
School of Electrical and Computer Engineering 

Chalmers University of Technology 

Goteborg. Sweden 

Technical Report No. 288 

PERMANENT MAGNET MACHINES WITH AIR GAP WINDINGS 

AND INTEGRA TED TEETH WINDINGS 

by 

Mikael Alatalo 

Submitted to the School of Electrical and Computer Engineering 

Chalmers University of Technology 

in partial fulfilment of the requirements 

for the degree of 

Doctor of Philosophy 

Department of Electric Power Engineering 

May 1996 



ISBN 91-7197-312-5 

Chalmers Bibliotek 

Reproservice 

Goteborg 1996 

PERMANENT MAGNET MACHINES WITH AIR GAP WINDINGS 

AND INTEGRA TED TEETH WINDINGS 

by 

Mikael Alatalo 

Technical Report No. 288 

Akademisk avhandling 

som fOr avUiggande av teknisk dok:torsavhandling 

vid Chalmers Tekniska Hogskola 

forsvaras vid offentlig disputation 

i Henry Wallmans rum 

Horsalsvagen 11 . 4tr, Goteborg 

Fredagen den 7 Juni 1996 kl. 10.15 

Fakultetsopponent: Professor Chandur Sadarangani 

Kungliga Tekniska Hogskolan Stockholm 



3 

Abstract 

The thesis deals with axial and radial flux permanent magnet machines with air gap windings and 

an integrated teeth winding. The aim is to develop a machine that produces a high torque per unit 

volume with as low losses as possible. The hypothesis is that an advanced three-phase winding, 

magnetized by a permanent magnet rotor should be better than other machine topologies. The 

finite element method is used to find favourable dimensions of the slotless winding, the integrated 

teeth winding and the permanent magnet rotor. Three machines were built and tested in order to 

verify calculations. It can be concluded that the analysis method shows good agreement with the 

calculated and lhe measured values of induced voltage and torque. The experiments showed that 

the slotless machine with NdFeB-magnets performs approximately the same as the slotted 

machine. A theoretical comparison of axial flux topology to radial flux topology showed that the 

torque production of the inner ro tor radial flux machine is superior to that of the axial flux 

machine. An integrated teeth winding based on iron powder teeth glued to the winding was 

studied. The force density of a pole with integrated teeth is around three tjmes the force density of 

a slotless pole. A direct driven wind power generator of 6.4 kW with integrated teeth can have the 

same power losses and magnet weight as a transversal flux machine. Compared to a standard 

induction machine the integrated teeth machine has approximately 2.5 times the power capacity of 

the induction machine with the same power losses and outer volume. 

Keywords 

synchronous machines, permanent magnets, iron powder, NdFeB, special windings. 
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1. Introduction 

Variable-speed drives have developed quickly in recent decades. Microprocessors, power 

electronics, control theory, new magnetic materials and design tools make it possible to build 

com pact drive systems with high efficiency. It is possible to integrate the motor and the controller 

to an integrated device with the same cooling arrangement. The induction machine is commonly 

used but the permanent magnet machine has higher efficiency and power factor, which reduces 

the power rating of the power electronic control also the cooling arrangement of a permanent 

magnet machine solution will be smaller. If a control method that does not requjreextra sensors 

can be utilized the cost of the permanent magnet machine system may decrease. 

Using ordinary machine construction, the permanent magnet machine can be improved with new 

materials. The power losses in the teeth and the yoke may be decreased by using better material. 

In order to further increase the performance of the machines, new ways of consuucting the 

machine have to be utilized. For instance, the power losses in the teeth can be completely avoided 

by using an air gap winding fixed to the stator yoke without any slots. The air gap winding is 

possible by using new magnets of reasonable sizes, based on rare earth materials. Cogging torque 

and noise due to the slots are avoided. Furthermore, the power losses due to varying flux density 

on the rotor surface are avoided, which is important in high frequency machines. 

RadiaJ flux topology is dominant in traditional electric machines. An example of recent work on 

radjal flux topology is the 18 kW/100 000 rpm generator studied by Chudi and Malmquist[l]. 

Another interesting experiment is reported on by Debruzri, Huang and Riso [2]. The electric 

machine is an electric car motor composed of an iron powder stator and an NdFeB excitation. The 

machine has a hjgh torque to weight ratio. 

Other topologies of permanent magnet machines have been studied in different applications. A:xiaJ 

flux and transversa] flux machjnes have been studied as alternatives to the radial flux machine. 

The axial flux macltine has the advantage of an ironless romr which can be used between two 

stator parts. The low weight of this rotor has been utilized in servo-motor applications. Some 

simplifications in the construction in comrast to the radial flux machine can also be made. The 

axial flux macltine is suggested for high-speed operation [3-6], and with toroidaJ winding for low 

speed [7]. The transversal flux machine has in recent decades been developed by Weh et al. [&-

12]. The flux is closed in the transverse direction, and current loading can be increased. 

compared with the radial and axial flux machines, i.e. the force per unit area of the pole is 

increased. 

In applications which demand a machine with low weight, machines with high torque to weight 

ratio are discussed. An example is a wind power mill drive train, which normally consists of a 

gear box and a normaJ speed generator. This drive train can be replaced by a low-speed genenJtor. 
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In this application Web [II, 12] has suggested the transversal flux machine, because of its high 

force density. Spooner, Caricchi et at. [ 13-14] have studied a particular axial flux machine as an 

alternative in wind power applications. The latter machine type has a toroidal winding without 

slots and is magnetized by NdFeB-magnets. 

Another application, where the weight and efficiency of the machine is imponanl is the motor to 

an electric car. In traction applications the machine works over a wide range of rotational speeds 

and normally the produced power must be constant over a major part of the speed range. This 

constant speed range is not a problem when the flux and the machine voltage can be controlled. If 

permanenl magnet machines are to be used in traction applications, the air gap flux must be 

controlled, although the magnet mmfis constant. Andersson and Cambier [15] report on a motor 

for electric cars. A special technique to produce the stator which makes it possible to manufacture 

machines with small pole pitches, is used. The machine is intended for an electric car drive and 

the speed is in the medium range, 7000 rpm. Selecting a machine with many poles and an 

increased radius lowers the weight of the active material. 

ln high-speed applications, other restrictions limit the available power. The machine rotor will be 

exposed to high tensions due to centrifugal force. Centrifugal force depends on radius and speed 
and, therefore, the rotor radius must be limited. In high-speed machines the power losses are low 

in terms of the percentage of nominal power, but the power losses per unit volume are high and, 

consequently, there are problems with heat transfer. 

1.1 Aim of the Thesis 

The thesis deals with axial and radial flux machines with air gap v.rindings as well as a new type 

of winding comprising integrated teeth. In the latter winding, the teeth are fixed to the winding 

instead of being a pan of the stator yoke. In this way, the fill factor of active material is increased. 

The aim is to find a machine that produces a high torque per unit volume with as low losses as 

possible. As a hypothesis an advanced three-phase winding in the stator, magnetized by a 

permanent magnet rotor, is presented as better than other machine topologies. Another aim is to 

study how the slotless winding, the integrated teeth winding and the permanent magnet rotor 

should be constructed. The resulting constructions are compared with each other, as wen as with 

the transversal flux machine and ordinary slotted constructions. 

Chapter 2 is a brief overview of permanent magnet machines. Different ways of constructing the 

machine and different applications are presented. The chapter also describes various pennanent 

magnet materials and soft magnetic materials. A mathematical model of the machine is presented, 

and, finally, two frequency convenors, which can be used to control the machine, are described. 

Chapter 3 deals with air gap windings. The magnet size and winding thickness are studied in 
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machines with a smaU pole pitch in relation to the radius. In addition three different four-pole 

radial flux machines are compared with each other and with a two-pole machine with a cylindrical 

rotor magneL Chapter 4 describes three experimental radial and axial flux machines with air gap 

windings as well as test results. In the f"trst section, a medium speed radial flux machine is 

compared with a commercial permanent magnet machine. The second section describes a 4.7 kW 

axial flux machine and the third describes a machine element that is to be used in a high speed 

axial flux machine. 

Chapter 5 compares radial and axial flux topologies. The torque production of the two types of 

machines is investigated both for low speed machines and for high speed machines. 

The force producing parts of the integrated teeth machine are studied in Chapter 6. Iron powder 

material is investigated as a material that lowers the reluctance of the winding and makes it 

possible to decrease the slot pitch and increase the thickness of the active region. A special 

winding technique which is necessary in producing the integrated teeth winding is discussed. The 

influence of the dimensions of the pole and material data is investigated. 

Chapter 7 deals with examples of machines with integrated teeth_ The integrated teeth machine is 

smdied theoretically in a low speed machine application, a high speed machine application and in 

comparison with a standard induction machine. 
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2. Overview of Permanent Magnet Machines 

This chapter is an overview of machine topologies, applications and materials of permanent 

magnet synchronous machines. The machines that are studied are only intended for use in 

connection with power electronics, and consequently some types of converters are also discussed. 

2.1. Differen t Topologies of Permanent Magnet Machines 

Various ways to construct permanent magnet machines are described below. There are many 

possibilities but the thesis mainly deals with three-phase machines having stators without salient 

poles. The transversal flux machine, which is equipped with salient poles, is , however, used as a 

reference object. 

2.1.1 R adial Flux Machines 

The most common machine type is the radial flux machine. In the radial flux machine the 

conductors are directed in the axial direction and the air gap magnetic flux is directed in the radial 

direction. Two types of rotors are shown in Figure 2.1. A rotor with surface-mounted magnets 

and a rotor with a cylindrical magnet surrounded by a high-strength shell excite an air gap wound 

stator. The different winding parts are indicated as s ix areas. In a three-phase machine, two of the 

areas are associated with each phase. 

A simple way to construct a machine is with surface-mounted magnets. The draw-back is that an 

arrangement is required to fix the magnet to the rotor core. A thin layer of epoxy-impregnated 

fibre glass, kevlar or fiber carbon can be applied to the outside of the magnet. This method is 

applicable at moderate speed. but at high speed the layer must be thick and the amount of active 

material in the magnetic air gap will be low. 

D Conductor material 

IIlii Iron powder or sheets 

c::J Permanent magnet 

High-strength 
material 

Figure 2.1 Cross section of tlre active parts of a two-pole radial flux air gap wound machine. 

a) Swface-nwunted magnets. b) Cylindrical magnet with high-strength shell. 
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The machine in Figure 2.1 b) has the same principle as the machine in [ l] and is preferably used at 

high speed or very high speed. The high strength shell provides the necessary strength to the 

permanent magnet material and also serves as a shaft. This machine type has been studied for 

speeds up to 500 000 rpm [16] and, in this case, the rotor is able to produce 17 kW. 

In many cases, slotted stator constructions are used. In order to avoid heating the magnets due to 

slot space harmonics and in order to fix the magnets to the rotor. the magnets are buried beneath 

the surface of a rotor core made of laminated sheets. With this construction, the rotor has a 

different reluctance in the direct and quadrature directions. The direct direction is defined as 

coinciding with the direction of the magnet flux and the coordinate system is fixed to the rotor. 

Some examples of machines having different inductance in the q- and d-directions are highlighted 

in Figure 2.2. 

Figure 2.2. Different rotor constructions of a 4-pole permanent magnet machine. 

a) Interior magnets. 

b) Flux concentrating magnets. 
c) Inset magnets. 

d) Pole shoes. 
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In many variable speed drives it is of interest to use the converter at maximum voltage with a large 

speed register. In this case, the current to the machine has to be directed so that the flux from the 

magnets is lowered [17, 18, 19]. Machines suited for this control method have been studied by 

Schiferl [20] who has optimized both a surface-mounted magnet and an interior-magnet machine. 

The described machines usually have higher inductance in the q-direction, which is utilized in 

field weakening. A current in the negative d-<lirection (field weakening of the magnet) produces a 

positive torque together with the flux in the q-direction. 

Z.1.2 Axial Flux Machines 

The axial flux machine has been used in applications where the axial length is limited and in 

applications where the low inertia of an ironJess rotor between two stators is needed. The 

principle of the axial flux machine is displayed in Figure 2.3. 

The axial flux machine has some constructional advantages, which can make the topology an 

economical alternative. The stator core is easily made of a wound generator sheet with the desired 

inner and outer active diameters. In the case of a slotless construction. punching the stator core is 

not necessary. Further, the magnet pieces in a permanent magnet machine have a rectangular 

cross-section, which is, according to the manufacturer, the cheapest way to construct permanent 

magnets. In a high-speed operation, the material supporting the magnet .is placed around the rotor 

and does not occupy the space of the winding. The drawback of this machine is that if slots are to 

be used the slot pitch varies with the radius, hence the slots must be punched in a special way. To 

avoid this problem, stators made of iron powder malerial have been proposed [21, 6, 22]. 

Stator Rotor 

Machine 
-ceiitef line 

D Winding 

- Ironcore 
D Magnet 

Laminated 
core 

Rotating part 

Figure 2.3. 4-pole axial jlllx permanent magnet machine. 
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At high-speed, the rotor radius must be restricted due to high centrifugal stresses on the rotor. In 

this case, it may be necessary to use stators and rotors that are stacked according to Figure 2.4. 

The winding between the rotor parts must be constructed in a special way due to the fact that the 

space for end windings is limited, especially at the inner radius of the machine. 

A machine type that has been studied recent years is the axial flux machine with a toroidal air-gap 

winding (12,13,14,8]. The end turns of this winding are very short due to the special winding 

technique. The short end tum implies low material weight and low ohmic losses of the winding, 

which is used to increase the power rating. Toroidal winding is displayed in Figure 2.5. Toroidal 

winding and easily produced iron core have been utilized in a machine with amorphous iron as the 

core material [23]. Punching slots in amorphous material is difficult due to the brittle material, and 

in this case, the slotless axial flux machine is an alternative. 

Figure 2.4. Axial flux nwchine with 

several stators and rotors. 

2.1.3 Transversal Flux Machine 

Figure 2.5. Axial flux maclrine with 

toroidal winding. 

The transversal flux machine has, in the 1980s, been further developed by Web et al. (9-11]. In 

the transversal flux machine the flux is closed perpendicular to the direction of movemenl 

Defining this as the transverse direction contrary to the longitudinal direction in normal machines 

explains the name of the machine. It has been shown that the force density in this machine is 

higher than in a longitudinal machine. The transversal flux machine is an alternative in high­

performance machines where the main demand is high torque per weighl 

The main parts of the machine are shown in Figure 2.6. Several iron cores are mounted around a 

circular coil forming the stator. The distance between the iron cores corresponds to the pole pitch. 

The rotor is made of magnets mounted with alternating polarity. The flux flows round the 

conductor in opposite directions depending on which magnet is under the iron parl The main 

advantage of the machine is the long air gap between the two iron core ends and the easily 
produced conductor parts. The long air gap between the iron core ends leads to low leakage 
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inductance and high current loading, thus may be used. 

An alternative machine design, where the number of stator parts is increased, hence, increasing 

the force density, has been invented by Zweygbergk (24]. No experimental data have been 

published. 

®velocity 

Figure 2.6. Transversal flux nwchine. 

2.2 Applications 

In this section, four applications are described in which the electrical and mechanical 

environments are quite differenL The common fe.atures are the high-performance magnets, a new 

winding technique or an uncommon machine topology, which should improve the performance of 

the machine compared to other types of machines. 

2.2.1 Generator and Motor for Hybrid Cars 

To overcome the problem of the limited energy content of batteries, so called hybrid electric cars 

are being developed. A combustion machine propels a generator which charges the energy store 

from which traction energy is drawn; see Figure 2.7 in which a series hybrid system is out-lined. 

As the primary energy source the high speed gas turbine is an interesting alternative. The gas 

turbine works at very high speed, which reduces the size and weight of the machinery. 11te 

comentof hazardous substances in the exhaust is lower in comparison with the Otto- and Diesel­

motors, due to continuous combustion. 
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High-speed 
generator 

Gas turbine ' y 
T 

Motor 
control 

Battery 

Wheels 

Figure 2. 7. Hybrid system with gas turbine as primary energy source. 

An example of this system is the Environmental Concept Car (ECC) designed by Volvo. In this 

car, the gas turbine propels a high-speed permanent magnet generator [ 1). The generator power is 

distributed to the batteries and to the traction motor by means of power electronics. The generator 

is of the radial flux type with an air gap winding similar to the machine in Figure 2.1 b). The 

power rating of the gas turbine is higher than that of the experimental machine reported on in [ 1). 

The power rating is around 30 kW and the rotational speed is 90 000 rpm. The machine principle 

is displayed in Figure 2.8. Figure 2.8a) shows the distribution of the winding and the other 

materials. The winding is made of Litz-wire and wound in a toroidal way without any slots. as 

illustrated in Figure 2.8b). Electrically, this machine has worked well but the power losses due to 

leakage of flux and eddy currents from the end windings are high. 

A group in Great Britain is working on a similar concept but the machine is of the axial flux type 

[3,5 ]. The generator consists of several rotor and stator discs on the same shaft. The rotor of this 

machine consists of several magnet pieces held together by a supporting ring made of reinforced 

carbon fibre. 

To power the wheels of an electric car, a permanent magnet machine can be used instead of an 

induction motor. The operating range of an electric car strongly depends on vehicle weighL 

Therefore, there is a need to minimize the weight of the machinery. At the same time, the 

efficiency of the electric system must be high. Unique Mobility [15] reaches a high torque to 

weight ratio by using a medium-speed machine with a high number of poles. The motor produces 

68 Nm and the weight is approximately 16 kg. The stator windings are manufactured in a special 

way that permits small pole pitches. The power rating is 50 kW at 8000 rpm with an efficiency of 

96.5 %. Using a rather high stator radius and small pole pitch turns the active materials into a thin 

rim. The machine is outlined in Figure 2.9. 

-
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High strength 
material 

Figure 2.8. High-speed permanent magnet machine. 

Magnets 

Rotor yoke 

Figure 2.9. High-torque permanent magnet motor. 

2.2.2 Medium-speed Servo Motor 

19 

In industrial variable speed drives, a convener often feeds an induction machine. The permanent 

magnet machine can, however, save weight and volume, and give a higher performance. Using 

modem control theory and the fact that the power rating of the converter for a penn anent magnet 

machine is lower will probably increase the number of variable speed drives based on the 

permanent magnet machine. There are two main control methods: one uses sinusoidal emf and a 

vector control and the other the so called DC-brushless method where the emf is trapezoidal and a 

constant current is fed to two phases of the winding simultaneously while the third is resting. 
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The IRO company uses induction 

machines to power their yarn 

feeders. The machines are 

equipped with a hollow shaft, 

through which the yarn is drawn 

and wound on a drum. The yarn is 

then fed from the drum into a 

weaving machine. In this way, it ~~5r::=~F:-----F--L--ifi~-....L4,1L __ 
is possible to avoid torn yarn 

caused by high acceleration. The 

drum is mounted on the shaft to 

the right in Figure 2.10, which 

shows a side view of the yarn 

feeder. The whole converter is 

mounted in an integrated design on 

top of the displayed construction. lbe 

machine and the electronics have a 

Figure 2.10. Cross section of yam feeder with 

induction machine. 

common cooling system, which implies that the losses and the temperature must be kept low. in 

order to avoid damaging the electronic circuits. 

The intention of the manufacturer was to increase the capacity of the yarn feeder and, therefore, 

permanent magnet machines were tested. The data of the induction motor are displayed in Table 

2.1 together with the data of a permanent magnet machine available on the market. The permanent 

magnet machine is made by GEC Alsthom and have the nominal torque of LO Nm. 

The torque of the permanent magnet machine is 2.5 times the torque of the induction machine and 

the volume is reduced to 66 %of the induction machine. This example shows that especially small 

machines with permanent magnet excitation have a higher torque to volume ratio than induction 

machines. 

Table 2.1. Sen•o nwtordata 

Induction machine Slotted permanent magnet 

machine 

Type LX310BF R3100 
Rated torque 0.4 Nm LONm 
Stator core diameter 60mm 60mm 
Stator core length 60mm 40mm 
Volume 170 cm3 113 cm3 
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2.2.3 Direct-driven Wind Power Generator 

Today most wind power mills are equipped with a drive train consisting of a step down gear and a 

normal speed induction or synchronous generator directly connected to the grid. A direct-driven 

generator is an alternative that minimizes the number of moving components and it may be 

economical in comparison with a system with a gear and normal-speed generator. Weh [1 1) has 

shown that the weight of the gear box and the normal speed generator can be decreased by one 

third by using a direct-driven transversal flux machine. Using permanent magnet excitation and a 

transversal flux topology it is possible to build machines with high force density, and the 

efficiency of a 6 kW machine may exceed 91 %. Ordinary radial and axial flux machines with 

permanent magnetization have also been studied [ 13,25]. The common problem is to build 

machines with small pole pitches. Punching stators sets the minimum distance between slots and, 

if the pole pitch is small, the number of slots per pole and phase will be low [25]. 

For smaller wind power plants, lhe axial flux machine with toroidal winding has been suggested 

[ 13), see Figure 2.5. Air gap winding implies high amounts of permanent magnet material which 

can be accepted in smaller plants where the material cost is low compared with production cosL 

A permanent magnet machine that is connected directly to the grid must be equipped with damping 

windings and. consequently will be heavy. This weight can be avoided if a converter controls the 

speed of the generator. Controlled torque can also be useful in other ways. Normally, the speed 

of the turbine is fixed or within the slip variations of an induction generator. At high wind speed 

the wind power exceeds the rated power of the generator. Different methods to regulate the power 

are used but often torque pulsations occur and the peaks exceed the rated torque. The mechanical 

gear box and turbine wing roots must be designed for these peaks. The torque may be controlled 

by means of a frequency converter that controls the speed of the turbine. The electric system is 

outlined in Figure 2.11. A wind gust produces an increase of rotational speed instead of increased 

torque. By means of the variable speed it is possible to rotate the turbine at the speed that gives the 

optimal ratio between wind speed and the tip speed of the turbine. More energy can be produced 

than in a system with constant speed, but it is necessary to have a generator with high efficiency 

in order to compensate for increased power losses due to the converter. 
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Figrue 2.11. Direct-driven wind turbine generator system. 

2.3. Magnetic Materials 

The development of beuer machines strongly depends on new materials. New permanent magnet 

materials make the magnets smaller compared to AlNiCo- and Ferrite-magnets. due to higher 

energy contenL The torque in an electric machine is produced by the force of the active region and 

the radius. The force is proportional to nux density and the availablecurrenL lf ordinary machine 

design is to be used, higher flux density or current density must be used in order to increase the 

force density. The saturation nux density of new soft magnetic materials has not increased and 

until superconductors are developed, copper is the main conductor material. Until a major 

breaklhrougb (if possible) occurs the only possibility is to alter the machine design and to use the 

available material wilh as low losses as possible. 

2.3.1 Permanent Magnets 

The development of permanent magnet materials has been remarkable in recent decades. New 

materials based on neodymium and samarium have increased the energy density in permanent 

magnets manifold. According to Parker [26] laboratory alloys of NdfeB have reached 0.4 

MJ/m3, see Figure 2.12, and development may present materials wilh 0.8 MJ/m3 in the coming 

decade. There are materials on the market with an energy density of 385 k1/m3, [27]. The 

remanent flux density, which is 8r=l.41 T [27] today, may also increase and perhaps reach 1.6 

T. Magnets based on neodymium and samarium-cobolt have almost linear demagnetizing 

characteristics, see Figure 2.13, where one of the best material made by V ACUUMSCHMELZE 

is displayed. 

OVERVIEW OF PERMANENT MAGNET MACHJJ\1£S 

400 

M' 
E ;::::; 
c300 
0 
::l 
"0 e 
0.. 
;;.... 
eo 
b c200 
UJ 

E 
::l 
E 
>< 
~ 

:::E 100 

1900 1920 1940 1960 1980 

Year 

23 

Figure 2.12. Development of permanent magnet material, according to Parker {26}. 

Figure 2.13 shows the flux density 8 at different temperatures and as a function of the 

magnetomotiveforce H. The magnetic materials from the NdFeB group have the disadvantage of 

a ralher low Curie temperature: 312 °C. At elevated temperatures, as indicated in Figure 2.13, the 

8-H characteristics is lowered towards the origin of the coordinates and the material becomes 

irreversibly demagnetized if the nux density is too low. Other relevant data are listed in Table 2.2. 

-1000 -500 
H(Nm) 

8 <n 
1.0 

0.5 

Figure 2.13. 8-H characteristics ofVACODYM 362 HR. 
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Table 2.2. Common data of Nd.FeB material made by VACUUMSCHMELZE [27] 

Tensile strength 

Pressing strength 

Resistivity 

Thermal conductivity 

270MPa 

1050MPa 

1.5· lQ-6 (.Om) 

approx. 9 WI(Km) 

2.3.2. Iron Core Material 

Following the conductors and the permanent magnets, the core material is the third important 

material in permanent magnet machines. The main purpose of the core is to conduct magnetic flux 

through the winding and act as a return path. The magnetic flux is time-dependent, which means 

that the material cannot be homogeneous. The varying flux will induce a large eddy current in a 

homogeneous material. Core materials may be divided into two main groups: laminated sheets of 

soft magnetic material and powder materials. Generally, laminated sheets give a better 

performance than iron powder materials but the cost of a large punched stator core must be related 

to the cost of iron powder segments [2]. 

The iron powder material consists of small iron powder particles packed and electrically 

separated. The material has lower relative permeability than other types of core material, which is 

an important restriction when used as teeth material [6]. When the iron powder material is used as 

the iron core of an air gap wound construction, the reluctance of the winding is so high that the 

low permeability has little influence. The main advantage of iron powder malelial is that it can be 

formed arbitrarily, eddy current losses are low at high frequency and the material is isotropic. The 

flux may enter the material in any direction without causing any large eddy current loops. This 

quality can be used in machines with a toroidal winding by having the magnetisationentering the 

yoke from several directions. Since the iron powder material is almost homogeneous, the noise 

produced by this material is low. The material may be used up to several kHz. 

In addition to different iron powder materials, carbonyl is also a material that is made of particles. 

The material is made of iron, nitrogen, carbon and oxygen, and the molecules are joined in a way 

that suppresses eddy currents. The hysteresis loop is very thin allowing low hysteresis losses. 

'The material can be used in applications with a frequency up to several MHz. 

Iron powder materials and especially carbonyl powder have lower thermal conductivity than other 

types of iron core material, which implies that special attention must be given to conducting heat 

from the winding to the ambie nt. The magnetic and electric characteristics of some typical 

materials are displayed in Table 2.3. 
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Compared to ordinary sheets, iron powder materials (EF6880 and Genalex SH) have rather high 

power losses at 50 Hz, but for higher frequency the power losses in iron powder material are 

comparable to generator sheets. GradeS and carbonyl iron powder have lower power losses but 

gradeS cannot be used at high flux density and the carbonyl powder material has a relatively low 

permeability. Figure 2.14 shows power losses of Genalex 140 SH as a function of flux density 

amplitude, BP. The power losses per unit volume, PFe• according to Figure 2.14 may be 

approximated as a second-order polynomial: 

Pr:e = k IB p +k~B! 
where 

k 1 = 3. 99 · 106 WI m 3y 

k 2 = 60.52 ·106 W I m ly~ (2.1 ) 

The second-order term is dominant, and the power losses in this material can with good 

approximation be described as depending only on the flux density squared. 

Tabl 2 3 Ele d cmcan e . h ma)!.nenc c aractensncs. 
Material Supplier Relative Saturation Core losses Resistivity Thennal Tensile 

permeabili ty fl tL'I: density (IT, 50 (Qm) collduclivil)' strenglb 
(1) Hz) (WIK.m) (MPa) 

(kW/m3) 

EF6880 Vactek 175-300 1.95 55 50- 1o6 6--15 50--100 
Iron powdec 
D25 Thomson 2S 1.9 13 1.7 14 
C3fbonyl powder 

Gena lex SEI 140 1.3 64 
grade SH Nife 

Genal ex SEI 140 0.6 4.2 
grade S (0.41) 
(70-7S% Ni) 

CK30 ('") Surabam- 1.9-2 7.6 5-10-3 70-80 400 

Generator sheet mar 

(*) CK30 is the name of a generator sheet manufactured by Surahammar, Sweden.The sheet 
thickness is 0.35 mm and the power losses at IT and 50 Hz are I W/kg. 
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Figure 2./4. Power losses per unit volume of Gena/ex SH as a function of flux density. 

The magnetizing curve and relative differential permeability of EF6880 are displayed in Figure 

2.l5a). The curve is a reprint of data sheets. The power losses of EF6880 and generator sheets as 

a function of frequency are displayed in Figure 2 .15b). The power losses of EF6880 are almost 

linear with frequency up to approximately 4-5 kHz. 

It can be concluded that iron powder materials have lower relative permeability than ordinary 

sheets and higher power losses in the frequency range of 0 to 1000Hz. The power losses of the 

material can be considered as linear with frequency up to 4 kHz and the power losses are 

proportional to the flux density squared. The advantages of the iron powder material of today, are 

in the field of production and lower noise emission. 
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Figure 2.15a) Magnetizing curve of EF6880 and the rekztive differential perm&Jbility. 

b) Power losses of generator sheet CK30, 0.35 mm and EF6880. 
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2.4 Equivalent Model of the Permanent Magnet Machine 

According to Kovacs [28] a permanent magnet machine with a smooth stator can be described by 

the two-phase rotor-fixed equations 

u dq = ud + j · uq 

i dq = id + j . iq 

u = Ri + d'lfd - (J)III 
d d dJ 'l"'q 

. dlf/q 
u q = R1 q + - - + ml{fd 

dt 

'I'd = lfl ru + L did 

lf/q = Liq 

(2.2) 

where ud and uq are the voltage components in the d- and q-direction respectively, i is the current, 

R is the resistance of the winding and VI is the flux linkage. VIm is the flux linkage generated by 

the permanent magnet. 

The inductances of the machine are 

(2.3) 

where 0,_ is the inductance associated with leakage flux and Lh is the main inductance of one 

winding phase. 

The direct axis is directed in the same direction as the flux from the magnet, see Figure 2.16. The 

stator fixed system a~ is also displayed. The transformation between the stator ftxed and rotor­

fixed system is carried out by multiplication with e -;s where q is the electric angle between the 

systems 

(2.4) 

m is the electric angular velocity. 
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Figure 2.16. Rotor of a two pole permanent magnet machine and the coordinate systems. 

In a special case where 

did= diq =0 
dt dr 

Ld = Lq = L (2.5) 

i.e. at steady state and a rotor without salient poles, the voltage equations may be written as 

11d =Rid- wLiq 

llq = Ri q + WLi d + Wljf,. (2.6) 

The voltage equations can be visualized as vectors and they are displayed in Figure 2.17a). The 

vector diagram in this case is equivalent to the circuit of Figure 2.17b). The model is simply a 

voltage generator (emf), an inductance and a resistance. 

a) 

Figtue 2.17a). Vector diagram of the machine at steady state and smooth rotor. b) Eq11ivalenr 

circuit of the permanent magnet machine. 
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10e amplitude of the emf is 
e ID = Wljf m 

and the impedance is 

29 

(2.7) 

(2.8) 

In other cases the Equations {2.2) of the permanent magnet machine should be used. In cases 

where high frequency is to be taken into account eddy currents in the rotor should also be 

considered. 

2.5. Power Electronic Control 

Depending on the application, permanent magnet machines can be controlled by various types of 

converters. In generator operation, a diode rectifier according to Figure 2.18 may be sufficient. A 

current source PWM converter can be used to feed the grid [29] and to control the torque. 

+ 

Figure 2.18. Diode rectifier. 

The output voltage from the diode rectifier is [30]: 

(2.9) 

where udc is the mean value of the DC-link voltage, ide is the mean value of the DC-link current 

and the RMS-value of the line-to-line voltage Eh=f3EI The power is: 

(2.10) 

The RMS-value of the fundamental motor current is: 

(2.11 ) 
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In the case of nominal machine operation, i.e. Epl 1 =1.0 (p.u.), the power of the DC-link is: 

(2.12) 

The voltage source PWM-converter can be used in motor operation as well as in generator 

operation, see Figure 2.19. This converter can feed the machine with the appropriate reactive 

power and lower current harmonics are cancelled with a proper modulation [31 ]. If the PWM­

voltage is not filtered, a high-frequency voltage is added to the fundamental voltage. The high­

frequency voltage produces a machine flux that rotates at high speed and induces currents and 

power losses in the rotor, machine housing and stator core. 

+ 

Figure 2.19. PWM-convener with /GET-switches 

U reactive power is fed to the machine, which can be the case if a PWM-converter is used, the 

induced voltage and the current have the same phase angle. The electric output from the machine 

is in this case: 

(2.13) 

In the case of nominal operation the current and voltage are 

(2.14) 

and the output power is 

(2.15) 

Compared to the case where a PWM converter controls the direction of the current, the output 

power from a machine connected to a diode rectifier is derated, due to the fact that the overlap 

angle directly lowers the output voltage of the rectifier. Inserting typical reactance values of a 

permanent magnet machine with slotted stator yields the nominal power of the systems: 
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X<J=0.35 p.u. 

p P\VM=3 p.u. 

Poc=2.45 p.u. 
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The outpUl power from the system with a diode rectifier is 82 % of the PWM system. This 

difference between the systems places different demands on the machine construction. If the 
machine is to be connected to a diode rectifier, the machine reactance should be low. In the case 

where the machine is to be connected to a PWM converter, the reactance of the machine is not 

critical but the machine should be built to minimize the power losses due to high-frequency 

current components. 
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3. Investigation of a Slotless Pole 

An electric machine has several parameters that directly or indirectly influence the torque. Some of 

them are machine length, rotor radius, yoke thickness, number of poles, slot width, slot depth, 

magnet thickness and material data, current density and cooling arrangement. Finding the 

optimum value of all these parameters is a very difficult task. In order to optimize a construction, 

the cost for the parts must be summarized and the cost for power losses over machine lifetime 

should be added. For example, in the case of a generator, the power losses of the generator can be 

related to a loss of income. The influence of an altered machine design can be calculated in this 

way. 

In order to fmd an approximative way to construct the pole, the parameters of the pole are studied. 

ln this way, it wiU be easier to fmd a favourable machine construction. 

Defming the winding region as the cross-section between the air gap and the stator core, see 
Figure 3.1, the fill factor of conductor material is 

(3.1) 

where NP is then umber of turns per pole-pair and phase, ilaJ is the area of the conductor, Jr1 is the 

height of the winding region and 1p is the pole pitch. 

y 

Winding region 
X 

• 
Figure 3.1. Magnet and winding region. 

In a slotless machine, the winding region can theoretically be filled with l 00 % conducting 

material. In practice a fiU factor of 60-80% can be utilized if rectangularconductors are used. 

This fill factor can be compared with the fill factor of a normal machine with round conductors 

where the teeth occupy approximately 50 % of the winding region. The slots are filled with 

approximately 50% conductors, i.e. the total fill factor of copper is around 25 %. 

It is assumed that the coils are wound on the outside of the machine and fixed to the stator core 

afterwards. In order to simplify the production and to make it possible to use rectang(t]ar 
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conductors, the coils are wound on a bobbin according lO Figure 3.2 and after this formed to the 

right curvaLUre and fixed to the stator. With this technique the different phases of a three-phase 

winding are distributed according to Figu re 3.2. The electric angle of the pole is divided equally in 

three pieces. 

0 ... p 
X 

Figure 3.2. Winding production and the winding distribution. 

3.1. Flat P ole 

As a start, a flat structure is studied, which is relevant in the case of an axial flux machine. In 

addition, in a radial flux machine with a high number of poles, the pole can be approximated by a 

flat structure. If the radial flux machine bas a low number of poles, then the surface is curved and 

the flux is distributed in a different way. 

In this work an FEM program is used to analyse the constructions. The FEM program can handle 

two-dimensional problems and nonlinear material characteristics. In this way, relatively long 

constructions are treated correctly but short machines may be wrongly dimensioned. Earlier 

attempts to find the optimal winding thickness are based on a mix of analytical methods and the 

approximation of measured data [32]. The analysed machine in the mentioned reference is an axial 

flux machine which required a thin winding in order to avoid leakage of flux in the radial 

direction. 
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The permanent magnet material used is V ACODYM 370 HR (60 °C), the remanent flux density 

of this material is Br= l.l5 T and the coercive force Hc=870 kNm. As a start, it is assumed that 

the iron core material is linear with a relative permeability Jlr= 1000. A flat pole is displayed in 

Figure 3.3 and a Cartesian coordinate system is defmed. 

z 

Stator 
iron core 

Rotor 
iron core 

J Winding 

Magnet 

.... 
Figure 3.3. Cross-section of a flat pole. Cartesian coordinate system. 

X 

In order to make a comparison with the results from the FEM program, an idealized calculation is 

made, see Figure 3.4. Under idealized conditions, the flux density vector is directed only in they­

direction. The magnitude of the flux density is given by : 

[ 
rp- 'l'm t'p + t'm] 

XE ------
2 ' 2 

B(x) =0 . [ t'P - 'l'., "rp + t'm] 
X~------

' 2 ' 2 
(3.2) 

where 11m is the permeability of the magnet and Btl is the ideal value of the magnet flux density in 

the air gap, h1 is the winding thickness and hm is the thickness of the magnet. -rp and 'lin are the 

pole pitch and magnet width, respectively. 
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Winding 

, 
Figure 3.4. Idealized field. Equipotential lines cross the air gap witholl1 spreading in x-

direction. 

When "t"a/"tp is known, the Fourier coefficients of the ideal flux density wave are calculated: 

B . =_±_Bdcos[llrr(l- -rm)]· (n=l,3,5, ... ) 
ap·id nn ' 2 "t"P (3.3) 

When the flux density is known the force can be calculated. The force on the winding area with 

the length 1st is: 

(3.4) 

where {3 is the angle between the current density and flux density waves. J1P is the peak value of 

the current density wave and I is the length of the active region. The derivation of this expression 
st . . . 

is given in Appendix A. The force depends on the phase shift, which from the begmnmg tS 

assumed to be {3=0. Often this is adequate, since the reactance of an air gap wound machine is 

low, then the phase shift is very low as long as the power factor of the machine is unity. In 

machines that have higher inductance, it is assumed that reactive power is fed to the machine. If 

Equation (3.4) is divided by magnet volume, V m and the current density of the actual 

configuration, a figure of merit of the cross-section is obtained. The figure of merit is defined by : 

(3.5) 
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3.1.1 Variation of Magnet Width 

In the ftrst calculations, it is assumed that the magnet thickness is 20 % higher than the winding 

thickness, hmfiz1=1.2. The winding thickness divided by the pole pitch (h1/"<p) and the magnet 

width divided by the pole pitch (1lr/tp) are varied. It is further assumed that h;;<<h1, i.e. the air 

gap length is much smaller than the winding thickness. This is not a problem in the case of a small 

machine with few poles, but in a big machine with the radius of one meter or more the air gap 

must be around 1-2 mm which is not negligible if the winding thickness is 10 mm. 

Figure 3.5 shows the cross-section of the pole. Figure 3.5 also shows how the fundamental flux 

density amplitude varies with the winding thickness to the pole pitch ratio hytp- The displayed 

value of the flux density is the average over hJ. 

Jz, 
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m p 

Figure 3.5. Peak value of fundamental flux density with Jztf-rp as a parameter. 17le flux 

density is averaged over h1. 

The curves indicate that flux density increases with increased magnet width and the increase is 

almost linear up to -zn/-tp=0.6. For values above this, the slope decreases and the increase of 

permanent magnetic material does not change the fundamental flux density to the corresponding 

degree. The curve signed with htftp=O corresponds to the ideal case where the flux goes straight 
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over the air gap. i.e. "tin· rp>>h1.hm, and the fundamental is calculated according to Equation 

(3.3). 

The flux density decreases with an increase in the value of the winding thickness, h/1p. This is 

due to the leakage of the magnetic flux as the flux does not pass the winding but goes around the 

edges of the magnet. The fundamental flux density when tm/-tp = 0.1. as a function of h(1p , is 

displayed in Figure 3.6. 
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Figure 3.6. Amplitude of fundamental flux dens icy as function of h(tp. Magnet width to 

pole pitch ratio is fixed tm/-tp=0.7. 

In order to minimize the Leakage of the magnet flux, it is necessary to have a rather thin winding in 

relation to the pole pitch. This is a problem when a small pole pitch are a primary goal. If the pole 

pitch is small, the winding must be thin and the mechanical air gap cannot be considered as much 

smaller than the winding thickness. 

The equipotential lines of the magnetic vector potential can be compared in Figure 3.7, which 

shows a case with a narrow magnet and a case where the magnet is wider. In the latter case, the 

relative flux that does not penetrate the winding is lower. Representing the permanent magnets in 

the FEM-program is done according to a method [33] which uses a current-carrying area at the 

edges of the magnet as indicated in Figure 3.7. The area carries a current corresponding to the 

coercive force H c multiplied by the magnet height hm. 

a) 
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Half a pole 

Iron 

Winding 

Magnet 

Iron 

Figure 3. 7. Equipotential lines of the magnetic vector {J6tential. Without current loading. 

a) -r:,j-r:p=0.4 andh(rp=0.5. 

b) '!it/tp=0.8 and h(-cp=0.125. 

Now we will study thefunctiong defined by Eq. (3.5), i.e. force per length, current density and 

magnet volume. The result is displayed in Figure 3.8. The function g declines with an increase in 

the value of the magnet width divided by pole pitch. Nevertheless. the range 0.6<Vtp <0.8 is a 

recommendablecompromize. In this region, the fundamental of the flux density is rather high and 

the leakage at the ends of the magnet is moderate. The optimal pole shoe width has earlier been 

found to be 73 %of the pole pitch [34] and in the case of a DC-brushless construction the magnet 

width will be lower than 93% of the pole pitch, [35]. In this study, we are not considering a DC­

brushless motor and in the following calculations, '!it/-rp=O. 7 is used and this value has also been 

tested in a laboratory machine. As slated earlier high values of hlrp are not recommended. It is 

recommended that the value of the winding thickness is h{tp<0.2. 
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Figure 3.8. The function g with h{tp as a parameter. 

3.1.2 Varied Winding Thickness 

The winding thickness is varied in order to find a favourable thickness. The magnet width and 

height are constant, see Figure 3.9. Calculations are performed with a constant magnet width 

divided by pole pitch tm/-rp=0.7. The ratio between magnet height and pole pitch is lz../1p=0. 2. 

The function g increases but the Dux density decreases with increased winding thickness, see 

Figure 3.9. The winding thickness must be restricted since, otherwise, the power losses will be 

too high. 

As the winding thickness is increased from h1/1p=O.l to h111p=0.5, approximately 100% more 

force can be produced by the same magnet if the current density is constant. It is necessary, 

however, to increase the copper volume by a factor of 5, and this means that the power losses and 

the cost associated with the winding increase by the same factor. 
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Figure 3.9. Flux density and g at varied winding thickness. 

If the cooling capacity from the winding to ambient is limited, the current density may be varied 

so that the winding power losses and winding temperature are constant independent of winding 

thickness. It is here assumed that the heat transfer through the winding is much better than the 

heat transport to the ambient. This assumption is relevant if the winding thickness is lower than 

h1=lO mm and the beat transfer coefficient from the yoke surface to the ambient is a<50 
(W/m2K). 1n other cases the heat transfer of the winding must be taken into account. The copper 

losses of one pole are: 

P.., = J pfdV = koJJ/jcuh 19,. 
v. (3.6) 

where V w is the volume of the winding. Assuming constant copper losses of the winding, the 

current density in the conductor is: 

(3.7) 
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The current density is, thus, inversely proportional to the square root of the winding thickness. If 

the current density according to Eq. (3.7) is substituted into (3.4), the force is 

(3.8) 

where k 
1 

is a constant. The force is proportional to the square root of the winding thickness and 

proportional to the flux density B lp as long as the pole pitch and length are constant. Normalizing 

the equation with the pole pitch and dividing by the constant yields 

(3.9) 

The flux density according to Figure 3.9 is used to evaluate the Equation (3.9). In Figure 3.10 the 

result from Eq. (3.9) is shown for a realistic flux density wave and for an idealized flux density. 

o.o._------r------4------~------4-----~ 

0.0 1.0 2.0 
Figure 3.10. Normalized force wizen power losses in the winding are constant. 

It is shown that depending on how much the flux leaks, the winding thickness should be in the 

range of h/hm=0.7-l.O. The upper limit is valid in an ideal case where the winding thickness is 

very small in relation to the pole pitch. In a more realistic case, the winding thickness should be 

approximately 0.7hm. 

All calculations in this section are based on the assumption that the air gap is negligible. In cases 

where this is not true, the air gap will decrease the useful volume of the winding. The force 

density of the pole will decrease and the optimal winding thickness will be smaller than shown in 

Figure 3.10. 
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3.1.3 Induced Voltage 

The width of one winding phase is one third of the pole pitch, as shown in Figure 3.2. The 

winding factor of the fundamental wave is: 

3 
k =-.. 

71: (3.10) 

which is more closely examined in Appendix B. 

For calculating induced voltage, torque and armature reaction in air gap windings a program 

PERMASYNK was developed. The program uses the calculated flux density waveform in the air 

gap winding, which may be three-dimensional With a time stepping method, the flux density 

wave is stepped through a period and the flux variations in each winding are calculated. In the 

same way the torque as a function of time can be evaluated. Feeding the program with a flux 

density wave from the winding, the flux density variation on the rotor surface can be calculated. 

The structure of the program is displayed in Figure 3.11. Assuming N p turns per pole and phase 

the induced voltage in the winding may be evaluated as 

(3.11 ) 

where ep is the induced voltage of each phase and pole, N x is the number of layers per pole and 

phase, NY is the number of turns per layer and p is the number pole pairs. 

To illustrate the influence of the magnet shape on the induced winding voltage, the flux density 

waves according to Figure 3.7a) are used to calculate the induced voltage in a winding according 

to Figure 3.2. The flux density waves at different positions in the winding are shown in Figure 

3.12a) and the induced voltage in Figure 3.12 b). 
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ReadFEM­
oulput data 

Main program 

Figure 3.11. Program structure of PERMASYNK 
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Figure 3.12.a) Flux density waves at different positions in the winding. b). lnduced 

voltage, -zmi'fp=0.4 and hy'fp=0.5 
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3.1.4 The Influence of Permeability in the Stator Yoke 

In order to investigate if iron powder materia] may be used together with air gap windings, the 

permeability of the stator yoke is varied. The thickness of the core (hFJ is 16.5 % of the pole 

pitch. The averaged va1ue over 111 of the fundamenta1 flux density in the winding region is 

displayed in Figure 3.13. 
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Jlr 
Figure 3.13. Mean value of fundamental flux density as aftmction of relative permeability in 

the stator core. h/'tv=0.2. 1UI'fp=0. 7. 

In this case, where the reluctance of the winding region is high, the relative permeability can be 

low and the fundamenta1 flux density will remain high. A relative permeability of 100 is enough to 

reach 98 % of the flux density of a machine equipped with a yoke made of laminated sheets. 
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3.2 Radial Flux Rotors 

In a radial flux machine with a low number of poles, the surfaces are cylindrical and the magnetic 

field is distributed in a different way than in the flat pole. This chapter treats different types of 

rotors in radial flux machines. The examples examined are machines with the rotor inside the 

stator. The machines have four poles except for the high-speed machine which has two poles. The 

section does not intend to cover every design option but four different types are studied. Two of 

lhe constructions are made with surface mounted magnets which may be used at a moderate 

speed. If necessary, a thin layer of reinforced fiber glass may be enough to hold the magnets in 

place. At a very high speed, the magnet must be surrounded by a high-strength material and in 

this case a hollow shaft made of high strength steel is an altemati ve that is compared with the 

surface-mounted magnets. A machine with interior magnets is also described. 

One conclusion from the previous chapter is that magnet width should be around 70% of the pole 

pitch. This percentage is chosen in the following calculations. According to the previous chapter, 

the optimal winding thickness is 0.7-1 times the magnet thickness. As we will see below, the 

winding thickness can be increased when the geometry is cylindrical. 

The different rotor constructions of the four-pole machines are displayed in Figures 3.14-3.16. 

The equipotential lines of the vector potential are shown for each construction. There is quite a 

difference between the three rotor constructions. The first one with radially magnetized magnets. 

outlined in Figure 3.14 and called C. l, spreads the magnet flux evenly along the magnet surface. 

This construction is recommended for a DC-brushless operation where a trapezoidal emf is 

desired [35]. 

hl ·1-

.... : :._ 
3.75 tnm 

Figure 3.14 Radially magnetized magnets. One pole of a four-pole machine. 

Construction No. C. 1. 
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The semi-radial magnet construction, C.2, according to Figure 3.15, is simpler to manufacture 

owing to a flat bottom. The curved surfaces have to be ground to the right shape which makes 

construction C. I a more expensive construction. Construction C.2 concentrates the flux in the 

direction of the d-axis. 

5.0mm 

Figure 3.15. Semi-radial magnets with diametrical magnetization. Construction No. C.2. 

The flux concentrating magnets, C.3, shown in Figure 3.16, are not recommended when slotless 

constructions are used. In this case, the reluctance of the winding is high and a large part of the 

flux flows through the centre of the machine. This flow can be observed from the equipotential 

lines of the construction in Figure 3.16. 

Leakage 
flux ........._ 

/ 

Figure 3.16. Concentrating mflgnets. Construction No. C.3. 
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The machines are analysed under the conditions described in Table 3.1. The permeability of the 

yoke-material is relatively high J.Lr= 1000. 

Table 3.1. Conditions used when aTUllysing radial flux machines. 

Rotor radius, rr 

Air gap length, h0 

Magnet type 

Remanent flux density, Br 

Coercive force, He 

Mass density of magnets.rm 

Fundamental current density. J1cu 

Fill factor of copper, kOJ 

Magnet weight C. I. 

Magnet weight C.2. 

Magnet weight C.3. 

Magnet weight C.4. 

15mm 

O.Smm 

V ACODYNI 370 HR (20 °C) 

1.2 T 

920kA/m 

7400 kglm3 

6Afmm2 

50 %. 

1.6 kglm 

2.0 kglm 

1.8 kg/m 

2.0 kglm 

The four-pole machines are compared in terms of torque production and copper losses. The FEM­
program is used to calculate the flux density at three different radii in the winding. The torque is 

derived from Equation (A.5) in Appendix A and then is numerically integrated: 

T = 3k roJtpc:ul st cos(JJ) f r 2 
· B 1P(r)dr 

r, 
(3. 12) 

where r
1 

is the inner radius of the winding and r2 is the outer radius of the winding. It is assumed 

that {3=0. The torque produced by the different rotors is displayed in Figure 3.17. Construction 

C.2 clearly has a higher torque than the other two. The magnet weight of C.2 is higher, but we 

must consider that the C.l construction must be ground and the magnet is probably ground from a 

rhomboid. If that is the case, the original weight of the rhomboids to be ground to magnets C.l 

and C.2 are approximately the same. 
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~~~---+--~~~~~--~ 
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0.002 0.004 0.~ c~cr8 0.01 
I 

Figure 3.17. Torque per unit length as a function of winding thickness of the different rotors. 

Assuming that the rotors are to produce 10 Nm/m, the ohmic power losses may be evaluated. 

Naturally, the C.2 construction has lower copper losses at constanttorque than the othertwo. The 

power losses are displayed in Figure 3.18. 

500 

400 

:§ 300 

~ 
"-':o 200 C. I 

~u 

100 

0 

Figure 3.18. Ohmic losses per unit length at constant torque. 

The semi-radial magnet machine is used as an example of a medium-speed machine and it is 

compared with the shaft-magnet rotor according to Figure 3.19. This machine has been tested in 

high-speed operation [1] and it has shown good performance. The shaft-magnet rotor has a thick 

~hell of material that is not magnetic and the influence of this material is investigated. Will an 

mcrease in the magnetic air-gap make the performance of this machine lower than that of a 

surface-mounted magnet construction? 
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Figure 3.19. Shaft magnet rotor. Construction No. C.4. 

The torque per unit length is displayed in Figure 3.20 at varied winding thicknesses. Although the 

magnet radius of the shaft magnet rotor is lower than that of the surface mounted magnet rotors, 

the torque of the shaft magnet rotor is higher. The shaft magnet rotor can be used with a higher 

winding thickness, which is partly due to the two-pole design. The pole pitch is wider and, 

therefore, the winding thickness may be higher, when compared with the flat pole, where the 

recommended value is hlrP=0.2. As can be seen from Figure 3.20, the LOrque increases almost 

linearly, which is not the case for the four-pole semi-radial construction. 

The torque to magnet weight ratio of the surface-mounted magnet is better, see Figure 3.21. This 

high torque to magnet weight ratio means that the material cost is lower for the surface-mounted 

magnets, which is preferable if high rotor speed does not limit the construction. 

40~--~-+--+-~--~~r 

35~--~~--~~~~~r 

30~--~-+--~~--~~r 

~25·~--~--4-~~~~~~-ir 

~w~~~~~~~-r 
~15~--~~~-+--~--~~ 

~10~~~~--+-~--~~r 
5~~~~--+-~--~~r 

01~--~-r--~-+--T---r 

Figure 3.20. Torque per unit length of constructions C.2. and CA. 
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Figure 3.21. Torque to magnet weight of collStructions C.2. and C.4. 
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The copper losses at constant torque T = l 0 Nm/m are evaluated based on the necessary current 

density. The copper losses are 

(3.13) 

where Pcu is the resistivity of copper. The copper losses are displayed in Figure 3.22. 

350 

300 

250 
~ 200 E ...._ 
~ -......- 150 

" Q.., " 100 

50 

0 

Figure 3.22. Copper losses per unit length of constructions C.2. and C.4. Constant torque T= 

10 Nmlm. 

~shaft magnet rotor shows a very good performance for high winding thickness, and it seems 

Ideal when used at extremely high rotational speed. As can be seen in Figure 3.22, copper losses 

d~rease with an increase in winding thickness without indicating any particular optimal winding 

thickness. The rotor radius can be low and the radius of the conductors may remain high, which 
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implies high torque from a small rotor size, which is essential at high speed. 

3.3 Discussion 

In an axial flux machine the pole structure is flat but the pole pitch varies with radius. The non­

constant pole pitch means that an optimal pole construction may be difficul~ to find. If the num~r 
of oles is high, the pole pitch is as an approximation equal to the pol~ pttch at the mean acu~e 
ad~ s Radial flux machines can also be approximat.OO by the flat pole tf the number of poles 1s 

~g: ~he width of a rectangular magnet in a flat pole should be ap~ro~imately 70 % o_f the pole 
. h ld be 20 % thicker than the winding and the wmding should be thmner than 

p1tch the magnets ou 
one ~th of the pole pitch. The recommended pole is shown in Figure 3.23. 

The optimal pole may, however, have a thinner windin~, 
such as in the case where the machine is shor~ m 

comparison with the winding thickness, i.e. there IS a 

significant amount of leakage in the third direction. For 

instance, Takano et.al. [32) found that the optimal magnet 

thickness of an axial flux machine with a high amount of 

flux in the radial direction should be twice the winding 

thickness. 

The force density is proportional to the fill factor of copper, 

which will vary due to different conductors and 

constructions. The force density may be written as: 

f_ 

Figure 3.23. Recommended 

flat pole 

(3.14) 

where kn is constant which is evaluated assuming a fill factor of kru=0.6 and a better magnetic 

material which will increase the remanent flux density from 1.15 to L3: 

De nding on the fill factor of copper and the remanent flux density of the magnetic material, the 
pe . ~ 

force density may be enhanced some 10-20% for the ume mg. 

The weight per unit length of the pole is shown in Table 3.2. 
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Table 3.2. Weight per rmit Length of the slotless pole 

Magnet weight 

Copper weight 

Iron core weight 

Total weight 

Forcelweight 

1078-t/ 

1350-tP 2 (hre=O.l8'9 

367 l 'tp 2 

10.9·10-6Jiaf!p 
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The poles with curved surfaces differ from the flat structure. Higher winding thickness can be 
used, especially with the shaft magnet rotor. A four-pole machine with semi-radial magnets, see 
Figure 3.24, is recommended for medium speed due to good performance and because only one 

surface is curved. The torque to magnet weight ratio of the semi-radial magnet rotor is higher than 

that of the shaft magnet rotor. The ohmic power losses of the machine are at a minimum when the 

winding thickness divided by rotor radius is: 

~=0.53 
r. 

The torque from the four-pole, semi-radial magnet machine can, then, be expressed as: 

Figure 3.24. One pole of the semi-radial machine. 

(3.15) 

(3.16) 

As with the flat pole, the length of the machine must be considered. The machine must be long if a 

high winding thickness is to be used. Otherwise. the amount of leakage in the third direction will 

be high and the optimal winding thickness must be found using three-dimensional methods. 
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The shaft magnet rotor shows good performance at high torque ~d ~e ~echanical solution is 

suitable for high-speed operation. The amount of magnetic matenaliS higher compared to the 

semi-radial magnet rotor but the construction is mechanically rigid. 

... ,_ 'th slotless windings the reluctance of the winding region is high and in such a In macullles Wl • . . 

case an iron powder material can be used as a stator yoke. A rela~ive permeability of 100 IS 

enough to achieve 98 %of the flux density of a laminated stator matenal. 
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4. Experimental Machines 

This chapter describes three experimental machines with air-gap windings. One of the machines is 

of the radial flux type and this machine is compared to a slotted machine. 1l1e other two machines 

are of the axial flux type. The first axial flux machine with a power rating of 4. 7 kW -machine was 

built and tested as part of the wind-power research program. The full scale machine will be used 

as a direct-driven generator. The third machine was built in order to investigate the possibilities of 

using the axial flux machine as a high-speed generator. 

4.1 Medium-speed Radial Flux Machine 

This section describes a medium speed servo machine with air gap winding. The machine is 

intended to be used to increase the capacity of a yam feeder. see Section 2.2. The cross section of 

the machine is shown in Figure 4.1. The magnets are of the semi-radial type and a slotJess 

winding was chosen. It was anticipated that the winding production should be more rational and 

the volume of the machine should be lower with the slotless winding. The calculation of the 

machine was done based on the result from section 3.2 and by approximating the loss of flux in 

tlle third direction.The mechanical production of the machine was made by lRO. The machine was 

tested and compared with a slotted machine built by GEC Alsthom, according to Table 2.1. 

Figure 4.1. Slotless permanent magnet mnchine. 
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The calculated data of the slotless machine are listed in Table 4. L Observe that the iron core 

material DK70 was used in the test machine. although it is recommended that the production 

machine should have the betler material CK30. 

Table 4.1. Calculated data of the slotless pennanent magnet machine 

Nominal speed 8000 rpm 

Remanent flux density Br=l.l2 T 

Coercive force Hc=850 kA/m 

Rotor radius rr=l8 rom 

Magnet width 1U/-rp=0.7 

Magnet height hm=6.3 mm 

Winding thickness /11=4.2 rom 

Iron core length lst=40 mm 

Outer diameter d=55.4 rom 

Current density kc;ulru=6.9 Nmm2 

Torque T=L2 Nm 

Ohmic losses Pru=l23 W 

Eddy current losses in the PFt=lO W 
winding 
Iron core losses CK30 PFe= 7.5 W 

Iron core losses DK70 PFe= 45 W 

The manufacturer's intention is to produce a machine with the torque rate of 1.2 Nm, and with the 

ability to accelerate the yarn feeder from zero to 8000 rpm in 300 ms. 

Figure 4.2 shows the machine and the drive equipment during the tests. The loading machine is a 

DC-machine which is loaded by meartS of a variable resistance. The permanent magnet machine is 

fed with a servo-control converter that produces a sinusoidal currenL A resolver is used to 

measure the angular position of the rotor. The permanent magnet machine can also be rotated by 

the DC-machine in order to measure no-load losses and induced voltage. 
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Figure 4.2. Machine lhlring tests. 

The induced voltage from the machine is shown in Figure 4 3 The d . 
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The slotted machine was also tested in order to compare the two machines. The slotted machine 



58 
EXPERIMENTAL MACHINES 
-------------------------

has the same rotor dimensions as the slotless construction, but the stator dimensions are larger 

than those of the slotless machine. The rotor magnets of this machine are mounted in a flux 

concentrating arrangement and the magnets are made of SmCo. The measured data at nominal 

cun-ent of the machines are summarized in Table 4.2. 

Table 4.2. Data of the permanent magnet m.aciline at rated speed 

Slotless machine Slotted machine 
8000 rpm 7000 rpm 

Torque 1.08 Nm (4.6 A) 1.04 Nm (4.0 A) 

Resistance 1.07 Q 1.43 Q 
20°C 

Inductance Ltt=Lq=L6 mH Ld=3.7 mH 
Lq=6.5 mH 

Induced voltage 1l7V lll v 
phase to phase 

Copper losses 95W 82W 

warm machine 

No load losses 64W 36W 

Additional losses 0 8W 

Total losses 159W 126W 

Efficiency 0.82 0.84 

The measured torque of the slotless machine is 10 % lower than predicted. which can partly be 

explained by a loss of flux in the axial direction. According to measured voltage, 6 % of the flux 

is lost. The calculated value of the losses is 178 W (DK70) and the measured value is 159 W. The 

losses can be lowered to approximately 120 W if the better iron core material CK30 is used. The 

power losses will, in this case, be in the same range as those of the slotted machine. The 

additional losses are losses that could not be classified as ohmic losses or no-load losses. These 

were very low in the slotless machine but clearly measurable in the slotted machine. This 

discrepancy does not mean that the additional losses are zero in theslotless machine, but that the 

accuracy of the loss model is not high enough to separate this power loss source. 

figure 4.4 shows the speed response of the sloned machine when running the machine from 0 to 

7000 rpm in 340 ms; the desired acceleration perfonnance was not meL In this test the current 

limit of the controller was set at the nominal current of the machines. During the accelerations the 
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converter was not able to position the current vector at the correct angle which resulled in a lower 

torque during dynamic periods. This loss of torque can be concluded after measuring the 

acceleration capacity and the inertia of the rotating parts. The mean torque during the acceleration 

was only 0.8 Nm. 
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Figure 4.4. Speed response with the slotted m.achine 

The test showed that it is possible to reach nearly the same perfonnance with the air gap stator as 
with Lhe slotted stator. The permanent magnets used are not the best, which means that there is 

potential to increase the torque of the slotless machine if a material with higher energy density is 
used. If a better yoke material is used. the power losses of the machines will be almost the same. 
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4.2 12-pole axial nux machine 

A direct driven generator for wind power mills must have high efficiency, low price and low 

weight For smaller wind power plants, the air gap winding and the axial design may be an 

alternative. In order to verify calculations and to get experience of lhe NdFeB-matcrial a test 

machine was constructed. built and tested. The experimental machine is displayed in Figure 4.5. 

Figure 4.5. Test machine. 

The housing of lhe machine is made of aluminium. The iron core is made of a rim of generator 

sheet that is wound to the right dimensions and glued to the housing. A cross-section of the 

machine is shown in Figure 4.~. The permanent magnets are glued to an aluminium disc, which is 

fixed to the shafL A glass fibre bandage, that is impregnated with epoxy resin is wound around 

the periphery of the rotor. The winding is fued to the stator iron core and impregnated with epoxy 

resin, see Figure 4.7. 

The coils are made of a 0. 8 x2 mm rectangular copper conductor. The coil shape is displayed in 

Figure 4.8. The number of coils per pole and phase is one. 

The magnets are 15 mm thick, see Figure 4.9, i.e. the magnet thickness for each air gap is 

hm=7 .5 mm. The optimal winding thickness should be approximately h1=6.5 mm. With a 

mechanical air gap h0= 1.5 mm, the winding thickness should be 5 mm on each side of the 

magnet. Due to the conductor dimension of 2 mm there are two layers of conductors on one side, 

i.e. 4 mm and, three layers of conductors on the other side. i.e. 6 mm. The fmal winding 

thickness is ht=8 mm on each side, depending on problems with insulation and production. This 

winding thickness results in the winding to magnet ratio h/hm= I .07, which is not optimal 

according to Figure 3.10. The fill factor in the winding volume is only 40 % which can be 

enhanced. The mechanical dimensions of the machine are summarized in Table 4.3. 
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Magnet 

Figure 4.6. 4.7 kW machine. Cross section and axial view. 

Figure 4.7. Stator impregnated with epoxy resin. 
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Figure 4.8. One coil to the axial flux 

machine 

Figure 4. 9. Rotor with magnets. 

Table 4.3 Summllry of mechanical dnw 

Number of phases 
Connection 
Outer radius 'y 

Inner radius 'I 

r/ry 
Number of pole pairs p 

Vl> 
Thickness of magnet 
Number of turns per phase 
Conductor area 

Winding thickness h1 

Fill factor of copper kcu 

Nominal speed 
Outer dimensions 
Copper weight mcu 

Iron weight mfe 

Magnet weight mi'(J 

Total weight active material mtot 

Weight other parts 
Total weight 

3 
Star 
0.148 m 

0.104 m 

0.7 

6 
0.7 

15mm 
540 

1.6 mm2 
8 mm/stator 

0.50 (at the inner radius) 

1.000rpm 
400 x 400 x 270 mm (length between feet) 
8.5 kg 

18 kg 

3.2 kg 

30kg 

23kg 
53 kg 
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4.2.1 Design Calculations 

This section deals with the calculations that the construction of the machine is based on. The two­

dimensional FEM analysis is used to calculate the flux density in the machine. The flux density is 

calculated at the mean radius rm=0.126 m, with 111=8 mrn and h,n=7.5 mm. The axial component 

of the flux density at different locations in the winding is displayed in Figure4.10. 
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Figure 4.10. Calculated flux density at different axial locations in the winding. 

The two-dimensional flux density data according to Figure 4.10 is used as input into the 

PERMASYNK-program. The average fundamental amplitude of the flux density is calculated at 

B 1 =0.62 T and the induced voltage is calculated at I 000 rpm. The calculated phase-to-neutral 

voltage is s hown in Figure 4.11. It is assumed here that the flux density wave does not change 

with the radius. The resulting calculated fundamental phase to phase voltage is 450 Vat nominal 
speed. 

The iron core losses are evaluated based on the data sheets of the SURAHAMMAR quality 

CK30, 0.35 mm. The peak flux density in the iron core is 0.43 T according to the FEM-program. 

The power losses in the iron are 1 W/kg at 100Hz and 0.5 T , according to Lhe data sheets. 

The inductance of the winding is calculated using the two-dimensional FEM-program. The main 

inductance, Lh, and leakage inductance of the active region,~' are: 

Lb=2.4 mH 

L:~..a=0.46 mH 
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Figure 4.11. Calculated winding voltage. 

The inductance of the end turns is added to the leakage inductance. This value is calculated with 

the FEM-program assuming that the end tum is an infinite conductor situated at a distance of 20 

mm from the iron core. The evaluated inductance per meter is multiplied with the length of the end 

turn. The resulting leakage inductance of the end turns is 

~=0.96 mH 

The synchronous inductance in-the machine is, hence, calculated at 

The eddy current losses in the winding are 

calculated using the Fourier components of the 

flux density in t11e winding. The width of the 

conductors in the tangential direction is 6xcu=0. 8 

mm and in the axial direction the width is 

.1ycu=2.0 mm, seeFigure4.12. Thefluxdensity 

varies with position but the nux density in the 

middle of the winding is used as an 

approximation. The Fourier components in the 

middle of the winding are displayed in Table 4.4. 

y 

Individual 
conductor 

X 

Figure 4.12. Definition of the conduc­

tor widths. 
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Table 4.4. Fourier components of flux density waves. 

Order of flux density wave Axial direction Tangential direction 
n B1'P• (T) Bxpa (T) 

1 0.62 0.121 
3 0.112 0.0196 
5 0.0293 0.0284 
7 0.0067 0.0244 

The power losses per unit length due to eddy currents in the conductor are [37]: 

(4.1) 

where 11 is the order of flux density wave .1x01 and .1y., is the conductor width in x andy 
direction respectively. 

The calculated electrical parameters are summarized in Table 4.5. 

Table 4.5. Electric data of tested fTUlchine. 

Resistance (at 20° C) 2.44 Q/phase 

Reactance 

Nominal current 
Mechanical power 
Electric power 
Copper losses 
Iron core losses 
Eddy current losses in 

conductors 
Efficiency 

3.1 Wphase 

6.5 A 
5.1 kW 
4.6kW 
310\V 
18W 
132 w 

91% 
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4.2.2 Measurements of Machine Parameters 

The stator was built in two steps. Some measurements were Laken using only one stator winding. 

called stator No.1. At this time the flux density was measured in the space where the winding of 

the second stator, stator No.2. would be situated. 

When the tlux density in the winding was measured the total winding thickness was 1 mm smaller 

than the final magnetic air gap. The flux density at different radii is shown in Figure 4.13 and 

Figure 4.14. From Figure 4.13 it is clear that the flux density is not constant with the radius and 

in thjs case the 2-dimensional analysis is not sufficient. The error in measuring is in the range of 

The induced voltage is evaluated with the three-dimensional data as input The data measured in 

the space of stator No.2 are used as input into the PERMASYNK-program. Figure 4.13 shows 

the calculated and measured induced winding voltage, respectively, in the first stator No. I. 
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Figure 4.1 5. Comparison of measured and calculated induced voltage, n= I 000 rpm. 

This method of calculating induced voltage gives good agreement between calculated and 

measured voltage. The error is l %, which is closer to the measured value than the calculated 

value of the voltage based on the two-dimensional calculated data. 

After assemblance of the whole stator the impedances of the machine were measured. The 

resistance of the complete macrune winding was measured with a DC-current and the inductances 

were measured using a single-phase AC-current, 50 Hz. The impedances are summarized in Table 

4.6. 

Table 4.6 Measured impedances 

Phase Roc (Q,22"C) Xl.+Xb (Q) 

a 2.l0 1.42 

b 2.08 1.45 

c 2.08 1.43 

The leakage reactance was measured when all phases were connected in series and the main tlux 

was cancelled. The leakage inductance is L1,=1.2 mH and the mean winding inductance is 

~+Lb=4.5 mH, i.e. the main inductanceLh=3.3 mH. Finally the synchronous reactance, X d 

is: 

Ld =6.1 mH 
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The electric frequency is 100 Hz at nominal speed, which means that ~2001r radls. The 

reactance was also measured by using an inductive load and it is found that X <f'3.95 Q, i.e. L<f= 

6.3 mH. The measured value of the reactance is 27 %higher than the calculated value, which is 

not satisfactory. In order £O evaluate the leakage flux from the end windings a more accurate three­

dimensional method should be used. The equivalent parameters of the machine are summarized 

as: 

£=245 v 
R=2.1 Q (0.056 p.u.) 

Xd=3.95 Q (0.105 p.u.) 

The next step was testing the machine with both stators at no-load. A set-up according to Figure 

4.16 was used in the following measurements. 

Figure 4.16. Test set-up 

The induced no load voltage between the phases is Eb=425 V (n=lOOO rpm), which is 5.5 % 

lower than the calculated value. The necessary torque required to rotate the machine was 

measured_ AtlOOO rpm the no-load torque is To=L6 Nm, which corresponds to a no-load power 

loss of 168 W. These power losses should be compared with the calculated iron core losses and 

eddy current losses in the conductors. The calculated value is 150 W excluding mechanical losses 

in the bearing and due to air friction. The calculated value agrees well with the measured value. 
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4.2.3 Test with Resistive Load 

At 1000 rpm, the machine was loaded with different resistive loads. The measured mechanical 

and electrical power is displayed in Figure 4.17 and the efficiency curve is shown in Figure 4.18. 

At nominal conditions the efficiency of the machine is 1J=91.6 %. 
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Figure 4.17. Mechanical and electrical power 
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Figure 4.18. Efficiency of the generator with resistive load. 

The total losses at 1000 rpm and nominal current are 409 W. Subtracting the measured no-load 

losses, the current-dependentlosses are 241 W. Calculating the ohmic losses using the measured 

resistance yields the figure of 266 W. This difference can be explained by measurement error or 

an actual decrease in the losses in the winding. This decrease may be explained by the fact that 
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flux density decreases slightly in generator operation when current is applied to the winding. This 

decrease will lower the eddy current losses in the winding. The error corresponds to 0.5 % of the 

machine po""-er. The measured data are compared with the calculated data in Table 4.7. 

Table 4. 7. Calculated and measured electric and mechanical data. 

Calculated Measured 

Resistance, R (at 20° C) 2.440 2.1 

Reactance, X d 3.1 nJphase 3.95 

Nominal current, In 6.5 A 6.5 A 

Mechanical torque, T mecb 48.7 Nm 46.4 Nm 

Mechanical power, P medJ 5099W 4859W 

Electric power, P e1 4640W 4450W 

Ohmic losses, P cu 310W 266W 

Iron losses, Pre l8W 

Eddy current losses, PFt 132W 

No-load losses. Pre+PFt l50W 

p re+PFt+Prnc 168W 

Efficiency. 11 91% 91.6% 

4.2.4 Test with Diode Rectifier 

The machine perfonnance was measured once again with a diode rectifier loaded by means of 

resistance. The current at nominal conditions, i.e. 1=6.5 A, is shown in Figure 4.19. 

The measured overlap angle is 21° and the commutation inductance is, hence, calculated at 

Lk=9.8 mH, i.e. 78 %of twice the measured synchronous inductance. There are some -parts in 

the machine that conducteddy currents during the commutations, which lowers the inductance 

during this transient 
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Figure 4.19. Current at rectifier load. 

AtlOOO rpm the electrical power and mechanical power were measured again. Figure 4.20 shows 

the measured power, and the efficiency is displayed in Figure 4.21. At rated conditions the 

efficiency is 91%. In the case of a diode rectifier load, the electric output from the machine is 

reduced to 4180 W, i.e. 94 %of the output at resistive load. The low inductance of this machine 

makes it suitable for this type of converter. 
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Figure 4.20. Power at rectifier operation. TI1e currenr is the RMS-value of the machine 
cunent. 
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4.3 6-pole Machine for High Speed 

As mentioned earlier, a group in Great Britain [3,5] is working on a gas turbine application to a 

hybrid vehicle. The generator is an axial flux machine with several stators and rotors. The 

machine used in the reference mentioned, has pieces of permanent magnet material embedded in 

fiber carbon material. Contrary to this, the machine described in this chapter has a homogeneous 

rotor magnet that is magnetized in different sections. The stator and rotor parts that are suggested 

may be used in a multi-rotor machine, according to Figure 2.4. The rotor is displayed in Figure 

4.22. A ring of carbon fibre composite 11 _._ m._ 
material can be placed around the magnet. In 
the cases in which several rotor and stator 

parts must be used. the winding can not have 

crossing end parts if it is not very thin. The 

lack of space between the two rotor parts, 

especially at the inner radius ri, implies that 

the end parts must be manufactured in a 

special way. 

The main data of the machine parts are listed 

in Table 4.8. According to Chapter 3, the 

winding thickness should be slightly thinner 

than the magnet. The winding thickness 3 

mm is used. 

Figure 4.22. Magnel ring to a high speed 

a~ial flux machine. 

Table 4.8. Main dnta of axial flux high speed segtnent. 

Outer radius ry=0.036 m 

Inner radius ri=0.02 m 

Air gap h~=0.5 mm 

Axial thickness 

Fundamental flux density 

Current density 

Fill factor 

Magnet weight 

Number of pole pairs 

hm=4mm 

Br=0.62 T 

J1cu=6X 106 (Afm2) 

kcu=0.5 

mNI=83 g 

p=3 

In this axial flux machine the space for the end turns at the inner radius is limited. For that reason. 

a special winding must be used. Figure 4.23 shows one coil of a possible winding. The thickness 

of each coil is I mm. Six such coils form one phase and are placed (:J:J> deflected from each other 
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and coupled in series. The two other phases are deflected 120 electrical degrees from each other 

and then joined to a unit. see Figure 4.24. The three phases are a unit with the axial thickness of 3 

mm. The number of turns in each coil is 8. and the winding is made of a Litz-wire consisting of 

60 strands with the individual conductor diameter of 0.1 mm. The complete stator winding is 

displayed in Figure 4.24. 

Fig11re 4.23. One coil of the winding 

Figure 4.24. Photo of the stator to an axial flux machine 
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This stator is glued to an iron powder core with a relative permeability of 35. If the winding is 

used with several stators, the winding should be doubled and placed between two rotors. Figure 

4.5 shows the rotor and stator. 

- -~· 

Figure 4.25. Rotor and stator to an axial flux machine. 

4.3.1 Magnetisation 

The motor has six poles and in order to achieve this the rotor disk is magnetized in a six-pole 

configuration according to Figure 4. 26. The magnet 

ring is magnetized using the magnetizer shown in 

Figure 4.27. With this magnetizing equipment the 

remanent flux density in the middle of the pole is 

0.94 T after the first magnetization. After an extra 

magnetization the remanent flux density increases to 

0.97 T. According to the manufacrurer this material 

should have Br= l.l T, which implies that the 

magnet material is not fully magnetized. 

Figure 4.26. The differelll sections of 

an axial flux rotor 
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Figure 4.27. The magnetizing winding. 

4.3.2 Calculations 

The flux density in the winding is evaluated with the FEM-program. The amplitude of the 

fundamental flux density wave is 0.51 T. 

The winding factor of this particular winding is found in Appendix B. Equation (B.ll ). The 

dimensions of this machine yield the value of winding factor kw--o.4. The value is calculated 

numerically. 

The calculated induced voltage of the machine is: 

(4.2) 

which yields the induced RMS-voltage of 0.45 V at 695 rpm. 

Assuming a constant fundamental flux density amplitude in the whole winding volume, i.e. 

B (y)- B the torque from an axial flux machine equipped with a winding according to Figure 
lp - lp• 

3.2, may be written as [13]: 
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(4.3) 

and with the data according to Table 4.8 the torque from this machine size is 

T=0.21 Nm 

This value should be compared with the results achieved with the special winding. 

4.3.3 Measurements 

The machine was tested at low speed in order to measure the induced vollage and in order to 

calculate the possible torque. The induced vollage of the machine was measured at 695 rpm. The 

induced phase-to-zero voltage in one stator winding is E=0.448 V. The RMS-value of the phase 

current is 2.8 A at a current density of 1=6 A/mm2. The calculated value of the torque is T=0.05 

Nm if the current is directed in the q-direction. If a better magnetic material, Br= 1.3 T, is used it 

would be possible to increase tbe torque to 0.067 Nm. The achievable torque is 32 % of the value 

calculated using Equation (4.3). The low torque is due to the special winding that is used. The 

described winding has a low winding factor and the coilnas a thickness that is only one third of 

the whole winding. 

4.4 Discussion 

The tested radial flux machine with an air-gap winding performs almost the same as the slotted 

machine. The power losses can be lowered with a better iron core material and there are better 
permanent magnet materials that can enhance the performance of the slotless machine. 

The calculation approach shows good agreement with measured values. In the tested 12-pole axial 

flux machine the length of the pole in the radial direction is short compared with the winding 

thickness, which implies a high leakage of magnet flux. This leakage flux should be evaluated by 

using three-dimensional FEM programs. Using three-dimensional measured flux density data as 

input to the PERMASYNK-program gives good agreement between the calculated induced 

voltage and the measured value. In the 12-pole machine with relatively low frequency. the 

prediction of power losses is adequate. 

The tested high-speed axial flux machine with the special winding has a rather low torque 
compared to what should be possible to achieve with a normal winding. A more normal winding 

can be used but in such a case it must be thinner in order to cross the end turns. 
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5 Comparison of Radial and Axial Flux Machines 

The axial flux machine has been suggested for use in high 

torque concepts and in high speed applications. It is of great 

interest to compare the machine with other concepts and 

especia!Jy with the radial flux machine. 

The torque production in the axial flux air gap wound 

machine is analysed and compared with that of the radial 

flux machine. A small current-carrying element in !he 

vicinity of the outer radius of an axial flux rotor is 

considered, see Figure 5.1. 

The flux density is directed in the axial direction. The 

conductors are directed radially. The angular force in a small Figur 5.1. A small current-

element, situated in a uniform magnetic field, is carrying element in an axial j11u 

dF = J · B · rdrdedz 

The torque acting on this small volume is 

dT = r· dF= r2l·B· dro8dz 

where ry is lhe outer radius of the winding and the magneL 

In the radial flux machine. the current carrying conductor is 

situated just outside the rotor with a radius approximately 

equal to the outer radius of the magnet, see Figure 5.2. In the 

radial flux machine, the magnetic flux is directed in the radial 

direction and it is assumed that the flux is constant 

independent of the actual radius. We may assume that the flux 

density, directed radially. decreases proportionally to the 

inverse of the radius. In the vicinity of the rotor periphery, we 

get the following force on the small current carrying element 

r, 
dF = 1. B(r. )- · rdro8dz 

Y r 

machifle. 

(5.1) 

(5.2) 

Figure 5.2. Current­

carrying element in a radial flux 

machine. 

(5.3) 



80 COMPARISON OF RADIAL AND AXIAL FLUX MACHINES 

The torque on this dement is : 

(5.4) 

What is interesting about lhis minor investigation is that in spite of the decrease of flux density 

B(IJ, the torque on the element increases when the radius is increased. This increase is due to the 

increase of the current-carrying element volume with radius, and indicates that we can have a 

small rotor radius and still have a relatively large radius of the winding and a high torque. 

Since the axial flux machine is distributed in the axial direction and approximately half the space is 

filled with conductors and the rest with permanent magnets, the necessary space in the axial 

direction is greater than that in the radial flux machine. The radial flux machine is distributed in the 

radial direction, which makes it shorter but the outer diameter is greater than the diameter of the 

axial flux machine if the rotor radius is the same. If the different current elements would develop 

the same torque in the radial and the axial flux machines, the radial flux machineshould produce 

more torque per unit length. 

In a case in which the rotor radius of the axial flux machine can be increased to the same value as 

the outer radius of the radial flux winding, r2, the comparison is different A radial flux machine 

with four poles is compared with the axial flux machine. The radial flux machine can have the 

rotor on the outside of the stator or it may be inside the stator, according to Figure 5.3. 

r ' IJ 
Figure 5.3. Inner rotor radial flux machine and outer rotor radial flux machine. 
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In the two cases above the thicknesses of the winding and the magnets are equal to 0.35r1, and 

the magnet width is 70 % of the pole pitch. The coercive force of the magnet corresponds to a 

relatively high energy material. Hc=920 kNm. The relative permeability of the yoke is Jlr= 1000. 
The flux density in the winding region is evaluated with theFEM-program. The fundamental flux 

density at different locations in the winding are displayed in Figure 5.4. 

The fundamental wave in the winding of the inner-rotor machine is approximated according to the 

following formula: 

B1P(r) = k.(;. rt, 
k1 =0.6309 T 

k 2 = 1.596 

In the outer rotor configuration, the flux density fundamental is approximated as: 

B1~(r)=k3 -k{f)+k{~ J 
k 3 = L 7347 T 

k 4 =2.447 T 

ks = 1.382 T 

The approximations are shown in Figure 5.4. 

(5.5) 

(5.6) 

Considering the fundamental waves, the torque is expressed by (3.12), i.e. an integral, current 

loading and constants. The integral is: 

'• {5.7) 

The integral is evaluated numerically for both cases and the resulting values for the inner and outer 

rotors are: 

8 .. - = 0. 236r. 

g,_ = 0.1611j3 
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Figure 5.4. Calculated flux density of a) inner rotor constmction and b) outer rotor. 

The inner rotor configuration produces 46 % more torque, although the amount of magnetic 

material is 70.4 % of the outer rotor configuration. The outer rotor machine is not suitable for air 

gap windings, due to a concentration of the magnetic flux for smaller radii. The flux is LO 

converge into the stator which means an increased flux density. The area through which the flux 

is to flow decreases which means an increased reluctance at small values of the radius and that the 

flux flows easier along a leakage path that does not penetrate the winding. 

An axial flux machine is compared to these radial flux machines. It is assumed that the active 

materials of the axial flux machine have the same inner and outer radii as the winding of the inner 

rotor machine. As a fm;t approximation, it is assumed that the flux density is constant with radius 

and axial positions. The axial flux machine is displayed in Figure 5.5. 

In the axial flux machine, the currem density is proportional to the inverse of the radius. It is 

assumed that flux density is constantB 1 p=<>.65 T. According to Figure 3.5 this corresponds to a 
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magnet thickness of hm=l.2ltt and a magnet width of 70 %of the pole pitch and a remanent flux 

density Br=l.2 T. The integral of the axial flux machine is: 

g = J .2 r · B1P(r)dr = 0. 2661j 
r 

'• 

It should be possible to achieve more torque from this 

construction in comparison to the radial flux machines. It is 

however necessary to evaluate the flux that leaks at the inner 

and outer radii of the magnet. This leakage will lower the 

figure for the axial flux machine. The figure represents a 

torque per unit length and in this case the length is the 

thiclmess in the axial direction of the machine. The magnet 

height is 1.2h1, i.e. the arnoum of magnetic material is 20 % 

higher than in the outer rotor construction. 

5.1 High Torque Machine 

Figure 5.5. Axial flux 

machine. 

lL has been shown that the axialllux machine must have a high ro1or radius in order to be 

comparable to the radial flux machine. To exemplify this, the tested axial flux machine with air 

gap winding, according to Section 4.2. is compared to a radial flux machine with the same mean 

radius. The mean radius is defined as the air gap radius of the radial flux machine and as the mean 

radius of the active area for the axial flux machine. The fill factor of copper is the same in the two 

machines. 

The axial flux machine achieved the ftll factor of copper at the inner radius: 

k mi = 0.495 

The current loading, i.e. current per length unit is 
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Neglecting the effect of flux leakage in the radial direction, the flux density of this machine is 

according to Section 4.2.1 : 

B1P =0.62 T 

The corresponding electromagnetic torque may be calculated according to Equation (4.3): 

T=48.8 Nm 

A radial flux machine with the same fiU factor of copper, i.e. current loading, is calculated. The 

torque of a radial flux machine is approximately: 

,, 

(5.8) 

where 

= 1j +r1 =0 134 '12 2 . 

The integral in this example can be simplified, as it has a small pole pitch in relation l<l the radius. 

The flux density is evaluated with the FEM-program in the middle of the winding: 

B1P =0.59 T 

In order to produce the same torque at the same current density the machine should have the 

length: 

The weights of the active materials are listed in Table 5.1, which does not include the end 

windings. 
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Table 5.1. Weight of material in axial flux and radial flux machine 

Axial flux machine Radial flux machine 

Copper weight, m
01 

2.04 kg 2.23 kg 

Magnet weight, mfltl 2.71 kg 2.14 kg 

Iron weight, mre 6.85 kg 6.28 kg 

Total weight 11.6 10.6 kg 

The rotor core material should be added to the weight of the radial flux machine. This material 

can, however, be used as a pan of the rotor and it can be solid, which is a cheap solution. It is 

shown that, in a case where the radial flux machine has the same mean radius, the active material 

has a lower weight than the active material of the axial flux machine. The amount of magnet 

material is lower in the radial flux machine. 

In the tested machine the length of the pole (r y-Ji) is too small in relation to the winding thickness, 

which implies a high flux leakage at the inner and outer radii of the magnet. The radial flux 

machine has longer poles and the amount of leakage flux will be lower. 

5.2 High-speed Machine 

The tested axial !lux machine according to Section 4.3 has the foUowing data: 

T=0.05 Nm 

ly=0.036 m 

kcui=0.376 (fill factor at the inner radius of the machine) 

/ax=0.0075 m (axial length of magnet, air gap and winding) 

With a better magnetic material, Br= 1.3 T, and full magnetization it should be possible to increase 

the torque to T=0.067 Nm. 

The torque from the radial flux shaft magnet rotor machine according to Section 3.2 is: 

Scaling this torque to the same magnet radius, fill factor and better magnetic material, as in the 

axial flux machine, yields the fotiowing figures: 

T radial=280 Nm/m 

T axial=8.93 Nm/m 

In this case where the radius is restricted, the radial flux machine has a much higher torque to 
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length ratio. 

If all dimensions are scaled up the torque of the axial flux machine increases with the cube of lhe 

radius, which implies that the axial flux machine radius must be: 

( 
r,..;aJ )3 = 280 ~ ruial = 3. 2rTad>ll 
,radial 8. 9 (5.9) 

The axial flux rotor radius must be 3 times the rotor radius of a radial flux machine. If this can be 

solved with another mechanical arrangement, the axial flux machine may be an alternative. 

The axial flux machine must generally use more active material in comparison with the radial flux 

machine in order to produce the same torque. The advantage of the axial flux machine is the 

simple construction with an iron core that is wound to the right dimension. 
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6. Investigation of a Pole witb Integrated Teeth 

Iron powder material can be formed to an entire stator with slots and teeth, similar to the way in 

which sheets are punched and stacked to the stator core. Earlier works [21 ,6,22] have 

concentrated on iron powder with teeth and winding in the conservative sense. Pressing big stator 

cores leads to very high forces which limits this method to smaller machines. Recently, a 

technique for building big stators was developed. Essentially this technique is based on producing 

smaller pieces that are joined to a bigger stator [2]. 

As a new approach to winding production it is here assumed that the winding region shall be 

produced before assemblance in the machine. Iron powder teeth are glued to the conductors 

before the assemblance. The core is not formed with the teeth attached; instead the teeth are 

integrated to the winding and mounted together with the conductors. The necessary insulation 

material between the phases and the yoke are flxed to the winding before mounting it to the yoke. 

Before analysing machines with integrated teeth, a simplified flat pole is evaluated, see Figure 

6.1. The teeth are made of an iron powder material and magnetized with an NdFeB magnet. The 

influence of the stator material permeability is evaluated using the FEM-program. The relative 

permeability was studied earlier by Boules and Weh [6] using analytical formulae. Since their 

study, the capacity of penn anent magnetic material has improved which means that a matetial with 

permeability in the medium range may be u"ed with the same flux density in the winding as a 

SmCo-material and a high penneability material. In their study, the air gap length was constant 

and the teeth were joined with the yoke. In this case, the influence from insulating parts between 

the winding and the yoke must be evaluated. There are many ways to choose all the parameters of 

the pole. Here it is assumed that a slot width that is equal to the tooth width is near the optimal 

value. Web and Boules [36] have studied the influence of the slot width to s lot pitch and have 

found that the power is maximized when 

the slot width is higher than half the slot 

pitch. Their study did not consider the 

power losses in the construction, and for 

other studies they have chosen a slot width 

equal to tooth width. 

The goal is to find a stator that can be used 

with surface-mounted permanent magnets, 

producing a high force density. Another 

aspect is to find the maximal winding 

thickness, i.e. current loading. As we will 
see. a relatively long air gap will reduce the 

flux density ripple on the magnet surface 

ht 

Figure 6.1 Analysed pole equipped with 

integrated teeth. 
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and reduce the inductance of the winding. As a start a stator with three slots per pole and phase, 

(i.e. q=3), is studied, see Figure 6.1. The assumed remanent flux density of the magnet is B c= 1.3 

T. 

6.1 Stator with Integrated Teeth 

The stator, according to Figure 6.1, is studied and the tlux density in the winding is evaluated 

using the FEM-program. The pole pitch and magnet width are held constant, -raf-rP=O. 7, which 

was found to be a good compromise earlier. The pole pitch of the studied structure is 1p=l9.5 

mm. The mechanical air gap is, as a start, 5.1 % of the pole pitch and the magnet height is equal 

to the mechanical air gap. Between the phases there is a space for insulation material, with a 

thickness of 2.6 % of the pole pitch. In this way the space for the winding will be equivalent to 

the space for the teeth and the amount is 46 % of the winding region. In order to evaluate the 

armature reaction, current is applied to the winding in the q-direction. The armature reaction is 

studied at constant current loading and at constant current density in the conductors. The current 

density is J
1
cu=6 A/mm2 , which in the studied pole corresponds to a current loading of 

S
1 

=51 · 103!!i (Aim) 
't'p 

As a start, the flux density is studied as a function of iron powder permeability and the thickness 

of winding region. When current is applied to the winding the flux density in critical parts 

increases which increases the power losses. The limit for what is practical is studied in this first 

approach. With the flux density from the first study in mind, the influence of varied air gap, 

thickness of insulating material, tooth permeability with an insulating material between the 

winding and the yoke and, finally, the pole are evaluated more carefully with an assumed iron 

powder material, EF6880. In the last calculations, the non-linearity of the material is taken into 

account. 

Under linear conditions the fundamental current 

and tlux may be represented by vectors according 

to Figure 6.2. It is assumed that the rotor does not 

have salient poles. Two values of the flux in the q­

direction are indicated: one corresponding to a 

machine with low armature reaction and the other 

is a case with relatively high armature reaction. 

The current in the q-direction produces torque with 

the flux in the d-direction, i.e. with the magnet 

flux. It is obvious that a machine with low 

armature reaction produces higher torque at the same 

total flux compared with a machine with high 

--- .. 
Limit to flux 

· •.•.. an/d current 

.. ~:.. .· ' · .. . . . 
. ljl'. .. ·· ·a· .• ·• : '•Lqiq .· ' . . ' , __________ _,.,.. I 

ll'm 

Figure 6.2 Vector representation of 

the flttx. 
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armature reaction. The current produces a flux in the q-direction that is not useful in torque 

production but it increases the flux density in the magnetic parts, i.e. if the maximum permissible 

flux, due to limited power losses, is set, the amount of useful magnet flux will be lowered by the 

flux in the q-direction. In order to minimize the power losses the flux produced by the winding in 

this construction must be minimized. The increased flux will also correspond to an increased 

voltage, i.e. the converter that feeds the machine must feed the machine with reactive power and 

the converter has to have higher apparent power, which dimensions the converter. 

TI1e tlux linkage is, according to Equation (2.2) : 

lJI = lfld + j lj/q 

lfld = Ldid + lflm = lflrra 

lJiq = Liq (6.1) 

The current in the d-direction is assumed to be zero. The flux linkage is proportional to the flux 

density and therefore we can evaluate the fundamental flux density: 
B=Bad + jBaq 

(6.2) 

The flux density components Bm and Bq depend on the pole geometry and for the component 

from the magnet is dependent on the permanent magnetic material. The q-component depends on 

thecurrentloadingand the geometry. Finally, the total flux density B is the absolute value of the 

vectorial addition of the two components. The flux density is evaluated by means of the FEM­

program. 

6.1.1 Flux Density at Varied Permeability 

The influence of winding thickness, Jz1, and the relative permeability of the teeth are investigated. 

As a start the relative permeability of the yoke is 1000. The flux density at varied winding 

thickness is displayed in Figure 6.3. As an approximation of the mean flux in the winding the 

fundamental flux density is evaluated along the line indicated in Figure 6.1, y=h112. This 

simplification causes a negligible error as long as the relative permeability is over 50. Higher 

winding thickness can be used than with the air gap winding. With a relative pe1meabilityof 200 

the winding can be as high as the pole pitch and the mean flux density remains at 0.6 T . 

Current is applied to the winding and the flux density is evaluated again. The current is applied in 

the q-direction. Figure 6.4 shows the flux density at constant current loading. S 1 =51 k.Nm. The 

mmf from the magnet is, in this case put to zero. For low relative permeability the flux density 

decreases with increased winding thickness. On the contrary, when the relative permeability is 

high the flux density is increased with increased winding thickness. At high winding thickness the 

leakage flux is increased. 



90 INVESTIGATION OF A POLE Wfil-1 INTEGRATED TEETII 

0.6 

0.5 

0.4 
........ 
b: :=- 0.3 
~ 

0.2 

0.1 

0 
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

hlrp 
Figure 6.3. Fundamental flux density at different winding thicknesses with relative permeability as a 
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Figure 6. 4 Flux density due 10 the winding and at constant current loading . Relative 

permeability as a parameter. S 1 =51 kNm. 

The power losses per unit volume are not dependent on current loading but on current density. At 

constant current density J=f> Nmm2, the total flux density when current is applied is shown in 

Figure 6.5.a) The total flux density divided by flux density from the magnet is shown in Figure 

6.5 .b) The relative increase of flux density is approximately independent of the relative 

permeability in the studied interval, i.e. the relative per unit impedance does not depend on 
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permeability when current density is constant. The apparent power compared of the active power 

to the machine depends on how much the voltage must increase when the machine is loaded. 
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Figure 6.5.a) Total flux density when current is applied 10 the winding in the q-direction, 

J1c
11
=6 Almnrl b) Total flux dei!Sity di,·ided by magnet flwc density when current is applied. 

JlrlOO. 

As an example it is possible to have a peak air gap flux dens.ity of 0.6 T if the iron powder 

material have a relative permeability of J.Lr> I 00 and modem permanent magnet material, With a 

reasonable current loading of S 1 =51 kNm the increase of flux density corresponds to an apparent 

power that is 20 % higher than the active power, i.e. 

~=1.2 
B lpm 

6.1.2 Varied Air Gap Length 

The air gap is increased in order to decrease the armature reaction of the stator. The winding 

thickness is fixed at hf-zp=L4 and hJ"-zp= I, respectively, and the magnetthickness is increased to 

1.5 times the air gap. As the air gap is varied, the magnet thickness also varies. The resulting flux 

density at no-load is shown in Figure 6.6. 
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For smaU magnet heights and, consequently, short air gaps the reluctanceof the winding region 

reduces the flux density. The reluctance of the winding region is high in relation to the relatively 

thin magneL For high magnets and air gaps, similar effects start as in the air gap wound machine; 

the magnet flux leaks around the magnet and does not pass the winding region at aU. With current 

applied to the winding in q-direction the flux density is calculated again, and the ratio between the 

no-load flux density and the flux density in loaded conditions, is shown in Figure 6. 7. An 

increased magnet thickness and air gap length does not decrease the armature reaction when the air 

gap exceeds 10 % of the pole pitch. 

The magnetic vector potential is shown in Figure 6.8, when h1/~=1 and the air gap length h0 is 

10% of the pole pitch. The fundamental flux density from the magnet is, in this case: 

B1PID = 0.65 T 

It is shown that if the air gap is increased, the armature reaction is decreased. With J1cu=6 Nmm2. 

the air gap is 10 % of the pole pitch and if the winding thickness is equal to the pole pitch, the 

total flux density will be 12 % higher than the magnet flux density. This increase of flux density 

seems to be a reasonable value of the armature reaction. 
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6.2 Further Investigations of a Pole with q= 2 

In the previous section, it was found that iron powder material may be used in permanent magnet 

machines with a high winding thickness and relatively high fundamental flux density. The pole, 

must, however have insulation material between the different phases of the winding and between 

the winding and the yoke. This thickness of lhe insuJating material must be invest-igated. It is 

assumed that the varnish around the conductors is enough to withstand the voltage between 

adjacent winding turns. There is higher voltage between the phases which is isolated with 

insulation material. It was earlier assumed that lhe insulation between the phases occupied 2.6 % 

of the pole pitch, which corresponds to 0.5 mm with a 19.5 mm pole. 

In comparison with a normal stator with punched sheets and round conductors, the main 

advantage of the integrated teeth stator is the increased fill factor of copper, which is possible to 

achieve only if the insulation material does not occupy too much space. If a small pole pitch and 

high copper fill factor are desired, it is necessary to minimize the number of slots. A pole with 2 

slots per pole and phase is studied, see Figure 6.9. With the lower number of slots the mean flux 

density decreases to: 

Figure 6.9. Slotted pole with q=2. 
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B1P = 0.64 T ( ~~ =1, /1, = 100) 

if the same dimensions are used as in the previous section. 

In the previous study the relative permeability of the back iron core was high. It is obvious that 

the yoke surface must be smooth and must fit into the winding wilh slots. Roughness adds to the 

distance between the teeth and the core. Of this reason an iron powder yoke, which can be 

produced with a defined shape and without sharp edges, is investigated. With the relative 

permeability in the teethJlr=lOO, the relative permeability of the yoke is varied. The fundamental 

flux density in the winding is displayed in Figure 6.10. The relative permeability of the rotor core 

is assumed to be Jlr-=1000. According to Figure 6.10 a relative permeability of 100 is necessary in 

order to achieve more than 90% of the flux densjty when the permeability is 1000. 
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Figure 6.10. Fundamental flux density of the winding, Jlteelb=lOO. Relative penneability of 

the yoke is varied 

The insulating material between teeth and yoke must be thin in order to maintain a high flux 

density. When this material is inserted, the flux density decreases and, in order to increase the 

flux density, the air gap length is shortened from lO % to 9 % of the pole pitch. This shortening 

of the air gap compensates for the decrease when the insulating material is inserted. Assuming an 

insulation thickness hisoi=O.Ol tp the flux density is: 
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Br=0.569 T 

8 1=0.628 T 

relative permeability of the teeth and the yoke is Jlr= 1 00 

relative permeability of the teeth and the yoke is Jlr=200 

The permeability of the iron powder material is for further studies assumed to be Jlr=200 both in 

teeth and core. 

One effect that decreases the usable area of the slot, is that the nux density in the slot opening is 

not zero. This flux density would induce eddy currents in the first conductor of the slot The flux 

density decays rapidly and is almost zero at a distance equal to the slot pitch y='fs· The slot width 

is not constant due to the assumed insulation material between the phases. The absolute value of 

the nux density in the widest slot is displayed in Figure 6.11. The slot width is in this case: 
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Fig1ue 6.11. Flux density in the slot, absolute value. 

The power losses in the conductor that is situated in the slot opening will be high in high 

frequency applications, which should be taken into account. At y=0.051p the flux density 

decreases to 0.12 T which produces a power loss density of 0.35 MWJm3 atf=250 Hz and 

conductor width bru=2 rom, i.e. half of the power loss density due to resistance in the conductor 

atllcu=6 Nm3. For lower frequencies it seems possible to use the slot from y=h3=0.05-tp to the 

slot bottom. 
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The thickness of the varnish around the conductor is assumed to be h1=0.l mm and the thickness 

of the insulation between the phases is /~.4 mm. The total thickness of the insulating material 

in the x-direction is: 

The teeth material area was earlier assumed to be 46 % of the winding area and hence the copper 

area is: 

A cu = ( h, - hJX -rp - 0.46-rp - hioso•) = 

= (h,- h3)(0.541'p -0.0024) 
(6.1) 

where h3=0.05-rp in a Low frequency machine, i.e. in which the frequency is lower than 250Hz. 

The fill factor of copper in th.e winding region is: 

(h. -h3xo.54-.p -o.oo24) 
h,-r., (6.2) 

It is important to keep the ripple due to the slots low on the magnet surface. The flux densi ty on 

the magnet surface is displayed in Figure 6.12. The flux density on the magnet surface is almost 

unaffected by the slotted stator. The flux density ripple is lower than 0.05 T peak to peak. This 

result implies that the construction is done in a way that suppresses eddy current losses in tbe 

magnet even at high frequency. 

The flux density in the x-direction is evaluated in the slots. The resulting flux density of the slot 

opening, i.e. along line A in Figure 6.9, (y=0.059 in the x-direction is displayed in Figure 

6.13a). The flux density along the line B, i.e. in the slot farthest to the right, is displayed in 

Figure 6.13b). The flux density is evaluated assuming that the current density is 6 Nmm2. A part 

of this flux density is due to the magnet but most of i t is due to current loading. The maximum 

flux density in the slot is approximately: 

(6.3) 

where S 10 is the current loading at which Figure 6.13 is displayed, i.e. S 10=51 kNm. 
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Fig. 6.9. b) The x-component ofthejliiX density in the middle of the 6/11. slot. J 1cu=6 Almm2 

The maximum x-component of the flux density, when the machine is loaded, is 0.15 T and it 

decays to 0.04 T at the bottom of the slot. This flux tries to penetrate the conductors and the 
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induced eddy current losses in the conductors must be evaluated, see Equation (4.1). 

The flux density of the air gap is concentrated into the teeth and therefore the flux density in the 

teeth is approximately: 

(6.4) 

At no-load the fundamental flux density is 0.62 T and according to Equation (6.4) the flux density 

in the teeth should be 1.35 T and at loaded conditions the flux density should be 12 %higher, i.e. 

The flux density in the teeth is calculated using the FEM-program. The flux density directed in 

they-direction in the middle of the winding region, y=0.5-zp is displayed in Figure 6.14. Figure 

6.14a) shows the flux density in the teeth at no-load. Figure 6.14b) shows the flux density when 

the construction is loaded with J1cu=6 Nmm2. Underloaded conditions the peak value of the flux 

density reaches 1.6 Tin the teeth, which is higher than predicted by Equation (6.4). It is essential 

to use the right value of the flux density when we evaluate the power losses in the teeth. 
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The inserted insulating material and other changes on the pole decrease the armature reaction of 

this pole to an 8 % increase in relation to the permanent magnet flux density. Finally. the 

magnetizing curve of the material EF6880 is used to represent the iron powder material and a new 

FEM-calculation is done. In this example the program o ption of non-linear material 

characteristics, according to Figure 2.15a), is used. The vector potential lines are shown in 6 . l S. 

The fundamental flux density is: 

B1P =0.626 T 

without current., i.e. almost the same as with a linear material having a relative permeability of 

J.lr=200. With 6A/mm2 in the winding the Oux density increases to: 

B1P = 0.668 T 

I-
1111 

I\ ""Ill 

\.\ I 

a) b) . I . h b) Eq . . l 
Figure 6.15. a). Equipotential lines of the vectorpotentra wLt out current. wpotentw 

lines of the vectorpotential atllcu=6Aimm2, S1=51Wm. 

We can conclude that it seems possible to produce a winding with approximately a 40 % fill factor 

of copper and 0.63 T fundamental wave. The force density of this pole is 

(6.5) 
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6.3 Minimized Power Losses 

Just as with the s lotless pole the power losses should be minimized with respect to winding 

thickness. I n the following examples the power losses in the teeth are important and their 

expressions can be found. The flux density from the magnet in the middle of the winding is 

approximate! y: 

h, 
B1Jlll! = 0. 69-0.06-

-r,. (6.6) 

The peak flux density in the teeth is approximated according to Equation (6.4) but the value is 

corrected to the value found in the FEM-analysis: 

(6.7) 

where Btl is the flux density in the teeth at no-load, ilB1 is the flux density in the teeth due to 

current loading, S 10=5 I kA/m. In the same way, the fiux density of the yoke is approximated as: 

(6.8) 

AB2 is the flux density in the yoke due to current loading. 

1be force density of the pole is: 

(6.9) 

Fixing the force density, the necessary current density is evaluated for different winding 

thicknesses: 

(6.10) 

The power losses of the pole are: 
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where P Leeth is the power losses in the teeth, P yoke is the power losses in the yoke. 

(6. 11) 

The power losses due to eddy currents are found through approximating the flux density in thex­

direction according to Equation (6.3). The pow-er losses may be written as: 

(6.12) 

The minimum conductor width is lmm and the corresponding pole pitch is as an absolute 

minimum -tp=lS mm. Using this pole pitch, the power losses are calculated and are shown in 

Figure6.16 and Figure 6.17. The frequency is the parameter. The power losses are shown for a 

high force case and for a low force case. At low frequency and high force rating the optimal 

winding thickness lies above what is reasonable with respect to relative reactance_ In cases where 

power losses in the iron powder material and power losses due to eddy currents in the conductors 

dominate, i.e. at high frequency or low force ratings the winding thickness is to be limited to 

lower values. The power losses are distributed according to Figure 6.18 at 500 Hz and FA= 15 

kN/m2. 

It is assumed that the conductors have a quadratic cross-section, .t:..yru=.t:..xcu=lmm. 
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Figure 6.16. Power losses as a fimction of winding thickness, -rp=15 mm _ High force density 
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Figure 6.17. Power losses as a function of winding thickness, 1>=15 mm. Low force density 

FA=5 kNirn2 
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Figure 6.18. Powerlosses at =500Hz. FA=15 kN!m2, tp=l5 mm. 
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6.4 Measurements on Iron Powder Parts 

The power losses in iron powder material were measured and a simplified pole was tested. The 

tests were made in order to verify the iron powder data, calculation method and whether the pole 

construction is possible to produce. 

6.4.1 Measurement of Power Losses. 

A commercial iron powder toroidal core was used as a test object. The purchaser has no data on 

the core except that the relative permeability of the material is 100. The core dimensions are 

shown in Figure 6.19. 

::.. ...... ---99.0mmr----·~· 

r 
101.2 mm 

1 
Figure 6. I 9. Iron pm .. ·der toroids used as a stator core. 

Three cores were put together forming a yoke for a radial flux machine. The volume of the core is 

538 cm3. The windings are concentrated to two windings on opposite sides of the iron core. The 

number of turns in each winding is 7 5. Voltage was applied to the windings and iron losses were 

measured at different frequencies. The flux was measured by means of a measuring winding. 

Power losses as a function of the frequency are displayed in Figure 6.20. Iron losses at Bre=0.4 T 

are approximated by a second-order polynomial: 

P= PJ + p.J2 (W) 

p 1 =0.136 Ws 

p2 = 8.686·10-5 Ws2 

(6.13) 
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Fig11re 6.20. Iron losses in the core. Last point at 1500Hz. 

In the studied interval the linear term dominates. At 50 Hz and 0.8 T the iron losses are 32 W, i.e. 

59 kWfm3. In relation to the data of EF6880 the studied material has rather high losses. 

The magnetizing characteristics were measured using a computer measuring system in which the 

induced voltage in the extra winding is measured and integrated, see Figure 6.21. Integrating the 

hysteresis loop yields the figure of W=l250 WsJm3 at .8 T and 50 Hz, corresponding to power 

losses of 62.5 kW/m3. The value agrees welJ with what is measured and it can be concluded that 

power losses are mainly due to the hysteresis. A line corresponding to Jl.r= 100, which is the 

relative permeability claimed by the distributor, is indicated in Figure 6.21 and it is clear that the 

relative permeability of the material is higher over the investigated range. 
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Figure 6.21. Measured hysteresis cun•e. 

6.4.2 Measurements on Iron Powder as Teeth Material 

An integrated teeth winding using iron powder pieces cut from a bigger piece was tested. The iron 

powder material has a relative permeability of 75. The winding is shown in Figure 6.22. 

Iron 

20mm 

Figure 6.22. Integrated test winding. 

The measured peak value of the flux density in the air gap is 0.45 T. The structure is analysed by 
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means of the FEM-prograrn. The vector potential is displayed in Figure 6.23 and the flux density 

is shown in Figure 6.24. The calculation of flux density agrees well wilh the measured value. 

The winding is made of rectangular conductors with a width of 2 mm and a thickness of 0.8 mm. 

The number of conductors per slot is 30. 1be fill factor of copper in the winding region is: 

k"" = 0.34 

The fill factor of iron powder material in the winding region is: 

kfX' = 0.45 

which is almost the same as in the analysed pole in section 6.1. The number of conductors 

between each iron powder piece is rather high in this example and the varnish takes a relatively 

large space. The amount of varnish is approximately 15 % of the slot and 76 % of the s lot is 

filled with copper. 10 % of the slot is filled with other material which could be replaced by 

copper. In order to achieve a high fill factor of copper, bigger conductors s hould be used. The 

production of the pole must be improved so that no space is left for material other than the active 
ones. 

Figure 6.23 Equipotential lines of integrated teeth made of premanufactured iron powder 

pieces. 
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Figure 6.24.a) Flux density on the magnet surface. b) Flux density in the middle of the air 
gap. 

6.5 Discussion 

A machine part was analysed and some choices were made. One assumption was that slot width is 

approximately half of slot pitch. Web and Boules [6] showed that an increase in slot width would 

increase the power. An increase would decrease the fundamental flux density of the winding and 

increase power losses in the teeth, something they did not investigate and which was not 

investigated in this work, either. The reason for this, is that in the case of small pole pitches the 

minimum rectangular conductor has the same width as the tooth. If the slot is widened, the flux 

density ripple on the magnet surface will increase and, therefore, it will be necessary to increase 

the air gap. The increased air gap will decrease the fundamental flux density and the construction 

will be more sensitive to the high value of the insulating thickness hi sol· An alternative is to partly 

close the slot opening, which will increase the leakage flux from the winding. 

The force density of the integrated teeth winding with h1/tp=l is evaluated. In order to minimize 

armature flux and to minimize flux density variations on the rotor surface, the air gap is set at9 % 

of the pole pitch and the magnet thickness is hm=0.15-rp. If the slots are filled with rectangular 

conductors the fill factor kru will depend on pole pitch. An approximate figure of the fill factor is: 

Hence, the force density is 

(6.13) 

Due to the long air gap, the construction has relatively low armature reaction. With a current 
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loading of S 1 0=51 kA/m the increase of flux density in the winding is 8 % in relation to the no­

load case. 

The weights of the pole parts are displayed in Table 6.1. The weight of the slotted pole is 2.35 

times that of the slolless pole, i.e. the force to weight ratio of this pole is better than that of the 

slotless construction. 

Table 6.1. Weight per rmit length of the pole. 

Magnet mass 

Copper weight 

Teeth weight 

Iron yoke weight 

Total weight 

Force/weight 

777t/ 

3592tp2 

345~2 

135~2 

9169-t/ 

13.1 * 10-6 ltal"tr 

The lower limit of the pole pitch is approximately 15 mm due to the minimum dimension of the 

rectangular conductors, which is l rom. According to Vacuumschmclze. it is possible to produce 

iron powder pieces with a thickness of I mm. Handling such tt.in iron powder parts may be 

difficult and small pole pitches must have a very thin insulating layer between tJ1e winding region 

and the iron core. The parts must also be produced with low tolerances. Whether or not it is 

possible to manufacture small poles depends on material and winding machinery. It might be 

useful to choose poles that are wider, which simplifies the production and increases the fill factor 

of copper. 

The optimal winding thickness depends on force rating and frequency. At low force ratings or at 

high frequency the power losses in iron powder parts dominate and a low winding thickness 

yields lower losses. 
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7. Calculated Machines with Integrated Teeth 

An approach with integrated teeth is studied for three different machine types. In a direct-driven 

wind power application, the integrated teeili machine is compared with a transversal flux machine. 

Secondly the construction is evaluated in high speed operation and is compared with the slotless 

machine [I]. In this case it is not possible to approximate the pole with the flat pole. Finally the 

integrated teeili machine is compared with a standard induction machine. 

In wind power operation, the machine is to be optimized with respect to cost over its entire 

lifetime, i.e. the cost for producing the machine must be compared to the produced energy. 1be 

machine size is not restricted but a large diameter will be expensive to produce. 

The high speed machine has a restricted rotor size due to mechanical stresses. We shall investigate 

how high power a certain rotor size can produce with the iron powder stator. The frequency and 

the power losses of the iron powder material are high and the volume of the machine is low. The 

high power losses in a small volume implies that there is a cooling problem. The temperature of 

the machine must in all cases, but especially in a high speed machine, be limited to values that do 

not damage the materials. 

In the third case, the outer dimensions of the machine are limited to the same dimensions as a 

standard induction machine. The possible power rating is evaluated under the assumption that the 

machine is to have the same power losses as the induction machine. 

It is for all machines assumed that the available iron powder material EF6880 and the permanent 

magnet material V ACODYM 362 HR are used. 

7.1 Direct-driven Wind Power Generator 

In a direct-driven wind power generator the stator frequency is rather low and the maximum 

winding thickness is assumed not to be limited by power losses and temperature. In this study, 

the winding thickness is fixed at htf;,=I. 

A radial nux machine is calculated and compared with the transversal nux machine reported on by 

Weh [11]. The nominal power of this machine is 6.4 kW at 195 rpm and the torque is 313 Nm. 

Firstly, it is assumed that power losses in the radjaJ flux machine are to be the same as in the 

transversal flux machine, Ploss=600 W. Secondly, the most economical machine is found based 

on assumptions about material costs and the cost of power losses. 

Power losses are evaluated according to the equations in Chapter 6 with the difference that the 

copper losses in the end turns are added. One type of end turns is shown in Figure 7 .1 . The end 

tum must be bent upward so that it can pass over the two other phases that come out of the yoke. 
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Under idealized conditions the length of the end turns is: 

nhl 
l = -r +-

• p 2 (7 .1) 

In reality insulating material and tolerances make the end turn longer and, therefore, it is assumed 

that the length of the end turns is: 

(7.2) 

View from the axis View from the pole side 

View from the outer radius 

Figure 7.1 End turns of the winding 

The copper losses are: 

(7.3) 

Other power losses are calculated according to the Equations (6.11)-(6.12). 

The produced torque is derived from the force density, according to Equation (6.9), and the active 

surface area: 

(7.4) 

CALCULATED MACHINES WITH INTEGRATED 1EETII 113 
--------------------------------------------------

where '6 is the radius of the air gap. 

The machine length is varied and the radius and current density that corresponds to the specified 

power losses and torque is calculated. The radius and magnet weights are shown in Figure 7 .2a) 

and b), respectively. Three alternative pole pitches are evaluated. For pole pitches lower than 25 

mm it is not possible to achieve a machine with the assumed power losses. As can be seen in 

Figure 7 . 2b), the magnet weight increases with pole pitch and, therefore, it is not interesting to 

investigate higher pole pitches. In fact there are two combinations of length and radius that fulfil 

the requirements. The combinations that are not shown are longer, have lower radius and higher 

magnet weighl Due to the higher magnet weight this alternative is not further examined. 

a) 
0.3 +--+-+---+--+--+ 
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Figure 7.2. a) Air gap radius as mried machine length, pole pitch as a parameter. b) Magnet 
weight. Power losses are constant. 

A machine with nearly the same magnet weight, mN:l=2.1 kg, as the transversal flux machi11e is 

more closely examined: 

<p=25 mm 

Ls1=0.07 m 

ro=0.25 m 

The weight and mechanical dimensions of the machine are summarized and compared with the 

transversal flux machine in Table 7 .1. The power losses are: 
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Pcu=265 W 

pteetll=271 w 
P)'fJke=69 W 

PF1=4 W (l\y01=1 mm) 

? 1055=609 W (9.5 %) 

Le. the efficiency is 90.5 %excluding mechanical losses and losses due to converter feeding. 

Table 7.1. A comparison between transversal and radial flux machines. 

Transversal flux Radial flux (same magnet 
weight) 

Mech. input power 6.4kW 6.4kW 

Electric. output power 5.8kW 5.8kW 
Rated speed 195 rpm 195 rpm 
Active diameter 360mm 494mm 
Pole pitch 7.85 mm 25mm 
Frequency 234Hz 101Hz 
Efficiency 0.91 0.905 (mech. losses excluded) 
Iron mass 20.5 kg 13.4 kg 
Copper mass 4.7 kg 20.1 kg 

Magnet mass NdFeB 2.0 kg 2.1 kg 
Total mass active material 27.2 kg 35.6 kg 
Machine diameter 0.5 m 0.59m 
Machine length 0.2 m appr. 0.15 m 

It was earlier assumed that a high winding thickness can be used in this application. Compared to 

Figure 6.17 the force density is high (F A=11.4 kN/m2) and the frequency is low (f=l 0 l Hz) in 

this case. It seems correct to use a high winding thickness in this case. Testing the calculation 

with higher winding thickness yields higher values of radius and magnet weight. For lower 

winding thicknesses it is not possible to achieve the low power losses. This result implies that the 

assumed winding thickness is the most favourable. Taking into account that this machine should 

be possible to control with a diode rectifier, it is of interest to keep the armature reaction low. 

It is clear that it is possible to build force dense machines with performance in the same range as 

this particular transversal flux machine. The weight of the machjne is 30 % higher as that of the 

transversal flux machine, the radjus of the machine is higher but the machine is shorter. The 

optimal machine is, however, to be calculated from an economic point of view. 

As an example, the cost of the materials is approximated and with an assumed cost of power 

losses the most economical solution is evaluated. The material costs are assumed: 

cN:l=lOOO SEK/kg (peremanent magnet material) 
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Cpow=100 SEK/kg (iron powder material) 
cru= lOO SEK/kg (copper) 

The cost of power losses is found by assuming that the machine runs at nominal operation for 10 

years and that the income from produced electricity is 0.25 SEK/k:Wh. Power losses in this case 

will result in a loss of income. The cost per kW is: 

cploss=21900 SEK/k:W 

The cost for housing and other mechanical parts depends on the machine size. It is assumed that 

30 % of the machine volume is filled with mechanical supporting material and that this steel 

material costs 100 SEK/kg. It is, furthermore, assumed that the cost for producing flanges 

increases with radius: 

cothor = 741700/.,r.!,,.. + lOOOOr....,. 

where router is the outer radius of the machine. The optimal length and radius are evaluated 

numerically for different pole pitches. The resulting cost is shown in Figure 7 .3. 
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Figure 7.3. Cost for different pole pitches. a) Total cost and cost of power losses. b) Cost of 
different materials. 

The optimal pole pitch is 20 mm in this example. The dominating cost is the cost for power losses 

as shown in Figure 7.3.a). The material costs are shown in Figure 7.3.b). The data of the optimal 

pole pitch machine are shown in Table 7.2. The number of pole pairs is corrected to 43. 
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With the assumed cost factors the optimal machine will have 14 % lower weight than the 

transversal flux machine, the efficiency of the integrated teeth machine is lower and the overall 

diameter of the machine will be significantly higher. 

Table 7.2. A comparison of transversal and integrated teeth machines. Optimal pole pitch of 

the integrated teeth machine. 

Transversal flux Radial flux (optimal pole) 

Mech. input power 6.4k\V 6.4kW 
Electric. output power 5.8kW 5.71 kW 
Rated speed 195 rpm 195 rpm 
Active diameter 360mm 546mm 
Length of stator core 52.5 mm 

Number of pole pairs 43 
Pole pitch 7.85 mm 20mm 
Frequency 234Hz 140Hz 
Efficiency 0.91 0.89 (mecb. losses excluded) 
Iron mass 20.5 kg 8.9 kg 
Copper mass 4.7 kg 13.1 kg 
Magnet mass NdFeB 2.0 kg 1.4 kg 
Total mass active material 27.2 kg 23.4 kg 
Machine diam 0.5 m 0.65 m 
Machine length 0.2 m appr.O.l3 m 
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7.2 High-speed Machine with Integrated Teeth 

A high speed machine with integrated teeth is calculated and compared to the shaft magnetslotless 

machine described in Chapter 3. In high speed operations, power losses in iron powder parts will 

be high and problems with cooling must be solved. The possible winding thickness and power 

from the same rotor size as in Section 3.2 are investigated based on the assumption that the core is 

to be cooled to a housing attached to the outer parts of the yoke. 

Chudi and Malmquist [ 1] showed that a slotted stator will produce high power losses on the rotor 

surface of a high speed machine. Flux density variations on the rotor surface are, however, 

cancelled if the air gap has an appropriate length. The slot opening of the integrated teeth winding 

is small which implies that the air gap can be of reasonable length. The machine is outlined in 

Figure 7.4 and the common data of the two machines are listed in Table 7.3. 

Figure 7.4. High speed machine with integrated teeth. Tooth no. 1. 

If the machine voltage is to be in the same range as normal grid-voltage, i.e. 400 V. the number of 

winding turns is low, i.e. the conductor area is rather large. A single conductor cannot be used 

due to the skin effect. Instead, a Litz wire must be used and it is assumed that the fill factor of 

copper in the slots is 50%. The amplitude of eddy currents that are induced in the Litz-wire is low 

which means that the whole slot may be filled with conductors. 

The number of slots per pole and phase is q=4. The slot opening is 2.2 mm. Two types of teeth 

are investigated and shown in Figure 7.5. The first construction has rectangular teeth and the 

second tooth type has rectangular slots, i.e. the tooth width increases with radius. 
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Table 7.3. Comi7UJn data of the Mo high speed machines. 

· Magnet radius 

Rotor radius 

Rotational speed 

Active length 

Magnet material 

Magnet weight 

Iron yoke and teeth material 

Iron yoke thickness 

Tooth no. 1 

Tooth no. 2 

';n- 11.5 mm 

1f=l5 mm 

n=lOO 000 rpm 

fsr=0.1 m 

VACODYM 362 HR 

Br=L33 T 

Hc=1020kNm 

mt-(1=307 g 

VACfEK EF6880 

hre =15 mm 

+ 
2.2mm 

t 

[_ -_ -_ -,;; -_ -_ -_ -_ -_ -__ -_ -_ j -_ ;-_2"2 mm 

Figure 7.5. Investigated teeth. 

The inner radius of the winding is 17 mm, i.e. the air gap is 2 mm. The fl ux density on the rotor 

surface is displayed in Figure 7.6. The flux density ripple due to the slots is lower than 0.05 T 

peak to peak. 

It is assumed that the machine operates at 1667 Hz and the power losses in tooth type no. 1 are 

evaluated. The flux density in this tooth is 1.1 T aU the way through the winding region. 

Assuming a yoke thickness of hre= 15 mm, the flux density in the yoke is B lpyoke =0.6 T, i.e. the 

power loss factors are Pteetb=2.22 MWJm3 and Pyoke=660 kWJm3. 
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Figure 7.6. Flwc density on rotor surface, unloaded. 

The temperature is evaluated when the winding thickness is hl=23 mm. It is assumed that an 

insulation layer of 0.2 mm with thennaJ conductivity A=0.2W/Km is situated between the 

winding region and the yoke. The current density is JOJ=5 Mnm2 and it is assumed that no heat is 

transferred to the rotor and that the winding has the equivalent thennal conductivity of three times 

the thennaJ conductivity of the impregnating material. ~=0.6 W/Km. Kylander [39]. The 

resulting maximum temperature is 168° C, if the yoke outside is held at 60° C. This ma.Urr!um 

temperature exceeds the maximum operating temperature of the iron powder material. which 

means that the design must be altered. 

Tooth no. 2 has an increased area for higher radius which Jowers the flux density and the cooling 

area of the tooth bottom is increased. Figure 

7.7 shows the absolute value of the flux 

density in the tooth. The maximum current 

density at different winding thicknesses is the 

current density that produces maximum 

operating tern perature in the material. 

The FEM-program is used to evaluate the hot 

spot in the winding area for different winding 

th icknesses. The current density is adjusted 

so that the hottest spot reaches 120 °C when 

the outer surface is held at 60 °C. For each 

current density the flux densi ty in the tooth 

and in the yoke are found and fed into the 

temperature analysis. When evaluating the 

temperature, the teeth are divided into several 

pieces and power losses per unit volume are 
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Figure 7.7. Flux density in tooth no. 2. 
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calculated from the actual flux density in each piece. The maximum temperature at different 

current densities for various values of r2 is displayed in Figure 7.8. 

The power from the machine corresponding to the currem density that produces l20°C in the 

winding region is shown in Figure 7.9. A peak power of 

P=44kW 

is produced with the outer winding radius r2=45 mm. 

115 

6 9 12 15 18 

J (Nmm2 ) 
lpcu 

Figure 7.8. Maximum temperature 
at varied current density, pole pitch as 

parameter 

25 30 35 -10 45 !0 s: 

Figure 7.9. Power at varied outer 

radius of the winding, hot spot 120 °C. 

The equipotential lines of the magnetic vector potential without current and with current are 

displayed in Figure 7.10. Power losses in the active parts are listed in Table 7.4. 
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Figure 7.10. Equipotential plot of cite vector potentiaL High speed machine wit!z sloes. Wichouc 

current (upper) and loaded with J 10J=6.5 Almffll (lower). 

The achievable power in a slotless generator with a shaft-magnet rotor is evaluated in the 

following. The dimensions of the machine are displayed in Tables 7.3 and 7 A. The machine 

perfonnance can be calculated with infonnation from Section 3.2. 

The ohmic losses of the shaft magnet rotor decrease with winding thickness, as shown in Figure 

3.21. This decrease means that a high winding thickness may be used. Chudi and Malmquist [I] 

chose a winding radius ratio corresponding to the highest torque to volume. This choice has 

proved to be a useful winding thickness. The corresponding outer radius of the winding is 

r2=30.5 mm. The produced power is: 

P=24 kW 

The losses of the active materials are listed in Table 7.4. 

The total power losses in the active region are ?101=157 W (corresponding to 0.65 % of machine 
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power). The winding temperature of lhe slotless machine is analysed in lhe stator region. It is 

assumed that the heat does not 1rnnsfer to the air gap and that the outer side of the stator yoke is 

held at 60° C. i.e. the same conditions as for the integrated teelh machine. The resulting 

maximum temperature is 118 °C which means that we have almost the same hotspot temperature 

in the two machines. 

Table 7.4. Main data of the high-speed radial.foa machines 

Slotless machine Integrated teeth machine 

Inner radius of winding 15.5 mm 17mm 
Outer radius of winding 30.5 mm 62mm 
Stator outer radius 45.5 mm 77mm 
Current density in the 6Nm2 6.5Nm2 
conductor 
Fill factor of copper 50% 50% in slot 
Air gap length O.S mm 2mm 
Copper losses 67W 103W 
Teeth losses l27W 

Yoke losses 80W 327W 

Eddy current losses 10.3 w 
Total losses 157 w 557 W 

Surface area of stator core 0.029 m2 0.048 m2 

Output power 24kW 44kW 

Power losses are 3.5 times higher in the slotted machine than in the slotless machine. The increase 

in power losses makes it more difficult not only to transfer the heat to the yoke surface but also 

from the surface to the ambient. Heat transport from lhe yoke to the ambient can be described as 

(7.3) 

where P" is the heattlow density (W/rn2). a is the heat transfer coefficient which is multiplied 

by the temperature difference. 112 is the temperature of the yoke, and ~a ambient temperature. 

Normally a stands for heat transfer from surface to air, but it is here used as a capacitity figure of 

the cooling arrangement: 

(7.4) 

where P loss is the power losses in the machine, and ayoke is the outer area of lhe yoke. 

The necessary heat transfer coefficients of the yoke outer surface, if the ambient temperature 40 'C 

is for the two machines: 
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~575 W/m2K (integrated teeth maclrine) 

~271 W/m2K (slotless machine) 
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if the temperature difference between yoke and ambient is 20 °C. The cooling arrangement in the 

integrated teeth machine must be 2.1 times as effective as in lhe air gap machine. Interesting to 

note is that the highest power losses of the integrated teeth machine are the power losses in the 

yoke. A better material that would lower these losses to the same range as the yoke losses of the 

slotless machine, should lower the power losses of the integrated teeth machine to 310 W. 

Consequently the necessary heat transfer coefficient of this mach.ineshould be 322 Wfm2K. This 

heat transfer coefficient is close to the same value as in the slotless machine. For instance, 

Pennenorm 5000 H2 has power losses of 10 W/kg at 2kHz and 0.5 T [1]. In th.is application, 

power losses in the yoke would be lowered to 92 W, if Permenorm 5000 H2 is used. 

This example shows that a winding with thin and integrated teeth can be used in high-speed 

machines with low rotor losses if a proper air gap is inserted. The flux density variation due to 

slots is cancelled if the air gap is bigger than lhe slot opening. Power losses in the iron parts are 

high but the thermal conductivity of the iron powder is enough to transport the heat to the yoke 

surface. The power losses of the iron powder yoke are high, but can be lowered by using another 

material in the yoke. If a better yoke material is used. the necessary heat transfer coefficient of the 

machine is in the same range as in the slotless machine and it might be possible to cool lhis 

machine with the same methods as used in the slotless machine. If this is possible the produced 

power with this machine type is 44 kW from the same rotor size as in the slotless machine, which 

produces 24 kW. 

The Litz-wire implies a low copper fill factor, which is not beneficial in this application. The 

integrated teeth with iron powder parts have high performance when the high fill factor of 

homogeneous conductors is utibzed.lf the fill factor is low as with the Litz-wire, higher amounts 

of iron powder parts must be used and the construction will be bulky. The integrated teeth 

machine is not better, when compared with machines with other types of soft magnetic material in 

which the same fill factor may be reached. 

7.3 PM Machine Compared to a Standard Induction Machine. 

The performance of a permanent magnet machine with integrated teeth winding when fit into the 

dimensions of a 15 kW standard induction machine is evaluated. The data of the induction 

machine are shown in Table 7 .5. 
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Table 7.5. Data of standnrd induction machine. 

Rotational speed 966 rpm 

Number of pole pairs 3 

Output power 15kW 

Efficiency 0.87 

Stator diameter 291 mm 

Stator length 230mm 

Machine weight 145 kg 

Air gap diameter 190.2 mm 

The stator of the permanent magnet machine is to have the same outer dimensions as the induction 

machine, which means that the air gap diameter can be increased with a thin yoke and a small 

winding thickness. The machine is evaluated with the requirement that power losses are 1950 W. 

i.e. total power Losses are approximately equal to power losses in the induction machine. It is 

further assumed that the mean temperature of the winding is 80 °C. The electric outpm power is 

evaluated for different pole pitches and winding thicknesses. The produced power is displayed in 

Figure 7.lla) and the power to magnet weight ratio is shown in Figure 7. 11 b). 
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Figure 7.11. a) Produced power as a function of winding thickness, pole pitch as parameter. 

b) Power to magnet weight ratio. 
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Electrical power increases with pole pitch with a maximum power of 41 kW for pole pitches 55 

and 65 mm. The best winding thickness is in Lhe range 40-60% of the pole pitch. With increased 

pole pitch the magnet weight also increases, and the best output power divided by magnet weight 

is achieved with the smallest pole pitch. 

With the smallest pole pitches, the stator frequency is rather high, which may be problematic 

when used in connection with electronic converters. A compromise is to choose rp=35 mm which 

yields a produced power of 38 kW and the magnet weight is 4.5 kg, which is 70 % of the magnet 

weight of the machine with the highest power. Adjusting the number of pole pairs to p=l 0, the 

pole pitch is 36 mm and the air gap radius is: 

-r 
r6 = 20·-.L.. = 0.1146 m 

21C 

The winding thickness is 

The winding thickness corresponds to 68 % of the pole pitch. In this case, we have a machine 

with force density FA=22 kNJm2 and a stator frequency of 161 Hz. With this force density and 

frequency it should be possible to use a higher winding thickness, according to Section 6.3. In 

this application the outer diameter is, however, limited. The limited outer radius means that there 

is a conflict between high winding thickness and high air gap radius. A high winding thickness 

decreases the air gap radius and vice versa. The machine is outlined in Figure 7.12. 

In this machine, the number of poles is so low that the cylindrical cross-section of the pole must 

be considered. The previous calculation of Figure 7.11 was made based on the assumption that 

the cylindrical shape of the machine did not have any effect The flux density of the machine 

outlined in Figure 7.12 is calculated by means of the FEM-program and the geometry is defined in 

Figure 7 .13. It is assumed that the slots have the same area as in the flat poles. The non-linearity 

of the material EF6880 is also taken into account With an altered geometry, the flux density in the 

middle of the winding is lowered to 0.59 T. The flux density is lowered but the flux is increased 

by 10% in relation to the flat structure. The flux density in the teeth is 1.07 T at no-load and at 

maximum load the flux density in the teeth is 1.3 T. The power losses of tl1e machine, at nominal 

operation, are shown in Table 7 .6. The adjusted machine has almost the same power losses as the 

induction machine. The efficiency of the machine is: 

1']=94.&% 

The temperature is evaluated by means of the FEM-program. The resulting temperature in the 

tooth and in the slot is shown in Figure 7 .14. It is assumed that each slot is filled with rectangular 

conductors and between each conductor there is 0.2 mm of varnish with A-=0.2 W/mK. As can be 
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seen, the highest temperature drop is over the insulating material between the winding region and 

the stator yoke. 

229mm 291 mrr 

Figure 7.12. A 20-po/e machine. 

5mm 

Figure 7.13. Analysed pole. 
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Copper losses 
Teeth losses 
Yoke losses 
Eddy current losses 

Total losses 

Table 7. 6 Power losses of in regrated teeth machine 

895\V 
808\V 
230\V 

39 W (conductor dimension t.ycu=lmm) 

1973\V 

The maximum temperature is 87 "C when the stator surface is held at 60 °C. Power losses due to 

flux in the tangential direction are, however, calculated assuming the conductor has a thickness of 

1 mm. The number of conductors in each slot is 25 and more barriers of varnish are inserted in 

the winding. Taking this into account, the temperature increases to 93 °C. 

Power losses divided by the stator yoke area under the assumption that the temperature is held at 

60 "C implies that the beat transfer coefficient of this machine is: 

which is rather high. 

The amount of active materials in this machine is displayed in Table 7 .7. 

Air gap 
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Figure 7.14 Temperature in the slot and in the tooth 
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Table 7. 7 Weight of active material 
Magnet weight 
Copper weight 
Powder material 
Rotor core 
Total weight of active rnatelial 

4.6 kg 
21.3 kg 
30.0kg 
8.9 kg 
64.8 kg 

The integrated teeth machine can produce high power compared to the induction machine. There 

are, however, a problem that must be solved. The number of conductors in each slot is high in 

order to reduce the eddy current losses. The induced voltage exceeds normal line voltage if the 

coils should be connected in series. This can be solved with a parallel coupling of the coils but 

there is always a risk for circulating currents between the coils. 
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8. Conclusions 

The study of the air gap winding resulted in that the magnet thickness should be in the range of 1-

1.2 times the winding thickness if the pole structure can be approximated with a flat pole. It is not 

recommended that the winding thickness is greater than 20 % of the pole pitch. The magnet width 

should be in the range of 60-80 %of the pole pitch. 

If the number of poles of a radial flux machine is low, then the pole structure cannot be 

approximated with a flat structure. The winding of such a machine can be thicker. For instance, a 

four-pole machine has the lowest copper losses if the winding thickness is equal to 30 % of the 

pole pitch. The winding can also be thicker than the magnets. In the case of a four-pole machine, 

a semi-radial magnet with one cylindrical surface is recommended. Interior magnets are not 

recommended for slotless constructions. 

Two-pole machines can successfully use a cylindrical magnet inside a hoUow non-magnetic shaft 

At high speed the magnet is held together by the shaft and a higher winding thickness may be 
used in relation to a four pole machine. A two-pole machine is better in many respects when 

compared with a four-pole machine with the exception of the torque-to-magnet-weight ratio. 

In order to verify calculations, several machines were built and tested. A four-pole permanent 

magnet machine with air gap winding is compared with a commercial machine with SmCo­

magnets and a slotted winding. With the NdFeB-magnet material, the slotless machine performs 

approximately the same as the slotted machine. The outer dimensions of the slotless machine are 

smaller than those of the slotted machine. If the magnetic material of the slotless machine is 

enhanced, lhe performance of this machine will exceed that of the slotted machine. The torque 

from a given rotor dimension of th.e slotless machine will be higher, while at the same time power 

losses will be the same. 

Two experimental axial flux machines were studied. The tested machines showed that the method 

of analysis predicts the induced voltage with relatively low error. The 12-pole axial flux machine 

with a power rating of 4.7 kW reached an efficiencyof92 %. Air gap winding technology can be 
used in smaU machines where the cost of permanent magnets is low compared to the cost for 

producing the machine. 

A theoretical comparison of axial flux topology to radial flux topology showed that the torque 

production of the radial flux machine with the winding on the outside of the rotor is superior to 

that of the axial flux machine. In most cases where the radius is limited, the radial flux topology is 

recommended. EspeciaUy in high-speed applications, the radial flux machine is better. The 

advantages of the axial flux machine are its short length and the easily produced iron yoke. 
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The iron powder material has lower relative permeability than ordinary generator sheets. The 
power losses of the material are higher as long as the frequency is lower than 1-2kHz, depending 

on the material. The major advantage of the material is that it can be formed almost arbitrarily. If 
the material is glued to the conductors, the fill factor of active material will be high. 

In the thesis a so called integrated teeth winding based on iron powder pieces fixed to the winding 

was studied theoretically. The study shows that the relative permeability should be higher than 

100, in which case winding thickness can be equal to the pole pitch. If the air gap is relatively 
large, two important things are gained: the armature reaction of the pole will be low and the flux 

density ripple on the rotor surface will be almost zero. The low armature reaction implies high 

force density and the low flux density ripple implies low power losses on the rotor surface, which 

is normally sensitive to heat The force density of a pole with integrated teeth is approximately 
three times the force density of a slotless pole. 

A direct-driven wind power generator of 6.4 kW with integrated teeth can have almost the same 

power losses and magnet weight as a 6.4 kW transversal flux machine. The machine radius is 

higher but tl1e machine is shorter, and the overall material weight is higher than that of the 

transversal flux machine. An optimisation of the machine with assumed cost for material and 

power losses leads to a machine with a pole pitch of 20 mm. The optimal machine has a higher 
radius, shorter length, lower magnet weight and lower efficiency. This machine must be regarded 

as an example. If, for instance, the cost for power losses will be higher, it would be more 

economical to build the machine with more material and higher efficiency. 

The high-speed machine with integrated teeth can produce approximately twice the power of the 

slotless machine. This high power rating is at the cost of higher power losses and a cooling 

arrangement that can handle twice as much power per unit area when compared with the slotless 

machine. In order to limit the temperature in the tooth, the slot is straight and the tooth width 
increases with radius. With the studied iron powder material, the highest power losses are the 

yoke losses, which could be lowered with a better material. Using the integrated teeth at extremely 

high speed is not recommended. Conductors with a high number of strands strand must be used 

and the fill factor of copper will be in the same range as that of ordinary machines with punched 
sheets. There are sheet materials that give a better performance than iron powder material, i.e. an 

ordimny design should be better than the studied one. 

Compared with a standard induction machine, the integrated teeth machine has around 2.5 times 

the power capability with the same power losses and outer volume. This increased power rating is 

due to the permanent magnets, which do not produce any power losses in the rotor. The pole 

pitch of the machine can be lowered, which implies a thinner stator and an increased air gap 
radius. The high fill factor that is obtained by the integrated teeth winding also increases the force 

density of this machine type. 
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APPENDIX 

Appendix A. Torque and Force in a PM-machine 

The torque in an electric machine may be described with the flux and current, [28]. 

The flux can be expressed in terms of inductances: 

V'd = V'm +Lid 
V'q = Liq 

T= ( ljf.,. + Ldid)iq -Liqid = ll'"'iq +(Ld - Lq)iid 

(Al) 

(A.2) 
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When calculating the torque in an air gap winding, the torque is the force on the conductors times 
the radius. The force may be expressed according to [38] 

F= Jl xB dV 
v (A3) 

where J is the current density, B is the Oux density and V is the volume that is carrying current 

density. 

Assuming a sinusoidal distribution of current and flux density according to Figure A. I, the force 

is: 

J = z ·11P(y)sin(n~- {3) 
'l'p 

(A4) 

where f3 is the angle between the current density and flux density waves. 
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a 

Figure A.l. Fundllmentalwaves of flux density and current density. 

If the current density is constant, the Equation (A4) may be rewritten: 

t'r It, '• 

F= -x J dx J dy J dz · 11Psin(n~) · B1• __ ;)sin(n~- f3) = 
0 0 0 't"p t'p 

A, 

=-xi" -rpcos(JJ)l1PJB1p(y)-dy 
2 0 (A.5) 

In many cases the flux density can be assumed constant and (A5) may be simplified to: 

(A6) 

where S lp=11Jz1. The force density is the force divided by pole area: 

(A7) 

In a case where the stator is slotted the forces act on the teeth, i.e. equation (A 3) cannot be used 

directly. However, the force density of a slotted construction can be expressed in the same way if 

we consider that the current loading of such a pole is: 

(A8) 

where ltpco is the current density in the conductor. 

.. 
--

APPENDIX 

B. Winding Factors 

The winding is displayed in Figure B. L The winding factor kw, is: 

r 

,-. 
' . 
'Y• 
~ 
I I •• 

t' ' s t. 

I • 

Figure 8.1. Win.ding 
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a 

(B. I) 

where¢ is the flux that flows through a full pitch winding. The denominator in Equation (B .1) is 

the induced voltage in a concentrated winding. It is assumed that the conductors are very small 

and distributed evenly in the pole. The number of conductors per length unit is 

(B.2) 

The peak induced voltage of each individual tum in the coil is: 

(B.3) 

The induced voltage in the whole winding is: 
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3NP 2 
=-·m-rB -

1C p lp 1C 
(B.4) 

Finally the winding factor is: 

3 
k =-

" 1C (B.S) 

The high-speed machine in Section 4.3 has a special winding and, hence. the winding factor of 

this machine is evaluated. The winding is shown in Figure B.2. 

Figure B.2. Winding of the high speed machine. 

The flux through the winding turn at position r, ~ is: 

(B .6) 

The number of turns in a small section d~w is: 

(B.7) 

where 1}>i is the pole pitch at the inner radius. The flux Linkage per pole is evaluated. We must 

integrate the flux density over the whole pole: 

r, t'P/2 

1Jf,. =AN f j d¢,, = 
r, 0 

N 2 'J' i: (-r,tt) =-P -B
1
P drisin _P_ 

-r . 1C 1t 2 't"p 
P' r, 

The pole pitch is: 

nr 
-r=­

p 3 

The linked flux is: 

N 2 '• nr
2 (':n:) 1Jf =-P -B J-sin -'- dr= 

lp -r n: Ip 9 2r 
po r, 

N 2 '• , . ('"} =-P-B,PJrsm - '- r 
-r . 9 2r po r, 
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(B.8) 

(B.9) 

(B. IO) 

Dividing Equation (B.lO) with the expression of the induced voltage of a concentrated winding, 

Equation (B. l ), yields the winding factor: 

2-
1 f ?sin(r;n)dr 

nr 2r 
k., = 1 "( .1 - ' ) 'r lj (B.ll) 

C. Representation of Magnets in the FEM-program 

The FEM-program used cannot represent material with a remanent flux density, i.e. material data 

cannot be specified in the second quadrant of the BH-curve. However, cun-ent can be applied to 

materials and this is used to describe the permanent magnetic material. 

The method used is described in [33]. The method is based on the fact that at the edges of the 

magnets we have a difference in the coercive force vector. In order to describe this difference. 

current density is applied at the edges of the magnet: 

(C.l ) 

In a simple case where the magnetization direction is in they-direction the current density is: 
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(C.2) 

Magnetization is more difficult in a case where the magnet is curved. The diameuically magnetized 

magnet is used to exemplify this. A current layer according to figure C. l. is used and the current 

density is constant over the surface. 

hx 

Figure C.l. Diametrically magnetized magnet half pole. 

The thickness of the current carrying layer in the x-direction is constant but the thickness in the 

radial direction varies sinusoidally with the angle {3: 

dr = hx sin(/J) 

The current density is : 

1be total current is: 

~ 
2 

I= JldS = HJ h,J r ·df3·dr= 
s 0 

6 

2 

HcrJ sin(/J)d/3 =Her 
0 

(C.3) 

(C.4) 

(C.5) 
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Appendix D. Measuring Instruments 

1bis appendix reveals the main data of the measuring devices used during the tests. 

Flux Density Meter 

For measuring flux density a Bell incremental Gauss meter is used. 

MODEL240 
+ 

Probe linearity error -1% 
+ 

Instrument error -1% 

For various reasons the measuring of flux density has been tricky and the probable error in the 
+ 

measurements is estimated to -5%. 

Oscilloscope 

For transient measuring of currents and voltages a Philips PM97 scopemeter is used. An optical 

RS232 link is used to transmitt the measured data to a Macintosh computer system. 

Vertical resolution 

DC accuracy 

Bandwidth 

Nonlinearity 

Horizontal resolution 

Accuracy 

8 bits 

2% 

50MHz 

<2% 

512 points 
+ + 
-0.1% - l LSB 
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High Frequency Power Meter 

Measuring power bas been penonned with a power meter 'Erich Marek', which measures signals 

with frequency components up 20 kHz 

MODEL Integra 6 

Error 1.5 % 0-20 kHz 

Error 0.5% 0-10 kHz 

Inductance Meter 

Inductances are measured using an inductance bridge, Philips PM6303 RCL meter. 1be 

instrument measures impedances at 1000 Hz. 

The inductance is also evaluated using the grid frequency, SO Hz, and measuring the current and 

voltage. 


	alatalo_1-17
	alatalo_18-51
	alatalo_52-81
	alatalo_82-142



