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On the critical non-additivity driving segregation of asymmetric binary hard sphere fluids
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A previously proposed version of thermodynamic perturbation theory, appropriate for singular pair interactions
between particles, is applied to binary mixtures of hard spheres with non-additive diameters. The critical
non-additivity DC required to drive fluid–fluid phase separation is determined as a function of the ratio !! 1 of
the diameters of the two species. DC(!) is found to decrease with ! and to go through a minimum for !’ 0.015
before increasing sharply as !! 0, irrespective of the total packing-fraction " of the mixture. These results are the
basis of an estimate of the range of size ratios for which a binary mixture of additive hard spheres exhibit a
fluid–fluid miscibility gap. This range is conjectured to be 0.019 !9 0.1.
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1. Introduction

Miscibility gaps are a very common occurrence in
multi-component fluids or solids. In simple, molecular
fluids, demixing of species of comparable size is
generally of enthalpic origin, associated with preferen-
tial cohesive forces. In complex fluids, on the other
hand, in particular in colloidal dispersions, where
species may differ considerably in size, segregation is
often entropy-driven, as illustrated by the familiar
depletion mechanism in colloid–polymer mixtures
[1,2]. The simplest model system exhibiting
entropy-driven phase separation is a binary mixture
of hard spheres. If the two species of spheres have
non-additive diameters, i.e. if the distance of closest
approach between the centres of opposite species is
larger than the sum of the radii of the two species, a
modest deviation from additivity leads to demixing
into two fluid phases of different composition [3]. Thus
non-additivity, which is the rule, rather than the
exception, in most colloidal systems, is a common
cause of entropic phase separation. However even
perfectly additive binary hard-sphere mixtures are now
believed to phase separately, provided the ratio ! of the
radii of small and large spheres is sufficiently small and
the partial packing fractions are sufficiently large [4–9].
Fluid–fluid phase separation has been shown to be
pre-empted by the coexistence of a low density fluid
and a high density solid of very different compositions,
so that fluid–fluid coexistence is thermodynamically
only metastable [8]. However, due to slow crystal

nucleation kinetics, fluid–fluid coexistence may in fact
be observable in appropriate colloidal mixtures where
the unavoidable polydispersity of the small and large
species will slow down the nucleation even further.

The two mechanisms responsible for fluid–fluid
phase separation in hard-sphere systems are thus
non-additivity and size asymmetry, or a combination
of both. For perfectly additive mixtures, the size ratio !
necessary to drive phase separation has been estimated
to be of the order of 0.1 or less [8], while for larger
ratios (0.19 !! 1), a critical degree of non-additivity
DC (defined in Section 2) is required to induce fluid–
fluid demixing. The simulations in [8] were mostly
based on an effective one-component representation of
the additive binary mixture, using an effective deple-
tion potential between the large spheres, but the results
were tested against explicit two-component simulations
over a range of physical conditions, and good agree-
ment was found. Very recently additional results for
effective depletion potentials have been published [10].
In [3] it was shown that DC decreases with !, and is
expected to go to zero (additivity) as the size ratio
approaches !’ 0.1. However in the limit !! 0, the
additive system reduces to a mixture of hard spheres
and point particles (ideal gas). Such a system is not
expected to phase separately because there is no
entropic ‘incentive’, in the form of an increase of the
volume accessible to the point particles. This intuitive
statement is confirmed by a simple free volume
calculation similar to that of Lekkerkerker et al. [11]
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for the Asakura–Oosawa (AO) model of colloid–
polymer mixtures. These authors calculated fluid–
solid and fluid–fluid–solid phase diagrams for several
values of the non-additivity parameter D relative to the
hard-sphere diameter #. A thermodynamically stable
fluid–fluid phase separation occurs for D0 0.32 in
reasonable agreement with later experimental findings
of the appearance of a fluid–fluid–solid triple point in
the phase diagram of colloid–polymer mixtures char-
acterised by D’ 0.25 [12]. An elementary extension of
their calculation (sketched in Appendix 2) shows that,
within free volume theory, the critical non-additivity
required to drive a (metastable) fluid–fluid phase
separation of hard spheres and point particles
(i.e. the AO model) is DC’ 0.17. This observation
raises the question whether fluid–fluid demixing pre-
dicted to occur for additive hard spheres below a size
ratio !’ 0.1 terminates at a lower value of !, say !¼ !l,
below which a positive value of the non-additivity
parameter D is required to drive phase separation, as
expected from the !¼ 0 limit. In other words, is the
fluid–fluid miscibility gap for additive hard spheres
restricted to a limited range of size ratios
05!l! !! !u’ 0.1?

In the present paper we address this problem by
calculating the critical non-additivity required to
induce fluid–fluid segregation as a function of ! over
the full range [0, 1]. We apply a recently developed
thermodynamic perturbation theory adapted to singu-
lar interactions [13,14] to calculate the free energy of
the non-additive binary hard-sphere fluid as a function
of packing fraction and concentration. The predictions
for the onset of spinodal instability presented in the
following sections indeed suggest that a non-zero
non-additivity (DC40) is required to trigger fluid–
fluid demixing for extremely asymmetric mixtures
(0! !! !l’ 0.01) as well as for size ratios !# !u’ 0.1.

2. Model and theory

We consider binary mixtures of hard spheres of
diameters #A and #B (4#A). The three pair distances
of closest approach are

#AA ¼ #A,

#BB ¼ #B,

#AB ¼ 1

2
ð#A þ #BÞð1þ DÞ,

ð1Þ

where D (#0) is the dimensionless non-additivity
parameter. The hard-sphere pair ‘potentials’ are

v$%ðrÞ ¼
1, r5 #$%,

0, r4 #$%; $,% ¼ A or B.

!
ð2Þ

D¼ 0 corresponds to the familiar and widely studied
additive binary hard-sphere mixture. The reduced
thermodynamic properties of this athermal system
depend only on the partial packing fractions
"$ ¼ p&$#3

$=6 ($¼A,B), where &$¼N$/V is the
number density, or number of spheres per unit
volume, or equivalently on the total packing fraction
"¼ "Aþ "B and the concentration x¼ xA¼NA/
(NAþNB) of species A (xB¼ 1' xA). The solution of
the Percus–Yevick (PY) integral equation theory for
the partial pair distribution function g$%(r) provides
analytic expressions for the equation of state (e.o.s.)
and the Helmholtz free energy F [15] which predict
accurate results, compared to available simulation
data, for low and moderate packing fractions (say
"9 0.3), at least for size ratios

! ¼ #A=#B, ð3Þ

which are not too small. For higher packing fractions
(0.39 "9 0.5), very accurate thermodynamic proper-
ties are provided by the semi-empirical e.o.s. of
Boublik [16] and Mansoori et al. [17] (BMCSL).
The corresponding expression for the reduced excess
Helmholtz free energy per particle (N¼NAþNB)
reads [17]

f ex ¼ %F ex

N
¼

'3

2
ð1'y1þy2þy3Þþ ð3y2þ2y3Þ=ð1'"Þ

þ3

2
ð1'y1'y2'

1

3
y3Þ=ð1'"Þ2þðy3'1Þ lnð1'"Þ,

ð4Þ

where

y1 ¼ '
ð#A þ #BÞ
ð#A#BÞ1=2

,

y2 ¼ '
ð#A#BÞ1=2

"

"
"A
#A

þ "B
#B

#
,

y3 ¼
ðxA#2

A þ xB#2
BÞ

3

ðxA#3
A þ xB#3

BÞ
2

and

' ¼ ð#A#BÞ1=2ð#A ' #BÞ2
xAxB

xA#3
A þ xB#3

B

:

The BMCSL e.o.s. has been tested by computer
simulations of binary hard-sphere mixtures, except
for small size ratios ! where simulations experience
ergodicity problems [18,19]. The validity of the
free-energy function (4) is thus not established for
!9 0.2, when the partial packing fractions "A and "B
are comparable.

Both PY [20] and BMCSL theories predict that
additive binary hard-sphere fluids are miscible for all
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size ratios ! and packing fractions ", in contradiction
with later findings, based on self-consistent integral
equations [4,5,9], free volume theory [6], density
functional theory [7], and simulations [8] which predict
a fluid–fluid miscibility gap for sufficiently small size
ratios (!50.2) and high packing fractions, i.e. under
conditions where the former two theories have not
been validated. Since fluid–fluid phase separation
appears to be marginal, small inaccuracies in the free
energy may be sufficient to suppress segregation. On
the other hand it has been shown that a modest degree
of non-additivity (05D( 1) is sufficient to drive fluid–
fluid demixing, even for fairly symmetric mixtures [3].
For a systematic exploration of the dependence of
critical non-additivity as a function of size ratio, over
the full range 0! !!1 , we have calculated the free
energy of a fluid of non-additive hard spheres, using
additive hard spheres with the same diameters #A and
#B as a reference system, and the recently developed
Mayer f-function thermodynamic perturbation theory
[13,14]. Dividing the pair potential between particles
into a reference part and a perturbation,

v$%ðrÞ ¼ vð0Þ$%ðrÞ þ w$%ðrÞ, ð5Þ

the standard thermodynamic perturbation theory of
Zwanzig amounts to a cumulant expansion of the
Helmholtz free energy in ‘powers’ of the dimensionless
perturbations w$%(r)/kBT [21,22]. In the case of
non-additive hard spheres characterised by the pair
interactions defined in Equations (1) and (2), the
perturbation part, which acts only between opposite
pairs, is singular

wABðrÞ ¼
0, r5 1

2 ð#A þ #BÞ,
1, 1

2 ð#A þ #BÞ5 r5 #AB,

0, r4 #AB ¼ 1
2 ð#A þ #BÞð1þ DÞ,

8
><

>:
ð6Þ

which lead to divergent corrections to the free energy.
This can be circumvented by an expansion in powers of
the Mayer f-function, rather than wAB, namely

fABðrÞ ¼
0, r5 1

2 ð#A þ #BÞ,
'1, 1

2 ð#A þ #BÞ5 r5 #AB,

0, r4 #AB:

8
><

>:
ð7Þ

Details of the corresponding expansion of free energy
are given in [14]. To first order

f ¼ F

NkBT
¼ f id þ f ex0 þ f1, ð8Þ

where f id is the ideal contributions, given within an irrel-
evant density and concentration independent term, by

f id ¼ xA ln "A þ xB ln "B: ð9Þ

f ex0 is the excess free energy of the additive reference
system, given by Equation (4) within BMCSL theory,
while the first-order perturbation is

f1 ¼ '4pxAxB&
Z 1

0
gð0ÞABðrÞ fABðrÞr2 dr, ð10Þ

where gð0ÞABðrÞ is the A–B partial pair distribution
function of the reference fluid, i.e. of the additive
binary hard-sphere mixture. The latter can be taken
from the analytical solution of the PY equations [15],
as given by Kahl and Pastore over the whole range of
distances r [23]. Since PY theory becomes unreliable at
high packing fractions and for small size ratios !, we
have used its semi-empirical extension proposed by
Grundke and Henderson [24] and subsequent improve-
ments [25]. Details are given in Appendix 1.

The explicit expression for the second-order cor-
rection f2 to the free energy is given in [14]; it involves,
in particular, a fluctuation term, which would require a
knowledge of the three- and four-body distribution
functions of the reference system, and is hence rather
intractable. However it was shown in the same paper
that the first-order expansion (8) gives very accurate
results (compared to simulation data) in the case where
!¼ 1 and D¼ 0.2, as well as for a one-component
hard-sphere fluid, when the diameter is swollen from #
to #(1þD), with D9 0.1. All calculations reported
below were hence based on the first-order expres-
sion (8). From our previous experience, we expect
convergence of the perturbation theory to be satisfac-
tory, as long as D5!.

3. Thermodynamic stability of binary mixtures

The conditions of thermodynamic stability of binary
mixtures against phase separation are well documented
[26,27]. Let f (x, v) be the reduced Helmholtz free
energy per particle of an athermal system, an intensive
thermodynamic function of the intensive variables
x) xA and v¼ 1/& (total volume per particle). If the
binary mixture were incompressible, the condition of
thermodynamic stability against concentration fluctua-
tions would reduce to

"
@2f ðx, vÞ

@x2

#

v

4 0: ð11Þ

For a compressible mixture however, the condition of
stability against combined concentration and density
fluctuations, generalising Equation (11) is [26,27]

"
@2f

@v2

#

x

"
@2f

@x2

#

v

'
"

@2f

@v@x

#2

4 0, ð12Þ
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which is easily shown to be equivalent to the more
familiar condition for the reduced Gibbs free energy
(or free enthalpy) g(x, P)¼ fþPv/kBT, namely

"
@2gðx,PÞ

@x2

#

P

4 0, ð13Þ

where P is the overall pressure of the mixture.
The spinodal associated with fluid–fluid phase

separation is determined by turning the inequality
(12) into an equality. Switching from the variables x, v
to x, "(x, v), the equation for the spinodal reads

"

"
@2f

@x2

#

"

"
@2f

@"2

#

x

þ 2

"
@2f

@x2

#

"

"
@f

@"

#

x

þ 2"!ðxÞ
"

@2f

@x@"

#"
@f

@"

#

x

' "

"
@2f

@x@"

#2

' "!2ðxÞ
"
@f

@"

#2

x

¼ 0, ð14Þ

where !ðxÞ ¼ ð#3
A ' #3

BÞ=ðxA#3
A þ xB#3

BÞ.
For the non-additive hard-sphere mixture consid-

ered here, the (approximate) free energy function, to be
substituted into Equation (14), is given by Equations (4)
and (8)–(10). The derivatives of f id and f ex0 are taken
analytically, while those of f1 are calculated numeri-
cally. For given values of !, ", and D, the left-hand side
of Equation (14) is calculated for all x2 [0, 1]. D is then
gradually increased (from an initial value of 0) until
the stability condition is violated. This determines
the critical non-additivity parameter DC required to
drive fluid–fluid phase separation. The results of these
calculations are presented in the following section.

4. Results and conjectures

We have carried out the calculations laid out in
Section 3 for many values of the size ratio !, covering
the full interval 05!! 1. The key output is the
variation of the critical non-additivity DC with !.
A similar calculation was carried out in [3], but was
based on a very different approximation for the
Helmholtz free energy of a binary mixture of
non-additive hard spheres. In that paper f was derived
from a truncated Barboy–Gelbart expansion of the
e.o.s. in powers of the variables y$¼ &$/(1' ") [28].
The latter reduces to the PY compressibility e.o.s. in
the limit of additive hard spheres (D! 0), which is not
a particularly good approximation at high packing
fractions ("0 0.4), and for small size ratios !.

Results for DC as a function of !, for a total packing
fraction "¼ 0.5, from the present calculations based on
three different approximations for gð0ÞABðrÞ, are

compared in Figure 1 to the data from [3]. The general
trend is seen to be always the same with DC decreasing
sharply with !, for !9 0.5, in all cases. The results
based on the present thermodynamic perturbation
theory are sensitive to the reference system (additive
hard-sphere mixture) pair distribution function gð0ÞABðrÞ:
there are significant differences between the DC(!) data
obtained with the PY and Grundke–Henderson (GH)
pair distribution functions; the GH results are seen to
be insensitive to the choice of contact value
gð0ÞAB

$
r ¼ ð#A þ #BÞ=2

%
[24,25]. None of the theories

predicts that DC! 0 as !! !u’ 0.1 as expected [5–9].
Note however that DC is systematically very small
(DC9 0.01) in the vicinity of !’ 0.1; in particular
DC9 0.1 !, thus validating first-order thermodynamic
perturbation theory as used in the present paper.
Another important observation is that DC(!), as
calculated within the latter approach using the GH
reference pair distribution function, goes in fact
through a minimum around !¼ 0.015. The DC versus
! curve for several packing fractions are plotted in
Figure 2, while an enlargement restricted to the range
!! 0.1 is shown in Figure 3. Figure 2 shows that for a
given !, DC decreases with increasing ", in other words
a larger degree of non-additivity is required to drive
phase separation at lower packing fractions. Figure 3
shows the behaviour for !! 0.15 and 0.35! "! 0.5. All
DC(!) curves go through a minimum for !’ 0.015,
before increasing sharply as ! decreases further
towards zero. At the minimum DC is roughly equal
to !/2, but upon decreasing ! further, DC(!) rapidly

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Critical non−additivity for η = 0.5 

ξ = σA/σB

∆ C

Figure 1. Critical non-additivity, DC, versus size ratio !
obtained using different approximations; circles: data from
[3]; squares: results from first-order perturbation theory,
using gAB(r) from [23]; hexagrams: results from first-order
perturbation theory, using gAB(r) from [24]; pentagrams:
results from first-order perturbation theory, using gAB(r)
from [24] with improvement from [25].
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becomes comparable to or larger than !, such that the
first-order expression (8) of the free energy can no
longer be expected to be valid. The break-down of the
truncated thermodynamic perturbation theory is illu-
strated by the appearance of an unphysical maximum
in DC(!) for !50.01, whereas DC is expected to grow as
!! 0. The value of DC for !¼ 0 (i.e. a mixture of hard
spheres and point particles) can be easily estimated by
adapting the free volume theory of [4] and [11] to this
special case as sketched in Appendix 2. The theory
predicts DC’ 0.17 for the onset of fluid–fluid phase

separation when !¼ 0 (Asakura–Oosawa model).
We thus expect DC to increase from its minimum
value ’0.005 to DC’ 0.17 in the narrow interval
between !’ 0.015 and !¼ 0.

The variation of the critical concentration xCB and
of the packing fraction "CB of the large spheres with
size ratio ! are plotted in Figures 4(a) and (b) for
several values of the total packing fraction ". xCB is
seen to drop sharply with ! by nearly 4 orders of
magnitude between !¼ 1 and !¼ 0.01, and to depend
little on ". The variation of "CB with ! is

100

(a)

(b)

100

10–1

10–1

10–2

10–2

10–3

10–4

10–5

ξ = σA/σB

ξ = σA/σB

x BC
η BC

Critical concentration of large particles vs.
size ratio

0.2

0.15

0.1
0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

Critical packing fraction of large particles vs.
size ratio

η  = 0.35

η  = 0.4

η  = 0.45

η  = 0.5

Figure 4. (a) Critical concentration xCB of large spheres
versus size ratio ! for several values of the total packing
fraction ". (b) Corresponding critical packing fractions "CB
versus !.

ξ = σA/σB

0 0.05 0.1 0.15
0

0.005

0.01

0.015

0.02

0.025
Critical non−additivity vs. size ratio

∆ C

Figure 3. Enlargement of the curves in Figure 2 for small size
ratios !50.15. The curve with the full squares is the curve for
"¼ 0.45 (open squares) shifted downward, such that
DC(!¼ 0.1)¼ 0.

ξ = σA/σB

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Critical non−additivity vs. size ratio

∆ C

η = 0.35
η = 0.4
η = 0.45
η = 0.5

Figure 2. Critical non-additivity DC versus size ratio ! for
several values of the total packing fraction ", calculated using
the GH reference system pair distribution functions.
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non-monotonic. "CB first decreases slowly with !, goes
through an "-dependent minimum around !’ 0.25,
before increasing sharply to its limiting value
"CBð! ¼ 0Þ ¼ " (the contribution of the point particles
to the total packing fraction is zero).

Since DC40 for all !, the present theory fails to
predict the phase separation of additive hard-sphere
mixtures for !9 0.1. This failure may of course be
traced back to the use of the BMCSL free energy (4)
for the reference system of additive hard spheres, which
predicts full miscibility for all compositions and size
ratios. However the very small values of DC predicted
to drive phase separation hint that BMCSL theory
barely ‘misses’ the expected demixing transition, due to
a small error in the free energy for small size ratios !.
A heuristic procedure to compensate for this small
inaccuracy of the BMCSL free energy is to shift the
DC(!) curves downwards, such that DC¼ 0 for !¼ 0.1
and "¼ 0.45, as predicted by the MC simulations of [8].
The tentative ‘corrected’ DC(!) curve for "¼ 0.45 is
shown in Figure 3, where negative values of DC(!) are
replaced by DC¼ 0. This speculative construction
suggests that DC takes on non-vanishing positive
values for !9 0.01, i.e. a miscibility gap in a dense
("0 0.45) binary mixture of additive hard spheres is
only expected over a narrow range of size ratios
0.019 !9 0.1.

5. Conclusions

The key speculative prediction of the present paper is
that highly asymmetric binary mixtures of additive
hard spheres undergo a fluid–fluid phase separation
for size ratios ! in the range 0.019 !9 0.1 and for
sufficiently high packing fractions. We have reached
this conclusion, or rather conjecture, by an indirect
approach, starting from binary mixtures of hard
spheres with non-additive diameters, as defined in
Equations (6) or (7), and using a version of thermo-
dynamic perturbation theory adapted to singular (hard
core) perturbations [13,14]. A modest degree of
non-additivity (D50.1) will drive phase separation
for any size ratio !. As already shown in [3], using a
different theoretical approach, the critical
non-additivity parameter DC required to drive fluid–
fluid phase separation at a given value of the total
packing fraction ", decreases with decreasing !, but
never goes to zero (which would correspond to an
additive hard-sphere mixture) because the free energy
of the additive reference system is always a convex
function of the thermodynamic variables. However DC

is found to go through a positive minimum as a
function of !, reaching very small values of the order of

0.005, suggesting that the BMCSL free energy barely
misses the thermodynamic instability associated with
demixing. Since advanced integral equation theories
[4,5,9], free volume theory [6] and MC simulations [8]
all predict phase separation for sufficiently small !, we
have shifted our predicted DC(!) curves downward,
such that DC¼ 0 for !¼ 0.1 and "’ 0.45 in agreement
with the MC results of [8].

The second key finding of our work is that DC(!)
goes through an "-dependent minimum for !’ 0.015,
before increasing sharply as !! 0, where DC is
expected to reach its limiting value DC(!¼ 0)’ 0.17
predicted by free volume theory [11] (Appendix 2).
The heuristic downward shift of the DC(!) curves (by
an amount '(DC)’'0.01) then leads to DC(!)¼ 0 for
!’ 0.01 at the lower end. Thermodynamic perturba-
tion theory combined with the heuristic shift of the
DC(!) curve hence leads to the conjecture that fluid–
fluid phase separation is restricted to the limited
range of size ratios 0.019 !9 0.1. The shifted DC(!)
function takes negative values in that interval, raising
the intriguing possibility that highly asymmetric
binary hard-sphere systems might demix, even for
(slightly) negative values of the non-additivity
parameter D, which always favour miscibility.
This tendency is hence compensated by a stronger
tendency towards segregation induced by a large size
asymmetry.

The present calculations do not consider binary
hard-sphere solid phases, and the possibility of the
coexistence of fluid and solid phases of different
compositions. Fluid–solid phase separation has been
shown to pre-empt fluid–fluid segregation, which is
hence a metastable phase transition [8]. However, as
mentioned earlier in this paper, the fluid–fluid phase
separation might be observable, provided the crystal
nucleation kinetics is sufficiently low. Possible candi-
dates for the observation of fluid–fluid demixing are
binary dispersions of sterically stabilised colloidal
particles (#’ 10–100 nm) and nanoparticles or
micelles (#’ 1–5 nm).
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Appendix 1. The pair distribution function of the
reference system

For the pair distribution function gð0ÞABðrÞ of the reference
system, i.e. of a binary mixture of additive hard spheres, we
have used either the piece-wise analytical PY solution [15,23]
or the semi-empirical improvement due to Grundke and

Henderson [24], namely

gð0ÞABðrj", xA, #A, #BÞ ¼ "ðr' #ABÞ

*
"
gPYðrj", xA, #0

A, #
0
BÞ þ

A#AB

r
exp½'bðr' #ABÞ,

* cos
$
bðr' #ABÞ

%#
: ð15Þ

The Heaviside step function " ensures that the pair
distribution function vanishes inside the core (r5#AB).
The rescaled radii #0

A ¼ #A(1' "/16)1/3 and #0
B ¼ #B(1' "/

16)1/3 shift the phase of the oscillating pair distribution
function slightly compared to the PY solution.
The prefactor A of the second term on the r.h.s. of
Equation (15) allows one to adjust the contact value of
gPY(r) which is too low:

A ¼ gð0ÞABð#ABj", xA, #A, #BÞ ' gPYð#ABj", xA, #0
A, #

0
BÞ, ð16Þ

where gð0ÞABð#ABj", xA, #A, #BÞ is determined by the BMCSL
equation of state [16,17] or by a further improvement which
is expected to be more accurate for small size ratios ! [25].
The inverse length b in the second term of the r.h.s. of
Equation (15) is determined as explained in the GH paper
[24], using the exact relation:

kBT

&A

@&A
@(B

¼ 4p&B
Z 1

0

&
gð0ÞABðrj", xA, #A, #BÞ ' 1

'
r2 dr

¼ 4p&B
Z 1

0

&
gPYðrj", xA, #0

A, #
0
BÞ ' 1

'
r2 dr

þ 2pA&B#2
AB=b, ð17Þ

where the l.h.s. is calculated from the BMCSL free-energy
function.

Appendix 2. Free volume calculation of DC in the
n¼ 0 limit

Lekkerkerker et al. [11] used free volume theory to
calculate the full phase diagram of the AO model for
mixtures of hard-sphere colloids and ideal polymers.
This model is a limiting case of a binary mixture of
non-additive hard spheres considered in the present paper,
when !¼ #A/#B¼ 0. They found coexistence between a low
density fluid phase and a high density crystal phase with
different compositions, for D9 0.32. For larger
non-additivities a fluid–fluid–solid triple point and a
fluid–fluid critical point appear. We have adapted their
calculation to determine the critical non-additivity param-
eter DC beyond which a metastable fluid–fluid phase
separation appears. The colloidal B particles of diameter
#B are not affected by the presence the point A particles,
and hence their contribution to the reduced free energy per
particle f¼F/NkBT is accurately given by the Carnahan–
Starling free energy, which is the one-component version of
the BMCSL free energy (4), namely (including the ideal
contribution):

fC ¼ FBðNC,VÞ=NkBT ¼ xB

(
lnð"Þ þ "ð4' 3"Þ

ð1' "Þ2

)
, ð18Þ

where " ) "B ¼ NBp#3
B=6V.
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The point A particles are excluded from a sphere of
diameters #BþD centred on each of the B particles. The
mean volume V05V accessible to the point particles can
be calculated using Widom’s insertion theorem [29] with the
result [4,11]:

V 0 ¼ $V

$ ¼ ð1' "Þ expð'A) ' B)2 ' C)3Þ,
ð19Þ

where ) ¼ "/(1' "); A¼ 3Dþ 3D2þD3, B¼ 9/2D2þ 3D3, and
C¼ 3D3.

Since the A particles do not mutually interact their
contribution to the free energy is purely ideal, i.e. (with
&0A ¼NA/V

0)

fA ¼ xA lnð&0AÞ ¼ xA lnð&A=$Þ: ð20Þ

If f¼ fAþ fB is substituted into Equation (13) we find that
spinodal instability first appears when D¼DC’ 0.17, in the
fluid range "! 0.5.

104 P. Sillrén and J.-P. Hansen

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
i
l
l
r
é
n
,
 
P
e
r
]
 
A
t
:
 
1
8
:
0
9
 
1
3
 
J
a
n
u
a
r
y
 
2
0
1
0


