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Inplane P-SV waves from a piezoelectricstrip
actuator— exact versuseffective boundarycondition
solutions

AndersBostidom and Bixing Zhang

Abstract— A piezoelectric strip of finite width and
thickness is placed on top of an isotropic elastic half-
space.lt operatesin actuator mode and a time harmonic
voltageis thus applied acrossit. The piezoelectricmaterial
is of type 6mm oriented so that a 2D inplane (P-SV)
problem results.By Fourier seriesexpansionsthe problem
is solved exactly and this result is compared to the case
when the piezoelectric strip is replaced by an effective
boundary condition, which is derived by seriesexpansions
in the thicknesscoordinatein the piezoelectricstrip. At low
frequencieghe resultsagreevery well and this corresponds
to the situation often met in practice. In general, the
effective boundary condition should be much easier to
apply, for examplewhen a FEM program is used.

. INTRODUCTION

CTUATION andsensingn structureds often

performedwith piezoelectriomaterials,andin
this connectionit is commonto talk about”smart”
structuredn, e.g.,structuralcontrol and noisecon-
trol applications.The piezoelectricmaterialis usu-
ally in the shapeof a thin layer that is surface
bondedto or embeddedin the structure. Much
interesthasthereforebeengivento the modelingof
suchpiezoelectridayers.Gopinatharet al. [1] give
arecentreview with particularemphasion various
approximateplate theoriesand make comparisons
with exact 3D solutionsfor a beamfully covered
with a piezoelectriclayer A few other 3D investi-
gationsof piezoelectricvibration problemsin more
or less simplified situationshave beenperformed.
Batra et al. [2] considera laminatedrectangular
plate with piezoelectriccoatingswhich are treated
by a 2D theory due to Tiersten[3]. Gao et al.
[4] considera very similar problem but treat the
piezoelectriccoatings by 3D theory Both these
investigations,and also Gopinahtanet al. [1], use
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mixed boundaryconditions(involving both displa-
cementsand stressesjo modela simply supported
plate. This is in fact necessaryfor the success
of the Fourier seriesmethodadopted.Clampedor
completely free edgescan not be treatedby the
methodemployed.

Also variousapproximateplateandshelltheories
have beendevelopedfor layeredstructuresncluding
piezoelectricssereralsuchtheoriesarecited by Go-
pinahtanet al. [1]. In arecentreview article, Wang
andYang|5] discusshigherorderpiezoelectrigplate
theoriesand their applications.The finite element
methodis developed for such problemsby, e.g.,
Tzou[6] andKim et al. [7].

Another approachto model a thin piezoelectric
layer is to exchangeit with an effective (or ap-
proximate) boundary condition. In this way no
equationsof motionfor the piezoelectridayer have
to be consideredat all. This can greatly simplify
the analysis and could be particularly useful in
FEM applications,where commercialcodesoften
do notincludethe optionof a piezoelectrianaterial.
JohanssomndNiklasson[8] develop sucheffective
boundary conditions and make comparisonswith
exact calculationsfor 1D problemsanda 2D plate
problem.Only caseswith an infinite structureare
considered,but it is of courseimportantto see
how these effective boundary conditions perform
for finite piezoelectricpatches.The purposeof the
presentpaperis to do exactly this. Thus the 2D
problemwith a finite piezoelectricstrip on a half-
spaceis consideredor coupledP-SV motion. It is
notedthatthe correspondingntiplang(SH) casehas
alreadybeentreatedby Zhanget. al [9].

The plan of the paperis asfollows. In Section2
the problemis formulated.A piezoelectricstrip of
finite width andthicknesds attachedo anisotropic
elastic half-space.The piezoelectricmaterial is of
class6mm poledin thethicknesglirection,sothata



2D inplane(P-SV) problemincluding piezoelectric
effectsis possible.An actuatorcaseis studiedand
a time harmonicvoltageis thus appliedacrossthe
piezoelectric strip. In Section 3 the problem is
solved exactly by expandingthe fields inside the
piezoelectricstrip in Fourier seriesandthe field in
the half-spacan Fourierintegrals. Applying all the
boundaryconditions,it is straightforvard to obtain
a systemof equationdor the expansioncoeficients
in thestrip. In Sectiord theboundarywalueproblem
with the effective boundaryconditionis solved. In
generalthe effective boundarycondition involves
both the stressand displacementind the boundary
value problemis thusof mixedtype. It is solvedin
a way very similar to the exact problem. Section
5 containsnumerical exampleswith comparisons
betweenthe exact solution and various orders of
the effective boundarycondition. As expectedthe
effective boundarycondition only yields accurate
resultsat low frequencies.

Considerthe 2D in-planewave propagatiornpro-
blemdepictedn Fig. 1. In thezz planeanisotropic
elastic medium occupiesthe half-spacez < 0
and on top of the half-spacea piezoelectricstrip
occupiesthe region |z < ¢ and0 < z < h.
Only time harmonicconditionsare consideredand
the time factor exp (—iwt), wherew is the angular
frequeny andt is time, is suppressedhroughout.
In the half-spacethe displacementomponentsare
u® and w® in the x and z direction, respecitiely,
and in the piezoelectric strip the corresponding
componentareu andw.

Theisotropichalf-spacenasdensityp® andLamé
constants\ and p. The stresscomponentarethen

PROBLEM FORMULATION

0ty = A+ 2000 + M0t, (1)
of, = A0;u’ + (A + 2u)0,w®, (2)
oy, = w(0u’ + d,we), 3)

wherepartial derivativeswith respecto = andz are
denotedby 0, and d,, respectrely. The equations
of motion are

(A +2u)02u’ + (A + p)9,0,w°

+ Mague — _pew2ue’

(4)

ts

Fig. 1. The 2D geometrywith a piezoelectricstrip actuatoron an
isotropic half-space.

(A +2p) 2w + (A + p) 9,0,

+ pdPw = —ptwus.

(5)

The piezoelectricstrip is assumedo be of class
6mm andpoledin the z direction.It hasdensityp
andthe only relevantstiffnessconstantsarec;, cs3,
c13, and ey, in abbreviated notation,cf. Auld [10].
The relevant piezoelectriccoupling constantsare
e1s, €31, andess, andthe dielectricconstantaree;;
andes3. The quasistatiapproximations madeand
the electric potentialis ¢. The stresscomponents
are

Ops = 110U + ¢130,w + €310, 0, (6)
0,z = C130,u + c330,w + €330, 0, (7)
Ogr = C44(6ZU + 85511)) + 615a$¢, (8)
andthe two electricdisplacementomponentare
D, = e310,u + e150,w — €110,9, 9)
D, = e150,u + e330,w — €330,0. (10)

The threeequationsof motion for the strip become

0113§U+C443§U + (C13 + €44) 05, 0,w

+(615 + e3l)a:caz¢ = —prU, (11)
4402w +c3307w + (€13 + €44) 0,0,
+615a§¢ + 63383Q§ = —prw, (12)
61562?1]—{—6338311] + (615 + 631)8w8zu
—€1102¢ — €3302¢ = 0. (13)

Due to the quasistatiapproximationthis systemis
not hyperbolic,of course.

The piezoelectricstrip is electrodedon the top
andbottomboundariesThe electrodesareassumed



to be perfectly conductingbut to have negligible
mechanicalinfluence.The situation when the pie-
zoelectricstrip actsasan actuatoris of interestsoa
(time harmonic)driving voltageV, acrossthe strip
leadsto the boundaryconditions

¢ =0, z=0, |z|<a, (14)

¢=Vo, z=h, [z[<a. (15)

Only the potential differenceis of importance,of

course.On the sidesof the piezoelectricstrip there

are no electrodesand an approximateboundary
conditionfor this is (seeTiersten[11])

D, =0, 0<z<h,

where D, is givenin Eq. (9).
The mechanicaboundaryconditionson the sides
of the piezoelectricstrip are chosenas
0<z<h,
0<z<h.

T = =a,

(16)

u =0, (17)

(18)

This choice may seema little odd and not very
realistic. It is also usedby Gopinathanet al. [1],

Batraetal. [2], andGaoetel. [4], but thento model
the boundaryconditionsfor a plate. However, the
piezoelectricstrip is thin andthenit canbe agued
that the exact boundary conditions on the sides
are not very important. This will be further com-
mentedon when the exact and effective boundary
conditionsare comparedThe greatadwantagewith

the boundaryconditions(17) and (18) is that they

togetherwith the boundarycondition (16) lead to

the following simpler boundaryconditions

T = +a,

0z, =0, x==a,

u=0, x==2a, 0<z<h, (19
O,w=0, x==a 0<z<h, (20)
0;0=0, x==2a, 0<z<h. (21)

Thiswill make it possibleto expandthefieldsinside
the piezoelectricstrip in simpletrigonometricseries
in x.

On top of the piezoelectricstrip the traction
shouldvanish

Ozz = 0, |.’13‘ S a,

z=h, (22)
z=h, (23)

Likewise, on top of the elastic half-spaceoutside
the strip

0z, =0, lz] < a.

(24)
(25)

|z[ > a,
lz| > a.

0. =0, z =0,

Oz, =0, z =0,

Betweenthe piezoelectricstrip and the elastic
half-spacethe displacemenand traction shouldbe
continuous

u = u, z=0, |z|<aq, (26)

= w°, z2=0, |z|<a, (27)
0., =05, 2=0, |z|<a, (28)
Ozz e 2=0, |z|]<a. (29)

To completely specify the problem the radiation
conditionthatthe wavesaredown-goingin the half-

spacemustbeimposed.Therewill alsobe outgoing
Rayleighwavesalongthe surfaceof the half-space.

In theisotropicelastichalf-space: < 0 thewaves
canbe representedby Fourier integralsas

EXACT SOLUTION

w:/ (qAe ™ + p,Be 7*)e* dg,  (30)

w:/(waW+wwWWWm(m)

Here A = A(q) and B = B(q) are the unknovn
amplitudesof the pressureand shearwaves, re-
spectvely. The wave numbersn the z directionare

pp = k2 — ¢ andp, = \/k2 — ¢* with the square
rootsdefinedsothatim p, > 0 andlm p, > 0. The
wave numbersare k, = w+/p¢/(A +2u) andk, =
w4/ p?/ . Notethatthe radiationconditionhasbeen
usedwhenwriting the representatiogivenin Eqs.
(30) and(31). From Egs.(1)—(3) the corresponding
stressesn the half-spaceare easily determined.

In the piezoelectricstrip the situation is more
complicated.Due to the boundaryconditionsEqgs.
(19)—(21) and the fact that the solution must be
symmetricin z (this symmetryfor the displacement
vectormeanghat« mustbe anodd functionandw
an even function of z), it is possibleto expandthe
fieldsin trigonometricseriesin the following way

u= Z Um(2) sin ¢z, (32)
m=1

w = Z Wi (2) COS g, (33)
m=0

¢ = bm(2)cos gz, (34)
m=0



whereg,, = mn/a. The threeequationsof motion
(11)—(13) are then reducedto a set of ordinary
differential equationsin z for eachm. For m = 0
the solutionis

(35)

wo = Coy cos koz + Dy sin kyz,

oo = iﬁ(C’m cos koz + Dyy sin kgz) + Coo + Dya 2,
33
(36)

where Cy;, Dy, Coe, Dy, are constantsto be
determinedand the stiffenedwave numberis &k, =

a)\/p/égg, with C3z3 = 633(1 + 6%3/(633633)). For
m = 1,2, ... thesituationis morecomplicatedasthe
horizontaldisplacement.,,, alsoenters.Thesolution
canbe written as

3
Um = Z Omn (Cmn sinh Dmn? + Dy cosh pmnz) )

n=1
(37)
3
Wy = Z Bran (Cmn cosh pynz + Dppy, sinh pmnz)a
n=1
(38)
3
Om = Z Ymn (Cmn cosh prpz + Dy sinh pmnz):
n=1
(39)
wherepmn, Omn, Bmns Ymn aredeterminedrom
(—c11gi+caps, + pw’)om — (€13 + €44) GmPmBm

_(615 + 631)Qmpm7m =0, (40)

(€13 + €44) GmPmOm + (ngpfn - 044q72n + pr)ﬂm

+(633p$n — 615Q72n)’7m =0, (41)
(e15 + €31)gmPmOm + (633193;1 - 615q72n)ﬂm
+(€11Q72n - 633177211)’)’171 =0. (42)

For this homogeneousystemto have a solutionthe
determinanmustvanishandthis yieldsathird order
equationin p,, which givesthe threep,, = pmun,

n =1, 2,3 (thesign of p,,, doesnot matter choose
Re pnn > 0). The correspondinQ,.n, Bmny Ymn

can then be solved for and normalizedin some
convenientway. The coeficientsC,,, and D,,,,, are
determinedbelonv by the boundaryand interface
conditions.

The two electric boundaryconditions (14) and
(15) give
@001 + Coz = 0, (43)
€33
3
n=1

i33 (Co1 cos koh + Dy sin koh) + Coe + Dooh =V,
33
(45)

3
> Ymn(Crnn €0sh punh + Dy sinh pry ), (46)

n=1

wherem = 1,2, .... The two boundaryconditions
(22) and (23) that the traction vanisheson top of
the piezoelectricstrip give

533]60(—001 sin k'()h + D01 COS k‘oh) + 633D02 = 0,

(47)
3
Z gmn(cmn cosh pmnh + Dmn sinh pmnh) =0,
n=1
(48)

3
Z Thmn (Crmn SINh P b + Diyy cosh pryh) = 0,
n=1

(49)

wherem = 1,2,.... Here

fmn = C130mnGm + C33ﬂmnpmn + €33YmnPmn,

(50)

Nhmn = C440mnPmn — c44ﬂmnqm — €15Ymnqm- (51)

Note that the boundaryconditionon o, is trivially
satisfiedfor m = 0.

The seven Egs. (43)—(49) are all discreteequa-
tions valid for m = 0,1,2,... . The remaining
conditions,on the otherhand,give functionalequa-
tions valid for a certainrangein z. The continuity
of displacements:gs.(26) and (27), yield

/ (A + p,B)ei™ dg

o0

= i Zamann sin gz, |z| <a, (52)

m=1 n=1



/ (—ppA + ¢B)e'™ dg

00
00 3
== 001 + Z Z ﬁmnCmn COS g T,

m=1 n=1

lz| < a.

(53)

Finally, the traction boundaryconditionsEqgs. (24),
(25), (28), and (29) canbe combinedto give

iu/ ((kf —2¢H)A — 2qpsB)eiq‘” dg

o

0, lz| > a,
oo 3
54
S5 b D 08 g, 2] <ty O
m=0 n=1
- i,u/ (2qppA + (k7 — 2¢°)B)€'" dg
0, |z| > a,
o'} 3
55
Z annCmn singnz, |z| <a, (55)
m=1 n=1
wherem = 0 is incorporatedoy defining
o1 = Cazko, Eo2 = €33, &o3 =0. (56)

Inverting the Fourier transformsin Egs. (54) and
(55) and solving for A and B yields

A_

- (k? - 2(]2)2 meannfm(q)]a (57)

m=0 n=1

. oo 3
:L k2 2 mnCmn m
B uR[( q)mzﬂgn 9m(4)

oo 3
+24p, ) Zﬁmannfm(q)] :

m=0 n=1

(58)

where
fm(q) = 2i /a COS ¢ €1 dz
( 1)™gsin ga
™ —an)
1 @ .
gm(q) = py /a sin g,z e 9% dx
)

_ i(—1)™qy, sin qa
m(¢* — qp,)

(59)

: (60)

andtheRayleighfunction R = 4¢?p,p,+(2¢*>—k?)>.
Extractionof the Fouriercoeficientsfrom Egs.(52)
and (53) yields

3
2 [
> Omn Dy = == / (gA + psB)gm(q) dg,
=1 -
(61)

Co=" [ oA+ aBlilds,  (62)

o0

N (=ppA + ¢B) frm(q)dg,
(63)

Zﬂmn mn —

wherem =1,2,....

Inserting A and B from Egs. (54) and (55) into
Egs.(61)—(63) theremainingequationgor C,,,, and
Dy, EQs.(43)—(49)and (61)—(63),form a system
of linearequationghatit is straightforvardto solve.
However, the coeficientsin Egs.(61)—(63)contain
infinite integrals over ¢ that needsomecarein the
computation.

IV. EFFECTIVE BOUNDARY CONDITIONS

If the thicknessof the piezoelectricstrip A is
small comparedo the wavelenghtsapproximating
the strip in a simple fashion should be possible.
In this section,an effective (approximate)oundary
conditiontaken from Johanssomnd Nicklasson[8]
is stated and the correspondingboundary value
problemis solved in a mannerthatis quite similar
to the methodusedin the previous section.

With a generaltime dependencend a driving
voltage that may dependon z the form of the
effective boundaryconditionsincludinglinearterms
in his

e _ BTN
Uzz = (631 €33 033)&5\/
0? 0%3 0? .
—wpm2(m—g?%ﬂ . (64)
ciz, 0 PEs3 0?
e _ _ " _ “loy M e = W
ot [(631 €33 33)8:1:2 o 6t2] 0
2,,.e
Y (65)



In the presentcasewith harmonictime dependence (60). The boundaryconditionsat z

anda constantlj, this is very much simplified
%1,
= h[pw + (c11 — —)@]U ; (66)
hpw2633 2, €
s, = Vo + hpw w®. (67)
C33

The lowestorderapproximations to only keepthe
Vo term andthis is henceforthcalled the first order
approximationFrom this it is clearthat the whole
solutioncontainsa factor 4 so incorporatingthe u°¢
andw® termsgivesa secondorder solution.Also a
third order solutionis consideredn the following;
it is quite complicatedso the explicit formulasare
not showvn, see Johanssorand Niklasson [8] for
a prescriptionfor its calculation.In summarythe
boundaryconditionsup to third ordercanbewritten

Am(ai)a;z = A, (ai)“e (68)

Az:(07)0z, = AvVo + Ay (87)w",  (69)

wherethe various A:s are given by a comparison
with the specificordersaborve. As V; is independent

of z, Ay is aconstantasindicatedwhereagheother
A:s are operatorsin 92. For a boundarycondition
of generalordertheremustin additionbe atermin
w® in EQ. (68) andatermin € in Eq. (69).

The solutionprocedurds very similar to the one
usedin the previous section.The generalsolution
in the elastic half-spaceis given by Egs. (30) and
(31).At 2 =0, |z| < a, the solutionis expandedn
trigonometricseriesin x as

= Z Cyp 8in ¢, lz| < a, (70)
m=1

= Z Dy, cos gmx, |.T| <a, (71)
m=0

where ¢, = mn/a as before. Equatingwith Egs.
(30) and (31), the expansioncoeficients C,, and
D,, areobtainedas

2 [
(¢A+ psB)

Cn="1 | gm(q)dg,  (72)
Dp==" | (-ppA+aB)fula)ds.  (73)

Hereeg=1,¢, =2,m=1,2,...,
factor and f,,, and g,, are givenin Egs. (59) and

= 0 may be
rewritten as
A, (0%)u® <
0, lz| > a,
A A, (0?)we <
A(@2)or, = 4 SV BelOut ol S
0, lz| > a.
(75)

Insertingthe stressegalculatedfrom Eq. (30) and
(31) and the surface displacemenexpansions(70)
and(71) into theseequationsjnverting the Fourier
transformsandsolving gives

i 2005 ~—
A(Q) ,U—R[ ar Z:lAu mgm(Q)
(k3 —2¢%)
m <AVV0 + ZA )Dmfm(Q)>]a
(76)
i k2 — 2q
B@)= 5lx ZA )Crngm(0)
+%(AV% + ZA ) mfm( ))]
(77)

where it is assumedthat A,,(—¢?) # 0 and
A,.(—¢*) # 0. For the first and second order
boundaryconditionsthis is certainly no restriction
asA,, =1 andA,, = 1, but it seemsto be no
restrictionin generafor reasonablyow frequencies.
If A andB from Eqgs.(76) and(77) areinserted
into Eqgs.(72) and(73) a linear systemof equations
is obtainedfor C,,, and D,, thatit is straightforward
to solve. As for the exact solution the coeficients
in the systemof equationscontaininfinite integrals
over q that needsomecarein the computation.
Once the expansion coeficients C,, and D,,
have beendeterminedthe displacementield in the
elastic half-spaceis obtainedfrom Egs. (30) and
(31) (using also Egs. (76) and (77)). Note that if
the displacementirectly beneaththe strip (z = 0,

is the Neumann |z| < a) is wanted,the seriesexpansiong(70) and

(71) may be usedinstead.
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Fig. 2. The dimensionlesglisplacemenW atx = 0, z = 0 as
a function of frequeng for h/a = 0.05 and four casesexact (full-
drawn), first order (dashed),secondorder (dash-dotted)and third
order (dotted).

V. NUMERICAL EXAMPLES

In this section, some numerical examples are
givenin orderto illustratethe usefulnesandlimita-
tions of the effective boundaryconditions.In all the
exampleghe elastichalf-spacas madeof steelwith
the materialpropertiesu = 80.8 GPa, A = 121 GPa,
and p¢ = 7870kg/m?. The piezoelectricstrip is
madeof PZT-2 (class6mm with the zy-plane as
the plane of isotropy) with the material properties
Ci1 = 1356%, Ciz = 68.1 GFH, C33 — 1136%,
Cq4 = 22.2 GPa, €15 = 9.8 C/mz, €31 = —1.9 C/mz,
€33 = 90C/m2, €11 = 478 - 10711 C/Vm, €33 =
230 - 10~ C/Vm, and p = 7600 kg/m® (seeAuld
[10]). In all the examples,the dimensionlesdis-
placementn the z direction W = /¢4 /€11 we/Vj
on the surface of the half-spaceis shavn for the
exact solutionaswell asthe approximatesolutions
obtainedfrom the effective boundary conditions.
Both the frequeng kyh of the input voltageandthe
thicknesgo width ratio /a of thestrip arevaried.lt
is notedthatthe dimensionles$requeng is chosen
as the thicknessof the piezoelectricstrip relatve
its (stiffened) wavelengthas it is to be expected
thatit is this ratio thatis crucial in determiningthe
accurag of the effective boundarycondition.

In Figs. 2—4 the dimensionlesglisplacementl/
is shavn at z = 0, z = 0 as a function of the

0.025

0.02 |-

0.005

Fig. 3. The dimensionlesgslisplacement¥ atx = 0, z = 0 as
a function of frequeng for h/a = 0.2 andfour cases:exact (full-
drawn), first order (dashed),secondorder (dash-dotted)and third
order (dotted).

frequeny kyh. Betweenthe three plots, the value
of h/a is varied. It is seenthat the first order
approximationis in good agreementvith the exact
solutionwhen khy < 0.1 — 0.4, dependingon the
valueof h/a. The secondandthird ordersolutions
are valid for someavhat higher frequencies,also
somavhat dependingon h/a. In Fig. 4 the third

order solutionis valid up to kgh = 1, but thenit,

somevhat unexpectedly quickly deviatesand even
goesto zeroat kyh = 1.4. However, it is doubtful
if the higher order effective boundary conditions
are worth the extra effort, becausethe boundary
conditions are much more complicated,involving

alsotangentialderiatives.

In the exact solution the boundary conditions
on the sidesx = =+a are of the mixed type, so-
mewhat unrealisticin practice.In the solutionwith
the effective boundary conditions these boundary
conditionsarenot used,or, indeed,they do not play
ary role at all. Still, the numerical results agree
betweerthe exactandeffective boundaryconditions
and this shows that at sufficiently low frequencies
and not too high thickness-to-widthratio (but this
ratio is as high as 0.25 in the numerical results)
the boundary conditions on the sides are of no
importance.Consequentlythe use of the mixed
boundary conditions in the exact solution is no
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Fig. 4. The dimensionlesglisplacemenW atx = 0, z = 0 as
a function of frequeng for h/a = 0.5 andfour cases:exact (full-
drawn), first order (dashed),secondorder (dash-dotted)and third
order (dotted).

restriction of importanceand very similar results
areexpectedor otherboundaryconditions(with the
restrictionson frequeng and thickness-to-width).

V1. CONCLUDING REMARKS

The 2D inplaneproblemwith a piezoelectricstrip
actuatorof finite width on top of an elastic half-
spaceis considered.The problemis solved both
exactly, employing mixed boundaryconditionson
thesidesof thestripto enablingFourierseriesrepre-
sentationsand with effective boundaryconditions,
whereno boundaryconditionson the sidesarenee-
ded.Threedifferentordersof the effective boundary
conditionsare investigated.The lowest order is a
simple traction boundarycondition, but the higher
orderonesbecomeprogressiely more complicated
with alsotangentialderivativesinvolved.

The numerical results shov that at sufficiently
low frequenciesall three effective boundarycon-
ditions give solutionsthat agreewell with the exact
solution.The higherorderboundaryconditionsgive
goodsolutionsfor somevhathigherfrequenciesbut
it is doubtfulif theextra effort neededs worthwhile.
In mary practical applicationsthe frequenciesare
low (in termsof the thicknessof the piezoelectric
strip), andthenthe lowestorder effective boundary
condition should be very useful. For instance, it

should be straightforvard to implementin a FEM
progam.
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