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Abstract

Protein mixture identification by Mass Spectrometry (MS) data using mass-
mapping experiments has become a powerful method in identification, and in
some cases quantification, of proteins in samples taken from tissues. The main-
stream approaches for database search method usually impose an upper bound
of 2 or 3 on the number of proteins in a sample mixture. In this thesis the
problem in its most general from is reformulated as a hitting set problem over
(finding transversals of) a hypergraph. The limitations and extent of appli-
cability of this approach, considering different error sources in MS data are
addressed.
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Chapter 1

Introduction

This thesis deals with the identification of proteins in a mixture of peptides. A
combinatorial approach is employed with emphasis on transversal theory. The
thesis will elaborate to what extend a transversal approach is applicable in this
problem.

1.1 Mass Spectrometry

Mass spectrometry (MS) is a widely used analytical technique utilised to mea-
sure the mass-to-charge ratio of ions in a sample. The mass-to-charge ratio is
then used to generate an spectrum representing the masses of components in
the sample.

The general idea is to ionize the molecules of the sample and pass them
through a magnetic and/or electric field. The force applied by the field affects
the trajectory of the particles. The force is proportional to the charge but the
deviation of trajectory is inversely proportional to the mass so the ultimate
deviation is directly related to mass-to-charge ratio. Hence, mass spectrometry
consists of three major steps and therefore a Mass Spectrometer consists of three
main blocks to accomplish these steps as follows:

1. A sample of mixture is ionised, usually by loss of an electron. (The Ion

Source or Ioniser)

2. The ions are separated, in space or time, according to their mass and
charge (mass-to-charge ratio). (The Mass Analyser or Ion Analyser)

3. The sorted ions are then detected and the results are reported to data
gathering system. (The Detector)

The collected data is then analysed by different methods. The introduction of
sample and data analysis are sometimes also considered as part of the Mass
Spectrometer.

1.1.1 Sample introduction

The technique used for introduction of a specific sample to the ionisation source
mostly depends on the ionisation method employed in MS, and also the nature

1



and complexity of the sample.
The sample can either be inserted directly into the ionisation source, or can

undergo some sort of chromatography prior to introduction to the ionisation
source. The latter method often requires the mass spectrometer to be coupled
directly to a high pressure liquid chromatography (HPLC), gas chromatography
(GC) or capillary electrophoresis (CE) separation column. In this approach the
sample is separated into groups of components. Later on, these components are
sequentially entered to the mass spectrometer for individual analysis.

1.1.2 Ionisation methods

The ionisation refers to whole process of adding or removing one or several
electron from a particle to create an ion. Ionisation methods used in Mass
Spectrometry include the following:

1. Atmospheric Pressure Chemical Ionisation (APCI)

2. Chemical Ionisation (CI)

3. Electron Impact (EI)

4. Electrospray Ionisation (ESI)

5. Fast Atom Bombardment (FAB)

6. Field Desorption / Field Ionisation (FD/FI)

7. Matrix Assisted Laser Desorption Ionisation (MALDI)

8. Thermospray Ionisation (TSP)

Most ionisations methods facilitate creating both positively and negatively charged
sample ions. This depends on the proton affinity of the sample.

The most common ionisation methods employed in biochemical analyses are
Electrospray Ionisation (ESI) and Matrix Assisted Laser Desorption
Ionisation (MALDI)[?]. Ions generated by MALDI are singly charged while
ESI-generated ions usually carry multiple charges[?].

1.1.3 Mass analyser and ion detector

There are many types of mass analysers depending on the characteristics of
the field and the structure of the path ions travel through. The field can be a
dynamic or static electric and/or magnetic one. The most common types are[?,
Chap. 4]:

1. Magnetic-sector MS

2. Time-of-flight (TOF) MS

3. Quadrupole MS

4. Ion-Trap MS

5. Fourier transform MS

The common Mass analyser in mass-mapping applications is TOF.
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1.2 Protein Mass Spectrometry

Study of proteins has always been a quintessential part of biological studies.
Among different methods used to identify and quantify proteins in biological
samples, Mass Spectrometry has long been established as a main method for
high-throughput runs. The application of MS in this sense is commonly referred
to as Protein Mass Spectrometry. A special form of Protein Mass Spectrometry
is peptide mass-mapping where the protein (or a mixture of proteins) is digested
by protease and the MS data reports the molecular weights of the peptides that
are produced. This data can be used in several ways to determine the initial
protein(s).

1.3 Mathematical preliminaries

1.3.1 Hitting set problem and transversals

The hitting set problem deals with finding a set that contains a representative
member from a collection of subsets of a universe M . That means it contains
(hits) at least one member from each subset. Additionally, the set is required
to have no more than K members. In a formal sense:

Definition Let C = {c1, c2, . . . , cn} be a collection of subsets of M , and 0 <
K < |M | be an arbitrary integer, the problem is to find hitting sets U ⊂ M
where |U | ≤ K and U ∩ ci 6= ∅ for all 1 ≤ i ≤ n.

A hitting set is minimal if none of its proper subsets is also a hitting set.
The union of all minimal hitting sets up to a given size is called full kernel[?].

1.3.2 Hypergraphs

A hypergraph is a pair G = (V, E) where V is a set of vertices or nodes and E
is a collection of non-empty subsets of V , called hyperedges. That means E is a
subset of power set of V and every member of E connects an arbitrary number
of vertices in hypergraph.

1.4 The problem of protein mixture identifica-

tion

Proteins are mostly large molecules that makes them difficult to deal with by
most mass spectrometers. This is because of technical difficulties that arise
during ionisation of large molecules (commonly larger than 10kDa). Also in
analysing a mixture of proteins, interaction of proteins can hinder sample in-
troduction. Therefore, it’s a common practice to digest the proteins into small
fragments and analyse the fragments. The resulting spectrum is a superposition
of spectra of fragments produced by individual proteins. A reference database
is prepared in silico in advance to facilitate detection of possible proteins in the
original mixture. In this thesis trypsin digestion is considered in preparation of
reference database.
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In the model employed in this thesis proteins are considered as vertices of a
hypergraph. Each fragment mass can be produced by a certain set of proteins.
This set is a hyperedge over in our hypergraph. Now, given this hypergraph the
problem is to find all minimal hitting sets (or transversals) in this hypergraph.
So the terms hyperedge and vertex will interchangeably be used for peptide
(fragment) mass and protein, respectively.

To achieve this a search tree is built where branches represent the vertices
we choose to add to the final solution. We use a bounded search tree because
we limit the depth of tree by K.

1.4.1 A small example

Consider a set of proteins with fingerprints corresponding to proteins 1 to 6 in
following table and mixtures of proteins with following set of fragmnet masses:

Protein fragment masses
ID 35 82 91 133 152 189
1 + - - - + -
2 - + - + - -
3 - - + - + -
4 + - - - - +
5 - - - + - +
6 + - + - + -

Mixture 1 + - + - + -
Mixture 2 - + + + + -
Mixture 3 + + - + - +
Mixture 4 - - + + + -
Mixture 4a + - + + + -
Mixture 4b - + + + + -
Mixture 4c - - + + + +

7 + - - + - -
Mixture 5 + + - + - +

Mixture 1: In this case the mixture matches the spectrum of protein 6, but
it also can be produced by digestion of a mixture of proteins 1 and 3. So
there are two minimal solutions: {6} and {1, 3} and full kernel is {1, 3, 6}.

Mixture 2: Fragment mass 82 only appears in spectrum produced by protein
2. This requires that mass 133 also appears in the mixture, which is
consistent. The only other protein that can cover the remaining masses is
protein 3. Therefore, there is only one single solution {2, 3}. This unique
correspondence of fragment masses and proteins is employed to make the
search space smaller prior to creation of search tree.

Mixture 3: The minimal solution for this case is {2, 4}. Note that {2, 4, 5} is
also a solution but is not minimal. This point should be considered in case
of generating all possible solutions to include the proteins (vertices) that
can be overshadowed in presence of two or more proteins (vertices). Pro-
teins in minimal solution together can generate (hit) all fragment masses
(hyperedges) from some other proteins.
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Mixture 4: There is no set of proteins that can generate this spectrum. This
case can be an instance of missing or spurious masses. In case of spurious
masses, the only possibility is that mass 133 doesn’t belong to the mixture
so the real mixture actually consists of protein 3. In case of missing
masses, if we limit the number of missing masses to one, we come up with
3 alternative spectra.

Mixture 4a: Existence of mass 133 requires that either protein 2 or pro-
tein 5 be present in the mixture. But protein 2 (5) also generates
fragment mass 82 (189) which is not present in this mixture. There-
fore, this mixture is inconsistent with current protein database.

Mixture 4b: This mixture is identical to mixture 2 and leads to solution
{2, 3}.

Mixture 4c: Presence of mass 189 requires that either protein 4 or pro-
tein 5 be present in the mixture. Protein 4 is inconsistent because of
fragment mass 35 so protein 5 is a part of solution. The only protein
that can complement protein 5 to create Mixture 4c is protein 3. The
only solution is {3, 5}

Mixture 5, adding protein 7: If protein 7 is also added to the set of proteins
and mixture 5 is to be analysed, in case of no errors {2, 4} and {2, 5, 7}
are the answers. Now, if we allow one spurious mass there will be four
additional solutions:

• Mass 35 is spurious: {2, 5} is a solutions

• Mass 82 is spurious: {4, 5} and {5, 7} are solutions

• Mass 189 is spurious: {2, 7} is a solutions
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Chapter 2

Background and methods

2.1 Reference databases

The main fragment mass database is created1 in silico from cleaned SwissProt
entries. Each line in the file contains a header that is the protein ID and a
series of numbers that correspond to fragment masses from trypsin digestion of
the protein. Some fragment masses may appear more than once hence the list
of fragment masses are sorted and multiple occurrences are ignored. Note that
this may lead to identical sets of masses for two originally distinct proteins2. To
facilitate cross-reference between masses and proteins, an auxiliary database,
masses database, is also produced where each entry contains a fragment mass as
header followed by a list of ID’s of proteins that may produce a given fragment
mass.

2.2 Errors in fragment masses

Two most typical kind of errors that arise in using mass spectra are missing
masses and spurious masses. The former is generally less likely than the latter
one. That is due to the possibility of existence of impurities in original sample
or unsuccessful digestions that leads to longer fragments and unwanted masses
in final spectrum.

2.2.1 Missing masses

There is a possibility of one or more masses not being observed in MS due
to several reasons for instance when digestion was not successful in some sites
resulting in larger fragments. For instance a protein that should result in frag-
ments 37 12 49 24 91 can result in masses 37 61 24 91 if the digestion on second
trypsin site was not successful.

1The original file is provided by Ferdinando Cicalese from Institut für Bioinformatik, Cen-

trum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
2In this thesis, protein database refers to this reduced form unless reference to original

database is explicitly indicated.
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2.2.2 Spurious masses

In some cases there are extra masses observed in MS results mostly because
of contamination of the sample, existence of unwanted protein with close mass
because of comigration in SDS-GELs and in rare cases partial digestion of some
trypsin sites.

2.3 Branching strategies

The underlying idea of finding transversals in the hypergraph generated based
on the protein database and fingerprints from mixtures is implemented in three
different ways:

• exhaustive-search approach

• hyperedge-oriented approach

• vertex-oriented approach

The exhaustive-search approach simply creates one branch for every node
in union of all unsettled hyperedges and removes all hyperedges that are settled
by adding that node. This makes a cumbersome tree and is only used for com-
parison. The results of this approach are only a benchmark for the performance
of the other approaches.

In hyperedge-oriented approach, on every node one unsettled node is
chosen and all the vertices contained are selected at once and a new branch
is made. This method is based on the construction of a Bounded Search Tree
proposed in [?, Theorem 6].

Alternatively, a vertex-oriented approach may also be used where a
vertex is chosen, all hyperedges hit by that vertex are settled and algorithm
branches on all vertices in union of remaining unsettled hyperedges. In this
approach it’s beneficial to start with a vertex that hits many hyperedges.

2.3.1 The algorithm: outline

We used a hyperedge-oriented algorithm. The algorithm can be outlined as
follows

1. create list of hyperedges H

2. create a tree and set the smallest hyperedge in H as root3

3. for any node in tree do following steps

3.1 mark all hyperedges hit by last selected node as settled

3.2 IF there is no unsettled hyperedge

3.2.1 add the list of selected vertices up to that node to the list of
solutions

3in implementation of the algorithm the hyperedges are sorted by their size and the smallest

one is chosen as root
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3.3 ELSEIF the number of selected vertices up to that node is ≤ K

3.3.1 choose smallest unsettled hyperedge h and mark it settled

3.3.2 branch on every vertex contained in h by adding it to the list of
selected vertices

3.4 ELSE mark as dead end

This algorithm works fine as long as there is no error in the sample fragment
masses. The algorithm should be revised in case of missing masses errors and
spurious masses errors.

2.3.2 The algorithm: missing masses

For the case of missing masses a list of extra hyperedges is also created in
parallel. First, a candidate list, say CP , of all proteins that have at most f
fragments not present in sample fragment spectrum are created. List of extra
hyperedges EH is the set of all hyperedges corresponding to fragment masses
associated with proteins in CP not including the masses in the sample. In
other words, CP contains all proteins that their spectrum is a subset of sample
fragment masses. Let M(p) denote spectrum of protein p, P (m) denote all
proteins that contain fragment mass m, P all proteins in database, S set of
fragment masses in sample and ES set of extra masses that can be a candidate
as a missing mass. Then

CP = {p ∈ P | |M(p) − S| ≤ f}

ES =
⋃

p∈CP

M(p) \ S

And, initial hyperedges and extra hyperedges are

H = {P (m) ∩ CP |m ∈ S}

EH = {P (m) ∩ CP |m ∈ ES}

The algorithm should be revised as follows:

1. create list of hyperedges H

2. create list of extra hyperedges EH

3. create a tree and set the smallest hyperedge in H as root

4. for any node in tree do following steps

4.1 mark all hyperedges in H and EH hit by last selected node as settled

4.2 IF there is no unsettled hyperedge in E

4.2.1 add the list of selected vertices up to that node to the list of
solutions

4.3 ELSEIF the number of selected vertices up to that node is ≤ K AND
the number of settled hyperedges in EH is ≤ f

4.3.1 choose smallest unsettled hyperedge h and mark it settled

4.3.2 branch on every vertex contained in h by adding it to the list of
selected vertices

4.4 mark as dead end
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2.3.3 The algorithm: spurious masses

The algorithm should be altered for spurious masses in a way that provides the
possibility of a hyperedge being considered settled without its being hit with a
selected vertex. This leads to introduction of nodes where a hyperedge is chosen
and marked spurious where no action is taken over its vertices and just a branch
is made by removing that hyperedge from set of hyperedges.

1. create list of hyperedges H

2. create a tree and set the smallest hyperedge in H as root

3. for any node in tree do following steps

3.1 mark all hyperedges hit by last selected node as settled

3.2 IF all hyperedges are either settled or marked spurious

3.2.1 add the list of selected vertices up to that node to the list of
solutions

3.3 ELSEIF the number of selected vertices up to that node is ≤ K AND
number of spurious hyperedges is ≤ g

3.3.1 choose smallest unsettled hyperedge h and mark it settled

3.3.2 branch on every vertex contained in h by adding it to the list of
selected vertices

3.3.3 IF number of spurious hyperedges is < g THEN mark h spurious
and branch (without selecting any vertices)

3.4 mark as dead end

2.3.4 Avoiding duplicate solutions

The easiest way of suppressing duplicate solutions is a pair-wise comparison
after the main algorithm. In the implementation of algorithm a set is also passed
from a parents to children in every branching that contains all the vertices that
has already been checked by previous branchings. For instance, for a set of
proteins numbered 1 to 6, a set of hyperedges can lead to a tree like Figure
2.1(a). A fast (but not the best) way is for each node to remember all the
checked vertices to its left and the checked vertices passed from its parent. In
this case, on branching on node 3, examining vertex 2 is redundant. Therefore,
the algorithm only branches on 4 and 5 and passes 2 as a checked vertex to node
5. This node now knows that 2 and are already tried so it just checks node 6
and passes nodes {2, 4} to node 6.

This is not optimal, because one should pass on all combinations of vertices
that are already checked.

2.4 Preprocessing and initial candidates

2.4.1 Creating list of hyperedges

Initially, the idea used for creating the list of hyperedges was using the table
for masses. In error-free case, one can take union of all proteins associated with

9



1

2 3

2 4 5

2 4 6

(a) Original tree

1

2 3

2 4 5

2 4 6

{2}

{2, 4}

(b) Reduced tree

Figure 2.1: Simple duplicate solution avoidance technique.

every mass in the sample, then selects those that their spectrum is completely
contained by the sample. This can even expanded for missing masses case,
where one can also add all proteins that have no more than f fragment masses.
However, this approach turned to be costly because, there are several masses
that are associated to more than 130,000 proteins (reduced set of proteins con-
tains around 178,000 proteins). So it’s quite likely (probability increasing by
the number of proteins in mixture) that they appear in the sample mixture. In
several tests, it was realised that the final candidate set covers more than 85%
of proteins. So the cost for checking the remaining proteins was much less than
compiling the initial set of candidate proteins. Therefore, in the implementa-
tion, a search is carried out over entire set of proteins.

The checking against each protein is also a costly routine. In the beginning,
STL function set_intersectionwas employed to obtain the size of intersection
of the sample and spectrum of each protein and the size of it was used to check
if the difference set is small enough to be eligible as a candidate protein or not.
It turned out that it’s also computationally expensive and in the error-free case
the running time of this part was dominant4. A separate routine iseligible

(Appendix B.1) was later developed that terminated the routine any time it
concluded that there are more than f in the protein spectrum that are not in
the sample spectrum. This routine reduced the running time for the checking
more than 90%5. Now, the running time of this part is comparable in magnitude
to other parts.

Another restricting conditioned which is employed is the fact that for car-
dinality of A\B to be less than f , it is necessary that |A| − |B| ≤ f . So the
checking is only tried if this condition holds. This reduces the running time of
checking part roughly 4%.

Starting with small number of branches improves the algorithm, so the list
of hyperedges is sorted by size giving priority to smaller hyperedges.

4In average more than 95% of running time.
5In one extreme case the time was reduced from 5.94 seconds to 0.556 seconds
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2.4.2 Proteins with identical fingerprint

While digesting proteins with a certain enzyme, it’s quite likely to find two
distinct proteins that result in identical fragment mass spectrum (fingerprint).
To reduce the effect of this phenomenon, more than one enzyme is used for
digestion and the results of database search on fragment masses produced by
each enzyme are compared and intersection of results from different searches
are considered. In this thesis, a program called unique (see A.2) is developed
that removes all duplicate copies of a protein. The code may also create a cross-
reference table that groups the equivalent proteins. This file can be used in
generating of reports to indicate other possible solutions.

2.4.3 Unique fragment masses and Duplicate hyperedges

In some cases a fragment mass belongs only to one single protein in database.
In case of error-free and missing masses problems, such proteins belong to all
solutions. In these cases the node corresponding to that protein is added to the
set of selected nodes in the root of the search tree and all hyperedges that contain
this node are considered settled and removed from initial set of hyperedges.
The number of vertices chosen this way for mixture m are denoted Niv(m).
Removing all hyperedges that are hit by these vertices from the set of sample
fragment masses yields a new set of unsettled hyperedges. The cardinality of this
set is denoted by Nuh(m) for a given mixture m. Note that this reduction cannot
be used for the case of spurious masses where instead no node is pre-selected in
root because the very unique fragment mass can be among the spurious masses
in sample mixture.

Duplicate hyperedges are also removed except for the case of spurious masses.
Each copy of a hyperedge can represent a spurious mass.

2.5 Simulation

A range of parameters and measures are simulated in this project. First of all
a time-complexity survey on real data is carried out. Additionally, information
regarding the distribution of size of mixtures for a given number of proteins,
distribution of kernel size and number of solutions in presence of different kind
of errors are investigated. Since the set of all mixtures is a huge space to
simulate, a small subset is sampled for analysis.

The simulations are all carried out on Chalmers PC-cluster ada. Jobs were
run as single-thread tasks. Each node is equipped with6:

• 4 Xeon 5160 (Woodcrest) 3 GHz cores (dual dual core)

• 4GB RAM, 1GB / core

• 100GB free local storage

6Retrieved from http://www.c3se.chalmers.se/index.php/Hardware Ada / Kal

11



2.5.1 Sampling and average values

There are 179,748 distinct proteins in the database and even considering all
two-protein mixtures means around 16 billion mixtures let alone five-protein
mixtures that their number exceeds 1.5 · 1024. In first stage of simulation we
build 100 million mixtures for mixtures of up to 50 proteins. Later, at most
10 mixtures are chosen for any given mixture size. However, size of generated
mixtures are saved to compile an approximate of distribution of mixture size for
any given number of proteins.

In this manuscript the term average is used whenever the value mentioned
is the average all data points that share one mixture size. For instance, average
Ncp(m) means the mean of number of candidate proteins for all samples that
have mixture size m.

2.5.2 Time measurement

The time spent on three parts of the algorithm is measures:

• Tcp, Time spent on comparing sample fragment masses with fingerprints
of proteins and creating set of candidate proteins CP ;

• The, Time spent on creating the list of hyperedges;

• Tb, Time spent on creating the search tree and enumerating the solutions;

All times are measured with microsecond accuracy.

12



Chapter 3

Results and discussion

In implementation of the code initialization of tables for mass fragments and
proteins are executed once and the execution time is measured for the test
mixtures not considering the initialization time. All regressions are carried out
using MATLAB functions polyfit and nlinfit.

3.1 Distribution of number of fragment masses

The number of distinct fragment masses produced by trypsin digestion varies
between 1 and 768. There are 400 different values for this number. The distri-
bution of number of fragment masses is depicted in Figure 3.1 where 99% (90%)
of proteins digest into less than 141 (64) fragments. It should be noted that
there are 716 proteins that result in one single fragment.
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Figure 3.1: Distributions of number of fragment masses in protein database.

Note that the horizontal axis is truncated at 150 since there are less than 25

proteins for a given number of fragment masses above 150.
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This can lead to several alternative solutions in case another protein in sam-
ple mixture shares that fragment mass. The most common outcome is 20 which
accounts for 4855 proteins (2.52% of all proteins).

3.2 Distribution of mixture size

Distribution of mixture size is calculate over 100 million random mixtures. To
ensure a good coverage in generating random mixtures, constituent proteins of
last random mixture were removed and next mixture is taken from remaining
proteins. Whenever the list of proteins were exhausted, it was reset to the initial
set. Let D(m, n) be the number of mixtures of size m that can be produced
by mixing n proteins divided by total number of mixtures. What we achieve is
D̃(m, n), an approximation of original distribution.
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Figure 3.2: Relative abundance of mixture sizes for mixtures containing up to

six proteins.

Note that the distribution for case of one protein is taken directly from
database. The relative abundance for mixtures of up to six proteins is depicted
in Figure 3.2. The distribution functions get wider and their maximum becomes
smaller as the number of proteins grows. The graphs for mixtures of up to 50
proteins is depicted in Figure 3.3.

The maximum abundance, A(n), decreases as number of proteins, n, in-
creases. It also resembles a ration function of two quadratic functions. We try
to estimate A(n) using

Â(n) = KA

n2 + a1n + a0

n2 + b1n + b0
= KA + K ′

A

n + a′

0

n2 + b1n + b0

Nonlinear regression yields

KA = 0.001857, a1 = 47.256, a0 = 52.055, b1 = 12.890, b0 = 0.983

14



0 200 400 600 800 1000 1200 1400 1600
0

0.005

0.01

0.015

0.02

0.025

mixture size

re
la

tiv
e 

ab
un

da
nc

e

Figure 3.3: Relative abundance of mixture sizes for mixtures containing up to

50 proteins.

or
KA = 0.001857, K ′

A = 0.063833, a′

0 = 4.39598

The roots of denominator are n0 = −12.81374 and n1 = −0.076743. It’s sur-
prising close function Â(n) follows values of A(n), see Figure 3.4(a). In fact the
error is always in order of 10−5. One of the roots of denominator is close to 0 (in
comparison to the values n takes: 1, 2, . . . , 50). So, one can assume a quadratic
function of form n(n + n1) as denominator and simplify the regression. This
results in

KA = 0.001968, K ′

A = 0.05567, a′

0 = 2.9253, b1 = 8.472, b0 = 0

This still is a very good approximation of data with errors in order of 10−4

The mode of the distribution (or the most abundant mixture size), S(n),
shows a tendency to grow linearly with number of proteins though a better
fit can be found with a higher-order polynomial regression, the decrease in
error is negligible. Regression using polynomials of degrees higher than 3 show
very small values for coefficients of high-degree terms. So a cubic function
Ŝ(n) = a0 + a1n + a2n

2 + a3n
3 is employed. Regression yields

a0 = −11.9743, a1 = 31.2045, a2 = −0.1315, a3 = 0.0006677

Still, a3 is a substantially small value and a quadratic function can be considered.
The functions fits the data as depicted in Figure 3.4(b).

3.2.1 The mixture size follows log-normal distribution

The non-symmetrical distribution of mixture sizes show a similarity to dis-
tributions like negative binomial or lognormal. The hypothesis testing using
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Figure 3.4: Maximum relative abundance and most abundant mixture size vs.

number of proteins in mixture

Kolmogorov-Smirnov method validated that the distributions are following a
threshold lognormal distribution1. For any given p the size of mixture will have
a minimum. That is, by mixing p we cannot get any arbitrary small mixture
size. The rough lower-bound is p, simply because one can choose p proteins
that each contain one mass unique to itself and not shared with other p − 1.
Therefore, the existence of a threshold is then inevitable.

To estimate the parameters there are several methods proposed including
Maximum-Likelihood, LMSE over PDF and LMSE over CDF. Here we use
LMSE over PDF to find the closest distribution. The results acquired by ML
and CDF-LMSE methods emphasize on good tail match and therefore to some
extent miss the main peak. Since in our simulation we are doubtful about the
accuracy of results on tails, we chose PDF-LMSE.

To illustrate this the case of p = 22 is taken as an example and results are
illustrated in Figure 3.5. The LMSE fitted distribution results in a threshold
lognormal with parameters

µ = 6.16703, σ = 0.21242, θ = 161.02

The threshold of 161 shows that the lognormal distribution is shifted 161
places. This can also be an indication that no mixture of less than size 161 can
be produced by 22 proteins. The thresholds calculated for 1 ≤ p ≤ 50 can be
seen in Figure 3.6. The threshold is a negative value for 1 ≤ p ≤ 3. This can

1also known as three-parameter lognormal
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Figure 3.5: Comparison of simulated and lognormal-fitted PDF of mixture size

for p = 22. The x-axis is truncated to enhance visibility of the slight difference.
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Figure 3.6: The trend of threshold of fitted three-parameter lognormal distri-

bution for 1 ≤ p ≤ 50.

be interpreted as a truncated lognormal distribution. This can be easily seen
in Figure 3.2 for the case of p = 1. For p > 12 the threshold is strongly linear.
The slope is 10.7665 and y-intercept id -73.849. The difference from the linear
regression for p ≤ 12 shows a strong logarithmic relation.

3.2.2 Estimating number of proteins based on mixture

size

The distributions achieved by simulation can be used as a probability density
function. Let M and N be two random variables denoting number of fragment
masses and proteins in a random mixture. In a probabilistic fashion

P (M = m|N = n) = D(m, n)

The problem of estimating number of proteins given number of fragment masses
translates to finding ñ so that P (N = ñ|M = m) is larger than other values of
n, i.e.

ñ = arg max
n

P (N = n|M = m)
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Finding a solution for this maximum-likelihood problem requires some a priori

knowledge about the distribution of N . So given this distribution and using
Bayesian principle of

P (N = n|M = m) =
P (N = n)

P (M = m)
P (M = m|N = n) =

P (N = n)

P (M = m)
D(m, n)

Since we are concerned about a fixed m, what we need is P (N = n) to find the
most probable number of proteins.

18



3.3 Error-free case

All sample mixtures with introduction of no errors are analysed to determine
the performance of the algorithm. To determine the effect of K on performance,
all mixtures of up to 20 proteins are analysed for all values of 1 ≤ K ≤ 20. This
gives an indication of how costly would be if one chooses a K larger than real
number of proteins.

3.3.1 The effect of uniqueness check

In case of error-free analysis, the checking for unique fragment masses signif-
icantly reduces the search space. The results show that a huge proportion of
mixtures result in Niv close to the number of proteins that constituted the mix-
ture in first place. That means only a small number of vertices are left to be
identified when the search tree is constructed. It is evident that when Niv = p
all hyperedges are hit and Nuh = 0, no regularity is noticed in case of Niv < p.
Mixtures of up to 15 proteins, are either totally identified or only one, or in are
cases two, proteins are left. Naturally the proportion of number of mixtures
totally identified by uniqueness check to total number of mixtures reduces by
increase of number of proteins in the mixture. This reflects the new possibil-
ities that arises by combination of several proteins that, in average, makes it
less likely for a given fragment mass to be unique. The relative frequency of
mixtures that result in Niv = p − i, where p is the number of proteins in the
mixture and 0 ≤ i in an arbitrary integer is shown in Figure 3.7. In simulation
of analysis of mixtures of up to 50 proteins no case of i > 6 where encountered.
This doesn’t necessary mean there is no such possibility, but the probability of
it happening is certainly low.
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The size of the search tree depends, among others, on number of remaining

19



0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

50

100

150

200

250

300

350

400

 mixture size

 a
ve

ra
ge

 N
 c

p

p=50

p=35

p=20

 p=5
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vertices and number of remaining unsettled hyperedges. In fact, these numbers
should be considered as starting point of the algorithm, so in analysis of the
algorithm we consider p − Niv and Nuh instead of p and m as parameters
controlling the complexity of branching part of the algorithm.

3.3.2 Number of candidate proteins

Number of candidate proteins, Ncp, determines the number of vertices in the
hypergraph and the time required for creating CP , Tcp, heavily depends on this
number. The number of candidate proteins is a function of:

• size of protein database and distribution of fragments in protein spectra

• number of masses in sample fragment spectrum

• number of proteins in sample mixture

In this investigation we are focused on a fixed database. Therefor the de-
pendency on database size is not investigated. The fact that Ncp depends on
number of proteins is not obvious in first glance. One can claim that no matter
how many proteins where mixed to create the mixture, the number of frag-
ment masses will dominate Ncp. However, observations in this investigation
revealed that for mixtures of a given size, those that are produced by larger
number of proteins lead to a larger number of candidate proteins hence larger
Tcp. However, this effect is very weak for some masses. This can be easily seen
in Figure 3.8 where the average Ncp is drawn for four equally distanced number
of proteins. For instance, for m = 1000, average number of candidate proteins
for p = 5, 20, 35 and 50 are 101.7, 110.7, 135.5 and 157.5 respectively.

The average Ncp for mixture size of 1000 is illustrated in Figure 3.9. A strong
linear dependency is observed and verified for all mixture sizes. The linearity is
much stronger for p > 15. Introduction of a second-order term causes a slight
reduction in error. In case of m = 1000, a second-order polynomial reduces
SSE from 421.74 to 420.67 where R2 statistic increases from 0.94038 to 0.94053
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indicating a very good fit for linear regression. So we conclude that for a fixed
mixture size

Ncp = O(p) (3.1)

Now we just try to see how fast Ncp grows by m. We try polynomial and
exponential regressions to achieve a fitting. We study the case p = 35. Several
candidates are tested and results are tabulated in Table 3.3.2. . For polynomial

function RMSE adj-R2 comments

f1(m) = a1m + a0 7.3493 0.98561

f2(m) = a2m
2 + a1m + a0 6.1356 0.98997

f3(m) = a3m
3 + a2m

2 + a1m + a0 6.1297 0.98999

f4(m) = a4m
4 + a3m

3 + a2m
2 + a1m + a0 6.1264 0.99000

f5(m) = kbm 8.2445 0.98189 b=1.00075935

f6(m) = kbm + a0 6.1293 0.98999 b=1.00032303

f7(m) = kbm + a1m + a0 6.1304 0.98998 b=1.00049563

f8(m) = kbm + a2m
2 + a1m + a0 6.1333 0.98998 b=1.00027993

Table 3.1: Goodness-of-fit parameters for several functions fitted to Ncp with

respect to m for mixtures produced by 35 proteins.

functions a quadratic functions shows a strong relevance since the RMSE does
not reduce significantly for higher-degree polynomials. For the case of exponen-
tial and mixed polynomial-exponential functions f6(m) shows the best RMSE.
It should be noted that f7(m) and f8(m) lead to very wide 95% confidence
intervals. So we are left with two candidates:

f2(m) = a2m
2 + a1m + a0

f6(m) = kbm + a0

where

a2 = 0.00002164, a1 = 0.0782, a0 = 33.40
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k = 271.8, b = 1.00032303, a0 = −242.0

Functions f2(m) and f6(m) are both very good candidates and current
amount of information might not provide enough evidence to prefer one to the
other. Let e(m) = |f2(m) − f6(m)|, one can see that max{e(m)} < 1.2 and
average of e(m) is 0.15143 where the range of these function covers the interval
of [75,318]. However, the base of exponential function is very close to 1 and the
domain we are concerned is rather limited and the range of mixture sizes cov-
ered in this investigation provide a relatively good estimate of the real range.
Therefore, we choose the quadratic function over exponential one because of
the computational robustness it introduces later stage. Similar investigation for
1 ≤ p ≤ 50 shows similar behaviour with slight deviations for 1 ≤ p ≤ 5. In
these cases for mixture sizes smaller than a threshold, there is a strong linear
trend that later changes to a quadratic. However, the fitting with quadratic
function is still reasonable in those cases and we can deduce that for a fixes
number of proteins

Ncp = O(m2) (3.2)

combining this with (3.1) yields eithr

Ncp = O(pm2) (3.3)

or,
Ncp = O(p + m2) (3.4)

We define a bivariate polynomial function, fcp(p, m), and fit it to the whole
domain of available values for Ncp

fcp(p, m) = (a12p + a02)m
2 + (a11p + a01)m + (a10p + a00)

The fitting shows a very close fitting with RMSE=6.2333 and R2 = 0.99419.
The coefficients can be presented in a matrix form where aij is in row i, column
j

Acp =

(

−4.6446 7.742 · 10−2 1.7709 · 10−5

1.1342 −6.3773 · 10−5 1.4706 · 10−7

)

Now we remove one term from the function to see how different terms affect
the final RMSE. The result is summarized in Table 3.2. All terms, except a11

show a significant change in final error.

removed term

none a12 a02 a11 a01 a10 a00

RMSE 6.2333 6.2631 6.5139 6.2344 7.8035 7.0346 6.2711

∆ RMSE 0 0.0298 0.2806 0.0011 1.5702 0.8013 0.0378

Table 3.2: Effect of removal of each term in fcp(p, m) on overal RMSE

Removing least influential terms, a11pm + a12pm2, leads to a fitting with
RMSE=6.3416 (∆ RMSE=0.1083) which is definitely unacceptable2. Hence,
we ignore the possibility of (3.4) and find Ncp = O(pm2) more relevant to the
data in hand.

2Note that RMSE is root mean of squared error over 69,591 data points and 0.1 deviation

in RMSE is around 94709 deviation in SSE.
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3.3.3 Time complexity

The time complexity as mentioned in section 2.5.2 is divided into three main
constituents.

Creating CP

Building CP requires comparison of sample fragment spectrum with spectra of
all proteins in database. The required time is a function of

• size of protein database

• number of candidate proteins which in turn is a function of number of
masses and proteins in the mixture.

Database size is fixed in this, so we just consider the effect of Ncp. Fig-
ure 3.10 shows the relationship of Tcp and Ncp for p = 35. It is strongly linear.
Introduction of a quadratic term only reduces RMSE from 18397 to 18386.5 .
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Figure 3.10: Tcp vs. Ncp for p = 35.

Similar relationship can be found for any 1 ≤ p ≤ 50 with a slope of
3600 ± 200. Therefore,

Tcp ≤ 3900Ncp

or,
Tcp = O(Ncp) = O(pm2) (3.5)

Creating HE

The time required to create the list of hyperedges for mixtures of 35 proteins is
illustrated in Figure 3.11. The relationship is not strictly linear. In fact, adding
a term containing square-root of m, i.e. a2m + a1m

0.5 + a0 fits a bit better.
However, the share of the second term in total value of the function is negligible
for most values of m therefore a linear function is a good enough representation,
especially for larger values of mixture size. Hence,

The = O(m) (3.6)
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Figure 3.11: Time for creating H vs. mixture size for p = 35.

Let The(p, m) = a1(p)m + a2(p), we carry out a linear regression for all
1 ≤ p ≤ 50. Values obtained for a0(p), a1(p), p · a0(p) and p · a1(p) are depicted
in Figures 3.12(a)-3.12(d).
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There is a linear trend in p ·a0(p) and each can be fitted to a linear function
hence

a0(p) = O(p−1), , a1(p) = O(p−1)

or by combining with 3.6,

The(p, m) = O(p−1m) = O(m) (3.7)
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Solving the regression equations for numerical values yields

The(p, m) = (68.567 + 190.86p−1)m + (63908− 357180p−1)

Creating search tree

It is important to note that in error-free case the branching time is a very small
part of total time. In average it takes no more than 200µs to finish where Ncp

and The are in order of 105 µs. However, studying its behaviour is important
for comparison to erroneous cases. The branching time is highly influenced by
Niv and for a given Niv it is tightly concentrated around a mean value. This
mean value however shows a power-law relation with p − Niv, i.e. the number
of vertices sent to branching algorithm. However, since there are usually very
few samples for larger values of p − Niv the accuracy of it cannot be verified.
However an exponential regression tields

Tb ≈ 65.39 · 2.5995p−Niv = O(2.6p−Niv ) (3.8)

To make a better assessment of how fast Tb grows, instead of regression, we try
to find the smallest value of b that Tb/bp−Niv is monotonically decreasing. The
result is depicted in Figure 3.123 and it’s obvious that it’s a big overestimating
(for p = 35, it returns 4 instead of 2.6 we achieved), however, it reveals that
regardless of p

Tb = O(5.2p−Niv )
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Figure 3.12: Dominant exponential base for Tb

Figure 3.13 shows the average Tb for different values of Niv in case of p = 35.
Also it is important to note that how often those cases happen. This issue has
addresses under effect of uniqueness check.

3Note that results for p = 49 and 50 are missing because of some cases of extremely large

search trees that significantly deviated average values of Tb for these cases. A similar but less

significant case can also be seen for p = 37
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Figure 3.13: Mean Tb for different values of Niv and relative frequency of mix-

tures leading to that value of Niv.

We approximate, T̄b, the mean of Tb by taking expected value of Tb using
the distribution function we approximated earlier, i.e.

T̄b(p) = Em{Tb(p, m)} ≈
∑

m

D(m, p)Tb(p, m)

Figure 3.14 shows the T̄b and its logarithm for all 1 ≤ p ≤ 50. An exponential
trend is recognisable from logarithmic plot.
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Figure 3.14: Mean Tb and its logarithm vs. number of proteins.

An exponential regression by fitting a function of form abp yields

a = 11.4, b = 1.0543

R2 = 0.9988 also confirms that the linearity is indeed very strong. Hence,

T̄b = O(1.055p) (3.9)

Overall time complexity

Overall time-complexity achived by this simulation for error-free case can be
summarised as

Tall = Tcp + The + Tb = O(pm2) + O(m) + O(5.2p−Niv) = O(pm2 + 5.2p−Niv)
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3.4 Missing masses

The algorithm for missing masses is tested over mixtures containing 1 to 20
proteins with 1 ≤ f ≤ 10. The number of missing masses in mixtures was not
initially limited to 10, but in cases of more than 10 missing masses there were
several occasions that the search tree became too large to be accommodated in
the available memory on the systems so here the results for f ≤ 10 are studies.

3.4.1 The effect of uniqueness check

The effect of uniqueness check is summarized and compared to error-free case in
Table 3.3. The maximum value of p−Niv dominates Tb. However, the maximum
value is not reached so often. For instance for the case of f = 6, the behavior
of this value is depicted in Figure 3.15.

f

0 1 2 3 4 5 6 7 8 9 10

p

1 0 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2 2 2

3 1 3 3 3 3 3 3 3 3 3 3

4 2 2 3 3 4 4 4 4 4 4 4

5 2 3 4 4 5 5 5 5 5 5 5

6 2 3 3 4 4 6 6 6 6 6 6

7 2 3 3 5 5 6 6 7 7 7 7

8 2 3 4 4 5 5 7 7 8 8 8

9 2 4 5 5 6 7 7 8 9 9 9

10 2 4 5 7 7 8 9 9 9 10 10

11 2 4 6 6 7 8 9 9 10 10 10

12 2 5 6 6 7 7 9 10 11 11 12

13 2 5 5 6 8 9 10 10 11 12 12

14 2 5 6 7 9 9 10 12 13 13 13

15 3 4 6 6 9 11 12 13 13 13 14

16 3 5 6 8 9 10 11 13 13 14 16

17 4 5 6 7 8 9 12 14 15 16(1) 16(1)

18 3 5 6 8 9 11 14 14 15 15(1) 17(1)

19 3 6 6 8 9 12 14 15 16(1) 16(1) 17(1)

20 3 5 7 7 10 12 13 15 17 18(2) 18(3)

Table 3.3: The maximum value of p−Niv. In most cases the minimum value is

zero, for remaining cases the minimum value is indicated in parenthesis.

Comparing Figure 3.15 with Figure 3.7 reveals a similar trend of decrease in
share of p − Niv = 0. An initial increase in relative frequency of all subsequent
cases are observed however the trend is very slow in error-free cases and simu-
lation for p ≤ 50 does not provide enough evidence to support that a peak also
happens in error-free case or not. However, a similar behavior is observed for
all 1 ≤ f ≤ 10 where increase in f moves the peak points to the left. Obviously,
increasing f worsens the improvement achieved by uniqueness check.
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Figure 3.15: Relative frequency of mixtures with six missing masses resulting

in a fixed number of initial vertices, Niv, for mixtures produces by up to 20

proteins. P denotes number of proteins. In linear plot only first 7 curves are

presented.

3.4.2 Number of candidate proteins

To illustrate the dependency of Ncp on number of proteins we fix the mixture
size, m, and draw Ncp for different values of f with respect to p. The results
show a difference from error-free case. In existence of missing masses Ncp is
almost independent of p. This is illustrated in Figure 3.16 for m = 500 and
m = 1100. Similar results are confirmed for all values of m. The figures are
drawn in logarithmic scale to provide visibility for error-free result. Therefore,
we consider Ncp as a function of f and m.
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Figure 3.16: Number of candidate proteins for m = 500 (left) and m = 1100

(right) vs. number of proteins in mixture for 0 ≤ f ≤ 10. The error-free case is

distinguished by triangular markers.
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For a given number of proteins, say p = 10, the number of candidate proteins
increases with a big factor by introduction of first missing mass, however this
trend slows down by increasing f . Figures 3.17a-b show this trend in linear and
logarithmic scales. This number similar to error-free case shows a linear trend
with respect to mixture size for a fixed p and f

Ncp = O(m)
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Figure 3.17: Number of candidate proteins versus mixture size for mixtures

created by 10 proteins. in (a) linear (b) logarithmic scale. In (a) the error-free

value is depicted dotted.

But to see how it behaves by increasing f we fix m and p and observe Ncp.
Figure illustrates it for several values of m. There is power-law relationship
where Ncp = a(m)f b(m) + c(m). The value of b(m) is limited to the interval
[1.62, 1.78]. This shows that a

Ncp = O(f1.8)

or,
Ncp = O(mf1.8)
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3.4.3 Time complexity

Creating CP

Time complexity in this case also linearly depends on Ncp so

Tcp = O(mf1.8)

Creating HE

Time for creating list of hyperedges also follows a similar behaviour to error-free
case but the amount is larger by a constant value so

The = O(mp−1) = O(m)

Creating search tree

Repeating the same approach we employed for error-free case for 1 ≤ f ≤ 10
gives a sequence of upperbounds for the base in exponential regression where it
is always upperbounded by bf(m) = 5 + f/2, i.e.

Tb = O((5 +
f

2
)m)

Overall time complexity

Overall time complexity is

Tall = Tcp + The + Tb = O(pm2) + O(m) + O((5 +
f

2
)p−Niv)

= O(pm2 + (5 +
f

2
)p−Niv )
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3.5 Spurious masses

The algorithm for spurious masses is tested over mixtures containing 1 to 20
proteins with 1 ≤ g ≤ 20. The uniqueness check is not carried out for this error
type so no improvement is expected from that.

3.5.1 Number of candidate proteins

Number of candidate proteins is almost the same as error-free case since no
unknown masses are allowed and the domain is limited to available masses.

3.5.2 Time complexity

Creating CP

Time for creating CP is exactly like error-free case with very small deviations.
Therefore

Tcp = O(Ncp) = O(pm2) (3.10)

Creating HE

Time for creating HE is also independent of g and is exactly equal to error-free
case, i.e.

The = O(mp−1)

Essentially, the values totally overlap. This is illustrated in Figure 3.18 for
p = 15.
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Figure 3.18: Time for creating list of hyperedges is independent of number of

spurious masses.
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Creating search tree

Repeating the same approach we employed for error-free case for 1 ≤ g ≤ 10
gives a sequence of upperbounds for the base in exponential regression where it
always decreases by p and is independent of g, and bg(m) < 3 for p > 5, i.e.

Tb = O(3m)

Overall time complexity

Overall time complexity in case of spurious mass errors is

Tall = Tcp + The + Tb = O(pm2) + O(m) + O(3p−Niv ) = O(pm2 + 3p−Niv)
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3.6 Simultaneous errors

The algorithm is implemented in a fashion that is capable of handling both
types of error at the same time. A small number of samples, 100 samples for
each (f, g) pair where 1 ≤ f, g ≤ 5 where created and results where compared to
corresponding results in missing and spurious cases and following observations
made:

• Similar to spurious masses there is no improvement based on uniqueness
check;

• The number of candidate proteins is dictated by f and is essentially inde-
pendent of g;

• Time for creating HE follows O(m) with insignificant variations by f and
g. In fact, these variations are several order of magnitute smaller than
average value of HE.

• The branching time however still shows an exponential trend abm+c where
max{bf(m), bg(m)} < bf,g(m) < 1

2 (bf (m) + bg(m)), however considering
the constant factors, it is always dominated by Tb of missing masses case.

3.7 Future work

There are several ways to improve this approach and create more usable results.

3.7.1 Predicting the number of proteins

The most likely number of proteins in a mixture can be used with a statistical
analysis on available database. This can be used as a guideline for setting a
relevant K.

3.7.2 Scoring Schemes

Following criteria are suggested for a scoring scheme to rank-order the possible
solutions for a given protein mixture:

1. Close molecular weights: In most common applications of protein identi-
fication, a mixture of proteins with close molecular weights are extracted
from polyacrylamide gel bands. This property can be exploited to create
a preference for the set of proteins that can be clustered around a single
protein.

2. Consecutive fragments: One source of spurious fragment masses is the
undigested sites that lead to larger fragments. The mass of this larger
fragment is the sum of two or more smaller fragments that appear conse-
quently in original protein database. This property can help to give more
weight to those proteins.

3. Origin of proteins: Higher score can be assigned to solutions that solely
contain proteins from one or certain number of specific species or families.
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3.7.3 Incomplete digestions

In case of incomplete digestions several extra masses can be reported where each
mass is a sum of two or more consecutive fragment masses in a protein. This
can be used to determine candidate spurious masses more effectively. This also
can be incorporated in scoring scheme for results.
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Appendix A

Manual for the

accompanying code

The package consists of following routines:

1. sorter

2. unique

3. mpconvert

4. randommixture

5. randompool

6. alter

7. minimalsets

All files are treated as text files. For database files (protein and mass files),
each line should consist of a set of numbers separated by space(s) where the first
number is the ID number (protein ID number or the fragment mass size), and
the rest is the corresponding data (list of fragments sets produced by a protein
or the set of proteins that produce a given fragment set).

A.1 sorter

Usage: sorter <input file> <output file>

For each line it preserves the first element (the ID) and for the remaining
elements it sorts them and removes duplicate elements.

A.2 unique

Usage: unique <input file> <output file> [xref file]
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This routine is developed to handle the proteins with identical fingerprints
in the initial database (see 2.4.2). The code requires two files (input and output
database files) and one optional cross reference file. In output file all redundant
occurrences of a fingerprint are removed and simply the first protein is kept
as a representative. In the cross-reference file a line is then added that starts
with the number of representing protein followed by the numbers of removed
proteins. For example:

Input file:

1 10 20 30

2 10 30 100

3 40 30 10 97 6

4 100 18 30

5 10 20 30

6 10 20 30

7 100 18 30

Output File:

1 10 20 30

2 10 30 100

3 40 30 10 97 6

4 100 18 30

Cross-reference File:

1 5 6

4 7

Note that this routine does not sort the elements and it takes into account
multiplicity, so the sequence 20, 10, 30, 10 is not equivalent to 10, 20, 30.

A.3 mpconvert

Usage: mpconvert <input file> <output file>

This routine transforms the table contained in an input file to its cross-
reference table. Similar format is presumed for both files where each line begins
with an ID followed by the items associated with that ID. For example given
that each line in input file contains the protein ID followed by the fragment
masses produced by its digestion, the output file will contain the masses as ID
and the corresponding protein ID’s as items.

A typical example of input and output files are presented as follows:

Input file:

1 10 20 30

2 30 100 10

3 40 30 10 97 6

4 100 18 30

Output File:

6 3

10 1 2 3

18 4

20 1

30 1 2 3 4

40 3

97 3

100 2 4

Note that the items in output file are sorted in an ascending order. The trans-
form is almost self-inverse and applying the routine on output file gives the
input file with the exception of order of items. If the items are initially sorted
in the input file the result will be identical to initial input file.
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A.4 randommixture

Usage: randommixture <No. of proteins:begin> <No. of proteins:end>

<No. of mixtures> <missing(-)/spurious(+) mass no.>

<protein file> <output mass file>

This routine provides the ideal fragment masses resulted from digestion of
a random mixture of proteins. The code randomly chooses a set of proteins
(the number of proteins are varied over an interval specified by first two input
arguments, and number of mixtures created for each number of proteins is spec-
ified by third argument), retrieves the corresponding fragment masses from the
proteins data file and outputs the set of masses. The fourth argument is used
to introduce a given number of missing (if the argument is preceded by ’-’) or
spurious masses (if the parameter is preceded by a ’+’). Simultaneous occur-
rence of two sources of error are not implemented in this routine. A separate
routine alter is used to generate the errors from an error-free mixture pool.
The masses are sorted and are unique, i.e. the multiplicity of fragment masses
are ignored. To increase the readability of the output file some comment lines
are added beginning with a hash mark (#). A random mixture of 5 proteins
can result in

#Protein IDs: 13057 18662 99387 145381 169321

#Fraction masses:

1282 1562 1853 1993 2002 2133 2153 2273 2293 2414 2423 2563 2573

2593 2594 2694 2853 2933 3034 3144 3264 3485 3565 3705 3714 3785

3815 3854 3885 3985 4024 4124 4134 4275 4496 4546 4686 4756 4837

4846 5187 5196 5266 5336 5397 5515 5866 5888 5977 6067 6138 6207

6309 6358 6657 6689 6738 7319 7380 7649 7738 7981 7989 7999 8050

8489 8589 8620 8621 8649 8690 8980 9060 9130 9392 9653 9692 9853

10065 10142 11013 11535 11584 11605 11935 11996 13268 13908 13925

14379 14788 14826 15407 15860 16449 16869 17060 17860 20761 20866

21945 21961 22047 22345 23342 23525 24319 24608 26159 27623 27895

30043 31014 31524 31935 32089 32804 34481 36777 45245 46330 48472

49800 51388 73409 90656

Note that all masses are listed on a single line with no line-breaks. That is,
in previous example the output file contains three lines.

A.5 randompool

Usage: randompool <No. of proteins:begin> <No. of proteins:end>

<max group size> <No. of produced mixtures>

<missing(-)/spurious(+) mass no.> <protein file>

<output mass file> <distribution file>

This routine is developed to produce a big initial pool of random mixtures.
It is different from randommixture in the sense that it tracks the length of pro-
duced mixtures (without multiplicity). It varies the number of proteins over an
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interval and for each case creates a set of mixtures specified by fourth argument.
However, for a given mixture size it only keeps a number of mixtures specified
by third parameter. For the pool used in this study following parameters where
used

randompool 1 50 10 10000000 ...

i.e., 10 million mixtures were created for a given number of proteins (varied
between 1 and 50) and for each mixture size only 10 first mixtures are written
to the output file. However, the distribution of mixture sizes are saved in a
separate file, where each row consists of three elements: mixture size, number
of mixtures with that size, number of mixtures of that size kept for the pool.

A.6 alter

Usage: alter <missing(-)/spurious(+) mass no.> <input mixture file>

<output mixture file> <masses file>

This routine simply removes (or adds) a given number of masses from mix-
tures in input file. The sign preceding the first argument indicates the type of
error, i.e., ’+’ for spurious masses and ’-’ for missing masses.

A.7 minimalsets

Usage: minimalsets <-k maximum cardinality>

[-f maximum number of missing masses (0)]

[-g maximum number of spurious masses (0)]

[-x mixture data file (mixture)]

[-c candidate proteins file]

[-m fragment masses file (masses)]

[-p proteins file (proteins)]

[-o output file (minimals)]

[-v show results on screen]

minimalsets is the main routine in this thesis1. It contains all the routines
implemented for creation and manipulation of BST and enumeration of minimal
sets using different branching strategies and/or errors in fragments masses. The
candidate protein routine is also incorporated in this routine2. This makes it
possible to look for transversals using an arbitrary set of candidate proteins
or the set previously produced by candidates. This feature is controlled by
-c option. The maximum cardinality of transversals must be specified by -k

option. This is the only obligatory option for the routine since a default value
is set for other options.

1Note that in the parameters the default values for optional parameters are specified in

parenthesis
2In the initial edition another routine called candidates was also developed which was

solely responsible for preprocessing and listing a set of candidate proteins. This was later

merged with minimalsets routine and further developed. The corresponding command in

minimalsetsis kept for legacy.
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To introduce missing/spurious masses, the maximum number of such frag-
ment masses is passed on to the program by -f and -g options, respectively.
Default values are set for protein file, proteins, and masses file, masses to
make it easier for user when one protein database will be used for several runs.

User can override them using -m for masses files and -p for proteins files.
Mixture and output files can be specified by -x and -o options, respectively. In
absence of -o a default file name, minimals, will be used.

A.8 A typical run

A.8.1 Preparing masses database and finding consistent

proteins

Consider that the protein ID’s and corresponding fragment masses are contained
in a file named proteins and we are to create a random mixture of 4 proteins.
A typical run can look like this

$ ./mpconvert proteins masses

$ ./randommixture 4 proteins mixture

$ ./candidates mixture masses candprots

Where the result can be something like this:

$ ./mpconvert proteins masses

Reading input file...

Sorting....

Writing output file ....

Completed.

$ ./randommixture 4 proteins mixture

Reading..

192433

Generating random protein ID numbers:

43978 64481 117544 143737

Creating the list of masses in the mixture: 1282 1562 1853 1882

2133 2153 2293 2313 2414 2423 2433 2563 2573 2594 2694 2703 2853

2914 2933 3004 3034 3104 3144 3184 3194 3264 3285 3305 3364 3405

3424 3485 3564 3695 3696 3714 3724 3745 3785 3836 3885 3984 3985

4035 4136 4185 4276 4326 4336 4406 4435 4436 4555 4557 4576 4678

4705 4707 4726 4745 4837 4856 4936 4986 4996 5026 5107 5137 5286

5347 5405 5417 5447 5477 5507 5526 5529 5566 5696 5707 5787 5819

5837 5847 5918 5977 5979 5997 6027 6097 6149 6268 6276 6287 6310

6319 6329 6418 6477 6488 6538 6548 6638 6639 6728 6758 6809 6849

6969 6989 7018 7069 7079 7147 7158 7220 7441 7451 7521 7580 7590

7599 7610 7668 7680 8030 8059 8091 8169 8189 8262 8330 8370 8531

8641 8681 9000 9013 9041 9061 9179 9269 9352 9501 9510 9641 9730

9792 9883 10071 10092 10154 10190 10202 10283 10301 10373 10411

10433 10494 10543 10592 10594 11325 11585 11817 11846 12055 12085
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12134 12136 12207 12265 12777 12875 13025 13098 13354 13719 13824

14346 14378 14759 14938 14989 15497 15548 15861 15978 16381 16450

16599 16639 17160 17211 17291 17300 17511 17830 17881 18193 18932

18950 19644 19684 19733 20074 20195 20622 20998 22337 22718 22895

23820 24047 26792 27463 27534 28073 29598 30073 30664 34639 34902

52395

$ ./candidates mixture masses candprots

Mixture contains 225 fragment masses.

Find all proteins that have at least one mass in common with the

mixture...

185155 possible proteins found.

192408 inconsistent proteins found.

Cross out the proteins that result in fragment masses which are

not in the mixture...

There are 25 consistent candidate proteins:

3034 23212 32256 41008 42356 43978 46156 49526 57961 63030 64481

64483 64485 64904 65184 65185 65186 99543 117544 138275 143737

145752 154072 155309 168585

A.8.2 Finding transversals

$ ./minimalsets -k 6 -c candprot

There are 25 consistent candidate proteins:

3034 23212 32256 41008 42356 43978 46156 49526 57961 63030 64481

64483 64485 64904 65184 65185 65186 99543 117544 138275 143737

145752 154072 155309 168585

There are 225 fragment masses in the mixture.

Creating hyperedges based on fragment masses....

Removing equivalent hyperedges leaves 28 hyperedges:

1: 43978

2: 117544

3: 143737

4: 3034 43978

5: 23212 117544

6: 42356 43978

7: 43978 49526

8: 43978 64904

9: 43978 99543

10: 43978 117544

11: 43978 138275

12: 43978 143737

13: 63030 117544

14: 64904 143737

15: 117544 145752

16: 117544 154072
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17: 117544 155309

18: 64481 64483 64485

19: 41008 64481 64483 64485

20: 43978 57961 64904 143737

21: 43978 64481 64483 64485

22: 63030 64481 64483 64485

23: 64481 64483 64485 117544

24: 64481 64483 64485 168585

25: 32256 46156 64481 64483 64485

26: 64481 64483 64485 65184 65185 65186

27: 3034 43978 64481 64483 64485 117544 143737

28: 43978 64481 64483 64485 64904 117544 143737

Constructing the Bounded Search Tree....

Sorting the results...

All possible solutions:

1: 43978 64481 64483 64485 117544 143737

All minimal solutions:

1: 43978 64481 64483 64485 117544 143737

The routine returns a minimal set of size six while originally there were 4
proteins in mixture. This is because proteins 64481, 64483 and 64485 share
exact same fragment mass spectrum.
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Appendix B

Source code of routines

mentioned in the text

B.1 iseligible

typedef set <unsigned long> ULset;

bool iseligible(ULset &a, ULset &b, UL F)

{

ULset::iterator i=a.begin(), alast = a.end();

ULset::iterator j=b.begin(), blast = b.end();

bool nlastb=true;

F++;

for(; i!=alast && F; i++)

{

while( (nlastb=(j!=blast)) && (*i>*j) ) j++;

if(!nlastb) break;

if(*i<*j) F--;

}

for (; i!=alast && F; i++) F--;

return (0<F);

}
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