0}. The step function §(L —de) shows if the
absolute deadline of a recovery copy is larger than the value of checking point
L or not.

Follow the rules of processor-demand analysis, C, can be a part of processor
demand only when the absolute deadline of the faulty task copy equals to or
is earlier than the given control point L, hence, §(L — de,rec) % Ce is used to
prevent overestimation in computing the demanded time.

In this work, based on equation (15) and different error detection methods,
schedulability analysis is separated into two parts. One part is for the errors
detected by comparison or by timer monitor, and the other part is for the errors
detected by HW/SW EDMs, to be discussed in the following two subsections,
respectively.

6.2.1 Schedulability test if errors were detected by comparison or
timer monitor

Now we consider a specific recovery pattern, recovery(h), and let d;- , C; and
k;? to be the absolute deadline, WCET, and the number of faulty copies in
recovery(h) of task instance 7; , then we have:

0 if L <d!
‘5<L—d9)={ 1 fL>d

If there are errors detected by comparison or timer monitor, the execution
time of a faulty task copy is its WCET, then we consider the following condition
for the schedulability test:

VL : primary part + recovery part < L

The primary part is the processor time demand for the primary copies, which is
P ([L _TD J + 1) x 2C;. The recovery part includes all the WCETs of faulty

copies, 3,1 crecovery(ny (0 (L — dj) x Cf x k}) . Thus, a sufficient and necessary
J

condition for the schedulability of a task set 7 = {m,...,7,} with a certain

recovery pattern, recovery(h), is :

VL:iQL_TZ_D"J +1> x2C;i+ > (8(L-dj)xCjxk}) <L (16)

T/ €recovery(h)

6.2.2 Schedulability test if errors were detected by HW/SW EDMs

If errors were detected by EDM, the execution time of a faulty task copy can be
less than its WCET. We consider the following condition for the schedulability
test:

VL : correct part + error part < L

Since each task instance should execute correctly twice, the correct part is the
processor time demand for the two correct copies of each task instance, that is:

Yy ([L}DJ + 1) x 2C;. Let Ch . to be the allowed maximum execution

err,j

22

time for recovery copies. Recall that k;l is the number of erroneous copies of 7;
o(L— d;)C’h Kh

in recovery(h). Thus the error part becomes) err K5 s

7] €recovery(h)
where §(L — d}) is the same as in the case that errors detected by comparison
or timer monitor.

Hence, a sufficient and necessary condition for the schedulability of a task
set T = {m1,...,Tn} With a certain recovery pattern, recovery(h), is :

VL: 2": QL _TiD"J + 1) x 20+ Y. (8L —d)Ch, k<L (17)

i=1

i Erecovery(h)

From equation (17), we can see that the biggest Cfrm- makes the largest contri-
bution to the faulty part, that is, the longer the execution time of faulty copies,
the smaller the chance to pass the schedulability test. Since the maximum ex-
ecution time C!. . is not known beforehand, we can use equation (17) to find
out its allowed maximun value. If several instances or copies have the same
absolute deadline, and a task set with a certain recovery pattern, recovery(h), is

EDF _schedulable when the errors are detected by comparison or timer monitor,

we let the execution time of each faulty copy to be its WCET, (ng = C}),
otherwise we will compute Cfmj for instance 7 based on available processor

demand and its WCET, C;. Details on assigning Cf’:lm ; is given in the algorithm
Chapter.

6.3 Success Probability Analysis

For feasibility test, we define a parameter (5 to represent the schedulability of
a task set with a certain recovery pattern.

Ch = 0 Schedule is not feasible based on recovery(h)
A1 1 Schedule is feasible based on recovery(h)

Recall that Precovery (R) is the error execution probability for a certain recov-
ery patter, recovery(h) (see section 5.4). Moreover, let P¢(h) = (nPrecovery (h)
to be the error execution probability when the task set is EDF _schedulable with
a certain recovery pattern. Thus, we have

P(h) = 0 Schedule is not feasible based on recovery(h)
| Precovery(h) Schedule is feasible based on recovery(h)

Also recall that parameter(h) is the number of error patterns corresponding
to the same recovery pattern, recovery(h). Thus, parameter(h)P¢(h) is the
probability of errors being recovered for all the error patterns corresponding to
the recovery pattern, recovery(h), based on EDF _schedulability test.

From equation (13), and all the possible error patterns which still keep the
task set EDF schedulable, we obtain the error execution recovery probability
for the task set includeing N instances when errors were induced by f average
transient faults in a planning cycle based on EDF _schedulability test,

oo R(k,N)
B(f,N,Q)=3(3 parameter(h)P(h) (18)
k=1 h=1

where kR KR KR >0 kP + KR4+ 4+ kY =k, and 1 < k.

23

6.3.1 Formula to compute success probability

The success probability of a task set, T = {71, ..., 7}, includes two parts. The
first part is the probability of error free execution, Pgr, as discussed in the fault
model section. The second part is the probability of detecting and masking
effective errors, P.,ro-. Thus total success probability is:

Piyccess = PEF + Perror

In which, Perror = Pper + PEDM -

Pper is the part of the success probability for recovery patterns passed
schedulability test, in which errors were detected by double executions or timer
monitor. The execution time of recovery copies are the WCET of faulty in-
stances. Ppgr can be derived from equation (18),

Pper = E(f,N,{)(Ppe X Poe,m + Pr X Pr) (19)

As shown in table 11, Ppg is the probability for errors being detected by compar-
ison; Ppg,p is the probability for errors detected by comparison being masked
by TEM; Py is the probability for errors being detected by timer monitor; Pr
is the probability for errors detected by timer monitor being masked by TEM.

Pgpys is the part of the success probability of a task set from recovering
errors detected by HW/SW EDMs and masked by TEM. Since by HW/SW
EDMs, an error can be detected earlier than the faulty copy finishes its exe-
cution, some recovery patterns which would not schedulable when errors were
detected by comparison, perhaps can be schedulable now.

The maximum execution time of the faulty copy of instance 7] in recovery(h),

Cg‘m ;» can be separated into two parts, the maximum normal execution time of

a faulty copy, C]’-l, and the latency between error generation and being detected,
tiat- We use the value calculated by Lou in [5], tjo¢ = 0.45ms, then C]’-z =
Cfm ; — tiat- If a recovery pattern satisfies schedulability test by comparison, it
definitely satisfies the schedulability test by EDM, and the maximum execution
time of a task copy in this recovery pattern is its WCET,C%, . ; = Cj. The
probability for the error being detected in an erroneous copy of instance 7']'- in
recovery(h) is:
C]h _ Cél‘r"r,j — tiat

= =

Similarly, the probability for all the errors being detected in the erroneous copies
in recovery(h) for N instances in one planning cycle is :

R 0) 3j: Ol =t <0
h = N (Clrpj—tiat\k -
l_Ijzl(’(jigl)kJ VJ : Cgrr,j —tiat >0

Where C!. < Cjand 1< j < N.

Moreover, since P¢(h) is the error execution recovery probability when the
task set is EDF _schedulable for recovery(h), together with Ay, P¢(h) x Ay, is the
probability for recovery(h) to be EDF _schedulable when errors were detected by
EDM. We will use this value instead of P¢(h) in equation (18) to calculate the

success probability from recovery(h) for a task set when errors are detected by

24

HW/SW EDMs and masked by TEM. Thus, we modify equation (18) to adapt
the error detection property of HW/SW EDMs as following:

oo R(k,N)
E(f,N,A) = Z(Z parameter(h) P (h)Ay) (20)
k=1 h=1

where kf kB . kKR >0 kP +EE + . 4+ KR =k, and 1 < k.
Now we have the success probability for a task set when errors were detected
by HW/SW EDMs and masked by TEM,

PEDM = E(f, N,A) X PED X PED,M (21)

Where Pgp is the probability of errors being detected by HW/SW EDMs, and
Pgp, i is the probability of errors detected by HW/SW EDMs being masked
by TEM.

7 Algorithms

7.1 Feasibility Test

Algorithm 1 feasi_test(7,7; , recovery(h))

Require: EDF-feasible task set T with Uzota;(7T) < 1, recovery pattern: recov-
ery(h)
Ensure: Whether task set schedulable with this certain recovery pattern
1: PDL = REC_LOAD := 0;
2: primary[numk] {primarylk] := >, ([%J + 1) x 2C; , precomputed}
3: Llnumk] := {dy € D : d, < PC} {abosulute deadline set,precomputed}
4: d[N], for 1 < i < N,d[i] := d; {abosulute deadline set for each task in-
stances,precomputed}

: for k =1 to numk do
while ¢ < N and d[i] < L[k] do
REC_LOAD := REC_LOAD + k! x C[i]
1+ +
end while
10: pdL := primarylk] + REC_LOAD {primary part + recovery part}
11: if pdL > L[k] then

12: return 0 {If task set with current recovery pattern is not EDF schedu-
lable}

13: end if

14: end for

15: return 1 {task set with current recovery pattern is EDF schedulable}

This algorithm does the EDF schedulability test for a recovery pattern, re-
covery(h), of a task set. When errors were detected by comparison or timer
monitor and the pattern is schedulable, 1 is returned. Otherwise, 0 is returned.

Some pre-known or precomputed arguments for algorithm 1 : L[numk] is
an array of checking points; d[N] is an array of deadlines for task instances;

25

primary[numk] , primary(k] := >, ([L}PiJ + 1) x 2C; , is an array of pre-

i

computed workloads for each L[k]. Recovery(h) is a recovery pattern, and k[is
the number of 7] in recovery(h).

Primary[k], d[i] and L[k] are in ascending orders. For each checking point
L[k], we calculate the processor time demanded by the recovery part (REC_LOAD,
as shown in line 7). Adding it to the primary part (in line 10) we obtain the
total demanded time at the current checking point L[k]. If the task set with a
certain recovery pattern is not EDF schedulable, 0 is returned, otherwise 1 is
returned.

7.2 Computing the A of a Recovery Pattern to Keep a
Schedule Feasible

If a task set is not EDF schedulable when the errors are detected by comparison
or timer monitor, we will use this algorithm to calculate the probability for a
recovery pattern to be schedulable if errors in the faulty copies in recovery(h) are
detected by HW/SW EDMs. Processor demand analysis is applied to compute
the execution time of each faulty copy. If the task set with recovery(h) can be
possibly EDF _schedulable when errors are detected by HW/SW EDMs, the Ay,
is computed and returned, otherwise, 0 is returned.

Parameter ERR_LOAD is the total processor time demanded by the faulty
part. ERR_LOADIE] is the total available processor time can be used by the er-
ror part from the previous checking point, L[K-1], to the current checking point,
L[k]. The execution time of each erroneous copy is assumed to be its WCET.
When the processor time demanded at the current checking point exceeds L[k],
based on the remaining available processor demand, we either use Cerrj + tiat
!, or re-assign the value

as the execution time of an erroneous copy of instance Tjs
of Cerr; - Finally, Ay is calculated for each recovery pattern based on Cery ;.

26

Algorithm 2 maxi_exe(T,7; , recovery(h))

Require: EDF-feasible task set T with Ugoar(7T) < 1, recovery pattern: recov-

ery(h)

Ensure: Assign execution time to faulty copies and get the possible value of A

© ® 3

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:

20:
21:

22:
23:

24:
25:
26:
27:
28:

29:
30:
31:
32:
33:

34:
35:

: PDL =FERR LOAD1 =ERR_LOAD2 := (;

A=1i:=1;num=EXTRALOAD := 0;t;,; = 0.45
n LfDiJ

. primary[maxk] {primary[k] := >, ([7|+ 1) x 2C; , precomputed}

: Llmaxk] := {d € D : d, < PC} {abosulute deadline set,precomputed}
: d[N], forl < i < N,d[i] := d; {abosulute deadline set for each task in-

stances,precomputed}

: for k£ =1 to maxk do

ERR_LOAD[k]:=0
ji=i
while ¢ < N and d[i] < L[k] do
if k! > 0 then
CeTr,i = C[Z] — tiat
ERR_LOADI[k] := ERR_LOADI[k] + kI x C[i]
end if
i+ +
end while
ERR_LOAD := ERR.LOAD + ERR_LOADI[K]
PDL := primary[k] + ERR_LOAD {correct part + faulty part}

if PDL > L[k] then
{If needed processor demand is larger than check point L[k]}

if (L[k] — PDL — ERR_LOADIk]) < (numl[k] X t;4;) then
{If the remaining available processor demand is less than the value
of needed latency demand.}
for m=1toi—1do
re-assign Ceprm for all erroneous copies of which deadlines are
equal to or earlier than the check point L[k];
and renew ERR_LOAD
end for
else
for m=jtoi—1do
assign Cerr,m for new coming erroneous copies based on remaining
available processor demand
and renew ERR_LOAD
end for
end if
end if
end for
A =TT ()
RETURN A { EDF schedulable}

27

7.2.1 Computing the execution time of erroneous copies

There are different ways to estimate the execution time of erroneous copies.
One approach is based on the utilization of faulty copies. However, we will only
discuss the method we used for this algorithm. It may not be an optimal way
to compute the largest execution time of erroneous copies. This algorithm can
possibly be improved in future work.

In our solution, suppose that instances 7{ and 74 have the same deadline,
and 71 has 1 faulty copy whereas 75 has 2 faulty copies, and the available
processor demand is Lrpp. The latency t;,; is the time elapse between error
generation and error detection. Firstly, we will assign latency to each erroneous
copy to make sure that each copy has a chance to be detected erroneous. The
left available processor time is (Lrpp — 3 X t14¢)- Secondly, we will assign the
remaining processor time to each erroneous copy proportional to their WCETs.

. h _ Cl—tia h —
In this example, C;,..; = (Lrpp — 3 X tiat) X Ci+202 + tiat, and C.p =

(LrPD — 3 X tigt) X % + tiat-

Cfm ; can be changed in the further analysis at later checking points. For
example when the next checking point is reached, 2 more erroneous copies of
74 came up, and the remaining processor time can even not be enough for
latencies, (Lgpp — 2 X tiqt < 0), then the previously allocated processor time
for erroneous copies will be re-collected and re-assigned to each erroneous copy.
In our example, if the current checking point is L[k], and the processor time
demanded by primary copies is primary[k], the total available processor demand

for erroneous copies will be L[k]-primary[k]. Then, C%._ . is re-assigned based

on C} and L[k]-primary[k], that is C%. ; = (L[k] — primary[k] — 5 X tiq;) X
4t .
C;+20£l_+_20é + tlat:(l <J< 3)

7.3 Calculating the Success Probability

This algorithm computes the success probability of a task set with f average
transient faults in one planning cycle.

The index of the outer loop, k, is the number of errors in a recovery pattern.
The index of the inner loop, h, points to the h — th recovery pattern including
k effective errors. For each recovery(h), algorithm 1 is called for feasibility test.
If the returned value from algorithm 1 is 1, the corresponding error execution
recovery probability and other parameters are prepared to computer Ppgr, and
Ppea - Otherwise, if the returned value of algorithm 1 is 0, algorithm 2 is called
to compute the A of recovery(h) for Ppgas. Finally, the probability of error free
execution Pgp and the probability of error detection and masking part, Peppor
are computed, and the success probability of a task set with f average transient
faults in one planning cycle is returned.

28

Algorithm 3 proba_cal(T,r; , recoverytxt[R(k,N)][N])

Require: EDF-feasible task set 7 with Ugeai(7) < 1, recovery pattern matrix:
recoverytxt[R(k,N)][N]

Ensure: Success probability is computed based on feasibility test or feasibility
test with the execution time of faulty task copies.

1: tiq¢ == 0.49; P, := 0.17, Other parameters check the table
2: Pepror == 0; Ppp := 1; {initial success probability and fault probability}
3: for k =1 to maz(20, f) do

4: PDET = PDE‘M = 0; {initial PDET and PDEM }
5. for h=1to R(k,N) do

6: read line h from recoverytxt, from recoverytxt[h][1] to recoverytxt[h][N],
and copy to array recovery(h)
7 PU = [, (e7PIPi(1 — e~ PoIPi)KT (K 4+ 1)) {collect the error ex-

ecution probability of all error patterns corresponding to recovery(h)}
if feasi_test(recovery(h)) ==1 then

9: Ppgr = Ppgr + PU {collect the total fault occurrence probability
to compute Ppgr}
10: A= Hil(%ﬁ““)f{h {probability of error execution caused the
shorter execution time in 7;}
11: Ppey = Ppem + A x PU {collect the total error execution proba-
bility to compute Ppg}
12: else
13: A := mazxi_exe(recovery(h))
14: if A>0 then
15: Ppey := Ppepym + A x PU
16: end if
17: end if
18: end for
19: Perpor := Perror + PoeT X (PDE X PpE,M + Pr X Prar) + Poeym X Pep X
Pgp,m
20: end for

21: Pgp = H;V::[e 2P=fF;
22: RETURN (Perr0r+PEF)

29

8 Examples

Our program written in C language is based on the system model described
in chapter 5 , the schedulability and success probability analysis presented in
chapter 6, and the algorithms in chapter 7. In this chapter, we give two exam-
ples. The success probabilities for the two examples were calculated. We also
discuss the meanings of our results.

8.1 Example 1

In Table 7, there are three tasks, 71, 72 and 73. The time unit for period T;,
WCET C(}, and relative deadline D; is millisecond(ms). The latency between
error generation and error detection is t;,; = 0.45ms. This example is taken
from Lou [5]. We use it to show that our system model and program simulation
give almost the same success probability when one fault in one planning cycle
is assumed. A slight difference between our results and those from [5] arises
from different assumptions on the fault generation processes. For comparison,
we quote the success probability from Lou’s version for one fault is 0.9311.

| Task | Ti(ms) | Ci(ms) | Di(ms) |

Tl 100 20 100
T 200 40 200
T3 400 25 400

Table 7: The task set for example 1. T3, C;, and D; are the period, WCET, and
relative deadline, respectively.

From the simulation of preemptive EDF scheduling, an instance set 7' =
{r{,75,... %4} is collected from the first planning cycle as shown in Table 8.
Each instance 7;(1 <= j <= 7) includes its absolute deadline d;, WCET C7 ,

and fault occurrence probability P; = Lg—’M L[k] are the checking points which

include all possible absolute deadlines of the instance set. And primarylk]
is the processor demand for primary copies (or correct copies when errors are

detected by HW /SW EDMs), primary[k] = ZZZI ([L[HT_DJ + 1) x2C;, where
the values for C; and D; are from Table 7.

The results from simulation are shown in Table 9. P, is the probability
for errors detected by error detection mechanisms and masked by TEM. Pgp

is the probability of error free execution. Psyccess = Perror + Per shows the
success probability of a task set with average f transient faults in one planning
cycle.

The data in Table 9 are plotted in Figure 4. From Figure 4 and Table 9, we
can see that when the average number of faults increases from f =1to f =7,
P.rror also increases. However from f = 8 to f = 40, when the average number
of faults increases, P, .- decreases. Pgr and Py, .ss monotonically decrease in
the whole range.

The error free execution gives a larger contribution to the successful execu-
tion up to f =9 than P, does. But Pgp drops sharply with the increasing
number of faults. This is mainly due to the large utilization of the instance set.

30

Instance | C} | d7 | P; | L[k] | primarylk] |

7 20 | 100 | 0.05 100 40
75 20 | 200 | 0.05 200 160
T4 40 | 200 0.1 300 200
T4 20 | 300 | 0.05 400 270

7l 20 | 400 | 0.05
7} 40 [400 | 0.1
7 25 | 400 | 0.0625

Table 8: The instance set in example 1. C}, d}, and P; are the WCET, the
absolute deadline, and the fault occurrence probability for task instance 7'],-, re-
spectively. L[k] are the checking points, and primary[k] the processor demands
for primary copies. P; is dimensionless. The unit for other quantities is ms.

The utilization for executing each instance twice correctly is 2 E;zl P; =0.925,
so there is only 7.5%LC M left for possible errors to happen without causing
faulty copies. When there are more faults in the planning cycle, they are very
likely to cause faulty copies and the chance of error free execution is small.

When there are only a few erroneous copies, the double execution mechanism
can correct most of them, so P, initially increases with f until f = 7.
But when there are too many faulty copies, the mechanism is unable to cope
with them before the deadlines and the correction rate decreases. However, the
decreasing rate is smaller than the rate of Pgr, and the correction to the faulty
copies gives a significant contribution to Psyecess- For f > 10, its contribution
surpasses the contribution from Pgp.

8.2 Example 2

In Table 10, there are two tasks, 71 and 7». Millisecond(ms) is the time unit as
before. The latency t;,; = 0.45ms. Comparing to the first example, this task
set has a lower utilization for primary (or correct) copies, 22?21 % = 0.16,
and the relative deadlines are earlier than corresponding task periods.

From the simulation of preemptive EDF scheduling, an instance set 7' =
{7{, 75,74} is collected from the first planning cycle as shown in Table 11. It
gives the absolute deadline dj, WCET Cj , and fault occurrence probability P;
for each task instance, as well as the checking point L[k]. Notations are the
same as in example 1.

Simulation results are presented in Table 12 and plotted in Figure 5. Again
we see the monotonic decrease of Ppp and Pgycess with the increasing average
number of faults f. However, the decreasing rates are smaller than in example 1
because the utilization of correct copies in example 2 is smaller. A large fraction
of errors happened in the idle time and those errors do not cause faulty instance
copies.

In this example with increasing f from 1 to 40, P.,ror almost also linearly
increase. This shows that the faulty copies of instances can almost all be cor-
rected by the TEM especially when errors are detected by HW/SW EDMs. The
system is more resilient than the one in example 1. Because the primary copies
in task set 2 only take a small fraction of the planning cycle, there is ample time

31

1.000000 —

0.900000 ——
0.800000
0.700000
0.600000
0.500000

0400000

probabilities

0.300000
0.200000 —

0100000 —

0.000000 — T T T T -
0] 10 15 20 25 2 is) 40 45

number of faults in one planning cycle

Figure 4: Plot for Example 1. See text and the caption of Table 9 for the
meanings of labels.

0.8
0.6
04

0z

1]] 10 15 20 28 a0] 40 45

Mumber of average faults in one planning cycle

Figure 5: Plot for Example 2. See text and the caption of Table 12 for the
meanings of labels.

32

| f | Perror | Pgr | Pyyccess || f | Perror | Pgr | Pyyccess |
1] 0.076833 | 0.854490 | 0.931324 || 21 | 0.094137 | 0.036801 | 0.130938
2] 0.133577 | 0.730154 | 0.863731 || 22 | 0.085406 | 0.031446 | 0.116852
3 | 0.174129 | 0.623909 | 0.798038 || 23 | 0.077314 | 0.026870 | 0.104184
4 | 0.201721 | 0.533125 | 0.734846 | 24 | 0.069847 | 0.022960 | 0.092807
5 | 0.219030 | 0.455551 | 0.674581 || 25 | 0.062983 | 0.019619 | 0.082602
6 | 0.228259 | 0.389269 | 0.617528 || 26 | 0.056696 | 0.016764 | 0.073460
7 | 0.231219 | 0.332625 | 0.563845 || 27 | 0.050954 | 0.014325 | 0.065279
8 1 0.229390 | 0.284224 | 0.513614 || 28 | 0.045725 | 0.012241 | 0.057966
9 | 0.223973 | 0.242866 | 0.466840 || 29 | 0.040976 | 0.010460 | 0.051436

10 | 0.215942 | 0.207530 | 0.423472 || 30 | 0.036672 | 0.008938 | 0.045610
11 | 0.206077 | 0.177331 | 0.383408 || 31 | 0.032780 | 0.007637 | 0.040417
12 | 0.195001 | 0.151527 | 0.346529 | 32 | 0.029268 | 0.006526 | 0.035793
13 | 0.183206 | 0.129478 | 0.312684 || 33 | 0.026103 | 0.005576 | 0.031679
14 | 0.171076 | 0.110638 | 0.281714 || 34 | 0.023257 | 0.004765 | 0.028021
15 | 0.158907 | 0.094539 | 0.253445 || 35 | 0.020701 | 0.004072 | 0.024772
16 | 0.146922 | 0.080782 | 0.227705 || 36 | 0.018409 | 0.003479 | 0.021888
17 | 0.135290 | 0.069028 | 0.204318 || 37 | 0.016356 | 0.002973 | 0.019329
18 | 0.124127 | 0.058984 | 0.183111 || 38 | 0.014520 | 0.002540 | 0.017061
19 | 0.113517 | 0.050401 | 0.163918 || 39 | 0.012880 | 0.002171 | 0.015051
20 | 0.103511 | 0.043067 | 0.146578 || 40 | 0.011417 | 0.001855 | 0.013272

Table 9: Simulation results for example 1. f is the average number of transient
faults in one planning cycle. P,..,. is the probability of errors detected and
masked by TEM. Pgp error free execution. Pyyccess = Perror + Perp is the
success probability.

left to re-execute erroneous copies and correct errors.

9 Future Work

Improving our current fault model is an interesting and meaningful extension
to this work. One may consider different statistical distributions for errors and
analyze the system success probabilities. The comparison between the results
from different fault distributions is interesting.

In this work, the recovery copies of an instance have the same absolute
deadline as that of the instance. Since EDF is considered, in a run time system,
keeping on running recovery copies may hinder other primary copies to execute,
then the success probability of the rest instances can be decreased. It might
be better if we give higher priority to primary copies than to recovery copies,
and treat recovery copies as sporadic tasks, or change the deadlines of recovery
copies as Tengdahl did in [6]. Those probably are better strategies for the
success probability of some instances in a run time system.

Using different ways to compute the execution time of each erroneous copy
in a recovery pattern can also be a worthy try. In this study, when a task set
with a certain recovery pattern is non EDF schedulable if errors are detected by
comparison or timer monitor, we assume that the errors can only possibly be

33

| Task | Ti(ms) | Ci(ms) | Di(ms) |
Ty 250 10 200
P 500 20 450

Table 10: The task set for example 2. T;, C;, and D; are the period, WCET,
and relative deadline, respectively.

| Instance | C% | dj | P; [L[¥] | primary[k] |
T 10 | 200 | 0.02 | 200 20
75 10 | 450 | 0.02 | 450 80
™ |20 | 450 | 0.0

Table 11: The instance set in example 2. C}, dj, and P; are the WCET,
the absolute deadline, and the fault occurrence probability for task instance
7j, respectively. L[k] are the checking points, and primary[k] the processor
demands for primary copies. P; is dimensionless. The unit for other quantities

is ms.

detected by HW /SW EDMs, and did not consider the probability of errors being
detected by other mechanisms. Considering the probability of all error detection
mechanisms for each copy may result in a more accurate success probability.

RM schedulability analysis for our fault model can be another attractive
study as well. One can calculate the RM success probability of a task set and
compare it with those obtained from EDF scheduling.

Finally, extending our current model to multiprocessor systems is certainly
a challenging and meaningful work.

10 Conclusion

In this thesis, we presented a model which connects the concepts in real time
scheduling and those in fault tolerant reliability. Statistical analysis, including
binomial coefficients, binomial distribution, Poisson distribution, is employed to
analyze the numbers of error patterns and of recovery patterns.

We analyzed the schedulability of a task set with on average f transient
faults in one planning cycle based on all possible recovery patterns. In our
analysis, error detection mechanisms, such as comparison, timer monitor, and
HW/SW EDMs, are treated separately according to their different properties.

The success probability of a task set relies on the number of error patterns
that can pass the EDF schedulability test, and parameters from the experimen-
tal results of Artk68-FT [9]. The partial success probabilities for errors detected
by comparison and timer monitor and for errors detected by HW/SW EDMs
are given in the thesis.

At last, we simulated schedulability analysis and computed success proba-
bilities for task sets with f average transient faults using the current model.
Some examples are given and results are interpreted.

34

| f | Perror | Pgr | Pyyccess || f | Perror | Pgr | Pyyccess |
1] 0.018479 | 0.973167 | 0.991646 | 21 | 0.297011 | 0.564847 | 0.861858
2] 0.036448 | 0.947053 | 0.983501 || 22 | 0.307203 | 0.549690 | 0.856893
3 | 0.053919 | 0.921641 | 0.975560 || 23 | 0.317106 | 0.534940 | 0.852046
4 1 0.070908 | 0.896910 | 0.967817 || 24 | 0.326728 | 0.520586 | 0.847314
5 | 0.087425 | 0.872843 | 0.960268 || 25 | 0.336075 | 0.506617 | 0.842692
6 | 0.103485 | 0.849421 | 0.952906 || 26 | 0.345156 | 0.493023 | 0.838179
7 | 0.119099 | 0.826628 | 0.945727 || 27 | 0.353978 | 0.479793 | 0.833771
8 | 0.134279 | 0.804447 | 0.938726 || 28 | 0.362547 | 0.466919 | 0.829466
9 | 0.149036 | 0.782861 | 0.931897 || 29 | 0.370870 | 0.454390 | 0.825260

10 | 0.163383 | 0.761854 | 0.925237 || 30 | 0.378954 | 0.442197 | 0.821150
11 | 0.177330 | 0.741411 | 0.918741 || 31 | 0.386804 | 0.430331 | 0.817135
12 | 0.190887 | 0.721517 | 0.912404 || 32 | 0.394428 | 0.418784 | 0.813212
13 | 0.204066 | 0.702156 | 0.906221 || 33 | 0.401831 | 0.407547 | 0.809378
14 | 0.216875 | 0.683315 | 0.900190 | 34 | 0.409019 | 0.396611 | 0.805630
15 | 0.229326 | 0.664979 | 0.894305 || 35 | 0.415998 | 0.385968 | 0.801967
16 | 0.241427 | 0.647135 | 0.888563 | 36 | 0.422774 | 0.375611 | 0.798385
17 | 0.253189 | 0.629770 | 0.882959 | 37 | 0.429351 | 0.365533 | 0.794884
18 | 0.264619 | 0.612871 | 0.877490 | 38 | 0.435735 | 0.355724 | 0.791459
19 | 0.275727 | 0.596426 | 0.872153 || 39 | 0.441932 | 0.346179 | 0.788111
20 | 0.286521 | 0.580422 | 0.866943 || 40 | 0.447946 | 0.336890 | 0.784835

Table 12: Simulation results for example 2. f is the average number of transient
faults in one planning cycle. P,..,. is the probability of errors detected and
masked by TEM. Pgp error free execution. Pyyccess = Perror + Perp is the
success probability.

References

[1] C. M. Krishna and K. G. Shin. Real-Time Systems. McGraw-Hill Interna-
tional Editions, 1997.

[2] N. Storey. Safety-Critical Computer Systems. Prentice Hall.,ISBN 0-201-
42787-7, 1996.

[3] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Experimental eval-
uation of time-redundant execution for a brake-by-wire application. In
Proceedings of the International Conference on Dependable Systems and
Networks, pages 210-215, June 2002.

[4] A. Avizienis. Design of fault-tolerant computers. AFIPS conference
proceedings.,vol.31.pp.733-743, 1967.

[5] Q. Lou. Real-time scheduling analysis of system employing tem. Master’s
thesis, Chalmers University of Technology, 2005.

[6] M. Tengdahl. Tolerating transient faults in Real-time systems with Dy-
namic Task Priorities . Master’s thesis, Chalmers University of Technology,
Gothenburg University, 2008.

35

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. M. Pathan. Fault-tolerant real-time scheduling algorithm for tolerating
multiple transient faults. In 4th International Conference on FElectrical and
Computer Engineering, pages 577-580, December 2006.

R. M. Pathan. Real-time scheduling analysis of systems tolerating multiple
transient faults. Master’s thesis, Chalmers University of Technology, 2005.

J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Experimental de-
pendability evelutation of the artk68-ft real-time kernel. In Proceedings of
the International Conference on Real-Time and Embedded Comuting Sys-
tems and Applications, August 2004.

C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, 20(1):46-61, January
1973.

J. Aidemark. Node-Level Fault Tolerance for Embedded Real-Time Systems.
PhD thesis, Chalmers University of Technology, 2004.

X. Castillo, S. R.McConnel,and D. P.Siewiorek. Derivation and Calibration
of a Transient Error Reliability Model. IEEE Transactions on Computers,
4(3):214-237, Aug. 1986.

J. Aidemark, P. Folkesson, and J. Karlsson. A framework for node-level
fault tolerance in distributed real-time systems. Technical Report 04-06,
Department of Computer Engineering, Chalmers University of Technology,
2004.

H. Mei-Chen, T.K. Tsai, P.K. Iyer. Fault Injection Techniques and Tools.
Computer, Volume:30, Issue:4(1997).

J. Aidemark, P. Folkesson, and J. Karlsson. GOOFI: Generic Object-
Oriented Fault Injection tool. Proceedings of the International Conference
on Dependable Systems and Networks, Gothenburg, 2001.

J. Abawajy. Fault-tolerant dynamic job scheduling policy. In 6th inter-
national conference on algorithms and architectures for parallel processing,
pages 165-173, October 2005.

G. Manimaran, C.S.R. Murthy. A Fault-tolerant Scheduling Algorithm
for Multiprocessor Real-time Systems and its Analysis. IEEE Transactions
on Parallel and Distributed Systems.,1045-9219, Pages: 1137 - 1152, 1998.

Y. Oh, S.H. Son. An Algorithm for Real-Time Fault-Tolerant Scheduling
in Multiprocessor Systems. 2008 Third International Conference on Con-
vergence and Hybrid Information Technology .,978-0-7695-3407-7, Pages:
816-821, 2008.

F. Liberato, S. Lauzac, R. Melhem, D. Mossé. Fault Tolerant Real-Time
Global Scheduling on Multiprocessors. Real-Time Systems, 1999.,0-7695-
0240-7, Pages: 252-259, 1999.

36

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

Y.S. Hong, HW. Goo. A Fault-tolerant Scheduling Scheme for
Hybrid Tasks in Distributed Real-time Systems. Third IEEE Work-
shop on Software Technologies for Future Embedded and Ubiquitous Sys-
tems(SEUS’05),2005., 0-7695-2357-9,2005.

H. Aydin, R. Melhem, D. Mossé. Optimal Scheduling of Imprecise
Computation Tasks in the Presence of Multiple Faults. Real-Time Com-
puting Systems and Applications, 2000., ISBN: 0-7695-0930-4,page(s): 289-
296,2002.

F. Liberato, R. Melhem, D. Mossé. Tolerance to Multiple Transient
Faults for Aperiodic Tasks in Hard Real-Time Systems in Hard Real-time
Systems. IEEE Transactions on Parallel and Distributed Systems.,1045-
9219, Pages: 272 - 284, 1997.

E. W. Weisstein, other contributors. Wolfram MathWorld.
http://mathworld.wolfram.com /PoissonDistribution.html

Nist, Sematech. e-Handbook of Statistical Methods.
http://www.itl.nist.gov/div898 /handbook /pmc/sectiond /pmc331.htm , 25
October 2006

E. Merran, N. Hastings, B. Peacock. Statistical Distributions. New York:
Wiley., 3rd ed.,ISBN 0-471-37124-6,2000.

P. M. Morse. Thermal physics. W. A. Benjamin, inc, 1964.

unknown contributors. Wikipedia.
http://en.wikipedia.org/wiki/Poisson_distribution , 01 June 2009

E. W. Weisstein, other contributors. Wolfram MathWorld.
http://mathworld.wolfram.com/Binomial Coefficient.html .

S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity
concerning the preemptively scheduling of periodic, real-time tasks on one
processor. Real-Time Systems Journal, 2(4):301-324, November 1990.

37

11 APPENDIX - Fault Injection Results

| Px | Given that a fault occurs, an error is generated | 373 (of 2076) | 17% |

Ppr | Given that an error is generated, the error is | 68 (of 373) 18%
detected by comparison after double execution
(DE)

Pr Given that an error is generated, the error is | 19 (of 373) 5%
detected by a timer monitor (TM)
Pep Given that an error is generated, the error is | 286 (of 373) 7%
detected by a hardware error detection mech-
anism (EDM)

PnD Given that an error is generated, the error is 0 (of 373) 0%
not detected
Ppg,ar | Given that an error is detected by DE, the 68 (of 68) 100%
error is masked by TEM
Pr | Given that an error is detected by TM, the | 18 (of 286) 6%
error is masked by TEM
Pgp,am | Given that an error is detected by EDM, the | 194 (of 286) | 68%
error is masked by TEM

Table 13: Results from fault injection into a 68340 microprocessor

38

