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InplaneP-SV waves from a piezoelectricstrip
actuator– exact versuseffective boundarycondition

solutions
AndersBostr̈om andBixing Zhang

Abstract— A piezoelectric strip of finite width and
thickness is placed on top of an isotropic elastic half-
space.It operatesin actuator mode and a time harmonic
voltageis thus applied acrossit. The piezoelectricmaterial
is of type

�����
oriented so that a 2D inplane (P-SV)

problem results.By Fourier seriesexpansionsthe problem
is solved exactly and this result is compared to the case
when the piezoelectric strip is replaced by an effective
boundary condition, which is derived by seriesexpansions
in the thicknesscoordinate in the piezoelectricstrip. At low
fr equenciesthe resultsagreevery well and this corresponds
to the situation often met in practice. In general, the
effective boundary condition should be much easier to
apply, for examplewhen a FEM program is used.

I . INTRODUCTION

A CTUATION andsensingin structuresis often
performedwith piezoelectricmaterials,andin

this connectionit is commonto talk about”smart”
structuresin, e.g.,structuralcontrol andnoisecon-
trol applications.The piezoelectricmaterialis usu-
ally in the shapeof a thin layer that is surface
bonded to or embeddedin the structure. Much
interesthasthereforebeengivento themodelingof
suchpiezoelectriclayers.Gopinathanet al. [1] give
a recentreview with particularemphasison various
approximateplate theoriesand make comparisons
with exact 3D solutionsfor a beamfully covered
with a piezoelectriclayer. A few other 3D investi-
gationsof piezoelectricvibration problemsin more
or less simplified situationshave beenperformed.
Batra et al. [2] considera laminatedrectangular
plate with piezoelectriccoatingswhich are treated
by a 2D theory due to Tiersten [3]. Gao et al.
[4] considera very similar problem but treat the
piezoelectriccoatings by 3D theory. Both these
investigations,and also Gopinahtanet al. [1], use
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mixed boundaryconditions(involving both displa-
cementsandstresses)to modela simply supported
plate. This is in fact necessaryfor the success
of the Fourier seriesmethodadopted.Clampedor
completely free edgescan not be treatedby the
methodemployed.

Also variousapproximateplateandshell theories
havebeendevelopedfor layeredstructuresincluding
piezoelectrics,severalsuchtheoriesarecitedby Go-
pinahtanet al. [1]. In a recentreview article,Wang
andYang[5] discusshigher-orderpiezoelectricplate
theoriesand their applications.The finite element
method is developed for such problemsby, e.g.,
Tzou [6] andKim et al. [7].

Another approachto model a thin piezoelectric
layer is to exchangeit with an effective (or ap-
proximate) boundary condition. In this way no
equationsof motion for thepiezoelectriclayerhave
to be consideredat all. This can greatly simplify
the analysis and could be particularly useful in
FEM applications,where commercialcodesoften
donot includetheoptionof a piezoelectricmaterial.
JohanssonandNiklasson[8] developsucheffective
boundaryconditions and make comparisonswith
exact calculationsfor 1D problemsanda 2D plate
problem.Only caseswith an infinite structureare
considered,but it is of course important to see
how theseeffective boundaryconditions perform
for finite piezoelectricpatches.The purposeof the
presentpaper is to do exactly this. Thus the 2D
problemwith a finite piezoelectricstrip on a half-
spaceis consideredfor coupledP-SV motion. It is
notedthatthecorrespondingantiplane(SH)casehas
alreadybeentreatedby Zhanget. al [9].

The plan of the paperis asfollows. In Section2
the problemis formulated.A piezoelectricstrip of
finite width andthicknessis attachedto anisotropic
elastic half-space.The piezoelectricmaterial is of
class����� poledin thethicknessdirection,sothata
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2D inplane(P-SV) problemincluding piezoelectric
effects is possible.An actuatorcaseis studiedand
a time harmonicvoltageis thus appliedacrossthe
piezoelectric strip. In Section 3 the problem is
solved exactly by expanding the fields inside the
piezoelectricstrip in Fourier seriesand the field in
the half-spacein Fourier integrals.Applying all the
boundaryconditions,it is straightforward to obtain
a systemof equationsfor theexpansioncoefficients
in thestrip.In Section4 theboundaryvalueproblem
with the effective boundarycondition is solved. In
general the effective boundarycondition involves
both the stressand displacementand the boundary
valueproblemis thusof mixed type. It is solved in
a way very similar to the exact problem. Section
5 containsnumerical exampleswith comparisons
betweenthe exact solution and various orders of
the effective boundarycondition. As expectedthe
effective boundarycondition only yields accurate
resultsat low frequencies.

I I . PROBLEM FORMULATION

Considerthe 2D in-planewave propagationpro-
blemdepictedin Fig. 1. In the �
	 planeanisotropic
elastic medium occupies the half-space 	 � �
and on top of the half-spacea piezoelectricstrip
occupiesthe region  ���� � and ��� 	�� � .
Only time harmonicconditionsare consideredand
the time factor �����������! #"%$ , where  is the angular
frequency and " is time, is suppressedthroughout.
In the half-spacethe displacementcomponentsare&(' and ) ' in the � and 	 direction, respectively,
and in the piezoelectric strip the corresponding
componentsare & and ) .

Theisotropichalf-spacehasdensity * ' andLamé
constants+ and , . The stresscomponentsare then- './.10 �2+43657,8$%9 . & ' 36+(9;:/) '�< (1)- ':=: 0 +(9 . & ' 3>�?+�3657,@$�9;:/) '�< (2)- '. : 0 ,#�A9;: & ' 3B9 . ) ' $ < (3)

wherepartialderivativeswith respectto � and 	 are
denotedby 9 . and 9C: , respectively. The equations
of motion are�?+43B57,@$�9(D. & ' 3>�?+�3E,@$�9 . 9C:�) '3E,89FD: & ' 0 ��* '  GD & '�< (4)

PSfragreplacements �
	

��� ��

Fig. 1. The 2D geometrywith a piezoelectricstrip actuatoron an
isotropichalf-space.

�2+4365H,@$%9 D: ) ' 3>�2+43E,@$�9 . 9;: & '3E,89 D. ) ' 0 ��* '  D ) '�I (5)

The piezoelectricstrip is assumedto be of class����� andpoled in the 	 direction.It hasdensity *
andtheonly relevantstiffnessconstantsare JLKMK , J�NMN ,JLKAN , and J�OMO , in abbreviatednotation,cf. Auld [10].
The relevant piezoelectriccoupling constantsareP KAQ , P NRK , and P NMN , andthedielectricconstantsare S�KMK
and SRNMN . The quasistaticapproximationis madeand
the electric potential is T . The stresscomponents
are - ./. 0 JUKMK=9 . & 3BJLKAN�9;:/)E3 P NRK%9;:�T < (6)- :=: 0 JUKANV9 . & 3BJ�NMN�9;:/)E3 P NMN�9;:�T < (7)- . : 0 J�OMOW�29;: & 3E9 . )X$83 P KAQ�9 . T < (8)

andthe two electricdisplacementcomponentsareY . 0 P NRK%9;: & 3 P KAQ�9 . )Z�[S�KMK%9 . T < (9)Y : 0 P KAQ�9 . & 3 P NMN�9;:/)Z�[SRNMN�9;:�T I (10)

The threeequationsof motion for the strip becomeJLKMK%9FD. & 31J�OMO�9FD: & 3\�2JLKAN]3EJ�OMO�$%9 . 9;:/)3^� P KAQ_3 P NRKR$%9 . 9;:�T 0 ��*� GD & < (11)J�OMO�9FD. )X31J�NMN�9FD: )E3>�AJUKAN_3BJ/OMO�$%9 . 9;: &3 P KAQ�9 D. T43 P NMN�9 D: T 0 ��*� D ) < (12)P KAQ�9FD. )X3 P NMN�9FD: )E3>� P KAQ]3 P NRK%$%9 . 9;: &�1S�KMK%9 D. T`�[SRNMN�9 D: T 0 � I (13)

Due to the quasistaticapproximationthis systemis
not hyperbolic,of course.

The piezoelectricstrip is electrodedon the top
andbottomboundaries.Theelectrodesareassumed
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to be perfectly conductingbut to have negligible
mechanicalinfluence.The situationwhen the pie-
zoelectricstrip actsasanactuatoris of interestsoa
(time harmonic)driving voltage aFb acrossthe strip
leadsto the boundaryconditionsT 0 � < 	 0 � <  ��c�d� < (14)T 0 aFb < 	 0 � <  ��C�e� I (15)

Only the potential differenceis of importance,of
course.On the sidesof the piezoelectricstrip there
are no electrodesand an approximateboundary
conditionfor this is (seeTiersten[11])Y . 0 � < � 0\f � < �^�d	g�\� < (16)

where
Y . is given in Eq. (9).

Themechanicalboundaryconditionson thesides
of the piezoelectricstrip arechosenas& 0 � < � 0\f � < �^�d	g�\� < (17)- . : 0 � < � 0\f � < �^�d	g�\� I (18)

This choice may seema little odd and not very
realistic. It is also usedby Gopinathanet al. [1],
Batraet al. [2], andGaoet el. [4], but thento model
the boundaryconditionsfor a plate. However, the
piezoelectricstrip is thin andthenit canbe argued
that the exact boundary conditions on the sides
are not very important.This will be further com-
mentedon when the exact and effective boundary
conditionsarecompared.The greatadvantagewith
the boundaryconditions(17) and (18) is that they
togetherwith the boundarycondition (16) lead to
the following simplerboundaryconditions& 0 � < � 0hf � < �^�d	g�e� < (19)9 . ) 0 � < � 0hf � < �^�d	g�e� < (20)9 . T 0 � < � 0hf � < �^�d	g�e� I (21)

Thiswill make it possibleto expandthefieldsinside
thepiezoelectricstrip in simpletrigonometricseries
in � .

On top of the piezoelectric strip the traction
shouldvanish- :=: 0 � < 	 0 � <  ��c�d� < (22)- . : 0 � < 	 0 � <  ��c�d� I (23)

Likewise, on top of the elastic half-spaceoutside
the strip - :=: 0 � < 	 0 � <  ��cij� < (24)- . : 0 � < 	 0 � <  ��cij� I (25)

Between the piezoelectricstrip and the elastic
half-spacethe displacementand traction shouldbe
continuous& 0 & '�< 	 0 � <  ��c�d� < (26)) 0 ) ' < 	 0 � <  ��c�d� < (27)- :=: 0 - ':�: < 	 0 � <  ��C�d� < (28)- . : 0 - '. : < 	 0 � <  ��c�d� I (29)

To completely specify the problem the radiation
conditionthatthewavesaredown-goingin thehalf-
spacemustbeimposed.Therewill alsobeoutgoing
Rayleighwavesalongthe surfaceof the half-space.

II I . EXACT SOLUTION

In theisotropicelastichalf-space	^�Z� thewaves
canbe representedby Fourier integralsas& ' 0 kjlm l�npo7q � mCr sRt : 3vu(w�x�� mCr s�y :/z � r|{ .@} o < (30)

) ' 0 k lm l n �Gu s q � mCr s t : 3 o x~� mCr s y : z � r|{ .@} o I (31)

Here q 0 q � o $ and x 0 x�� o $ are the unknown
amplitudesof the pressureand shear waves, re-
spectively. Thewave numbersin the 	 directionareu s 0�� � Ds � o D and u(w 0 � � Dw � o D with thesquare
rootsdefinedso that Im u s~� � andIm u(w � � . The
wave numbersare � s 0  � * 'R� �?+43B57,@$ and � w 0 � * ' � , . Notethat theradiationconditionhasbeen
usedwhenwriting the representationgiven in Eqs.
(30) and(31). From Eqs.(1)–(3) the corresponding
stressesin the half-spaceareeasilydetermined.

In the piezoelectricstrip the situation is more
complicated.Due to the boundaryconditionsEqs.
(19)–(21) and the fact that the solution must be
symmetricin � (this symmetryfor thedisplacement
vectormeansthat & mustbeanodd functionand )
an even function of � ), it is possibleto expandthe
fields in trigonometricseriesin the following way& 0 l��]� K & � �2	;$��%��� o � � < (32)) 0 l��]� b ) � �2	;$������ o � � < (33)T 0 l��]� b T � �A	;$������ o � � < (34)
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where o � 0 ��� � � . The threeequationsof motion
(11)–(13) are then reducedto a set of ordinary
differential equationsin 	 for each � . For � 0 �
the solution is)�b 0>� bRK������ � bV	�3 Y bRK��R��� � b/	 < (35)T(b 0 P NMNSRNMN � � bRK������ � b/	�3 Y bRK��R��� � b/	C$83 � b D 3 Y b D 	 <

(36)

where � bRK , Y bRK , � b D , Y b D are constantsto be
determinedand the stiffenedwave numberis � b 0 � * ���J�NMN with �J�NMN 0 J�NMNU����3 P DNMN � �2J�NMN/SRNMN�$R$ . For� 0 � < 5 < I�I!I thesituationis morecomplicatedasthe
horizontaldisplacement& � alsoenters.Thesolution
canbe written as& � 0 N� � � KF� � � n � � � �R�����#u � � 	�3 Y � � �����R��u � � 	 z <

(37)) � 0 N� � � K�� � � n � � � �����R�#u � � 	�3 Y � � �R�����]u � � 	 z <
(38)T � 0 N� � � K�� � � n � � � �����%��u � � 	�3 Y � � �R�����#u � � 	 z <
(39)

where u � � , � � � , � � � , � � � aredeterminedfrom����JLKMK o D� 31J�OMOMu D� 3E*� D $ � � �Z�2JLKAN]3EJ�OMO�$ o � u � � ���� P KAQ_3 P NRKR$ o � u � � � 0 � < (40)�2JLKAN]3EJ�OMO�$ o � u � � � 3>�2J�NMN?u D� �[J�OMO o D� 3E*� D $ � �3^� P NMN?u�D� � P KAQ o D� $ � � 0 � < (41)� P KAQ_3 P NRKR$ o � u � � � 3\� P NMNpuFD� � P KAQ o D� $ � �3g�AS�KMK o D� ��SRNMNpu D� $ � � 0 � I (42)

For this homogeneoussystemto have a solutionthe
determinantmustvanishandthisyieldsa third order
equationin u � which gives the three u � 0 u � � ,� 0 � < 5 </  (thesignof u � � doesnot matter, choose
Re u � � � � ). The corresponding� � � , � � � , � � �can then be solved for and normalized in some
convenientway. The coefficients � � � and

Y � � are
determinedbelow by the boundaryand interface
conditions.

The two electric boundaryconditions (14) and
(15) give P NMNSRNMN � bRK83 � b D 0 � < (43)N� � � K � � � � � � 0 � < (44)P NMNS%NMN � � bRK������ � b���3 Y bRK��R��� � b��($83 � b D 3 Y b D � 0 aFb <

(45)N� � � K�� � � � � � � �����R�#u � � ��3 Y � � �%������u � � �
$ < (46)

where � 0 � < 5 < I�ILI . The two boundaryconditions
(22) and (23) that the traction vanisheson top of
the piezoelectricstrip give�J�NMN � bW�=� � bRK��%��� � b���3 Y bRK������ � b/�
$83 P NMN Y b D 0 � <

(47)N� � � K�¡ � � � � � � �����R��u � � �~3 Y � � �R�����#u � � �($ 0 � <
(48)N� � � K�¢ � � � � � � �%������u � � ��3 Y � � �����%�#u � � �£$ 0 � <
(49)

where � 0 � < 5 < ILILI . Here¡ � � 0 JLKAN � � � o � 3EJ�NMN � � � u � � 3 P NMN � � � u � � <(50)

¢ � � 0 J/OMO � � � u � � �[J�OMO � � � o � � P KAQ � � � o � I (51)

Note that the boundaryconditionon - . : is trivially
satisfiedfor � 0 � .

The seven Eqs. (43)–(49)are all discreteequa-
tions valid for � 0 � < � < 5 < ILILI . The remaining
conditions,on theotherhand,give functionalequa-
tions valid for a certainrangein � . The continuity
of displacements,Eqs.(26) and(27), yieldk lm l � o7q 3¤u(w�x¥$�� r|{ . } o0 l��_� K N� � � KF� � � Y � � �R��� o � � <  ��C�d� < (52)



6k lm l ���#u s q 3 o x¥$=� r|{ . } o0\� bRK83 l��]� K N� � � K � � � � � � ����� o � � <  ��C�d� I
(53)

Finally, the tractionboundaryconditionsEqs.(24),
(25), (28), and(29) canbe combinedto give��, k lm l n � � Dw �E5 o D�$ q �E5 o u(w=x z � r|{ . } o0 ¦§¨ §©

� <  ��CiZ� <l��_� b N� � � K=¡ � � Y � � ����� o � � <  ��C�d� < (54)

����, kElm l n 5 o u s q 3>� � Dw �[5 o D�$�x z � r|{ . } o0 ¦§¨ §©
� <  ��cij� <l��_� K N� � � K ¢ � � � � � �%��� o � � <  ��c�d� < (55)

where � 0 � is incorporatedby defining¡ bRK 0 �J�NMN � b < ¡ b D 0 P NMN < ¡ bMN 0 � I (56)

Inverting the Fourier transformsin Eqs.(54) and
(55) andsolving for q and x yieldsq 0 �,8ª>« 5 o u(w l��_� K N� � � K�¢ � � � � �7¬ � � o $�e� � Dw �E5 o D/$ l��_� b N� � � K=¡ � � Y � �� � � o $=® < (57)

x 0 �,8ª>« � � Dw �E5 o D�$ l��]� K N� � � K�¢ � � � � �H¬ � � o $365 o u�¯ l��]� b N� � � K�¡ � � Y � �� � � o $=® < (58)

where  � � o $ 0 �5H� kB°m ° ����� o � ��� mCr|{ . } �0 ���±�W$ � o �%��� o ��#� o D � o D� $ < (59)¬ � � o $ 0 �5H� k °m ° �%��� o � ��� mCr|{ . } �0 �M�=�~�W$ � o � �%��� o ��#� o D � o D� $ < (60)

andtheRayleighfunction ª 0e² o D u s u(w%3³�25 o D � � Dw $ D .Extractionof theFouriercoefficientsfrom Eqs.(52)
and(53) yieldsN� � � K � � � Y � � 0 � 5H�� k lm l � o7q 3¤u(w=x¥$ ¬ � � o $ } o <

(61)

� bRK 0 � � kjlm l �=�Gu s q 3 o x¥$  bH� o $ } o < (62)N� � � K � � � � � � 0 5H�� kjlm l �=�Gu s q 3 o x4$  � � o $ } o <
(63)

where � 0 � < 5 < ILILI .
Inserting q and x from Eqs. (54) and (55) into

Eqs.(61)–(63),theremainingequationsfor � � � andY � � , Eqs.(43)–(49)and (61)–(63),form a system
of linearequationsthatit is straightforwardto solve.
However, the coefficients in Eqs.(61)–(63)contain
infinite integralsover o that needsomecarein the
computation.

IV. EFFECTIVE BOUNDARY CONDITIONS

If the thicknessof the piezoelectricstrip � is
small comparedto the wavelenghts,approximating
the strip in a simple fashion should be possible.
In this section,aneffective (approximate)boundary
conditiontaken from JohanssonandNicklasson[8]
is stated and the correspondingboundary value
problemis solved in a mannerthat is quite similar
to the methodusedin the previous section.

With a generaltime dependenceand a driving
voltage that may dependon � the form of the
effective boundaryconditionsincludinglinearterms
in � is- '. : 0 �e� P NRK_� P NMN JLKANJ�NMN $ 99�� a(b�E� « * 9 D9�" D �e�2JLKMK]� J D KANJ�NMN $ 9 D9�� D ® & ' < (64)

- ':=: 0 � � 5 « � P NRK_� P NMN JUKANJ�NMN $ 9 D9�� D 3 * P NMNJ�NMN 9 D9�" D ®�a(b�[��* 9 D ) '9�" D I (65)
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In the presentcasewith harmonictime dependence
anda constantaFb this is very muchsimplified- '. : 0 � « *� D 3>�2JLKMK_� J D KANJ�NMN $ 9 D9�� D ® & ' < (66)- ':=: 0 �F*� D P NMN57J�NMN aFb´36��*# D ) '�I (67)

The lowestorderapproximationis to only keeptheaFb term andthis is henceforthcalledthe first order
approximation.From this it is clear that the whole
solutioncontainsa factor � so incorporatingthe & '
and ) ' termsgivesa secondordersolution.Also a
third ordersolution is consideredin the following;
it is quite complicatedso the explicit formulasare
not shown, see Johanssonand Niklasson [8] for
a prescriptionfor its calculation.In summarythe
boundaryconditionsup to third ordercanbewrittenµ . :H�A9 D. $ - '. : 0 µ4¶ �A9 D. $ & ' < (68)µ :=:W�A9(D. $ - ':�: 0 µ^· a(b´3 µ¥¸ �29FD. $�) '�< (69)

where the various
µ

:s are given by a comparison
with thespecificordersabove.As aFb is independent
of � ,

µ^·
is aconstantasindicatedwhereastheotherµ

:s are operatorsin 9 D. . For a boundarycondition
of generalordertheremustin additionbea term in) ' in Eq. (68) anda term in & ' in Eq. (69).

The solutionprocedureis very similar to the one
usedin the previous section.The generalsolution
in the elastichalf-spaceis given by Eqs. (30) and
(31). At 	 0 � ,  ��C�d� , the solutionis expandedin
trigonometricseriesin � as& ' �¹� < �;$ 0 l��_� K � � �R��� o � � <  ��c�d� < (70)) ' �¹� < �;$ 0 l��_� b Y � ����� o � � <  ��c�d� < (71)

where o � 0 ��� � � as before.Equatingwith Eqs.
(30) and (31), the expansioncoefficients � � andY � areobtainedas� � 0 5W�� k lm l � o7q 3¤u(w=x¥$ ¬ � � o $ } o < (72)Y � 0 �@S �� k lm l ���#u s q 3 o x¥$  � � o $ } o I (73)

Here SRb 0 � < S � 0 5 < � 0 � < 5 < ILILI , is the Neumann
factor and

 � and

¬ � are given in Eqs. (59) and

(60). The boundaryconditionsat 	 0 � may be
rewritten asµ . :H�29FD. $ - '. : 0»º µ4¶ �29 D. $ &(' <  ��c�d� <� <  ��cij� < (74)

µ :=:W�29FD. $ - ':=: 0¼º µ^· a(b_3 µ4¸ �29 D. $�) ' <  ��C�d� <� <  ��Cij� I
(75)

Insertingthe stressescalculatedfrom Eq. (30) and
(31) and the surfacedisplacementexpansions(70)
and(71) into theseequations,inverting the Fourier
transforms,andsolving gives

q � o $ 0 �,8ª>« 5 o u(wµ . :W��� o D $ l��_� K µ4¶ �=� o D� $ � �
¬ � � o $� � � Dw �E5 o D $µ :�:H�=� o D $X½ µg· aFb]3 l��]� b µ4¸ ��� o D� $ Y �  � � o $%¾£® <

(76)

x�� o $ 0 �,¿ª « � Dw �[5 o Dµ . :H��� o D $ l��_� K µ¥¶ �=� o D� $ � �
¬ � � o $3 � o u sµ :�:U��� o D $ ½ µ^· aFb_3 l��_� b µ¥¸ ��� o D� $ Y �  � � o $%¾£® <

(77)

where it is assumedthat
µ . :H�=� o D $ À0 � andµ :=:W��� o D $ÁÀ0 � . For the first and secondorder

boundaryconditionsthis is certainly no restriction
as
µ . :�Â � and

µ :=:ÃÂ � , but it seemsto be no
restrictionin generalfor reasonablylow frequencies.

If q and x from Eqs.(76) and(77) are inserted
into Eqs.(72) and(73) a linearsystemof equations
is obtainedfor � � and

Y � that it is straightforward
to solve. As for the exact solution the coefficients
in the systemof equationscontaininfinite integrals
over o that needsomecarein the computation.

Once the expansion coefficients � � and
Y �

have beendetermined,the displacementfield in the
elastic half-spaceis obtainedfrom Eqs. (30) and
(31) (using also Eqs. (76) and (77)). Note that if
the displacementdirectly beneaththe strip ( 	 0 � , ��Ä�Å� ) is wanted,the seriesexpansions(70) and
(71) may be usedinstead.
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Fig. 2. The dimensionlessdisplacementÊ at Ë~ÌÎÍ , Ï�ÌvÍ as
a function of frequency for

ÈUÐ=Ñ Ì³Í�Ò ÍRÓ and four cases:exact (full-
drawn), first order (dashed),secondorder (dash-dotted),and third
order (dotted).

V. NUMERICAL EXAMPLES

In this section, some numerical examples are
givenin orderto illustratetheusefulnessandlimita-
tionsof theeffective boundaryconditions.In all the
examplestheelastichalf-spaceis madeof steelwith
the materialproperties, 0>Ô � I Ô GPa, + 0 �W5�� GPa,
and * ' 0 Õ�Ô;Õ � kg/mN . The piezoelectricstrip is
madeof PZT-2 (class6��� with the �(Ö -plane as
the planeof isotropy) with the materialpropertiesJLKMK 0 �  ;× GPa, JUKAN 0 � Ô I � GPa, J�NMN 0 ���   GPa,J/OMO 0 5�5 I 5 GPa, P KAQ 0ÙØ I Ô C/mD , P NRK 0 �±� I Ø C/mD ,P NMN 0 Ø I � C/mD , S�KMK 0 ²CÕ7ÔÛÚ �U� m KMK C/Vm, S%NMN 05   � Ú �U� m KMK C/Vm, and * 0ÁÕ ����� kg/mN (seeAuld
[10]). In all the examples,the dimensionlessdis-
placementin the 	 direction Ü 0 � J/OMO � S�KMK�) ' � aFb
on the surface of the half-spaceis shown for the
exact solutionaswell as the approximatesolutions
obtained from the effective boundary conditions.
Both the frequency � b�� of the input voltageandthe
thicknessto width ratio � � � of thestriparevaried.It
is notedthat the dimensionlessfrequency is chosen
as the thicknessof the piezoelectricstrip relative
its (stiffened) wavelength as it is to be expected
that it is this ratio that is crucial in determiningthe
accuracy of the effective boundarycondition.

In Figs. 2–4 the dimensionlessdisplacementÜ
is shown at � 0 � , 	 0 � as a function of the

0 0.25 0.5 0.75 1
0

0.005

0.01

0.015

0.02

0.025

PSfragreplacements Æ/ÇMÈ
É

Fig. 3. The dimensionlessdisplacementÊ at Ë~ÌÎÍ , Ï�ÌÎÍ as
a function of frequency for

ÈUÐ=Ñ Ì�Í�Ò Ý and four cases:exact (full-
drawn), first order (dashed),secondorder (dash-dotted),and third
order (dotted).

frequency � b�� . Betweenthe three plots, the value
of � � � is varied. It is seen that the first order
approximationis in goodagreementwith the exact
solution when � ��b��Þ� I �ß�Z� I ² , dependingon the
valueof � � � . The secondandthird ordersolutions
are valid for somewhat higher frequencies,also
somewhat dependingon � � � . In Fig. 4 the third
order solution is valid up to � b�� 0 � , but then it,
somewhat unexpectedly, quickly deviatesand even
goesto zero at � b�� 0 � I ² . However, it is doubtful
if the higher order effective boundaryconditions
are worth the extra effort, becausethe boundary
conditionsare much more complicated,involving
alsotangentialderivatives.

In the exact solution the boundary conditions
on the sides � 0 f � are of the mixed type, so-
mewhat unrealisticin practice.In the solutionwith
the effective boundaryconditions theseboundary
conditionsarenot used,or, indeed,they do not play
any role at all. Still, the numerical results agree
betweentheexactandeffectiveboundaryconditions
and this shows that at sufficiently low frequencies
and not too high thickness-to-widthratio (but this
ratio is as high as 0.25 in the numerical results)
the boundary conditions on the sides are of no
importance.Consequently, the use of the mixed
boundary conditions in the exact solution is no
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Fig. 4. The dimensionlessdisplacementÊ at Ë~ÌÎÍ , Ï�ÌvÍ as
a function of frequency for

ÈLÐ�Ñ ÌàÍ�Ò Ó and four cases:exact (full-
drawn), first order (dashed),secondorder (dash-dotted),and third
order (dotted).

restriction of importanceand very similar results
areexpectedfor otherboundaryconditions(with the
restrictionson frequency andthickness-to-width).

VI. CONCLUDING REMARKS

The2D inplaneproblemwith a piezoelectricstrip
actuatorof finite width on top of an elastic half-
spaceis considered.The problem is solved both
exactly, employing mixed boundaryconditionson
thesidesof thestrip to enablingFourierseriesrepre-
sentations,and with effective boundaryconditions,
whereno boundaryconditionson thesidesarenee-
ded.Threedifferentordersof theeffectiveboundary
conditionsare investigated.The lowest order is a
simple traction boundarycondition, but the higher
orderonesbecomeprogressively morecomplicated
with alsotangentialderivativesinvolved.

The numerical results show that at sufficiently
low frequenciesall three effective boundarycon-
ditionsgive solutionsthat agreewell with theexact
solution.Thehigherorderboundaryconditionsgive
goodsolutionsfor somewhathigherfrequencies,but
it is doubtfulif theextraeffort neededis worthwhile.
In many practical applicationsthe frequenciesare
low (in termsof the thicknessof the piezoelectric
strip), andthenthe lowestordereffective boundary
condition should be very useful. For instance,it

shouldbe straightforward to implementin a FEM
progam.
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