CH

intera ctive vi... interactive vi...

interactive vi... interactive vi..

interactive vi

i.. interactive vi...

te -

interactive vi... jnteractive vi...

Interactive Visualization of blog searches

Master of Science Thesis in Computer Science and Engineering

Daniel Svensson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Goteborg, Sweden, May 2009

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher
or a company), acknowledge the third party about this agreement. If the Author has signed a
copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she
has obtained any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make it accessible on
the Internet.

Interactive Visualization of Blog Search

Daniel Svensson.

© Daniel Svensson, May 2009.

Examiner: Staffan Bjork

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: An image of the first draft of concept 2 [see Chapter 5.2.3].

Department of Computer Science and Engineering
Goteborg, Sweden May 2009

a5 (A

-

Abstract

This report describes the project Interactive Visualization of Blog Searches from research and
concept creation to the final implementation results. The purpose of this project was to develop a
visual interface for browsing search results from the Twingly blog search engine which intends to
simplify the users screening process and encourage browsing. The methods used to develop and
implement the search interface and the two final results, the concept and the implementation, are
presented in this report.

The concept is an ideal description of the proposed functionality and components of the blog search
interface developed during the initial phase of this project. Three different concepts were developed
and one was chosen for further development, all three concepts are presented. The final concept
which was chosen for implementation is an augmented version of an existing interface originally
used for presenting album covers in Apple’s application iTunes.

The implementation is the realization of the concept and was implemented as a Flash application
using the programming language ActionScript 3 and the 3D engine Papervision. The final application
implements most of the functionality and graphical content described in the concept but
unfortunately suffers from a low frame rate. The main reasons for this low frame rate and proposed
improvements to the implementation are discussed at the end of the report.

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Goteborg, Sweden, May 2009

Table of Contents

7 o 1] 1 = ot PRSP 3
N [o e (¥ Tord o] o O TSSO UPT PR PPP PPN 6
1.1 SEAKENOIAEIS ..t ree e s 6
A o U] o To 1] PP PSP PPPPPPPPP 6
1.3 CONSEIAINTS & SCOPE wuuuruiitiiiieiiiiieiiitiritirtareree e e e reer e ererererreeeeeereeeereeeeeaeeeaeaeeeeeteeetareeaeeeeeeeeeeaeeeeeeeens 6

B2 = T ol 1€ o T o T SR 7
2.1 Data ViSUAIZAtION c...eeiiiiieiieecee ettt ettt ettt ettt e st e s bt e s bt e e st e e sabeesbee e ateesabeesbeeenns 7

D A VT oY= YT T o I L o T=4 o T RSP 8

R 2 CIY=T T ol T <A V=Y o Y SRR 9
BLL REIAEEA WOTK ettt ettt ettt et e e e e st e s be e e s be e e smb e e s reeebeeesnreesnreen ae 9
3.2 INteraction & GUI AESISNuuiiiiiiee e ecccieiee ettt e e e e et e e e e e e et r e e e e e e eesnnbaaeeeeeesennssraeeeaaanans 10
I R CTo | I B Yot =T I D =T 7= o ISP 11
3.2.2 Conceptualization & PrototyPingcccueeicciiieiiiiieecciiee ettt e et e et e e e saae e e e aaaee s 12

o oY [=Tot f 2d - [o T USRI 13
Ty T = o T o = TSRS 13
o [Y o (= g Y=Y oY = T o o I o T T T SUU 13

LR DAV ZCY [o] £ 1= o) SRS 14
LT A YT T o o T PSSP 14
5.1.1 TeChNICAl FESEAICN ..c..eiiiiiiiieieee ettt ettt ssee s e saeesane e 14
5.1.2 Market r@S@arCHcouiieiie e e s s 15

5. DS N c i ———.aaataaaees 16
o0 A A 0o g o= T o] i o [T OO PPPTPTPPORN 17
5.2.2 Meeting With TWINGIY ..ccccuriiiieieee et e e e e e e sabe e e enaraeeean 19
5.2.3 CONCEPE EWO i 21
LI N 0o Ty ol =T oY o o oY =T USSR 23
I @ g ToTo 1 o T=a- [ele] a Tol=Y o AU 24
5.2.5 TWeaking the CONCEPL oo e e e e e e e e e st ae e e e e e e e e rnnreaneeas 25

oI B [g o1 [T 0 =T o = 1 Lo o RPN 27
5.3.1 PIan and Priority [teoccuiie ittt e e s e e b e e e e araaeean 27

I BV A | (<] =) d o] a I o (=T OO PORTR 28

T T (<] =) Ao T 6LV 30

5.3.4 [EEratioN ThIEe ...eieii ettt sttt s b e s b e s b e e e sareesaree s 33

T BN O LU =1 11 V2= T 1 = o Lol IS 38

R R U RSP 39
Lo ST o |l [Ty =4 Wl o [o AR USSP 39
6.1.1 Components and INTErACTION........cccciiii it e e e s e et ae e e e sabaeeesnreee s 39
R B N T T o] a1 Tor 1 I o] o) i 1= 40

6.2 FINal imPlemeEntationocccuiiiiiee e e e e e e e e e e e e e e rraaaeaeeeas 40
L RV =T 5 o o 1 O R TR UPRSTN 40
6.2.2 SYSEM ArCHItECTUIE ..vviiiieiiee e e et e e e st e e e s sareeesssaeeean 42

7 DISCUSSION Leeeiiitiiiiitiic ittt ettt a e e s b e e e s b e e s s a e e s e e e b e e s s a e e baeessaras 45
8 B LT 1 I o] = <SP URPRN 45
7.2 IMplementation PRASE ... e e e e e e e s e raeeaeeeaaan 47

8 EXtENSIONS & iIMPIrOVEMENTS cceeeeeeeeeeeeeeee e 49
8.1 IMProving the CONCEPL ..eeiiiiiii e s e e et e e e s sate e e e sbeee s eeabaeeesnneeas 49
8.2 Improving the iMplemMENtation ... e 50

O CONCIUSTION 1.ttt s bt s bt s ae e st sat e st e bt e bt et e et e et e e sbeeabeeabeeameeameesmees eebeensees 52
B0 =11 o T} = =] V2SS 53
APPENAIX Az DEIINITIONS ..eiiiiiiie ettt e e e st e e e e e e e e eab e e e e e baeeeesabeeeeenteeesanstaeeeansenas 54
FAN o 01T oo | = TSR 55

Example of JSON fOrmMatting:cocueiiiiiiiie et e e s a e e e s abeeeesaraeeean 55

1 Introduction

This chapter explains the purpose of the thesis, introduces the stakeholder, states the scope and
constraints of the project and gives a short description of the document structure.

1.1 Stakeholders

The idea for this project was presented to me by Martin Kallstrom, CEO at Twingly, when | contacted
him in search of a project for my master thesis in June 2008. Twingly is a company situated in
Linképing, Sweden that provides a number of services related to blogs. Their main product, Twingly
Blogstream, is a widget that links back to bloggers linking to the website where the widget resides.
Several online newspapers use this tool to track bloggers’ comments on their articles. Twingly also
provide a spam-free blog search engine, which is the focus of this thesis.

1.2 Purpose

The purpose of the master thesis was to implement a search interface for the Twingly blog search
engine that allowed the user to browse the search results more efficiently while also providing a
richer experience than a traditional text-based search interface provides. This problem falls under
the category of data visualization which has become an increasingly popular area of interest amongst
web based service providers (see background). With a background in 3D graphics | also wanted to
explore the possibility of incorporating a third dimension to the solution. The following problem was
the investigation of this project:

How could a visual search interface for the Twingly blog search engine be designed and implemented,
using 3D graphics, to ease the user's screening process while at the same time encouraging
browsing?

1.3 Constraints & Scope

In order to answer the question above, | implemented a demonstrator incorporating design choices
which were based upon research of related work, GUI design literature, metaphors from the gaming
industry and blog specific knowledge provided by Twingly.

The demonstrator was implemented to be launched and used as a beta version on the Twingly
website for further testing and evaluation. The testing and evaluation on the Twingly website was
however not planned as a part of the master thesis and is therefore not analyzed in this report. Due
to the time constraints of the project no planned user tests were carried out, the tests involved were
small scaled and involved only people directly connected to the project. In order to be launched on
the Twingly website certain minimum requirements needed to be fulfilled. Twingly stated the
following requirements:

e Must have responsive controls,

e A graphical profile matching the current Twingly profile
e Framerate >=24fps

e Fault tolerant

Naturally only the last two points could be measured deterministically while the first two require
testing and evaluation on a more subjective level.

As the project was targeted towards blog search engines and specifically for the Twingly search
engine the result should not be viewed as a general solution on how to best create an interactive
visual search interface. Implementation of search algorithms and data structures was not part of the
project; these were provided through the existing search engine by Twingly.

Legal aspects such as copy right infringement have not been taken into account when creating the
concept and demonstrator.

2 Background
This chapter describes the problem domain, “Data Visualization,” and how it relates to search engines
and also gives a description of Twingly’s current blog search engine.

2.1 Data Visualization

Every day people are subjected to vast amounts of information. All information whether it be a
television broadcast, a traffic signal or an advertisement in a newspaper has at least one thing in
common, it is all screened by the potential receiver. The receiver, in this case a human, can choose to
either process the information or to reject it. Decisions like these are made continuously and often
subconsciously throughout a person’s day. The ability to screen information is an essential skill as it
serves to keep the brain from being overloaded with too much data. Fortunately the human brain is
rather proficient at handling everyday information such as paying attention to a traffic light when
driving a car or sifting through the ad section in a newspaper (1 pp. 215-216, 443).

When the source of information is too vast for the human brain to sift through manually, however,
such as a large database or the World Wide Web (www), we must rely on search engines to screen
the available information for us. Although the search engine can substantially minimize the search
space, we often do not want to constrain the search to the extent that potentially interesting
information is disregarded. Therefore we are many times left with a list of search results which must
be browsed manually. As the list exceeds hundreds of search results, which is often the case when
using a search engine on the web, the amount of information available becomes difficult to browse.
One of the main reasons for this is that the brain is forced to read the information thoroughly, rather
than just perceiving a light signal or quickly browsing a headline.

Several search engines have started researching and in some cases already provide visual search
interfaces. A visual search interface differs from the traditional text based interface in that it
provides a richer amount of visual data which is meant to aid the user in quickly browsing the search
results. The incentive for providing this powerful tool is of course to attract as many users as possible
in what has evolved to be a rather competitive market.

The term visualize can have different meaning depending on the context, therefore a definition and a
short discussion of the term that will be assumed throughout this report is presented.

Visualize — to make perceptible to the mind or imagination (2) .

Assuming this definition one might argue that a simple text based search interface such as Google
implements a visualization of search results. To further clarify the definition assumed in the report, a

constraint that the visualization must incorporate graphics other than text such as images, graphs or
icons as a main component is added.

2.2 Twingly Search Engine

One of Twingly’s free products is the Twingly blog
search engine which provides bloggers and blog
readers with a powerful tool to find either a
specific blog or blog posts associated with a topic
or search phrase (3).

In order to compete with similar search engines rch
Twingly wanted to investigate the possibility of

enhancing their search engine with a more visual representation of the data, combined with a new
feature which allows the user to browse a set of blogs related to a particular blog. Being able to
browse related blogs can aid the user in finding results that he/she did not know they were looking
for and also increase the chance of finding what they were looking for. The visual interface

developed as a part of this project uses the blog search (as opposed to the post search) in
combination with the “related search” feature as the main underlying functionality, i.e. for every blog
result a list of blogs related to that blog is available. Note that this underlying functionality is
provided by the Twingly search engine and not a part of the interface’s functionality.

An important aspect of this new method of browsing blog results is that it introduces a new
dimension to which the user can navigate. In a traditional search engine the user has the choice of
browsing pages of search results by navigating backwards or forwards between these pages. When
providing the user with yet another dimension it is important not to confuse the user with a poor
method of navigation. Twingly wanted a method of visualizing this navigation that would aid rather
than confuse the user.

bewirwr Resading VISUAL Ouick Tips

Chrig Cranchedl Michasls Mapertacic
ahsh EHN IF

o
i,

Figure 2: A screen shot of the search results using the current Twingly blog search engine (3).

3 Research & Theory

This chapter covers the theoretical background of the project. Related work summarizes the research
made on projects related to this one, mainly explaining the main categories of visual search engines
available. Interaction & GUI design focuses on theory, mostly from literature related to graphical user
interfaces. The theory used during the software development phase has been omitted from this
section, references and explanations are given in the implementation section instead. This chapter is
not a regurgitation of all theory used in the project, only the most used and referenced theory is

presented here.

3.1 Related work

Numerous methods and concepts exist for visualizing search results and other data on the web. The
visual representation is usually highly influenced by the underlying algorithms and datastructures
that organize the results and also the available information for each result. Depending on the
available methods in which the data can be sorted and grouped different opportunities for
presenting the data in a browser friendly manner present themselves, e.g. if the search engine has a
function to group the results by language, then this might qualify as a way to group and visualize the

results.
. ' Selected Sources [2 of 3] Add/Remove
.grok@r ¥ Yahuu! [7] Wikipedia [T Amacun Buuks
® . visualice WGROK / search optiong
[= outlinc View |[%77 Map View: | 230 total rezults
ne Search Expand View
reyword

L exclude
ale D £y

0G 24 to 2009 04 26

pnnrce
sourccs® -
lomain
domains> - = =
Music

Hilde Tools

w @@ Coer mO

=nngs frm the Spa I~ 1 Rock

visualize

Figure 3: An example of clustering from the Grokker search engine (4).

A common method for presenting search results is to group them according to some attribute and
then connect each group with a related group according to some common relation, ultimately
building a graph of clusters or clouds [see Figure 3 ovan]. Another way to explain it is as a huge mind
map that is generated by the search engine. The following are a few examples of search engines
using this method:

Kartoo (5)
Quintura (6)
Grokker (4)
Flowser (7)

Other visual search engines only take advantage of the available graphical content that a search
result might have, such as a screen shot of a web page [see Figure 4 nedan]. Some of these search
engines simply append a small image of the screen shot to the text results, but the most common
method by far is to visualize it by implementing some variation on the CoverFlow concept which was
first seen (commercially) in Apple’s iTunes application where it is applied to aloum covers. Several
search engines have adopted this method, here are a few:

e Viewzi, provide several interfaces (8).

e SearchMe (9)

e Youtube (10)

e Coverpop, collage implementation (11).

Microsoft Visual Studio on MSDN

betg e s rracht e fevealin)

Figure 4: A screen shot of the Viewzi search engine for web pages.

Both of the methods mentioned above seem to be the two most common ways to visualize search
results from a search engine (other than simply text based), though the implementations may differ
somewhat in appearance and functionality. These methods are applied to all kinds of search engines
whether they search for web pages, blogs, videos or images.

3.2 Interaction & GUI design

This section is a summary of theory pertaining to the interaction- and GUI design methods used and
reviewed during the course of the project. Subjects from conceptualization to prototyping and
testing are covered.

Design is a concept which spans over many different disciplines such as graphical-, industrial-
interior- and game design. This project spans mainly two disciplines, namely interaction design and

game design. These two disciplines share many of the same design principles as they no doubt are
closely related; a game is a highly interactive product and many interactive products (aside from
games) incorporate ideas from the gaming industry. This section covers theory from both disciplines.

3.2.1 Goal Directed Design

Interaction design is highly focused on aiding the user as much as possible by for example hiding
complexity and adhering to people’s goals and expectations. Goal-Directed design is a particular
approach to interaction design which especially focuses on people’s goals and that strives to
overcome the shortcomings of the manner in which digital products are designed today. In About
Face 3, The Essentials of Interaction Design, the authors devote a whole chapter explaining these
shortcomings, but they also offer a summary in the form of three main points explaining why the
industry so often fails when designing digital products:

1. “Ignorance about users,”
“a conflict of interest between serving humans needs and construction priorities,”
3. “and the lack of a process for understanding human needs as an aid to developing
appropriate product form and behavior.”

In essence these three points point out the fact that there seldom is a qualified person and/or
process in place to play the users advocate when digital products are developed, that is, no one is
focusing on the user’s goals and needs (12 pp. 8-9).

Goal directed design is a model that attempts to fill the gap that resides between market research
and implementation of a product. The requirement list produced by a market research does not
suffice as research material upon which design choices can be made, furthermore these choices
should not be made by engineers or programmers. Instead a 6-step (with iteration) model is
proposed, that should be executed by Interaction designers, consisting of the following points:

Research — users and the domain.

Modeling — users and the context.

Requirements — definition of user, business and technical needs.
Framework — definition of design structure and flow.
Refinement — of behaviors, form and content.

AN L

Support — development needs.

The heart of the goal directed design process is being able to define the user’s goals and sub goals as
they pertain to the product, as opposed to the method of simply specifying features and functions
that may or may not adhere to the user’s goals.

In game design this model is mirrored by a design process which intimately involves the user/player
in the design process from idea to prototyping. The interaction designer is exchanged for a game
designer, but in essence they both have the same job, namely to be the users/players advocate. The
main point from both disciplines is to not get distracted by details before the user’s goals and way of
thinking has been contemplated (13 pp. 17-26).

3.2.2 Conceptualization & Prototyping

This section describes methods designed to stimulate the mechanisms in the brain that allow ideas to
be spawned and formulated and furthermore how these ideas can be formalized into concepts and
working prototypes.

The activity of spawning ideas is often thought of as a talent or property that “creative” people
possess from birth. Another theory describes creativity as a skill which can be achieved best by
exercising different methods and routines. In the book Game Design Workshop, idea creation is
proposed almost as a lifestyle where one should constantly document ideas or intriguing thoughts
that pop into ones heads, with the simple justifications that they will be otherwise forgotten and that
ideas can be recycled and used for future projects (13 pp. 140-142).

A perhaps more practical method of spawning ideas is also proposed, namely different techniques of
brainstorming. Several methods from creating trees of interests and passions to writing down lists,
making idea cards and doing randomized researches in dictionaries have been developed in order to
get the idea process flowing (13 pp. 143-144). The key property relating all these methods is to not
constrain or censor oneself when executing them. Alan Cooper advocates that a brainstorming
session should be carried out after an initial period of research on the problem domain and user
groups has been carried out, even though this introduces the dilemma of having preconceived
notions of the final solution which contradicts the purpose of brainstorming (12 p. 117). No more
than 1-2 hours of brainstorming is recommended.

The next step in the conceptualization process after the brainstorming phase is to edit the ideas in an
organized fashion by ranking them and identifying their strengths. The most highly ranked ideas
should then be picked and brainstormed upon again. This process is repeated preferably with
feedback from other people between each iteration until a single idea remains that can be worked
on (13 p. 149).

When an idea has been formalized and all formal elements have been decided upon a prototype of
the concept is proposed so that any flaws or weaknesses can be identified before a full scale
implementation is started. The idea is to make a simple prototype that encapsulates the core
functionality and elements of the game, therefore very little time should be spent on details and
visual appearance at this stage.

The ultimate goal of the prototype is of course to test it on the targeted user group so that feedback
can be received from the people whom are actually going to use the system.

4 Project Plan

In this chapter a description of the initial time plan for the project is presented to give an idea of
where the emphasis of the project is intended. The project plan is intentionally rough as there are
several elements of the project which are difficult to assign a time estimate to, e.g. the
implementation phase which entails research and a learning curve of the chosen APl for 3D graphics.
The project is planned to span over approximately 20 weeks, this time period is divided into two main
phases, separating design from implementation.

4.1 Design Phase

The design phase is divided into three different stages of work.

1. Research on data visualization, related work, Interaction & GUI design and available software
tools and API: s.

2. Concept development and design of interactive components

3. Design of visual content

These three points could have been subdivided into further and more explicit categories; this was not
done in order to allow more flexibility in the creative process. Research was planned as the first part
of the project so that a theoretical foundation from which conclusions could be drawn could be used
in the following development process. The focus of the research phase is to get a better idea of
related work and suitable tools that can be used for the project. Very little time will be devoted to
research on theory as this project is highly focused on implementing a prototype. Most of the theory
will be reviewed when needed during the course of the project.

Separating the concept development and design of interactive components from the graphical design
intends to simplify the design process by reducing the immediate complexity of the task. Relatively
little time, 5 weeks in total is allocated to the design phase as the implementation of the interface
requires most of the available time.

4.2 Implementation Phase

Development of interface towards Twingly search engine
Implementation of concept

Quality assurance

AWDNR

Documentation

The application needs an interface allowing communication with the Twingly search engine, i.e.
enabling requests to the server and reception of results from the server. This functionality is planned
for the beginning of this phase as it is an essential functionality and a good starting point from which
the rest of the application can be built. The implementation is the main focus of this project and will
therefore be allocated most of the available time in the project plan. Itis a deliberate choice not to
plan the implementation phase strictly as there are too many uncertain parameters to consider. It is
however planned that an Object Oriented approach with an iterative method will be used for this
phase. A slot for quality assurance and documentation is reserved as this is an essential part of any
serious software development process. Documentation of code and project progress is a continuous
part of the process, documenting the evolution of the application, software architecture and
amendments or alterations to the design concept.

5 Development

This chapter describes the evolution of the project from research and design to final implementation,
focusing on design and implementation choices as well as problems encountered during the course of
the project. The results of this development process are presented in chapter 6.

5.1 Research
When the project had been formally decided upon with guidelines for what it would encompass,
several technical and strategic decisions remained. These included:

e Choice of programming language and 3D graphics API.

e Scope of application, i.e. how much functionality it would provide.
e Number of design concepts to be presented.

e Methods to use for design and implementation.

To base these decisions on more than intuition an initial period of research was necessary. Up to this
point in the no tools or methods had been researched, although Martin Kallstrom at Twingly had
proposed some alternatives.

5.1.1 Technical research

In order to choose a suitable programming language it was necessary to first investigate existing
graphics engines that supported 3D graphics in web browsers. This order was chosen as it was likely
that the graphics APl would support only specific programming languages. OpenGL and DirectX were
ruled out as they were not supported by any browsers or browser plug-ins.

Martin Kallstrom had early on mentioned Papervision 3D [see appendix A], a graphics engine
compatible with Flash player, as a possible candidate for rendering the 3D graphics. Flash player is a
plug-in compatible with the most popular web browsers and free to download. Swift3D was also
considered as a possible 3D engine but disregarded because it did not offer as much functionality
when it comes to creating and manipulating three dimensional objects.

Papervision 3D is written in the programming language ActionScript 3 and hence designed to be used
with Flash player. For this reason ActionScript 3 was chosen as the programming language to be used
for this project. Silverlight which is Microsoft’s corresponding application to Flash player was also
considered for the project, but disregarded as it was still quite new and lacked support for any 3D
plug-ins or API’s.

Having chosen a suitable programming language and necessary libraries it was natural to decide on a
methodology for the implementation phase. As this project only involved one programmer, me, and
a relatively small application it was not necessary to spend a lot of project time on documentation
and other administrative protocols normally associated with software development methods. It was
however necessary to structure the work in order to devise a plausible plan and to make a time
estimate for the implementation phase. In order to simplify the programming phase a suitable
Integrated Development Environment (IDE) was necessary. Unfortunately most of the IDE’s
associated with flash are commercial products which are not free. Adobe offers two commercial
products for creating flash content, Adobe Flash CS4 and Flex Builder 3. Flash CS4 is a graphical editor
for creating flash content while Flex Builder provides a development environment complete with a

debugger, syntax interpreter and testing tools. A 60 day trial version of Flex Builder 3 was chosen as
this project would be highly focused on ActionScript 3 programming in which case a debugger is an
essential tool.

With the programming language, necessary libraries and a method for implementing the software in
place, it was time to decide on the functionality provided by the interface and also how many
different concepts would be proposed in the design phase. The plan was to propose a couple of
different ideas for the interface and then implement one of them as a demonstrator for testing.
These choices depended a lot on how much time would be needed for the implementation and for
learning the different tools and programming languages. An estimate of eight weeks was calculated
for learning ActionScript 3.0 and Papervision 3D and for implementing the proposed interface. With
time reserved for quality assurance and documentation only five weeks remained for the design
phase [see Chapter 4]. It was estimated that 2-3 concepts could be proposed within this time span
with complete graphical profiles for all the concepts.

5.1.2 Market research

One of the most important tasks in this part of the project was investigating related work. Related
work is not only a good indicator of what not to do but was also used as a source of inspiration (12 p.
57).

No previous attempts to create a visual search interface for blogs were found at the time the
research was carried out; however, similar attempts had been made for conventional search engines.
Viewzi and SearchMe were the two most prominent search engines that implemented a visual search
interfaces [see Chapter 3]. These two search engines were tested thoroughly and used as reference
material throughout the design process. Specifically it was interesting to study the overall experience
when using these search engines and especially noting the benefits and downsides of using visual
data in the search results, how the experience differed from regular search engines and what needed
improvement.

Figure 5: A screen shot of the searchMe search engine for web pages.

SearchMe provides a search engine which is almost identical to Apples CoverFlow concept [see
Figure 5 & Figure 6]. One of the immediate flaws that | detected when testing this search engine was
that the screen shot textures had a poor resolution and were distorted with a wave pattern. It is
worth mentioning that this was a beta version of the search engine at the time of testing. Another
perhaps more important observation was that there was no sense of an improvement on the text
based search engine. Browsing screen shots of web pages in this manner does not provide a fast
overview of the results and the actual screen shot provides very few relevant clues as to what the
web page contains.

Lovers Live
Sade

Figure 6: A screen shot from iTunes cover album browser (CoverFlow).

Although regular search engines such as Google and Yahoo essentially provide the same functionality
as a blog search engine, it was important to recognize that the user’s agenda and browsing pattern
may differ when using one or the other. Several questions sprung to mind when researching these
search engines:

1. How does searching for a web page or topic, using a search engine differ from searching for a
blog or blog topic, using a blog search engine?
What kind of information is most useful when sifting through the search results?
Is the same information useful for blogs?

These and several other questions are answered in the next section which describes the design
phase.

5.2 Design

The design phase started immediately after a sufficient amount of research material had been
acquired and analyzed. This part of the project ties together theory and research with creativity and
aesthetics. Although an initial research period preceded this phase, most of the theory was acquired
and reviewed during the design process.

Brainstorming was used as a starting point in order to trigger the creative process [see Chapter
3.2.2]. This method serves to break mental blocks and to ignore stereotypes associated with the
problem domain. Ironically it was essential that | left the research material aside when performing
the brainstorming exercises in order to come up with innovative ideas.

- -+
- -
II“-. - " >
i <
i I -
N -
P
1 .’-.“ &
= # -
27
-
-
4 9
® i
.
- 3
- - |

Figure 7: Example of one of the mind maps created during the brainstorming stage.

The brainstorming was split into several sessions, using different approaches and starting points each
time. For each session a new keyword was used and from that keyword new keywords associated to
the previous ones were spawned, finally creating a graph of words connected by relations. The result
was a mind map with different keywords representing either whole ideas or in some cases just
random features [see Figure 7 ovan].

A first concept was quickly derived as a first idea from one of the mind maps. This gave me a chance
to figure out and test which tools could be used to create the mockups for the different concepts, a
problem which had not yet been considered[see chapter 3.2.2 on prototyping]. As the final
implementation would end up using real-time graphics and animation a 3D modeling application was
used to create images and animations describing the ideas.

5.2.1 Concept one

The first idea was purely metaphorical and was derived instantly from one of the mind maps without
further refinement or thought. It used the concept of a rubics cube [see appendix A] as a main
component of interaction, which rhymed well with the method of using concepts from the gaming
industry. The idea was that the blog screen shots would be pasted on the sides of the “cubelets” and
rotating the cube planes would expose new sides with another set of blogs [see Figure 8 nedan].

.;;;J'.—l

5
|

Figure 8: An illustration of interactions using the rubics cube concept.

The rubics cube was modeled and textured in 3D Studio Max and then rendered with a real time
rendering plug-in called oFusion. The reason for using a real time renderer was that the final
implementation would naturally be rendered in real time and thus it gave a true representation of
the type of graphics that could be expected. Using oFusion three images were created indicating in
sequence how the user interacts with the cube.

As mentioned earlier this concept was still in the idea stage when a 3D sketch was created and it
needed considerably more thought and refinement in order to be considered a serious proposal.
Fortunately the sketch revealed prematurely that this idea was doomed to end up in the scrap bin
and it was therefore not developed any further. Several factors led me to this conclusion, the main
factors were:

1. The available screen real-estate for each blog was too small, rendering the screen shots
useless.

2. Poor mental model (12 p. 28), rotating the cube more than once makes it hard for the user to
keep track of order.

3. Insufficient overview, only 9 blogs visible at one time.

In order to make good use of the time spent on this concept as opposed to just scrapping the idea
and moving on, the problems and pitfalls encountered so far were analyzed. When reviewing
literature on GUI design it was clear that a classic mistake had been made when developing the first
concept, namely using a metaphor as a guiding principle. This approach is discouraged, as historically
it has led to poor user interfaces (12 pp. 269-285). A goal oriented and idiomatic approach is
recommended instead. The goal oriented approach takes the users different goals when using an
application into account. These goals can be further divided into sub-goals in order to specify the
behavior and features of the application [see Chapter 3.2.1]. Compared to the metaphor-centric
approach which simply tries to mimic a real entity the goal-centric approach is more analytical and
requires more detailed thought.

Studying the goal oriented approach proved that there would be a tradeoff between incorporating
“fun” into the interface versus making it useful and easy to use. | also realized that | had no idea what
Twingly actually had in mind for the search interface regarding these fundamentally different
approaches. For this reason a meeting was booked with Martin at Twingly so that we could discuss in
more detail what he had in mind and so that he could be updated on the project progress.

5.2.2 Meeting with Twingly

At the time of the first official meeting with Martin Kallstrém | was three weeks into the project and
had covered an initial research phase, a brainstorming session and made a first concept. This work
not only gave me a lot of insight into the problem but had also rendered quite a few unanswered
questions. Some of these questions could be answered directly by the Twingly staff, others needed
to be discussed and further investigated.

The following topics were discussed:

e Available screen real-estate

e Playful versus useful interface

e Related work

e Work methods

e Communication

e Presentation of Twingly search engine
e Search result information

e Format protocols

Available screen real-estate —deciding how many pixels of the screen that were available for the
application was necessary to determine at an early stage as this would completely dictate the size
and behavior of different components. Twingly proposed two different sizes; 700x520 pixels and
960x720 pixels. The smaller of the two would allow extra information in the browser window that
was not directly connected to the flash application, e.g. banners or advertisement [see Figure 9
nedan].

T T T
Hat right now

Showing results 1-10 of EH00%3

With resurt__

B s

EE|

700 x 520

Figure 9: lllustration of the two proposed dimensions for the Flash interface.

Playful versus useful interface - designing for a more playful experience or designing for a user
friendly interface require completely different approaches. It was clear after the meeting that
Twingly wanted to create an interface that was easy to use and that improved the users experience

by aiding the user as much as possible in finding what they were looking for. Another feature that
was important to Twingly was that the interface encouraged browsing the search results. In a sense
Twingly wanted a user friendly search engine with an enticing GUI.

Related work - we discussed what other companies providing search engines had accomplished as
far as visual search interfaces were concerned. Martin particularly mentioned searchMe and
CoverFlow as concepts that he found appealing and hinted that these could be worth looking at
again. It was decided that the interface would not visualize relations between blogs in a graph
structure in the manner that Kazoo or Twingly’s summer of code project had done [see Chapter 3.1].

Work methods- we agreed that an iterative method would be suitable for the project as this allowed
functionality to be added successively to the application.

Communication — it was necessary to decide how and where the work would be carried out and
consequently how communication between me and the Twingly staff was best achieved. We decided
that | would work from Gothenburg and that any further meetings at Twingly in Linkdping would be
booked only if necessary. A technical advisor that could support me with any technical questions was
also introduced to me. It was decided that Skype and telephone would be used for communication
and that the project status and concepts would be documented on a blog which would be updated
frequently.

Presentation of Twingly search engine — an introduction to the existing Twingly search engine was
given as well as new features which had not yet been released. The function allowing searches for
blogs (as opposed to blog posts) was especially interesting as this would be the version used in the
project.

Search result information — we discussed the information that should be available for each search
result. This topic was very useful to me because it allowed me to get an idea of how much
information each result would be comprised of and consequently how much space each result would
require. It was also interesting to discuss if there was any alternative information available that could
improve the screening process for the user. The following information was decided upon:

e Title of blog

e Tags — words indicating type of content in the blog.
e Authority — a rank indicating popularity.

e Related blogs

e Screen shot

Format protocols — in order to retrieve the search results produced by the Twingly search engine
following a search request, we needed to agree on a suitable format to communicate the
information. The formats discussed were XML and JSON. No decision was made during the meeting
as it was unclear whether JSON was supported in ActionScript, instead we agreed to investigate the
matter and postpone the decision to a later date. An example of the JSON (Java Script Object
Notation) can be found in Appendix B.

5.2.3 Concept two

The second concept made use of the experience acquired from the first attempt at creating a visual
search interface [see Chapter 5.2.1] and the decisions from the meeting with Twingly. It was clear
from my first attempt that a more compact representation of the search results was necessary in
order to convey all the relevant information. The use of icons to represent a search result was
considered at this point because they convey a lot of information using minimal amount of screen
real-estate; allowing more search results to be displayed at once and they can be manipulated more
easily as a group, e.g. selecting/excluding several items at one time.

The general idea with the second concept was to combine the use of icons with the third dimension.
A screenshot of the “current” blog would be displayed on a tile in the background and in the
foreground a 3x3 matrix of icons would be used to represent the search results. Hovering over an
icon with the mouse cursor would make that blog result current and the tile display in the
background would be updated with the screen shot for that particular blog.

A first sketch of the concept was developed using the same methods used when creating the first
concept. Having created a three dimensional mock up of the idea allowed me to quickly identify the
difficulties and possibilities with the concept.

In order to realize the concept, the icons which form the matrix needed to be carefully crafted as
they were the essence of the idea. The icons had to be:

e compact

o legible

e fast (to interact with)
e informative

e intuitive
The information that each icon would convey:

e Title of blog
e Authority

e Related blogs
e Time stamp
e Tags

The Flipbook icon was developed which meets all the requirements and conveys all the information
stated above, but more importantly it solved the related blogs browsing problem. Being able to
browse blogs related to a particular blog was an important feature that Twingly insisted be a part of
the interface. The authority of the blog was the only information which was not immediately
implemented in the Flipbook icon because it needed to be discussed with Twingly first. Several ideas
on how to visualize the authority existed, the most obvious was to simply show the numeral and yet
another idea was to saturate the icon depending on its authority. In order to show all the tags of the
blog a rolling text strip was incorporated into the icon.

Click to

-

FLIPBOOK ICON - browse related
// blogs.
y s
Interactive %
Visualiztion
of Blog...

<« Rolling text strip

of blog's tags.
2 hrs ago...

/
/
I

/

Click to
go back to
previous.

Figure 10: An illustration of the FLIPBOOK ICON.

The related blogs browsing problem was solved by creating a flipbook, hence the name of the icon
[see Figure 10 ovan]. To browse the related blogs the user simply uses the icons flipping function,
either backwards or forwards at the top right and bottom left corner of the icon respectively . This
simple solution to the problem is quite different from presenting all the related blogs at once, which
would require some type of panning and zooming functionality.

Combining this icon with the background tile showing the current blogs screenshot allowed a 3x3
matrix without obscuring too much of the tile.

The next problem that needed to be solved was how the pagination would work. | decided to use a
slider which would slide the 3x3 matrix out from the screen and present a new 3x3 matrix. This
closely resembles the idiom of clicking a button to switch pages, but enhances the experience by
indicating a sliding animation in the direction chosen. The animation strengthens the user’s mental
model of where the discarded information goes, which is important because it allows the user to find
his or her way back to previously disregarded information (12 p. 233).

A natural question to ask at this point was: Is this model an improvement on the text based search
result? Answering this question was of course hard to do without conducting user tests. Instead |
resorted to logical reasoning, not in an attempt to answer the question but rather to pinpoint
strengths and weaknesses.

Using Twingly’s existing search interface which is entirely text based it is possible to view 4-6 search
(depending on screen resolution) results at one time without scrolling, 10 results are available
without switching page. No screenshots are available; instead an excerpt or quote from the blog is
available for reading.

With the proposed interface in the second concept it is possible to view 9 results without scrolling or
switching page. The screenshot is available when the icon is clicked or hovered over with the mouse
(instead of an excerpt from the blog). Because this model does not have as much text it is quicker to

4

read and quickly browse. It also gives the user an option to browse related blogs without “leaving’
the current search space [see Figure 11 nedan].

Interactive Significant S Kandylini's
Visualiztion Pursuit by

of Blog... Renaissance G..

iaster.. thesrs.. .1

Capralisim...Econl Henry...Paunisson

. 2hrs ago... . 35 mins ago... . 51 mins ago...

Portfolio.com

The Political ¥ Populist Party

Inquirer of America
E—

2 days ago... 3 days ago... . Sdays ago...

election 2008 3 TitusOneNine 5 Welcome to
from the eyes The Kicker
of an ebony m...

hama...Ehony mo)

4 days ago... . Gdays ago...

. 1 month ago... I8

Figure 11: The second concept explained with an image.

It is also important to note that the interface could be improved by extending the available screen
space to 960x720. The concept was intentionally designed for the smaller resolution 700x520 as it is
easier to scale up than down. Another possible extension to this concept is to be able to manipulate
the icons, e.g. selecting a group and “saving” them or disregarding them.

5.2.3 Concept three

Although | was confident that the second concept had a lot of potential and was a realistic
alternative to be considered for implementation, | had committed to making three proposals and
therefore needed one more concept to present to Twingly before a decision could be made and the
implementation phase could begin.

It was necessary for the third concept to be completely different from the second one in order to
present a true alternative and not just a slight variation in theme. Therefore the icons were
disregarded when developing the last concept.

The third idea for the visual search interface was strongly influenced by the search engine searchMe
[see Chapter 3.2.1] and can be viewed as an extension of that concept. In addition to pure visual
browsing using screenshots this interface also allowed browsing blogs related to the blog currently in
scope. This is carried out by using the icon which resembles an unfolded cube, dragging the indicator
rotates the cube to the selected side [see Figure 12 nedan]. Naturally only five related blogs can be

browsed using this method, however a second implementation was also plausible, namely
continuously “unfolding” the cube allowing infinite browsing of related blogs. The information for
each blog is presented in a two dimensional window as the blog is in its scope. Only one blog can be
in scope at one time, hence the user must use the slider to change the blog currently in scope to view
its specific information.

Putting People First
{putting people irst
ﬁ'g '
T&?(J’S.' peopie, nealincare, insurance
il = In

Figure 12 : The first version of concept 3 extends the CoverFlow concept with an information window.

This concept was based on a screen size of 960x720 pixels; a smaller resolution would make the
interface hard to motivate as it would render the screenshot useless. Although this concept may be
more visually interesting and playful than the first one it does not allow as many search results to be
viewed at the same time and only shows specific information for one blog at a time.

5.2.4 Choosing a concept

Despite the fact that the third concept still needed some work and refinement it was time to present
the ideas to Twingly. Because concept two and three were so conceptually different it was important
to get an indication from Twingly on what they preferred so that all effort could be focused on one of
the concepts. The ideas were presented on the project blog with explanations, images and
animations.

After Twingly had processed the ideas we had a telephone meeting when we discussed the different
ideas and the pros and cons of each concept. Only concept two and three were considered as the
first concept was disregarded at an earlier stage by me. It was clear that Martin and his colleagues at

Twingly favored the third concept. The following weaknesses in concept two were pinpointed by
Twingly:

e Hard to read scrolling tags.
e Screenshot hard to motivate.
e Browsing of related blogs not powerful enough.

As the third concept was not entirely specified we also discussed how this idea could be improved
and augmented. Martin thought that the two dimensional frame with the blog information was a
good idea and wanted to keep that feature. The cube indicator however was perceived as a difficult
idiom for a first time user, furthermore the cube aspect as a whole was not considered an
improvement on the original concept (CoverFlow) especially as it restricted the number of related
blogs to five in total.

5.2.5 Tweaking the concept

The telephone meeting with Twingly made it clear that a CoverFlow concept such as my third
proposal was what they had in mind for their blog search interface. We had already agreed to keep
the 2D information window as an augmentation to the CoverFlow concept, but a good way to solve
the browsing of related blogs feature was still needed.

Again it was important to consider the users mental model when creating this navigational feature.
Further use of the third dimension was introduced to this end, and a stack of tiles was added to each
blog result representing its related blogs. Clicking on the stack triggers the stack of related blog tiles
and the camera to “fly” up above the current set of results. This animation clearly indicates where
the previous search results are and where the new ones appear. Navigating backwards simply
performs the reverse animation, i.e. stepping down one level and repositioning the “related tiles” in
a neat stack. With this feature the user can keep browsing related blogs indefinitely. The first sets of
search results are always at the bottom, which is indicated by the reflection in the “floor,” making it
easy for the user to identify the original search results.

Putting People First

-t 1=
i — =
‘.:.--—"' -

Figure 13: The second version of concept 3, were the cubes were exchanged for tiles and a “related” button was
added to the concept.

With all the functional components in place only one part of the design phase remained; specifying
the graphical content more strictly. In order not to be distracted by these decisions during the
implementation phase it was decided that the last week of the design phase would be spent
tweaking and specifying the graphical content more precisely.

Originally the stack of tiles was represented by an icon on the top right corner of the information
window, but exchanged for a three dimensional stack of tiles to indicate more clearly how the
navigation works for a first time user [see Figure 13 ovan].

A white background had been used instead of a black one in order to match the current Twingly
search engine which presents the results on a white background. The white background had
introduced a little too much contrast which can be strenuous on the eyes; therefore slight shading
was introduced to the background. A loading screen was also introduced to the concept which would
be used when the application is fetching data from the server. The spacing and orientation of the
blogs tiles was also tweaked along with the field of view of the camera creating the final version of
the concept [see Figure 14 nedan].

Twingly Blog

—

THNGLY Twinghy S0 .
e ~

& g st feor Wineld Pl Frumsdaion

Tags: hlogs. twingly FRA

Authority: 200
Updated: 25 minutes ago

Figure 14: The final version of concept 3 illustrated with an image created in Photoshop and 3D Studio Max.

5.3 Implementation

Though this phase was the main part of the project it was difficult to plan it until the concept was
worked out in detail. The concept description dictated which tools | would need to learn and gave an
indication of how complex the task was, allowing me to plan the implementation phase.

5.3.1 Plan and priority list

Even with a detailed concept description it was difficult to create a plan as this phase also included
learning many of the tools that were necessary for implementation. It would be necessary to
implement and learn at the same time if the application was to be completed in seven weeks. The
following programming languages, API’s and IDE’s constitute the package which would be used for
the project:

e ActionScript 3.0 — programming language interpreted by flash player.

e ActionScript 3 library — a library with utility functions for ActionScript applications.
e Papervision 3D — a 3d engine library written in ActionScript 3.0.

e Adobe Flex Builder 3 — an IDE for ActionScript programming.

An iterative approach would be used adding new functionality successively. With only 7 weeks
allocated for the implementation phase it was necessary to create a priority list of the functionality
included in the concept description. The priority list would ensure that the most important
functionality be implemented first; possibly excluding extra features should time run out. In order to
create the priority list the concept description was broken down into a list of required functionality.

The following priority list was produced:

Communication with Twingly server

Functional model/datastructure

Next/previous navigation, including update of the datastructure
2D GUI with functional buttons

Functional information window (glass panel)

“Related browsing” (without animation)

Loading of screenshots (including logistics/memory management)
Blog tiles with screenshots (first 3D implementation step)
“Backwards browsing” (without animation)

10. Animation next/previous

11. Reflections/Shadows

12. Animation related browsing

© O N AWNR

Points 1-10 include the minimum requirements of the application. Features such as reflections,
shadows and advanced animation would be implemented only if there was time left. The points are
described in more detail in the iteration sections below.

Breaking the concept into smaller functional components enabled a bottom up design of the
application, allowing me to create simple functions which later could be combined to create the
overall application. A bottom up design was suitable as it reduced complexity and allowed me to
learn the programming language while implementing simple functions which could be used for the
project.

The seven weeks of the implementation phase were divided into three iterations. The iterations
each include a number of the above mentioned points for implementation and testing.

e [teration one: 1-4.
e |teration two: 5-7.
e Iteration three: 8-12 (11-12 if time remained).

5.3.2 Iteration one

Iteration one also included installing the programming environment (IDE) and the libraries
mentioned above (see 5.3.1). Installation of an IDE and libraries that depend on other third party
libraries involved setting up dependencies in the project solution, adding environment variables and
compiling source code, as an SDK was not used. The source code for Papervision was used instead of
an SDK because of the limited documentation of the library. Using the source code allowed me to
understand undocumented functions by examining the code.

With a working programming environment and all libraries compiled and setup the first task on the
priority list was to set up a communication protocol with the Twingly server. This functionality
needed to be in place first as it would allow me to get started with the heart of the application; the
model that would handle all the information extracted from the server.

A simplified two step model of the communication between the search interface (my application)
and the Twingly server include the following actions and information:

1. ACTION: URL request to the Twingly server.
INFO: Search phrase URL.

2. ACTION: Response from Twingly server.
INFO: List of blog results matching the search phrase.

When using a regular search engine the URL (INFO in point 1) is constructed after the user has
entered a search phrase into the text field and pressed the search button, the corresponding URL can
be seen in the address field of the browser. A search for the phrase “interface” using the Twingly
blog search engine for example generates the following URL:
http://www.twingly.com/search?g=interface. The response from the Twingly server is a new HTML
page with a list of the blog results and their corresponding information matching the search phrase.

The most significant difference between a regular HTML based search engine interface and my Flash

based search engine interface was that an HTML page was not wanted as a response to the request.

Instead the same information structured in a fashion so that it would be easy to parse was desired. A
common solution to this type of problem is to structure the information in an XML document.

The first task involved constructing the URL for a search phrase, deciding on a format for the results
from the Twingly server and finally implementing a parser that could retrieve the information from
the response document.

Creating the URL’s and sending the request was a typical example of a simple function that could be
used in a bottom up design and which was a simple enough task as a first code snippet in
ActionScript. As ActionScript is interpreted by Flash player which in turn is mostly used and
embedded in HTML documents a lot of functionality pertaining to web programming is available in
standard libraries. Sending a URL request is an example of a function which is available in the
flash.net library. Therefore this first function simply involved concatenating the search phrase with a
URL specified by Twingly and using the library functions to send a request.

When deciding on a format for the results we wanted a simple solution that would not require a lot
of work and that could be easily extended in the future. Java Script Object Notation (JSON) was a
format that was recommended by my technical advisor at Twingly, Kristoffer Forsgren, as it supports
datastructures such as lists and tuples. The main concern with this format was whether there were
any existing parsers supported by any ActionScript library. A suitable parser was found by Kristoffer
in the ActionScript 3 library (http://code.google.com/p/as3corelib/). After having tested the parser
we decided that JSON would be a suitable format for the search results, mainly because Twingly had
used the format before and also because it would not be necessary to implement a parser for an XML
format.

Continuing with the bottom up design | started on the second task for this iteration; creating a model
for handling the parsed data. In order to store the parsed data a representation for each blog result
was necessary to hold all the information related to it. ActionScript 3 is an Object Oriented
programming language supporting all the associated paradigms such as classes, inheritance and
packages. A separate class, BlogResultltem, was made for the representation of a blog result. A
BlogResultltem had the following attributes with accompanying get and set functions:

e title: String

e authority :int

e tags: String

e blogURL: String

e screenshot: Image

This is basically a direct translation of what a real blog result item contains. The actual class has more
attributes but the ones mentioned above are the most characteristic.

The idea was that each blog result item would be stored in a list or Array. An Array sufficed as a
container as the only operations performed would be sequential traversing of the datastructure, i.e.
increment or decrement of an index, while also allowing dynamic memory allocation. A model class
would hold this datastructure and maintain it by providing different functions such as adding or
deleting items, changing current item etc.

In order to test the newly created model with the parsed and organized blog results, tools were
needed to traverse the datastructure. The actual decrement and increment functions had already
been implemented in the model class with the container, what was needed was a means to trigger
these functions. Therefore a simple 2D GUI was implemented. This simple GUI consisted of two
navigator buttons allowing forward and backward browsing (increment and decrement in model) and
a simple text output showing the title of the blog item currently in scope (item at current index in
model).

At this point of the implementation phase a top level design for the application as a whole had still
not been made, as the intricacies of ActionScript 3 were still being learned. The problems
encountered so far were mostly associated with ActionScript’s method for handling events and |10
operations. Events are an important part of ActionScript because it is the only mechanism available
to disrupt the sequential flow of the program. Many of the functions in the flash libraries use the
event model to notify surrounding objects of important events instead of blocking. An example of
this is reading from a file; instead of blocking until the whole file has been read, the regular flow of
the application continues and the “file reader object” casts an event when it is finished reading or if
the read failed. Quite a lot of time was spent learning the event handling system of Flash player.

At the end of this iteration a functional model with a simple datastructure holding the blog results, a
means to navigate the results and a working interface towards the Twingly server had been
implemented. The model did not support pagination and related browsing (browsing blogs related in
some way to the current blog) at this point.

5.3.3 Iteration two

Equipped with a class for storing and maintaining the BlogResultltems and with improved knowledge
of ActionScript it was now necessary to make an overall design of the application. A model for the
application that would be easy to understand and to rebuild if necessary, mainly because the end
result would be delivered to Twingly and possibly be augmented or altered by them. To get a better
understanding of the application a flow diagram indicating the sequence that the program would
need to follow was constructed. This painted a clear picture of the different components that the
program could be split into.

| send request

navigate back

Next

parse Y
lequesl update Render
datastructure | araphics Previous

F

y

h

10

[

creaie I
resull o
respres. I
I

I

select blog |3l[ill'l1lch

T —

Figure 15: This image describes the flow of the application.

The package containing all the classes and utility functions would be called com.twingly, naming the
package after the domain that the application resides in, in accordance with standard ActionScript 3
coding standards (14 p. 41). A natural design pattern for this application was the Model View
Controller (MVC) pattern, which is a simple and easy to understand pattern for applications with
graphical user interfaces (15 p. 370). The main idea with MVC is to separate the graphical and
controller components from the datastructures and models holding and maintaining the program
state. Below is a table with all the classes indicating how they fit into the pattern.

- Model View %__Controller
ResultContainer Scene ModelController
BlogResultltem ~ Navigator
ResultParser ; InfoWindow

SearchCenter

Arrowlcon
BlogTile

The View components are all derived from the flash.display.sprite class which is the base class for
most visual components in Flash. With the MVC structure it is easy to re-implement the visual
components without having to alter the model and vice versa. As the 3D components of the concept
had not yet been implemented this method (MVC) allowed me to first start with a simple 2D
graphical representation of the blog results without having to worry about conflicts with the model
later on.

As a bottom up method was used without a top level design it was necessary to refactor the code
written in iteration 1, so that it would conform to the new design before continuing with the next
task. The functions were simply put into appropriate classes and refactored to accommodate the
new structure.

With the new design in place task 5 on the priority list was implemented. This task simply entailed
creating the InfoWindow class which is the 2D overlay displaying the blog information. The
InfoWindow class has access to the current blog and its information. The visual features of this class
(the frame) were created in Photoshop and imported as an image which can be displayed due to the
fact that InfoWindow inherits the Sprite class in flash.display.sprite.

Task 6 on the priority list, allowing browsing of related blogs, mainly affected the ResultContainer
class (model in MVC). Browsing related blogs means that the application must send a URL request to
the Twingly server, requesting all blogs related to the blog currently in scope. The Twingly server
then responds by sending a new list of blogs and their corresponding information. This task did not
entail updating the graphical component (view in MVC) with the animations listed in the concept
description.

In order to accommodate the new functionality of browsing related blogs the datastructure was
changed from an Array to a matrix (or Array of Arrays). Doing so was necessary as the original search
results could not be deleted because the user must be able to browse backwards after having
navigated to the “related” results. The original search results are only deleted if a completely new
search is executed. The “related” search results however are deleted if the user chooses to browse
backwards. The controller functions to navigate the datastructure were simply augmented with an
extra index pointer, allowing both rows and columns to be accessed in the model.

The last task in this iteration was to make use of the screen shot for each blog result. Up to this point
only the URL of the screen shot had been stored in the BlogResultltem object without actually
fetching the image from the database. The screen shot needed to be fetched from the Twingly server
by sending a request with the URL for the blog’s screenshot. In this first version of the application
the BlogResultltem’s visual representation was a BlogTile represented by a Sprite. All the
BlogResultltems with their corresponding BlogTiles are created immediately after the parser has
finished parsing the result list. The screen shots are fetched and loaded during this creation process.

? . z - y »|
oW |8 D\Users\DaniehDocuments\As3 projects\bi... £ Home ~ B 0 ~ #8Prnt ~ [Page ™ i Tools ™

Lelekompoketet: Bar timmar kvar att piverkn’

e

Jag var en av
de 34 918
personer i
Sverige som

rostade pa
Telekompaketet: Nu & det bréttom! Piratpartiet i
P I S —— riksdagsvalet

Figure 16: A screen shot of the application at the end of iteration two.

At the end of this iteration the application was able to show one blog result at a time in a two
dimensional GUI (Information window + screenshot) supporting next/previous browsing and
browsing of blogs related to the blog currently in scope (in the information window) [see Figure 16
ovan).

5.3.4 Iteration three

The tasks in iteration three mainly involved altering the View by incorporating 3D graphics and
animation in the application. Some adjustments to the Model were also necessary in order to
improve performance.

As is usually the case with Open Source projects the documentation is rather poor, Papervision is no
exception. Therefore the initial part of this iteration was spent on learning Papervision 3D by looking
at tutorials, browsing forums and blogs and, as a last resort, by studying the source code. The first
step when using Papervision or any 3D engine is to setup the scene with elements such as cameras,
lights, render engine and a viewport in order to get some polygons on the screen. After having
browsed a number of forums it was clear that many people were using the same default template
called PaperBase to setup the scene. This is not advanced code; the class simply sets up the elements
listed above. Instead of reproducing the template was used as a base class for my Scene class.
Because PaperBase has circulated on the Papervision community it is difficult to assert whom the
proprietor is, hence no such reference is given, instead the community as a whole is acknowledged
for the existence of this setup code which is a great tutorial for new time users of Papervision.

The setup code allowed me to quickly start creating the blog tiles. In the previous iteration the blog
tiles were represented by a Sprite object holding the screen shot of the corresponding blog. A Sprite
is the most commonly used object used to present visual elements in ActionScript. The new blog tiles
needed a different representation in order to match the description in the concept, namely a box
shape with the screen shot pasted on the front facing side. Papervision provides classes for the most
common primitives such as spheres, cones, planes and of course cubes which was the primitive used
to represent the blog tiles. Instead of inheriting from the Sprite class the blog tiles would now inherit
from Papervision’s Cube class.

The first version of the three dimensional blog tile was a red box without the screen shot present.
This version only served as a first trial to get polygons on the screen. With this visual representation
it was now possible to position the tiles relative to each other and to match the dimensions and field
of view (of the camera) with the concept image [see Figure 17 nedan].

Arvidfalk.se

Authority: 115

Figure 17: First use of PaperVision in the application.

Positioning the tiles was a not as straight forward as anticipated; the following model was used to
accomplish the tiles positions relative to each other.

The position of a tile depends on the blog’s:

e order in the result list (column index),
e jt’s “focus” relative the information window
e and the level of the blog (row index).

The focus indicates if the blog is in scope (encompassed by information window), immediately to
the right or left of the scope or simply just in line. For blog tiles that are in line a constant offset
was used, for the three other states specific positions were used.

The level indicates how many times the user has clicked the “related” search button and is used to
calculate the z- value (elevation) of the blog tile. Recall that if a related search is triggered the
camera is elevated above the original search with the list of related blogs listed above the
previous results; this action is repeated every time the related button is pushed. The level
information is also used to determine if the blog tile has a reflection or not, only the tiles
associated with the original search results (level O tiles) have a reflection.

This model for positioning the blog tile needed to be dynamic, as the position of a tile changes when
the user triggers one of the navigation buttons.

The next problem that needed to be solved was pasting the screen shot of the blog to the blog tiles
front facing side. Papervision offers a material called BitmapFileMaterial which fetches an image
from a server and applies it to a 3D object. Naturally this was the method attempted first as it solves
both the fetching of the screen shot and the texturing of the blog tile. Unfortunately the
BitmapFileMaterial turned out to be a problem which | spent several days trying to solve. The
BitmapFileMaterial simply did not work and as it turns out | was not the first to encounter problems
with this Papervision feature. As a Beta version (at the time) of Papervision was used the assumption
that this was a bug was adopted. The problem was identified as an event handling problem, the
event indicating that the file had been fetched and loaded was never received and therefore the
screen shot was never textured to the blog tile. A work around was used instead of spending more
time on solving the issue. The solution was to fetch the screen shot using the regular Flash.net library
and loading the image into another material in the Papervision library; the CompositeMaterial. With
this class the screen shot was successfully loaded and applied as a texture on the cube.

When the screen shot was first applied as a texture it did not look quite right when it was rendered
to the screen, the texture looked “wobbly.” This phenomenon was recognized from the visual search
interface searchMe where | had first seen this effect. This “wobbling” interference occurs when too
few polygons are used. This correlation between number of polygons and texture quality was
unfortunate as it was necessary to keep the polygon count down as much as possible. Simply
increasing the polygon count would have a negative effect on the frame rate when animating the
tiles.

According to the priority list the next task was to add the functionality of browsing backwards from a
related search, i.e. removing the current row in the matrix and resetting the navigator to the
previous row (model representation) and stepping down one level (view representation). The order
of the priority list was altered at this stage by solving the next/previous animation first. This was
done because there was no means of debugging the backwards navigation without a visual
representation of the action and also because at this stage a better idea of what kind of performance
could be achieved when animating the blog tiles was necessary.

Animating the action of fetching the next or previous blog in line serves as a means to strengthen the
users mental model of where the disregarded blogs go and where the next set of blogs in line come
from.

A smooth animation of an object’s movement from point A to point B during a time interval T is
accomplished by interpolation. A number of different functions are plausible that carry out this
interpolation. The interpolation function determines how each position is calculated for every time
value t in the interval T, and hence determines the visual appearance of the movement. As the frame
rate was a concern it was necessary to keep the calculations as simple as possible for each frame,
which is why linear interpolation was used for animating the blog tiles movement. Linear
interpolation is the least calculation intensive form of interpolation. The drawback of using linear
interpolation is of course that the animation is not as smooth when compared to using for example
an ease-in ease-out function [appendix].

The interpolation was written as a separate function so that it could easily be exchanged by me or by
Twingly for a more elegant function, rendering a more pleasing animation, if the frame rate would
not suffer too much.

It was not until this point, when a functional animation of the next/ previous navigation was
implemented, that the performance issues could be seen and actually be evaluated if the concept
would be a realistic alternative as a visual search interface. Several issues presented themselves
when the animation functionality was completed.

Performance issues:

1. Poor texture quality with too few polygons.
2. Faulty depth sorting with too few polygons.
3. Poor frame rate with too many polygons.

If only two polygons were used for the front face of the cube, issues one and two presented
themselves, but the frame rate was still good. Issue 2 was a consequence of the sorting algorithm
used by Papervision, the Painter’s depth sorting algorithm, which requires a certain amount of
polygons in order to not get a faulty depth sorting.

Simply increasing the polygons solved issues 1 and 2 but lead to an unacceptable frame rate. It was
important to keep in mind at this point that the polygon count would increase even more when the
reflections were added. Therefore a method to drastically reduce the amount of polygons in the
scene needed to be figured out without invoking issues 1 and 2. The only options were to minimize
the amount of polygons for each cube to the limit where issue 1 and 2 were still not invoked and
decreasing the number of visible blog tiles at one time in the scene. A flag setting in Papervision
which affected the precision of the rendering of textures was also altered. The default value was
imprecise; changing it to precise affected the frame rate but also allowed me to reduce the number
of polygons, ultimately producing a gain in both visual appearance and frame rate.

Before the next task could be started an issue which had been postponed needed clarification with
Twingly. They had not yet solved the issue of pagination, i.e. how many results would be received in
each response package. The JSON feed we had been working with contained only the first 10
matches and there was no way of requesting or accessing the next set. At Twingly | was told to
simply replicate the first search request until they had solved the pagination issue, a similar solution
would be used for the “related” search as this functionality was not yet available either.

With this temporary solution | started working on how the application would handle the pagination
issue both internally (in the datastructure) and visually. The first thing | needed to do was to limit the
animation to only the visible tiles, animating all the tiles was both unnecessary and a frame rate
killer. Secondly | needed to decide when the next set of results (next page) would be fetched; |
decided that this would occur when the blog tile in the middle of the current set was in focus. Results
are only removed from the datastructure when browsing backward. This was a deliberate design
choice and one that | knew would have to be altered if the interface was going to be deployed on the
web, as it could potentially overflow the memory of the host computer. Because my main focus was
to create a functional prototype this detail was ignored for the time being. The same design choice
was made for related browsing, allowing “infinite” related searches without freeing memory. The
solution to this problem is not difficult, but was not something that | wanted to spend time on at this
stage; it was added to the end of the priority list as point 13.

When the animation of the next/previous navigation was in place with a satisfactory frame rate |
decided to tackle task 11, reflections and shadows, before solving the backwards browsing (task 9). It
was clear at this point that shadows with a lighting model would not be implemented as this would
lower the frame rate considerably and also because it is not directly supported in Papervision, which
meant that | would have to implement the shadow casting. An alternative method for faking
shadows was considered, but dropped because it would require too many extra polygons. In the end
| opted to not use shadows but to rely only on the reflections to indicate the “ground” level.

Several methods for implementing the reflection were possible:

e Raytracing.
e Rendering reflection to a bitmap viewport.
e Mirroring the geometry in the xy-plane.

But only the third method was a realistic option. Raytracing the reflection would require too much
computation for each frame and hence be much to slow and the viewport option was too
complicated for the effect that | was trying to achieve. The reflections were added as an attribute of
the BlogTile class. The reflection was a plane with a rotated and flipped version of the screen shot as
a texture. In order to achieve the reflection fall off, a gradient texture from white to transparent was
composited on top of the screen shot, using Papervision’s CompositeMaterial.

Two tasks remained before the implementation phase was completed, the ability to browse
backwards (from a related search) both the animation and the model implementation and the
animation when triggering a related search. In the concept the idea was to have the stack of tiles
representing the button for the related search fly up above the current blog tiles and spread out to
form a new list of blog tiles with the camera following that movement. Unfortunately | realized that |
would not have time to implement this animation and had to settle for a simpler version of this
original idea. The animation | ended up implementing was only the camera movement which used
the same animation function as the next/previous animation uses, with the new blog tiles simply
spawning in their final position. Implementing the backwards browsing was only a matter of
removing the blog results from the datastructure and reversing the camera movement when
triggering a related search.

5.3.5 Quality assurance

This phase of the project was scheduled to ensure that any remaining bugs and undesired behavior
was eliminated from the application before it was deployed on the web for testing. At this point | had
a discussion with Martin Kallstrom regarding the testing of the application and if Twingly had any
intention of deploying it for testing. Because the application did not fully meet the requirements,
mainly due to a lower frame rate, Twingly decided that the application was not ready for
deployment. | suggested improvements that could be made (see extensions and improvements) in
order to increase the frame rate but also explained that | would not have time to implement these
improvements and that it was not within the scope of the thesis to do so.

Even though the application would not be deployed for testing, bugs encountered during the test
phase at the end of the last iteration were resolved. One major issue that was encountered was a
memory leak which was the result of a reference that was not removed when the backwards
browsing was executed. Because flash uses automatic garbage collection it was difficult to find this
memory leak.

6 Results

This chapter gives a detailed presentation of the final results of the project. The design concept and
the final implementation are treated as two separate results in this text for convenience.

6.1 Final design concept

The final concept is best described as an augmented version of the well known Cover Flow concept
that can be found in different flavors on various media today. A short description of Cover Flow is
given first.

Cover Flow presents the desired objects visually in the form of planes textured with an image that
describes the object in question, e.g. a cover album. The objects can be browsed to the left or to the
right, by clicking on the next object or by using the provided slider; either action will trigger an
animation that moves the objects in the selected direction. The object currently in focus faces the
user and is slightly larger than the other objects.

The final concept for the visual search interface mimics the behavior and to a degree the visual
appearance of Cover Flow, but differs in several ways as the objects in this case are not music albums
but blogs. The concept is described in terms of its main components, provided interaction and the
graphical profile.

6.1.1 Components and interaction

Blog tile — the blog tile is the visual representation of each blog in the result list. It is represented
with a tile shape with an aspect ratio of 4:3. The blog’s screen shot is presented on the tile’s front
facing side. Seven blog tiles are displayed at one time in the application viewport. The blog tile that is
in the center of the application viewport is clickable; clicking it spawns a new browser window
navigating to the blog’s URL. The cursor changes its visual appearance to a hand cursor when
hovered over the blog tile in the center, indicating its “clickability.”

Information window — displays the information extracted from the blog tile that is currently in focus.
Only one blog at a time is represented in the information window. The information displayed can be

configured but will typically be the blog’s title, tags, authority and update history. This information is
updated when the new blog is centered in the window.

Navigation slider — allows navigation to the next or previous blogs in line. This is accomplished either
by clicking one of the two arrows or by using the box slider. Using the arrows will browse to the next
blog. If the box slider is used the number of blogs browsed is determined by the distance that the box
slider has been dragged. All navigation using this slider triggers an animation which moves the blogs
in a smooth motion either to the left or to the right.

Related stack — is the stack of miniature blog tiles that can be found at the bottom left corner of the
blog tile that is centered in the information window. This stack represents blogs that are in some way
related to the blog currently in focus. The related stack is clickable, which is indicated by an arrow
pointing upwards, a highlight of the stacks outline when the cursor is hovered over it and the fact
that the cursor changes to a hand cursor. Clicking on the stack triggers an animation and a URL
request which fetches the information of each related blog. The animation is an upward movement
of the camera and a morphing + translation of the miniature tiles to their final size and position. An
example of the animation can be found on the project blog (15).

Reflection — the reflection of the blog tiles serve the purpose of indicating when the user is viewing
the original search results. If a user has clicked the related search button, the camera is translated
upward and a new set of blog results are displayed, without a reflection.

6.1.3 Graphical profile

The graphical profile is best understood by examining the mock-up image of the concept. A light
background was used instead of a dark one mainly to match the existing search engine which
presents the results on a white background.

A light grey tone was used for all the components in order to get as little conflict as possible with the
colors present in the screen shot or surrounding ads. Using the same color for all the components
also serves the purpose of uniting them as navigational elements.

6.2 Final implementation

The final implementation for this project is a first trial version of the visual search interface described
in the concept above. This implementation strives to meet the requirements of the concept and
those set forth by Twingly [see 1.3] at the beginning of the project as far as possible. In this section
the implementation will be described in terms of the functionality provided, but also where and why
it differs from the concept and requirements. Furthermore an overview of the architecture will be
presented.

6.2.1 Version 0.9

The basic functionality which is needed to browse blogs is supported in this version of the
application. The priority list that was produced at the beginning of the implementation phase lists all
the functionality that is needed to meet the requirements of the concept description. The list is
reproduced here for convenience:

Communication with Twingly server

Functional model/datastructure

Next/previous navigation, including update of the datastructure
2D GUI with functional buttons

Functional information window (glass panel)

“Related browsing” (without animation)

Loading of screenshots (including logistics/memory management)
Blog tiles with screenshots (first 3D implementation step)
“Backwards browsing” (without animation)

10. Animation next/previous

11. Reflections/Shadows

© 00NN AWNR

Version 0.9 as | have chosen to call the present version of the search interface implements all the
points listed above with the exception of shadows and a complete animation of the related browsing
action (a simplified animation was implemented).

The functionality that is not implemented in this version is the connection to the current search
interface. In order to pass arbitrary search phrases to the flash application it was planned that the
text field present on the current Twingly Blog search would be used. As the application did not meet
the requirements set by Twingly it was not deployed on the web and hence the functionality to pass
search phrases to the application was not implemented, although a plan for that implementation did

exist. Another functionality which is not present in the current version is the ability to browse related
blogs “for real,” mainly because the functionality was not provided by Twingly at the time, instead a
faked version of this functionality was implemented [see Chapter 5.3.4].

The performance of the application was tested by me and by the staff at Twingly. The requirement
was that the frame rate should never fall below 24 fps on a regular computer. | tested the application
on a regular computer and on a computer that would be considered “fast.” On the regular computer
an IBM T43 Laptop (single processor) the performance was slow and clearly below 24 fps. The second
computer | tested it on was a HP Pavilion dv7 Laptop (dual core) which achieved an acceptable frame
rate. Unfortunately | do not have any actual figure for the achieved frame rate but my guess is that
the frame rate on the Pavilion was in the range 20-25 fps.

The visual appearance of the application is quite close in resemblance to the concept image and
graphical profile presented in the concept description [see Figure 19 nedan]. The biggest difference
regarding the visual appearance is the lighting model used for the blog tiles. In this version the
shading is static and “faked,” i.e. the sides of the blog tile have different predefined shades of grey. A
true lighting model with a material was tested but did very little to improve the visual performance
and had a remarkably negative effect on the frame rate. Note that the concept image is a raytraced
image and has been manipulated in image processing software, the application image is a real-time
rendered image from flash that has not been postprocessed.

|
}
1
R

/

Figure 18: Screen shot of the final application.

Twingly Blog

WG Tty By

A Diog pes: "o Wor Chacnoss Funaasan

Sommapeiionse Rding busk s g iy

L

Tags: blogs, twingly, FRA
Authority: 200
Updated: 25 minutes ago

Figure 19: lllustration of the concept, replicated here for comparison.

6.2.2 System architecture

The system is built on the design pattern Model View Controller (MVC) which separates graphical
components from the underlying functionality. The main classes reside in the com.twingly package
and derive functionality from the packages flash.display and org.papervision. All visual components
inherit either the flash.display.Sprite class or the org.papervision.cube class. The ModelController and
the ResultConatiner classes are both referenced by several of the other classes in the application and
never have more than one instance, therefore these were implemented as singletons (see appendix).
Below is a short description of each class and the functionality it provides.

{ s
4l Q

searcher Sceng

¥ ModelController \ —
Srgrenn
SearchCenter ResultContainer
smgieton
1 r \I/
Animator
1 or== Animaies Al
ResultParser BlogResultitem o
Py
r +rwaan ()
i 3
[InfoWindow| [Arrowlcon]
i =

B —

rtile iw

Figure 20: Overview of the architecture of the application.

Visualizer — Is the class that contains the initialization code setting up the necessary objects and
listeners. It also provides the top level functions to perform searches of different kinds as it holds the
only reference to the SearchCenter class. Visualizer inherits the Sprite class only because it needs to
be a part of the Event loop.

SearchCenter — Initiates and prepares the components that perform the searches. It holds references
to the ModelController and ResultParser classes. This class is also responsible for updating the model
with the results from a search when it receives an event indicating that the results have been
fetched.

ResultParser — Contains the actual functionality for sending a request to the Twingly server and for
parsing the results with the JSON decoder.

ModelController — Contains the top level functions that update the model (ResultContainer)
according to different actions communicated with events. These events include actions initiated by
the user through the navigational components and actions initiated by the search parser in response
to a new set of results available from the result parser.

ResultContainer — Holds the datastructure that organizes the BlogResultltems. Also provides a
number of functions to maintain the structure. Only the ModelController uses these functions.

BlogResultltem — Is the representation of a blog result. Contains information about a blog and also
holds a visual representation in the form of a blog tile.

BlogTile — Is the visual representation of a blog in the form of a tile with a screen shot of the blog on
its front facing side. Extends the functionality of the org.papervision.cube class. Also implements the
reflection.

PaperBase — Initializes all components that are necessary in order to render polygons on the screen,
e.g. cameras, viewports, lights, renderengine etc. This code is not written by me and can be found as
a tutorial on the PaperVision community blogs.

Scene — Extends the PaperBase class and handles all updates to the scene and is the root node of all
visual components allowing it to listen to all events in the scene. Is responsible for adding and
removing blog tiles form the scene and has an instance of the Animator class in order to animate
actions provided by the Navigator class.

Navigator — Implements the 2D GUI and is responsible for alerting involved components when an
action has been triggered. It holds a reference to the ModelController singleton in order to update
the model. It is also responsible for alerting the information window when a new blog is in focus.

InfoWindow — Holds the information window graphical representation and updates the window with
the information from the blog that is currently in focus.

Arrowlcon — Implements the arrow buttons used as navigational components.

Animator — Contains functionality to animate objects with an interpolating function.

7 Discussion

This section discusses the development process by analyzing the weaknesses and strengths of the
different methods used during the course of the project and how they were used. The end results of
the project in the form of the concept, implementation and lessons learned are also analyzed and
discussed.

7.1 Design phase

The only formal methods that | used for the design phase were brainstorming and prototyping. Only
a limited amount of research on users was done because of the tight time constraints. This project
involved both creating a concept and implementing it on a relatively short time span; therefore many
of the formal methods advocated by interaction designers were not a realistic option for this project.
Because of this the Goal Directed Design described in chapter 3.2.2 was only followed to an extent,
but not all the way, as it requires a lot more research and testing. The same is true for the methods
described by the conceptualization and prototyping chapter. Although these methods were not used
to the extent described in chapter 3, many of the ideas and the core ideology behind the methods
were used.

Goal Directed Design for example, is all about keeping the users interests and goals in mind when
making critical design choices. This was still possible for me to do, although a larger databank of
information on the users probably would have given more insight into some choices. It is my belief
that following this concept to the point would require the entire project time span or an extra human
resource dedicated solely to the interaction design.

The prototyping was a central part of the design phase and the process that | spent most time on.
The use of 3D modeling and rendering software made it possible for me to test spatial issues very
early on in the design phase. Many times this is not possible until the implementation phase has
started; in this case it allowed me to discard the first concept very early on. Another great benefit of
using 3D rendering software was that it was much less time consuming to create content and
variations of concepts compared to using only image processing applications or pen and paper.
Hence it allowed me to create detailed presentations of the concepts with graphics closely
resembling that of the final implementation. This method also proved advantageous when
communicating with the staff at Twingly as the images and animations clearly described my ideas.
Quite a few times | was asked to alter something or to tweak some details, a task which proved
simple when using 3D software.

Ironically the strongest point with this method also turned out to be its weakest point. The amount
of detail and advanced graphics presented, | believe, may have given the impression of being a final
concept and not a mock-up. In my opinion concept #2 was disregarded by Twingly much too quickly.
The arguments against using this concept (see 5.2.4) could have been averted simply by altering the
concept a little or by creating an animation to test the supposed flaws. In principle | believe that the
distance between me and Twingly might have affected the final choice of concept, had | worked at
Twingly | would have pushed harder for the second concept and had explained the strengths of the
concept more thoroughly.

The communication with Twingly was almost entirely carried out with Skype chat or by telephone.
This method worked but more face to face meetings would have allowed me to present the different

ideas in more detail, which ultimately may have lead to a completely different concept. It was
sometimes difficult to balance the wishes of Twingly with the research | had done as | was sometimes
forced to make design decisions contradicting the research material. The CoverFlow concept for
example does not give a very good overview of the search results and can only display a very limited
set of the results at one time. | do however believe that the final concept was a good one when it
comes to browsing related blogs and giving the user a clear mental model of how to navigate the
results.

During the course of the project it seems that many search engine providers where also
implementing different kinds of visual search interfaces. At the end of this project there were many
more visual search engines than when | started research at the beginning of September 2008. | have
no exact figure, but very many of these visual search engines are using some kind of CoverFlow
concept. In my opinion it would perhaps be more advantageous to develop a concept that does not
resemble CoverFlow at all but brings something new to the table. Interestingly | did find a concept (at
the end of this project) which strikes an uncanny resemblance to my Rubics cube idea (concept #1)
[see Figure 21 & Figure 22 nedan]. The Visual Search Cube has augmented the cube with an image of
the result that is pointed at with the mouse (16).

|v1';uc:| |I search
Aboul - s seurchrcube - Send feedback
pomseai by Google™ THUMBSHOTS.ong -2 svmmatei

Website

Visual Fracfions - A Fracfion
Tutorlal

A fractions tuterial that
modek fractions with
number lines or crcles.
Fraction games are
included.

Figure 21: Screen shot of the Visual Search Cube (16).

Figure 22: The Rubics Cube concept (concept #1).

Having tested this search engine (www.search-cube.com) only confirms that the idea was not a good
one. | think it is also worth noting that none of the visual search engines so far have succeeded in
revolutionizing the way people search for topics, blogs or images on the internet. If they in fact were
an aid, why hasn’t Google, Yahoo or one of the biggest search engine providers developed or bought
such an interface?

SearchMe which is referenced quite often in this thesis, mainly because the same underlying concept
CoverFlow is used has also been altered and augmented during the course of the project. When |
first tested searchMe very little information about the web page in scope was available. SearchMe
now provides a similar function to my information window that also implements a magnifying glass
that can be used to study the web page closer without navigating to it.

As far as blog search engines go, | have not yet found a blog search engine (dedicated solely to blogs)
that implements a CoverFlow concept or one that provides a related search. Perhaps bloggers and
blog readers should be treated separately as their search habits differ from a user using a regular
search engine. In any case it would certainly be interesting if Twingly enhanced the final concept by
implementing the extensions and improvements recommended in chapter 8 and tested it on their
users, only then can the concept be properly evaluated.

7.2 Implementation phase

The implementation phase went very much according to the plan and | was quite pleased with the
methods used and the planned iterations. Starting with a bottom up design was a very good choice
and | can recommend it to anyone whom is learning a new programming language because it allows
you to start simple. Taking time to split the application into smaller pieces of functionality and
creating a priority list takes some time but is definitely worth it as it makes it very easy to keep track
of the progress and overall functionality, not only for yourself but also for the “customer” or
stakeholder.

The MVC (Model View Controller) structure used for the architecture was a given choice as itis a
proven pattern that is very suitable for applications that are very “GUI oriented.” This also allows for
example Twingly to use the underlying model while completely altering the visual interface or vice
versa.

The biggest problems that | encountered during the implementation phase were mostly ActionScript
3 related. As | have mentioned earlier ActionScript 3 relies very much on an asynchronous event
handling system which sometimes makes it difficult to debug the application for a novice. Because of
this it would have been a good idea for me to early on implement an error handling system which
would catch errors and handle them appropriately. Creating such a system properly does require
time and a well thought through plan for how different errors should be handled. Unfortunately | did
not plan for this and that made it more difficult for me in the long run as | encountered strange
behavior and unnecessary programming mistakes.

As always testing and quality assurance was in a way given too little time in the project plan. On the
other hand, if more time had been spent on testing, perhaps some of the features on the priority list
would not have been implemented.

It was unfortunate that | did not have the time to implement the extensions and improvements
proposed in the next chapter. Having done so might have enabled a deployment on the Twingly
server for actual user tests. Martin Kallstrom at Twingly did propose that such a test phase could be
realized if the application met the requirements. It is also a fact however that a lot of the
functionality that was supposed to be supplied by Twingly (related searches, pagination issues in
JSON) was not finished at the time, therefore | decided to do manual testing myself as there were no
guarantees of this functionality being finished in time.

The resulting implementation provides the core functionality that is described in the concept with
emulated pagination and related searches and | feel that with the improvements proposed in the
next chapter that the interface could be a powerful tool for bloggers and blog readers.

8 Extensions & improvements

In this section improvements and possible extensions are proposed for both the concept and the
implementation. The main focus however is on the implementation as the concept requires more
thorough testing in order to be further analyzed.

8.1 Improving the concept

The main improvements that can be proposed to the concept at this stage without further testing are
mostly connected with the graphical representation of the components and there placement. Many
people have commented on the arrow icons and that they can be confused for “volume” buttons,
this is naturally not a successful icon design and therefore | believe they should be redesigned.

During the course of the project | tried to get access to more information that could be used and
displayed in the information window in order to aid the user in his/her browsing. An example of
information that could be displayed is when the blog was last updated. The main point is that there is
screen real-estate available that could be used for more information.

The navigation is today constrained to the navigational buttons; another option would be to allow
clicking on the blog tiles in line, navigating directly to the clicked blog tile. This interaction is available
on most variations of Cover Flow, e.g. SearchMe implements this. The same interaction could be
used to navigate back from a related search by clicking the blogs on the level below.

Another appearance issue that can be experimented with is the spacing and rotation of the blogs
that are in line. Rotating them slightly with the front face towards the screen and increasing the
distance between them will enhance the visibility of the blog tiles and decrease the number of blogs
that are displayed at one time. This would not only increase the visibility of the blogs immediately to
the left and right but also increase the frame rate as less polygons are visible at one time in the view.

| = :
||||||I|ng pﬂ:ph‘ first

Figure 23: An example of how the blog tiles can be spaced and rotated differently.

These settings can be adjusted in the BVConst class which holds constants such as spacing and other
parameters in one place for convenience. It is important to note however that some of these
constants are dependent on each other; this is commented in the code.

8.2 Improving the implementation

As the implementation is a first prototype there are naturally quite a few improvements that can be
proposed, the most important ones however are suggestions that will improve the performance. The
frame rate is too slow for the application to be deployed on the web; therefore performance
enhancing measures are necessary. The following list of enhancements is proposed:

Exchange cubes for planes.

Refactor memory management.

Solve pagination issue.

Find unnecessary calculations (profiling).
Replace tween function.

IS S o

Implement related search animation.

Points 1-3 are all performance enhancing measures that should have a positive effect on the frame
rate. By exchanging the cubes for planes the visual appearance is affected, but in my opinion the gain
in frame rate overshadows this minimal change in appearance. Making the blog tiles planes instead
of cubes saves a few polygons for each tile and also makes it possible to reduce the amount of
triangles used for each tile. Recall that one of the problems with using too few polygons was that the
depth sorting was negatively affected, when the cubes are exchanged for planes the sides of the
cubes are no longer a part of the depth sorting, hence the planes do not need as many polygons as
the front facing side of the cube requires. The overall effect is a large reduction in polygon count and
an increase in frame rate.

Point 2 addresses the issue of allocating and deallocating memory which is carried out when a new
search, related search or next page search is triggered. Allocating memory is usually a time
consuming task which requires many cycles for the CPU. Due to the time constraints | have not spent
a lot of time optimizing this feature. Point 3 is related to this issue in the sense that there probably is
an optimal amount of results per page, before the next page needs to be fetched. In the existing
version of the application the whole next page is fetched at one time about halfway through the
current page which causes a glitch in the frame rate. A better solution would probably be to fetch not
the whole page at once but perhaps one or two continuously and putting the results into
preallocated memory. This solution however requires that the pagination is incorporated into the
JSON format used today; this had not been solved by Twingly during the course of the project. The
same solution can be used for the related blogs, pre-fetching them before the related search would
reduce the loading time a great deal. This loading time can be hidden to an extent by a longer
animation but reducing the waiting time for the user is a better solution.

Another point which is worth looking into is reviewing the calculations that are carried out for each
frame. These operations will typically be found in the animation class and the scene class. Some
calculations perhaps are unnecessary to perform every frame, especially calculations which involve
floating point operands and divisions are very costly for a CPU to perform. One might ask why | have
not considered this directly instead of saving it for a refactoring session. The reason for this is that |
have worked with the motto “first make it work, then make it fast.” There are several reasons for

using this order, the most compelling reason is that it is sometimes difficult to manually optimize
code better than the compiler/virtual machine does, rendering these alterations useless. It can also
be harder to read optimized code, which is not a good thing when the application is still under
development. This optimization should be carried out using a profiler, which makes it a lot easier to
find the bottlenecks of the code. Sometimes the bottlenecks are not where we think they are,
especially in this case because it is difficult to know how much work the GPU is performing and how
much the CPU is performing. Optimizing for the GPU is different than optimizing for a CPU.

Points 5 and 6 are not performance enhancing but appearance enhancing tasks. The Tween function
used in the Animation class is a simple linear interpolation. This function should be exchanged for a
smoother interpolation which uses an ease-in ease out function. Altering this code is rather trivial
and can be experimented with in order to achieve the desired results. The last point is simply to
implement the animation which is performed when the related search is triggered. The existing
animation only animates the camera movement once the tiles have been loaded and put into place.
The original idea was to animate the small blog tiles movement from the “button” placement to their
final position above the current blog tiles. This animation can be seen as a gif animation on the
project blog. This animation was not implemented because the related search had not been
implemented or prepared for the JSON format by Twingly, which is necessary in order to realize it.
Implementing the animation does not really require a lot of code, in essence the existing tween
function could be used, but if more control of the scaling, rotation and translation is desired a new
function is necessary.

9 Conclusion

In this project | have created a concept and a prototype of a visual search interface for Twingly’s blog
search engine that incorporates 3D graphics using Adobes Flash player and a software 3D engine for
the web called PaperVision. The concept mimics the CoverFlow concept most commonly known
from iTunes album cover browser and augments it with functionality related to browsing blogs and
features inherent in the Twingly blog search engine.

The purpose of creating this interface was to provide bloggers and blog readers with a more fun and
alternative manner of browsing and searching for blogs in the hope of aiding him/her to find results
quicker and in finding results they perhaps did not know they were looking for.

The concept developed during the course of this project is closely related to and inspired by the
searchMe search engine. The main feature that separates these two interfaces is that searchMe is a
search engine for web pages while Twingly’s search engine is directed towards blogs. Having tested
both of these search engines | do not believe that the CoverFlow concept is an enhancement when it
comes to searching for web pages. Because searching for a blog differs somewhat from searching the
web for a topic | still believe that the CoverFlow concept might have a future in blog search engines.

The final implementation of the concept developed during the course of this project still requires
some extensions and improvements in order to meet the requirements set forth by Twingly in order
to be deployed on the web for testing (see chapter 1.3). Although the application has not been
deployed for testing | believe that the concept has a possibility of succeeding as an alternative to the
text based blog search engine and that it could be worthwhile for Twingly to implement the
extensions and improvements proposed in chapter 8. It is mainly the feature of browsing related
blogs and the implementation of this visualization that sets it apart from other search engines
mimicking the CoverFlow concept, and | firmly believe that it is one of its strengths.

10 Bibliography

1. The Handbook of New Media. London : SAGE publications Inc., 2006.

2. Dictionary.com. [Online] [Cited: 01 20, 2009.] http://dictionary.reference.com/browse/visualize.
3. Twingly Blog Search. [Online] [Cited: May 3, 2009.] http://www.twingly.com.

4. Grokker Enterprise Search Management. [Online] [Cited: 04 22, 2009.] http://www.grokker.com/.
5. Kartoo.com. [Online] [Cited: 03 15, 2009.] http://www.kartoo.com/.

6. Quintura. [Online] [Cited: 04 22, 2009.] http://www.quintura.com/.

7. Flowser. [Online] http://www.flowser.com/.

8. Viewzi. [Online] [Cited: 04 12, 2009.] http://www.viewzi.com/.

9. Searchme.com. [Online] [Cited: 05 01, 2009.] http://www.searchme.com/.

10. Youtube. [Online] [Cited: 05 10, 2009.] http://www.youtube.com/.

11. Coverpop. [Online] [Cited: 04 01, 2009.] http://www.coverpop.com/.

12. Alan Cooper, Robert Reimann, David Cronin. About Face 3, The Essentials of Interaction Design.
Indianapolis : Wiley Publishing, Inc, 2007.

13. Tracy Fullerton, Christopher Swain, Steven Hoffman. Game Design Workshop: Designing,
Prototyping and Playtesting Games. San Francisco : CMP Books, 2004.

14. Roger Braunstein, Mims H. Wright, Joshua J. Noble. ActionScript 3.0 Bible. Indianaplois : Wiley
Publishing, Inc, 2008.

15. Svensson, Daniel. Interactive Visualiztion of Blog Search. Interactive Visualiztion of Blog Search.
[Online] [Cited: 05 04, 2009.] http://datx0208.wordpress.com/.

16. search - cube - the Visual Search Engine. [Online] [Cited: 05 04, 2009.] http://www.search-
cube.com/.

17. Flowser on Amazon. [Online] [Cited: 04 25, 2009.] http://www.flowser.com/.

18. Sommerville, lan. Software Engineering 8. Harlow : Pearson Education Llimited, 2007.

Appendix A: Definitions

3D Studio Max — A 3D modeling and rendering software.

ActionScript — An Object Oriented (from version 3.0) programming language interpreted by Adobe’s
Flash Player.

API — Acronym for Application Programming Interface
Flash player — Flash Player is a cross-platform browser plug-in...

JSON - Stands for Java Script Object Notation and is a carrier format for arbitrary data primarily
intended for JavaScript but is also supported by several other programming and scripting languages.
Provides support for datastructures such as tuples and lists that are commonly used in programming
languages. JSON is a powerful alternative to XML in many situations.

Papervision 3D — a 3D engine for Flash player which supports the most common functionality
necessary for creating, reading , rendering and manipulating 3D scenes.

Rubik's Cube — The Rubik's Cube is a 3-D mechanical puzzle invented in 19742 by Hungarian sculptor
and professor of architecture Erné Rubik.

Singleton — A design pattern commonly used when an object only should have one instance and
needs to be referenced by several other objects. The Singleton pattern ensures that only one
instance of the object can exist at one time.

Appendix B

Example of JSON formatting:

{

"totalFound":1,"items":
L
{
"i1d":""2667480418487502938",
"summary':"This summer the Swedish
political blogosphere has been in flames over a law proposal allowing a

civil organization to monitor all Internet traffic crossing Swedish
borders, with the purpose to fight t…™,

“"url":"http://blog.twingly.com/2008/09/18/twingly-report-about-
the-fra-debate",
""pubDateMs' 1221764829000, "title":"Twingly
Report about the FRA Debate™,
"websiteName":""Twingly Blog",
"websiteUrl":"http://blog.twingly.com/",

"websiteRssUrl":"http://blog.twingly.com/feed/",
“inlinks™:"39",
III ikesll : llOll ,
"blogoscopeX":null,
"blogoscopeY":null,

'screenshot™:""http://images.twingly.com/screenshots/153407522123
97415993 ._jpg",

"twinglyAuthority':"105",

“tags':[
""Blogosphere™,
"Europe",
"FRA",
“report™”,
"Twingly"

