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Abstract

A lot of research is being made on extracting useful information from biomed-
ical measurements, and signal processing has been found to be a powerful
diagnostics tool. We describe herein our effort to create a usable software
implementation of certain analysis methods. As part of an ongoing project
intending to study the effects that stress during care time can have on the
final outcome of the treatment of neuro-intensive care patients, our tool is
intended to provide estimates of the stress level in a patient. The focus is
on the development of three main parts: algorithms for extracting estimates
of stress levels based on Heart Rate Variability (HRV), means for visuali-
sation of biomedical signals, and finally, an extendible framework for signal
processing of this kind.

The result is a piece of software where the user is presented with three
different running estimates of stress-level. One is a statistical measure of
HRV and the other two measure the level of correlation between variations
in heart rate and the respiratory cycle. The correlation is determined, in one
case using Fast Fourier Transform (FFT), and in the other, by a model-based
approach using Kalman filtering. The information can be viewed over great
ranges of scale in an easily browsable visualisation interface. At the founda-
tion is our configurable and extendible library for signal analysis over large
data sets. It is built on a concept of computation graphs of composable sub-
algorithms, enabling new processing methods to be built with ease; both by
creating new computation graphs, and by implementing new sub-algorithms.

We used our program on recorded data from several patients undergo-
ing neuro-intensive care and found that our two correlation-based estimates
show similar trends. The estimates show large variation, both from patient
to patient, and over time in the same patient. These variations have not
yet been satisfactorily linked to any other information about the patient,
e.g. medication dosage or general observations. However, for the patients
considered, the amount of stress-related information, was rather low and the
medical links are hopefully due for further investigation.
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Introduction

Traumatic brain injury (TBI) affects many, in other respects perfectly healthy,
young individuals. Subarachnoid Haemorrhage (SAH) is another serious
complication causing damage to the brain. Severe damage to the nervous
system from TBI or SAH often leads to a long and complicated care time
and an extensive rehabilitation phase. The outcome from treatment has been
shown to be getting better and better [7, 11]. More patients recover and the
mortality has decreased to about 10%. At the Neuro-intensive Care Unit
(NIVA) in Gothenburg, many patients with these kinds of complications are
treated in the acute initial time after the onset of the complication. During
this phase and in early rehabilitation, the level of sedation is gradually de-
creased over time. This leads to a significant amount of stress in the patient
which can be observed in the form of hyperactivity and confused states. In
an effort to improve the situation for these patients, NIVA is participating
in a research project concerned with investigating the causes and effects of
stress in these situations. It is conjectured that the level of stress in the
patients has influence on the final outcome of the treatment. In investigat-
ing this relation, the level of stress in the patient needs to be estimated and
monitored during the care time. Various indicators and estimates for this
purpose are discussed in the following section.

The subject of this report is to account for our effort to develop such an
estimate, based on recorded biomedical signals. More specifically the esti-
mate is determined by analysis mainly of ECG signals. In addition, we aim
to respond to an often expressed request for easily browsable, lucid presen-
tations of information on patients. Our project includes the development
of software for visualisation of these kinds of signals, intended to aid physi-
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cians in working with post-analysis of treatment progressions. This goal also
implies the development of a signal processing software foundation for the
visualisation tool to stand on.
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2

Technical background

There are several ways of investigating the stress level of a patient. One way
is simply to make clinical observations. However, it can be very difficult to
observe the stress level of a patient in deep sedation and/or unconsciousness
(which is usually the case during the first weeks of treatment at NIVA). Other
methods measures chemical substances in the body, for example cortisol in
the saliva [1]. A third method, which we are going to focus on in this thesis,
studies the heart rate and especially its variations, which have been known for
a long time to have a connection to stress [8]. A non-stressed person usually
has a higher variation in heart rate, because the self-regulatory system in
the body changes the heart rate to adapt to external and/or internal factors
[5, 2]. For a stressed person, the self-regulatory system has a lower possibility
to change the heart-rate because it is usually already at a high level [8]. In
this chapter, a brief background on measuring heart rate and its relation to
stress, is presented.

2.1 ECG and heart rate analysis

Electrocardiography (ECG) is a method often employed when studying the
heart. It is a non-invasive method that measures the electrical activity of the
heart via electrodes on the body. The resulting graph can be used to study
the heart rate and also to look for weaknesses in different parts of the heart
muscle (see figure 2.1) [10].

A common way to study the heart rate is to measure the time interval
between two consecutive heart beats. This is usually carried out by measuring
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the distance between R-peaks in the ECG (see figure 2.1). These intervals are
called the RR-intervals. When investigating the stress level of a patient the
variation of the RR-intervals, known as the Heart Rate Variability (HRV), is
especially interesting. A low HRV in combination with a high heart rate is a
well known indicator of (acute) stress [8, 3, 1].

However, there are other explanations of a low HRV than mental stress.
It is possible that medication causes the stress or internal factors in the body
unrelated to mental stress. One way to investigate if a low HRV is caused
by stress is to look at the level of correlation between the variations and the
respiratory cycle. Normally, the respiration has a strong influence on the
heart rate but under stress this coupling usually decreases [8, 4] .

Figure 2.1
ECG illustrating the heart beats with its P,R,T-complexes. The red line indicates
one RR-interval.
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Methodology

When taking on this project we had no prior knowledge on the medical
aspects involved, nor did we have any insight about what work had been
done in the same area before. To try to satisfy both these needs we initially
did a literature study spanning over medical, signal analysis and computer
science related papers. During the same period we also had discussions with
NIVA personnel, where we got some good input on the task and its relation
to their work. We also attended a lecture session on the topic of stress,
connected to the research project mentioned in 1.

As we began to get a more clear picture of the problem and had gathered
a collection of ideas on how to proceed, we started constructing prototypes.
The Matlab environment suited our needs well in this phase as it enabled us
to quickly test and tweak our ideas for algorithms.

In parallel with the prototyping we started building a framework for our
software in Visual Studio. We employed an iterative development model for
the implementation, and ended up with a total of three iterations, excluding
the Matlab prototyping. For keeping track of changes during each iteration
we set up an SVN server to hold our code base.

Our different fields of knowledge from signal analysis and computer sci-
ence made the division of labour natural in many cases. Still, we had quite
loose divisions on some areas, and we had much collaboration and frequent
discussions on the work throughout the entire project.
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Signal processing algorithms

The main goal of the signal processing is to extract information about the
HRV and to investigate its correlation with the respiratory frequency. As
mentioned in section 2.1, an RR-interval is found by measuring the distance
between two consecutive heart beats, or put more precisely, between two R-
peaks (see figure 2.1). Therefore it was essential to design a reliable peak
detector to study the heart rate and its variations. Algorithms for analysis of
the RR-intervals were developed, extracting both statistical information and
spectral information for examining the correlation with the respiration. The
main parts of the signal processing are illustrated in figure 4.1. The different
parts will be described in more detail in the following sections. Then chapter
ends with a discussion on problems caused by outliers in the RR-interval
signal and how to reduce these effects. The algorithms are finally tested on
data from patients at NIVA and the outcomes are presented in chapter 6.

4.1 Peak detection

In the design of an automatic peak detector one has to consider that it needs
to be able to adapt to changes in amplitude or appearance in the ECG of
a patient. It should also be applicable to different patients and different
recordings. Our algorithm is basically based on threshold search, where the
peaks are found by searching after intervals that have larger values than a
certain threshold (see figure 2.1). In order to facilitate the choice of threshold
a band pass filter is applied to the ECG before threshold-searching. Then,
to find the exact maximum of the peaks, a quadratic function is fitted to the
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Figure 4.1
Block diagram of the signal processing parts.

peaks, and the maximum is decided analytically. Sometimes the P and T
hills are extremely large and will be detected as an R-peak. To take care of
this problem we use the statistics of the ”peakiness” of the detected peaks to
sort out deviating ones. The different steps in the peak detection algorithm
are described in more detail below.

Step 1: Filtering

Before threshold search, the ECG is filtered through a band pass filter. This
is done in order to have more distinct peaks at the same level, see figure 4.2.
The filtering is implemented as an FIR filter of order 61 with a lower cut-off
frequency of 4 Hz and a higher of 120 Hz.

Step 2: Threshold search

The beginning and end of peaks are found by sorting out all values which
are above a threshold (see figure 4.3). Since the variations in amplitude can
be extremely different from one ECG to another it is important that the
choice of threshold value is based on the ECG. We implement two ways of
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constructing the threshold: one that is based on the mean and one that is
based on the maximum point. The user is left to decide which one should be
used on a recording of ECG depending on its characteristics.

Step 3: Quadratic curve fitting

The easiest way to find the maximum of a peak is to just pick the sample that
has the highest value in a peak. This would, however, put a restriction on the
resolution of values due to the discrete sampling of 300 Hz. The difference
from values found in the sampled ECG and the true peak values may seem
too small to bother about. However, because the RR-interval variations are
so small it is actually important to improve this result. Since the peaks are
well fit by quadratic function, the precision may be improved by fitting the
function to each peak to find the exact maximum analytically (see figure 4.3).

Step 4: Discarding false detections

To get rid of falsely detected peaks, we use information received from the
curve fitting to sort out deviating ones, see figure 4.3. This is carried out by
looking at the statistics of the second order coefficient in the quadratic curve
fitting function. It is used as an indicator of the ”peakiness” of a top. If it
is too wide or too narrow it will be marked as a ”false” peak and discarded.
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Figure 4.2
1. Band-pass filtering the signal.
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Figure 4.3
2-3. Finding the beginning and end of peaks and fitting a quadratic curve.

4.2 Forming the RR-interval signal

After finding the peaks, the RR-interval signal is formed by taking the time
difference between two adjacent peaks. Then, the task is to decide what tim-
ing information each value should be connected to. When investigating the
distribution of the RR-intervals this is not important to consider. However,
for other measures, e.g. when investigating the frequency components of the
signal, it is very important to have a correct timing information. We define
the RR-interval signal as

RR(tn) = tn+1 − tn, (4.1)

where tn is the time of a peak. See figure 4.4.

4.3 Statistical measures

One way to gain information about the HRV is to investigate the distribution
of the RR-intervals. For example, the standard deviation of RR-intervals is
commonly used as an indicator of the magnitude of the variations in heart
rate (see e.g. [8, 6]). We can also examine the shape of the distribution by in-
vestigating its histogram. Is it Gaussian distributed or something completely
different?
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Figure 4.4
Forming the RR-interval signal. RR(0) = dt1, RR(dt1) = dt2.

4.4 Correlation with breathing cycle

Another way to investigate the RR-interval signal is to find out which fre-
quency components it consists of. Several factors influence the heart beat
occurrences in the body. However, here we focus on one cyclic signal that is
especially interesting in its relation to the RR-intervals, namely the breath-
ing cycle. As mentioned earlier, the correlation of the RR-interval and the
respiratory frequency is an important indicator of a person’s stress level.
To be able to find the respiratory cyclic period, a signal that is measuring
the CO2 concentration in the exhaled air of the patient is used. To extract
the main respiratory frequency we employ a Fast Fourier Transform (FFT)
to investigate which component has the largest amplitude in the frequency
spectrum.

The algorithms used in this project for examining the correlation between
the respiratory frequency and the RR-interval signal can be divided into two
different approaches: spectral analysis based, using Fourier methods, and
model-based, using Kalman filtering. These two methods will be described
in the following sections.

4.4.1 Spectral analysis of the RR-interval signal

FFT is a common method used when investigating the frequency components
of a signal. However, it assumes that the time interval between samples of
the signal is constant. However, the RR-intervals do not have equidistant
sampling and applying FFT directly to the RR-interval does not yield any
good results (see figure 4.6). So, to take care of this problem it is neces-
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sary to either transform the RR-interval signal into an equidistantly sampled
signal or use a transform that contains timing information. Therefore, we
consider two cases: one with a regularly sampled RR-interval signal, which
is constructed by interpolation and re-sampling of the signal, and one where
we use discrete Fourier transform with a time vector.

Regularly sampled

To be able to use FFT to investigate the frequency components of the sig-
nal, the irregularly sampled RR-interval signal has to be transformed into a
regularly sampled one. This is carried out by creating a continuous signal
by linear interpolation between the points and then re-sampling the signal.
The question is, how much will the interpolation affect the ”true” spectrum
of the RR-interval signal? One way to evaluate this is to try other methods
that do not require equidistant sampling.

Irregularly sampled

To be able to investigate the spectral content of the signal directly, without
having to do the interpolation, we investigated the result of using the Discrete
Time Fourier transform with a non-equidistant time vector. Starting with
the Discrete Fourier Transform (DFT) and inserting a time vector we get

X(fk) =
N−1∑

n=0

x(tn)e−j2πfktn , k = 0, 1, ..., N, (4.2)

where x(tn) is the data at time tn and N is the number of samples. In the
case of a regular time vector the frequencies, normalised to the sampling
frequency, are defined as fk = k/N and the time vector is defined as tn = n,
where n = 0, ..., N − 1. However, when converting this to a case where the
time vector is non-equidistant problems arise. Firstly, it is unclear what the
sampling frequency is. It seems reasonable to form the sampling frequency
based on the mean sample interval, therefore we define

fs = 1/T̄s, (4.3)

where fs is the sampling frequency and T̄s is the mean time interval be-
tween two samples. Secondly, we know that for a regular DFT the following
symmetry property holds:

e(−j2π(−fk)n) = e(−j2πfN−kn), (4.4)
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since n = 0, 1, ..., N − 1. This property may be used to replace the negative
frequencies by positive ones. However, in the non-equidistant case, this does
not generally hold:

e(−j2π(−fk)(n+ε)) "= e(−j2πfN−k(n+ε)), (4.5)

unless the deviation ε ∈ Z. The negative frequencies are essential to be able
to form a real valued signal of complex sinusoids (to make the imaginary
components cancel out). Therefore, instead of letting the fk range from 0 to
fs, we let them range from −fs/2 to fs/2.

To investigate if the DFT algorithm and the FFT yield different results,
we run the algorithms on data from three different patients with very dif-
ferent RR-interval signals, see the RR-intervals in figure 4.5. The resulting
spectra from the two algorithms have a similar appearance, as may be seen
in figure 4.6. Since Measurement Studio contains built-in FFT functions,
for simplicity, we decided to use the FFT method for this purpose in our
software.

4.4.2 Model-based approach

Another way to solve the problem is to use a model-based approach. Here,
a linear Kalman filter is used for this purpose. We postulate the following
model, describing the relationship between the RR-interval and the respira-
tory frequency:

RR = RR + A sin(2πfrespt + φ) + noise, (4.6)

where RR is the mean RR-interval and A is the amplitude of the sinusoid
of the respiratory frequency, fresp, with a certain phase, φ. The noise part
contains all the remaining parts of the signal. The unknown parameters are
A and φ. Although we are only interested in the amplitude, A, it is also
necessary to estimate the phase to be able to get an estimate of A. However,
this model is not linear since the parameter φ has a non-linear relationship
with RR. Therefore, the equation is rewritten as

RR = RR + α sin(2πfrespt) + β cos(2πfrespt) + noise, (4.7)

where the sinusoid with a phase is converted into one sine and one cosine
of the given frequency. Now, the unknown parameters are α and β and the
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Figure 4.5
The RR-intervals of three different patients.

amplitude is
√
α2 + β2.

Letting x = [α, β]T , the resulting Kalman equations will be

xk+1 = Axk + wk, (4.8)

yk = Cxk + vk, (4.9)

where yk is the measured RR-intervals and

A =

[
1 0
0 1

]
, C =

[
sin(2πtkfresp)
cos(2πtkfresp)

]T

(4.10)
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Figure 4.6
The results of applying the different spectral methods to the RR-intervals of three
different patients: A, B and C. The left hand column contain the spectra from the
DFT algorithm, the middle column contain the spectra from performing FFT on
a linearly interpolated and re-sampled RR-interval signal, the right hand column
contains the spectra obtained when FFT is applied directly on the RR-interval
signals.

and wk and vk are measurement and model noise, respectively. The initial
values of α and β were set to zero and the initial value for the covariance
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matrix was set to the identity matrix.

Results and problems with Kalman

Because the Kalman filter is derived under the assumption of Gaussian noise,
it may not give optimal performance applied directly to the data in this case.
Since the patients in NIVA are mostly mechanically ventilated we know in
what range the respiratory frequency lies (between 0.2 to 0.3 Hz). In those
cases, it is possible to filter out the non-interesting frequencies. This is taken
care of by band-pass filtering the signal around this area before applying the
Kalman filter. However, to be able to band-pass it we first need to interpolate
and re-sample to make the samples equidistant. We decided to include both
methods in our software to compare the results. The resulting amplitude
is estimated by running the Kalman filter and then taking the mean of the
amplitude estimates.

4.5 Removing outlying RR-intervals

Sometimes the ECG deviates so much that the peak detector misses or de-
tects an extra peak, and sometimes the heart simply has a large deviating
difference from one peak to another. This will occasionally result in RR-
intervals that are extremely small or large. Now, even if these extreme val-
ues happen rarely, we have noticed that they have a very high impact on the
results. Because these values are so much larger than the small variations
in the heart rate (they are of the order of magnitude twice or half a regular
RR-interval), they will have a large impact on the spectrum of the signal and
in the forming of the mean in the Kalman filtering. Therefore, these values
are removed. This is carried out by removing those RR-intervals which have
a value that is outside a certain factor times the standard deviation from the
mean value or the median. The factor is a variable that should be chosen
considering the variations in the recording one wants to study and is chosen
by the user.
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5

Software implementation

This chapter describes the implementation of the methods discussed above.
It also describes design choices and their implementation concerning the un-
derlying framework. The first section is an exposition of the framework, its
main concepts and components. Next is a section on file format issues and
how they were resolved. The third section discusses the time and memory
performance of the software and makes some remarks on how these might be
improved. In the last section we describe the visualisation interface.

5.1 Extendibility

From the description of our project and discussions thereof it became obvi-
ous that creating software specifically for solving the short list of analysis
problems that we were presented with might not be of much value in a larger
time perspective, but rather lead to deter potential future developers from
improving and extending our results. We decided to include in our goals
the idea that our software should serve as an easily extendible platform for
solving other signals processing tasks as well. The object-oriented approach
of modularity and hiding of complexity would serve not only the goal of an
extendible program, but would also help us to reason about our own analysis
implementations. Striving to reduce the workload of implementing our signal
analysis algorithms and visualisations we chose to base our software on the
signal processing library Measurement Studio by National Instruments. This
proprietary software was made available to us by the Signals and Systems
institution, through our supervisor. This led us to use Microsoft’s Visual
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Studio 2008 as our development environment and Visual C# as our imple-
mentation language. The next two subsections describes the design of the
framework and are followed by an account of the function of specific parts.

5.1.1 Signals

The main concept in our software is the signal objects. A signal object rep-
resents an interval in time from which waveforms over subintervals can be
requested. A waveform in turn represents a sample collection consisting of
zero or more time-stamped values. Signal objects of different types are im-
plemented and instantiated to represent different kinds of processing tasks.
The calculations for producing a requested waveform take place in the sig-
nal object. They are parametrised by the requested time interval together
with an implementation-specific collection of variables that are set for each
signal instance. A signal may also be dependent on one or more other signal
instances for computing its waveform. We describe these relations by letting
each signal object instance keep an ordered list of sub-signals on which its
calculations depend.

5.1.2 Algorithm configuration

The dependency relation on signals allows for complex processing algorithms
to be represented as graphs with signal instances as nodes and directed edges
describing the data routing. A calculation is initiated in some node, for ex-
ample by the user requesting a waveform plot from it over some time interval.
The request is propagated down the dependency edges until the paths reach
signals that have no dependencies and are capable of generating data. As
initiated calculations are completed, requests are answered with data flowing
upwards until the original initiating calculation delivers its resulting wave-
form to the user.

We have chosen a method of encoding these algorithm graphs using XML
documents. An XML Scheme defines the structure of these configuration
files and what parameters are required for the different signal types. The
following excerpt from a configuration file gives an idea of the format and
gives a peek on the various types of signal implementations.

<signals>
<BinaryFileSignal name="ECG"
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fileName="ECG1.dat" />

<BinaryFileSignal name="CO2"
fileName="CO2.dat" />

<TimeIntervalSignal name="RR-intervals">
<subSignals>

<PeakDetectSignal name="ECG_peaks"
windowSize="60">

<subSignals>
<BandPassSignal name="ECG_bp"

cutoffLow="4"
cutoffHigh="120">

<subSignals>
<signalReference referencedSignal="ECG" />

</subSignals>
</BandPassSignal>

</subSignals>
</PeakDetectSignal>

</subSignals>
</TimeIntervalSignal>

<CorrelationByKalmanSignal name="HRVtoResp_kalman"
Qvalue="1E-1"
Rvalue="1E-2">

<subSignals>
<StrongestFrequencySignal name="Resp -freq"

windowSize="120"
minFreq="0.1"
maxFreq="1.0">

<subSignals>
<signalReference referencedSignal="CO2" />

</subSignals>
</StrongestFrequencySignal >
<signalReference referencedSignal="RR -intervals" />

</subSignals>
</CorrelationByKalmanSignal >

</signals>

This setup corresponds to the routing graph in figure 5.1.
Allowed child tags under signals and subSignals tags correspond to the names
of signal implementations. To avoid creating multiple instances of the same
signal, the signalReference tag is used to add a dependency relation pointing
to an already defined signal.
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When a configuration file is loaded it is first checked for compliance with
the XML Schema Definition. If it is found to be correct, the specified signal
types are instantiated and their lists of subsignals are populated recursively.
To ensure easy extendability, the names of the XML tags are the actual
C# class names of the signals they represent. This allows instances of im-
plemented signal types to be created by a general mechanism, using the
reflection capabilities of C#.

Figure 5.1
A routing graph.

5.1.3 Implemented signal types

Below is a listing of the type-tree containing all implemented signals. Fol-
lowing that is a series of short descriptions of the various signal types and
their function.

Signal
RegularlySampledSignal

AsciiFileSignal
BandPassSignal
BinaryFileSignal
CorrelationByFFTSignal
CorrelationByKalmanSignal
DownsampledSignal
InterpolatedSignal
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MovingMeanSignal
MultiscaleSignal
StandardDeviationSignal
StrongestFrequencySignal

IrregularlySampledSignal
GetOutliersSignal
InverseSignal
IrregularlySampledBinaryFileSignal
OutliersDetectorSignal
OutliersDetectorWindowedSignal
PeakDetectSignal
RemoveOutliersSignal
TimeIntervalCorrectionSignal
TimeIntervalSignal

RegularlySampledSignal is the abstract base class of signals containing
values at regular intervals in time.

AsciiFileSignal represents values read from an ASCII file. The data is
expected to be formatted into tab-separated columns where each column
contains the values for one signal. The rows are assumed to represent sam-
ples taken at regular time intervals at a sampling frequency specified in the
file header. The date and time of the data collection is also assumed to be
found in the file header. This signal does not accept any subsignals.

BinaryFileSignal represents values read from a file in our binary format,
more thoroughly covered in 5.2.2.

BandPassSignal represents a FIR bandpass filter with the specified pass-
band. This signal accepts a single regularly sampled subsignal.

DownsampledSignal takes a regularly sampled signal as input and reduces
the sampling rate of it by a predefined integer factor. The downsampling is
achieved by simply removing appropriate sequences of samples and no fur-
ther filtering is incorporated in this algorithm. Letting y denote a Downsam-
pledSignal, then its value at time ti = i ∗ Ty = i ∗ k ∗ Tx, for integer sample
indexes i, is

y(ti) = x(k ∗ i ∗ Tx),
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where i is the index of a sample in y, Ty is the sample interval of y, Tx is the
sample interval of x and k is the integer downsampling factor.

InterpolatedSignal is capable of upsampling a signal by piecewise linear
interpolation of the samples from its subsignal. It is parametrised by a re-
quested output frequency at which the piecewise linear function is sampled.
If y is the interpolated signal, its value at time ti, for integer sample indexes
i, is defined by

y(ti) =






x(ti) , if x has a value at ti

x(tj) +
(ti − tj)(x(tj+1) − x(tj))

tj+1 − tj
, otherwise

where x denotes the subsignal, tj is the time closest below ti where x has a
value, and tj+1 is the time closest above ti where x has a value.

MovingMeanSignal represents the convolution of its regularly sampled
subsignal with a square function of height 1 and a predefined width, divided
by the width of the square. The output is shifted and cut to give the result
of a mean window that is timewise centered around each sample. If y is a
MovingMeanSignal and i is a sample index, the signal values are described
by

y[i] =
1

w

i+w/2∑

j=i−w/2

x[i],

where x denotes the subsignal, and w is the width of the mean window.

MultiscaleSignal represents a multiplexer over a collection of signals that
occupy the same segment in time. Based on an extra parameter, an incom-
ing waveform request is relayed to one of the signals in the collection. The
extra parameter is a target sample count for the resulting waveform and the
MultiscaleSignal selects the subsignal that, for the specific request, gives a
waveform with a number of samples closest to the target count.

StandardDeviationSignal calculates the standard deviation of the values
from its input signal over consecutive segments of time. Letting y be the
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StandardDeviationSignal and x be its subsignal, the values are described by

y(ti) =

√√√√
∑

tj∈W

(x(tj) − µ)2

|W |− 1
,

where µ =
∑

tj∈W
x(tj)
|W | , W = {t | ti ≤ t ≤ ti + w} and w is the set length of

the time segments.

StrongestFrequencySignal is a signal whose values are calculated as the
frequency of the strongest spectral component in consecutive time segments
of its subsignal.

CorrelationByFFTSignal takes two regularly sampled subsignals. Its val-
ues are calculated as the energy of a selected component of the power spec-
trum of its second subsignal. The frequency of the component that is con-
sidered is given by the value of the first subsignal.

CorrelationByKalmanSignal has a basic semantic interpretation that is
similar to that of the CorrelationByFFTSignal, except that the strength of
the component is determined by a Kalman filtering method, covered in 4.4.2.

IrregularlySampledSignal is the abstract base class of signals containing
values at arbitrary points in time.

IrregularlySampledBinaryFileSignal represents values read from a file
in a variation of the binary format used for BinaryFileSignal, covered in 5.2.3.

PeakDetectSignal represents a sequence of peak values taken from its sub-
signal using an algorithm described in 4.1.

TimeIntervalSignal is a signal whose values are the time intervals between
consecutive samples of its subsignal. Letting y be the TimeIntervalSignal
and x be its subsignal, the values are described by

y(ti) = ti+1 − ti,

where ti and ti+1 are the times of two consecutive samples in x.
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OutliersDetectorSignal returns, using an extension to the standard wave-
form data flow, a list of exceptional points along with the unchanged wave-
form of its subsignal. A sample is marked as exceptional if it is found to
be an outlier compared to the other samples in the waveform, using config-
urable statistical measures. The predicate ei denoting whether the sample
with index i, from the subsignal x, is an outlier can be determined by two
methods. Using mean

ei = (x[i] < z̄ − cσz) ∨ (x[i] > z̄ + cσz),

or using median

ei = (x[i] < z̃ − cz̃) ∨ (x[i] > z̃ + cz̃),

where c is a parameter, z = {xi | vmin < xi < vmax}, vmin and vmax are pa-
rameters, σz is the standard deviation of z over the requested interval, and
z̄ and z̃ represents mean and median over the interval, respectively.

OutliersDetectorWindowedSignal works just like OutliersDetectorSignal
except that all statistics are taken on consecutive intervals of configurable
length.

GetOutliersSignal requests a list of exceptional points along with the wave-
form data from its sub-signal, and returns only the values that are marked
in that list. Letting y and x stand for the GetOutliersSignal and its sub-
signal respectively, and using ei as the exceptional predicate for sample i as
in OutliersDetectorSignal, then

y = {xi | ei}.

RemoveOutliersSignal requests a list of exceptional points along with the
waveform data from its sub-signal, and filter out the values that are marked
in that list. Letting y and x stand for the RemoveOutliersSignal and its
sub-signal respectively, and using ei as the exceptional predicate for sample
i then

y = {xi | ¬ei}.
TimeIntervalCorrectionSignal also requests a list of exceptional point
along with the waveform data from its sub-signal. It then tries to correct the
exceptional intervals by replacing them with a fitting number of standard
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intervals. This is done by first grouping consecutive outliers and summing
the values of samples in each group. This amount is then divided by the
median value of the signal and rounded to the closest integer. The group
of samples is then replaced by that number of equidistant samples of equal
value. The time-value pairs forming the inserted samples for each group Gj

of consecutive outliers, can be written as

(t0, yi) = (t0,
sj

nj
)

(ti, yi) = (ti−1 +
sj

nj
,

sj

nj
) , for all i ∈ [1, nj]

where t0 is the original time of the first sample in Gj , nj =
[ sj

x̃

]
, the integer

number of inserted samples,sj =
∑

k∈Gj
xk, x is the sub-signal, and x̃ is the

median of x over the requested interval.

InverseSignal computes the inverse of each value from its sub-signal. Hav-
ing y as the InverseSignal and x as its sub-signal, then

y(ti) = x(ti)
−1

5.2 File formats

Measurements from the bedside patient monitors at NIVA can be recorded
over the hospitals local network using a piece of software from Datex-Ohmeda,
called S/5 Collect. The recorded data is saved in an ASCII format allowing
for transfer to other tools for offline analysis. Easy to read as this text format
is, it does have some serious downsides.

The amount of data that these recordings can, and in this context, often
do contain, is quite large. As an example of this, consider that the instru-
ments at NIVA supply sample data at a rate of fs = 300 Hz and that it is
common to make continuous recordings of several such signals at once, span-
ning many days. Using some common values for the number of simultaneous
signals, ns = 7, and the length of the recording, nd = 5 days, one reaches
the following total number of samples recorded: ns ∗ fs ∗ nd ∗ 60 ∗ 60 ∗ 24 =
907, 200, 000.

The samples are written in text format as floating point numbers of vary-
ing length. Each line in the text format contains one sample from each of
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the recorded signals, all taken at the same point in time. The lines do not
contain any absolute timestamps or explicit indices. Therefore, the time at
which a sample was taken must be inferred from: the known start time of
the recording, the known sample rate and the number of lines preceding a
given sample. This fact, together with the varying length text representa-
tions of the sample values, makes it impossible to perform random access on
the sequence of samples in a file, containing n sample occasions, with time
complexity any less than O(n). Using text representations of numbers also
make the actual action of reading a value from file, into a format on which
to perform arithmetics, unnecessarily time consuming. Although the imple-
mentation details of this functionality in the .NET framework are not known
to us, the action is so common in our program that it introduces a notable
performance reduction.

Taking all of the above into account, a new file format was defined that
uses direct binary representations of values, and where the byte length of
values is fixed. A file in this format stores the data of a single signal, over
some time interval. The format was branched into two, as the need for new
features arose. Both formats specify a header section at the beginning of
the file, containing general information, followed by a sequence of sample
representations.

5.2.1 Saving signals

A utility was implemented for importing signal data from the ASCII record-
ing format to the binary signal format. The utility lets the user select signals
from a recording, then converts and saves them in a folder of choice, and
constructs a basic configuration file containing the newly converted signals.

There is also a utility for writing derived signals to file. The functionality
is polymorphic over signal objects and it is therefore possible to route the
output of any node in a computation graph to a file on disc.

5.2.2 Equidistantly timed samples

For signals sampled at regular time intervals, timing data is not stored for
each sample. The following table specifies the data stored in each word of a
file in this format.
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32-bit word Description Unit Type Data

0 File format specifier - int 0
1 Sample data start words int 6
2 Sample data end words int var.

3-4 Acquisition time s double var.
5 Sample frequency Hz float var.
6 Sample value 0 - float var.
7 Sample value 1 - float var.
8 Sample value 2 - float var.
9 Sample value 3 - float var.
. . . . .
. . . . .
. . . . .

5.2.3 Non-equidistantly timed samples

In this format, each sample is stored as a pair of a time-stamp and a value.
Here information is stored as doubles for increased precision. The following
table specifies the data stored in each word of a file in this format.

32-bit word Description Unit Type Data

0 File format specifier - int 1
1 Sample data start words int 6
2 Sample data end words int var.

3-4 Acquisition time s double var.
5 Sample frequency Hz float var.

6-7 Sample time 0 s double var.
8-9 Sample value 0 - double var.

10-11 Sample time 1 s double var.
12-13 Sample value 1 - double var.
14-15 Sample time 2 s double var.
16-17 Sample value 2 - double var.
18-19 Sample time 3 s double var.
20-21 Sample value 3 - double var.

. . . . .

. . . . .

. . . . .
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5.3 Performance tradeoffs

The size of the typical underlying data sets in the context of the analysis
problems in this project makes the resource usage of the implementation a
pressing issue. In many cases time complexity is the attribute that is first
considered for optimisation, but here, memory resource usage was considered
to be of higher priority.

In general, the choice to make a computation conservative in memory
usage leads to drawbacks in time complexity, and so also in this case. The
actual algorithm implementations are not affected to any large extent on
the lower levels, but the compromise is more significant on a higher level.
In particular, the data management in the computation graphs, mentioned
in 5.1.2, is subject to performance tradeoff. For starters the modular ap-
proach that we have decided to use, and the signal object abstraction that
it is realised by, leaves the sub-algorithms isolated from each other, except
through a small interface. This means that one sub-algorithm cannot in-
terfere with the progression of another, except through the predefined data
channels. While gain is made in reducing the up front semantical complexity
of the program, some limitations are set on optimisability.

Signal objects in the computation graphs operate on a principle of ’cal-
culate, respond and forget’. As a request for a waveform over a time interval
is given to a signal, it collects the data needed, performs its calculation, re-
turns the result as response to the request, and finally releases all its allocated
memory to the .NET Garbage Collector. Only the data in the response is
kept in memory, as it is now referenced to by the requester. This behaviour
means that at any step throughout the progression of a complete calculation,
there is a maximum of two levels of waveform data kept in memory at once.
On the downside it means that some identical calculations are performed
more than once, depending on the structure of the computation graph. It
would therefore be advantageous to employ some mechanism for dynamically
cacheing data, with respect to its access rate and the available memory re-
sources. This is left as a suggestion for further improvement of the system, as
it could not be included into the time-frame of this project. As a substitute
the user can make manual use of the signal file writing utility for achieving
the same basic goal.

29



5.4 Visualisation

We built our visualisation tools by augmenting existing Measurement Studio
plotting utilities. The design is based on a number of plot areas to which
the user can add and remove plots by drag and drop, and context menu
commands. The plot areas allow for free, or axis-wise constrained, panning
and zooming, as well as text input specification of the plotted range.

The main concept when designing our means of visualisation was the idea
that biomedical signals, of the kind that we are presented with, are interesting
to a user on greatly different time scales. As examples of this, consider the
study of QRS-complex morphology, where ECG signals are analysed on scales
of seconds, compared to the study of trends in intracranial pressure (ICP)
where time scales of hours, and possibly days, are of interest [9].

5.4.1 Signal plot items

Different subsets of computed intermediate and top-level signals are probably
going to be of interest to different users. We also need a way of specifying
the individual appearances for plotted signals. We implemented a layer be-
tween the set of signals and the plotting mechanism, where signal plot items
are specified. The definitions reside together with the algorithm configura-
tion in the XML files. Each such signal plot item references a signal object
and contains a set of attributes, determining its appearance when plotted.
Making use of the idea of scale based presentation, attributes in signal plot
items specify in what range of scales it is visible. Other attributes specify
the plot color, line style, etc. It is possible to define several signal plot items
all referencing the same signal, thus letting a plot change its appearance over
different scales. As well as being a model for displaying relevant information
to the user, this system saves resources through its lazy, compute on demand,
design. Below is an excerpt from a configuration file showing the definition
of two signal plot items.

<SignalPlot signalName="HRVtoResp_fft"
minRange="3E2" maxRange="1E5"
lineColorR="155"
lineColorG="25"
lineColorB="62"
lineStyle="Dot"
yScale="1E6"/>
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<SignalPlot signalName="HRVtoResp_fft_mean"
minRange="1E3" maxRange="1E7"
lineColorR="245"
lineColorG="85"
lineColorB="122"
yScale="1E6"/>

5.4.2 Auxiliary plotting tools

The program also has spectrum and histogram plotting capabilities. On the
signal object level, two interfaces are implemented to enable this functionality
for a signal. The system recognises what signals can plotted in this way on
loading a configuration. On user request, a spectrum or histogram plot can
be drawn. In addition to being browsable in the same way as the main plot
utility, the interface lets the user browse along the time axis of the underlying
signal while watching the plot continually update.

Figure 5.2
A visualisation of the scale-based model for displaying plots.
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6

Applications

In this chapter we are going to present results from running the software
on data from 4 different patients from NIVA. First we show some plots in-
tended to highlight results from different processing steps and investigating
the different signals that were presented in Chapter 4: the standard devi-
ation of HRV, correlation with respiration, both using Kalman and using
FFT. The chapter ends with a large scale analysis of the patient data. We
chose to analyse the RR-intervals over 2 minutes intervals since the recom-
mended standard is 2-5 minutes for short time analysis of HRV [6]. The plots
are scaled and shifted and their magnitudes should be considered as having
arbitrary units.

6.1 Detail studies

RR-intervals

Figure 6.1 shows two plots over the same time interval. In the bottom plot we
see the ECG signal that the other signals are derived from. It also shows the
output from the peak-detecting algorithm, which is performing sub-optimally
on this particular segment. It fails to identify a couple of R-peaks, seen to the
right. Near the left edge of the view, however, there is a disturbance in the
ECG which is correctly discarded. The top view shows the calculated time
differences between the peaks (RR-intervals). The effects of the disturbance
and the missed peaks are clearly visible as large peaks among the otherwise
very small variations. Drawn on top of that line is the same RR-interval
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signal after passing through our outliers filter. The vertical axis for the RR-
intervals is in seconds, and will be so henceforth, unless otherwise stated.

In figure 6.2 we look at an RR-interval signal on a larger time scale,
showing the kind of variation that is present. We also see the outliers filter
in effect. By looking at the overall trends in this plot we can infer that the
mean heart rate varies between about 65 and 85 bpm over this interval.

Respiration

The respiratory frequency as extracted from recordings of the level of CO2 in
exhaled air, is also available for plotting. In figure 6.3 such a signal is plotted.
We can observe a section where the frequency is more or less constant due to
completely artificial respiration. To the right the frequency starts fluctuating,
probably because the patient starts to take breaths of his/her own.

Stress Level Estimators

In figure 6.4 the time scale has been increased even further. The bottom view
shows the RR-interval signal over this time interval. In the top view we can
follow the total amount of variability in the HRV by looking at the standard
deviation plot. Also in the top view we can observe changes in the measure
of correlation to respiration that are independent of the total variability,
thus suggesting that the HRV, as expected, ”synchronises” differently with
respiration at different times.

Examining the cause of the independently varying correlation measure in
figure 6.4 we study the RR-interval on a smaller scale at two points in time.
Figure 6.5 shows the RR-interval signal at time 11.01 where we have a rela-
tively high variability but low correlation. Indeed this plot looks somewhat
random and can be said to have periodicity in only the vaguest sense. At time
07.00, shown in figure 6.6, on the other hand, we see a clear periodic variation.
A very crude estimation of the frequency content in this signal can be formed
by simply counting the number of peaks in the plot and dividing by the length
of the time segment, yielding the frequency 29/(60 + 41)Hz ≈ 0.29Hz. This
estimate is very close to the respiratory frequency, which is known to be at
around 0.3 Hz at this time.

In figure 6.7, a comparison between the different estimators of respiratory
correlation is presented. The plots show that the three different methods

33



yield similar results in general but also that they have individual differences
on smaller scales.

Figure 6.1
Top: RR-interval signal (dashed). Corrected RR-interval signal (solid).
Bottom: ECG signal (solid). Detected peaks (circles).

6.2 Large-scale analysis

In figure 6.8 to 6.11 are presented four plots of large scale analysis results
from four different patients who were treated at NIVA, and whose biomedical
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Figure 6.2
RR-interval signal (dashed). Corrected RR-interval signal (solid)

Figure 6.3
Respiratory frequency (solid)

signals were recorded. Please note that the time scales vary greatly between
these plots as a result of the lengths of the recordings. Also bear in mind
that the vertical scales differ for some plots. The indicators of respiratory
correlation used here are Kalman without band-pass filtered input and the
FFT method. Patient A (figure 6.8) shows a comparatively low HRV all in
all, while patient B has a rather high variability. Patients C and D have
comparable levels of HRV while their correlation measures look more differ-
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Figure 6.4
Top: Standard deviation of RR-interval signal (dashed). Correlation with
respiration using the FFT method (solid).
Bottom: Corrected RR-interval signal (solid).

ent. In most patients we see disturbances in the signals where our filters have
not been able to sort out anomalous input. These disturbances correspond
to times when the measurement equipment has been disconnected from the
patient, etc. In all patients we see transitions from ranges of low correlation
to ranges of high correlation and vice versa. The big transitions seem to
happen over the course of one or a few hours, with ranges of several hours
in between. In discussions with physicians at NIVA we tried to link these
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Figure 6.5
RR-interval signal (solid).

Figure 6.6
RR-interval signal (solid).

variations to data collected in the patients journals. We looked at sedation
levels, medications and body temperature readings etc., as well as general
clinical observations, but could not find any clear connections.
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Figure 6.7
1st: Standard deviation of RR-interval signal (solid) and its mean (dashed).
2nd: Correlation to respiration using the FFT method (solid) and its mean
(dashed).
3rd: Correlation to respiration using the Kalman method (solid) and its mean
(dashed).
4th: Correlation to respiration using the Kalman model with band-passed input
(solid) and its mean (dashed).
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Figure 6.8
Patient A
Top: Standard deviation of RR-interval signal.
Middle: Correlation to respiration using Kalman filtering.
Bottom: Correlation to respiration using FFT.

39



Figure 6.9
Patient B
Top: Standard deviation of RR-interval signal.
Middle: Correlation to respiration using Kalman filtering.
Bottom: Correlation to respiration using FFT.
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Figure 6.10
Patient C
Top: Standard deviation of RR-interval signal.
Middle: Correlation to respiration using Kalman filtering.
Bottom: Correlation to respiration using FFT.
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Figure 6.11
Patient D
Top: Standard deviation of RR-interval signal.
Middle: Correlation to respiration using Kalman filtering.
Bottom: Correlation to respiration using FFT.
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7

Discussion

As mentioned in section 6.2, we had little success verifying the final results by
linking them to other available information on the patients. However, to do
this in a satisfactory manner one needs some other estimate of the stress level
to compare with. This was not available to us, but we believe that a more
thorough investigation will be possible as more and better data is collected
in the NIVA stress project. They have just recently started making records
directly related to stress, such as measurements of salival cortisol (section 2)
and clinical observations. Furthermore, as we know that the human body
is an extremely complex system, and particularly since the patients all have
severe complications together with mixes of high dosages of medication, it
is even unclear what accuracy to expect from our estimates. In this light
we suggest that, for reference, our methods should be tested under more
controlled circumstances on subjects with much lesser, or no complications
and medications.

Concerning our signal processing algorithms, we see that they perform
well under good conditions and that they also handle many anomalies with
satisfying results. Even so, there are still many cases where the results are
not reliable, and where there is room for much improvement. An example of a
specific such case is when the ECG electrodes are disconnected for some time
in a recording, during which the ECG signal should be discarded completely.
As anomalies of varying severity can occur on different levels in the analysis
we suggest the implementation of some kind of quality measure associated
with signals at different times. Currently the behaviour of the algorithms
needs to be tuned to achieve good performance on some input recordings.
This is due to big differences in signal characteristics between patients and

43



between ECG setups. With some effort we believe it should be possible to
automatically deduce many of these parameters, thus simplifying usage of
the program.

The goal discussed in section 5.1 of avoiding a static software system dis-
couraging from further development has led to a shift of focus. Because of the
limited time given to us, we chose to put more energy than initially planned
into making the program extendible, and less into the user interface design,
etc. In proceeding with the development of the user interface some proper
design input should be collected. This could be done, for instance by setting
up user tests with people from intended user groups, or by interviews, re-
sulting in use cases. At present some parts of the program are implemented
as stand-alone features, sometimes making the use of the system cumber-
some. An example of this is the feature to save a derived signal to a file,
which has to be done manually for each signal, and includes some manual
editing of configuration files. The user experience would be greatly improved
by integrating different features better with each other, and creating more
automated work-flows.
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