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Abstract

Given a static Schwarzschild spacetime of ADM mass M , it is well known that no ingoing
causal geodesic starting in the outer domain r > 2M will cross the event horizon r = 2M
in finite Schwarzschild time. We show that in gravitational collapse of Vlasov matter this
behaviour can be very different. We construct initial data for which a black hole forms and
all matter crosses the event horizon as Schwarzschild time goes to infinity, and show that
this is a necessary condition for geodesic completeness of the event horizon. In addition to a
careful analysis of the asymptotic behaviour of the matter characteristics our proof requires
a new argument for global existence of solutions to the spherically symmetric Einstein–
Vlasov system in an outer domain, since our initial data have non-compact support in the
radial momentum variable and previous methods break down.

1. Introduction

In a previous study [3] two classes of initial data for the spherically symmetric Einstein–
Vlasov system were constructed which guarantee the formation of black holes. An additional
argument to match the definition of a black hole in [9] is given [4]. In this paper we denote
any of these initial data classes by I.

The analysis in [3] is carried out in Schwarzschild coordinates where the metric takes the
form

ds2 = −e2μ(t,r)dt2 + e2λ(t,r)dr 2 + r 2(dθ2 + sin2 θ dϕ2). (1·1)

Here t ∈ R is the time coordinate, r ∈ [0, ∞[ is the area radius, i.e., 4πr 2 is the area of the
orbit of the symmetry group SO(3) labeled by r , and the angles θ ∈ [0, π] and ϕ ∈ [0, 2π]
parametrize these orbits. The structure of the initial data I is such that a possibly large
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fraction of its ADM mass M is necessarily located in the outer domain r > 2M. In [3] it
was shown that solutions launched by such initial data have the following property: there
exist constants α, β > 0 such that spacetime is vacuum for

r � 2M + αe−βt , t � 0. (1·2)

Hence in this domain the metric equals the Schwarzschild metric

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr 2 + r 2(dθ2 + sin2 θdϕ2),

representing a black hole of mass M . The generator of the event horizon approaches the
surface r = 2M asymptotically as Schwarzschild time goes to infinity, cf. [3, theorem 2·4].

Although (1·2) gives information about the asymptotic location of the matter it does not
answer the question whether or not matter crosses the surface r = 2M. As a matter of fact,
the inequality (1·2) is not sufficient to conclude that any matter initially in the region r > 2M
ever crosses the surface r = 2M since matter can pile up at r = 2M. On the other hand
it is known that not all matter can cross the surface r = 2M in finite Schwarzschild time.
Indeed, if this were to happen the Einstein equations would imply that the metric function
λ became infinite at r = 2M . But according to [15] this cannot happen for the solutions
considered in [3]. It follows that on any finite time interval some matter must remain in the
region r > 2M. The purpose of the present paper is to investigate the asymptotic behaviour
of Vlasov matter in Schwarzschild time in the neighbourhood of the event horizon. Note that
if matter crosses the surface r = 2M in finite time it also crosses the event horizon in finite
time. Our main motivations are the following:

(i) In Proposition 2·3 it is shown that, for the initial data considered here, a necessary
condition for completeness of the outgoing radial null geodesic which generates the
event horizon is that all matter crosses the surface r = 2M as Schwarzschild time
goes to infinity.

(ii) In a static Schwarzschild spacetime of ADM mass M no ingoing causal geodesic
starting in the outer domain r > 2M will cross the event horizon r = 2M in finite
Schwarzschild time. It is interesting to know if this remains true in evolutionary grav-
itational collapse. The result in the present paper shows that for the initial data we
construct the behaviour is indeed very different.

(iii) In [7, p. 13] some open problems about gravitational collapse are stated. For instance,
for a scalar field it is known that

sup
H

r = 2 sup
H

m, (1·3)

but for other matter models this issue is open. Here m is the quasi-local mass, H is
the event horizon, and r the area radius.

(iv) [10, theorem 1·5] relates the asymptotic behaviour of the matter at the event horizon
to the question of strong cosmic censorship, see also [10, question 15·3].

(v) An important open problem is the question whether or not solutions can break down
in finite Schwarzschild time. It is often conjectured that Schwarzschild coordinates
are singularity avoiding and that in these coordinates solutions of the spherically
symmetric Einstein–Vlasov system exist globally for general initial data. We expect
that to understand the asymptotics of Vlasov matter in gravitational collapse is going
to be useful for understanding the global existence issue in general.
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Concerning (i) above we stress that our analysis is carried out in Schwarzschild coordin-
ates and we do not claim that these coordinates cover the event horizon H of the maximal
development of the data we consider completely. The asymptotic behavior we establish is
only shown to be necessary for this, but we do at present not know if for (some of) our
data H is indeed covered by Schwarzschild coordinates. In order to study this completeness
question it is natural to use coordinates which, as opposed to Schwarzschild coordinates, do
not break down if all the matter crosses into the region r < 2M in finite coordinate time.
An investigation of gravitational collapse for the Einstein–Vlasov system in Eddington–
Finkelstein-type coordinates is under way, cf. [5].

In this paper we construct a class J of initial data for which the results in [3] apply, and
such that all the matter asymptotically crosses the surface r = 2M . In particular (1·3) holds
for Vlasov matter for this class of initial data. The class J is different from the class I in
that the support of the momentum variables is not compact. This is a technical condition
needed for our method of proof, but we believe that the conclusion holds for compactly
supported data as well. Below, we always have in mind the radial momentum variable when
we discuss compactly or non-compactly supported initial data. Our method of proof does
imply that matter crosses the surface r = 2M also in the compactly supported case, but we
are not able to conclude that all matter eventually crosses r = 2M in this case. We point
out that the condition of non-compact support is required in some works in the cosmological
case, cf. [9] and [17]. For compactly supported initial data the result in [15] guarantees that
solutions exist as long as matter stays in a region r � ε > 0. The proof in [15] breaks
down for non-compactly supported data. But for applying the method in [3] it is crucial that
solutions are global in an outer domain, and so we need to establish such a global existence
result in the case of non-compactly supported data as well. Non-compactly supported data
have been considered for other kinetic equations such as the Vlasov–Poisson system [12]
and the Vlasov–Maxwell system [11, 16]. These methods do not directly apply in the case
of the Einstein–Vlasov system, and we have not been able to find a result analogous to [15]
for non-compactly supported data. However, the initial data set J constructed below is such
that the matter continues to move inward for all times. This crucial feature allows us to
obtain the necessary global existence proof for the corresponding, non-compactly supported
data in an outer domain.

The outline of the paper is as follows. In the next section we introduce the Einstein–Vlasov
system, recall the set up and the construction of the class of initial data in [3], and formulate
the main results of the present paper. Sections 4, 5 and 6 are devoted to their proofs.

2. Set up and main results

In this section we recall the Einstein–Vlasov system and the set up in [3] and formulate
the main results. For more background on kinetic theory and the Einstein–Vlasov system
we refer to [1]. We consider the asymptotically flat spherically symmetric Einstein–Vlasov
system. We use Schwarzschild coordinates (t, r, θ, ϕ) and parametrize the metric as in (1·1).
Asymptotic flatness means that the metric quantities λ and μ have to satisfy the boundary
conditions

lim
r→∞ λ(t, r) = lim

r→∞ μ(t, r) = 0. (2·1)

Vlasov matter is a collisionless ensemble of particles which is described by a density
function f on phase space. In order to exploit the symmetry it is useful to introduce
non-canonical variables on momentum space and write f = f (t, r, w, L). The variables
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w ∈]−∞, ∞[ and L ∈ [0, ∞[ can be thought of as the radial component of the momentum
and the square of the angular momentum respectively.

The Vlasov equation is given by

∂t f + eμ−λ w

E
∂r f −

(
λtw + eμ−λμr E − eμ−λ L

r 3 E

)
∂w f = 0, (2·2)

where

E = E(r, w, L) :=
√

1 + w2 + L/r 2,

and where subscripts indicate partial derivatives. The Einstein equations read

e−2λ(2rλr − 1) + 1 = 8πr 2ρ, (2·3)

e−2λ(2rμr + 1) − 1 = 8πr 2 p, (2·4)

λt = −4πr j, (2·5)

and the matter quantities are given by

ρ(t, r) = π

r 2

∫ ∞

−∞

∫ ∞

0
E f (t, r, w, L) dL dw, (2·6)

p(t, r) = π

r 2

∫ ∞

−∞

∫ ∞

0

w2

E
f (t, r, w, L) dL dw, (2·7)

j (t, r) = π

r 2

∫ ∞

−∞

∫ ∞

0
w f (t, r, w, L) dL dw. (2·8)

The equations (2·2)–(2·8) constitute the spherically symmetric Einstein–Vlasov system in
Schwarzschild coordinates. For a detailed derivation of this system we refer to [13].

As initial data we need to prescribe an initial distribution function
◦
f = ◦

f(r, w, L) � 0
such that ∫ r

0
4πη2 ◦

ρ(η) dη = 4π2

∫ r

0

∫ ∞

−∞

∫ ∞

0
E

◦
f(η, w, L) dL dw dη <

r

2
. (2·9)

Here we denote by ◦
ρ the energy density induced by the initial distribution function

◦
f. If in

addition the initial data is C1 we say that it is regular. In previous investigations the condition
of compact support was included in the definition of regular data, but compact support in
w is not required in the present paper and is replaced by a suitable fall-off condition, cf.
(3·3) below. The Cauchy problem is well defined for regular initial data. We will restrict
ourselves to a smaller class of regular initial data which guarantee the formation of black
holes. Clearly, black holes do not form for arbitrary initial data, e.g., if the data is sufficiently
small matter disperses and spacetime is geodesically complete, cf. [14].

Let us recall the set up and the properties of one of the initial data sets constructed in [3].
We fix 0 < r0 < r1, and let γ + be the outgoing radial null geodesic originating from r = r0,
i.e.,

dγ +

ds
(s) = e(μ−λ)(s,γ +(s)), γ +(0) = r0. (2·10)

We consider solutions of the spherically symmetric Einstein–Vlasov system (2·2)–(2·8) on
the outer region

D := {(t, r) ∈ [0, ∞[2| r � γ +(t)}. (2·11)
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Note that characteristics of the Vlasov equation can pass from the region D into the region
{r < γ +(t)} but not the other way around so that initial data

◦
f posed for r > r0 completely

determine the solution on D.
Let M := r1/2 be the total ADM mass and define the quasi-local mass by

m(t, r) = M − 4π

∫ ∞

r
ρ(t, η) η2dη. (2·12)

Let Mout < M be given and such that

2(M − Mout)

r0
<

8

9
. (2·13)

Take R1 > r1 such that

R1 − r1 <
r1 − r0

6

and define

R0 := 1

2
(r1 + R1).

We require that all the matter in the region [r0, ∞[ is initially located in the strip [R0, R1],
with Mout being the corresponding fraction of the ADM mass M , i.e.,∫ ∞

r0

4πr 2 ◦
ρ(r) dr =

∫ R1

R0

4πr 2 ◦
ρ(r) dr = Mout.

Furthermore, the remaining fraction M − Mout should be initially located within the ball of
area radius r0, i.e., ∫ r0

0
4πr 2 ◦

ρ(r) dr = M − Mout.

If one considers the Einstein–Vlasov system on the whole spacetime r � 0, then the
definition (2·12) for the quasi-local mass is equivalent to the more standard one, namely
m(t, r) = 4π

∫ r
0 ρ(t, η) η2dη. This is because the ADM mass M = m(t, ∞) is conserved.

On the outer domain D the definition (2·12) is more suitable, since it does not refer to the
matter inside {r < γ +(t)} except for the fact that this matter is there and contributes to the
total mass.

The properties above concern the structure of the initial data in space. We also need to
specify conditions on the momentum variables. Let W− < 0 and L1 > 0 be given. In [3] we
introduced the general support condition: For all (r, w, L) ∈ supp

◦
f,

r ∈]0, r0] � [R0, R1]
and, if r ∈ [R0, R1], then

w � W−, 0 � L � L1

and

0 � L <
3L

η

◦m(η) + η
◦m(η), η ∈ [r0, R1].

Here we use the notation ◦
m when ρ = ◦

ρ in (2·12). In addition to the conditions above the
initial data I in [3] were assumed to have compact support. If W− is sufficiently negative, a
black hole of ADM mass M forms and limt→∞ γ �(t) = 2M for a certain radially outgoing
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null geodesic which is the generator of the event horizon, cf. [3, theorem 2·4] and [4, sec-
tion 4·3]. The initial data we construct below do have the properties specified above, but the
support in the radial momentum variable w is not compact. However, the proof in [3] goes
through unchanged also for such data provided the solutions are global on the domain D.
With respect to global existence in the domain D the following holds.

THEOREM 2·1. Let regular initial data
◦
f be given with the properties specified above,

and such that the fall-off condition (3·3) is satisfied. Then the corresponding solutions of
the spherically symmetric Einstein–Vlasov system (2·2)–(2·8) in the domain D exist for all
t � 0.

We can now state the main result.

THEOREM 2·2. There exists a class of regular initial data for the spherically symmetric
Einstein–Vlasov system such that the corresponding solutions have the asymptotic property
that

lim
t→∞ m(t, 2M) = lim

t→∞ m(t, γ �(t)) = M. (2·14)

Notice that any radially outgoing null geodesic which starts at some time at r = 2M and
hence to the right of γ ∗ is future complete and reaches arbitrarily large values or r , cf. [3,
theorem 2·3 (c)]. Hence observers who are far away can observe the matter cross the surface
r = 2M .

As mentioned in the introduction the condition (2·14) is a necessary condition for com-
pleteness of the generator γ ∗ of the event horizon. We state this in a proposition.

PROPOSITION 2·3. For solutions launched by initial data considered in this paper, a ne-
cessary condition for future completeness of the generator γ ∗ of the event horizon is that
(2·14) holds.

3. Proof of Theorem 2·1
Compactly supported, regular initial data launch a local regular solution which can be

extended as long as the momentum support of the solution can be controlled [13, 14]. We
do not give a complete proof for the corresponding result for non-compactly supported data
and restrict ourselves to establishing the main a-priori bounds. To this end it is conveni-
ent to introduce the Cartesian coordinates x = r(sin θ cos ϕ, sin θ sin ϕ, cos θ) ∈ R

3 with
corresponding momentum variable v ∈ R

3 so that

w = x · v

r
, L = |x × v|2, |v|2 = w2 + L

r 2
. (3·1)

Here · denotes the Euclidean scalar product and |v| the induced norm. We denote by
(X, V )(s, t, x, v) the solution of the characteristic system of the Vlasov equation, written
in the variables x and v,

ẋ = e(μ−λ)(s,r) v√
1 + |v|2 ,

v̇ = −
(
λt(s, r)

x · v

r
+ e(μ−λ)(s,x)μr (s, r)

√
1 + |v|2

) x

r
,
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with (X, V )(t, t, x, v) = (x, v); here ˙ denotes the derivative with respect to s. We define

Q(t) := sup

{
1 + |v|

1 + |V (0, s, x, v)|
∣∣∣∣0 � s � t, (x, v) ∈ supp f (s)

}

= sup

{
1 + |V (s, 0, x, v)|

1 + |v|
∣∣∣∣0 � s � t, (x, v) ∈ supp

◦
f

}
. (3·2)

We require that the initial data satisfy the fall-off condition

‖ ◦
f ‖ := sup

(x,v)∈R6

(1 + |v|)5| ◦
f(x, v)| < ∞. (3·3)

Since

f (t, x, v) = ◦
f((X, V )(0, t, x, v)),

we get the estimate

f (t, x, v) � ‖ ◦
f ‖(1 + |V (0, t, x, v)|)−5 � Q5(t)‖ ◦

f ‖(1 + |v|)−5.

Hence ∫
R3

(1 + |v|) f (t, x, v)dv � ‖ ◦
f ‖Q5(t)

∫
R3

(1 + |v|)−4dv � C‖ ◦
f ‖Q5(t). (3·4)

By the characteristic system,

d

ds
(1 + |V (s, 0, x, v)|) � (‖eμ−λμr (s)‖∞ + ‖λt(s)‖∞)(1 + |V (s)|).

This implies that for 0 � s � t ,

1 + |V (s, 0, x, v)|
1 + |v| � e

∫ t
0 (‖eμ−λμr (τ )‖∞+‖λt (τ )‖∞)dτ ,

and we obtain the estimate

Q(t) � e
∫ t

0 (‖eμ−λμr (s)‖∞+‖λt (s)‖∞)ds .

The field equations (2·3) and (2·4) together with the boundary condition (2·1) imply that

(μ + λ)(t, r) = −
∫ ∞

r
(μr + λr )(t, η) dη � 0

and

eμ−λμr (t, r) = eμ+λ

(
m(t, r)

r 2
+ 4πr p(t, r)

)
� 4πr (‖ρ(t)‖∞ + ‖p(t)‖∞) .

Together with (2·5) and (3·4) we have

‖eμ−λμr (s)‖∞ + ‖λt(s)‖∞ � C(1 + s)‖ ◦
f ‖Q5(s),

so that

Q(t) � e
∫ t

0 C‖
◦
f ‖(1+s)Q5(s)ds .

This implies that Q is bounded on some time interval [0, T [. A standard iterative proced-
ure then shows that there is a local, regular solution which can be extended as long as the
function Q does not blow up, cf. [13, 14].
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Global existence in the outer domain D will now follow if we can establish a bound on
Q(t) in D. For this argument we use the variables (r, w, L). By (3·3),

◦
f(r, w, L) � C |w|−3.

Let us define a quantity as in (3·2). By abuse of notation we let

Q(t) := sup

{ |w|
|W (0, s, r, w, L)|

∣∣∣∣0 � s � t, (r, w, L) ∈ supp f (s)

}

= sup

{ |W (s, 0, r, w, L)|
|w|

∣∣∣∣0 � s � t, (r, w, L) ∈ supp
◦
f

}
; (3·5)

notice that in the outer domain D the area radius r � r0 > 0 so that by (3·1) a bound on
Q as defined in (3·5) implies a bound on Q as defined in (3·2). The following lemma taken
from [3] shows that when the general support condition holds, then the particles in the outer
domain D keep moving inward in a controlled way.

LEMMA 3·1. Let
◦
f be regular and satisfy the general support condition for some suitable

W− < 0. Then for all characteristics (R(t), W (t), L) with (R(0), W (0), L) ∈ supp
◦
f and

R(0) ∈ [R0, R1],
W (t) � eλ(t,R(t))e−λ(0,R(0))W (0) � e−λ(0,R(0))W (0)

as long as (t, R(t)) ∈ D. In particular w < 0 for all (r, w, L) ∈ supp f (t) and (t, r) ∈ D,
and j � 0 on D.

Following [15] we find that along any characteristic in supp f ,

d

ds
w2 � Cw2 + C

∫ ∞

−∞

∫ L1

0
|w̃| f (s, r, w̃, L̃) d L̃ dw̃; (3·6)

for this estimate it is essential that all particles are moving inward. We estimate the last term.
Since

f (s, r, w, L) = ◦
f(R(0, s, r, w, L), W (0, s, r, w, L), L),

we have ∫ ∞

−∞

∫ L1

0
|w̃| f (s, r, w̃, L̃) d L̃ dw̃

� C
∫∫

supp f (s,r,·,·)
|w̃||W (0, s, r, w̃, L̃)|−3 d L̃ dw̃.

By the definition of Q and the general support condition,

|W (0, s, r, w̃, L̃)| � max

{
|W−|, |w̃|

Q(s)

}
.

Hence we find that∫ ∞

−∞

∫ L1

0
|w̃| f (s, r, w̃, L̃) d L̃ dw̃ � C

∫ ∞

0

∫ L1

0
w̃

(
max

{
|W−|, w̃

Q(s)

})−3

dw̃

� C
∫ |W−|Q(s)

0
w̃ dw̃ +

∫ ∞

|W−|Q(s)
w̃

Q3(s)

w̃3
dw̃

� C Q2(s).
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We have thus derived the estimate

d

ds
w2 � C w2 + C Q2(s)

and hence, for 0 � s � t ,

w2(s)

w2(0)
� eCt

(
1 + C

∫ t

0
Q2(τ ) dτ

)
.

This implies that

Q2(t) � eCt

(
1 + C

∫ t

0
Q2(s) ds

)
,

hence Q is bounded on bounded time intervals, and global existence in D follows.

4. Proof of Theorem 2·2
We aim to show that all characteristics starting in the domain [R0, R1[ enter the region

{r � 2M} in finite time, and we need an estimate for the required time. Let (R(s), W (s), L)

be a characteristic emanating from the support of
◦
f with R(0) ∈ [R0, R1]; all the following

estimates are valid as long as R(s) � 2M . By Lemma 3·1 and the characteristic equation,

Ṙ(s) = W (s)

E(s)
e(μ−λ)(s,R(s)) � −B(R(0), W (0))e(μ−λ)(s,R(s)),

where

B(r, w) := e−λ(0,r)|w|√
1 + e−2λ(0,r)w2 + L1(2M)−2

.

We require that on supp
◦
f,

w � −eλ(0,r)K (r) (4·1)

where K : [R0, R1[→]0, ∞[ is an increasing function which will be specified below. Hence

B(r, w) � K (r)√
1 + K 2(r) + L1(2M)−2

:= B(r)

and

Ṙ(s) � −B(R(0)) e(μ−λ)(s,R(s)). (4·2)

By [3, lemma 4·1 (a)],

μ − λ � 2μ̂

where

μ̂(t, r) := −
∫ ∞

r

m(t, η)

η2
e2λ(t,η)dη.

Inserting this into (4·2) implies that

Ṙ(s) � −B(R(0)) e2μ̂(s,R(s)). (4·3)
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In order to estimate the right-hand side we compute μ̂t , cf. [3, lemma 4·1 (d)], and observe
that

μ̂t(s, r) =
∫ ∞

r
4π j (s, η) e(μ+λ)(s, η)e2λ(s, η) dη

� 1

2r

∫ ∞

r
4πη 2 j (s, η) e(μ+λ)(s, η)e2λ(s, η) dη;

note that by Lemma 3·1, j � 0. Since

E + 2w + w2

E
=

(√
E + w√

E

)2

� 0

the expressions for the matter terms imply that 2 j � −(ρ + p) so that by [3, lemma 4·2],

μ̂t(s, r) � − 1

2r

∫ ∞

r
4πη (ρ + p)(s, η) e(μ+λ)(s, η)e2λ(s, η) dη

= − 1

2r

(
1 − e(μ+λ)(s, r)

)
.

Moreover,

μ̂r (s, r) = m(s, r)

r 2
e2 λ(s,r)

and |Ṙ(s)| � e(μ−λ)(s,R(s)). Hence

μ̂(t, R(t)) − μ̂(0, R(0)) =
∫ t

0

d

ds
μ̂(s, R(s)) ds

=
∫ t

0

(
μ̂t(s, R(s)) + μ̂r (s, R(s))Ṙ(s)

)
ds

�
∫ t

0

(
− 1

2R(s)

(
1 − e(μ+λ)(s,R(s))

)
− m(s, R(s))

R(s)2
e(μ+λ)(s,R(s))

)
ds

=
∫ t

0

(
− 1

2R(s)
+

( 1

2R(s)
− m(s, R(s))

R(s)2

)
e(μ+λ)(s,R(s))

)
ds. (4·4)

The right-hand side of this inequality will be estimated using the following lemma.

LEMMA 4·1. Let ρ ∈ L1([2M, R1]) be such that ρ � 0 and 0 � 2m(r)/r < 1, where

m(r) := M −
∫ R1

r
4πη2ρ(η) dη,

and let

e2λ(r) :=
(

1 − 2m(r)

r

)−1

, r ∈ [2M, R1].

Then, for all r ∈ [2M, R1],
e−2

∫ R1
r 4πη ρ(η) e2λ(η)dη � r − 2M

r − 2m(r)
.

Proof. For r ∈ [2M, R1] we define

h(r) := (r − 2m(r)) eg(r) − r + 2M, g(r) := −2
∫ R1

r
4πηρ(η)e2λ(η)dη.
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Then

h′(r) = (1 − 8πr 2ρ(r)) eg(r) + (r − 2m(r)) eg(r)g′(r) − 1

= (1 − 8πr 2ρ(r)) eg(r) + r

(
1 − 2m(r)

r

)
eg(r)8πrρ(r)e2λ(r) − 1

= (1 − 8πr 2ρ(r)) eg(r) + re−2λ(r)eg(r)8πrρ(r) e2λ(r) − 1

= eg(r) − 1 � 0, r ∈ [2M, R1].
Hence for r ∈ [2M, R1],

h(r) � h(R1) = 0,

which is the assertion.

Remark. It is interesting to note that the configuration for which equality holds in the
inequality in the lemma can be shown to be an infinitely thin shell. This should be compared
to the situation considered in [2] where an infinitely thin shell is the maximizer of a similar
integral expression as above.

Let us return to the proof of Theorem 2·2. By the field equations (2·3) and (2·4) and the form
(2·6) and (2·7) of the matter terms,

μr + λr = 4πre2λ(ρ + p) � 8πre2λρ.

Hence, Lemma 4·1 implies that for r ∈ [2M, R1],

e(μ+λ)(s,r) � e−2
∫ R1

r 4πη ρ(s,η) e2λ(s,η)dη � r − 2M

r − 2m(s, r)
.

We insert this into the estimate (4·4) and find that as long as R(t) � 2M ,

μ̂(t, R(t)) � μ̂(0, R(0)) −
∫ t

0

M

R2(s)
ds.

By (4·3) this implies that

Ṙ(s) � −B(R(0)) C(R(0)) exp

(
−2

∫ s

0

M

R2(τ )
dτ

)
,

where C(r) := e2μ̂(0,r). This implies that

d

ds

1

R(s)
= − Ṙ(s)

R2(s)

� BC

R2(s)
exp

(
−2

∫ s

0

M

R2(τ )
dτ

)
= − BC

2M

d

ds
exp

(
−2

∫ s

0

M

R2(τ )
dτ

)

which upon integration yields the estimate

1

R(t)
� 1

R(0)
− BC

2M

(
exp

(
−2

∫ t

0

M

R2(s)
ds

)
− 1

)

� 1

R(0)
+ (BC)(R(0))

2M

(
1 − e−2Mt/R2

1

)
. (4·5)

In order to proceed the functions C and B must be related properly. We require that
◦
ρ(r) > 0 for r ∈]R0, R1[
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so that ◦m(r) < M for r ∈ [0, R1[, and

C(r) = e2μ̂(0,r) = exp

(
−

∫ ∞

r

2 ◦
m(η)

η2(1 − 2 ◦
m(η)/η)

dη

)

> exp

(
−

∫ ∞

r

2M

η(η − 2M)
dη

)
= 1 − 2M

r
.

We can therefore choose the function K which specifies our support condition (4·1) in such
a way that for r ∈ [R0, R1[,

B(r) C(r) = K (r)√
1 + K 2(r) + L1(2M)−2

C(r) > 1 − 2M

r
; (4·6)

note that this necessarily implies that K (r) → ∞ as r → R1, and that the function C is
determined by the initial data. Given any r � ∈]R0, R1[ there now exists κ > 0 such that for
r ∈ [R0, r �],

B(r) C(r) > 1 − 2M

r
+ κ.

The estimate (4·5) therefore implies that for any characteristic as above, but with R(0) ∈
[R0, r �], and as long as R(t) � 2M ,

1

R(t)
� 1

R(0)
+ 1

2M

(
1 − 2M

R(0)
+ κ

)(
1 − e−2Mt/R2

1

)

= 1 + κ

2M

(
1 − e−2Mt/R2

1

)
+ 1

R(0)
e−2Mt/R2

1

>
1 + κ

2M

(
1 − e−2Mt/R2

1

)
,

which implies that

R(t) <
2M

1 + κ

(
1 − e−2Mt/R2

1

)−1
.

This shows that there is a time t� > 0 such that R(t�) � 2M for all characteristics starting
with R(0) ∈ [R0, r �].

To complete the proof we fix ε > 0 and let rε < R1 be sufficiently close to R1 such that
◦m(rε) � M − ε. Then there is a finite time tε such that all characteristics (R(t), W (t), L)

with R(0) ∈ [R0, rε] reach r = 2M at some time t � tε .
We construct a curve (t, α(t)) with the property that m(t, α(t)) � M − 2ε for 0 � t � tε

and α(t) = 2M for some t � tε . To this end, let

δ := ε

4π R2
1 tε

, (4·7)

and let α be the solution of

α̇ = j (s, α) − δ

ρ(s, α) + δ
e(μ−λ)(s,α), α(0) = rε. (4·8)

The reason for introducing the δ parameter is to avoid any potential problems with unique-
ness of solutions if ρ = 0. Taking the partial derivative of e−2λ = 1 − 2m/r with respect to
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t and using (2·5) we find that mt = −4πr 2eμ−λ j , and hence

d

dt
m(t, α(t)) = −4πe(μ−λ)(t,α(t))α2(t) j (t, α(t)) + 4πα2(t)ρ(t, α(t))α̇(t)

= 4πα2e(μ−λ)(t,α(t))

(
j − δ

ρ + δ
ρ − j

)

� −4πα2(t)e(μ−λ)(t,α(t))δ � − ε

tε
.

Here we used that j � 0. Thus for all 0 � t � tε ,

m(t, α(t)) � M − 2ε,

and it remains to show that α(t) � 2M for some 0 < t � tε . Define for each r ∈ [R0, R1]
the barrier curve (t, RB(t)) by

ṘB = −B(r)e(μ−λ)(s,RB ), RB(0) = r.

We use the term barrier curve since the area radius along this curve is larger than the area
radius along any characteristic (R(t), W (t), L) starting in the support of

◦
f with R(0) =

r . This is clear from the differential estimate (4·2) and the estimates which followed. In
addition, all barrier curves starting at some r ∈ [R0, rε] reach the region r � 2M within the
time interval [0, tε]. For r ∈ [R0, R1] the definition of B(r) and the condition on the support
of

◦
f imply that,

| j (0, r)| � eλ(0,r) B(r)
π

r 2

∫ ∞

−∞

∫ ∞

0

√
1 + e−2λ(0,r)w2 + L1(2M)−2

◦
f d L dw

� B(r)ρ(0, r),

and, since B < 1, we thus have

| j (0, r)| + δ

ρ(0, r) + δ
> B(r).

Consider the barrier curve RB(t) with RB(0) = rε . Then

α̇(0) = j (0, rε) − δ

ρ(0, rε) + δ
e(μ−λ)(0,rε ) < −B(rε) e(μ−λ)(0,rε ) = ṘB(0),

and hence α(s) < RB(s) on a time interval ]0, s1]. Assume that α(t) > 2M for all 0 � t �
tε . We define

t� := inf {t ∈ [0, tε] | RB < α on [t, tε] for all barriers starting in [R0, rε]} .

Then there exists some barrier curve RB(t) starting at some r ∈ [R0, rε] such that α(t�) =
r � := RB(t�). By definition of t�, α(t) > RB(t) for t > t�, and hence

−| j (t�, r �)| + δ

ρ(t�, r �) + δ
e(μ−λ)(t�,r�) = α̇(t�) � ṘB(t�) = −B(RB(0))e(μ−λ)(t�,r�),

which implies that

| j (t�, r �)| < B(RB(0)) ρ(t�, r �).
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The latter inequality is only possible if there is at least one characteristic (R(t), W (t), L)

with R(t�) = r �, and

K (RB(0))√
1 + K 2(RB(0)) + L1(2M)−2

= B(RB(0)) >
|W (t�)|√

1 + |W (t�)|2 + L R(t�)−2

� B(R(0), W (0)) � B(R(0)) = K (R(0))√
1 + K 2(R(0)) + L1(2M)−2

.

Since the function K is taken to be increasing this estimate implies that R(0) < RB(0) � rε .
The barrier curve (t, R̃B(t)) with R̃B(0) = R(0), must satisfy the estimate α(t�) = r � =
R(t�) < R̃B(t�), and this is a contradiction to the definition of t�. Hence α(t) � 2M for
some 0 < t � tε , which proves that limt→∞ m(t, 2M) = M .

We can chose the parameter δ in (4·7) such that m(t, α(t)) � M−2ε for all 0 � t � tε+1.
Since α is strictly decreasing, α(tε + 1) < 2M , and since limt→∞ γ �(t) = 2M there exists
some time t � tε + 1 such that γ �(t) � α(tε + 1) and hence m(t, γ �(t)) � M − 2ε. This
completes the proof of Theorem 2·2.

To conclude our main result we show that initial data which satisfy the conditions required
above do exist. To this end, let ρ = ρ(r) be a C1 function supported in [R0, R1] with
ρ(r) > 0 on ]R0, R1[, and such that

Mout = 4π

∫ R1

R0

r 2ρ(r)dr < M,

satisfies (2·13). Define

m(r) := M − 4π

∫ ∞

r
r 2ρ(r)dr, e−2λ(r) := 1 − 2m(r)

r
.

If r ∈ [R0, R1[, then M − m(r) > 0, and hence there exists a function K as introduced in
(4·1), which satisfies the condition (4·6). Now let h̃ = h̃(r, w, L) be a C1 function supported
in [R0, R1]×] − ∞, ∞[×[0, L1] and such that h̃(r, w, L) = 0 if e−λ(r)w > −K (r), and∫ ∞

−∞

∫ L1

0
h̃(r, w, L) d L dw = r 2

π
.

Let

h(r, w, L) = h̃(r, w, L)√
1 + w2 + L/r 2

so that ρ(r)h(r, w, L) induces the energy density ρ and the quasi-local mass m. Let fi be
a density function supported in [0, r0] such that the assumptions of Lemma 3·1 hold. Then◦
f = fi + ρ h defines initial data which have all the required properties stated above.

5. Proof of Proposition 2·3
The function m(t, r) is increasing in both variables. We assume that m(t, r) �

m(t, 2M) � C < M for all t � 0 and r � 2M and have to show that the generator γ ∗

of the event horizon is incomplete. According to [3, theorem 2·4], γ ∗ approaches r = 2M
as t → ∞. It follows that for all t � 0,

λ(t, γ ∗(t)) � C. (5·1)

Let τ �→ (t, r, θ, φ)(τ ) be an affine parametrization of γ ∗ with corresponding momenta
(p0, p1, p2, p3)(τ ). Since γ ∗ is radial, let θ = π/2, φ = 0 and p2 = p3 = 0. Since γ ∗ is
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null,

e2μ(p0)2 = e2λ(p1)2,

and we get

p0 = eλ−μ p1. (5·2)

By the geodesic equations,

dp1

dτ
= −e2(μ−λ)μr (p0)2 − λr (p1)2 − 2λt p0 p1

= 4πγ ∗e2λ(p1)2[−p − ρ + 2 j].
Here we used (5·2) to express p0 in terms of p1. Since dt/dτ = p0,

dp1

dt
= 4πγ ∗eμ+λ p1[−(p + ρ) + 2 j], (5·3)

and γ ∗ is incomplete if ∫ ∞

0

ds

p0
< ∞.

By (5·2) and (5·3),∫ t

0

ds

p0
=

∫ t

0

eμ−λ

p1
ds =

∫ t

0
eμ−λ 1

p1(0)
e

∫ s
0 4πγ ∗eμ+λ(p+ρ−2 j)dηds. (5·4)

For the interior integral expression we have since p � ρ,∫ s

0
4πγ ∗eμ+λ(p + ρ − 2 j)dτ �

∫ s

0
4πγ ∗eμ+λ(2ρ − 2 j)dτ.

Along the null geodesic we get

d

ds
λ(s, γ ∗(s)) = λt + λr

dγ ∗

ds
= 4πγ ∗(ρ − j)eμ+λ − m

(γ ∗)2
eμ+λ.

Hence by (5·1),∫ s

0
4πγ ∗eμ+λ(2ρ − 2 j)dτ = 2λ(s, γ ∗(s)) − 2λ(0, γ ∗(0))

+
∫ s

0

2m(τ, γ ∗(τ ))

(γ ∗(τ ))2
e(μ+λ)(τ,γ ∗(τ ))dτ

� C + C
∫ s

0
eμ(τ,γ ∗(τ ))dτ.

By [3, theorem 2·4] there exist positive constants α and β such that if (t, r) satisfies

r � 2M + αe−βt := σ(t),

then there is vacuum at (t, r). By monotonicity of μ and the fact that there is vacuum for
r � σ ,

eμ(τ,γ ∗(τ )) � eμ(τ,σ (τ )) � e− ∫ ∞
σ(τ)

M
η(η−2M)

dη � Ce− βτ

2 ,

and thus ∫ s

0
4πγ ∗eμ+λ(2ρ − 2 j)dτ � C.
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From (5·4) we therefore obtain the estimate∫ t

0

ds

p0
� C

∫ t

0
e(μ−λ)(s,γ ∗(s))ds = C

∫ t

0

dγ �(s)

ds
ds < 2C M,

which says that γ � is incomplete, and the proof is complete.
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