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ABSTRACT

The thesis deals with the dynamic response of the induction machine to low-frequency

perturbations in the shaft torque, supply voltage and supply frequency. Also the response

of a two-machine group connected to a weak grid is investigated. The results predicted by

various induction machine models are compared with measurements performed on a

laboratory set-up. Furthermore, the influence of machine and grid parameters, machine

temperature, phase-compensating capacitors, skin effect, saturation level and operating

points is studied.

The results predicted by the fifth-order non-linear Park model agree well with the

measured induction machine responses to shaft torque, supply frequency and voltage

magnitude perturbations. To determine the electric power response to very low-frequency

perturbations in the magnitude of the supply voltage, the Park model must be modified to

take varying iron losses into account. The temperature and supply frequency affect the

low-frequency dynamics of the induction machine significantly while the influence of

saturation, phase-compensating capacitors, skin effect and static shaft torque is of less

importance to an ordinary industrial machine. The static shaft torque is, however, of

importance for determining the responses to voltage magnitude perturbations.

The performance of reduced-order induction machine models depends on the type of

induction machine investigated. Best suited to be represented by reduced-order models

are high-slip machines as well as machines that have a low ratio between the stator

resistance and leakage reactances. A first-order model can predict the rotor speed,

electrodynamic torque and electric power responses to shaft torque and supply frequency

perturbations up to a perturbation frequency of at least 1 Hz. A second-order model can

determine the same responses also for higher perturbation frequencies, at least up to

3 Hz. Using a third-order model, all the responses to torque and frequency perturbations

as well as the reactive power response to voltage magnitude perturbations can be

determined up to at least 10 Hz.
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1 INTRODUCTION

1.1 Background

A good number of dynamic and transient models of induction machines has been reported

in literature, ranging from first-order models to very complex ones which combine a

numerical solution of the magnetic field and circuit equations with the equation of motion.

When smaller deviations around an operating point are studied, it is appropriate to use a

dynamic model, while a transient model is needed to handle larger disturbances, such as

the start-up or short-circuiting of an induction machine. For transient studies, a

commonly accepted induction machine model is the non-linear fifth-order Park model,

which considers the electrical transients in the rotor and stator windings as well as

mechanical transients. This model, in its standard form, ignores the influence of skin

effect and saturation of the leakage and magnetizing inductances. If these effects are to be

taken into account, the complexity of the model has to be increased.

For dynamic investigations it is often possible to use models of lower order than the Park

model. The analysis of power systems is an example where models of lower order have

been used. Ohtsuki et al. (1991) and Sekine et al. (1990) used first-order models,

Mayeda et al. (1985) and Ueda and Takata (1981) used third-order models and

Mohamedein et al. (1986) suggested the usage of second-order models. The proper

modelling of induction machines for power system studies is of utmost importance, since

they constitute a significant portion of the load. Another example where reduced-order

induction machine models have been used, is the modelling of the induction machine in

mechanical systems, for instance as a generator in a wind turbine. To model induction

machines as wind turbine generators, first-order models (Wilkie et al. 1990, Sheinman &

Rosen 1991) and second-order models (Hinrichsen & Nolan 1982) have been used when

the wind turbine in itself is the objective of the study. When the power quality impact of

wind turbines is investigated, fifth-order models or third-order models have usually been

utilized (Estanqueiro et al. 1993, de Mello & Hannet 1981).

The complexity of a multi-machine system can also be reduced by aggregating groups of

induction machines. It is important that the machines to be aggregated to single-machine

equivalents are of similar sizes (Rahim & Laldin 1987). Hakim and Berg (1976)

aggregate induction machines to a first-order model and Crow (1994) as well as Iliceto

and Capasso (1974) aggregate the induction machines to third-order models, while Rahim

and Laldin (1987) use fifth-order equivalents.
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1.2 Related work

Several authors have investigated third-order models of the induction machine based on

the negligence of stator transients. Wasynczuk et al. (1985) showed that such a model can

predict the same rotor speed response as the Park model for a specific machine up to a 20

Hz perturbation frequency in the voltage magnitude.

Nacke (1962) suggested that the induction machine could be represented by a spring, a

mass and a damper if the dynamic response to perturbations in the shaft torque is to be

determined. Second-order models based on the load angle have, for instance, been

presented by Mohamedein (1978) and Al-Bahrani et al. (1988). Richards and Tan (1981)

proposed a second-order model in which the rotor flux linkage magnitude and rotor speed

were the state variables, while Derbel et al. (1995) proposed a model where the rotor

speed and rotor flux angle were the state variables, in principle, a load angle model.

A possibility to increase the computational speed is to change models during a simulation

as suggested by Ertem and Baghzouz (1989). Another possibility is to keep some of the

variables constant during a number of time steps. Ertem and Baghzouz (1988) kept the

rotor speed constant. If the grid is lost, specially adapted reduced-order models are

needed (Richards 1989, Krause et al. 1987).

The inclusion of main flux saturation in the modelling of the induction machine has, for

instance, been presented by Deleroi (1970) and Hallenius (1982) and the inclusion of

leakage flux saturation has been described by e.g. Healey et al. (1995). Lorenzen (1967)

pointed out that also the low-frequency dynamics of the machine can be influenced by the

skin effect. A method to model the skin effect has, for instance, been suggested by

Adkins and Harley (1975).

The effect of saturation can be taken into account without increasing the order of the

induction machine model while the inclusion of skin effect requires that at least two

additional differential equations are added to the system of equations, unless only the

steady-state performance is of interest. The induction machine models which take the skin

effect into account are well suited for model reduction, and reduced-order models of

induction machine taking the skin effect into account can be found in literature (Khalil et

al. 1982, Richards & Tan 1986).
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Several experiments based on step responses have been performed. Experiments to verify

induction machine performance based on frequency-analysis methods are harder to find,

especially an all-embracing experimental verification of the commonly used induction

machine models.

Freise et al. (1964) and Peterson (1991) performed frequency-analysis based experiments

in order to determine the damping ratio and eigenfrequency of the induction machine by

supplying the stator with dc-current and in this way transforming the synchronous speed

to zero.

Leonhard (1966) measured the electrodynamical torque response to shaft torque

perturbations and obtained a good agreement between measured and calculated values.

Melkebeek (1980, 1983) measured the rotor speed response to perturbations in the

magnitude of the voltage. The measurements were performed at no load using different

rotors and at various flux levels. The results were compared with calculations performed

using a fifth-order non-linear model, in which the effects of saturation were considered.

The agreement between measured and calculated results was excellent.

Efforts to generalize the performance of induction machines of arbitrary sizes have been

made by Ahmed-Zaid and Taleb (1991). The conclusion drawn in the paper was that a

first-order rotor speed model predicts the responses of small machines well while a first-

order rotor speed model predicted the responses of larger machines less well. The

parameters of the investigated induction machines of various sizes were given by Cathey

et al. (1973). Important to note is that the small machines presented by Cathey et al.

(1973) had very high slip values, about 5 %.

1.3 Aim and layout of the thesis

The aim of this thesis is to model the induction machine in the simplest appropriate

manner, in order to determine the dynamic responses to low-frequency perturbations.

The possibility to use low-order induction machine models to predict the responses to

torque, supply frequency and voltage magnitude perturbations is examined. The

responses are: rotor speed, electrodynamical torque, stator current as well as active and

reactive powers. Furthermore, the calculated induction machine responses are verified by

measurements for all the 15 combinations of responses and perturbations.
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Models presented in literature, ranging in order from one to seven, are studied and

improved wherever possible. Frequency analysis is used as an investigation tool instead

of step responses, since the results then become more generally applicable. The

possibility of using simplified models is examined for different types of induction

machines, and recommendations for the field of application of the simplified models are

given. Moreover, the importance of different factors that influence the dynamics of the

15 kW machine investigated is studied. The factors are: skin effect, temperature of the

machine, parameters of the machine, iron losses, line impedance, saturation and

operating points.

Two main fields of application for the simplified models are identified: 1) modelling of

the induction machine by linear first- or second-order models in a mechanical system,

where the usage of linear models can facilitate the analysis substantially; 2) modelling of

the induction machine for the analysis of power systems containing large numbers of

induction machines, where the computational effort is a problem.

In Chapter 2 the investigated induction machine models are presented. After describing

the measurement equipment in Chapter 3, the models are compared with measurements in

Chapter 4. In Chapter 5 the dynamic influence of various factors on the dynamic

behaviour of the machine is examined. Finally, in Chapter 6 the validity of reduced-order

models is investigated for induction machines of different sizes.
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2 MODELS

A commonly accepted model of the induction machine for dynamic and transient studies is the

fifth-order Park model, also referred to as the two-axis model. The equations for this model

have been described by e.g. Kovacs (1984). Starting with the Park model as a reference model,

simpler and more advanced models are derived in this chapter.

2.1 Park Model

The standard Park model requires some simplifying assumptions:

– the machine is considered to have a smooth air-gap,

– the windings are considered to be sinusoidally distributed on the air-gap surface,

– the effects of saturation and skin effect are ignored.

With these assumptions the equations of the Park model of a cage induction machine are

us = isRs + 
dΨs
dt  + jωkΨs (2.1)

0 = irRr + 
dΨr
dt  + j(ωk – pΩm)Ψr (2.2)

Jm
dΩm

dt  = Te – Ts (2.3)

Te = pIm(Ψs*is) (2.4)

where is and ir are the stator and rotor current vectors, respectively, Ωm is the mechanical rotor

speed and ωk is the angular velocity of the coordinate system, which in this thesis is set equal

to the angular supply frequency ωs. Ts is the applied shaft torque, Te the electrodynamical

torque and us the supply voltage vector. Rs and Rr are the stator and rotor resistances,

respectively, Jm is the moment of inertia of the machine and p the number of pole pairs. Motor

references have been used and all rotor quantities are referred to the stator side. The stator and

rotor flux linkage vectors are obtained by the expressions

Ψs = Lsis + Lmir = (Lsλ + Lm)is + Lmir (2.5)

Ψr = Lmis + Lrir  = Lmis + (Lrλ + Lm)ir (2.6)
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Ls, Lr and Lm are the stator, rotor and magnetizing inductances, respectively. Lsλ and Lrλ are the

stator and rotor leakage inductances. The system is non-linear as can be noted if (2.5) or (2.6)

is inserted into (2.4) or (2.2), respectively.

The induction machine equations can be expressed in matrix form:

U = R I + L 
dI
dt (2.7)

where U is the voltage vector, I is the current vector, R is the resistance matrix and L is the

inductance matrix. The elements in the vectors and matrices are given by

 I = 

 




 




 

iqs
ids
iqr
idr

Ωm

,   U = 

 


 
 

uqs
uds
0
0
Ts

,    L =  

 


 
 

Ls 0 Lm 0 0
0 Ls 0 Lm 0

Lm 0 Lr 0 0
0 Lm 0 Lr 0
0 0 0 0 –Jm

and

R = 

 


 
 

Rs Lsωs 0 Lmωs 0
–Lsωs Rs –Lmωs 0 0

0 Lm(ωs – pΩm) Rr  Lr(ω s – pΩm) 0
Lm(pΩm – ωs) 0 Lr(pΩm – ωs) Rr 0

 pLmidr 0 – pLmids 0 0

where uds and uqs are the direct- and quadrature-axis components of the stator voltages, ids and

iqs are the direct- and quadrature-axis components of the stator currents, idr and iqr are the direct-

and quadrature-axis components of the rotor currents, respectively.

Instead of using the currents as state variables, the flux linkages can be used and then (2.1) and

(2.2) are replaced by

us = [
Rs
L s' + jωs] Ψs + 

dΨs
dt  – kr 

Rs
L s' Ψr (2.8)

0 = -ks
Rr
L r'

 Ψs + [
Rr
L r'

 + j(ωs – pΩm)] Ψr + 
dΨr
dt (2.9)

where
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ks = 
Lm
Ls

(2.10)

kr = 
Lm
Lr

(2.11)

are the stator and rotor coupling factors, respectively, and

Ls' = Ls – 
Lm2

Lr
(2.12)

Lr' = Lr – 
Lm2

Ls
(2.13)

are the stator and rotor transient inductances, respectively. The electrodynamic torque can be

expressed as

Te = p 
kr
L s' Im(ΨsΨr*) (2.14)

The state-space equations of the machine with the flux linkages and rotor speed as state

variables are

dΨ
dt  = AΨ + B U (2.15)

where

B =  

 




 




 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0
–1
Jm

 , Ψ =  

 


 


 

Ψqs

Ψds

Ψqr

Ψdr
Ωm

 , U = 

 


 
 

uqs
uds
0
0

Ts 

and

A =  

 




 




 

–Rs
L s'   –ωs 

krRs
L s'   0 0

ωs
–Rs
L s'   0

krRs
L s' 0

ksRr
L r'

  0
–Rr
L r'

pΩm – ωs0

0
ksRr
L r'

  ωs – pΩm
–Rr
L r'

  0

 
p
Jm

 
krΨdr

L s'   
– p
Jm

 
krΨqr

L s'   0 0 0

Ψds and Ψqs are the direct- and quadrature-axis components of the stator flux linkages, Ψdr and

Ψqr are the direct- and quadrature-axis components of the rotor flux linkages, respectively.
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The currents can be determined from the flux linkages by

is = 
1

L s'Ψs – 
kr

L s'Ψr (2.16)

ir = 
1

L r'
Ψr – 

ks
L r'

Ψs (2.17)

The reason for presenting two models which predict identical results is that simpler and more

advanced models presented in this chapter are derived from both models.

The output signals can be the state variables, such as rotor speed and flux linkages or currents

as well as the electrodynamical torque. Other output signals that may be of interest are the active

power

P = uqsiqs + udsids (2.18)

and the reactive power

Q = uqsids – udsiqs (2.19)

2.2 Inclusion of a non-stiff shaft

The performance of an induction machine depends on the mechanical load to which it is

attached. A seventh-order model is used to represent the induction machine with a load

connected via a non-stiff shaft. The shaft torque of the induction machine is now determined
from the shaft stiffness α and damping B as well as the speeds and differences in angles of the

machine and the load. The shaft torque is given by

Ts = B(Ωm –Ωl) + αΘ (2.20)

The equations relating the speed of the load, Ωl, and the mechanical angle between the load and
rotor of the machine, Θ, are

Ts – Tl = Jl 
Ωl
dt (2.21)

Ωm – Ωl = 
dΘ
dt (2.22)

where Jl is the moment of inertia of the load and Tl is the applied load torque.
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2.3 Main flux saturation

If saturation effects are ignored, the inductance matrix is constant and does not need to be

recalculated at each time step of a simulation. If only the magnetizing inductance is adjusted, the

dynamic effect of the saturation is not accounted for. If the dynamic effect of the saturation is

considered, the inductance matrix has to be determined at each time step. According to

Hallenius (1982) the main flux saturation is taken into account by modifying the inductance

matrix in (2.7) to

L =  

 


 


 

Lqs Lmdq Lmq Lmdq 0

Lmdq Lds Lmdq Lmd 0

Lmq Lmdq Lqr Lmdq 0

Lmdq Lmd Lmdq Ldr 0

0 0 0 0 –Jm

(2.23)

where

Lm = 
Ψm
im

(2.24)

idm = ids + idr (2.25)

iqm = iqs + iqr (2.26)

im= √idm2 + iqm2 (2.27)

Lmdq = 
idmiqm

im
 
dLm
dim

(2.28)

Lmd = Lm +
(idm)2

im
 
dLm
dim

(2.29)

Lmq = Lm +
(iqm)2

im
 
dLm
dim

(2.30)

Lds = Lsλ + Lmd (2.31)

Lqs = Lsλ + Lmq (2.32)

Ldr = Lrλ + Lmd (2.33)

Lqr = Lrλ + Lmq (2.34)

Ψm and im are the main flux linkage and the magnetizing current, respectively.
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At high currents, also the leakage inductances saturate. Since the scope of this thesis is low-

frequency perturbations in the steady-state operating region, the leakage inductances have here

been considered to be independent of the currents. A method to take the saturation of the

leakage inductances into account has been presented by, for example, Healey et al. (1995).

If only small deviations from an operating point are to be investigated, the analysis can be

facilitated by rotating the applied voltage vector in such a way that the quadrature-axis

component of the magnetizing current is equal to zero (Melkebeek 1980, 1983). An important

quantity is now the differential or tangential magnetizing inductance

Lmt = 
dΨm
dim

(2.35)

In Figure 2.1 Ψm is plotted as a function of im for the 15 kW machine investigated.
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Figure 2.1. Ψm as a function of im for the 15 kW machine investigated.

The induction matrix (2.23) can now be simplified substantially, since

Lmdq = 0 (2.36)

Lmd = Lmt (2.37)

Lmq = Lm (2.38)

However, any larger deviations from the operating point investigated require a new

determination of the inductance matrix (Ojo et al. 1990).
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2.4 Skin effect

The parameters Rr and Lrλ of the rotor winding depend on the rotor frequency of a cage

induction machine. For the investigated 15 kW machine, the rotor resistance has increased by

about 60 % at a rotor frequency of 50 Hz and the rotor leakage inductance has decreased by

about 8 %. In order to determine the steady-state characteristics, it is possible to simply adjust

Rr and Lrλ in (2.2) and (2.6). However, the dynamic influence of the skin effect is not

considered using this method. The most convenient method to take the dynamic influence of the

skin effect into account is to use a multiple-cage rotor configuration as suggested by Adkins

and Harley (1975).

The rotor winding impedance, rotor resistance and rotor leakage reactance, of the investigated

15 kW machine were determined by means of a locked-rotor test. The test is presented in

Appendix A.

The slot shape of the investigated 15 kW machine is shown in Figure 2.2 and the double-rotor

bar configuration is presented in Figure. 2.3.

Figure 2.2. The slot shape of the investigated 15 kW machine.

Rr1

Rr2

Lrλ1

Lrλ2

Figure 2.3. Rotor winding impedance of the double-cage rotor.

The rotor winding impedance of the double-cage rotor is

Z(s) = 
s2Lrλ1Lrλ2 + s(Lrλ1Rr2 + Lrλ2Rr1) + Rr1Rr2

Rr1+Rr2 + s(Lrλ1 + Lrλ2) (2.39)

The parameters of the double-cage rotor configuration are determined from the measured values

using the least square-method. In Figure 2.4 the measured rotor winding impedance is

presented together with those calculated using single- and double-cage rotor configurations.
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Figure 2.4. Impedance of the double-cage rotor winding. Circles are measured values. Dots

are values determined according to a single-cage rotor configuration. Dashed line

represents the characteristics of the double-cage rotor configuration.

As can be noted from Figure 2.4, a single-cage rotor configuration is useful in predicting the

rotor winding impedance only at very low rotor current frequencies for the investigated 15 kW

machine. Furthermore, it can be noted that a very good prediction of the rotor winding

impedance is obtained by using the double-cage rotor configuration up to a rotor current

frequency of at least 80 Hz for the machine investigated. To represent the double-cage rotor,

(2.2), (2.5) and (2.6) are replaced by

0 = ir1Rr1 + 
dΨr1

dt  + j(ωs – pΩm)Ψr1 (2.40)

0 = ir2Rr2 + 
dΨr2

dt  + j(ωs – pΩm)Ψr2 (2.41)

Ψs = Lsis + Lmir1 + Lmir2 (2.42)

Ψr1 = (Lm+Lrλ1)ir1 + Lmis + Lmir2 (2.43)

Ψr2 =Lmir1 + (Lm+Lrλ2)ir 2 + Lmis (2.44)

If the purpose of the study is to investigate the rotor winding impedance for higher frequency

regions, the number of parallel circuits can be increased further. For example, three loops have

been used to study an inverter-fed induction machine by Dell'Aquila et al. (1984).
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2.5 Inclusion of iron losses

The iron losses are usually neglected when the dynamic and transient performance of the

machine is determined. To completely take the iron losses into account is an almost impossible

task. However, if only the responses to very low-frequency perturbations in the voltage

magnitude are of interest, it is possible to use a simple and straightforward method to take into

account the dynamic effect of iron losses. A resistance Rm, representing the iron losses, is

added in parallel with the magnetizing inductance in a fashion similar to the steady-state

equivalent circuit. As a consequence, the two-axis model consists of seven differential

equations. Rm can be obtained from a no load test at variable voltage. The iron loss resistance

varies with the supply frequency and has accordingly to be determined for each new supply

frequency. If the flux level is at rated or below rated flux level, Rm is rather independent of the

flux level in the machine. In order to model the iron losses, (2.2), (2.5) and (2.6) are replaced

by

0 = irRr + 
dΨr
dt  + j(ωs – pΩm)Ψr (2.45)

0 = iRmRm + 
dΨm

dt  + jωsΨm (2.46)

Ψs = Lsis + Lmir + LmiRm (2.47)

Ψr = (Lm + Lrλ1)ir + LmiRm + Lmis (2.48)

Ψm = Lmis + Lmir  + LmiRm (2.49)

where Rm is the iron loss equivalent resistance and iRm is the current of the iron loss equivalent

resistance.

2.6 Neglecting stator transients model (NST-models)

The induction machine model can be reduced to a third-order system by neglecting the stator

flux transients. Several methods have been presented in the literature. Here, two models

presented by Rodriguez et al. (1987) have been used.

In the most commonly used variant, NST I, the derivatives of the stator flux linkage of (2.8)

are put to zero and the stator flux linkages are then solved as functions of the rotor flux linkages

and rotor speed. The stator flux linkages are then inserted into the three rotor equations and a
third-order model has been derived. In this model the state variables Ψdr, Ψqr and Ωm are the

same as in (2.15). Details about the procedure of deriving the NST I-model can be found in

Appendix B.
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A more advanced model, NST III, described by Rodriguez et al. (1987) can be obtained by

neglecting only the fast components of the stator flux transients. In this model, the three state
variables must be transformed in order to obtain Ψdr, Ψqr and Ωm before the stator flux

linkages and currents can be determined. The details of the procedure of deriving the NST III-

model is presented by Rodriquez et al. (1987).

2.7 Second-order models

2.7.1 Neglecting stator resistance model (NSR-model)

If the stator resistance is neglected and the voltage vector is considered to be constant and

oriented in the q-direction, three of the machine flux linkages can be considered to be constants

at no load:

Ψds = 
uqs

ωs0
 (2.50)

Ψqs = 0 (2.51)

Ψdr = 
Lm
Ls

 Ψds (2.52)

where ωs0 is the steady-state value of ωs. Equation (2.15) can now be reduced to a linear

second-order system at no load with the supply frequency and shaft torque as input signals,

 


 
 

dΨqr
dt

dΩm
dt

 =  

 



 



 

–Rr
L r'

p  
Lm
Ls

Ψds

–  
p  
Jm

kr
L 's

Ψds 0  



 



 
Ψqr

Ωm
 + 

 




 




 
–

Lm
Ls

Ψds 0

0
–1
Jm

 


 
 ω s

Ts
(2.53)

Very simple transfer functions of the induction machine can be obtained from this model

(2.53). For instance, the transfer function from shaft torque to electrodynamical torque can be

expressed as

∆Te
∆Ts

 = 
(
Lm
Ls

)
2 p2Ψds

2

JmL'r

s2  + s
Rr
L'r

 + (
Lm
Ls

)
2 p2Ψds

2

JmL'r

(2.54)
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The induction machine can now be represented by the mechanical analogy shown in Figure

2.5, as proposed by Nacke (1962). Since the induction machine rotor speed and

electrodynamical torque responses to supply frequency and shaft torque perturbations varies

only slightly with the static shaft torque, (2.53) predicts these responses well, not only at no

load but also at other operating points. The performance of this model is usually good with one

exception: if the stator resistance is relatively large compared to the reactances of the machine.

This is the case in smaller machines or if the supply frequency is low. The result is that the

damping of the machine will be overestimated. The larger the machine, the lower the supply

frequency can be without the NSR-model loosing too much in accuracy.

K
B

∆ωs/p∆Te

∆Ωm

∆Ts Jm

K =

B =

p2Ψds
2Lm

Ls
( )

2

L'r

Rr

p2Ψds
2Lm

Ls
( )

2

Figure 2.5. Mechanical analogy of the induction machine, NSR-model.

2.7.2 Load angle model (LA-model)

Since the stator resistance is neglected in the NSR-model derived above, there will be a steady-

state error as well as a changed dynamic performance. A second-order model that correctly

predicts the steady-state responses of the machines, the Load Angle model, will be derived in

this section. The rotor speed and load angle are used as state variables. The magnitudes of the

stator and rotor flux linkages are considered to vary slowly and not to affect the dynamic
response of the model. The magnitudes of the stator and rotor flux linkages, Ψs and Ψr , are

determined from the speed by

 
 



 



 
Ψ s

Ψr
= 

 



 



 

–R s
L s'  + jω s  

krRs
L s'

–
ksR r
L r'

  j(ωs – pΩm)

–1

[ ] 
u s
0   (2.55)

The flux linkages at motor operation as well as the load angle δ are presented in Figure 2.6. A

coordinate system oriented in the same direction as the stator flux linkage is also introduced.
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x-axis

y-axis

Ψs

Ψr

Ψxr

δ

Ψyr

q-axis

d-axis

Ψs

Figure 2.6. Flux linkages and δ at motor operation.

The load angle is related to the x- and y- components of the axes rotor flux linkages by

Ψyr = – Ψrsinδ (2.56)

Ψxr = Ψrcosδ (2.57)

Differentiating (2.56) and (2.57) with the rate of change of the rotor flux linkage magnitude

neglected gives

dΨyr
dt  = – 

dδ
dt Ψrcosδ (2.58)

dΨxr
dt  = – 

dδ
dt Ψrsinδ (2.59)

Equations (2.56)-(2.59) are now inserted into (2.9), resulting in

dδ
dt  = 

–Rr
L r'

tanδ + ωs – pΩm (2.60)

for the imaginary part of the resulting equation and the real part ignored. The electrodynamical

torque can be expressed as a function of the flux linkage magnitudes and the load angle by
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Te = p 
kr
L 's

ΨsΨrsinδ (2.61)

and the differential equation of the rotor speed is obtained as

Jm
dΩm

dt  = p 
kr
L 's

ΨsΨrsinδ – Ts (2.62)

Equation (2.60) can be simplified by using the approximation

tanδ ≈ δ (2.63)

and (2.62) can be simplified by letting

sinδ ≈ δ (2.64)

The dynamics is only slightly altered by these two simplifications. A steady-state error,

however, is introduced as well. The load angle of an induction machine is usually about 10

degrees at rated load. At 10 degrees the simplifications (2.63) and (2.64) give a steady-state

slip error of 1.5 %. At the pull-out torque, the slip error is 30 %.

By using the more detailed approximations,

sinδ ≈ (δ  – 
δ 3

6 ) (2.65)

tanδ ≈ (δ  + 
δ 3

3 ) (2.66)

the steady-state slip error is reduced to 0.02 % at rated load and 5 % at the pull-out point. The

proposed load angle model can now be written as

 


 
 

dδ
dt

dΩm
dt

 =  

 


 
 

–Rr
L r'

(1  + 
δ 2

3 ) –p

p  
Lm
LsL'r

Ψ sΨ r(1 – 
δ 2

6 ) 0
 



 



 
δ

Ωm
 + 

 



 



 
 1   0  

 0  
 – 1  
 J m  

 


 
 ω s

Ts
(2.67)

The rotor flux linkages are determined by

Ψqr = –Ψr sin(δ – Ψs ) (2.68)
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Ψdr = Ψr cos(δ – Ψs ) (2.69)

Finally, knowing the flux linkages, the currents as well as the active and reactive powers can be

determined using (2.16)-(2.19).

The second-order model derived here is similar to the one derived by Derbel et al. (1995).

Compared to load angle models presented earlier by Mohamedein (1978) and Al-Bahrani et al.

(1988), the second-order model presented here is less complex but combines the best of the

previously presented load angle models: an almost correct steady-state response and a good

dynamic response. Since the magnitudes of the rotor and stator flux linkages vary slower than

the load angle, it is possible to decrease the simulation time by determining these quantities only

at every n:th step, if the LA-model is used in a simulation.

2.8 First-order models (ND-model and LD-model)

In the first-order model of the induction machine, the only state variable is the rotor speed. The

electrodynamical torque is now a function of the rotor speed and is determined by

Te = p 
kr
L 's

(ΨqsΨdr – ΨdsΨqr) (2.70)

The flux linkages, which are functions of the applied voltage and rotor speed, are determined

by (2.55). By combining the expression for the electrodynamical torque with (2.3), a first-

order non-linear model of the induction machine is obtained, the ND-model (non-linear damper

model). Knowing the flux linkages, the currents as well as the active and reactive powers can

be determined using (2.16)-(2.19).

In many cases, it is possible to use a first-order model linearized at no load with the stator

resistance and leakage reactances neglected. The linearized model predicts almost the same rotor

speed and electrodynamical torque responses to shaft torque and supply frequency

perturbations as the non-linear model, also at other operating points. The expression for the

electrodynamical torque is now:

Te = p (
Lm
Ls

)
2

 
(uds2 + uqs2)

ωs2Rr
 (ωs – pΩm) (2.71)

This model is referred to as the LD-model, linear damper model. The induction machine can

now be represented by the mechanical analogy presented in Figure 2.7
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Figure 2.7. Mechanical analogy of the induction machine, LD-model.
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3 EXPERIMENTAL SET-UP

3.1 Main components

The experimental object, a 15 kW six-pole cage induction machine equipped with thermal

sensors, was attached to a dc machine via a torque transducer. The dc machine was fed

by a four-quadrant thyristor converter and could thus produce any desired shaft torque.

The induction machine was connected to an autonomous grid, created by a forced-

commutated converter. The forced-commutated converter kept the voltages regardless of

the currents of the induction machine, i.e. it compensated for the voltage drops in the

converter caused by components and blanking time. Another feature of the forced-

commutated converter was that it could generate desired deviations in the frequency and

magnitude of the supply voltage. The experimental set-up with the measuring system is

illustrated in Figure 3.1 and the main components of the experimental set-up are

presented in Table 3.1.

Low-pass filter

Data aquisition system

400 V
grid

dc-source

dc machine Induction machine

Thyristor
converter

Forced-
commutated
converter +
measuring
devices

Figure 3.1. Experimental set-up and measuring system.
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Table 3.1. Main components.

Component Description

induction machine ABB MBT-180L 15 kW

970 rpm 380 V 32 A

dc machine DMP 160-4S 40.1 kW

2470 rpm

thyristor converter TYRAK S 120 A

forced-commutated converter Designed at the department

5 kHz switching frequency

The rotor speed is measured by an analogue tachometer attached to the dc machine, and

the currents and voltages are measured by transducers with a high bandwidth. The active

and reactive powers as well as the stator voltages and currents in field coordinates are

determined on-line. The shaft torque is measured by means of the torque transducer, and

the dc machine torque is determined by measuring the armature current of the dc machine.

All the signals are filtered before being sampled by a data acquisition system.

3.2 Experimental method

Small sinusoidal perturbations in the frequency or magnitude of the voltage were

generated by controlling the forced-commutated converter. Torque perturbations were

generated by controlling the four-quadrant thyristor converter.

Since the moments of inertia of the two machines and the electrodynamic torque of the dc

machine were known, it was possible to determine the variations in the electrodynamical

torque of the induction machine from the measured shaft torque. This method to

determine the electrodynamical torque of the induction machine is especially suitable

when the torque of the dc machine is constant and requires that the perturbation frequency

is several times lower than the shaft resonance frequency, 210 Hz.

The electrodynamical torque was also determined from the measured currents and

voltages as well as the estimated stator iron losses. To determine the electrodynamic

torque response to frequency and voltage perturbations, the two methods provided the

same response except for perturbation frequencies below a few Hz, where the second

method predicted less accurate results.
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The first method was used to determine the electrodynamical torque response to

frequency and voltage perturbations while the second method was used to determine the

same response to torque perturbations.

3.3 Description and accuracy of measuring equipment

Since the active and reactive powers as well as the currents and voltages in field

coordinates are determined using several components with an accuracy of 1-2 %, the

accuracy is worst for these signals. However, these signals were calibrated with dc

voltages and dc currents, giving a result not deviating more than 1 % from the calibration

equipment. The accuracy of this calibrating equipment is 1 %. The active power and

current were also checked against a digital power meter using the ac network from the

forced-commutated converter. The frequency used was 43.5 Hz, i.e., the same as during

most of the measurements. The current predicted by the measuring equipment deviates

less than 1 % from the values obtained by the digital power meter. The linear discrepancy

in the power prediction between the measuring equipment and the digital power meter is

less than 1 %.

The dc machine torque was calibrated against the torque transducer. The linear error is

less than 2 %. The analogue tachometer signal is problematic, since the speed deviations

are sometimes very small. Another problem is the suspension of the tachometer, which

limits the frequency range of the tachometer to about 15 Hz. At a perturbation frequency

of 35 Hz, the signal from the analogue tachometer is amplified by about 10 %. The fact

that the tachometer is mounted on the dc machine is of less importance since the torsional

stiffness of the torque transducer is rather high, giving a torsional eigenfrequency of

210 Hz. The accuracy of the measured signals is considered, after calibration, to be

within 2 % except for the rotor speed signal, which is considered to be less accurate.

Information about the location and accuracy of the thermal sensors is given by Kylander

(1995).

The different measuring devices and their accuracy are presented in Table 3.2.
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Table 3.2. Description and accuracy of measuring equipment.

Device Type Typical maximum error

torque transducer HBM T30FN 1 %

power meter Yokogawa 2533 1 %

phase current transducer LEM-modules 200-S 2 %

dc machine current

transducer

LEM-modules 300-S 4 %

voltage transducer AD 210 J 2%

power measurement 2 %

digital tachometer BREMI BRI-5045 0.02%

analogue tachometer Radio-Energie

Type RE0 444R1

1 % below 15 Hz

data acquisition system National Instruments

NB-MIO-16 L card

0.5 %
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4. COMPARISON BETWEEN MODELS AND MEASUREMENTS

In this chapter, the responses predicted by the Park model are compared with measured

responses to perturbations in the shaft torque, supply frequency and voltage magnitude. The

responses are: rotor speed, electrodynamical torque, electric power, reactive power and stator

current. Further, the responses of the simpler models are compared with the results obtained

using the Park model.

The measurements and calculations in this chapter were performed on the 15 kW machine

operating at 43.5 Hz and 288 V, which corresponds to a flux reduction of 13 %. The

measurements were performed at no load as well as in motor and generator operation. The

shaft torque was 70 Nm both in motor and generator operation, which gave a slip of about two

thirds of the rated one.

Since the responses to shaft torque and supply frequency perturbations do not depend on the

static shaft torque significantly, only the results from one operating point are presented. The

response to voltage magnitude perturbations is presented for both motor and generator

operation because the static shaft torque plays an important role in this case.

The responses of the machine were measured at perturbation frequency points ranging from 1

to 35 Hz. When the response to voltage magnitude perturbations was determined, two lower

frequency points, 0.25 and 0.5 Hz, were also used. The perturbation magnitude was about

15 % in the shaft torque perturbation case, 1 % in the supply frequency perturbation case and

4 % in the voltage magnitude perturbation case. The perturbation magnitudes were selected to

be small enough, not to affect the magnitudes and phase shifts of the investigated transfer

functions.

The measured results are presented in Bode diagrams together with the results obtained by

using four different models: the Park model, the NST I-model, the LA-model and the ND-

model. When results of the other derived models are of interest, these are also presented.

There are two reasons for displaying the results of the NST I-model instead of the ones

obtained using the NST III-model although the results predicted by the NST III-model in many

cases are excellent. First, the results of the NST III-model are often very similar to the results

predicted by the Park model. Secondly, the NST III-model sometimes needs the derivatives of

the input signals in order to predict a correct response at very low-frequency perturbations, for

example when predicting the electrodynamic torque response to voltage magnitude
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perturbations. If the system order is increased, the error at very low-frequency perturbations

can be eliminated.

The second-order models, the LA-model and the NSR-model, predict similar rotor speed and

electrodynamical torque responses. However, the NSR-model should not be used to predict the

stator current, electric power and reactive power responses, since three of the fluxes are

considered to be constant. Therefore, only the results of one second-order model, the LA-

model, are compared to the results of the Park model in the Bode diagrams. The same

reasoning can be used for the non-linear and linear first-order model and, accordingly, only the

results of the non-linear model are compared to the results of the Park model in the Bode

diagrams.

In addition to presenting the results of some of the models together with the measurements in

the Bode diagrams, the results of all the models are compared in tables. An error ε, indicating

the discrepancy between a simplified model and the Park model, is introduced. The error is

defined as

ε = 
1
n ∑

i =  1

n

Hp(j2πfi) – H(j2πfi)

Hp(j2πfi)
  (4.1)

where Hp(j2πf) and H(j2πf) are the transfer functions derived using the Park model and the

model that is to be compared to the Park model, respectively. The components fi of the

frequency vector are logarithmically distributed between 0.1 Hz and 15 Hz.

4.1 Torque perturbation

The responses to torque perturbations were determined with the electrodynamical torque of the

dc-machine as input. The electrodynamical torque of the dc machines was  determined from the

armature current of the dc-machine. The field current of the dc machine was constant.

Consequently, the inertia of the dc machine is added to the inertia of the induction machine.

Thus, we have a 15 kW induction machine with an inertia of 0.45 kgm2.

In Figures 4.1.a-e the measured responses to torque perturbations (∆Tdcm) are presented and

compared with the results predicted by the different induction machine models.  The machine is

operating as motor loaded by an average shaft torque of 70 Nm.
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Figure 4.1.a. Measured and calculated gains and phase shifts of ∆Te/∆Tdcm. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).



Comparison between models and measurements

                                                                                                                                                   

38

-40

-35

-30

-25

-20

1 10

G
ai

n 
(d

B
)

f (Hz)

-315

-270

-225

-180

-135

1 10

Ph
as

e 
sh

if
t (

°)

f (Hz)

Figure 4.1.b. Measured and calculated gains and phase shifts of ∆Ωm/∆Tdcm. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.1.c. Measured and calculated gains and phase shifts of ∆Pe/∆Tdcm. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.1.d. Measured and calculated gains and phase shifts of ∆Q/∆Tdcm. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.1.e. Measured and calculated gains and phase shifts of ∆Is/∆Tdcm. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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The measured electrodynamical torque, electric power and stator current responses agree well

with the values predicted by the Park model, while the reactive power response agrees only up

to a perturbation frequency of 10 Hz. The rotor speed response has a 10 % discrepancy above

a perturbation frequency of 5 Hz. Similar observations were made when the machine was

operating as generator. The dominating eigenfrequency of the 15 kW machine operating at 288

V and 43.5 Hz with a moment of inertia of 0.45 kgm2, 10 Hz, is visible in Figures 4.1.a-e.

A first-order model is possible to use up to a perturbation frequency of about 3 Hz if an error

of 10 % is the maximum allowed. This frequency is a third of the dominating eigenfrequency

of the 15 kW machine. The rotor speed, electrodynamical torque and electric power responses

predicted by the LA-model have a maximum error of about 10 % compared to the Park model.

Finally, the NST I-model is almost as good as the Park model.

In Table 4.1 the error ε defined by (4.1) is presented for the different models and different

outputs. It can be noted that the NST III-model predicts excellent characteristics of the

induction machine when the responses to shaft torque disturbances is to be determined. It can

further be observed that the NSR-model has a larger rotor speed response error than the LA-

model. In Figure 4.2 the calculated gains of ∆Ωm/∆Ts predicted by the NSR-model and LA-

model are compared to the one obtained using the Park model.

Table 4.1. Error values of the simplified models.

∆Te/∆Tdcm ∆Ωm/∆Tdcm ∆Pe/∆Tdcm ∆Q/∆Tdcm ∆Is/∆Tdcm

NST III-model 0.0013 0.0010 0.0014 0.0010 0.0022

NST I-model 0.0089 0.0083 0.0089 0.0196 0.0094

NSR-model 0.019 0.067

LA-model 0.0233 0.034 0.021 0.42 0.078

ND-model 0.17 0.25 0.17 0.35 0.19

LD-model 0.17 0.28 0.21 0.37 0.24
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Figure 4.2. Calculated gain of ∆Ωm/∆Ts for the Park model and the two second-order models.

In Figure 4.2 it can be observed that the NSR-model predicts a rather good rotor speed

response around the eigenfrequency of the machine. The reason for the high error value in

Table 4.1 can be found in the lower frequency region, where the NSR-model does not predict a

correct steady-state response. However, keeping in mind that this model is very simple, it

provides good characteristics of the induction machine, suitable for many applications.

In Figure 4.3 the calculated gains of ∆Ωm/∆Ts predicted by the linear and non-linear first-order

models are compared to the one obtained using the Park model. Again it can be observed from

the figure that the dynamics of the models are quite similar but the linear model fails to predict a

correct steady-state response.
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Figure 4.3. Calculated gain of ∆Ωm/∆Ts for the Park model and the first-order models.

4.2 Supply frequency perturbation

The measured and calculated responses to perturbations in the supply frequency are shown in

Figs. 4.4.a-e. Measured and calculated results are presented only for motor operation since the

induction machine response to perturbations in the supply frequency does not depend much on

the static shaft torque.
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Figure 4.4.a. Measured and calculated gains and phase shifts of ∆Te/∆ωs. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.4.b. Measured and calculated gains and phase shifts of ∆Ωm/∆ωs. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.4.c. Measured and calculated gains and phase shifts of ∆Pe/∆ωs. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.4.d. Measured and calculated gains and phase shifts of ∆Q/∆ωs. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.4.e. Measured and calculated gains and phase shifts of ∆Is/∆ωs. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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The measured responses to supply frequency perturbations agree well with those predicted by

the Park model up to a perturbation frequency of 15 Hz. The predicted rotor speed response is

somewhat higher than the measured one, for perturbations frequencies between 5 and 10 Hz,

but the discrepancy is smaller than in the case where the response to torque perturbations was

investigated.

At low frequencies, the different models predict similar induction machine responses, but at a

frequency above a few Hz, the discrepancy between the first-order model and the Park model

becomes significant. The approximation of an upper perturbation frequency of 3 Hz for the

first-order model is useful also as an upper limit in determining the responses to supply

frequency perturbations.

The NST I-model predicts the responses to supply frequency perturbations rather well. The

discrepancy compared to the Park model grows as the perturbation frequency increases and

reaches 10 % at the dominating eigenfrequency. However, the discrepancy is larger in the

prediction of the reactive power and stator current responses.

The LA-model predicts similar rotor speed, electrodynamical torque and electric power

responses as the NST I-model, while the stator current and reactive power responses are much

less accurate.

The error values determined according to (4.1) are presented in Table 4.2. It can be observed

that the linear NSR-model predicts similar rotor speed and electrodynamical torque responses

to supply frequency perturbations as the LA-model, in fact, the error values are even lower for

the NSR-model. Moreover, it can be seen that the NST III-model predicts the transfer function

∆Ωm/∆ωs excellently while the prediction of the other responses to the supply frequency

perturbations using the NST III-model is less good. In Figure 4.5 the magnitudes of ∆Te/∆ωs

is presented for the Park model and the two NST-models.

Table 4.2. Error values of the simplified models.

∆Te/∆ωs ∆Ωm/∆ωs ∆Pe/∆ωs ∆Q/∆ωs ∆Is/∆ωs

NST III-model 0.053 0.0027 0.051 0.056 0.047

NST I-model 0.019 0.019 0.021 0.033 0.020

NSR-model 0.027 0.027

LA-model 0.036 0.036 0.040 0.92 0.36

ND-model 0.18 0.18 0.18 0.87 0.43

LD-model 0.18 0.18 0.22 0.82 0.34
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Figure 4.5. Calculated gain of ∆Te/∆ωs for the Park model and the NST-models.

The NST III-model predicts an excellent electrodynamical torque response around the

eigenfrequency but it predicts 6 % too high an electrodynamic torque response to perturbation

frequencies below 7 Hz, which causes the large error value in Table 4.2.

4.3 Perturbations in the supply voltage magnitude

The responses to voltage magnitude perturbations depend on the steady-state shaft torque of the

machine. In Figures 4.6.a-e and Figures 4.7.a-e the responses to voltage magnitude

perturbations are presented at generator and motor operation, respectively. In the cases where

the effect of saturation and iron losses are of importance, results calculated taking these effects

into account are also presented.
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Figure 4.6.a. Measured and calculated gains and phase shifts of ∆Te/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.6.b. Measured and calculated gains and phase shifts of ∆Ωm/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST III (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.6.c. Measured and calculated gains and phase shifts of ∆Pe/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), Two-axis model with saturation and iron losses considered (      ),

NST I ( ), LA ( ) and ND ( ).
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Figure 4.6.d. Measured and calculated gains and phase shifts of ∆Q/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), Two-axis model with saturation and iron losses considered (      ),

NST I ( ), LA ( ) and ND ( ).
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Figure 4.6.e. Measured and calculated gains and phase shifts of ∆Is/∆U. Dots are measured

values and lines are values determined according to the different models.Park

model (      ), Two-axis model with saturation and iron losses considered (      ),

NST I ( ), LA ( ) and ND ( ).
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Figure 4.7.a. Measured and calculated gains and phase shifts of ∆Te/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.7.b. Measured and calculated gains and phase shifts of ∆Ωm/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST III (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.7.c. Measured and calculated gains and phase shifts of ∆Pe/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), Two-axis model with saturation and iron losses considered (      ),

NST I ( ), LA ( ) and ND ( ).
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Figure 4.7.d. Measured and calculated gains and phase shifts of ∆Q/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), Two-axis model with saturation and iron losses considered (      ),

NST I ( ), LA ( ) and ND ( ).
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Figure 4.7.e. Measured and calculated gains and phase shifts of ∆Is/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), Two-axis model with saturation and iron losses considered (      ),

NST I ( ), LA ( ) and ND ( ).
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The standard Park model predicts the rotor speed and electrodynamical torque responses rather

well but it is necessary to consider the iron losses when the electric power and stator current

responses are determined.

The error values determined according to (4.1) are presented in Table 4.3. Since the

performance of the models varies with the operating point, when the machine is subjected to

voltage magnitude perturbations, the average values of the error at motor and generator

operation are presented.

Table 4.3. Error values of the simplified models.

∆Te/∆U ∆Ωm/∆U ∆Pe/∆U ∆Q/∆U ∆Is/∆U

NST III-model 1.3 0.020 2.2 0.038 0.15

NST I-model 0.21 0.21 0.36 0.027 0.053

LA-model 0.46 0.46 0.97 0.52 0.86

ND-model 0.30 0.30 0.81 0.51 0.86

The ND-model predicts the rotor speed and electrodynamical torque responses rather well up to

a perturbation frequency of about 2 Hz. The upper frequency limit below which the first-order

model can predict accurate responses thus is somewhat lower in the voltage magnitude

perturbation case than in the torque or supply frequency perturbation case. The LA-model is

approximately as useful as a first-order model in predicting the responses to voltage magnitude

perturbations.

The NST I-model is not much better than the LA-model in determining the rotor speed,

electrodynamical torque and electric power responses to voltage magnitude perturbations.

However, the stator current and reactive power responses predicted by the NST I-model are

much better compared to the ones obtained using the LA-model. The NST III-model predicts an

excellent rotor speed response while it do not predict the electrodynamical torque, electric

power and stator current responses as well as the NST I-model. This fact demonstrates that it is

dangerous to validate a model based on only one transfer function as Wasynczuk et al. (1985)

did. In Figure 4.8 the magnitudes of ∆Te/∆U is presented in motor operation for the Park model

and the two NST models.

Again, the observation can be made that the values obtained using the NST III-model differ

from those obtained using the Park model for very low perturbation frequencies, which causes

the large error in Table 4.3. The reason for this error is the fact that the derivatives of the input

signals are needed to predict a correct answer.
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Figure 4.8. Calculated gain of ∆Te/∆U for the Park model and the NST-models.

4.4 Response of a two-machine group

There are two methods of reducing the order of a multi-machine system: reduction of induction

machine groups to single-unit equivalents, i.e. aggregate models, and simplified representation

of each machine. If the interior signals are of no interest, the model order of a multi-machine

system can be reduced by replacing the machines with one equivalent machine, i.e. an

aggregate model. However, if the interior signals are of interest, the approach of simplified

representation of each machine must be used.

When the response of a two-machine group was investigated, an additional converter-fed dc

machine-induction machine set-up was used, identical to the one described in Chapter 3. The

two induction machines were connected to the forced-commutated converter via a resistance,

Rl = 0.72 Ω, and an inductance, Ll = 2 mH. Figure 4.9 shows the set-up consisting of the

line impedances and the induction machines.
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Figure 4.9. The investigated two-machine system.

The two-machine system was modelled in the following way: The two machines, represented

by Park models/NST-models/LA-models/ND-models were connected to a local grid, which

was connected to an infinite bus via a line inductance and resistance. The dynamic influence of

the line inductance was taken into account. In power system analysis programs, the dynamic

influence of the line inductances is usually neglected, i.e. the line impedance current derivatives

are neglected.

If the derivatives of the line impedance currents were neglected, the maximum magnitudes of

the transfer functions were typically reduced by 10 % for the two-machine systems based on

the Park models and NST I-models. For the LA-model and ND-model, the neglection of the

derivatives had a very small influence. Figure 4.10 presents the calculated magnitudes of the

transfer function ∆Te1/∆Tdcm1 using the Park model-based two-machine system with and

without the dynamics of the line impedance incorporated.

The line resistance used here is 0.72 Ω, i.e. 0.16 p.u. if 288 V and 64 A are used as the base

voltage and base current, respectively. If the machines operate at rated current, the losses in the

line resistance will be 3 kW, i.e., 10 % of the rated power of the two machines. The line

inductance was 2 mH (j0.55Ω). This gives a short-circuit capacity of 90 kVA at the machines,

i.e., only three times the rating of the two machines. This was done in order to obtain a strong

interaction between the induction machines.
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Figure 4.10. Calculated gains of ∆Te1/∆Tdcm1. Solid line represents the calculations performed

taking the dynamic influence of the line impedance into account and the dashed

curve represents the calculations where the dynamic influence of the line

impedance has been ignored.

The high value of the line impedance led to an unexpected problem: the simulation of the two-

machine system using the NST-models to represent the machines did not work unless the line

impedance was reduced by 30 %. However, a model producing very similar results was used

instead: A new sixth-order model was derived starting from the equations of the whole two-

machine system which is a tenth-order system. The procedure suggested by Wasynczuk et al.

(1985) was then applied to this system. All four stator flux linkage transients were neglected

resulting in a sixth-order model. This model and a two-machine model with single-machine

NST-models produced very similar responses when a system with only one third of the used

line impedance was investigated.

In Figures 4.11-4.13, the responses predicted by the different models are presented together

with the measured ones for some selected responses to torque, supply frequency and voltage

magnitude perturbations.

Machine 1 is operating as motor and Machine 2 is operating as generator, loaded and driven by

a shaft torque of 35 Nm. A shaft torque of 35 Nm at the used voltage level and supply

frequency corresponds to a slip of approximately one third of the rated value.
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4.4.1 Torque perturbation

Figures 4.11.a-c present the rotor speed response (∆Ωm1), the electrodynamical torque

response (∆Te1) and the reactive power response (∆Q1) of Machine 1 to perturbations in the

torque (∆Tdcm2) of the dc machine connected to Machine 2.
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Figure 4.11.a. Measured and calculated gains and phase shifts of ∆Ωm1/∆Tdcm2. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.11.b. Measured and calculated gains and phase shifts of ∆Te1/∆Tdcm2. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.11.c. Measured and calculated gains and phase shifts of ∆Q1/∆Tdcm2. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).

The values determined using the Park model coincide well with the measured ones. The NST-

model predicts similar results as the Park model. The LA-model and the ND-model can be used

to predict the induction machine responses to shaft torque perturbations for perturbation

frequencies below 1-2 Hz.
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4.4.2 Supply frequency perturbation

Figures 4.12.a-c present the rotor speed response of Machine 1 (∆Ωm1), the electrodynamical

torque response of Machine 2 (∆Te2) and the active power response of machine two (∆P2) to

perturbations in the supply frequency (∆ωs).
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Figure 4.12.a. Measured and calculated gains and phase shifts of ∆Ωm1/∆ωs. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.12.b. Measured and calculated gains and phase shifts of ∆Te2/∆ωs. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.12.c. Measured and calculated gains and phase shifts of ∆P2/∆ωs. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).

The Park model calculations agree well with the measured values. The NST-model predicts

almost the same result as the Park model.  Again, the LA-model and the ND-model is useful up

to a perturbation frequency of about 1-2 Hz.
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4.4.3 Voltage magnitude perturbation

Figures 4.13.a-c present the rotor speed responses of machines one and two, as well as the

local grid voltage response (∆Ugrid) to perturbations in the voltage magnitude (∆U).
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Figure 4.13.a. Measured and calculated gains and phase shifts of Ωm1/∆U. Dots are measured

values and lines are values determined according to the different models. Park

model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.13.b. Measured and calculated gains and phase shifts of ∆Ωm2/∆U. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).
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Figure 4.13.c. Measured and calculated gains and phase shifts of ∆Ugrid/∆U. Dots are

measured values and lines are values determined according to the different

models. Park model (      ), NST I ( ), LA ( ) and ND ( ).

The values determined using the Park model and the NST-model coincide well with the

measured ones. The only exception is that the iron losses should be taken into account to obtain

a correct active power response to very low-frequency voltage magnitude perturbations, below

approximately 3 Hz for the investigated system. The LA-model is as useful as the ND-model,

i.e. valid up to a perturbation frequency of about 1 Hz.
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5 SOME ASPECTS ON INDUCTION MACHINE DYNAMICS

The purpose of this chapter is to discuss different aspects that influence the induction machine

dynamics, such as different operating points, disturbance magnitude, skin effect, iron losses,

main flux saturation, line impedance and variable frequency.

The magnitude of ∆Te/∆Ts is typically shown in this chapter in order to reduce the number of

cases presented. However, other transfer functions are also shown when they are of interest.

5.1 Steady-state shaft torque

In a linear system, the gain is always independent of the operating point. Since the induction

machine is a non-linear system this is not the case. However, the steady-state shaft torque is

not of such great importance in the steady-state operating region of the inductance machine, as

will be shown in this section. The calculations in this section are performed on the 15 kW

machine at a voltage level of 400 V and at a supply frequency of 50 Hz using the Park model.

Within the normal operating region of the machine, the electrodynamical torque response to

shaft torque perturbations is only slightly influenced by the static shaft torque (Kovacs 1984).

Figure 5.1 presents the calculated magnitudes ∆Te/∆Ts at no load operation and at rated motor

operation. The reason for selecting these operating points is that the lowest damping and the

highest damping occur close to no load operation and in rated motor operation, respectively.
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Figure 5.1. Calculated magnitudes of ∆Te/∆Ts. The machine is operating as motor loaded by

rated torque and at no load. Temperature variations are not taken into account.
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As can be noted from the figure, the discrepancy between the ratios ∆Te/∆Ts for the two

different cases is only notable for perturbation frequencies around and above the

eigenfrequency, where it is about 10 %. In the normal steady-state operating region it is more

important that the damping is improved as the temperature in the machine increases. As the

temperature raises, the stator resistance increases, which leads to reduced damping, and the

rotor resistance also grows leading to improved damping. The total effect is that the damping

increases as the temperature raises.

In Figure 5.2 the calculated ratios of ∆Te/∆Ts are presented for some operating points taking

temperature variations into account. As can be noted the maximum magnitude of ∆Te/∆Ts is 50

% lower at rated load than in the case where the machine is cold and operating at no load.
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Figure 5.2. Calculated magnitudes of ∆Te/∆Ts at some operating points with temperature

variations taken into account.

The induction machine response to frequency perturbations also varies only slightly in the

normal steady-state operating region, if temperature changes are not taken into account. The

stator current and especially the reactive power responses to shaft torque and supply frequency

perturbations, however, depend strongly on the operating point, even if temperature changes

are not accounted for.

The response to perturbations in the magnitude of the supply voltage depends strongly on the

static shaft torque even if temperature changes are not taken into account. Figure 5.3 presents

the calculated rotor speed response to perturbations in the magnitude of the supply voltage

when the machine is operating in generator and in motor operation, driven and loaded by rated

torque.
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Figure 5.3. Magnitudes and arguments of ∆Ωm/∆U in motor (solid curve) and in generator

operation (dashed curve).

In motor operation there exists an anti-resonance at 7 Hz which does not occur in generator

operation. If small-signal analysis is applied on the machine operating as motor, a complex-

conjugated double-zero can be observed which corresponds to the anti-resonance. In generator

operation no complex-conjugated double-zero exists, but instead a zero can be found in the

right half of the s-plane making the induction machine in this case to a mixed-phase system

(Proakis & Manolakis 1988). This means that if the voltage is increased in generator operation,

the immediate rotor speed response will be opposite to the final change.

5.2 Disturbance magnitude

In a linear system the gain is always independent of the perturbation magnitude. However, in a

non-linear system this is not the case. For instance, if the induction machine is subjected to a

large shaft torque disturbance, this will cause the machine to pass the pull-out point. An

important question is thus: how large input perturbation magnitudes can be tolerated before the

results of a small-signal analysis become inaccurate?

By applying small signal analysis on (2.4), we get

Te0 + ∆Te = p Im(Ψs0
*is0 + Ψs0

*∆is + ∆Ψs
*is0 + ∆Ψs

*∆is) (5.1)

and with the steady-state solution subtracted

∆Te = p Im(Ψs0
*∆is + ∆Ψs

*is0 + ∆Ψs
*∆is) (5.2)
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The last term in (5.2), a product of small disturbances, is neglected in small signal analysis,

which finally gives

∆Te = p Im(Ψs0
*∆is + ∆Ψs

*is0) (5.3)

As a large pulsation in the supply voltage magnitude, 20% of the nominal grid voltage was

selected and 3 % was selected as a small perturbation magnitude. The reason for selecting 3 %

is that this is the highest voltage magnitude perturbation allowed by IEC 555-3 for extremely

low-frequency voltage perturbations. In fact, for perturbation frequencies between 1 and

30 Hz, the limit is less than 1 %. In Figure 5.4 the magnitudes of ∆Ωm/∆U for the two

perturbation magnitudes are presented. The machine is operating at 400 V and 50 Hz as motor

loaded by rated torque. Again, small-signal analysis was applied but the results did not differ

from those obtained using the small perturbation magnitude and accordingly the small-signal

results are not presented.
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Figure 5.4. Calculated magnitudes of ∆Ωm/∆U with different perturbation magnitudes. The

dashed curve represents results obtained using a small perturbation magnitude and

the solid one represents results using a large perturbation magnitude.

We have a maximum discrepancy of 10 %, which in this case is visible around the anti-

resonance frequency, 7 Hz. Figure 5.5 illustrates the electrodynamical responses to a 7 Hz

perturbation in the magnitude of the supply voltage of ∆U = 12 V and ∆U = 80 V. A

component at a frequency twice the applied one is clearly visible in Figure 5.6. Neglecting the

last term in (5.2) works well in the case where the disturbance is 8 V, but in the second case

this term is too large to be neglected.
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Figure 5.5. Torque response to a small (dashed curve) and a large (solid curve) perturbation

in the supply voltage magnitude.

A calculated example is presented in Figure 5.6, in which a large (100 % of rated torque, peak

to peak) and a small (10 % of rated torque) shaft torque perturbation are applied on the 15 kW

machine operating as motor at rated torque (U = 400 V and f = 50 Hz). Calculations were also

performed using a model linearized at the investigated operating point, but since the results

coincided with the results obtained using the small perturbation magnitude, the small-signal

analysis result is not presented.

G
ai

n 
(d

B
)

-10

-5

0

5

10

1 10
       f (Hz)

Figure 5.6. Calculated magnitudes of ∆Te/∆Ts with different perturbation magnitudes. The

dashed curve represents results obtained using a small perturbation magnitude and

the solid one represents results using a large perturbation magnitude.
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Although the point (in the steady-state operating region) is reached where the non-linearity of

the machine is as most important the difference in the magnitude ∆Te/∆Ts is detectable only

around the dominating eigenfrequency, where it is about 10 %. In generator operation, where

the slope of the steady-state torque-speed curve decreases less, the influence is smaller.

The magnitude of a supply frequency perturbation can be up to about 5 Hz before the results

differ more than 10 % from the results obtained using small-signal analysis. Sometimes it is of

greater interest to define the allowed phase deviation instead of the allowed frequency variation.

In order to obtain a result which deviates less than 10 % from the small-signal analysis, the

phase perturbation must be below 10°.

5.3 Main flux saturation

As the flux in the machine increases, the value of the magnetizing inductance decreases due to

saturation. This is of no importance below rated flux for the investigated 15 kW machine and at

rated flux of little importance. The saturation can be taken into account for steady-state

purposes by adjusting only the magnetizing inductance. In order to take the dynamic effects of

the main flux saturation into consideration, the approach in Section 2.3 can be used.

Figure 5.7 presents the calculated magnitudes of ∆Te/∆Ts with dynamic saturation effects as

well as without saturation effects considered, not even a steady-state correction of the

magnetizing inductance. The applied voltage is 276 V and the supply frequency is 30 Hz,

which corresponds to a flux increase of 20 % compared to the nominal one (380 V and 50 Hz).

The value of the magnetizing inductance is in this case only 65 % of the nominal one.
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Figure 5.7. Calculated magnitudes of ∆Te/∆Ts with saturation effects taken into account,

dashed curve, and without effects of saturation taken into account, solid curve.
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From Figure 5.7 it can be noted that the peak gain of ∆Te/∆Ts is reduced by about 10 % when

the saturation is taken into account. However, if the same magnetizing inductance, i.e. the

saturated one, is used in both calculations, the difference between the two calculations is

reduced to almost nothing.

Melkebeek (1980, 1983) measured and calculated the rotor speed response to voltage

magnitude perturbations at no load, at frequencies around the resonance frequency, and found

that the saturation reduced the magnitude of the rotor speed response substantially. For a

2.2 kW machine at a nominal flux level, he found a 50 % reduction of ∆Ωm/∆U at the

resonance frequency compared to the case where the flux level of the machine was about 50 %

of the nominal one. Specially adapted rotors were used in the experiments.

For the 15 kW machine investigated, such an influence of saturation was not found. At

nominal flux levels, the calculated rotor speed response was the same with or without

saturation taken into account. At a flux level of 20 % higher than the nominal one, the

calculated peak magnitude of ∆Ωm/∆U was reduced by about 15 % due to saturation effects. If

the comparison was made with the same magnetizing inductance, i.e. only the dynamic

influence of the main flux saturation was investigated, the difference was reduced to about

3  %.

The strongest dynamic influence of the saturation was detected at very low-frequency

responses to voltage magnitude perturbations. (Melkebeek measured the rotor speed response

above about 10 Hz.) Figure 5.8 presents the measured and calculated magnitudes of ∆Te/∆U

and ∆Ωm/∆U with and without the dynamic effects of saturation taken into account. The same

magnetizing inductance is used for both cases. The applied voltage is 276 V and the supply

frequency is 30 Hz, i.e, the flux level used is 120 % of the nominal one.

A clear difference caused by the dynamic effect of the main flux saturation is visible in Figure

5.8. At the anti-resonance frequency, the rotor speed and electrodynamical torque responses to

voltage magnitude perturbations are three times higher when the dynamic effect of saturation is

accounted for compared to the case when only the steady-state effect of the saturation is taken

into account. Also the other responses to voltage magnitude perturbations of very low

frequencies are affected.
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Figure 5.8. Calculated magnitudes of ∆Te/∆U (left) and ∆Ωm/∆U (right) with dynamic effects

of saturation taken into account, dashed curve, and without dynamic effects of

saturation taken into account, solid curve. Dots are measured values.

5.4 Skin effect

The rotor conductors of a cage induction machine are designed to have a higher resistance

increasing with higher rotor frequencies by utilizing the skin effect. Apart from the fact that the

starting torque is raised, the damping is also increased. Figure 5.9 presents the magnitudes of

∆Te/∆Ts with and without skin effect taken into account. The machine is operating at no load

and at U  = 400 V and f = 50 Hz
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Figure 5.9. Calculated magnitudes of ∆Te/∆Ts with and without skin effect taken into account.
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At 18 Hz, which is the dominating resonance frequency of the 15 kW machine operating at

400 V and 50 Hz, the rotor resistance is increased by 10 %, and consequently the damping is

improved by 10 %. In a deep-bar rotor the increase of the rotor resistance will be larger. Meyer

(1976) found an increase of the damping by 20 % for a 3.1 MW machine at a rotor frequency

of 5 Hz, i.e. at the eigenfrequency of the induction machine investigated.

5.5 Inclusion of iron losses

Usually, the iron losses affect the dynamic behaviour of the machine very little. The only case

where the effect of iron losses is clearly visible is the electric power response to very low-

frequency perturbations in the voltage magnitude and supply frequency. Figure 5.10 presents

the magnitudes of ∆Pe/∆U when the machine is operating as generator driven by a shaft torque

of 70 Nm at U = 288 V and f = 43.5 Hz.

From Figure 5.10 it appears clearly that the iron losses have to be considered in order to

determine the magnitude of ∆Pe/∆U for perturbation frequencies below 3 Hz. However, it must

be pointed out that the electric power response magnitude is low for these low-frequency

perturbations.
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Figure 5.10. Calculated and measured magnitudes of ∆Pe/∆U. Dots represent measured

values, dashed and solid lines represent calculations taking and not taking the

iron losses into account, respectively.



Some aspects on induction machine dynamics

                                                                                                                                                   

84

5.6 Flux level

The flux level of the machine is decreased by reducing the magnitude of the supply voltage

without lowering the frequency. The purpose of reducing the flux level of the induction

machine is that the efficiency can be improved when the steady-state shaft torque is low. Figure

5.11 presents the measured and calculated electrodynamical torque response to shaft torque

perturbations. The 15 kW machine is driven by a shaft torque of 70 Nm and operating at a

supply frequency of 30 Hz and at two different voltage levels, 240 V (5 % higher than nominal

flux) and 200 V (flux reduced by 12 %). The effect of saturation has not been taken into

account, since it affects the results only slightly.

From Figure 5.11 it can be observed that a reduction of the flux level increases the damping

strongly and it reduces the resonance frequency.
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Figure 5.11. Magnitudes of ∆Te/∆Ts. Dots and circles are measured values and lines are

calculated values.

5.7 Weak grid

5.7.1 Stator and line resistance

The stator resistance is not included in the NSR-model. At a supply frequency of 50 Hz, this is

not of great importance for larger machines with a relatively small stator resistance. For smaller

machines, however, the reduction of the damping due to the stator resistance cannot be
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neglected. For the investigated 15 kW machine the damping predicted by the NSR-model is

20 % too low at 50 Hz and 400 V.

Even self-excited oscillations have been reported in cases where an extremely high additional

stator resistance has been used (Palit 1978, Kron & Lorenzon 1969). A series resistance must

accordingly be taken into account when the properties of the machine are determined. In Figure

5.12 the magnitudes of ∆Te/∆Ts are presented for some stator resistances. The machine is

operating as a generator driven by a shaft torque of 70 Nm, the voltage is 288 V and the supply

frequency is 43.5 Hz.
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Figure 5.12. Gain of the transfer function ∆Te/∆Ts with three different stator resistances. The

lines are calculated results performed according to the detailed model and the

dots, rhombuses and circles are measured values.

When the machine is fed from a converter, the resistance in the power switches, such as

transistors or GTOs, must be considered as the dynamic performance of the induction machine

is investigated. Another important feature of power switches is that they have a voltage drop,

which has the same effects as an additional stator resistance.

Increased stator resistance does not automatically lead to reduced damping. For low supply

frequencies the situation is usually the opposite. A growing stator resistance will always finally

lead to increased damping. Usually, the induction machine has a certain stator resistance value

where the damping reaches a minimum or even becomes negative. As the stator resistance

increases above this value, the damping is improved. For the 15 kW machine operating at 50

Hz and 400 V, the damping reaches a minimum for a stator resistance of 4.5 Ω, 25 times the



Some aspects on induction machine dynamics

                                                                                                                                                   

86

rated value, with a damping ratio close to zero. At no load the machine will even be unstable.

Usually, the damping of the machine is improved as the inertia increases, but if we in this

example with a stator resistance of 4.5 Ω connect a load having an inertia equal to the inertia of

the machine, the machine will become even more unstable.

5.7.2 Line and leakage inductance

Additional line and stator leakage inductance mainly lead to a lowered resonance frequency.

Figure 5.13 shows the measured and calculated magnitudes of ∆Te/∆Ts for some stator leakage

inductances. The machine is operating as a generator driven by a shaft torque of 70 Nm. The

supply frequency is 43.5 Hz and the supply voltage is 288 V.
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Figure 5.13. Magnitudes of ∆Te/∆Ts with different stator leakage inductances. The lines are

calculated results and the circles, dots and crosses are measured values.

5.8 Variable frequency

When an induction machine is driven in variable-speed operation, the voltage is usually

reduced in proportion to the frequency in order to keep a constant flux in the machine. If the

proportion between the supply voltage and supply frequency is kept constant, the NSR-model

(2.53) does not indicate that the dynamic behaviour should change as the supply frequency

varies. Figure 5.14 presents the measured and calculated magnitudes of ∆Te/∆Ts for three

different supply frequencies at the same flux level, 87 % of the nominal one. The machine is

operating as generator with a driving shaft torque of 70 Nm.
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Figure 5.14 shows that the supply frequency strongly affects the damping of the machine. It is

the influence of the stator resistance that leads to different dynamic behaviour as the supply

frequency varies. When the supply frequency is lowered, the stator resistance will be relatively

larger compared to the reactances of the machine.
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Figure 5.14. Magnitudes of the transfer function ∆Te/∆Ts for some different supply

frequencies. Lines represent calculated values. Crosses, dots and circles show

measurements at 15, 30 and 43.5 Hz, respectively.

5.9 Influence of phase-compensating capacitors

To compensate for the reactive power needed by the induction machine, phase-compensating

capacitors can be installed at the machine. The low-frequency dynamic influence of the phase-

compensating capacitors is rather small. A minor influence can be observed depending on the

grid configuration, the capacitance and the static shaft torque of the machines. Generally, it can

be said that the damping is somewhat reduced, since the capacitors increase the voltage at the

induction machine.

In Figure 5.15 the measured and calculated magnitudes of ∆Ωm/∆Ts are presented with and

without capacitors of 300 µF per phase connected to the machine. The capacitance was chosen

to compensate the power factor to one at no load operation. An additional inductance of 2 mH

is also connected between the converter and the machine in both cases. The voltage at the

machine will otherwise be governed by the converter only, and the capacitors will have no

influence on the dynamic performance of the machine.
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The machine is operating as generator driven by a shaft torque of 70 Nm, the applied voltage is

288 V and the supply frequency is 43.5 Hz. The machine voltage is 286 V with capacitors and

274 V without. An additional calculation without capacitors was also performed at a higher

voltage level of 300 V. The voltage at the machine is in this case the same as when the 300 µF

capacitor was connected, i.e. 286 V.

From Figure 5.15 it can be observed that the rotor speed response is similar in the case where

capacitors were connected at the machine as when the applied voltage was increased and no

capacitors were used. The other responses are affected in a similar way. However, the reactive

power response to voltage magnitude perturbations has a more complicated pattern as phase-

compensating capacitors are connected, and depends both on the static shaft torque and the

capacitance.
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Figure 5.15. Magnitudes of ∆Ωm/∆Ts. Lines and crosses represent calculated values, and

circles and dots show measured values.

5.10 Non-stiff machine shaft

The purpose of deriving linear reduced order models of the induction machine is to simplify the

dynamic analysis. By using the LD-model and NSR-model it is possible to analyse a larger

system analytically, for instance the drive train of a wind turbine. Constant-speed wind

turbines often produce periodic power pulsations. Santjer and Gerdes (1994) report a case

where the periodic power pulsations have reached 20 % of the rated power. The origin of these

pulsations is the blade rotation. The frequency of the pulsations depends on the number of

blades of the turbine and the rotor speed. Usually the frequency of the periodic power

pulsations is between 0.7 and 2.2 Hz.
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If the NSR-model is used to represent the induction machine together with the soft shaft and

wind turbine rotor, a fourth-order linear model is obtained. A mechanical analogy of the wind

turbine drive train is presented in Figure 5.16.

Wind
turbine
rotor

Soft shaft

Induction machine

∆Tw

Jt

α
Jm

B
K

∆ωs

Figure 5.16. NSR-model connected to a wind turbine rotor via a soft shaft.

The linearized analytical transfer function from wind torque to electrodynamical torque can now

be derived, yielding

∆Te
∆Tw

 = 
K

s4 Jt Jm

α
 + s3 Jm JtK

Bα
 + s2(Jm + Jt(1 +

K

α
)) + s

KJt+ KJm
B  + K

 (5.4)

Wilkie et al. (1990) used a first-order model to represent the induction machine as wind turbine

generator. With the wind turbine generator represented by the LD-model, the transfer function

from wind torque to electrodynamical torque becomes

∆Te
∆Tw

 = 
1

s3 Jm Jt

Bα
 + s2Jt

α
+ s

Jt+ Jm
B  + 1

 (5.5)

Figure 5.17 presents the magnitudes of ∆Te/∆Tw for a 225 kW wind turbine predicted by the

NSR-based model, by the LD-model and by the seventh-order model presented in Section 2.2.

The machine is operating as generator driven by a shaft torque of one quarter of the rated one.
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Figure 5.17. The gain of the transfer function ∆Te/∆Tw with varied shaft torsional stiffness.

Solid curves represent values determined by the NSR-based model, dashed curve

represent values determined using the LD-based and dots represent values

determined by the seventh-order model.

As can be observed in Figure 5.17, the NSR-based model predicts a similar result as the

detailed model. The LD-based model is as good as the NSR-based model up to a perturbation

frequency of 0.5 Hz. There are two resonance frequencies visible in the figure. The lower

oscillation mode is governed by the rotor and shaft stiffness of the wind turbine and the other is

basically determined by the induction machine inertia and leakage inductances of the machine,

i.e. the dominating eigenfrequency of the induction machine. In many cases, the lower

oscillation mode coincides with the blade passage frequency of the wind turbine, which is a

reason why periodic power pulsations from wind turbines sometimes are so large.

As the machine is subjected to a higher driving torque, the damping at the lower resonance

frequency will increase somewhat, which the two linear models fail to predict.
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Also the response to frequency perturbations can be analysed using the NSR-model. For

instance, the simplified transfer function from supply frequency perturbation to

electrodynamical torque is

∆Te

∆ωs
 = 

s3 KJt Jm

α
 + sK (Jm  + J t)

s4 Jt Jm

α
 + s3 Jm JtK

Bα
 + s2(Jm + Jt(1 +

K

α
)) + s

KJt+ KJm
B  + K

  (5.6)

In Figure 5.18 the magnitude of ∆Te/∆ωs for the wind turbine drive train is compared for a

stiff and a soft shaft. The drive train with a soft shaft is modelled using the seventh-order

model, the NSR-based model and the LD-based model. The machine is operating as generator

driven by a shaft torque of one quarter of the rated one.
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Figure 5.18. The gain of the transfer function ∆Te/∆ωs with a stiff shaft ( ) and a soft

shaft using diffferent models: NSR-based model (      ), LD-based model

( ) and dots seventh-order model.

As in the previous case where the response to a torque perturbation was presented, the

damping at the lower resonance frequency will increase somewhat, as the machine is subjected

to a higher driving torque, which the two linear models fail to predict.
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6 EXTRAPOLATION TO OTHER MACHINE SIZES

In Chapter 4 the response of a 15 kW machine was investigated as the machine was

subjected to different types of perturbations. In this chapter the responses of a large

number of machines are analysed in order to obtain some generally applicable results.

Ahmed-Zaid and Taleb (1991) investigated some step responses of eleven machines in

order to give some guidelines for the selection of an induction machine model. The results

were strongly influenced by the fact that some of the machines had very large rated slips,

about 5 %.

The parameters of 31 machines, ranging in size from 2 kW to 4 MW, are presented in

Table 6.1. Mainly four-pole machines are investigated but also several six-pole ones. The

inductances and resistances of the machines are given in per unit values. The parameters

of machines 21-31 were given by Cathey et al. (1973), i.e., the same source as Ahmed-

Zaid and Taleb (1991) used. The parameters of the other machines were obtained from

manufacturers of induction machines.

If small-signal analysis is applied on the induction machine, the transfer function from

shaft torque to electrodynamical torque is found to have three zeros and five poles. The

locations of the three zeros are close to the locations of three of the poles, and the transfer

function from shaft torque to electrodynamical torque can be simplified to the second

order. Providing that the supply frequency is not too low, a useful approximation of the

transfer function from shaft torque disturbance to electrodynamical torque is

∆Te
∆Ts

 = H(s) = 
ω0

2

s2  + 2ξω0s + ω0
2

(6.1)

where ξ is the damping ratio and ω0 the undamped eigenfrequency.

In Figures 6.1 and 6.2 the undamped eigenfrequencies and damping ratios of the

machines, determined by small-signal analysis, are presented. The machines are operating

as motors loaded by a quarter of rated shaft torque. The machines are not connected to a

load, i.e. the total inertia is the machine inertia only. In Figure 6.1 it can be observed that

the undamped eigenfrequency of an induction machine is lowered as the machine size

increases. A 5 kW machine has a resonance frequency of about 25 Hz and a MW size

induction machine has an undamped eigenfrequency of about 5-10 Hz.
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Table 6.1.Parameters of the investigated induction machines (at 20 ˚C).

No. Power

(kW)

U

(V)

Rs

(%)

Rr

(%)

Lm

(pu)

Lsλ
(pu)

Lrλ
(pu)

fs
(Hz)

p Jm

(kgm2)

Rated

slip

1 4 380 1.93 1.76 0.73 0.039 0.039 50 2 0.015 0.043

2 7.5 400 1.41 1.00 0.57 0.039 0.035 50 3 0.082 0.026

3 11 400 1.46 1.01 0.93 0.042 0.047 50 2 0.073 0.024

4 11 400 1.33 1.05 0.61 0.044 0.040 50 3 0.10 0.027

5 15 400 0.99 1.07 0.70 0.053 0.045 50 3 0.22 0.028

6 15 400 1.21 1.1 1.03 0.044 0.051 50 2 0.094 0.027

7 18.5 400 0.95 0.71 0.93 0.042 0.063 50 2 0.16 0.017

8 22 400 0.87 0.71 1.06 0.045 0.070 50 2 0.19 0.017

9 30 400 0.72 0.72 0.98 0.034 0.056 50 3 0.76 0.017

10 45 400 0.63 0.56 1.20 0.049 0.081 50 2 0.41 0.021

11 180 415 0.78 0.72 1.51 0.049 0.051 50 3 4.5 0.017

12 200 380 0.47 0.63 1.75 0.057 0.081 50 2 2.5 0.017

13 200 690 0.41 0.58 1.89 0.052 0.076 50 2 3.0 0.016

14 200 690 0.31 0.37 1.29 0.052 0.061 50 3 6.6 0.010

15 225 400 0.51 0.51 1.30 0.049 0.093 50 3 7.4 0.013

16 400 690 0.3 0.49 1.98 0.046 0.079 50 2 6.6 0.013

17 100 380 0.73 0.65 1.70 0.055 0.096 50 2 1.1 0.019

18 400 380 0.75 0.5 2.11 0.054 0.080 50 2 7.5 0.015

19 630 380 0.6 0.44 2.03 0.051 0.080 50 2 10.8 0.013

20 800 380 0.53 0.44 2.08 0.051 0.083 50 2 13.0 0.013

21 2.23 220 0.95 1.78 0.70 0.020 0.020 60 2 0.045 0.050

22 18.6 460 1.04 2.23 1.12 0.029 0.029 60 2 0.277 0.058

23 37.2 460 0.73 1.89 1.33 0.031 0.031 60 2 0.83 0.053

24 74.5 460 0.52 2.35 1.45 0.031 0.031 60 2 2.22 0.056

25 186 2300 1.14 0.67 1.74 0.050 0.050 60 2 3.5 0.017

26 372 2300 0.88 0.63 2.19 0.049 0.049 60 2 5.6 0.015

27 596 2300 0.70 0.50 2.35 0.047 0.047 60 2 10.7 0.012

28 745 2300 0.75 0.50 4.43 0.049 0.049 60 2 14.9 0.012

29 1117 2300 0.56 0.37 2.42 0.046 0.046 60 2 22.3 0.009

30 1676 2300 0.44 0.33 2.39 0.041 0.041 60 2 31.9 0.008

31 4470 4160 0.27 0.27 3.31 0.045 0.045 60 2 337 0.007
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Figure 6.1. Undamped eigenfrequency of the 31 investigated induction machines.
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Figure 6.2. Damping ratio of the 31 investigated induction machines.
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The result of most of the machines form a general trend. The four high-slip machines 21-

24 presented by Cathey et al. (1973) deviate from the trend of the other machines.

From Figure 6.2 it is clear that the four smaller machines described by Cathey et al.

(1973) have an extremely high damping ratio, caused by the high rotor resistance, while

the damping ratio of the other machines varies between 0.1 and 0.3, independent of the

machine size.

The transfer function from shaft torque to electrodynamical torque in which the stator

resistance has been neglected, (2.54), can be used to obtain approximate values of the

undamped eigenfrequency and damping ratio

ω0NSR = 
Lm
Ls

U

ωs√ p2

JmL'r
(6.2)

ξNSR= 
Rr
2  

Ls
Lm

 
ωs
U√ Jm

p2L'r
(6.3)

respectively. These equations for estimating the eigenfrequency and damping ratio do not

work well when the damping is very high as in the case of machines 21-24. In Figure 6.3

the undamped eigenfrequency obtained using (6.2) is compared with the one obtained

using small-signal analysis. Machines 21-24 have been excluded. The prediction of the

undamped eigenfrequencies differs less than 1 % for the investigated machines. The

prediction of the damping ratio is, however, not as good as the prediction of the

eigenfrequency. The error function

ε = 
ξNSR – ξss

ξss
(6.4)

is used to determine the error in the prediction of the damping ratio. ξss is the damping

ratio obtained using small-signal analysis. In Figure 6.4 the error in the prediction of the

damping ratio is presented as a function of machine size. Again, machines 21-24 have

been excluded.
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Figure 6.3. Comparison of undamped eigenfrequencies.
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Figure 6.4. ξ  error prediction as a function of machine size.

The error is largest for smaller machines, which have relatively high stator resistances

compared to the leakage inductances while the error is smaller for the larger machines.
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In Chapter 4 it was shown that the rotor speed and electrodynamical torque response of

the 15 kW machine to shaft torque and supply frequency perturbations could be well

predicted using the NSR-model. From Figure 6.4 it can be noted that the NSR-model can

even better predict the same responses of larger machines.

The damping ratio strongly influences the performance of the induction machine. The

investigated 15 kW machine, operating at 288 V and 43.5 Hz and with an inertia of

0.44 kgm2, has a damping ratio of 0.28, which means that the rotor speed response at

the eigenfrequency is twice the steady-state rotor speed response.

Machine 24, a 100 hp machine with high rated slip, has a damping ratio close to 1. In

Figure 6.5 the rotor speed response, calculated using the Park model, NST I-model, LA-

model, and ND-model, is presented for the machine. It can be noted that the rotor speed

response is not higher than the steady-state response for any perturbation frequency.

Further, it can be observed that the values predicted by the NST I and LA-models

coincide very with the values predicted by the Park model.

The opposite is the 200 kW machine, number 14, with a damping ratio of 0.11, where

the rotor speed response at the eigenfrequency is 20 times (26 dB) the rotor speed

response at steady-state. The rotor speed response predicted by the various models of the

200 kW machine is presented in Figure 6.6. Again, the values predicted by the NST I and

LA-models coincide very well with the values predicted by the Park model. From Figures

6.5 and 6.6 it is obvious that the first-order model predicts a less erroneous rotor speed

response to torque perturbations as the damping ratio increases.

The limit frequencies for the first-order model to determine the rotor speed response to

torque perturbations for the investigated machines are presented as a function of the

damping ratio in Figure 6.7. The limit frequency is defined as the frequency at which the

discrepancy between the investigated model and the Park model exceeds a certain level, in

this case 3 dB (41%) and 0.8 dB (10 %).

The four high-slip machines have very high limit frequencies; none of them has an error

higher that 3 dB compared to the Park model for perturbation frequencies up to 100 Hz

and the machines are thus not visible in Figure 6.7. Two of the high-slip machines have a

0.8 dB limit frequency of 70 % while the other two are not visible in Figure 6.7 since

they have an error of less than 0.8 dB for all perturbation frequencies. The limit

frequencies for the other machines are between 10 and 40 % depending on the desired

accuracy and damping ratio.
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Figure 6.5. Calculated gains of ∆Ωm/∆Ts for the 100 hp machine (24). Park model (      ),

NST I( ), LA( ) and ND ( ).
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Figure 6.6. Calculated gains of ∆Ωm/∆Ts for the 200 kW machine (11). Park model (      ),

NST I( ), LA( ) and ND ( ).
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It is important to point out that the damping ratio is of little or no importance for the

possibility of using simpler models to predict the other transfer function characteristics.

The 3 dB limit frequencies of the NST-models, LA-model and ND-model were deter-

mined for the different transfer functions of the 31 machines. The moments of inertia were

twice the values given in Table 6.1, in order to take into account the moments of inertias

of load connected to the machines. This means that the damping ratio is increased by 41 %

and the eigenfrequency is reduced by 41 % according to (6.3) and (6.2), respectively.

The machines are divided into four groups. Group one consists of the ten smaller

machines 1-10, group two consists of machines 11-20, group three of the high-slip

machines 21-24, and group four consists of the seven larger machines 25-31 described

by Cathey et al. (1973). In Tables 6.2-6.9 the 0.8 dB and 3 dB limit frequencies are

presented for the different transfer functions and different models. The machines are

operating as motors loaded by rated torque as the limit frequencies of the LA-model is

determined and as motor loaded by a one quarter of rated torque as the limit frequencies

of the other models are determined. The operating point is in most cases of little

importance for the performance of the reduced-order models, except for the LA-model.

The limit frequencies of the LA-model are generally lowered as the shaft torque increases,

both in motor and generator operation, which is caused by the fact that the damping is
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underestimated. Especially erroneous is the prediction of the damping of machines 11-20

in the cases where they are connected to loads having a very low moment of inertia and

operating with a shaft torque higher than the rated one.

The limit frequencies are independent of the disturbance magnitude at least up to a voltage

magnitude perturbation of 60 % (peak ot peak), a shaft torque perturbation magnitude of

100 % and a supply frequency perturbation magnitude of 10 %. Table 6.2 and 6.3

present the limit frequencies for the ND-model.

Table 6.2. Approximate 0.8 dB limit frequencies for the ND-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

1-4 1 5-99 0.7-1.5 1 *

∆Te
∆Ts

2.5-5 2 15-25 1-2 1 *

∆P
∆Ts

2.5-5 2 15-25 1-2 1 *

∆Q
∆Ts

0.5-5 1-2 0.5-30 2-5 0.5

∆Is
∆Ts

4-8 2-3 15 1-3 1

∆Ωm

∆ωs
2.5-5 2 7-45 1.2 1 *

∆Te

∆ωs
2.5-5 2 7-45 1.2 1 *

∆P

∆ωs
2.5-5 2 7-40 1-2 1 *

∆Q

∆ωs
0.1-0.7 0.1 0.3-1.3 0.02-0.3 0.02

∆Is
∆ωs

0.07-5 0.004-0.03 0.3-30 0.002-1.3 0.002

∆Ωm
∆U

0.7-1.5 0.6-0.9 2-3 0.7-1 0.5

∆Te
∆U

0.7-1.5 0.6-0.9 2-3 0.7-1 0.5

∆P
∆U

0.03-0.2 0.002-0.02 0.2-4 0.01-1 0.002

∆Q
∆U

0.2-1 0.1-0.2 0.9-1.6 0.05-0.2 0.05

∆Is
∆U

0.08-0.5 0.01-0.05 0.2-0.7 0.004-0.1 0.004

* about 30 % of the dominating eigenfrequency for respective machine
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Table 6.3. Approximate 3 dB limit frequencies for the ND-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

2-8 2 >100 1.5-3 2 *

∆Te
∆Ts

5-10 4 25-40 2-4 2 *

∆P
∆Ts

5-10 4 25-40 2-4 2 *

∆Q
∆Ts

1-8 8 1-40 4-9 1

∆Is
∆Ts

5-21 4 25 2-5 2

∆Ωm

∆ωs
4-9 4 40-50 2-4 2 *

∆Te

∆ωs
4-9 4 40-50 2-4 2 *

∆P

∆ωs
4-9 4 40-50 2-4 2 *

∆Q

∆ωs
0.3-1.5 0.2-0.4 0.5-2.3 0.05-4 0.05

∆Is
∆ωs

0.1-7.2 0.01-0.1 15-40 2-5 0.01

∆Ωm
∆U

1.5-3 1.5 5 1.5-2 1.5

∆Te
∆U

1.5-3 1.5 5 1.5-2 1.5

∆P
∆U

0.1-0.6 0.04-3 5 1.5-3 0.01

∆Q
∆U

0.5-2.5 0.3-0.4 2-4 0.1-0.5 0.1

∆Is
∆U

0.1-1.2 0.01-0.1 0.5-1.5 0.01-0.2 0.01

* about 55 % of the dominating eigenfrequency for respective machine

The ∆Ωm, ∆Te and ∆P responses to ∆ωs and ∆Ts perturbations predicted by the ND-

model could accurately be described for all the machines (except the high-slip machines

which have higher limit frequencies) as a percentage of the eigenfrequency. This is not

the case with the other combinations of input and output signals. The ∆Ωm, ∆Te and ∆P

responses to ∆ωs and ∆Ts perturbations could be determined up to a perturbation

frequency of 30 % of the dominating eigenfrequency (i.e. at least up to 2 Hz) before the

discrepancy to the Park model reached 10 %.
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The ∆Ωm, ∆Te responses to ∆U perturbations as well as the ∆Q and ∆Is responses to ∆Ts

perturbations can be predicted up to a perturbation frequency of at least 0.5 Hz. The

prediction of the other transfer function characteristics is otherwise poor.

The responses predicted by using the ND-model vary strongly between the different

induction machine groups. A first-order model of a high-slip machine can better predict

the responses of the induction machine while first-order models of other machines have

poorer performance. Table 6.4 and 6.5 present the limit frequencies for the LA-model.

Table 6.4. Approximate 0.8 dB limit frequencies for the LA-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

3-7 2-3 99 2-4 2

∆Te
∆Ts

5-10 3-4 25-55 3-5 3

∆P
∆Ts

5-10 3-4 25-55 3-5 3

∆Q
∆Ts

1-5 1 10-16 1-2 1

∆Is
∆Ts

2-7 2 35-50 2-4 2

∆Ωm

∆ωs
5-15 3-4 15 4-24 3

∆Te

∆ωs
5-15 3-4 15 4-24 3

∆P

∆ωs
5-15 3-4 15 4-20 3

∆Q

∆ωs
0.003-5 0.05-0.1 0.02-0.3 0.02-0.08 0.003

∆Is
∆ωs

0.1-0.4 0.1-0.2 15 0.3-2.6 0.1

∆Ωm
∆U

1-3 1 4 1 1

∆Te
∆U

1-3 1 4 1 1

∆P
∆U

0.1-0.2 0.1 4 0.1-1.5 0.1

∆Q
∆U

0.1-1 0.1 0.5-1 0.1 0.1

∆Is
∆U

0.3-1 0.6-3 0.3-0.9 1-3 0.3
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Table 6.5. Approximate 3 dB limit frequencies for the LA-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

6-99 4-6 >100 >100 4

∆Te
∆Ts

6-47 4-6 50-60 50-60 4

∆P
∆Ts

6-47 5 50-60 55-60 4

∆Q
∆Ts

2-11 2-3 20-50 2-4 2

∆Is
∆Ts

6-40 4-5 45-55 50-60 4

∆Ωm

∆ωs
6-30 5-6 25 40 5

∆Te

∆ωs
6-30 5-6 25 40 5

∆P

∆ωs
6-25 5-6 25 30-35 5

∆Q

∆ωs
0.02-7.7 0.1-0.3 0.6-10 0.1-0.7 0.02

∆Is
∆ωs

0.5-30 4-5 25 35 0.5

∆Ωm
∆U

1.5-5 1.5 8 1.5-2.5 1.5

∆Te
∆U

1.5-5 1.5 8 1.5-2.5 1.5

∆P
∆U

0.3-8 2 8 1.5-3 0.3

∆Q
∆U

0.2-2 0.01-0.1 1.5-3 0.01-0.2 0.01

∆Is
∆U

0.5-6 4 1-13 3-9 0.5

The LA-model predicts the ∆Te, ∆Ωm and ∆P responses to ∆Ts and ∆ωs perturbations up

to a perturbation frequency of at least 3 Hz before the discrepancy to the Park model

reaches 10 %. The transfer functions ∆Q/∆Ts, ∆Is∆Ts, ∆Ωm/∆U as well as ∆Te/∆U can

be predicted up to a perturbation frequency of 1.5 Hz. The prediction of the other transfer

functions is limited to extremely low-frequency perturbations. The high-slip machines are

more successfully modelled by a second-order model than the other machines.
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In Table 6.6 and 6.7 the limit frequencies for the NST I-model are presented.

Table 6.6. Approximate 0.8 dB limit frequencies for the NST I-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

15-99 >100 >100 >100 15

∆Te
∆Ts

15-45 50 50 50 15

∆P
∆Ts

15-45 50 50 50 15

∆Q
∆Ts

10-25 15-20 15-20 15 10

∆Is
∆Ts

20-35 40 35-45 35 20

∆Ωm

∆ωs
10-15 15 15 18 10

∆Te

∆ωs
10-15 15 15 18 10

∆P

∆ωs
10-15 15 15 18 10

∆Q

∆ωs
10-15 15 10-16 18 10

∆Is
∆ωs

5-15 15 15 18 5

∆Ωm
∆U

1-2 1 3 1-1.5 1

∆Te
∆U

1-2 1 3 1-1.5 1

∆P
∆U

0.05-0.4 0.003-0.04 3 0.01-2 0.003

∆Q
∆U

10-15 15 15 18 10

∆Is
∆U

7-17 5 15 3-15 3
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Table 6.7. Approximate 3 dB limit frequencies for the NST I-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

>100 >100 >100 >100 >100

∆Te
∆Ts

40-50 50 50-55 55 40

∆P
∆Ts

40-50 50 50-55 55 40

∆Q
∆Ts

20-25 25 30 25 20

∆Is
∆Ts

20-40 45 40-50 50-60 20

∆Ωm

∆ωs
25-30 25 30 32 25

∆Te

∆ωs
25-30 25 30 32 25

∆P

∆ωs
25 25 30 32 25

∆Q

∆ωs
25 25 30 32 25

∆Is
∆ωs

10-30 25 30 33 10

∆Ωm
∆U

2-4 2 4-5 2 2

∆Te
∆U

2-4 2 4-5 2 2

∆P
∆U

4-7 2-6 5 2-3 2

∆Q
∆U

20-30 28 30 33 20

∆Is
∆U

25 25 30 25 25

Again, the samme pattern can be observed: The high-slip machines are best suited to be

modelled by the NST I-model. The NST I-model can predict with a 10 % accuracy the

responses to ∆Ts and ∆ωs perturbations up to at least 10 Hz (20 Hz with a 3 dB

accuracy) except for the prediction of ∆Is/∆ωs, which is limited to 5 Hz (10 Hz with a 3

dB accuracy). The 10 % error frequency limit for ∆Ωm/∆U and ∆Te/∆U is about 1 Hz,

for ∆Q/∆U 10 Hz and for ∆Is/∆U 5 Hz. The ∆P response to ∆U perturbations has an

extremely low limit frequency for a 10 % accuracy, for a 3dB accuracy the limit

frequency is about 2 Hz.
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In Table 6.8 and 6.9 the limit frequencies for the NST III-model are presented.

Table 6.8. Approximate 0.8 dB limit frequencies for the NST III-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

>100 >100 >100 >100 >100

∆Te
∆Ts

30-40 50 45-55 50 30

∆P
∆Ts

30-40 50 45-55 50 30

∆Q
∆Ts

13-22 15 20 15 15

∆Is
∆Ts

15-35 40 30-40 35-50 15

∆Ωm

∆ωs
30 28 30 35 30

∆Te

∆ωs
15-21 16 20 20 15

∆P

∆ωs
0.5-20 16 20 20 15

∆Q

∆ωs
2-15 16 1 20 1

∆Is
∆ωs

4-20 16 15-30 20 4

∆Ωm
∆U

5-15 15 7 15 5

∆Te
∆U

0 0 0 0 0

∆P
∆U

0.08-2 0.001-0.8 0.002-0.04 0.001-0.3 0.0003

∆Q
∆U

15-20 16 25 18 15

∆Is
∆U

10-15 6-12 0.7-13 0.5-12 0.5
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Table 6.9. Approximate 3 dB limit frequencies for the NST III-model.

1-10 11-20 21-24 25-31

Lowest

upper limit

for all

machines
∆Ωm
∆Ts

>100 >100 >100 >100 >100

∆Te
∆Ts

40-50 50 50 55 40

∆P
∆Ts

40-50 50 50 55 40

∆Q
∆Ts

20-30 25 30 25 25

∆Is
∆Ts

25-45 45 40-50 50-60 25

∆Ωm

∆ωs
40-60 40 45 45 40

∆Te

∆ωs
30-35 30 35 35 30

∆P

∆ωs
30 25 35 35 25

∆Q

∆ωs
30 25 30-35 35 25

∆Is
∆ωs

6-30 28 35 35 6

∆Ωm
∆U

25 27 7-30 35 25

∆Te
∆U

0 0 0-2 0 0

∆P
∆U

1-4 0.04-1.5 0.007-0.1 0.003-2 0.0006

∆Q
∆U

28-34 28 35 35 30

∆Is
∆U

25-30 25 20-35 20-30 20

The NST III-model has generally somewhat higher limit frequencies than the NST I-

model. However, the prediction of ∆Q/∆ωs, ∆Is/∆ωs, ∆Te/∆U, ∆P/∆U, ∆Q/∆U and

∆Is/∆U using the NST III-model is limited to lower frequencies compared to using the

NST I-model.
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For power system analysis, the most interesting quantities are the active and reactive

power responses to voltage and frequency disturbances. It can be observed that first- and

second-order models are not well suited for this task. Further, it can be observed that the

NST III-model is less suited than the NST I-model for this assignment. The NST I-model

can predict the reactive power response up to at least 10 Hz with an error less than 10 %.

The active power response predicted by a third-order model is less accurate. However,

the magnitude of the active power response to frequency and voltage perturbations is low

as long as the disturbances are limited to a few Hz and is thus not as important to model

correctly as the reactive power response. The other responses are of minor importance for

power system analysis.

It is possible to use either a first-order or second-order model to model the induction

machine as a wind turbine generator. This is providing that it is the mechanical system

that is studied, rather than the electrical impact of the wind turbine on the grid. The

dominating eigenfrequency of a 225 kW wind turbine is about 1.5 Hz and a MW-size

wind turbine has a dominating eigenfrequency of about 0.8 Hz. Below 30 % of the

dominating eigenfrequency, a first-order model predicts results with an error less than

10 %. At higher perturbation frequencies, a second-order model is a more suitable

choice.
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7. CONCLUSIONS

The Park model very well predicts the rotor speed, electrodynamical torque, active

power, reactive power and stator current responses to perturbations in the shaft torque,

supply frequency and voltage magnitude. The predicted electric power and stator current

responses to very low-frequency perturbations in the voltage magnitude are improved if

the iron losses are taken into account.

The performance of the reduced-order models, i.e. the models of lower order than the

Park model, depends on the type of induction machine investigated. High-slip machines

as well as machines that have a low ratio between the stator resistance and leakage

reactances are best suited to be represented by reduced-order models. Small machines and

machines having a rated voltage that is lower than "the normal rated voltage for a machine

of that size" are more difficult to represent by reduced-order models.

The first-order model, ND-model, of the induction machine can be used to predict the

rotor speed, electrodynamical torque and active power responses to torque and frequency

perturbations up to a perturbation frequency of 30 % of the eigenfrequency if an error of

10 % is acceptable, i.e., 10 % discrepancy between the results predicted by the ND-

model and the Park model. MW-size machines have an eigenfrequency of about 5-10 Hz

and machines with a rating of a few kW have an eigenfrequency of about 25 Hz. The

damping ratio of induction machines varies strongly but is usually not important in

determining the frequency region in which a reduced-order model can be used.

The ND-model can also be used to predict the rotor speed and electrodynamical torque

responses to voltage magnitude perturbations up to a perturbation frequency of 0.5 -

 5 Hz depending on the accuracy desired as well as machine investigated. A high ratio

between the stator resistance and leakage reactances leads to a lower value while a high-

slip machine has a higher value.

The LA-model, a non-linear second-order model, predicts the rotor speed,

electrodynamical torque and electric power responses to torque and frequency

perturbations up to a perturbation frequency of at least 3 Hz, if an error of 10 % is

acceptable. The discrepancy between the results obtained using the LA-model and the

Park model depends strongly on the static shaft torque. At no-load, the LA-model can be

used to determine the responses to higher perturbation frequencies. In predicting the

responses to voltage magnitude perturbations, the LA-model is approximately as useful as

a first-order model.
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The simpler third-order model, the NST I-model, predicts well all the responses to torque

and frequency perturbations up to at least 10 Hz if an error of 10 % is acceptable. In

predicting the rotor speed, electrodynamical torque and electric power responses to

voltage magnitude perturbations, the NST I-model is as useful as a first- or second-order

model. Stator current and reactive power responses can, however, be predicted much

better than by an LA- or ND-model, up to a perturbation frequency of at least 10 Hz for

the reactive power response and at least 3 Hz for the stator current response.

The more advanced third-order model, the NST III-model, generally predicts better

responses than the NST I-model. However, the stator current and reactive power

responses to frequency and voltage perturbations are predicted less accurately and the

electrodynamical torque response to voltage perturbations is inaccurate also for extremely

low-frequency perturbations.

The conclusion drawn here is that for power system analysis it is suitable to use the NST

I-model if the computational effort is a problem, otherwise a Park model is, of course, the

best choice. The advantage of the NST I-model is that the reactive power response to

supply frequency and voltage magnitude perturbations is well predicted up to at least

10 Hz.

Two reduced-order linear models were investigated: a first-order model, the LD-model

and a second-order model, the NSR-model. These models are not suited to determine the

electrical impact of induction machines. Instead, the field of application for these models

is to represent the induction machine in mechanical systems, for instance, in a wind

turbine or a reciprocating compressor drive. An example was demonstrated where the

drive-train of a wind turbine was modelled using the LD-model and the NSR-model to

represent the induction generator. The ND-model is suitable to use if the upper

perturbation frequency is about 0.5 Hz while the NSR-model can handle perturbation

frequencies up to at least 10 Hz. The rotor speed and electrodynamical torque responses

of these models are very similar to those predicted by non-linear models of the same

orders. The difference is that the linear models do not predict a correct steady-state

response.

The responses to supply frequency and torque perturbations depend only slightly on the

static shaft torque if temperature changes are not taken into account. Since the damping of

the machine is mainly governed by the rotor resistance, the damping is improved

substantially as the machine gets warmer; the damping ratio can be increased by 100 %

for the investigated 15 kW machine compared to the case where the machine is cold. The
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response to voltage magnitude perturbations, on the other hand, depends strongly on the

static shaft torque, even if temperature changes are not taken into account.

In the steady-state operating region, the skin effect in the rotor winding is of minor

importance for the investigated 15 kW machine; the damping was improved by about

10 %. At nominal flux levels or below nominal flux levels, the main flux saturation only

slightly affected the responses of the investigated machine. At a flux level of 120 % of

the nominal one, the very low-frequency rotor speed and electrodynamical torque

responses were influenced by the main flux saturation.

The induction machine characteristics are strongly influenced by the steady-state supply

frequency even if the flux in the machine is kept constant. As the supply frequency is

lowered, the damping ratio is reduced as well. For the 15 kW machine, the damping ratio

was reduced to about one third as the supply frequency was lowered from 43.5 to 15 Hz.
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APPENDIX A. DETERMINATION OF THE INDUCTION
MACHINE PARAMETERS

In this Appendix the parameters of the investigated 15 kW machine are determined. The

parameters given by the manufacturer of the 15 kW induction machine investigated are

presented together with the measured values in Table A.1. The equivalent circuit of the

induction machine with the iron loss equivalent is presented in Figure A.1.

Table A.1. Measured values and values given by the manufacturer of the investigated

15 kW machine. (Resistances referred to 20 °C)

Parameter Value given by the

manufacturer

Measured/used values

Rs stator resistance 0.18 Ω 0.184 Ω
Rr rotor resistance 0.19 Ω 0.175 Ω
Lm magnetizing inductance 42.6 mH 27 - 43 mH

Lsλ stator leakage

inductance

2.55 mH 2.55 mH

Lrλ rotor leakage

inductance

2.07 mH 2.00 mH

J moment of inertia 0.205 kgm2 (* )

0.45 kgm2 (** )

0.45 kgm2

Rm iron loss equivalent

resistance

166 Ω  (50 Hz) 135 Ω (43.5 Hz)

97-48 Ω (30 Hz)

U voltage 380 V 288 V

f frequency 50 Hz 43.5 Hz

(*) induction machine inertia only.

(**) inertia of induction machine, dc-machine (0.22 kgm2) and the two torque transducer couplings (2

times 0.0125 kgm2).
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Rs

Rm ωs – pΩm

ωsRr

jωsLsλ

jωsLm

jωsLrλ

Figure A.1. The equivalent circuit with an iron loss equivalent resistance added in

parallel with the magnetizing inductance.

Determining resistance and leakage inductance of the stator

Since no suitable method of separating the stator and rotor leakage inductances was

available, the stator leakage inductance is assumed to be 2.55 mH, which is the value

provided by the manufacturer. Anyway, the separation of the leakage inductances to the

rotor and stator is of little importance for the dynamic performance of the machine, as

long as the total leakage inductance is correct (Grantham 1985, Akbaba et al. 1995). The

stator resistance was measured to be 0.184 Ω at 20 °C.

Determination of magnetizing inductance

The magnetizing inductance, Lm, was determined in the conventional way by means of a

no load test performed at different voltage levels. The magnetizing inductance was also

determined as a function of the temperature for a given flux level. In Figures A.2 and A.3

the measured magnetizing inductance is presented as a function of the magnetizing

current, im, and rotor temperature together with linear function approximations. The

machine is operating at no load.
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Figure A.2. Measured magnetizing inductance as a function of the magnetizing current.

Rotor temperature 40 °C.
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Figure A.3. Measured magnetizing inductance as a function of the rotor temperature.

U = 288 V, f = 43.5 Hz.

The magnetizing inductance may be represented as a linear function of the magnetizing

current and rotor temperature T:

Lm = k1 – k2im + k3T (A.1)

where

k1 = 14.64 H (A.2)
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k2 = 0.921 H/A (A.3)

k3=0.04471H/°C (A.4)

for 12 A < Im < 29 A and 30 °C < T < 80 °C

Determination of iron loss equivalent resistance

The iron loss equivalent resistance Rm was determined in the conventional way from a no

load test performed at various voltages and at some different frequencies. At 43.5 Hz,

Rm was found to be 135 Ω and at 50 Hz Rm was found to be 160 Ω, which is very close

to the value given by the manufacturer, 166 Ω. At 30 Hz Rm was found to be 97 Ω.

Determination of rotor leakage inductance

The rotor leakage inductance was determined from a locked-rotor test performed at a

supply frequency of 10 Hz in order to avoid the influence of the skin effect in the rotor

winding. The stator current used was varied between 10 and 40 A in order to determine

at which current level saturation of the leakage inductances becomes important. The rated

rotor current (referred to the stator winding) is 22 A. Up to a rotor current of 30 A the

leakage inductance was constant and at a rotor current of 38 A, the leakage inductance

had been lowered by 2 %. In order to determine the rotor leakage inductance, the

equivalent circuit presented in Figure A.1 was used. Apart from the rotor leakage

inductance, the rotor resistance had not yet been determined. However, the rotor

resistance value affected the determination of the rotor leakage inductance only slightly,

so the rotor resistance was assumed to be 0.19 Ω according to the manufacturer data. The

rotor leakage inductance was found to be 2.03 mH, somewhat less than the value given

by the manufacturer.

Determination of rotor resistance

The rotor resistance, Rr, was not determined from the locked rotor test since the accuracy

of the rotor resistance value may be better by determining the rotor resistance from a load

test. The shaft torque was varied from about rated torque at motor operation to about

rated torque at generator operation at a voltage of 288 V and at a supply frequency of

43.5 Hz. The measured power-slip, torque-slip and reactive power-slip curves are

presented together with curves calculated using two different rotor resistances in Figures

A.4-A.6
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Figure A.4. Measured and calculated torque-slip curves. Dots represent measured values

and lines show calculated ones. Solid line with Rr = 0.19 Ω and dashed line

with Rr = 0.175 Ω (at 20 °C).
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Figure A.5. Measured and calculated electric power-slip curves. Dots represent

measured values and lines show calculated ones. Solid line with Rr = 0.19

Ω and dashed line with Rr = 0.175 Ω (at 20 °C).
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Figure A.6. Measured and calculated reactive power-slip curves. Dots represent

measured values and lines show calculated ones. Solid line with Rr = 0.19

Ω and dashed line with Rr = 0.175 Ω (at 20 °C).

As can be noted from Figures A.4-A.6, a rotor resistance of 0.175 Ω predicts the static

behaviour of the induction machine better than the value of 0.19 Ω given by the

manufacturer.

Locked rotor test at variable frequency

The purpose of the variable-frequency locked-rotor test is to determine the rotor cage

characteristics. From the measured characteristics a multiple-cage rotor configuration can

be adapted.

The locked rotor test was performed at different voltage levels and at different supply

frequencies. Throughout the locked rotor measurements, the machine temperature was

kept constant. In order to obtain a voltage with a low harmonic content, a synchronous

generator was used for feeding the machine. The voltages, currents, frequency and

power factor were measured by means of a digital power meter and the torque was

measured by a torque transducer. The locked-rotor torque was determined as the average

torque over one cogging period. The current levels were kept below the rated current in

order not to saturate the machine.

Knowing the magnetizing inductance, the stator leakage inductance and the stator

resistance, the resistance and leakage inductance of the rotor were determined using the

equivalent circuit presented in Figure A.1. Compared to usual locked rotor tests, the



Appendix A: Determination of the induction machine parameters

                                                                                                                                                   

127

difference here is that the locked rotor torque is measured. This makes a more accurate

determination of the rotor resistance possible.

The rotor resistance is usually determined from the locked-rotor resistance

Rk ≈ Rs + (
Lm

Lm  + Lrλ
)
2

Rr + Rcl (A.5)

where Rcl is an equivalent resistance representing the core losses and additional losses.

Rcl is usually not taken into account, which means that the rotor resistance value

becomes somewhat too high. With the knowledge of the locked-rotor torque, it is

possible to separate Rcl from Rr.

The rotor leakage inductance and rotor resistance measured by the locked rotor test are

presented in Figure A.7 and Figure A.8, respectively. The measured rotor winding

characteristics were then used to determine the parameters of the double-cage rotor

winding.
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Figure A.7. Measured rotor leakage inductance.
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Figure A.8. Measured rotor resistance.
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APPENDIX B. PROCEDURE TO DERIVE THE NST I MODEL

The procedure to derive the NST-models have been presented by, for example,

Rodriguez and Wasynczuk (1987). In this Appendix only the NST I-model will be

derived.

The cage induction machine equations can be expressed as

pΨqds = W0Ψqds + Y0Ψqdr + Bs0uqds (B.1)

pΨqdr = Q0Ψqds + Sl0Ψqdr + ΩmSnl0Ψqdr (B.2)

p Ωm = 
1
Jm

 [ΨqdstTsr Ψqdr – Tl] (B.3)

where

p = 
d
dt (B.4)

Ψqds = [Ψqs Ψds]t (B.5)

Ψqdr = [Ψqr Ψdr]t (B.6)

uqds = [uqs uds]t (B.7)

and
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The output signals are determined by

Y = NΨqds + MΨqdr (B.8)

The output signals of Y may be the currents, flux linkages, rotor speed, electrodynamical

torque as well as active and reactive powers. If Y = [ iqs ids]t then

N = 
 




 




 

Lr
LrLs – LmLm

   0  

 0  
Lr

LrLs – LmLm
  

 and M = 
 




 




 

–Lm
LrLs – LmLm

   0  

 0   
–Lm

LrLs – LmLm
  

By neglecting the effect of stator transients, i.e, the term pΨqds, the solution of (B.1) is

Ψqds* = – W0-1Y0Ψqdr – W0-1Bs0uqds (B.9)

This term differs from the actual flux linkage Ψqds and, in essence, represents its slow

component. Equations (B.2)-(B.3) with pΨqds neglected, after some algebraic

manipulation, may be expressed as

pΨqdr = [Sl0 – Q0W0-1Y0]Ψqdr + ΩmSnl0Ψqdr - Q0W0-1Bs0uqds (B.10)

pΩm = 
1
Jm

{Ψqdrt[-W0-1Y0]tTsrΨqdr + uqdst[-W0-1Bs0]tTsrΨqdr – Tl } (B.11)

Equations (B.10)-(B.11) represent the standard reduced order model of the induction

machine, the NST I-model. An expression for the output signals in terms of the state

variables in (B.10)-(B.11) can be derived by substituting Ψqds*, defined by (B.9) in

(B.8) and rearranging. This gives

Y = [M - NW0-1Y0] Ψqdr – NW0-1Bs0uqds (B.12)
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