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Abstract

Camera Modelling and Calibration with Machine Vision Applications
Anders Ryberg

Department of Signals and Systems
Chalmers University of Technology

Camera modelling and calibration are important parts of machine vision. They can be used
for calculating geometric information from images. A camera model is a mathematical pro-
jection between a 3D object space and a 2D image. The camera calibration is a mathematical
procedure calculating parameters of the camera model, usually based on several images of
reference points. These fundamental parts of machine vision are improved in this thesis.
One large part is the development of a generic camera model, GCM, that is accurate, com-
putationally efficient and can be used for both conventional, fisheye and even catadioptric
cameras. Different models were used in the past for conventional and omnidirectional cam-
eras and this is a well-known problem, the solution of which is described in this thesis.

The accuracy of camera models is improved by introducing new ways of compensating
for different distortions, such as radial distortion, varying entrance pupil point and decentring
distortion. Calibration is improved by introducing new means of calculating start estimates of
camera parameters, from analysing shapes, sizes and positions of the reference points in the
images. These start estimates are needed in order to make the calibration converge. Methods
for calculating better reference centre points than the centres of gravity are developed in
order to increase the accuracy further. Non-trivial null spaces that occur during calibration
are identified. Awareness of these improve the calibration.

Calibrations with different camera models are implemented and tested for real cameras
in order to compare their accuracy. Certain models are better for certain situations, but the
overall performance and properties are favourable for the GCM. A stereo vision welding
robot system is developed, using the new model. It determines the geometry of a 3D weld
joint, so that a robot can follow it. The same system is implemented in a virtual environ-
ment using a simulation software. Such simulation is important since it makes it possible to
develop robot vision systems off-line.

KEYWORDS: Camera Model, Camera Calibration, Fisheye Camera, Catadioptric Camera,
Stereo Vision.
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Abbreviations and Notations

Abbreviation /
Notation

Description

CCM Conventional Camera Model
CMM Coordinate Measuring Machine
FCM Fisheye Camera Model
GCM Generic Camera Model
PCM Pinhole Camera Model
𝛼 Angle between optical axis and object line
𝛾𝑑, 𝛾𝑟 Image angle to 𝑥𝑑 and 𝑥𝑟

𝜆 Parameter
𝜇 Aspect ratio
𝑀,𝐵 Coordinate transformation matrices
𝑒𝑥, 𝑒𝑦, 𝑒𝑧 Unit vectors spanning camera coordinate system
𝑓 Focal distance
𝑓𝑓 (𝑟𝑝), 𝑓𝑟(𝑟) Functions compensating for radial distortion
𝑓𝑖(𝑟) Function compensating for distortion in the GCM
𝑓𝑙(𝑟) Defines the exit pupil point position
𝑓𝑜(𝑟) Defines the entrance pupil point position
𝑘𝑖 Camera parameters
𝑅 Rotation matrix, for rotation between coordinate systems
𝑟, 𝑟𝑑, 𝑟𝑝 Distance from 𝑥𝑟, 𝑥𝑑 and 𝑥𝑝 to the principal point
𝑠 Compensation for non perpendicular image coordinate system
𝑡 Translation vector for translation between coordinate systems
𝑥𝑐𝑎 Principal point position
𝑥𝑑𝑐
0 Image detector coordinate of principal point

𝑥𝑑 Decentring distorted image point
𝑥𝑑𝑟, 𝑥𝑟𝑟 Coordinates used for leaning detector compensation
𝑥𝑓𝑖 Auxilary point in the GCM
𝑥𝑓𝑜 Entrance pupil point
𝑥𝑜 Object point or reference point coordinates
𝑥𝑝 Undistorted image point (pinhole)
𝑥𝑟 Radially distorted image point
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Index lower/upper Description
𝑝 PCM coordinate (lower index)
𝑟 Radially distorted point
𝑑 Decentring distorted point
𝑐 Detector chip coordinate
1,2 ,3 𝑥-, 𝑦- and 𝑧- components of a vector, or numbering of camera

parameters
𝑤 3D world coordinate system (upper index)
𝑐 3D camera coordinate system
𝑖 2D image coordinate system
𝑑𝑐 2D detector chip coordinate system
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Chapter 1

Introduction

1.1 Background

This thesis considers applications where certain tasks are performed with the aid of cameras.
Such systems are often denoted “machine vision” systems. This work was initiated for ma-
chine vision in robot applications, but has led to more general solutions and developments
of camera systems. A vision system can guide traditional industrial robots, see Figure 1.1,
as well as different types of autonomous robots. The main focus of this thesis is to calculate
geometric information based on images to e.g. be used by robots. Camera modelling and
calibration are important parts of vision systems for determining such geometric information.

When starting this work a system called PosEye, developed by MEEQ, Sweden, was
available. The system calculated camera poses, i.e. positions and orientations, based on
images. This system was meant to measure robot poses in the industry. By mounting the
camera on the robot hand and using a transformation between the camera pose and the robot
hand pose, the pose of the robot could be measured. However, when analysing the accuracy
of the PosEye system it turned out to be too low for robot welding applications. It was
identified that a new camera model could improve the accuracy. That is the reason why a new
camera model has been developed. It would be advantageous if it could be improved in other
aspects as well, for e.g. generality, efficiency and simplicity, and be useful for a wider range
of camera types. A well-known problem for the use of camera models is that certain models
are normally used for different camera types [54], like fisheye and conventional cameras.
This is no longer needed with the introduction of the model presented in this thesis.

A camera model is a mathematical projection between a 3D “object space” and a 2D
image. The camera calibration calculates parameters of the camera model based on several
images. The initial PosEye system needed reliable start values of the parameters for the
camera calibration in order to robustly converge. Therefore methods were developed to
estimate these, based on the shapes of the image references.

One specific problem to be solved in the robotic welding industry is the automatic deter-
mination of a 3D path to be followed by the robot. Due to heat induced deformations from
the welding process and part tolerances, this path can vary from time to time. The problem
was solved using a stereo-vision robotic system. In order to develop this kind of robot vision
systems off-line, robot simulation software is useful and a virtual camera is used to simulate
the machine vision system.
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CameraRobot

Weld Tool

References and Weld Path

Figure 1.1: A vision system can measure the pose of a robot if the camera can see
references. It can also determine the geometry of a curve to be welded by the robot.
In that case it needs to first see the path from at least two directions and use stereo
vision.

1.2 Objectives
The objectives of this work is to develop new and better methods for the calculation of ge-
ometric information from images to be used by robots. This includes identifying possible
improvements and suggesting new solutions where cameras are used in industrial applica-
tions. Improvements that are needed mainly involve accuracy and efficiency and methods for
making the systems more general, e.g. for a wider range of camera types. The whole chain
of sub-systems from image processing to camera modelling and camera calibration needs to
be as accurate and efficient as possible.

1.3 Research Questions
The research questions for this work are

∙ What problems need to be solved when cameras are used for robot positioning in
welding?

∙ What camera types are frequently used for machine vision? How are they modelled
and calibrated with required accuracy?

∙ How can cameras, including wide angle optics, be calibrated to achieve enough accu-
racy for positioning?

∙ How can a robot vision welding system compensate for varying geometry of weld
joints?

∙ How can a robot vision welding system be developed in a virtual environment?
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1.4 Main Contributions
To answer the research questions the focus has been on accuracy of camera models and
calibration, and an emphasis has been to develop a multipurpose camera model and experi-
mentally investigate its accuracy. The novelties are mainly:

∙ Introduction of a generic camera model (GCM) and its different distortion compensa-
tions. It includes conversions both from object to image space and vice versa. A major
benefit of the GCM is that it includes wide angle (fisheye) cameras as well as ordinary
cameras and even catadioptric cameras within the same unified model structure. Ra-
dial distortion, decentring distortion and varying entrance pupil point are modelled in
novel ways. The radial distortion and varying entrance pupil compensations are more
general, computationally efficient and accurate for a wide range of camera types, com-
pared to previous state of the art. A geometric interpretation of the GCM is presented,
giving a better understanding of how the GCM works. An alternative formulation
of the GCM is presented, which includes both radial distortion, decentring distortion
and varying entrance pupil point. Methods for including variable focus and zoom in
modelling and calibration are presented.

∙ A thorough analysis of conventional camera models that has lead to improvements
making them more general, accurate and computationally efficient.

∙ Analysis of nontrivial null spaces, or ambiguities, that occur in the calibration, and
means to overcome them. This analysis improves the calculations and guides how to
robustly capture the calibration images.

∙ Algorithms for initial estimates of intrinsic and extrinsic camera parameters as well as
reference positions for the camera calibration, based on the shapes, sizes and locations
of the references in the images. This includes also methods for calculating accurate
image centre points of references.

∙ A simple expression for stereo vision calculations has been suggested, especially suit-
able for the new camera model.

∙ Experimental investigations in which the accuracy of different camera model configu-
rations are analysed.

∙ A robot stereo vision welding system developed using the new camera model. The
system is implemented both in reality and in a virtual environment.

1.5 Limitations
Machine vision is a large field and only parts of it are considered in this thesis. The work
only briefly discusses image processing. The camera models presented can be used for both
conventinal cameras, fisheye cameras and catadioptric cameras, but are not yet tested for
catadioptric. The algorithms are not optimised regarding calculation time. MATLAB is used
while other programmes, like C, could speed up the calculations. The programmes are not
yet made robust enough for industrial implementations.
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1.6 Outline of Thesis
In Chapter 2 camera modelling and calibration are described. Different types of previously
existing camera models are discussed, as well as the new generic camera model, GCM. Error
norms after calibration are calculated in order to compare the accuracy of different models.
Chapter 3 presents the use of calibrated cameras to calculate geometric information. Related
computer vision methods are then discussed in Chapter 4. Finally, Chapter 5 concludes and
discusses future work followed by a summary of the appended papers in Chapter 6.



Chapter 2

Camera Modelling and Calibration

An important part of machine vision is camera models together with camera calibration. A
calibrated camera model is useful for calculating geometric information from images which
in turn can guide robots. A camera model describes a mathematical projection between a 3D
object space and a 2D image space. The camera calibration calculates the parameters of the
camera model.

Autonomous robots in general use wide angle fisheye or omnidirectional cameras with
high distortion, while traditional industrial robots use cameras with lower distortion. Thus
they are both important for different applications. Lhuillier [54] claims that “the automatic
reconstruction of 3D models from image sequences is still a very active field of research.
All existing methods are designed for a given camera model, and a new (and ambitious)
challenge is 3D modelling with a method which is exploitable for any kind of camera”. The
generic camera model, GCM, presented in Section 2.2 and in Papers II and III, has been
developed to meet this challenge. It shows that it is possible to have one camera model struc-
ture with the advantages of a fisheye camera model for a fisheye camera, and the advantages
of a conventional camera model for a conventional low distortion camera. It can even model
catadioptric cameras, i.e. cameras with a mirror of some shape in front of it. At the same
time, it can model cameras that do not have a single viewpoint, i.e. cameras with a varying
entrance pupil point, and it has methods for decentring distortion compensation.

2.1 Camera Models
General aspects of camera models are first introduced, followed by related works in camera
modeling and then a presentation of the new generic camera model, GCM.

2.1.1 Introduction
The camera model consists of parameters called intrinsic and extrinsic camera parameters
together with a specific algorithm. The extrinsic camera parameters are unique for each
image. They are the 6D pose, i.e. the position and orientation in some coordinate system, of
the camera. The intrinsic camera parameters, e.g. focal distance, principal point coordinates
and distortion parameters, describe how the image is formed inside the camera, based on
knowledge of the 3D object space and the extrinsic parameters. If the camera parameters
and the position of an object are known, the camera model can compute where the object
ends up in the image. Vice versa, if a 2D image point is known, the camera model can
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2D Image plane

3D Object space

ox

rx

Optics

Object line

Image point

α

ix1

ix2

Optical
Axis

wx1

wx2

wx3

p

Figure 2.1: Illustration of a camera with image point, 𝑥𝑟, and the corresponding
object line.

determine all the possible points in 3D from where the image point may have originated.
These points in 3D space are called the object line. See a schematic illustration of a camera
in Figure 2.1. The axis of rotational symmetry of the optics is called the optical axis. The
angle between the optical axis and the object line is denoted 𝛼. The point 𝑝, the intersection
of the optical axis and the object line inside the lens system is considered the position of the
camera.

Upper index 𝑤 indicates a world coordinate system, upper index 𝑖 indicates a 2D image
coordinate system. Upper index 𝑐 is used for a 3D camera coordinate system with origin in
𝑝 and with 𝑥, 𝑦 axes parallel to the image 𝑥, 𝑦 axes and 𝑧 axis along the optical axis. Indices
1, 2, 3 denote 𝑥, 𝑦, 𝑧 coordinates respectively.

Figure 2.2 shows natural conversions between the 3D object space and 2D image planes
for different camera models. The different camera models PCM, CCM, FCM and GCM will
be presented in more detail in this chapter. The different models project between the 3D
surrounding and 2D image planes with or without distortion compensation. In addition to
the distortions shown in Figure 2.2 varying entrance pupil point can be included in the GCM.

2.1.2 Pinhole Camera Model

The simplest kind of practical camera model is the pinhole camera model (PCM), see left
part of Figure 2.3, as in e.g. Faugeras [29] and Hartley [39]. The orthographic projection is
even more simple but not very realistic since it projects objects directly perpendicular to the
image plane.

The PCM is such that if a line is drawn from a 3D point observed by the camera to a point
𝑝 in the centre of the optics, the image point is the intersection with the image plane. This is
called perspective projection. The PCM is collinear and has no distortion, i.e. a straight line
in object space is mapped to a straight line in the image for the PCM. A lens system usually
causes some distortion and the real image thereby differs from a pinhole image. A camera
model with distortion can be used to calculate a corresponding non-distorted image, based
on a distorted image, see the image of a checkerboard pattern in Figure 2.4. A common way
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Figure 2.2: Overview of different camera model projections. Arrows show natural
projections between 3D object and 2D image spaces for the camera models GCM,
PCM, CCMr, CCMf and FCM. Projection in the opposite direction of an arrow re-
quires solving a non linear equation.
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Figure 2.3: Simplified cross section of cameras. Left: PCM, Right: with radial
distortion. 𝑥𝑜 and 𝑥′𝑜 are points in object space. 𝑥𝑝 is the PCM image point corre-
sponding to 𝑥𝑜. 𝑥𝑟 is the radially distorted point. The image point 𝑥𝑝 corresponding
to 𝑥′𝑜 is far away from the centre of the image.
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Figure 2.4:Left: Fisheye image of a straight checkerboard pattern. Right: Processed
image where coordinates of checkerboard corners are obtained, shown as stars. These
coordinates are then made undistorted (using the GCM in Section 2.2), shown as
circles.

of modelling a camera with distortion is to use a transformation between a distorted and a
non-distorted image plane, and then apply the PCM on the non-distorted image, as can be
seen in Figure 2.2.

In order to get an accurate camera model, the distortions should be included in the
model. The distortion types considered in this thesis are radial distortion, decentring distor-
tion and varying entrance pupil point. A transformation is also needed between a simplified
image coordinate system with the origin in the image centre and the real detector chip pixel
coordinates of an image point.

For the PCM, a projection between image and object space using homogeneous coordi-
nates is defined by,

�

[
−xi

p

f

]
= M

[
xw
o

1

]
(2.1)

where

M =
[
R3x3 t

]
(2.2)

transforms an extended 3D object point[xwT
o 1]T in a world coordinate system, to a camera

coordinate systemxc
o. � is a parameter andf is the focal distance.xi

p is the 2D image PCM
coordinate in a simplified coordinate system with the origin in the image centre. The coor-
dinatesxi

p will be gereralised to pixel coordinates in Section 2.2.3. (2.1) is further motivated
in Section 2.2.4, see also Heikkilä [41].

The well-developed mathematical theory of projective geometry can be used for differ-
ent kinds of geometry calculations based on images, see e.g. Faugeras [29] and Hartley [39].
Projective geometry is valid only for non-distorted image calculations. Therefore, it is an
advantage if the camera model has the non-distorted PCM camera model as a simple special
case, and that the model can be used for transforming an image between a distorted and a
non-distorted image, as is the case of the GCM.

2.1.3 Radial Distortion

A camera with only radial distortion is such that its image can be transformed into a non-
distorted image by moving image points straight away or towards the image centre, the prin-
cipal point, see Figure 2.3. The distance between an image pointxr and the principal point
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is denoted 𝑟, and the distance between the corresponding non-distorted image point 𝑥𝑝 to
the principal point is 𝑟𝑝. Models using a polynomial function in 𝑟 or 𝑟𝑝 to adjust the im-
age points are here called conventional camera models, CCM. When the function transforms
from a non-distorted to a distorted image it is called a forward model, here denoted CCMf,
as in (2.3), and when the function transforms from a distorted to a non-distorted image it is
called a reverse model, denoted CCMr, as in (2.4).

Forward model, CCMf: 𝑟 = 𝑓𝑓(𝑟𝑝) = 𝑟𝑝 + 𝑘𝑝1𝑟
3
𝑝 + 𝑘𝑝2𝑟

5
𝑝... (2.3)

Reverse model, CCMr: 𝑟𝑝 = 𝑓𝑟(𝑟) = 𝑟 + 𝑘𝑟1𝑟
3 + 𝑘𝑟2𝑟

5... (2.4)

The polynomial compensation for radial distortion here contains only odd powers of 𝑟 and 𝑟𝑝.
Sometimes both odd and even powers are used as in Hartley [39]. A forward model is more
suitable for transforming from a non-distorted to a distorted image, while a reverse model is
more suitable for transforming from a distorted to a non-distorted image. When transforming
in the opposite direction, using CCMf means that the polynomial equation in 𝑟𝑝 (2.3) must
be solved, and for CCMr (2.4) must be solved for 𝑟. Furthermore, the image coordinates for
the distorted point 𝑥𝑟 and non-distorted image point 𝑥𝑝 are related as 𝑥𝑝 = 𝑥𝑟𝑓𝑟(𝑟)/𝑟 and
𝑥𝑟 = 𝑥𝑝𝑓𝑓 (𝑟𝑝)/𝑟𝑝 expressed in a coordinate system in which the origin is the principal point.

An early paper about camera models and camera calibration was written by Brown, [13].
It describes a CCMr for distortion compensation with a polynomial as 𝑓𝑟(𝑟). Tsai [81]
describes the same CCMr and shows more details concerning how to project between the 3D
object space and the 2D image space. Heikkilä [41] and Nowakowski [65] show both the
CCMr and CCMf models using odd power polynomials.

One problem with the methods (2.3) and (2.4) is that 𝑟𝑝 → ∞ for 𝛼 → 900 for the PCM;
while 𝑟 is limited in reality, see Figure 2.3. This cannot be modelled by the polynomials (2.3)
and (2.4). Therefore, other methods are used for these wide angle so called fisheye cameras.
However the CCMf and CCMr can also handle this problem, as shown in Paper III, by using
quotients between polynomials instead of just polynomials in the distortion functions. What
is needed for CCMr is a function 𝑟𝑝(𝑟) with the qualitative behaviour of the left plot in
Figure 2.5. The figure is a bit exaggerated by considering an extreme fisheye camera with a
maximum viewing angle of 𝛼 = 180𝑜. Two constants 𝑟90 and 𝑟180 are defined corresponding
to the values of 𝑟 for the angles 𝛼 = 90𝑜 and 𝛼 = 180𝑜 respectively. The behaviour of the left
plot can be achieved by using a quotient between polynomials as 𝑟𝑝(𝑟) with zeros in 𝑟 = 0
and 𝑟 = 𝑟180 and a pole, i.e. a zero in the denominator, at 𝑟 = 𝑟90. This quotient makes
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Figure 2.5: Plots of radial distortion functions. Solid for 𝛼 ≤ 90𝑜 and dashed for
𝛼 > 90𝑜. Left, CCMr; Right CCMf.
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the CCMr model more general, since it also models cameras with high distortion and large
angles of view. This is generalised to more distortion parameters in Paper III. At the same
time as the model gets more general, it becomes more computationally efficient using the
quotients between polynomials. The degree of the polynomial equation from non-distorted
to distorted image then gets a lower degree in relation to the number of camera parameters,
compared to ordinary CCMr models (2.4). The CCMf should have a behaviour of the right
plot in Figure 2.5 which can be achieved using another similar type of approach described in
Paper III.

Fisheye Camera Models

A camera model specialised for fisheye cameras is here denoted a fisheye camera model,
FCM. Brauer-Burchardt [12] suggests a function between 𝑟 and 𝑟𝑝 suitable for such cameras.
It includes both the forward and the reverse model. An FCM, using a logarithmic function
with one radial distortion parameter to transform an image from non-distorted to distorted
image is described by Basu [7]. Courbon [23] also lists and compares a number of camera
models suitable for fisheye cameras. One method is to use a function 𝑟(𝛼) instead of a
function 𝑟𝑝(𝑟) or 𝑟(𝑟𝑝). Bakstein [4] lists several such functions, which all have one radial
distortion parameter. Kannala [45] models radial distortion for fisheye cameras by using a
polynomial in 𝛼 with only odd powers to calculate 𝑟:

𝑟(𝛼) = 𝑓𝛼 + 𝑘𝑘1𝛼
3 + 𝑘𝑘2𝛼

5 + 𝑘𝑘3𝛼
7... (2.5)

The degree of the polynomial can be adjusted to provide a suitable number of radial dis-
tortion parameters. This model naturally has some radial distortion included, even for one
parameter, something which is not wanted for low distortion cameras. Such a camera where
𝑟 is proportional to 𝛼 is called an ideal fisheye camera.

In order to model a PCM using (2.5) we first observe that for the PCM 𝑟𝑝 = 𝑟 = 𝑓 tan𝛼.
A Taylor series expansion of tan𝛼 around 𝛼 = 0 then results in the relation

𝑟(𝛼) = 𝑓(𝛼 +
1

3
𝛼3 +

2

15
𝛼5 +

17

315
𝛼7...) (2.6)

where 𝛼 is measured in radians. Thus FCMs based on (2.5) using several camera parameters
can be considered generic since they also work for conventional cameras. However, since
they do not have the PCM as a simple special case they are unnecessarily complicated and
less suitable for low distortion cameras. In a simulated environment it is an advantage if the
PCM is a simle special case, as in Paper V. For cameras with a small field of view, (small 𝛼),
and low distortion the model described by (2.5) is accurate also with no distortion parameter
except 𝑓 , but not for cameras with a wider field of view and low radial distortion.

2.1.4 Decentring Distortion
Decentring distortion is not rotationally symmetric around the optical axis, and can be mod-
elled by another kind of transformation between a distorted and a non-distorted image plane
or a transformation between an image plane with decentring distortion and an image plane
with only radial distortion. Decentring distortion is caused by e.g. badly aligned lenses in
the lens system, a leaning detector surface or a not constant refraction index in the lenses.
A common approach for handling decentring distortion is the method in Slama [73] with a
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polynomial expression including cross terms in the 𝑥- and 𝑦- directions. Paper III and Sec-
tion 2.2.2 describe two methods for decentring distortion, one specialised on leaning detector
compensation while the other is more general.

2.1.5 Varying Entrance Pupil Point
Another distortion type is varying entrance pupil point. The entrance pupil point is the
intersection between the object line and the optical axis. Varying entrance pupil point occurs
if the position of the entrance pupil point on the camera varies with the angle 𝛼. A camera
with a single effective viewpoint is a camera with a constant entrance pupil point. If the
entrance pupil point is not constant, it is not possible to calculate a non-distorted image
based on a distorted image, even if the camera parameters are known. A model including
varying entrance pupil point is presented in Gennery [31], see also the end of Section 2.2.1.
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Figure 2.6: Catadioptric omnidirectional camera. A catadioptric camera gives a
single viewpoint if all the object lines intersect with the optical axis in the same
point, 𝑥𝑓𝑜.

2.1.6 Catadioptric Cameras
Catadioptric omnidirectional cameras have a, usually rotationally symmetric, mirror in front
of the lens system, see Figure 2.6, to increase the field of view as in e.g. Benosman [9]
and Chahl [15]. Catadioptric omnidirectional cameras that provide a single viewpoint are
analysed by Baker in [3] and Geyer in [32] and [33]. A single viewpoint means that the
entrance pupil point is constant, so the image can be converted to non-distorted images. An-
other model for single viewpoint catadioptric and other highly distorted cameras is presented
by Claus in [22]. That model use quotients between non rotationally symmetric second de-
gree polynomials. Planar, conical, spherical, ellipsoidal and hyperbolic mirror shapes can
give a single viewpoint, see Baker [3]. Another work on catadioptric omnidirectional and
fisheye cameras with models with a single viewpoint, including how they are used for e.g.
autonomous robots, is presented in Scaramuzza [70]. A catadioptric camera model for both
single viewpoint and not single viewpoint cameras is presented in [53]. The GCM, presented



14 2. Camera Modelling and Calibration

fix

fox

rx

ox

caxr

Optical
Axis

Object
Line

Detector Surface

Lens System

α

α

fix

fox

rx

ox

caxr

Optical
Axis

Object
Line

α

α

Image Plane

Figure 2.7: 2D illustrations of the GCM. Left, intuitive model. Right, the actual
model, in which the mathematical image plane and 𝑥𝑐𝑎 are moved closer to 𝑥𝑓𝑜. 𝑥𝑐𝑎

is a fixed point in the lens system, while 𝑥𝑓𝑜 is the entrance pupil point that can move.

in the next section, can handle rotational symmetric catadioptric cameras as described in Pa-
per III, and it can handle cameras that have and do not have a single viewpoint.

2.2 New Generic Camera Model
A new generic camera model, GCM, is presented in Paper II and further developed in Paper
III. To explain the GCM, a geometric construction of the model is described, see the left part
in Figure 2.7. First an image coordinate system is used in which the origin is the principal
point, 𝑥𝑐𝑎. This will be transformed into the actual detector pixel coordinates in the end. The
GCM first handles both radial distortion and varying entrance pupil point, and the decentring
distortion is added afterwards.

2.2.1 Radial Distortion and Varying Entrance Pupil Point
For the GCM two points on the optical axis are defined, called 𝑥𝑓𝑖 and 𝑥𝑓𝑜. These can slide
along the optical axis, and their positions depend on 𝑟. What is wanted is a relationship
between the 2D image point 𝑥𝑟 and the corresponding object line. In the model, the object
line is such that it goes through the point 𝑥𝑓𝑜 and is parallel to a line from the image point 𝑥𝑟

and the point 𝑥𝑓𝑖. The distance between the principal point and the point 𝑥𝑓𝑖 is 𝑓𝑖(𝑟), and the
corresponding distance between the principal point and the point 𝑥𝑓𝑜 is 𝑓𝑜(𝑟). The function
𝑓𝑖(𝑟) determines the radial distortion, and 𝑓𝑜(𝑟) the entrance pupil point variations. They are
similar to the radial distortion compensation functions of the CCM models in (2.3) and (2.4),
and their parameters are intrinsic camera parameters.

The principal point in a 3D world coordinate system, called 𝑥𝑤
𝑐𝑎, is considered the po-

sition of the camera. Unit vectors 𝑒𝑤
𝑥 , 𝑒𝑤

𝑦 and 𝑒𝑤
𝑧 are constructed along the coordinate axes

of the 3D camera coordinate system, expressed in world coordinates. 𝑒𝑤
𝑧 is along the op-

tical axis and 𝑒𝑤
𝑥 and 𝑒𝑤

𝑦 are along the image 𝑥- and 𝑦- axes. If the 2D image coordinate
𝑥𝑖

𝑟 is known in an image coordinate system with its origin in the principal point, 𝑥𝑐𝑎, the
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coordinates in a 3D world coordinate system 𝑥𝑤
𝑟 can be calculated as

𝑥𝑤
𝑟 = 𝑥𝑤

𝑐𝑎 + 𝑥𝑖
𝑟1𝑒

𝑤
𝑥 + 𝑥𝑖

𝑟2𝑒
𝑤
𝑦 (2.7)

where 𝑥𝑖
𝑟1 and 𝑥𝑖

𝑟2 are the image coordinates. The points 𝑥𝑤
𝑓𝑜 and 𝑥𝑤

𝑓𝑖 can be calculated
according to

𝑥𝑤
𝑓𝑜 = 𝑥𝑤

𝑐𝑎 + 𝑓𝑜(𝑟)𝑒
𝑤
𝑧 (2.8)

𝑥𝑤
𝑓𝑖 = 𝑥𝑤

𝑐𝑎 + 𝑓𝑖(𝑟)𝑒
𝑤
𝑧 (2.9)

The following function is proposed for 𝑓𝑖(𝑟) and motivated in Paper III:

𝑓𝑖(𝑟) =
𝑓 + 𝑘𝑞1𝑟 + 𝑘𝑞2𝑟

2...

1 + 𝑘𝑟1𝑟 + 𝑘𝑟2𝑟2...
(2.10)

Negative 𝑓𝑖(𝑟) corresponds to 𝛼 > 90𝑜 shown in Figure 2.8. A first approach using polyno-
mial functions for 𝑓𝑖(𝑟) was discussed in Paper II and is further developed into the polyno-
mial quotient function (2.10) in Paper III. Other functions can also be considered. 𝑓 is the
focal distance as in PCM, CCM and FCM. One advantage of the GCM is that the function
𝑓𝑖(𝑟) does not approach infinity for 𝛼 = 90𝑜, instead 𝑓𝑖(𝑟) = 0 for 𝛼 = 90𝑜.

A model in [70] by Scaramuzza is equivalent to a special case of the GCM. There a
constraint is used, which is equivalent to

𝑑𝑓𝑖(𝑟)

𝑑𝑟
∣𝑟=0 = 0 (2.11)

This leads to the following constraint between the parameters in (2.10):

𝑘𝑟1 =
𝑘𝑞1

𝑓
(2.12)

The constraint is only empirically and not theoretically motivated in [70]. However, if this is
a valid assumption it can guide the calibration calculation and get the same accuracy for one
less camera parameter. This is evaluated in Section 2.4.

There is a relation between the models CCMr and GCM, if 𝑓𝑜(𝑟) is constant, derived
from the similarity of triangles, cf. Figure 2.3 and Figure 2.7:

𝑟𝑝(𝑟)

𝑓
=

𝑟

𝑓𝑖(𝑟)
(2.13)
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Figure 2.8: Illustration of the GCM with an angle 𝛼 > 90𝑜. 𝑓𝑖(𝑟) is negative so 𝑥𝑓𝑖

is below the image plane.
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Using (2.13), the CCMr and the GCM can have the same behaviour, but the relation is only
valid if the entrance pupil point is constant, 𝑓𝑜(𝑟) = 𝑐. If a camera is calibrated using the
CCMr, a corresponding function 𝑓𝑖(𝑟) can be calculated according to (2.13), resulting in the
same camera model projection. The same is valid for the other direction, so that if 𝑓𝑖(𝑟)
is known the corresponding 𝑟𝑝(𝑟) can be calculated. If a polynomial is used as 𝑓𝑖(𝑟) the
equivalent CCMr is achieved using 𝑟 divided by a polynomial as 𝑟𝑝(𝑟). A corresponding
non-distorted image can be calculated with the GCM, using (2.13). This is done when undis-
torting the fisheye image in Figure 2.4. This is an efficient procedure, there is no need to
solve an equation, only to compute the function value.

The following function is proposed, and motivated in Paper III, for 𝑓𝑜(𝑟), modelling the
entrance pupil point:

𝑓𝑜(𝑟) =
𝑘𝑠1𝑟 + 𝑘𝑠2𝑟

2...

1 + 𝑘𝑡1𝑟 + 𝑘𝑡2𝑟2...
(2.14)

There is an ambiguity between a general definition of 𝑓𝑜(𝑟) and the position of the camera.
A constraint solves this problem. A suitable constraint is that 𝑓𝑜(0) = 0, which is used
in (2.14). This will “move” the point 𝑥𝑓𝑜 down close to the principal point, 𝑥𝑐𝑎, or rather
the image plane, and 𝑥𝑓𝑖 will move up. This defines the position of the camera in a point
in the centre of the optics, as for the CCM, see the right plot in Figure 2.7. Note that the
mathematical image plane is not in the same position as the real detector. This is common
also for other camera models where sometimes the image plane is in front of the optics.

From (2.7-2.14) the object line, corresponding to an image point 𝑥𝑖
𝑟 can be calculated

according to

𝑥𝑤
𝑓𝑜 + 𝜆(𝑥𝑤

𝑓𝑖 − 𝑥𝑤
𝑟 ) (2.15)

which also can be expressed as

𝑥𝑤
𝑐𝑎 + 𝑓𝑜(𝑟)𝑒

𝑤
𝑧 + 𝜆(𝑓𝑖(𝑟)𝑒

𝑤
𝑧 − 𝑥𝑖

𝑟1𝑒
𝑤
𝑥 − 𝑥𝑖

𝑟2𝑒
𝑤
𝑦 ) (2.16)

This is the object line in a parametric form. The parameter, 𝜆, can be varied to move along
the line. (2.7-2.16) represent the conversion from an image point 𝑥𝑖

𝑟 to the object line. The
same camera model is used when there is a need to go in the opposite direction, from a 3D
point observed by the camera to the point where it will end up in the 2D image. First the
object point’s position 𝑥𝑤

𝑜 is transformed to the 3D camera coordinate system 𝑥𝑐
𝑜. Then the

following equation is used, derived using the similarity of triangles in Figure 2.7:

𝑓𝑖(𝑟)

𝑟
=

𝑥𝑐
𝑜3 − 𝑓𝑜(𝑟)√
𝑥𝑐

𝑜1
2 + 𝑥𝑐

𝑜2
2

(2.17)

The equation is solved for 𝑟. Then the fact is used that the ratio between 𝑥𝑖
𝑟1 and 𝑥𝑖

𝑟2 is the
same as for 𝑥𝑐

𝑜1 and 𝑥𝑐
𝑜2, although having opposite signs. This uniquely defines the 2D point

as

𝑥𝑖
𝑟𝑗 = −𝑟

𝑥𝑐
𝑜𝑗√

𝑥𝑐
𝑜1

2 + 𝑥𝑐
𝑜2

2
, 𝑗 = 1, 2 (2.18)

If 𝑓𝑖(𝑟) and 𝑓𝑜(𝑟) are polynomials or quotients between polynomials, then (2.17) for pro-
jecting to the image will be a polynomial equation. The GCM illustrated in Figure 2.7 and
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the equations (2.7-2.18) can thus project both from the image to object space and vice versa.
These projections are indicated in Figure 2.2. The GCM can convert efficiently in the oppo-
site direction of an arrow in Figure 2.2 since that requires solving a polynomial equation of
normally a low degree. In Paper III it is also presented how to model catadioptric cameras
using the GCM.

The model by Gennery [31], developed independently of the GCM, can also include
a varying entrance pupil point. It can also model both conventional cameras and fisheye
cameras and has the PCM as a special case. However, it is more complicated and needs
several iterations to perform a camera model projection, while the GCM can do that in a
single strike. Gennery [31] offers no simple way of converting an image to a non-distorted
image even if the entrance pupil point is constant.

2.2.2 Decentring Distortion
There exist a large number of decentring distortion compensation methods, e.g. in [73]. Two
new methods are presented here. One is specialised in compensating for a leaning detector.
The other is more general and can be used for different decentring distortion effects. An
advantage of the methods presented here is that it does not matter how the image coordinate
axes are oriented in relation to the irregularities of the decentring distortion. The methods
determine the relations between radially distorted image points 𝑥𝑟 and decentring distorted
image points, 𝑥𝑑, which is indicated in Figure 2.2.

Leaning Detector Surface

To handle leaning detector surface, first the image coordinate system is temporarily rotated at
an angle 𝛽 around the principal point, 𝑥𝑐𝑎, so that the new 𝑥-axis is pointing in the direction
of the steepest decent of the detector. After that the leaning detector compensation formulae
below (2.19), (2.20) are applied, and finally the rotation is reversed. A rotated image point
in the non-leaning detector is denoted 𝑥𝑖

𝑟𝑟. The corresponding rotated point in the leaning
detector, i.e. the decentring distorted point, is called 𝑥𝑖

𝑑𝑟. 𝑟 is just as previously the distance
to the principal point in the non-leaning image plane. The distance from the principal point
to an exit pupil point is 𝑓𝑙(𝑟), so this point can vary with 𝑟 in the model, but it can also be
set to a constant value. The function 𝑓𝑙(𝑟) is of the same form as the parametric functions
for radial distortion 𝑓𝑖(𝑟) in the GCM, (2.10). 𝛿 is the leaning angle of the detector. The
relations between 𝑥𝑖

𝑟𝑟 and 𝑥𝑖
𝑑𝑟 when compensating for the leaning detector are, derived from

projections to the 𝑥𝑧 plane and the 𝑦𝑧 plane

cos(arctan(
𝑥𝑖
𝑟𝑟1

𝑓𝑙(𝑟)
))

𝑥𝑖
𝑑𝑟1

=
cos(𝛿 + arctan(

𝑥𝑖
𝑟𝑟1

𝑓𝑙(𝑟)
))

𝑥𝑖
𝑟𝑟1

(2.19)

cos(arctan(
𝑥𝑖
𝑟𝑟2

𝑓𝑙(𝑟)
))

𝑥𝑖
𝑑𝑟2

=
cos(arctan(

𝑥𝑖
𝑟𝑟2

𝑓𝑙(𝑟)
) + arctan(

𝑥𝑖
𝑟𝑟1 tan 𝛿

𝑥𝑖
𝑟𝑟2

))

𝑥𝑖
𝑟𝑟2

(2.20)

The relations are equivalent to the geometric construction illustrated in Figure 2.9. A line is
extended from the exit pupil point on the optical axis to 𝑥𝑟𝑟 in the non-leaning plane to the
leaning plane. The intersection of the leaning image plane is 𝑥𝑑𝑟. The corresponding points
of 𝑥𝑖

𝑟𝑟 and 𝑥𝑖
𝑑𝑟 in the not rotated coordinate system are denoted 𝑥𝑖

𝑟 and 𝑥𝑖
𝑑 respectively.
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Figure 2.9: Simplified 2D illustration of the leaning detector compensation.

With these formulae it is easy to convert from the non-leaning to leaning detector coordi-
nates, since 𝑥𝑖

𝑑𝑟1 and 𝑥𝑖
𝑑𝑟2 can easily be explicitly extracted, and only the values of functions

need to be calculated. In the direction from 𝑥𝑖
𝑑𝑟 to 𝑥𝑖

𝑟𝑟 non linear equations need to be solved.

General Decentring Distortion

A general method for decentring distortion is also presented in Paper III. This is an improve-
ment of what was given in Paper II. These calculations are performed in polar coordinates.
The origin is still kept in the centre of the image. As before, index 𝑟 denotes radially dis-
torted points and index 𝑑 denotes decentring distorted points. Once the polar coordinates,
i.e. radius 𝑟 and angle 𝛾𝑟, for the points are calculated, the following formulae are applied
for the non-rotationally symmetric distortion:

𝑟𝑑(𝑟, 𝛾𝑟) = 𝑟 +
𝑁𝑟∑
ℓ=1

(

𝑛𝑟ℓ∑
𝑗=1

𝑘𝑔ℓ𝑗𝑟
𝑗+1) sin(ℓ𝛾𝑟 + 𝜑𝑞ℓ) (2.21)

𝛾𝑑(𝑟, 𝛾𝑟) = 𝛾𝑟 +

𝑁𝑔∑
ℓ=1

(

𝑛𝑔ℓ∑
𝑗=1

𝑘𝑠ℓ𝑗𝑟
𝑗) sin(ℓ𝛾𝑟 + 𝜑𝑢ℓ) (2.22)

This is similar to Fourier expansions. The equation (2.21) provides a small radial correction
and (2.22) a small angular correction for any point (𝑟, 𝛾𝑟) in the image. The expressions
yield new polar coordinates that can be converted back to Cartesian coordinates. The con-
stants 𝑘𝑖 and 𝜑𝑖 are intrinsic camera parameters. 𝑁𝑟, 𝑁𝑔, 𝑛𝑟ℓ and 𝑛𝑔ℓ determine how many
camera parameters are used in the compensation. This method is efficient for converting
from non-decentring distorted coordinates to decentring distorted coordinates, just as for the
leaning detector compensation. To efficiently convert in the opposite direction 𝑟 and 𝑟𝑑 can
be exchanged together with 𝛾𝑟 and 𝛾𝑑 in (2.21) and (2.22).

An illustration of the distortion compensation is shown in Figure 2.10. It shows in an
exaggerated way how the angle depending part 𝑟𝑑(𝛾𝑟) in the trigonometric expression varies
with 𝛾𝑟 for ℓ = 2 and ℓ = 4 in (2.21). The green dotted curve represent ℓ = 2 and the blue
dashed curve is for ℓ = 4. Observe that using this method also the origin can be adjusted for
decentring distortion if the method here is combined with the coordinate transformation that
will be presented in the next subsection.
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Figure 2.10: Illustration of the general decentring distortion method. Distortion
curves of the angle depending part in (2.21) are shown forℓ = 2 (green dotted curve)
andℓ = 4 (blue dashed curve).

A similar method was suggested by Kannala in [45], but the polar expressions in (2.21),
(2.22) offer more freedom in describing the distortion than what is given in [45]. Further, the
radial part is expressed inr in our model, which gives more direct calculations than in [45],
where the angle� is used.

2.2.3 Detector Chip Coordinates

In the expressions so far, it has been assumed that the image coordinate system originates in
the principal point. Also, the same coordinate axis units are used in the two image directions,
and the image coordinate axes have been perpendicular. In a real camera however, this is
usually not the case, but that problem is solved by a conversion between the real camera
detector chip coordinate system and the simplified ones used above. This is needed both
for the PCM, CCM, FCM and the GCM and is not a new contribution for this work. The
transformation between the coordinate systems, i.e. between a possibly distorted image point
xi and a detector chip coordinate,xd, is

xdc(xi) =

[
�k s
0 k

]
xi + xdc

0 ≜ Bxi + xdc
0 (2.23)

The equation (2.23) shifts the origin, withxdc
0 , and transforms the coordinate system, so that

it coincides with the detector chip coordinate system.� is the aspect ratio, compensating
for different scaling in the imagex- andy- direction, i.e. used if the pixel distances are not
the same in the different image directions. If the detector image coordinate axes are not
perpendicular to each other the parameters is used, otherwise it is zero. The value ofk
scales the coordinate system. It can normally be set to unity. In that case it causes the focal
distance,f , and the image coordinates ofxi

d, x
i
r andxi

p to measure in units of pixel distances
in the imagey- direction. The coordinate transformation (2.23) is a conversion between the
two lower boxes of Figure 2.2.
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2.2.4 Alternative Camera Model Representation
A compact representation of the GCM will be derived. According to Figure 2.7 we have

𝜆(−𝑥𝑖
𝑟) =

[
𝑥𝑐

𝑜1

𝑥𝑐
𝑜2

]
(2.24)

𝜆𝑓𝑖(𝑟) = 𝑥𝑐
𝑜3 − 𝑓𝑜(𝑟) (2.25)

which can be expressed as⎡
⎣ 0

0
𝑓𝑜(𝑟)

⎤
⎦+ 𝜆

[
−𝑥𝑖

𝑟

𝑓𝑖(𝑟)

]
= 𝑀

[
𝑥𝑤

𝑜

1

]
(2.26)

where 𝑀 is defined in (2.2), so that the right hand side of (2.26) is 𝑥𝑐
𝑜. The PCM in (2.1)

is a special case of (2.26) where 𝑓𝑜(𝑟) = 0, 𝑓𝑖(𝑟) = 𝑓 and 𝑥𝑖
𝑟 = 𝑥𝑖

𝑝. The procedures for
decentring distortion in Section 2.2.2 can be seen as a function 𝑔(⋅) such that

𝑥𝑖
𝑑 = 𝑔(𝑥𝑖

𝑟) (2.27)

By inverting (2.23) we obtain

𝑥𝑖
𝑑 = 𝐵−1𝑥𝑑𝑐

𝑑 − 𝐵−1𝑥𝑑𝑐
0 (2.28)

If 𝑔−1(⋅) is the inverse function of 𝑔(⋅), then

𝑥𝑖
𝑟 = 𝑔−1(𝑥𝑖

𝑑) = 𝑔−1(𝐵−1𝑥𝑑𝑐
𝑑 −𝐵−1𝑥𝑑𝑐

0 ) (2.29)

and (2.26) and (2.29) give a compact representation of the GCM model, where⎡
⎣ 0

0
𝑓𝑜(𝑟)

⎤
⎦+ 𝜆

[
−𝑔−1(𝐵−1𝑥𝑑𝑐

𝑑 − 𝐵−1𝑥𝑑𝑐
0 )

𝑓𝑖(𝑟)

]
= 𝑀

[
𝑥𝑤

𝑜

1

]
(2.30)

and

𝑟 = ∣∣𝑥𝑖
𝑟∣∣ = ∣∣𝑔−1(𝐵−1𝑥𝑑𝑐

𝑑 − 𝐵−1𝑥𝑑𝑐
0 )∣∣ (2.31)

This defines the GCM model together with 𝑓𝑖(𝑟) in (2.10) and 𝑓𝑜(𝑟) in (2.14). If there is
no decentring distortion 𝑔−1(𝐵−1𝑥𝑑𝑐

𝑑 − 𝐵−1𝑥𝑑𝑐
0 ) is replaced by (𝐵−1𝑥𝑑𝑐

𝑑 − 𝐵−1𝑥𝑑𝑐
0 ). If the

projection is made to an image plane in front of the camera, which is commonly done, the
minus sign in front of 𝑔−1(⋅) will change to a plus sign. (2.30) is a generalisation of a
model used by Micusik [61] and Scaramuzza [70] with constant entrance pupil point and no
decentring distortion. Figure 2.7 together with the discussion in Section 2.2 give a geometric
understanding of what the function 𝑓𝑖(𝑟) (as well as 𝑓𝑜(𝑟)) implies.

In order to compute an “object line” using this procedure, (2.30), the vector 𝑥𝑤
𝑜 is re-

deemed so that

𝑅−1(

⎡
⎣ 0

0
𝑓𝑜(𝑟)

⎤
⎦−𝑡)+𝜆𝑅−1

[
−𝑔−1(𝐵−1𝑥𝑑

𝑑 − 𝐵−1𝑥𝑑
0)

𝑓𝑖(𝑟)

]
≡ 𝑢𝑤+𝜆𝑣𝑤 = 𝑥𝑤

𝑜 (2.32)

Where 𝑅 and 𝑡 are the rotation and translation inside matrix 𝑀 . 𝑢 = 𝑥𝑓𝑜 is a point on the
object line, and 𝑣 = 𝑥𝑓𝑖 − 𝑥𝑟 is the direction of the line. 𝜆 > 0 can be varied to move along
the line. In order to project to the image, again equation (2.17) for 𝑟 is used. Then 𝑥𝑖

𝑟 and 𝜆
are calculated using (2.26). Finally (2.27) in (2.23) gives the image 𝑥𝑑𝑐

𝑑 .
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2.2.5 Variable Focus and Zoom
Two different methods of including variable focus and zoom in the model as well as in the
calibration are presented in Paper II.

2.3 Camera Calibration
The camera parameters are calculated in the camera calibration procedure, which is per-
formed regardless of the model used. These calculations are usually based on images of
reference points. By formulating the calibration as an optimisation problem the calibration
can be solved by standard optimisation procedures.

Early developments of camera calibration is described in Clarke [21]. The 3D refer-
ence points’ positions can be either known or not known in advance in the calibration. A
calibration procedure in which the 3D reference positions are not known a priori is called
self-calibration or auto-calibration. A procedure that simultaneously calculates the 3D co-
ordinate positions of the reference points and the camera parameters from several images of
these references is called bundle adjustment. A natural way of solving the bundle adjustment
problem is to minimize a sum of squared errors. The 3D reference points can be projected to
the image using the camera model. The sum of squared differences between the calculated
and detected image points can then be used as the error criterion, see (2.33). This can be
minimised with respect to intrinsic and extrinsic camera parameters and the 3D reference
positions. Another method is using sums of squared errors in object space. In that case, the
detected image coordinates of the references are projected to object space using the camera
model, and the distance between the object line and the 3D positions is squared and summed
as in (2.34).

argmin
∑

𝑗

∑
𝑘

∣∣𝑥𝑑𝑐
𝑑𝑗𝑘 − �̂�𝑑𝑐

𝑑𝑗𝑘

∣∣2 (2.33)

argmin
∑

𝑗

∑
𝑘

(∣∣(�̂�𝑤
𝑓𝑖𝑗𝑘 − �̂�𝑤

𝑟𝑗𝑘)× (�̂�𝑤
𝑓𝑜𝑗𝑘 − �̂�𝑤

𝑜𝑘)
∣∣∣∣�̂�𝑤

𝑓𝑖𝑗𝑘 − �̂�𝑤
𝑟𝑗𝑘

∣∣
)2

(2.34)

These expressions are the same whether the references 𝑥𝑜 are known or not. 𝑗 and 𝑘 are
numberings of images and references respectively. If the references 𝑥𝑜 are unknown seven
parameters must be given to the system in order to lock a world coordinate system. E.g.
two of the references can be given their 3D positions and the z- coordinate of a third can
be set to zero. If this is done the calibration calculations will not “drift away” and a unique
solution can be obtained. The expression summed in (2.34) is a formula for the shortest
distance between an object line and the corresponding 3D reference point 𝑥𝑜. × denotes the
cross product. Notations from the first formulation of the GCM as presented in the first parts
of Section 2.2 are used in (2.34). Similar calculations can be performed for other models.
The minimisation criteria (2.33) and (2.34) are minimisations in the first and last box in
Figure 2.2. In fact minimisation can be performed in any of the stages in Figure 2.2 by
projecting the 3D object space references, staring from the top, down to some other box, and
by transforming the detected 2D pixel coordinates from the lowest box up to the same box,
and there calculate their differences to square.
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One problem in the calibration calculations is that the image references need to be recog-
nised, in order for it to be known what point in object space corresponds to what point in
image space, known as the correspondence problem. It can be solved by grouping refer-
ences in unique patterns, which can be recognised using a pattern matching algorithm. The
scale invariant feature transform, (SIFT), or speed up robust features, (SURF), algorithms
described in [57] and [8] can be used; these are briefly explained also in Section 4.2.6. An-
other option is to use a regular pattern like a checkerboard to recognise which reference is
which.

Many optimistion methods use a residual vector and a Jacobian matrix. The residual
vector is a vector containing all the individual errors inside the squared expression in (2.33)
or (2.34). The Jacobian matrix contains the derivatives of all the components in the residual
vector with respect to all the unknown variables. The Jacobian can be calculated numerically
by calculating how much the components in the residual vector changes when changing the
unknown variables slightly. The Jacobian is a sparse matrix and calculations can be made
faster by only calculating the components which are not always zero in every iteration step
of the optimiser.

A calibration method that does not calculate the reference positions, but only uses the
information of what image points correspond to the same 3D points in several images, can be
considered a true self- or auto-calibration method. In the true auto-calibration methods the
theory of projective geometry is useful as described in e.g. Faugeras [29] and Hartley [39].
In [39] abstract mathematical concepts are defined, e.g. the absolute conic, the dual absolute
conic, the image of the absolute conic and the plane at infinity. They are used for camera
model calculations. Calculating the image of the absolute conic is equivalent to calibrating a
camera, since the intrinsic camera parameters can be calculated from the image of the abso-
lute conic, see Hartley [39]. One true self-calibration method in [39] uses Kruppa’s equations
and the dual of the image of the absolute conic. Another self-calibration method in [39] uses
modulus constraints. The modulus constraint method calculates the plane at infinity. The
modulus constraint and the Kruppa equations methods are related to each other since if the
dual of the image of the absolute conic is known the plane at infinity can be calculated and
vice versa. One disadvantage of the Kruppa equations method is that ambiguities can occur,
and the equations are difficult to solve. The bundle adjustment method (2.33) or (2.34) does,
however, not contain that ambiguity. Another advantage of methods that calculate the 3D ref-
erence points at the same time as the camera parameters, like the bundle adjustment, is that
these reference positions can be used for other purposes, e.g. for camera pose calculations
or if a robot needs to reach these points.

A calibration method using information of measurements of the positions or poses of
the camera is called active calibration, see Wei [82]. In [82], not only the camera parameters
and the reference positions but also a hand-eye relationship is determined in the calibration.
The hand-eye relationship is the relative position and orientation between a point in the lens
system and a measured point on the hand. One camera calibration procedure implementation
for MATLAB, developed by Bouguet, can be downloaded from [11]. It calibrates cameras
by analysing images of checkerboard patterns. This program considers the references known
a priori, and hence it is not a self-calibration method. Another camera calibration toolbox
in MATLAB, for omnidirectional cameras, is [71] developed by Scaramuzza. A calibration
method that uses the fact that straight lines in object space are mapped to straight lines in
image space for non-distorted images is presented in Devernay [24].

Camera calibration for radially symmetric distortion, for ordinary dioptric (i.e cameras
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with only refraction lenses and no mirrors) and for catadioptric omnidirectional cameras are
described by Tardif in [79]. Another method for calibration of central catadioptric cameras,
i.e. catadioptric cameras with a single viewpoint, is described by Dunne in [28].

2.3.1 Pre-Processing Algorithms
Since the bundle adjustment calibration includes a large number of unknown parameters to
be optimised, the calibration needs reliable approximate start data to converge. This thesis
proposes useful pre-processing algorithms, presented in detail in Paper II. These are based
on images of flat references, and are most efficient for circular references. By analysing the
shape, size and positions of the references in the images, the intrinsic and extrinsic camera
parameters as well as the 3D reference positions are estimated.

Better 2D image reference coordinates are also calculated, since the centres of gravity
do not exactly correspond to the centre of the 3D references. First 2D image coordinates
around the edge of the 2D image references are extracted. An optimisation procedure tries
to find 3D reference positions together with camera parameters that match the 2D points
corresponding object lines. When a good match is found the corresponding parameters are
used as start data. The centres of the 3D references are projected back to the image using the
camera model, providing the image coordinates. These procedures need both the forward
and reverse camera model projections. Methods for obtaining starting values for the pre-
processing algorithms are also presented in Paper II.

2.3.2 Non-Trivial Null Spaces
Non-trivial null spaces are ambiguities that occur e.g. if the calibration criterion (2.33) or
(2.34) does not give unique parameter combinations, i.e. if several different combinations of
parameters give equally low error residuals. Paper II identifies such ambiguities and presents
methods of how to solve them. To solve the problems of ambiguities, constraints between the
different parameters are needed, or the calibration images need to be captured from different
angles or positions.

One example of a non-trivial null space is a possible constant offset in 𝑓𝑜(𝑟) of (2.14)
for the entrance pupil point of the GCM. If a constant offset is added to the expression its
value could not be calculated in a calibration based on only images, because of an ambigu-
ity between the position of the camera and 𝑓𝑜(𝑟). The constraint 𝑓𝑜(0) = 0 is chosen for
simplicity.

In the calibration a relation between the focal distance and the pixel distances can be
determined, so that e.g. it is possible to calculate the focal distance in pixel units. However
it is not possible to calculate the focal distance or pixel distances in e.g. m or mm based
on only images. This is because if the focal distance is increased and the pixel distance is
increased with the same proportion the same image coordinates will be obtained. In practice
however this is not a big concern since the camera model transformation between the image
space and object space can still be determined.

Another example of a non-trivial null space considers the definition of the world coor-
dinate system. For a fixed camera position relative to the workspace the same images appear
independent of the world coordinate system. That is why some extra information is needed,
e.g. some of the reference points’ positions could be given before the bundle adjustment
calibration calculation (2.33) or (2.34), which will give a fixed world coordinate system, see
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details in Paper II.
Hartley et al. in [38] give a deep mathematical analysis of when there is a unique pro-

jective reconstruction of the 3D geometry of the scene points and the camera positions. They
consider two, three and more views of the scene. Guilbert et al. in [35] discuss ambiguities
between intrinsic and extrinsic parameters in uncalibrated vision by analysing the Jacobian
of reprojection errors. Åström et al. in [2] have investigated and pointed out ambiguities
occuring for one dimensional images.

2.3.3 Total Calibration Process
A block diagram of the calibration process is presented in Figure 2.11. First image process-
ing is needed in order to find image coordinates of the reference points. These reference
points need to be recognised to solve the correspondence problem. Starting values of pa-
rameters can be achieved e.g. using the pre-processing algorithms. A calculation program
is needed that calculates the residual vector as well as the Jacobian matrix, based on ap-
proximate camera parameters and reference positions together with as accurate 2D image
coordinates as possible. Once the criterion is minimised the camera parameters are known,
as well as the reference positions.

2.4 Experimental Verification of Camera Models
In order to verify and compare the accuracy of camera models they have been applied to real
cameras. In Paper III error norms calculated after camera calibrations were compared, using
different camera model configurations on two different camera types, one conventional lens
and one fisheye lens.

2.4.1 Error Norms
The intrinsic camera parameters are now collected in a vector denoted 𝜃. The error norms
for comparing the models are (expressed for the GCM notation)

𝜀𝑖(𝜃) =
1

𝑚𝑛

𝑚∑
𝑗

𝑛∑
𝑘

∣∣𝑥𝑑𝑐
𝑑𝑗𝑘 − �̂�𝑑𝑐

𝑑𝑗𝑘

∣∣ (2.35)
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where 𝑗 and 𝑘 numerate images and references respectively. 𝜀𝑖 is the average distance be-
tween measured and calculated image points. 𝜀𝑤 is an object space error norm, where all
the image points are projected out to object space using the camera model. max(𝜀𝑤) is the
largest distance between the object line and the 3D reference points for all the references in
all the images. Note that the expressions in the norms (2.35-2.37) are not squared as they are
in the calibration optimisation expressions (2.33-2.34), to give a more natural understanding
of the size of the errors.
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Figure 2.11: Block diagram of proposed camera calibration process.
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2.4.2 Experimental Setup for Comparison
A checkerboard pattern was used as reference for the calibration. The camera Calibration
Toolbox in MATLAB [11] performed the image processing and calculated preliminary data
for the refined calibration. All the reference points on the checkerboard were seen in all
images. After the toolbox calculations, an image space bundle adjustment calibration (2.33)
calculates both the intrinsic and extrinsic camera parameters together with the 3D reference
positions. The calibration optimisation was performed with the Knitro solver by TOMLAB
running under MATLAB using an error residual vector and its Jacobian matrix. The Jacobian
matrix was calculated numerically in each iteration.

The camera used is a Canon EOS 5D, with two different lenses, one fisheye lens, a
Sigma 8mm 1:3.5 ExDG Fisheye, and one conventional zoom lens, Canon Zoom EF 24-105
1:4 IS USM.

The conventional zoom lens was maximally zoomed out giving a maximum viewing
angle 𝛼max ≈ 35𝑜. The number of pixels in the images were reduced from 21 megapixels to
about five megapixels before the calculations, since the calibration toolbox handles limited
sized images. 38 calibration images were taken of a 8x10 checkerboard reference pattern.
The average distance to the pattern was about 70 cm.

For the fisheye lens the number of pixels was reduced from 21 megapixels to about 2.5
megapixels. 23 calibration images were taken of a 6x8 reference pattern. The distance to the
pattern was between 10 and 30 cm.

2.4.3 Model Comparison
Table 2.1 shows the different camera models implemented and compared and what they are
called in the text and in the result Tables 2.2 and 2.3. Odd powers of the CCM and FCM
correspond to even powers for the GCM. The number of intrinsic camera parameters and
the degree of the corresponding polynomial equation are measures of the complexity of the
models. The number of intrinsic camera parameters are shown in the tables as “number of
𝜃”. The “degree 𝑛𝑝” is the degree of the polynomial equation for converting in the opposite
direction of the arrows in Figure 2.2. Two of the intrinsic parameters are the coordinates of
the principal point, one is the aspect ratio and one is the focal distance. The rest are radial
distortion parameters. Leaning detector compensation and varying entrance pupil point are
discussed later. In the tables the object space errors 𝜀𝑤(𝜃) are shown. This is since the
models are mainy used to calculate geometric information, and the image errors were almost
proportional to the object space errors for a given camera. Also max(𝜀𝑤(𝜃)) is shown which
gives a measure of the deviations from the average errors.

Table 2.2 shows results for the conventional lens. Comparing models using 7 intrinsic
camera parameters CCMr, odd powers, CCMf, odd powers, GCM, even powers, GCM, ev
pow quotient and GCM, constrained were most accurate. They show similar results. The
GCM models achieve the low errors with a lower degree of the corresponding polynomial
equations, especially GCM, constrained with a 3rd degree polynomial. Comparing camera
models using the same degree of the polynomial equations it is clear that the GCM models,
especially models using a quotient, have the best accuracy. Another advantage with the
GCM models is that they can be used also for omnidirectional cameras. For the best models
an object space error norm 𝜀𝑤 of 0.003 mm corresponded to an image space error norm of
about 𝜀𝑖 = 0.02 pixels for the calibration images of the conventional lens.
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Table 2.1: Notations used for radial distortion models compared
Model name Definition
CCMr, regular Both odd and even powers in 𝑟𝑝(𝑟) polynomial
CCMr, odd powers Only odd powers in 𝑟𝑝(𝑟) polynomial
CCMf, regular Both odd and even powers in 𝑟(𝑟𝑝) polynomial
CCMf, odd powers Only odd powers in 𝑟(𝑟𝑝) polynomial
FCM, regular Both odd and even powers in 𝑟(𝛼) polynomial
FCM, odd powers Only odd powers in 𝑟(𝛼) polynomial
GCM, regular Both odd and even powers polynomial in 𝑓𝑖(𝑟)
GCM, quotient Plynomial divided by first degree polynomial in 𝑓𝑖(𝑟)
GCM, constrained Plynomial divided by first degree polynomial and

constraint (2.12)
GCM, even powers Polynomial with only even powers in 𝑓𝑖(𝑟)
GCM, ev pow quotient Polynomial with only even powers divided by 1 + 𝑐𝑟2

Table 2.3 compares accuracy for the GCM and FCM models for the fisheye lens. Only
one CCM model is shown since they can not model large angle cameras. Comparing models
using 7 intrinsic camera parameters GCM, constrained, FCM, odd powers and GCM, ev pow
quotient had the lowest errors, and the GCM, constrained has a low degree of the polynomial
equation, degree 3 instead of 7 for FCM, odd powers. Again, comparing models with the
same degree of the polynomial equations the GCM models has very good results, especially
quotinet models with both odd and even powers of the polynomials.

The best over all performance turned out to be achieved with the GCM, constrained
and GCM, ev pow quotient models, achieving a high accuracy for both of the lenses and
yielding a low degree of the polynomial equation especially for GCM, constrained. An even
lower degree of the polynomial equation is achieved if denominator has a higher degree
than one in 𝑓𝑖(𝑟). Lowest degree of the equation (in relation to the number of intrinsic
camera parameters) is achieved when the degree of the numerator is one larger than for the
denominator and both odd and even powers are used.

When using varying entrance pupil point only less than 1% was gained in the accuracy
performance for the conventional camera and nothing was gained for the fisheye camera.
This is explained by Micusik [62] arguing that in recent years fisheye lenses have been built
to satisfy the single viewpoint property, which means that the entrance pupil point is constant.

Including leaning detector compensation (2.19) and (2.20) increased the accuracy. For
GCM using a quotient in 𝑓𝑖(𝑟) with five radial distortion parameters, using the conventional
zoom lens, the image error decreased from 0.017 to 0.013 pixels for a constant exit pupil
point, 𝑓𝑙(𝑟). When also varying exit pupil point was included the image error was only
0.0096 pixels. So the error decreased by 44%. The leaning angle 𝛿 of the detector was
calculated to 0.044𝑜. Decentring distortion is usually larger for low quality cameras, so since
leaning detector compensation was useful for a professional camera it should be even more
significant for cheap low quality cameras.

The results in this section can be compared to error results in Paper I and Paper II. There
camera poses were calculated based on calibrated cameras (see Section 3.1). The vision
pose output was compared with camera positions measured by a coordinate measurement
machine. In Paper I only a conventional camera model was used. The accuracy was not high
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Table 2.2: Comparison of the errors for conventional lens, only radial distortion.
Model number of degree 𝜀 𝑤 max(𝜀𝑤)

𝜃 𝑛𝑝 [mm] [mm]
CCMr, regular 7 4 0.005 0.10
CCMr, odd powers 6 5 0.005 0.09
CCMr, odd powers 7 7 0.0026 0.018
CCMf, regular 7 4 0.004 0.06
CCMf, odd powers 6 5 0.043 0.67
CCMf, odd powers 7 7 0.0025 0.019
FCM, regular 7 4 0.032 0.62
FCM, odd powers 7 7 0.012 0.37
GCM, regular 7 3 0.0052 0.091
GCM, regular 8 4 0.0025 0.019
GCM, quotient 7 2 0.012 0.28
GCM, quotient 8 3 0.0025 0.019
GCM, constrained 7 3 0.0028 0.019
GCM, even powers 7 6 0.0025 0.019
GCM, ev pow quotient 7 4 0.0025 0.019

enough for welding applications, which is the reason that the GCM was developed. The main
aim of it was to increase accuracy by including more types of distortion. Another aim was to
make it more general, so that it could model a wider range of camera types. The data from
the measurements with the camera on the coordinate measurement machine was then used to
determine the accuracy of the GCM using a polynomial as 𝑓𝑖(𝑟), in Paper II. The error results
turned out to be much larger than the results shown in this section and in Paper III. The main
reason for this is the differences in image processing. In Paper I and II the references were
infrared light emitting diodes, LEDs. The image processing found the centrepoints of these
in the image in a very simple way, while the image processing from the camera calibration
toolbox used in this section and Paper III found crossings in the checkerboard patterns in a
very accurate sub pixel level.

Table 2.3: Comparison of the errors after calibration for fisheye lens, only radial distortion.
Model number of degree 𝜀 𝑤 max(𝜀𝑤)

𝜃 𝑛𝑝 [mm] [mm]
CCMr, regular 7 4 0.390 2.23
FCM, regular 7 4 0.024 0.28
FCM, odd powers 7 7 0.016 0.17
GCM, regular 7 3 0.099 0.83
GCM, quotient 7 2 0.054 0.56
GCM, quotient 8 3 0.0067 0.075
GCM, constrained 7 3 0.015 0.17
GCM, constrained 8 4 0.0010 0.0087
GCM, even powers 7 6 0.024 0.28
GCM, ev pow quotient 7 4 0.018 0.19
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Figure 2.12: Error decreasing with increasing number of intrinsic camera parameters for the
zoom lens for GCM, regular. Left plot shows image error 𝜀 𝑖 in pixel units, right plot shows
object space error 𝜀 𝑤 in mm.

Influence of Number of Parameters

Figures 2.12 and 2.13 show how the error decreases with the number of intrinsic camera
parameters for certain GCM models. Figure 2.12 considers the conventional lens system
with a polynomial as 𝑓𝑖(𝑟) in (2.10). The left plot shows 𝜀𝑖 (an image error in pixels), the
right plot shows 𝜀𝑤 (an object space error in mm). By increasing the number of parameters
to more than eight the accuracy does not increase much for this camera. Figure 2.13 shows
data for the fisheye lens where 𝜀𝑖 decreases using GCM, quotient and GCM, regular. The
accuracy for nine and ten parameters are very high for the GCM, quotient model.
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Figure 2.13: Image error 𝑒𝑖 decreasing with increasing number of intrinsic camera parame-
ters for the fisheye camera and GCM-models. Note the logaritmic y-axis.

2.4.4 Discussion
The GCM has been presented and compared to other radial distortion models. The method
for including radial distortion makes it general. A straightforward analysis of the asymptotic
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behaviour of the models at 𝛼 = 90∘ and 𝛼 = 180∘ in Paper III leads to the proposal of
using quotients between polynomials in the radial distortion functions, which improves both
the GCM and the CCM models. Varying entrance pupil point is included in the model in an
efficient way and new methods for decentring distortion are proposed. There are a number of
desirable properties of a camera model that should be considered, e.g. it should be general,
accurate, fast, simple and natural. The models are analysed with respect to these criteria.

General and Natural

Usually different camera models are used for wide angle fisheye and conventional cameras.
The reason is that in (2.3) and (2.4) 𝑟𝑝 can not approach infinity for limited 𝑟, so special
FCMs are used for these situations. These FCM’s are usually not used for conventional
cameras since they do not have the PCM as a simple special case. This property is important
for the well developed mathematical theory, called projective geometry, which is applied to
non distorted images, see the books by Faugeras [8] and especially Hartley [1]. Also the
model should be able to convert between distorted and non distorted image for this reason.
The conventional FCM (2.5) with degree one forces a radial distortion, which is not suitable
for low distortion cameras.

The conventional models are made more general by the proposed change of the function
dependency between 𝑟𝑝 and 𝑟 in Paper III. Letting 𝑟 asymptotically approach a constant
value when 𝑟𝑝 → ∞, and allowing for negative 𝑟𝑝 accomplishes this. Therefore using this
adjusted conventional camera model, or using the GCM, there is no longer a need to use
different models for different cameras. The GCM can even model catadioptric cameras. It
models these cameras in a more natural way, since the function of 𝑟 in the GCM does not
need to approach infinity for angles 𝛼 = 90𝑜 as is the case of the CCM. The GCM can
efficiently convert a radially distorted image to a non distorted image, even for catadioptric
cameras, if 𝑓𝑜(𝑟) is constant, i.e. if it has a single viewpoint, see Paper III. Further, the GCM
also handles varying entrance pupil point as well as decentring distortion.

Accuracy

Comparing camera models with the same number of radial distortion parameters used for
the two lenses the so called GCM, constrained and GCM, ev pow quotient models had the
best accuracy. At the same time, GCM, constrained had a low degree of the corresonding
polynomial equation.

The influence on the accuracy for varying entrance pupil point was negligible for the
camera tested, while leaning detector compensation increased the accuracy of the model
significantly. Compensation for decentring distortion is of even higher importance for simple
and cheap cameras.

Simple and Fast

Most models can project easier either from image to object space or vice versa. Projecting in
the opposite direction means that a polynomial equation needs to be solved. The improved
models have a lower 𝑛𝑝, i.e. degree of polynomial equation, in relation to the number of
camera parameters 𝜃 used, making the transformation in the opposite direction easier and
faster. This applies both to the GCM with a quotient and both odd and even power, and the
improved CCMf and CCMr in Paper III.
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If varying entrance pupil point is needed, the GCM includes this using the 𝑓𝑜(𝑟) function,
and accomplishes this in a simple and efficient way. [9] also has varying entrance pupil point,
but needs several iterations in the calculations, while the GCM achieves this in a single strike.





Chapter 3

Geometric Calculations from Camera
Models

Once a camera model is calibrated for a camera, the model can be used for calculating geo-
metric information from the images. Two examples of geometric calculations from images
in this thesis are camera pose calculation and stereo vision, which are presented below. The
pose calculation is similar to the camera calibration calculation. It assumes that references
with known 3D positions are available and that these can be detected in the images e.g. us-
ing image processing techniques. The stereo vision method instead calculates positions of
objects seen in images. Here at least two camera views are needed in order to determine
depth. The 2D image coordinates of the points to be determined are needed in the calcula-
tions as well as the camera poses for the camera views and the intrinsic camera parameters.
To find the 2D image coordinates image processing techniques are needed also in the stereo
vision calculations. In the paper [42], by Heyden et al, it is shown how a 3D euclidian space
can be reconstructed for a PCM given sufficiently many point correspondences in a sufficent
number of images, even if the focal distance and the principal point are not known, and even
varying. Both stereo vision and camera pose estimation are used for a visually guided mobile
platform in [10] by Björkman et al.

3.1 Pose Calculation
If a camera model is calibrated for a camera and the 3D references are known and seen in the
image, the pose of the camera can be calculated from a single image, see e.g. Dornaika [25],
Lu [58]. The pose calculation is similar to the calibration problem, but it is less complicated.
Just as the calibration, the pose calculation can be formulated as an optimisation problem.
The same optimisation criteria as for the calibration can be used, except that the sum of
images is omitted and the reference coordinates and intrinsic camera parameters need to be
known, so the only unknown parameters are the 6D pose of the camera. As in the calibration
the correspondance problem needs to be solved, so that it is known which reference in the
images corresponds to which 3D object space reference. An example of a vision based
pose measurement system mounted on a coordinate measurement machine is presented in
Figure 3.1. There the correspondence problem was solved using unique groupings of IR-
LEDs in combination with a pattern matching algorithm. In order to obtain a unique solution,
normally at least four references need to be seen in the image. If three references are used
the number of unknown parameters are the same as the number of equations, but it yields
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Figure 3.1:A camera sensor mounted on a coordinate measurement machine arm.
The camera is looking downwards at the reference plate, with unique groups of 6 IR-
LEDs.

several solutions. If one more reference is used normally only one solution is obtained. The
accuracy of a pose measurement system using a conventional camera model is presented in
Paper I and the usage of the GCM is presented in Paper II. If a camera is mounted on the
hand of a robot this can be used for measuring the robot pose. This requires a hand-eye
transformation that can be determined in a hand-eye calibration procedure, see Remy [68]
and Lenz [52].

3.2 Stereo Vision

Stereo vision methods calculate positions of points seen from at least two directions. One
direction is not sufficient, since then depth cannot be determined. Two basic methods exist,
one minimising object space errors, see Paper II, and another minimising image space errors,
see e.g. Hartley [39]. The image minimisation method is more often used, since the errors
usually originate from the image capturing. In the image space minimisation method in [39],
a 6th degree polynomial equation is used to calculate the 3D point, but the method does not
include varying entrance pupil point camera models. The object space minimising procedure
easily includes varying entrance pupil point cameras, or non-single viewpoint cameras by
using the GCM. An analysis of different stereo vision algorithms can be found in [72]. The
object space calculation stereo vision method suitable for the GCM is described in Paper
II. For determining 3D points first calculate object lines based on the image points and the
calibrated GCM according to

Line 1: x0a + ava; Line 2: x0b + bvb (3.1)

In perfect conditions with no errors these lines should cross each other. In practice this will
however not be the case. But the closest points between them can be calculated if they do
not exactly intersect. Solve the following system of equations fora andb yielding the closest
points between the two lines.[

vTa va −vTa vb
vTa vb −vTb vb

] [
a
b

]
=

[
−vTa x0b + vTa x0a

−vTb x0b + vTb x0a

]
(3.2)
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Figure 3.2:A robot following a 3D weld joint. The camera is mounted on the robot hand.

This system of equations is derived using the fact that a line between two points representing
the shortest distance between the two lines, Line 1 and Line 2, is perpendicular to both of
the two lines. If the solutiona andb of (3.2) is inserted into the expresssions (3.1) the points
closest to each other are achieved. E.g. the centrepoints between these can be used as the
3D point searched for. When calculating 3D positions using vision the point needs to be
detected in both images. If the point is found in one image, its corresponding object line can
be projected to the other image. The resulting line in the other image is called the epipolar
line. The point in the other image lies along this epipolar line. This procedure makes it easier
to find the matching points for the stereo vision.

A stereo vision system for determining a weld path for robot welding is presented in
Paper IV, see Figure 3.2. Here the stereo vision method for points is modified to calculate the
3D geometry of curves. One camera on the robot hand was used. The camera was calibrated
using the GCM. After calibration, the camera was positioned by the robot onto two different
positions to capture images of the weld joint, see Figure 3.3. The image processing found
the weld seam in each image, see Figure 3.4, and a stereo vision algorithm calculated the 3D
geometry using the GCM. For the image processing determining the edges in the images the
Canny edge detection method was used, see Section 4.1. The 3D geometry was sent from
the calculation computer to the robot control system. After that the robot followed the joint
with the tool, see Figure 3.2.

A stereo vision system for robot navigation, inspired by method (3.1), (3.2) has already
been published in [55] by Lidbom et al. Another stereo vision system for determining robot
weld paths can be found in Chen et al [19]. They however use parallel cameras to simplify
the calculations, which is not needed in Paper IV and Paper V since they use (3.2). Again, if
such a system uses a camera mounted on the robot hand, hand-eye calibration is needed as
in Remy [68]. Stereo vision from a single planar catadioptric camera is presented in [83].
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Figure 3.3:Image captured of metal sheets after preprocessing.
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Figure 3.4:Edges found in the 2D-images of the weld joint. The images are taken from
different poses.

3.3 Experimental Verification of Pose Measurement and Stereo
Vision

The accuracy of the pose calculations is presented in Papers I and II. The experimental setup
is presented in Figure 3.1. As references a plate with IR-LEDs was used. The LEDs were
grouped in unique patterns of six LEDs. A pattern matching procedure recognised the pat-
terns in the images to solve the correspondence problem. Electronic circuits triggered flash-
ing of the LEDs at the same time as images were captured. The camera was calibrated using
bundle adjustment (2). After the calibration the camera was mounted on the arm of a coordi-
nate measurement machine, CMM. The CMM was programmed to stop at certain positions
above the reference plate in order to measure with the CMM at the same time as an image
was captured. Poses were calculated based on each image. Then the output of the CMM and
the vision system were compared. They measured in different coordinate systems. Therefore
the vision system coordinates were transformed to the CMM coordinate system before the
comparison. The rotation and translation parameters of the transformation were calculated
using optimisation methods. In Paper I, the results are shown for a conventional camera
model, showing that the accuracy was not high enough for robot welding applications. In
Paper II, conventional camera models are compared to the GCM based on the data from the
CMM and the corresponding images. There the GCM had a slightly better accuracy than the
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Figure 3.5: The calculated values for the joint from the vision system and the CMM-
measures, both projected to a plane.

CCM, but due to primitive image processing the errors were mostly due to image errors and
not the precision of the camera model choosen.

The 3D geometry from the stereo vision welding system in Paper IV was compared to
measurements of the curve using a coordinate measurement machine, CMM, see Figure 3.5.
The average error between the CMM and the calculated 3D curve was 0.23 mm, and the
maximum error was 0.7 mm. This is acceptable for the welding application and promising
for future work. The similar approach in [19] also use one camera mounted on the robot
hand. They discuss e.g. sub-pixel methods for finding the weld joint, and their maximum
position error was 3 mm.

Paper V verifyed the stereo vision robot system in a simulated environment. It showes
that the camera calibration procedures, the image processing and the stereo vision calcu-
lations could be verifyed without access to a physical robot, camera and a prototype weld
joint.





Chapter 4

Related Computer Vision

Machine vision and computer vision are scientific areas in which information from camera
images is extracted and used in a variety of applications, e.g. for guiding robots. Humans
have an excellent ability to interpret and understand images, while computer perception from
images is a difficult and challenging scientific field. In this section more computer vision
methods are presented and related to the focus of this thesis on camera modelling and cali-
bration and geometric calculations based on vision.

4.1 Image Processing
Image processing techniques process an image in order to obtain a new image that is en-
hanced in some way, e.g. yielding sharper edges. Edge detection techniques calculate where
in an image the gradients of the intensity are large. The Sobel edge detection method [26]
uses convolution filters that scan through the image. It provides a measure of how large the
gradients of the intensity are locally around each pixel. It uses one convolution pattern for
the 𝑥- direction and another for the 𝑦- direction. The output of the Sobel filter is two new im-
ages showing the components of the image intensity gradients in the two directions. The two
new images can be combined into one image again by e.g. using the Pythagorean relation.

The Canny edge detection [14] also finds edges. In the Canny method, the image is first
smoothed using a Gaussian filter in order to make the method less sensitive to noise. Then it
looks through the image again, and when an edge is found it follows it in the two directions
until the size of the gradient is lower than a certain threshold. The Canny edge detection
algorithm does not only provide information of where the gradient is large, but also groups
the edge segments to show which pixels belong to the same edge. Hence it finds segments
of curves in the images, which is useful for applications in which the edge coordinates are
searched for. The Canny edge detection method is used in Paper IV and V. For the images in
the real physical system in Paper IV the Canny edge detection method found a large number
of edges in the stereo images, caused by reflections and shadows. The edges not representing
the welding joints needed to be filtered out. One method was to take away edge segments
that were short. Another method of extracting the right edges was to analyse the direction
of the edge curves. In the simulated environment the image processing of finding edges was
easier, since there were no sharp reflections or shadows.

Corner detection methods find corners in the images, i.e. they find distinct points instead
of curves in the images. A combined corner and edge detector is the Harris detector [37].
Other corner detectors are described by Moravec in [75], and Shi and Tomasi detector in [47].
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Corner detection is relevant to camera calibration since it allows to calibrate a camera using
images of an environment where only natural corners are used, so there is no need of adding
extra references.

4.2 Image Part Recognition
Algorithms for automatically recognising parts in images can vary for different situations,
but they usually follow the steps: Feature Selection → Segmentation → Feature Extraction
→ Classification, see Duda [27]. These procedures are discussed below and can be applied
to grey scale images or any linear, or suitable non-linear, combination of the colour pixel
intensities. Recognition of objects with known geometry is discussed in Section 4.2.5, and
point feature detectors and descriptors are presented in Section 4.2.6. Image Part Recog-
nition methods are related to camera calibration since they provide methods of solving the
correspondence problem, making it possible to know which object space reference points or
lines correspond to which image points or lines.

4.2.1 Feature Selection
The first step includes selection of features for classification of recognised parts. The fea-
tures should be chosen so that they can distinguish between different objects that need to be
recognised in the image, and they should also be possible to extract from the available data
in the images. Examples of features can be found in Section 4.2.3.

4.2.2 Image Segmentation
The second step includes the segmentation of an image into different regions to facilitate
the finding of objects in the image, see e.g. Sonka [75] and Pan [66]. Once it is known in
which region of the image an object is located, features for part recognition can be extracted.
Usually, it is assumed that there are sharp edges around an object in the image. This is
similar to edge detection, but here an area, or a closed boundary of an object is searched
for. The edges are boundaries between areas with darker and brighter pixels, i.e. places with
large pixel gradients. If the image is noisy, a non-linear diffusion process can first be applied
to the image as in Perona [67]. The diffusion is such that it smoothes out small variations
in the image, but it keeps the more sharp edges. One simple method for segmentation is
thresholding, see e.g. [75].

“Snakes” is one method to segment images as described in Ballerini [5] and Loizou [56].
A snake is usually a closed boundary in the image that automatically moves to find edges.
A type of energy is defined for the snake. The energy is lower where the snake is aligned
with a sharp edge, and also where it is not bending too sharply. The snake moves to find
lower energy. It stops when it finds an optimal lowest energy, and then a segment is found,
enclosed by the snake.

Watershed algorithms mimic running water to segment images, as in Sonka [75] and
Karantzalos [46]. The image can be seen as a 3D topographic map, in which the pixel
intensity represents the height. Using gradients, it can be concluded in which direction the
water would flow in a point of the image. The water ends up in basins called catchment
basins. Areas that make the water end up in the same catchment basin are considered to
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belong to the same segment. The segments are divided by watersheds, so that on the other
side of a watershed the water would flow into another catchment basin.

Region growing methods as in [75] start from a seed in a segment that grows to define
the segment. The seed grows by sequentially trying to add pixels around it. A new pixel is
added to the segment if it is inside the same segment, but not if it is considered to be outside.
It stops when no more pixels can be added.

4.2.3 Feature Extraction
Features can be extracted when the image is segmented. Features can be defined in several
ways. The shape of an object, i.e. the shape of its boundary, can be used as a feature, see
e.g [75] where Fourier descriptors are used to analyse shapes. The shape of the object is
found by the segmentation algorithm. Different kinds of moments can be used as features in
the classification of an object. Moments define e.g. size, location, orientation and moments
of inertia, see e.g. [75]. The texture describes the surface structure appearance, e.g. a square
pattern, striped or dotted. The texture can be distinguished by using Fourier analysis, co-
occurrence matrices or autocorrelation as in [75]. The colour of the object can also be used
as a feature. The relative positions of corners and edges of the image can be used as features.
They can be extracted with a corner and edge detection algorithm described in Section 4.1.

4.2.4 Classification
The fourth step is to use the features to classify what is seen in the image, e.g. Yau [84],
Duda [27]. Usually a collection of objects are known, which possibly can be seen in a
certain situation. By using the features, it should be possible to determine which of these
objects is seen. The feature space is the mathematical space spanned by feature unit vectors
representing different feature values, e.g. size and brightness. If values of all the features
are known, this corresponds to a point in that space. Discrimination functions define where
in the feature space the different objects are, see [75] or [27]. The discrimination functions
are boundaries between the different parts; if the feature point is on one side of a discrimi-
nation function curve it is classified as one object, but if it is on the other side it is classified
as another. Using support vector machines (SVM) is a method to find the discrimination
functions, see Duda [27], Tang [78], Chen [20], Jeng [44] and Kumar [50]. The SVM non-
linearly transforms the feature space into a usually higher dimensional space. In that space,
linear discrimination functions are applied to classify the objects. Neural networks can be
trained to classify objects, see Haykin [40] or Song [74]. The input to the network is the fea-
tures that are found, and the output should be which object is observed, or the object class.
The network can be trained by using known objects, where the feature values are extracted
and the object class is known, so called supervised learning. Genetic algorithms can also
be used to classify objects in Banzhaf [6], Tohka [80], Maulik [60]. The algorithm can be
trained in a similar way as the neural networks.

4.2.5 Recognition of Objects with Known Geometries
If an object with a known geometry, e.g. from a CAD model, is to be found in the image, a
slightly different method can be used. A camera model can be used to match a CAD model
with an image. The corners and edges of an object can be projected to an image using the
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camera model, and be matched with the geometries of corners and edges in the image. In that
procedure the CAD model can be rotated and translated mathematically, to get close to the
real image. If it is possible to find a good match, the object is recognised and the relative pose
between camera and object is also known. Therefore, the procedure can be used for pose-
control, by using the pose information as feedback. If the relative pose between object and
camera is approximately known before the calculations, these approximations can be used
as a starting point in the matching procedure, resulting in faster calculations. The matching
can be formulated as an optimisation problem to be solved by an optimisation procedure. To
perform the projections, the camera has to be calibrated, in order for the parameters of the
camera model to be known.

4.2.6 Point Feature Detectors and Descriptors
The scale invariant feature transform, (SIFT), [57] by Lowe, is an algorithm for extracting
certain points in images and then matching and recognising them to see if the same point ap-
pears in other images. When taking out the points, the images are smoothed using Gaussian
filters with two different scales of the filters. Then the difference of these Gaussian (DOG)
filtered images, is calculated. Local extremes of this DOG image are extracted. These are
used as detected points in the images. Histograms are calculated locally around these points,
describing how the image is varying around that point. The histogram is formed in a way
that makes it invariant to orientation, distance, illumination and scale. If the histograms of
two points of different images are equal enough, they are classified as images of the same
point. Speeded up robust features, (SURF), described by Bay in [8], is an attempt to improve
the SIFT algorithm. SIFT and similar methods are used in a large variety of applications, for
example camera calibration, stereo matching, image stitching and object tracking.

4.3 Tracking
One common problem in vision systems is to track objects in image sequences. In doing that
Kalman filters, see e.g. Grewal [34], are useful. They are methods for estimating the state of
a dynamic system subject to random noise. The estimates are recursively calculated based
on sequences of noisy measurements. The Kalman filter is divided into an update step and
a prediction step. The particle filter, see e.g. Ristic [69], is a generalisation to non-linear
systems. There are many different versions of particle filters, which are used in different
situations. One example using catadioptric vision is described in [77] by Taiana. Another
example of a particle filter is developed by Chen in [18].

Tracking is also related to camera calibration since it can solve the correspondence prob-
lem. If a video sequence is captured and reference points are tracked through the sequence,
certain snapshots of the sequence can be used for the calibration calculation and the reference
identification from the tracking can be used.

4.4 Visual Servoing
A visual servoing system is a system in which information from images is used for feedback
control of e.g. robot motion. Chaumette [16], [17], Kragic [49] and Hutchinson [43] give
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introductions to visual servoing. There are image-based and position-based visual servoing
methods as well as hybrid approaches. The image-based methods try to minimise an error
directly in the image by moving the robot. Position-based methods first process the image
information to calculate the position or pose of an object which then is used as feedback
to the robot. This is related to this thesis since many of the methods presented here can
be used for calculating geometric information for especially position-based visual servoing.
The calibrated camera model can also be used for calculating a reference image for image-
based visual servoing in case the reference image can not be shown to the system using teach
by showing as discussed in [49]. This can be the case e.g. if the desirable reference image
changes in time. A seam tracker e.g. detects how well a welding robot follows a seam on-
line while performing the weld. Vision can be used for this as in Kim [48], Yu [85] and [86].
Usually tracking is one part of a visual servoing system as in [30].

4.5 Virtual Vision
In order to develop robot vision systems off-line a simulated environment is useful. The
simulated environment can be used for testing vision and robot programmes, which is pre-
sented in Paper V. The robot vision welding system developed for a real robot vision system
in Paper IV was also implemented virtually. Calibration images are then captured in the
virtual environment and then the system is calibrated. After that two images are captured
of the weld seam to be used for the stereo vision calculations, and the stereo vision result is
used for letting the welding robot weld the seam in the virtual environment. Hence both the
camera and the robot are simulated in the same programme. The robot simulation makes it
possible to test off-line programmed robot sequences, and in this case also in combination
with testing camera systems and vision programs. The cameras are non distorted, and light
sources can be added in suitable locations around a CAD geometry, to achieve similar con-
ditions as in the real world. Shadows and reflections are calculated automatically and the
image is calculated by the system.

4.6 Other Computer Vision Applications
Cameras can be used in a variety of industrial applications. Calibrated cameras are especially
useful. This thesis has mentioned some, but far from all, application areas. Other examples
of interesting camera-based applications are:

∙ A vision system which also can be used for quality control, as in [1] by Armingol. If
methods of this thesis are used there is a camera available that at the same time can
check quality or look for other errors in the working environment.

∙ Solving the problem of simultaneous localisation and mapping, called SLAM, see e.g.
Milford [63]. The idea is to use some ”agent” moving around in a world and from its
sensors create a 3D map of the world and also localise the agent. The system can use
e.g. vision, laser range finders and/or radar. It is hard to solve in a robust way using
only vision. Images of flat surfaces without structure can e.g. not be used to calculate
depth. A SLAM system using stereo vision and particle filters is described in [64] by
Moreno. Another SLAM system using vision is presented in [76], by Spampinato et
al. If vision is part of the SLAM system normally a calibrated camera model is needed.
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∙ Robot calibration by optical methods can be performed using vision, as described in
Kyle [51]. Dynamic photogrammetry calibration of industrial robots can be found in
Maas [59] and Guo [36]. These systems also need calibrated camera models.



Chapter 5

Conclusions and Future work

The GCM shows that it is possible to create a camera model that combines the advantages
of fisheye camera models for fisheye cameras and the conventional camera models for low
distortion cameras. The GCM can also model catadioptric cameras. It is a well-known prob-
lem in vision that different models used to be applied for different camera types, something
which hereby is solved.

New types of distortion compensations are included in the GCM. Varying entrance pupil
point is introduced in a natural and efficient way. Two types of decentring distortion are also
presented. Ordinary radial distortion is included in a new way, that makes it more general.
Using quotients between polynomials as radial distortion functions are motivated and turned
out to increase the performance of the camera models. Methods for converting both from the
2D image to the 3D object space and vice versa are presented for the GCM.

A relation between the GCM and a model using homogeneous coordinates could be
derived. The homogeneous coordinate radial distortion model is generalised to model the
GCM with also varying entrance pupil point and decentring distortion. A relation between
the GCM and the CCM is also presented, and methods for handling variable focus and zoom
in the camera model as well as in the calibration are developed.

Non-trivial null spaces, or ambiguities, are identified, which improve the calibration.
The awareness of them both improve the calculations as well as guide in how to capture the
calibration images.

Pre-processing algorithms can calculate the starting values of both the intrinsic and ex-
trinsic camera parameters as well as the 3D reference positions based on the shape, size and
location of the image references. These are needed as initial data for the calibration calcu-
lation. Also, the pre-processing algorithms calculate more accurate image centre points of
the references than the commonly used centres of gravity. The pre-processing algorithms are
based on flat reference markers.

A simple expression for stereo vision calculations in object space has been suggested.
The method is especially suitable for the new camera model, which efficiently projects from
image to object space, and can include varying entrance pupil point. Commonly used meth-
ods minimise an image error, and need a non-distorted image for the stereo calculation. If
the camera has a varying entrance pupil point, it is not possible to calculate the non-distorted
image based on only the distorted image and the camera parameters.

The problem of detecting and determining the geometry of a weld joint, in order for a
robot to follow it, could be solved using stereo vision from images captured by a camera
mounted on the robot hand. The stereo vision calculations and camera calibrations are per-
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formed using the GCM. This procedure is performed both in the real world and in a virtual
environment. The virtual vision facilitates the development of vision systems off-line.

The accuracy of the camera models was investigated, by comparing camera poses cal-
culated using the vision system, and corresponding position data obtained from a coordinate
measurement machine. Further, error norms after calibration were calculated, showing that
the overall performance and properties are favourable for the GCM compared to other mod-
els. The accuracy of a stereo vision system determining the geometry of weld joints was also
investigated with satisfactory results.

For future research more types of decentring distortion, like the one in Slama [73],
should be tested and compared to the methods proposed here. The GCM, CCM and FCM
should also be compared for more real camera types.

The pre-processing algorithms should be validated, using circular and flat reference
markers. This can be done either by simulations or with a real camera and real references.
The accuracy of the parameters, robustness and calculation time should also be further anal-
ysed.

More work needs to be done in order to make the calculations more computationally
efficient. Instead of MATLAB the calculations can be implemented in e.g. C which should
make the calculations faster. They can also be implemented in hardware, e.g. FPGA circuits,
which make the calculations much faster.

To industrialise the suggested methods, the computer programmes should finally be
made more robust and more user friendly.



Chapter 6

Summary of Appended Papers

This chapter presents a brief summary of the papers that the thesis is based on. They have
been reformatted for uniformity and increased readability.

Paper I

Anders Ryberg, Anna-Karin Christiansson and Kenneth Eriksson. Accuracy Investigation
of a Vision Based System for Pose Measurements. In The 2006 9𝑡ℎ IEEE International
Conference on Automation, Robotics, Control and Vision, Singapore. Dec 2006.

The accuracy of a vision based system for pose measurement was investigated. A camera
was mounted on the end effector of a coordinate measurement machine and the outputs
from the vision system and the coordinate measurement machine were compared in order
to determine the accuracy of the vision system. Since they measured in different coordinate
systems the position data from the vison system was transformed to the coordinate system
of the coordinate measurement machine. The translation and rotation parameters of the
transformation were calculated using a least squares optimisation matching method. The
results showed that the accuracy was too low for robotic welding. One identified issue was
related to the camera model, which motivates the development of a new camera model.

Paper II

Anders Ryberg, Anna-Karin Christiansson, Bengt Lennartson and Kenneth Eriksson. Cam-
era Modelling and Calibration - with Applications. In book Computer Vision, Publisher:
I-Tech Education and Publishing, Vienna, Austria, 2008.

This extensive book chapter presents a new generic camera model, camera calibration, non
trivial null spaces that occur during calibration, calculations of approximate starting values of
calibration parameters, calculation of centre points of references, applications for calibrated
cameras and a new accuracy investigation. The new camera model includes new types of
distortion compensations, such as varying entrance pupil point and two types of decentring
distortion compensations. It also handles radial distortion in a new, more general, way. The
new way of handling radial distortion makes it able to model both conventional low distor-
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tion cameras as well as fisheye cameras. Because of the good properties of the new camera
model, there is no longer a need for using certain models for certain camera types. The
awareness of nontrivial null spaces that occur during calibration improves the camera cali-
bration. Since the camera calibration is an extensive calculation, it is important to have good,
reliable starting values of the parameters. These are calculated in a pre-processing algorithm
by analysing the shape, size and position of the references in the images. The pre-processing
algorithm also calculates better centre points of references than the centre of gravity. This
also increases the accuracy of the calibration calculations.

Paper III

Anders Ryberg, Bengt Lennartson, Anna-Karin Christiansson, Lars Asplund and Mikael
Ericsson. Analysis and Evaluation of a Generic Camera Model. Submitted to Journal of
Computer Vision and Image Understanding 2010

In this paper the camera models are improved even further. A new way of analysing some
camera models made it possible to refine them in a straight forward way. By using quotients
between polynomials instead of just polynomials in the distortion compensation functions,
the models are made more general, accurate and more computationally efficient. The GCM
is also descibed in a slightly different way compared to in Paper II. It is shown how the
GCM can model even catadioptric cameras in addition to fisheye and conventional cameras.
Different camera model types are analysed and compared. In addition to the leaning detector
compensation method, another general decentring distortion method is also introduced which
is an improvement of a method in Paper II. Calibrations are performed for the different
models, and the accuracy concerning two real cameras with conventional and fisheye lenses
are compared.

Paper IV

Anders Ryberg, Mikael Ericsson, Anna-Karin Christiansson, Kenneth Eriksson, Jim Nilsson
and Mathias Larsson. Stereo Vision for Path Correction in Off-Line Programmed Robot
Welding. In The 2010 IEEE International Conference on Industrial Technology, Viña del
Mar - Valparaiso, Chile. March 2010.

A stereo vision system for robot welding is developed. It uses one camera mounted on the
welding robot’s hand. The robot goes to two different positions to take photos of a weld
joint. Based on the 2D images, the 3D welding curve is determined in order for the robot to
weld it. The 3D path is calculated from the new GCM camera model. If a camera model with
varying entrance pupil point such as the GCM is used, a stereo method minimizing the object
space error is more convenient. The accuracy of the system is measured using a coordinate
measurement machine, and an average error of 0.23 and maximum error of 0.7 mm has been
achieved.
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Paper V

Mikael Ericsson, Anders Ryberg, Jim Nilsson, Anna-Karin Christiansson and Bengt Lennart-
son. Off-line Simulation of Advanced Stereo Vision Welding Application. Submitted to
Journal of Machine Vision and Applications 2010

In a virtual environment, robot vision systems can be simulated. This makes it possible
to develop programs off-line, without shutting down the robotized production. The same
robot and computer vision programmes described in Paper IV are implemented in the virtual
environment. The images are captured virtually, and the calibration and the stereo vision
calculations, as well as the image processing, are based on methods presented in this thesis
work.
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