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S-412 96 G6teborg, Sweden 

ABSTRACT 

Hydrocarbons in ambient air constitute a potential health risk for a large number of 

individuals. The work reported in this thesis focusses on human exposure to 

volatile hydrocarbons in ambient air. The analytical deterrninations were made by 
adsorbent sampling followed by thermal desorption and gas chromatography. The 

concentrations of about 40 specific volatile alkanes, alkenes, alkadienes, alkynes 

and arenes from various sources were determined. 

The observed hydrocarbon composition with large proportions of alkanes and 

alkylbenzenes in urban air demonstrates that human exposure in urban areas is 

caused predominantly by petrol-fuelled cars. Biomass combustion gives rise mainly 

to unsaturated hydrocarbons. Increasing combustion efficiency causes decreasing 

emissions but increasing proportions of benzene, ethene and ethyne. Tobacco 

smoke is characterized by high proportions of isoprene and 1,3-butadiene. 

In two short urban road tunnels (500-700 m), the hydrocarbon concentrations 

were several times higher than in streets with similar traffic. It is concluded that 

long road tunnels with large numbers of vehicles must be questioned with regard to 

health hazards. 

Observed concentrations of hydrocarbons indicate that typical ratios between 

roof level, street-side, and car coupes are 1 : 5 : 10. Passenger exposure to traffic 

emitted volatile hydrocarbons is 2-3 times higher for diesel bus commuters than for 

train commuters. From these comparisons, it is evident that people's activities, in 

terms of their time spent close to traffic sources, will strongly influence their 

hydrocarbon exposure dose. 
A comparison of urban air monitoring of benzene, toluene and p-xylene by the 

gas chromatographic technique used in this work and by differential optical 

absorption spectroscopy (DOAS) demonstrated that DOAS measurements were 

umeliable at the concentration levels prevailing in a city like G6teborg. 

Key words: Hydrocarbons, benzene, ethene, butadiene, gas chromatography, 
adsorbent sampling, vehicle emissions, biomass burning, tobacco 
smoke, urban air, human exposure 
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1. INTRODUCTION 

The present work was carried out at the department of chemical environmental 

science during the period 1991 - 1996. The main reason for starting the project was 

the serious health risks associated with human exposure to potentially carcinogenic 

volatile hydrocarbons. The detailed characterization of hydrocarbons emitted from 

road traffic, biomass combustion and tobacco smoke is of great importance for the 

assessment of human exposure. 

In this thesis, results published internationally in seven articles (I-VU) are 

included. Four of the articles (I-IV) deal with emissions from road traffic. One of 

them includes assessment of hydrocarbons in tobacco smoke (11). Two articles deal 

with emissions from biomass combustion (V,VI). Ambient air monitoring of 

benzene, toluene and p-xylene by differential optical absorption spectroscopy 

(DOAS) is evaluated in one study (VII). A revised version of an article dealing 

with volatile hydrocarbons in long road tunnels is included in this thesis (chapter 5) 

as a case study of high exposure levels. 

The present work is a continuation of earlier work carried out at the department of 

chemical environmental science on determination of volatile hydrocarbons in urban 

air (1,2). Related research at the department includes studies of improved, alkylate­

based, petrol (3-5). Experience from the assessment of reactive terpene 

hydrocarbons has been valuable (6). 
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2. GAS CHROMATOGRAPHIC ASSESSMENT 

Adsorbent sampling followed by thermal desorption and gas chromatography has 

long been a common technique for determinations of volatile hydrocarbons in air. 

The gas chromatographic system used in this work is outlined in Figure 1. The 

analytical method used was described in detail for different applications in two 

articles (11, IV). 

The use of similar gas chromatographic methods has been reviewed in several 

studies (7 -12). 
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Figure 1. The gas chromatographic system used for assessment of volatile 

hydrocarbons. 

2.1 Sampling 

2.1.1 Adsorbent cartridges 

For air pollution analysis, the sampling procedure is a key step to reliable 

measurements. When adsorbent sampling is used, the Tenax porous polymer is 
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usually preferred for sampling of hydrocarbons with more than 5 carbon atoms 

(12,13). When hydrocarbons with 2 to 5 carbon atoms are to be measured, stronger 
adsorbents like Carbotrap and Carbosieve S-III are used (13,14). 

In this work, adsorbent cartridges were prepared with the following three as 

adsorbents of increasing strength: Tenax TA, Carbotrap, and Carbosieve S-III. 

After preparation, the adsorbent cartridges were conditioned in a helium gas flow 

of 30-40 m1!min at 280°C for more than one hour. Prior to each sampling they were 

conditioned in a similar way for 10 min. 

2.1.2 Sampling with air pumps 

A defined volume of air was pumped at a rate of 10 to 50 m1!min through the 

triple-layer adsorbent cartridges with personal air pumps (active sampling). A low 

sampling rate has been observed to favour the adsorption efficiency (7). Different 

sampling rates for duplicate samples were used to check losses by breakthrough 

and by decomposition of reactive hydrocarbons, as previously described (15). 

The preferred sampling pumps (low-flow, Accuhaler 808 Model, MDA, 

Linconshire, IL, USA) work with constant strike volume and strike counting. The 

flow rate can easily be adjusted by exchanging a flow restrictor. With this 

technique, the sampling volume can be determined with high accuracy. 

For all other pumps examined, the sampling volume was determined by the flow 

rate and sampling time. For these pumps the accuracy was found to be poorer since 

the flow rate can be affected by several parameters such as humidity (enrichment of 

water on the adsorbent) and temperature. 

2.1.3 Other sampling methods 

Complementary air sampling in a gastight syringe was used for the characterization 

of hydrocarbons emitted from biomass burning (V, VI). The almost identical 

results for gas syringe sampling and adsorption sampling confirm that no 

significant losses occur neither by chemical decomposition of reactive 

hydrocarbons nor by breakthrough on the triple-layer adsorption cartridges (VI). 

However, aggressive combustion products may give rise to extensive losses of 
reactive alkenes on the triple-layer adsorption cartridges, as demonstrated for diesel 

exhaust (Ill). 
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Whole air sampling, so-called grab sampling, in stainless steel canisters is a 

sampling method commonly used (16-20). The introduction ofpassivated SUMMA 

polished canisters has been reported to reduce problems with sample stability (21-

23). 

For passive sampling (diffusion sampling), the sampling process is controlled by 

the adsorption properties of the adsorbent and by the diffusion processes. The main 

application of passive samplers is measurements in workplace air and monitoring 

of urban air pollutants (24). For passive sampling, problems with reliability are 

different compared to active sampling on adsorbents (25-28). 

2.2 Thermal desorption and cryofocusing 

The sampled hydrocarbons were released from the adsorbent cartridge by thermal 

de sorption (230 QC, 14 min, 20-30 mlfrnin). 

To prevent peak broadening, the desorbed compounds were cryofocussed in a 

cryotrap (an empty fused silica column, -5 m, i.d. 0.32 mm) in liquid nitrogen 

(-196
Q
C). When the desorption was completed, the trap was manually moved into 

an oil bath (150
Q
C), transferring the compounds as a narrow band onto the column. 

Adsorption of water on Carbosieve S-III may cause plugging of the cryotrap for 

humid samples. To prevent plugging and to improve the analytical performance, a 

tube (lOO x 4 mm i.d.) filled with a drying agent (magnesium perchlorate) was 

inserted before the cryotrap. The drying tube was exchanged regularly, and was not 

found to cause any losses of the determined hydrocarbons, which has also been 

reported by Matruska et al. (29). A widely used drying device in cryotrapping 

methods for analysis of gaseous samples is the Naflon membrane dryer, which has 

been reported to cause losses (30) and contamination (11), however. 

2.3 Gas chromatography 

2.3.1 Separations 

The analytical separations were performed on a fused silica A120i5% KCl PLOT 
column (50 m x 0.32 mm i.d., Chrompack). The major advantages of the this 
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Figure 2. Gas chromatographic separation on the Al20/5%KCl PLOT colunm of 

volatile hydrocarbons sampled in urban air near to road traffic. The 

temperature program was: 30°C to 110°C with lOoC/min; 14 minutes at 

110°C; 110°C to 200°C with 4°C/min; 200°C isothermal. 

column were demonstrated as early as 1984 at our department (31). It was then 

shown to be a very efficient column for the separation of C C C9 hydrocarbons, and 

it has been used in many projects at the department since then. Aluminium oxide 

retains polar compounds like alcoho1s and aldehydes very strongly. These 

compounds will not elute from the column even at 200°C, which is the maximum 

temperature recommended. 

As described by de Zeeuw et aI., there is a wide range of possible applications for 

the A120/KC1 PLOT column (32). The main drawback is that water may interfere 

by decreasing the retention times. Schmidbauer and Oehme reported that water 

gives rise to a deteriorated peak shape of early eluting compounds (11). However, 

evaluation of the analytical performance of the Al20 3/KCl PLOT column in this 

work indicated that these problems were caused by methanol. Water was found to 

interfere with the C6 and higher hydrocarbons. 

A non-linear temperature program further improved the separation of certain 
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hydrocarbons. To ascertain a clear-cut separation of as many hydrocarbons as 

possible a slow program was chosen (11, IV, V, VI). For routine determinations of 

the major hydrocarbons, the time required can be much decreased by using a rapid 

linear temperature program (Ill, 33). 

The retention times can also be reduced by using a higher carrier gas flow. The 

optimum velocities are much higher for the A120 iKCl PLOT column than for 

liquid-phase coated capillaries. The used helium flow of 30 crnls can be doubled 

with only a minor decrease in separation efficiency (32). 

The chromatogram in Figure 2 illustrates the separation of hydrocarbons sampled 

in urban air. 

2.3.2 Detection 

For the quantitative determinations, the Flame Ionization Detector (FID) was used. 

The FID is sensitive to practically all organic substances. Since the detector 

response depends on the number of carbon atoms reaching the detector, it is 

necessary to use correction factors for compounds with heteroatoms. Traditionally, 

response factors are given relative to heptane (34,35). The response is almost 

similar for most volatile hydrocarbons, For benzene, however, the high degree of 

unsaturation results in a 12% higher response. 

The limit of detection in chromatography has been defined as the quantity of 

analyte that produces a signal equal to three times the standard deviation of the 

gross blank signal (36). For the GC-FID system with thermal desorption and 

cryofocusing, this generally corresponds to 5-50 pg of a hydrocarbon. Hence, the 

lowest detectable concentration should be 5-50 ng/m3 in an air sample of 1 litre. 

The Photo Ionization Detector (PID) is a selective detector with a sensitivity 

approximately one order of magnitude higher for unsaturated C3-CS hydrocarbons 

compared to the FID (1). The use of PID and FID in parallel has been reported to 

be useful for the assesssment of C3-CS alkadienes and alkenes (37,38). 

2.3.3 Calibrations 

Calibration was performed using gas standards prepared in the laboratory as 

described by Westberg et al. (39). A mixture (gravimetric quantities) of several 

liquid hydrocarbons was injected into a known volume of air. Since this method 
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permits injection into the gas chromatograph after sampling on adsorbents, it was 

regarded as more accurate than calibration using gas standards with direct injection 

via a gas sampling loop as described by Lofgren et al. (37). 

It should be noted that it is extremely difficult to prepare and store hydrocarbon 
standards at low ppb levels. Furthermore, it is difficult to adjust instrument 

performance to an undiluted single component gas standard when the gas 

chromatograph is operated in a mode appropriate for measuring ambient 

hydrocarbon levels. 

2.4 Gas chromatography - Mass spectrometry 

Mass spectrometric studies were made on a Varian Saturn II ion trap GC-MS 

instrument. It proved to be a valuable tool for the identification of a wide range of 

different hydrocarbons. In several applications, two compounds coelute on the 

A120i5% KCI PLOT column in spite of a slow temperature program. In such 

cases the mass selective detection of the mass spectrometer was necessary for 

correct identification and quantitative assessment. 

Mass selective detection of sampled environmental air pollutants has been 

preferred for routine, quantitative assessment of hydrocarbons in some studies (40-

42). 

2.5 Continuous monitoring 

2.5.1 Automatic GC systems 

If the gas chromatographic measurements are made with respect to a few selected 

hydrocarbons, continuous automatic determination has proved to be reliable. 

Persson and Berg determined Cr C4 hydrocarbons in the air by automatic solid 

sorbent sampling and gas chromatography (46). A system for automatic sampling 

and analysis of background levels of C2-C5 hydrocarbons has been described by 

Mowrer and Lindskog (47). Automatic systems for contiuous monitoring of 

speciated CrCw hydrocarbons have also been described (48-50). The results from 

these instruments are less reliable, however (45). 
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For the purpose of continuous monitoring of concentration trends in ambient air, 

passive sampling on adsorbents with subsequent GC analysis appears to be a 

reliable and cost-effective method. The thermal desorption and cryofocusing can 

then be performed by a commercial automatic instrument (Perkin Elmer ATD 50). 

2.5.2 Differential Optical Absorption Spectroscopy (DOAS) 

The Differential Optical Absorption Spectroscopy technique (DOAS) is based on 

the fact that all compounds absorb light at a specific wavelength. Under some 

circumstances it is possible to calculate the concentration of a compound from the 

measurement of this absorption (51,52). The DOAS instrument (53) consists of 

emitter (xenon lamp), receiver and analyzer (spectrometer and computer). In 

several studies, DOAS measurements of nitrogen dioxide, sulphur dioxide, and 

ozone have been shown to be in excellent agreement with concurrently operated 
fixed-point monitoring by other methods (54). 

The performance of a commercial DOAS system was evaluated for semi­

continuous ground-based measurements of benzene, toluene, and p-xylene in 

Goteborg (VII). It was concluded that the concentrations of hydrocarbons 

prevailing in Goteborg cannot be reliably determined by the instruments used. 

Similar results are reported from a comprehensive study in London (44). 

2.6 Evaluation of measurements 

Strong quality control of ambient air hydrocarbon measurements is recommended 

since erroneous measurements have been demonstrated in several air monitoring 

programs (VII, 43-45). 

Normally, a great deal of information is received from environmental 

measurements using gas chromatography. Every chromatogram has to be studied 

very carefully to ensure correct identification and integration of each peak. Often 

each measurement is unique in some respect because the results can be affected by 

so many evident or unforeseen parameters. To isolate a measurement situation to 

such an extent that a large number of measurements are comparable in all respects 

can in many cases be difficult. Common sources of error are contributions from 

occasional non-typical sources, identification errors due to complicated 

chromatograms, effects due to meteorological parameters, and analytical 
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deficiencies. 

In the present work, the measurements were carefully selected to be well 

representative of a given situation. In this way, much information was obtained by 

detailed studies of each chromatogram and errors were avoided by checking against 

chromatograms from duplicate samples. When results from a large number of 
measurements are put together in a routine manner, there is a great risk that much 

information is lost. 
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3. EMISSIONS 

3.1 Source characterization 

In this thesis, source profiles consisting of more than 30 volatile hydrocarbons 

emitted from road traffic, small-scale biomass combustion and tobacco smoking 

are reported. 

Detailed characterization of CrCw hydrocarbons measured in a road tunnel (I) 

represents on-road emissions from over 1000 in-use vehicles on each sampling 

occasion. The proportions of volatile hydrocarbons determined for different kinds 

of biomass combustion (V, VI) demonstrate the major importance of combustion 

efficiency. The high concentrations of volatile hydrocarbons measured in indoor air 

polluted by tobacco smoke (11) confirm the significant contribution of passive 

tobacco smoking to human exposure. 

In Table 1, source fingerprints consisting of a total of 44 CrCg volatile 

hydrocarbons emitted from road traffic, efficient and inefficient wood burning, as 

well as tobacco smoking are presented. In source reconciliation analysis of air 

samples, observed differences in hydrocarbon profiles have been used to apportion 

air pollution to specific sources (55-60). 

3.2 Vehicle emissions 

3.2.1 Proportions of hydrocarbons 

The composition of volatile hydrocarbons emitted from road traffic was studied by 

measurements in an urban road tunnel (I). The determined proportions of volatile 

non-methane hydrocarbons reflect the composition of exhaust gases from the 

vehicles passing the tunnel during air sampling (-2000 vehicles, -10% heavy-duty 

diesel vehicles). At the time of the study, an estimated proportion of almost 50% of 

tbe private cars were equipped with three-way catalytic converters. 

The chromatogram in Figure 3 illustrates the source fingerprint of C2-Cg 

hydrocarbons emitted from road traffic. Since approximately 80% of the 

determined hydrocarbons consisted of unburnt saturated and aromatic fuel 

hydrocarbons, the proportions of hydrocarbons from urban road traffic reflect the 
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Table 1. Proportions (% weight) of C 2-Cg hydrocarbons emitted from road 

traffic, wood burning and tobacco smoking. 

road traffic efficient inefficient tobacco 
emissions . wood burning wood burning smoke 

Alkenes 
C2 Elhene 7.8 30.0 34.7 ILl 
C3 Propene 2.8 4.0 11.8 9.6 
C4 (rans-2-Bulene 0.3 0.1 0.7 1.0 

I-Butene 0.6 0.7 2.0 2.8 
Methylpropene 1.1 0.2 1.1 2.7 
cis-2-Butene 0.2 0.1 O.S 0.7 

CS Cyclopentene 0.1 0.0 0.2 0.3 
3-MethyJ-l-butene 0.1 0.1 0.2 0.7 
trans-2-Pentene 0.2 0.1 0.3 0.4 
2-Methyl-2-butene 0.3 0.0 0.3 2.7 
I-Pentene 0.2 0.2 0.4 1.2 
2-Methyl-l-butene 0.2 0.0 0.3 1.3 
eis-2-Pentene 0.1 0.0 0.2 0.3 

C6 l·Hexene 0.1 0.2 0.3 1.3 
2-Methyl-2-pentene 0.1 nd nd 0.4 

C7 I-Heptene 0.0 0.1 0.2 0.6 
CS l·Octene 0.0 0.1 0.3 0.2 
Alkadienes 
C3 Propadicne 0.2 0.2 0.4 0.2 
C4 1,2-Butadiene 0.0 0.0 0.0 0.1 

1,3-Butadiene 0.7 1.0 2.3 3.2 
CS Isoprene 0.0 0.1 0.3 29.2 

Cyctopentadiene 0.0 0.4 1.3 nd 
eis-l,3-Pentadiene 0.0 0.0 0.0 0.2 
trans-l,3-Pentadiene 0.0 0.1 0.3 0.4 

Alkynes 
C2 Ethyne 5 27 7 1 
C3 Propyne nd 1.0 1.5 0.4 
C4 2-Butyne 0.0 0.1 0.2 nd 

Butenyne 0.0 0.5 0.4 0.2 
I-Butyne 0.0 0.1 0.1 nd 

Alkanes 
C2 Ethane 1 S 14 3 
C3 Propane O.S 0.4 3.0 4.0 
C4 Methylpropane 2.8 0.0 0.0 0.5 

Butane 4.8 0.1 0.7 1.7 
CS Methylbutane 7.1 0.1 0.1 0.3 

Pentane 3.2 O.! 0.2 0.5 
C6 Methylcyctopentane 1.8 0.0 0.0 0.0 

2-Methylpentane 2.8 0.0 0.0 0.0 
3-Methylpentane 2.4 0.0 0.0 0.0 
Hexane 2.0 0.0 0.1 0.0 

Arenes 
C6 Benzene 9.1 20 7.4 3.9 
C7 Methylbenzene 17.5 3 3.2 6.4 
C8 Ethylbenzene 3.7 0.5 0.4 0.7 

Dimethylbenzenes 14.5 0.7 0.9 2.8 
Styrene 0.0 LO 0.6 nd 
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Figure 3. Gas chromatographic separation of volatile hydrocarbons from traffic in 

an urban road tunnel (Tingstad Tunnel, Goteborg). 

composition in the petrol used. The C2-C3 hydrocarbons and 1,3-butadiene are 

products of combustion. In Sweden, petrol is not allowed to contain more than 5% 

(v/v) benzene. Since benzene is also a combustion product, its proportion is 

elevated in the exhaust compared to other petrol components. 

The C2-C S hydrocarbons given in Table 1 accounted for more than 90% of all 

C
2
-C

S 
hydrocarbons measured in the tunnel air and were estimated to constitute 

-90% of all emitted CrC lO hydrocarbons (I). In addition to these C2-C lO 

hydrocarbons, methane (5-20%), less volatile hydrocarbons (>C IO, -1 %), and 

oxygenates (-1 %) contribute to the total hydrocarbon emission (THC) from petrol 

light duty vehicles (61-63). 

3.2.2 Hydrocarbon emission factors 
The normal way to determine vehicle emissions is to use scheduled driving cycles 

on a dynamometer in a laboratory. Ingalls calculated emission factors based on 

measurements in a road tunnel in Los Angeles, USA (64). This study indicated that 

dynamometer tests underestimate the real-world emissions by a factor of 2-4. 

12 



Table 2. Emission factors (mg/km) estimated from tunnel air measurementsa, and 

from dynamometer tests for a petrol-fuelled car with and without a 

catalyst (63) and for a heavy-duty (HD) diesel bus (66). 

THe benzene 1,3-butadiene ethene propene toluene 

Tunnel air study 900b 60 6 65 27 123 

Petrol care 1460 97 8 89 48 198 

Petrol car, cat." 140 21 0.6 8 4 30 

Diesel bus (HD) 1300 7 nd d 33 8 5 

a) The concentration at the tunnel exit (1530 ~g/m3 CrCw, I) was assumed to be twice that 
at the entrance. The air flow has been assessed to 8 mls (67) under similar conditions 
(vehicle speed: 70 kmlh); Tunnel length: 436 m; Tunnel area: 56 m2 ; Number of 
vehicles/h: 3200. The calculated emission factors are judged to differ from the true 
emissions by less than a factor of three. 

b) The CrCw hydrocarbons are estimated to make up 90% ofTHC. 
c) Volvo passenger car, 2.3 litre fuel-injected petrol engine with lambda sensor. 
d) nd - not determined 

Based on the measurements made in the tunnel air (near the exit) in Goteborg, 

emission factors of individual hydrocarbons (mg/km) were estimated for the fleet 

of vehicles passing through the tunnel during air sampling (Table 2). The 

calculations were performed as described by Pierson et al. (65). Of the tabulated 

hydrocarbons, ethene, propene and 1,3-butadiene are important combustion-formed 

hydrocarbons, whereas benzene and toluene are petrol components. 

Emission factors of THe, determined in dynamometer tests are reported to be 0.05 

- 2.0 g/km for petrol light-duty vehicles equipped with a three-way catalyst (61-

82), and 0.5 - 2.5 for vehicles without a catalyst (61-63, 80-83). The estimated road 

traffic emission of THe, based on the tunnel air measurements in Goteborg, 

indicates on-road emissions of the same order of magnitude as those observed in 

dynamometer tests (Table 2). 

High emission rates determined in several "on-road" studies (64,84-88) have been 

suggested to be caused by high emissions from a small fraction of vehicles with 

malfunctioning engines (high emitters), as well as from vehicles with cold engines 
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(65). High proportions of unbumt fuel hydrocarbons in these studies support this 

conclusion. 

High-emitting automobiles 

The remote-sensing IR technique offers the ability to trace high-emitting 

automobiles by continuously measuring real-world on-road automobile THC and 

carbon monoxide (CO) exhaust emissions (89-95). Measurements with this 

technique have been made in several regions around the world. A comparison of 

fleet profiles of THC and CO emissions rate in 22 different cities, indicates higher 

emissions than in Goteborg for most cities (89). For all the fleets, it was concluded 

that the average emissions were dominated by a small percentage of high emitters. 

Catalyst effects 

In order to reduce tail-pipe emissions of regulated pollutants (HC, CO, NOx and 

particles), modem automobiles are equipped with a three-way catalyst (TWC). The 

catalysts also alter the composition of the emitted hydrocarbons significantly, as 

illustrated by the figures in Table 2. In the catalyst, the order of reactivity for 

various classes of hydrocarbons (HC) has been observed to be: methane (least 

reactive) < saturated HC < aromatic HC < unsaturated HC (62, 96-98). 

Furthermore, the reactivity has been observed to increase with chain length, which 

is particularly noticeable after ageing of the catalyst (33,63). Deactivation of the 

catalyst will occur due to high temperatures and catalyst poisons (99). 

Cold-start emissions 

High emissions of HC and CO are caused by the low combustion efficiency in a 

cold engine (66,68,100). It has been demonstrated that modem cars prior to catalyst 

"light off' (-300°C) generate pollutant emissions comparable to those of pre­

catalyst vehicles. The average cold start emission of HC for vehicles with TWC 

was found to be 2.5 gram at standard test temperature (+20°C) of the urban driving 
cycle, 17 gram at _7°C and as high as 27 gram at -15°C (lOO). The cold start 

emission of older non catalyst cars was found to be 5.4 gram at standard test 

temperature (+20°C) and 16 gram at _7°C (100). 

Fuel composition 
Following the increasing efforts reduce emissions of hazardous pollutants, more 

attention has been given to the relationships between fuel composition and tailpipe 

emissions. Studies of combustion products from single-component fuels have 

14 



demonstrated that the total engine out HC emission increased as the average 

molecular weight of the fuel increased (101-107). The benzene emission increases 

as aromatic content of the fuel increases, and the emission of 1,3-butadiene seems 

to increase as the content of alkenes in the fuel increases (71-73,101,108-111). The 

addition of oxygenated fuel components (such as MTBE and a1cohols) has been 

reported to lower the HC emission (71-73,75,76,81,101). 

Since sulphur has been observed to inhibit the oxidation of the hydrocarbons in the 

catalyst (101), a lowered content of sulphur-containing compounds in the fuel 

(such as thiophenes) will lower not only the emission of sulphur dioxide, but also 

the HC emission. A reduction from 450 to 50 ppm of sulphur in the fuel has been 

reported to lower the HC emission by 15% (101). 

Diesel exhaust 

Diesel exhaust was demonstrated to be composed of volatile hydrocarbons with a 

significautly different composition compared to petrol exhaust (llI). The high 

proportion of 1-alkenes (especially ethene) in diesel exhaust is explained by the 

basic combustion chemistry of straight-chain paraffinic diesel fuel hydrocarbons 

(Ill). In addition to the combustion-formed C2-C 7 hydrocarbons, heavier diesel 

fuel hydrocarbons were observed to be released in approximately similar amounts 

(Ill). An increased occurrence of C IO- C l2 alkanes is a specific indication of an 

increased contribution of diesel exhaust to urbau air pollution (112-114). 

The emission factors reported in Table 2, for a heavy-duty diesel bus, were 

measured on a dynamometer using the bus test cycle developed at the University of 

Braunschweig, Germany (65). The major importance of engine type, fuel, speed 

and load should be considered when emission factors for HD diesel vehicles are 

compared (115,116). 

In Sweden, a switch in recent years to improved reformulated diesel fuels has 

reduced the emissions of regulated pollutants and especially polycyclic aromatic 

compounds (PAC) (117-123). A further reduction of pollutants from heavy-duty 

diesel vehicles is gained by the use of an oxidation catalyst and a particulate trap 

(124,125). 
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3.2 Biomass combustion 

Measurements were performed for the purpose of characterizing the emissions of a 

wide range of volatile hydrocarbons from incomplete combustion of biomass (V, 

VI). The proportions of volatile hydrocarbons was found to depend highly on the 

combustion efficiency, as demonstrated in Table 1, and to some extent on the 

material burned. The combustion efficiency may be defined as the molar emission 

ratio between carbon dioxide (C02) and the sum of CO2 and CO (126). 

3.2.1 Efficient combustion 

Efficient biomass burning is characterized by high temperature and a rapid 

consumption of fuel. The emissions are low for products typical of incomplete 

combustion, such as hydrocarbons, particulates and CO. The combustion efficiency 

was found to be higher than 99% when burning dry modified biomass fuels in 

modem stoves. For flaming combustion in cookstoves, and for open burning, the 

combustion efficiency has been reported to be 93-98% (127-134). High 

temperature favours the formation of thermally stable hydrocarbons such as ethyne 

and benzene. The chromatogram in Figure 4 illustrates the high proportions of 

ethene, ethyne and benzene from efficient wood burning in a modem stove. 

3.2.2 Inefficient combustion 

During glowing and smouldering, the combustion is inefficient and incomplete 

due to low temperature and oxygen deficiency, which causes high emissions of a 

great number of substances (135-137). In several small-scale experiments with 

glowing and smouldering biomass, the combustion efficiency was found to be 80-

90%. A combustion efficiency as low as -70% was observed by Sandberg et al. 

(138). 

3.2.3 Naturalfires 

The demonstrated impact of combustion efficiency on hydrocarbon emissions 
from biomass burning is confirmed by measurements from large-scale forest and 

grassland fires (139-146). Ground sampling of hydrocarbons released from natural 

fires reflects the conditions of smouldering, whereas airborne sampling rather 

reflects the conditions of flaming combustion. The hotter plumes from flaming 

combustion rises higher into the atmosphere than those from smouldering fires 

(129). The proportions of hydrocarbons determined by ground sampling from 
savanna fires in Africa, reported by Bonsang et al. (147), are remarkably similar to 
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Figure 4. Gas chromatographic separation of chimney-sampled non-methane 

hydrocarbons from efficient burning of dry birchwood in a modern 

stove. 

the proportions determined from small-scale grass and twig burning (V). Similar 

proportions and remarkably hydrocarbon concentrations were observed in field 
studies of grass burning in Sweden (148). 

3.2.4 Methane emissions 

Analysis of gaseous samples without enrichment on adsorbents permitts the 

determination of methane on the aluminium oxide column, as illustrated by the 

chromatogram in Figure 5 (VI). The emission ratio of methane to carbon dioxide 

was approximately 0.01 % for efficient combustion in a modern stove. In the small­

scale experiments, the emission ratio was 0.2 to 0.4% for inefficient combustion. In 

several different experiments, the methane emissions were lower than the total 

C2-CS hydrocarbon emission (-40%). Lobert et al. report emission ratios of the 

same order (130), while global estimates indicate a higher proportion of methane 

(156,157). 

Methane is a potent greenhouse gas. In the time horizon of 20 years, one mole of 

methane absorbs 21 times more radiation than one mole of CO2 (128). As the most 
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Figure 5. Gas chromatographic separation of hydrocarbons (including methane) 

from small-scale burning of dry birchwood (gaseous sample, 3.2 ml 
injected), 

abundant hydrocarbon released from biomass combustion, methane has a large 

impact on the global greenhouse effect (127,128,149). 

3.2.5 Furans 

Non-hydrocarbon compounds are normally not eluted from the aluminium oxide 

column, but observed exceptions are furan and methylfurans which appear as 

prominent peaks among the hydrocarbons in the chromatograms (Figure 5) of 

biomass smoke samples (11, V, VI). Mass spectrometric analysis of samples from 

different kinds of biomass burning was used to identify the 15 most prominent 

furans, reported by Barrefors et al. (150). It was found that high emissions of 

furan and methylfurans are to be expected only from glowing and smouldering 

combustion, 

3.2,6 Carbon dioxide 

Optional determination of CO2 and CO was achieved by gas chromatographic 
analysis using a thermal conductivity detector (V, VI), The concentration ratios of 

HC to CO2 and CO to CO2 were used for assessment of combustion efficiency. The 

basic changes in relative proportions on a scale from inefficient smouldering to 
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Figure 7. Approximate percentage proportions of prominent specific 

hydrocarbons relative to total non-methane volatile hydrocarbons from 

biomass burning. The decrease in hydrocarbon to CO2 ratio from 1 to 

0.01 % reflects a shift from smouldering to flaming combustion. 

efficient flaming combustion are indicated m Figure 7 for hydrocarbons of 

particular interest. 

3.2.7 Fuel character 

In the study of emissions from biomass burning it was found that the hydrocarbon 
compositions for different kinds of biomass were remarkably similar (V, VI). The 

major exception was the high proportions of isoprene in tobacco smoke, probably 

linked to a high content of terpenoid components in tobacco (n). For major 

condensible compounds the emissions from biomass combustion have been 

reported to be much more dependent on the fuel chemistry (151-153). 

Determination of specific polycyclic aromatic hydrocarbons and oxygenated 

organic compounds has been used to distinguish between wood combustion and 

vehicle emissions, as sources of urban air pollution (154). Wood combustion was 

found to account for as much as 73% of the extractable organic matter (EOM) as 

measured during one year in Boise, Idaho, USA (155). However, this fraction only 
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Table 3. The contribution ofbiomass burning to global emissions (156,157) 

Biomass burning All sources Biomass burning 
Species (Tg element/year) (Tg element/year) % 

CO2 (gross) 3500 8700 40 
CO2 (net) 1800 7000 26 
CO 350 1100 32 

Methane 38 380 10 
NMHC 24 100 24 
Tropospheric ozone 420 1100 38 

Total particulate matter 104 1530 7 

accounted for about 20% of the estimated life time risk caused by exposure to 

EOM, since the mutagenicity is over three times more potent for EOM from 

vehicle emissions than for EOM in woodsmoke (154,155). 

3.2.8 Global perspective 

Human activities have increased the extent of biomass burning significantly over 

the past 100 years. Biomass burning is now recognized as a significant global 

source of emissions, contributing as much as 26% net carbon dioxde (40% gross, 

i.e. not corrected for compensating biomass growth by photosyntheses) and 38% 

tropospheric ozone (Table 3). Most of the world's burned biomass consists of 

natural savanna fires, which contribute the same amount as the combined total 

combustion of agricultural waste and fuel wood. Considering the greenhouse 

effect, the need for a reduced use of fossil fuel appears to be even more urgent 

when the huge emissions of CO2 and other greenhouse gases from biomass burning 

are taken in to account (158,161). 

Ozone and other photochemical oxidants are formed due to atmospheric reactions 

involving hydrocarbons and nitrogen oxides (162). High emissions of these ozone 
forming compounds from biomass burning contribute to an increased background 

level of ozone (163-165). A build-up of 40-50 ppb above the ambient background 

ozone concentration in forest bum plumes was reported by Westberg et al. (163). 
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The determined hydrocarbon to NOx ratio of 9.9 in the forest burn plumes favours 

the formation of ozone (163). In addition, high proportions of hydrocarbons with 

high ozone creation potentials emitted from inefficient biomass burning also favour 

ozone formation (166-170). 

Biomass combustion for the purpose of home heating should be carried out with 

modem energy-efficient equipment. Today the extensive use of fuel wood in stoves 

with inefficient combustion gives rise to very high emissions of many air 

pollutants. Improved equipment for the combustion of biomass fuels has to be a top 

priority all over the world. 

3.3 Tobacco smoke 

Tobacco smoking involves the pyrolysis of tobacco, which gives rise to a whole 

range of compounds in a similar way as inefficient biomass burning. Compared to 

inefficient wood combustion, the main observed difference in the composition of 

volatile hydrocarbons is the extensive release of isoprene from tobacco (Table 1). 

The structurally related carcinogenic 1,3-butadiene is also formed in high 

proportions. The determined proportions of hydrocarbons in tobacco smoke (ll) 

were similar to those reported for a few important hydrocarbons in environmental 

tobacco smoke (172). 

In the process of smoking, products from incomplete combustion are formed both 

during the inhalation of puffs (mainstream smoke; MS) and in the interval between 

the puffs (sidestream smoke; SS). Environmental tobacco smoke (ETS) is the sum 

of the sidestream smoke and the part of the mainstream smoke which the smoker 

exhales. Although the temperatures vary between 600°C and 900°C during the 

pyrolysis of tobacco (171), the compositions of volatile hydrocarbons were found 

to be similar in MS and SS smoke in this study (ll). Sidestream smoke from 

different kinds of cigarettes has been reported to differ less in composition than MS 

smoke (172). Since the yields of hydrocarbons are 4 to 10 times higher for SS 

smoke compared to MS (172,173), MS smoke contributes only to a minor extent to 

ETS. For isoprene the emission has been reported to be 2-5 mg/cigarette in SS 

smoke, and -0.5 mg/cigarette in MS smoke (174-177). For benzene the yields have 

been reported to be -300 /-Lg/cigarette in SS smoke, and 30-60 /-Lg/cigarette in MS 

smoke (174-177). 
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Since the normally used indicator of tobacco smoke, nikotin (175,178,179), 

requires elaborate sample collection and analysis, isoprene has been suggested as a 

tracer of tobacco smoke (180). Isoprene occurs, however, in high concentrations 

(0.5-3 mg/m3) in exhaled air (180), and is also released from other combustion 

processes. Therefore, a more comprehensieve analysis of the composition of 

hydrocarbons appears to be required for the purpose of apportioning pollutants to 

their source of origin (IV). 
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4. HUMAN EXPOSURE TO VOLATILE HYDROCARBONS 

4.1 Exposure assessment 

Several species among the large number of pollutants occurring in ambient air have 

been recognized as severe health hazards. The focus has mostly been on cancer. 

However, other health effects due to exposure to air pollutants may be as important 

as cancer. As a consequence, assessment of human exposure to hazardous air 

pollutants is an issue of great concern (181-186). 

From the results presented in this thesis, it is evident that human exposure levels of 

hydrocarbons vary strongly between different urban microenvironments. Still, 

many estimations of human exposure to air pollutants rely on fixed-point 

measurements in urban background locations (181,185,187). This results in a 

significant underestimation of the average exposure level, since personal activities 

in micro environments with high concentration levels are not taken into account 

(188,189). 

In principle, human exposure to air pollutants can be estimated in three different 

ways: 
(1) Direct measurement of the personal exposure dose for an appropriate sample 

of the population (189,180). 

(2) Indirectly, by assessing concentrations in an approprirate selection of micro­

environments, and by using general activity patterns for the population (155). 

(3) Determining the target dose in humans, for example adducts in blood (191-

193), or concentrations in exhaled air (194,195). 

Assessment of average exposure levels for a large population is however always an 

issue involving several estimations with some degree of uncertainty. 

4.2 Concentration levels 

4.2.1 Outdoor air 
In urban air, emissions from road traffic is the major source of hydrocarbons, 

nitrogen oxides and carbon monoxide (181,196). The concentrations in urban air 

vary strongly between different microenvironments due to varying emissions and 
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varying dilution. The total amount of hydrocarbons emitted from road traffic 

depends on the number of vehicles and the driving pattern. How efficiently the 

emissions are diluted depends on the distance to the emissions, on the climate 

(wind speed, inversion, temperature), and on the location of vehicle emissions in 

relation to the surrounding buildings. Due to a normally efficient dilution in urban 

air, the concentrations of vehicle exhaust compounds decrease rapidly with 

increasing distance from the stream of vehicles (1,197-200). 

In Figure 7, typical concentrations of benzene observed in different urban 

environments in Goteborg are compared. Typical ratios between roof level, street­

side, and car coupes are 1 : 5 : 10. The regional background level is of the order 1 

f,tg/m3. From this comparison it is evident that people's activities in terms of their 

time spent in proximity to traffic sources will strongly influence their average 

hydrocarbon exposure dose. 

The high exposure to hydrocarbons for road commuters was demonstrated for 

buses in this study (IV), as well as in studies of private cars and other vehicles from 

Boston (199,203), Goteborg (201), Paris (202), New York (204), London (205) and 

Taipei (206). The results from Taipei differ by higher concentrations for the road 

commuters (as high as 380 f,tg benzene per m3 on motorcycles), compared to the 

levels determined in the other cities. Benzene exposure during commuting has been 

estimated to range between 5 and 60% of an individual's daily exposure 

(188,199,202,204). 

As a consequence of the distance to the emissions from road traffic, the exhaust 

levels are considerably lower in commuter trains and subways. In the present work, 

the concentrations of hydrocarbons were found to be 2-3 times lower in commuter 

trains than in diesel buses on the same route (IV). For commuter trains with a 

larger distance to road traffic, higher ratios have been observed relative to private 

cars (201-203). 

An average benzene concentration of 3.9 f,tg/m3 was measured during the winter of 

1994/95 at roof level in GOteborg by SjOdin et al. (207). This level is consistent 

with the concentration reported for background locations in several other European 

cities (200,208-212). Comparisons of the concentrations measured in different 

cities have been made in several studies (213-218). However, these kinds of 

intercomparisons may be misleading due to the major influence of local emissions 
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Figure 7. The normal concentration of benzene (flg/m3) at roof level compared to 

typical concentrations in other urban environments in Giiteborg and 

in background air by the sea. 

and dilution. Lower proportions of benzene in urban air in the USA are explained 

by a lower content of benzene in the petrol. 

In small towns and villages, domestic wood burning during the winter may give 

rise to high concentrations of hydrocarbons, CO, PAH and black smoke 

(VI,155,181). However, urban traffic emissions at ground level contribute more to 

human exposure than chimney emissions of the same magnitude from residential 

wood burning. 

Huge emissions of air pollutants from wildland fires give rise to very high 

concentrations in the plumes. Personal exposure levels for CO have been measured 

with sampling devices carried by firefighters (126). Based on these measurements, 

benzene exposure levels of wildland firefighters were estimated to 180 flg/m3 

(corresponding to 40 ppm CO). 

4.2.2 Indoor air 

Since the Swedish population spends on an average 80 to 90% of the day indoors, 

the indoor concentrations reflect the average human exposure level for many non­

traffic-related hazardous air pollutants (219-222). For pollutants emitted from road 
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traffic, such as benzene, the highest indoor concentrations determined in urban 

non-smoking apartments appear to be the result of infiltration of polluted outdoor 

air (223). Environmental tobacco smoke (ETS) is an important source to many 

hazardous pollutants indoors. In the present work, ETS was found to give rise to 

high exposure levels of combustion-formed volatile hydrocarbons indoors (11). 

4.3 Correlations between various air pollutants 

Urban air quality is often determined by the continuous monitoring of nitrogen 

dioxide (N02) and carbon monoxide (CO). It is therefore of great interest not only 

to determine hydrocarbon concentrations but also to relate them to CO and N02 

concentrations. 

4.3.1 Benzene versus other hydrocarbons 

In urban air, the relative concentrations of hydrocarbons have been shown to be 

similar to the composition of hydrocarbons emitted from road traffic (I, 

VII,I,224,225). The ratio between the concentrations of toluene and benzene in 

urban air was shown to be about 2.1 which is lower than in petrol because benzene 

is partly formed by combustion. 

The observed relationship between the concentrations of benzene, 1,3-butadiene 

and ethene given in Figure 8 is based on the results from more than twenty 

measurements near road traffic in G6teborg (VII). The concentration of 1,3-buta­

diene was found to be 8% (w/w) of the benzene concentration, whereas the 

concentrations of ethene and benzene were found to be similar. These results 

support the conclusion that petrol exhaust is the dominating source of hydrocarbons 

in urban air. The contributions of volatile hydrocarbons from diesel exhaust and 

from petrol vapours to urban air pollution appear to be of minor importance in 

Sweden. 

4.3.2 Hydrocarbons versus CO 

Carbon monoxide (CO) is emitted from vehicles due to incomplete fuel 

combustion. In urban air, CO originates almost exclusively from vehicle exhaust. 

In a comprehensive study caried out in Stockholm during 1986 and 87, a clear 
relationship between the concentrations of ethene and CO was demonstrated (226). 

The measurements showed that I mg/m3 CO corresponded to 6 /-Lg/m3 
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Figure 8. The relationship of the benzene, 1,3-butadiene and ethene 

concentrations measured along streets in Goteborg (r = correlation 

coefficient). 

ethene. Because the concentrations of ethene and benzene are similar in urban air, 

a CO concentration of 1 mg/m3 also normally corresponds to 6 Jlg/m3 of benzene. 

Similar results have been reported from both urban air and vehicle exhaust 

measurements (79,211,227,228). 

4.3.3 Hydrocarbons versus N02 

Bostrom et aL reported the assessment of human exposure to nitrogen dioxide for 

the Swedish population based on measurements made in sixty Swedish cities 

(181). By using the characteristic relationship between different substances in 

vehicle-polluted air, average exposure levels for several other substances were 

also estimated. 
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Figure 9, Relationship of the nitrogen dioxide (NOz) concentration, measured by 

DOAS, and the benzene concentration, simultaneously measured by gas 

chromatography (r = correlation coefficient). 

In Swedish cities, 80 to 90% of nitrogen oxides (NOx) are generated by traffic 

(181). In vehicle exhaust, nitrogen monoxide (NO) is the major compound (80 to 

97%) and nitrogen dioxide (NOz) the minor one (3-20%). In urban air, the relative 

concentration of NOz is higher, especially in the summer when regional ozone (03) 

levels are elevated and cause oxidation of NO to NOz' 

In Goteborg, the observed correlation between benzene and NOz (Figure 9) was 

fair (r = 0.7) for measurements performed near to traffic (VII). The incomplete 

correlation is explained by a rather high background concentration of N02 and by a 

varying concentration of ozone. High emissions of hydrocarbons from "high 

emitters" and "cold starts" also affect the relationship between NOz and 

hydrocarbons in urban air. 

During episodes of inversion, very high concentrations of air pollutants occur in 

urban areas. Due to depletion of ozone during these episodes, the concentration of 

N02 does not increase to the same extent as other exhaust-emitted substances. This 

phenomenon was observed twice in Goteborg in November 1994 (Figure 9), and 

should be considered in studies of annoyance and health effects due to urban air 

pollution. 
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4.4 Health effects 

Public exposure to urban air pollution is of great concern due to several possible 

health effects. Most attention has been payed on cancer. Other health effects of 

possible concern are central nervous system effects, heritable genetic effects, liver 

and kidney toxicity, cardiovascular toxicity and asthma (183,229-232). An inreased 

incidence of colds, allergies and other respiratory ailments may also be linked to air 

pollution (183,187,230,231). 

4.4.1 Hydrocarbons 

Unsaturated hydrocarbons are metabolized to reactive epoxides to a varying degree 

(233). Some of these epoxides have been recognized as possible carcinogens (234). 

For humans, about 5% of inhaled ethene at low doses is metabolized to the 

carcinogenic ethylene oxide (235-239). Propene is metabolized to propylene oxide, 

but to a lesser extent (235). 1,3-Butadiene is more hazardous due to the 

biotransformation to a reactive diepoxide. 1,3-Butadiene has been reported to be 
carcinogenic in experimental animal studies (240-247). Benzene is one of nine air 

pollutants identified as carcinogenic to humans (183). Epidemiological studies of 

benzene toxicity are normally made for leukemia (248-250), but other forms of 

cancer are also of concern (251-255). Certain alkanes have been linked to specific 

neurotoxic and metabolic effects (256-259). 

4.4.2 Secondary pollutants 

In the presence of sunlight, volatile hydrocarbons and oxides of nitrogen react to 
form ozone and a myriad of other photochemical products, including mutagenic 

compounds (260-264). Measurements of the products of hydrocarbon 

photooxidation in smog chambers have identified peroxy acetyl nitrate (PAN) as a 

major organic secondary pollutant (265-267). PAN has been shown to be 

mutagenic, contributing up to approximately one-third of the total mutagenic 

activity measured in chamber experiments with irradiation of simulated urban 

atmospheres (268). 

4.4.3 Risk estimation 

Risk estimations for individual toxic substances are normally based on data from 

epidemiological studies or animal exposure in chamber experiments. The exposure 

levels in ambient air are much lower compared to the prevailing concentrations in 

these studies. The calculation of cancer risks due to low doses, assuming a linear 

29 



dose-response relationship is an issue associated with considerable discussion and 

controversy (269-277). However, the hypothesis of low-dose linearity for chemical 

carcinogens is supported by theoretical arguments (269,277) as well as some 

empirical data (191,278). 

If a linear dose-response relationship is assumed (no threshold dose), a unit risk 

factor can be calculated. This factor is usually given as the risk of cancer resulting 

from lifetime inhalation of 1 ~g/m3 of the substance. The collective cancer risk is 

proportional to the long-term total exposure for all affected people (279-281). Unit 

risk factors have also been used to determine recommended guideline values for 

certain volatile hydrocarbons (282). The concentration values given in Table 4 are 

regularly exceeded in traffic-polluted urban air. For toluene and xylene, guideline 

values in the range of 40 - 400 ~g/m3 are recommended, based on effects on the 

central nervous system (282). 

With a substantial formation of secondary pollutants with unknown effects, there is 

a great potential for interactive effects between different substances (268, 283,284). 

Therefore, a future comprehensive assessment of the health effects due to 

hydrocarbon emissions should also consider atmospheric transformation processes. 

Table 4. Recommended guideline values for specific volatile hydrocarbons (282). 

Benzene 1,3-Butadiene Ethene Propene 

1.3 0.02-0.08 1.2 3-20 
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5. AIR POLLUTANTS IN ROAD TUNNELS 

Efforts to support the present road transportation system and to find space for the 

rapidly growing fleet of vehicles have led to extensive plans for new road tunnels 

in Scandinavia and Europe. A major concern associated with road tunnels is the 

elevated level of human exposure to air pollutants when driving through them. 

Specific inorganic and organic pollutants have been studied in tunnels in Sweden 

(1,285), Austria (286), Belgium (87,287), Germany (288), Switzerland (88) and 

USA (289,290). American tunnel studies demonstrate that three-way catalysts do 

not reduce private car emissions and air pollution levels as efficiently as anticipated 
(65). 

The increased knowledge, in recent years, of human health hazards due to air 

pollutants (291) necessitates a lowered human exposure. Today, non-smokers get a 

large proportion of their dose of air pollutants in environments polluted by traffic. 

This article discusses road tunnels in terms of air pollutants and health hazards. 

5.1 Road tunnels planned in Sweden 

At present, billion-dollar investments in new transportation systems are being 

considered for the Stockholm region, for the Goteborg region, and for a road link 

across the Oresund channel between Sweden and Denmark. 

In Stockholm, a planned circumferential route would include about 13 km of road 

tunnels. An external transversal road with about 9 km in tunnels is also considered. 

In Goteborg, three tunnels of 8 km total length are planned. The planned 20 km 

combined road and railway connection over the Oresund channel also includes a 4 

km long tunnel. 

5.2 Air pollutants in road tunnels 

5.2.1 Different types o/tunnels 

Tunnel ventilation can be either transverse or longitudinal. Longitudinal ventilation 

is normally preferred due to lower costs for construction and service. Longitudinal 

ventilation is caused mainly by the piston action of the traffic in one-way tubes. 
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Additional mechanical ventilation IS necessary, especially during traffic 

congestion. 

Vehicle emissions accumulate along a road tunnel, giving rise to the highest levels 

of air pollutants at the tunnel exit. With the same traffic intensity, the maximum 

concentrations increase with the length of the tunnel. A method to avoid extremely 

high concentrations in long road tunnels is to construct ventilation towers, with 

fans for supply air and vented air. The idea is to partially replace the air in the 

tunnel and to dilute the remaining polluted air. Techniques to clean the polluted 

tunnel air from particles exist, while removal of gaseous pollutants does not seem 

to be realistic today. 

5.2.2 Concentration levels 

Concentrations of a wide range of traffic-emitted volatile hydrocarbons were 

recently reported for the Tingstad tunnel in GOteborg with one-way tubes (I). 

Samples were taken on adsorbent cartridges and analyzed in the laboratory using 

thermal desorption and gas chromatography (ll). 

In Table 5, representative concentration levels for ethene, propene, 1,3-butadiene, 

benzene and toluene (methylbenzene) are given for four different, heavily polluted 

urban environments. In road tunnels, cars and outdoor urban air, these 

hydrocarbons normally originate predominantly from emissions of petrol-fuelled 

vehicles. Their concentrations are then also indicative of the level of other traffic­

emitted air pollutants in urban air. 

The first two samples give rush hour levels in two different urban road tunnels in 
Goteborg. The 500 m long Tingstad tunnel consists of two one-way tubes. The 

700 m long Gnistang tunnel carries two-way traffic. The next two samples 

represent high indoor levels of cigarette smoke, and rush-hour levels of vehicle­

emitted pollutants inside a car during urban driving. The last column gives 

background pollution levels. 

Although the tunnels studied are short, 500 respectively 700 m, the pollution levels 

are several times higher than inside a car during urban driving. The concentrations 

of hydrocarbons from cigarette smoke in the cafe are similar to those inside the car 

from traffic emissions. Compared with the background levels in rural air, the 

concentrations in the road tunnels are more than five hundred times higher. 
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Table 5. Concentrations (~g/m3) of hazardous hydrocarbons in road tunnels as 

compared with a smoky cafe and a private car. 

Tingstad Gnistang Smoky Car Rural air 

Tunnela Tunnelb Cafec Couped G6teborg 

CHx (C2-CS) 3600 2250 570 630 
Ethene 280 160 42 30 0.5 

Propene 100 65 37 15 0.2 

1,3-Butadiene 25 17 12 1.3 0.0 
Benzene 330 194 38 55 0.9 
Toluene 630 365 40 110 0.6 

a) Sampling near tunnel exit, 19 Feb-92; 8.10-8.40; -4°C, 3200 vehicles per hour; 0-70 
kmlh; 10% heavy-duty trucks (I). 

b) 5 March-92; 8.00-8.20; +4°C; 3200 vehicleslh; 50-70 kmIh; 10% heavy-duty trucks. 
c) 15 April-92; 13.25-13.55; Junggrens Cafe, Goteborg (11). 
d) 24 Sept-92; 7.50-8.10; +14°C; Central Goteborg; 0-60 kmlhour (11). 

The flow of air through the two tunnels studied is governed by the piston action of 

the traffic in different ways. In spite of poorer ventilation because of two-way 

traffic and the same amount of vehicles, the top concentrations of hydrocarbons 

were often lower in the Gnistang than in the Tingstad tunnel. This may be due to 

the much larger air volume in the wider and higher Gnistang tunnel. Pulsating 

traffic, due to traffic lights, also improves the ventilation in the Gnistang tunnel. 

In vehicle exhaust, the proportion of nitrogen dioxide (N02) is only 3 - 25% as 

compared with nitric oxide (NO). In urban air, N02 is formed by the reaction of 

NO with ozone (03). In road tunnels with high NO concentrations, 0 3 is depleted 

without causing significant conversion of NO to N02. An additional problem 

during congestion, and in long road tunnels, is the elevated proportion of N02, due 

to thermal oxidation of NO. At normal urban atmospheric conditions this reaction 

is of minor importance, while the formation rate of N02 is as high as approximately 

1 ppm h-1 at an NO concentration of 5 ppm (292). Since the reaction rate is 

exponentially dependent on the NO concentration, the N02 formation increases fast 

in road tunnels during congestion with NO concentrations much higher than 5 ppm. 
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5.2.3 Human exposure 

Traffic exhaust is rapidly diluted by horizontal as well as vertical mlxmg. 

Consequently, concentrations decrease rapidly with distance from the exhaust 

pipes. This is tlle reason why the time spent in vehicles is very important for public 

exposure to air pollutants. The high exposure of road commuters has been 
demonstrated in studies from Boston (199) as well as from G6teborg (201). It is 

concluded that the concentration ratios in G6teborg are approximately 1:10:50 

between commuter trains, commuter cars on roadways, and air in road tunnels. The 

exposure of professional drivers should be specifically considered because of their 

long average exposure times. 

The air pollution problem is particularly serious in long tunnels because of higher 

pollution levels and a longer time of exposure. Reported concentrations of 

hydrocarbons in a 3 km long road tunnel in Brussels (286) indicate about twice as 

high levels as in the 0.5 km long Tingstad tunnel. This is so in spite of mechanical 

ventilation and fewer vehicles per hour in the Brussels tunnel. 

5.2.4 Health hazards 

With respect to short-time effects, nitrogen dioxide is commonly regarded as the 

most critical urban air pollutant. In Sweden, the WHO limit for one-hour exposure 

(400 Ilg/m3) is presently considered as a 98-percentile limit for road tunnels. The 

limit to be permitted heavily influences tlle investments in mechanical ventilation. 

Nitrogen dioxide affects respiratory organs (231), and asthmatics and children are 

particularly susceptible. Synergistic effects with other irritating compounds such as 

aldehydes reduce tlle acceptable maximum concentration of nitrogen dioxide. The 

potential connection between the increasing number of allergic persons and 

exposure to irritating air pollutants, such as nitrogen dioxide, should also be 

considered (231). 

Exposure in tunnels also contributes to long-term effects among which cancer and 

other genotoxic effects are regarded as particularly important. Air pollutants from 

traffic include a great many carcinogenic compounds. Among the hydrocarbons in 

Table 1, benzene is a feared human carcinogen (253) whereas 1,3-butadiene, 

ethene and propene have been put forward as important cancer risks more recently 

(279). 

In Sweden, ambient air hygienic threshold values (low-risk levels) are proposed for 
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Table 6. Estimated individual cancer risk from exposure to volatile 

hydrocarbons, when driving through a 13 km long road tunnel (as 

presently planned in Stockholm)a. 

Unit risk factora Unit riskb Dose (15 min)C Risk of Risk of 

per J.Lg/m3 factor per J.Lg [J.Lg] cancer cancer/yeard 

x 106 x lOll x 109 X 106 

Ethene 125 25 63 16 8 

Propene 20 4 22 1 1 

1,3-Butadiene 600 120 6 7 4 

Benzene 16 3 74 2 1 

a) Calculations based on these lifetime unit risk factors (279). 
b) The conversion from lifetime unit risk factors (!!g/m3) is made assuming an average 

inhalation of 20 m3/day dnring 70 years. 
c) Inhaled dose dnring 15 min (15 I of air/min) in a tunnel assuming the concentrations 

measnred in the Tingstad tunnel (column one of Table 1). 
d) Based on the assumptions of two tunnel passages a day, five days a week, dnring a 

year. Considering theoretical and statistical errors, the fignres given are judged to be 
uncertain by a factor of three (279). 

benzene (1.3 J.Lg/m3), 1,3-butadiene (0.05-0.2 J.Lg/m3), ethene (1.2 J.Lg/m3) and 

propene (1.7-17 J.Lg/m3) (282). These low-risk levels theoretically result in one 

cancer case per 100000 exposed individuals during life-time inhalation. For 

toluene, a low-risk level of 38 J.Lg/m3 is proposed with reference to effects on the 

central nervous system. 

Human exposure to benzene, butadiene, ethene and propene has recently been 

estimated to cause approximately 100 cases of cancer per year in Sweden, as 

calculated from lifetime unit risk factors (279). In Table 6, the same approach is 

used to calculate the cancer risk due to the exposure levels when driving through a 

13 km long road tunnel. The estimations indicate 14 cases of cancer disease per 

year among one million individuals driving regularly through the tunnel. 

Considering the presence of a great number of other genotoxic compounds in the 

tunnel air, the cancer risk of driving through a long road tunnel appears to be 

unacceptable, especially during rush hours and congestions. 
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5.3 Discussion 

The high concentrations of traffic-emitted air pollutants found in short road tunnels 

in Goteborg emphasize that hazardous effects are to be expected due to the still 

higher exposure levels anticipated in the long urban road tunnels planned in 
Scandinavia and Europe. 

Road tunnels can relieve certain urban areas which are affected by high levels of 

vehicle exhaust. However, if motorists are taken into consideration, not only rural 

but also urban new road tunnels normally increase the total population dose of air 

pollutants. Moreover, the tunnels give rise to problems with short-time health 

effects. 

Private motorists as well as the more heavily exposed professional drivers have 

strong reasons to oppose new road tunnels with respect to health hazards. 

Asthmatics, children and pregnant women are particularly vulnerable. Large 

investments in circumferential roadways in tunnels cannot be justified with respect 

to health effects. 

Sustainable mobility requires investments favouring rail rather than road 

alternatives. The rail tunnel between England and France stands out as a good 

example, whereas a bridge and tunnel road link across the Oresund channel 

presents a bad example for a future Europe. 
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6. CONCLUSIONS 

The composition of hydrocarbons from road traffic, biomass combustion and 

tobacco smoking has been determined. Sampling on adsorption cartridges and 

subsequent analysis by gas chromatography has been shown to be a versatile, 

reliable and very useful method for determination of volatile hydrocarbons. 

The determined almost uniform proportions of volatile hydrocarbons in urban air 

are in good agreement with those of the present urban road traffic emissions. In the 

near future, the proportions of hydrocarbons in urban air will probably change 

somewhat due to an increased number of vehicles equipped with a catalyst (both 

petrol and diesel vehicles) and due to the introduction of improved fuels. 

High amounts of hydrocarbons were found to be released during the combustion of 
several different biomass fuels. Domestic wood burning may be an important 

source of human exposure to volatile hydrocarbons in winter time in areas where 

residential wood combustion is common. By using appropriate equipment with 

more efficient combustion, the hydrocarbon emissions may be lowered by one 

order of magnitude. Indoors, tobacco smoke may give rise to high hydrocarbon 

concentrations. 

Observed concentrations of hydrocarbons indicate that typical ratios between roof 

level, street-side, and car coupes are 1 : 5 : 10. From this comparison, it is evident 

that people's activities in terms of their time spent close to traffic sources will 

strongly influence their average hydrocarbon exposure dose. 

At present, quantitative estimates of risks of hydrocarbon-induced health effects are 

difficult to make with a high degree of confidence. Available information leaves 

little doubt, however, that repeated exposure to high concentrations of volatile 

hydrocarbons is hazardous and should be minimized. 
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