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Abstract—The performance of a digital communication system can generally be
improved by increasing the number of variables being jointly coded. In this sense, it
is desirable to have, e.g., higher-dimensional quantizers, longer channel codes, anc
more users in a multiple-access system. However, increasing the number of variables
results in higher complexity of encoding and decoding, which are two limiting
factors in the choice of coding methods. In this dissertation, which comprises seven
published or submitted articles, algorithms are discussed for three related -applica
tions in telecommunications: vector quantizer encoding, multiuser detection, and
soft-decision channel decoding. A unified approach is obtained through a common
formulation in terms of discrete optimization, or, taking on a geometric viewpoint,
searching in multidimensional point sets. A convenient instrument to characterize the
structure of these sets is the Voronoi diagram.

The first considered application is vector quantization, with some focus on
lattices. Lattices are regular structures of infinitely many points that after truncation
can be employed as quantizers. An algorithm is developed to optimize the quantiza
tion performance of lattices. Employing the algorithm, two lattices are found that
improve on previous results. It is also discovered that the so-cBllegssellation,
which is a union of two lattices, is superior to any known single lattice in dimensions
7 and 9. Truncated lattices are also analyzed, revealing that theitidistorelation
to that of optimal quantization increases with the number of points. An algorithm for
qguantizer design is introduced that maintains close to minimal distortion by suitably
stretching the truncated lattice. The work on vector quantizalso includes theory
and algorithms for index assignment, which is a way to incorporate error-robustness
into the quantizer design through a careful codevector ordering. Another contribution
is a comparison of the complexity of some encoding methods.

Multiuser detection in CDMA systems is formulated as the geometric problem of
searching a point set having a certain structure. Properties of Voronoi diagrams of
such structures are given, thus making it possible to apply a known Voronoi-based
search algorithm for detection.

Soft-decision decoding of block channel codes is the third application being
studied, again by means of the Voronoi diagram. A fast algorithm is presented to
investigate the Voronoi diagram of binary linear block codes. Several well-known
codes are characterized. Asymptotic theory shows that for most classes of long
codes, the complexity of the Voronoi diagram as a function of the bite rate displays a
distinct threshold at the rate of one half. Voronoi-based soft decision decoding is
essentially practicable only for rates above this value.

Index Terms—Source coding, channel coding, Voronoi diagram, nearest neighbor
search algorithm, complexity, vector quantization, lattice, index assignment, linear
block code, soft-decision decoding, Gaussian channel, neighbor descent, asymptotic
theory, computational geometry.






Préface

efore diving into the details of telecommunications, some general comments on this

work may be appropriate. For the preface to be accessible by a wide audience, the

presentation follows a different style here than in the rest of the dissertation.
Depending on your background, you may prefer one of the styles to the other. If you feel
offended by a lack of scientific formalism and precision, please stop reading now and skip to
page 1.

To begin with, let us make sure that everybody understands the title. When you want to
transmit a message somewhere, you are not always so lucky that tlabdlavaiédium, or
channel, is suited for the type of message. For example, a telephone wire cannot accommo
date sound, only voltage. Or a movie is not visible very far through the atmosphere, but
electromagnetic radiation (of suitable wavelength) can propagate almost forever. Hence, it is
a good idea to include songeding in a telecommunication system. Coding is the translation
of a signal from one form to another, such as the representation of your voice as a time
varying voltage, or the image of Ingrid Bergman as radio waves.

Voronoi-based refers to a certain geometric idea. To visualize it, image a large garden
between your house and your neighbor’s. Both you and your neighbor love strolling in the
garden and picking the wonderful flowers. However, the neighbor sometimes intrudes on
your half of the garden, picking flowers that grow noticeably closer to your house than to his,
so one day you build a fence, exactly halfway between the two houses. From that day you
never see your neighbor again. Encouraged by the success, you build similar fences to sepa
rate you from your neighbors in other directions from your house,Yspl know, thisis a
tale of human tragedy, but | need the scenario to explain some geometry. When | am done, you may
tear the fences down and invite all your neighbors for coffee. Your barrier now encloses all the
flowers that grow closer to your house than to anyone else’s. This\ertaoi region of
your house. If all of the inhabitants in the neighborhood would build fences halfway between
each other, th¥oronoi diagram of the houses would be made visible. It certainly takes some
time to build all these fences, but once it has been done, it greatly simplifies the distribution
of any future flower. If you skim through this book, you will discover several Voronei dia
grams. There is even a Voronoi region on the front cover.

By now, | hope that any nonspecialist reading this has at least a vague idea of what
“Voronoi-based” and “coding” mean. What remains for me is to explain what the two
concepts have to do with each other. This is what the rest of the book is about. Basically,
some problems in coding theory are analyzed using the Voronoi diagram as a mathematical
tool. My apologies if you were led to believe that thisis a book on gardening. You will be awfully dis-
appointed.

By the way, one more thing about Voronoi diagrams, and about geometry in general.
What | described above is a two-dimensional example, Voronoi diagrams in the plane, but
the concept can be directly generalized to more dimensions. $tanae, the same story as
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above could be told of a group of birds in the jungle, living not only in different trees but
also on different heights. If they decide that every mosquito belongs to the bird in the nearest
nest, and build cages around their territories, they create a three-dimensional Voronoi dia
gram.| suspect that birds do not normally build cages around themselves, but again, this preface was

never expected to satisfy notorious scientists. Four dimensions is where human common sense
normally breaks down. Whether this limit is physical or perceptual is an interesting question,
unfortunately beyond the narrow scope of this boringly technical dissertation. The important
point is that higher-dimensional structures can still be described maitbaltyatand we

should not let our inability to visualize them prevent their employment in coding.

without help. Qualified help, in numerous matters. In this context, | feel incapable of

mentioning anyone before my family. Magdalena, if this book had had a dedication,
it would have been to you, “who provided me with two essential ingredients—Time and
Love,” but in the first place, dissertations do not normally carry printed dedications, and in
the second place, Toby Berger used this formulation in 1971. | believe | had better say what
needs to be said in person instead. Alfred, you have given me a taste of what happiness might
really be about. | admire your ability to find it, and also to give it. Your crystal-clear sense of
logic and your unprejudiced way of observing the world invigorate our conversations greatly.
| have a lot to learn from you. Little Robert, | do not know you very well yet, but already you
mean so much to me. When my burden feels heavy, | think of you and perceive a vision of
brighter days to come. You represent the future.

My colleagues at the Department of Information Theory deserve a vector of thanks. The
first acknowledgement goes to Per Hedelin, my supervisor, who introduced me to the field of
information theory and showed me the fascination (indeed, the beauty) of vector guantiza
tion. Regardless of what | might work with in the future, | will never forget our venture into
this realm. Per has the ability to find unexpected solutions, of research problems as well as of
practical ones. Once when | intended to write an article, | just did not know how to begin.
The research was done, | was satisfied with my results, but | felt unable to formulate a
suitable line of aproach. | struggled with it for days, producing exactly as much text as |
rejected. Per though about the problem for a moment, then he told me to write the last
chapter first. | did, and then everything else fell neatly into place. His piece of advice is one
that | wish to share with all of you.

| have had the pleasure to cooperate with several inspiring colleagues. In addition to Per,
| worked with Thomas Eriksson, Petter Knagenhjelm, and Tony Ottosson, and | learned
different things from each of them. Thomas is gifted with an incredibly persistent optimism.
Thank you for your stubborn belief that even our most imaginative ideas would be fruitfull
Sometimes you were actually right, which resulted in articles 3 and 4. Petter’'s ability to
present a complicated topic in a comparatively comprehensible way has been an inspiration
for me, ever since | was an undergraduate student. Also, Petter is one of the most generous
persons | know, in the widest meaning of the word. Tony has a higher ratio of things-that-he-
does to things-that-he-says-should-be-done than most people. By the way, this merit is not
due to any restraint on the amount of talking.

Mikael Skoglund and Stefan Dodunekov have been very helpful as discussion partners
on various subjects. | have always felt welcome to ask them when in need of, say, a certain

/7: he efforts that have led to this dissertation would have been absolutely impossible
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formula or reference. Their patience with my technical and madtieal shortcomings and
their endurance with my most elementary questions is gratefully acknowledged.

Ingvar Jonsson, my friend, you always supported me. | appreciate your hearty-encour
agement and | preserve many happy memories from our years of teaching Digital Radio
Communications together. Ingvar has taken a keen interest in my work on block codes, and |
especially want to mention the so-called “H rule” in article 7, which was inspired by a
suggestion of Ingvar.

In the completion of this dissertation, | have paid less attention to other matters than |
should. Thanks to everyone who reduced my nondissertation duties, both at work and at
home! My fellow Ph.D. students have been very kind to me, and so have my family, and
Magdalena’s. Without your help, my task would have been hopeless.

| am indebted to Per, Tony, Petter, Mikael, and Thomas for careful and competent proof
reading. The practical assistance of Lars Kollberg and Eva Axelsson has also been much
appreciated. And, not to forget, | have often sent a grateful thought to all those fabulous
cookie makers, who provided me with the physical energy source essential for extensive
periods of continuous work.

ow fasten your seat belts and join me for an exciting tour in the city of Tele

J’ communications!
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b€ There is a curious and provocative duality
between the properties of a source with a
distortion measure and those of a charlfel.
Claude Elwood Shannon, 191 ]

[ntroduction

1. THE TELECOMMUNICATION SYSTEM

he purpose of this introduction is to illuminate the results of the seven included

articles in a broad perspective, to outline their connections with each other and
with related work. A suitable point of departure is the digital communication system
in figure 1. In this section, the system is described from the user’s point of view;
subsequent sections will go into more technical and mathematical detail in order to
specify the problems that are considered in the articles.

The diagram in this figure has become something of a standard model and it is
reproduced in numerous textbooks in information theory and digital communications.
Strangely, no one seems to know who first pictured it. An early appearand@as in
p. 2]. The model is quite general and can represent a wide range of digital tele-
communication applications, including both transmission and storage. It does not,

Source Channel
Source > > » Modulator
AorD encoder D encoder D A
\
@ 7 Channel
User - (i%%rggr - ggggggrl - Demodulator
AorD D AorD A

Figure 1. The communication system. Letters indicate if a signal is
analog or digital, and numbers refer to the articles.
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however, cover every imaginable system.

Suppose that we need to communicate a message somewhere, such as speech, an
image, a video sequence, medical or meteorological data, or music. These are exam
ples of analog messages; among digital messages, we can mention text and computer
programs. The origin of the message is calledsthece.The (physicallchannelis
any medium in which a signal can be transmitted or stored, such as a radio frequency
band, an electric wire, an optic fiber, a magnetic disk or tape, or a CD. Most channels
have in common that they are analog by nature, and that they are more or less noisy,
in the sense that they distort the signal. Tker, at the end of the communication
chain, is the one for which the message is intended. It may be you or me, or a
computer.

The source, the channel, and the user are to be regarded as fixed for the
communication theorist, whose object is to design a coding scheme matched to these
three blocks. This is the purpose of the other components in figure 1. The design
aims to present the user with as accurate a message as possible, while occupying a
minimum of channel resources. The two demands conflict with each other, which
calls for a compromise.

The object of thesource encodeis to represent the source as a sequence of bits
(or symbols), in such a way that tls®urce decoderwhen fed with the same
sequence, is able to reproduce the message faithfully. If the source is analog, the
source encoder includsampling,to produce a discrete-time signal, amaantiza
tion, to make the signal discrete in amplitude as well. This dissertation has a lot to
say on the subject of quantization, beginning in section 4 and then continuing in
articles 1-4. In source coding, the compromise mentioned in the previous paragraph
takes the shape of a tradeoff between accuracy and the number of bits in the
representation.

The communication system is traditionally designed under the assumption that
the source decoder receives a bit sequence that is identical to the output of the source
encoder. To increase the probability that this will indeed be the case, despite the
hazard that a noisy channel poses,ahannel encodeadds some redundant bits,
which thechannel decodeutilizes to detect if some bits have been corrupted, and
possibly also to correct the errors.

As mentioned above, physical channels have normally an analog nature: they
carry waveforms, such as a time-varying voltage or a configuration of matter. To
represent bits in such a medium, a digitaddulatoris employed, which maps each
bit or group of bits into a certain waveform. Tdemodulatomperforms the reverse
mapping while neutralizing as much as possible of the distortion induced by the



Introduction 7

channel, e.g., it combats noise with filtering, dispersion with equalization, and
multiple access interference with interference cancellation.

If the source encoder, channel encoder, and the modulator are combined into one
general “transmitter,” and the corresponding operation is done on the receiver side,
we obtain Shannon’s classical model, from which essentially all communication
models today can trace their origin. Shannon’s paper in 1948i$86mmonly
recognized as the single most important paper that has ever been published in the
field of information theory. He defined tkatropy of a digital source and thmpa
city of a channel; furthermore, he showed that for error-free transmission, the source
entropy is upperbounded by the channel capdi&By, [23]. Since then, numerous
divisions of the transmitter and receiver into smaller units have been presented,
depending on practical as well as pedagogic preferences. The structure that is
illustrated in figure 1 is sufficient for the purpose of this introduction.

One consequence of Shannon’s proof of his famous theorem mentioned above is
that the upper bound is attainable through a separate design of what is now known a
a source coder and a channel coder. However, Shannon himself did not use the term
source and channel codihgyor did he suggest the separation to be built into practi
cal communication systems. The drawback of source-channel separation is, from an
engineer’s point of view, that it is optimal in an asymptotic sense, as the complexity
and the delay of the encoder and decoder are allowed to increase towards infinity
[89], which is clearly not a practical assumption. Nevertheless, most efforts in com
munication theory since the sixties have involved separation. Only recently has the
notion of what is nowadays called combined (or joint) source-channel coding seen a
renaissance. A recent reference discussing this topic isg§&&Jalso section 4.

To zoom in on the work that is contained in this dissertation, consider figure 1
again, and note especially where an analog signal is converted into a digital one. This
conversion occurs twice in a digital communication system, once in the transmitter
and once in the receiver. In the transmitter, the source encoder has to find out which
digital representation, out of a finite number of available ones, that is most accurate
for a given analog source signal. The receiver, which observes an analog signal on
the channel, has knowledge of the finite set of signals that can possibly have beer
transmitted; it should decide which one of these that underlies the observation, taking
channel distortion into consideration. This decision process can be carried out in
either the demodulator or the channel decoder, depending on the system design.

The two digital-to-analog conversion processes can be described as instances o
the same search problem: Find the signal in a prespecified set that is closest, in som
well-defined sense, to a given signal. To facilitate a unified approach to the-compo

1 The common usage of the terms appears to emanate from Fano’s book 271961
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nents of the communication system where analog-to-digital conversion occurs, we
first pause to define and study the search problem from a geometric point of view.
This leads into the important conceptsnefarest neighbor seardndVoronoi dia
grams,which are the topics of the following two sections, 2 and 3. For the sake of a
unified approach, the basic theory is introduced from a “neutral” point of view, i.e.,
without any specific application in mind. Beginning in section 4, the discussion re
turns to telecommunications, and especially to the source encoder, the demodulator,
and the channel decoder. These are the blocks in figure 1 where the search problem
arises. Each of the blocks has its own section (4—6), where the connection between
coding and geometry is established, and the positions in the system of the seven
constituent articles are clarified.

2. VORONOI DIAGRAMS

The Voronoi diagram plays a central role in this dissertation. In short, it represents a
classification of the points in Euclidean space according to which one of a number of
reference points that they are closest to. This section will initially define the Voronoi
diagram and related concepts of geometry such as the nearest neighbor search prob
lem, and then proceed into a more algorithmically oriented discussion of how the
Voronoi diagram can be determined. Subsequent sections will discuss how it can
shed light on some coding problems.
Assume that a countable sét of d-dimensional vectors is given, and that

anotherd-dimensional vectox is observed. The task of finding the vector i@
whose Euclidean distance 1ois minimal is callechearest neighbor searcloy the
closest point problem, or sometimes the post-office probigmintroduce the func
tion n to denote the nearest neighbor, defined as

ne(x) = argminx - of? (1)

coe

where|| 0P denotes the squared Euclidean norm of a vector. This function associates
every d-dimensional vector with a vector i@; the set ofll d-dimensional vectors
being associated with the same vector is calledvitr@noi regionof that vector.
Formally, the Voronoi region of CIC is {x ORY : Ne(X) :<} . The set of Voronoi
regions of all points in® cover the space completely, overlapping each other only at
the boundary points of the regioh3his set of regions, and also a graphical illustra-

2 In order to maintain an interdisciplinary treatment in this section, we avoid naming the vafiables
and x.
3 Provided thatn, in cases where (3) results in a tie, is allowed to be multiple-valued.
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Figure 2. Features of a point set. The points themselves (dots), a Voronoi
region (shaded), and a part of the Voronoi diagram (lines).

tion thereof, is called &oronoi diagram See figure 2 for an example. Another
Voronoi region is the shaded region on the front cover.

Since so much literature has been devoted to theory and methods specific for two
dimensional applications, it should already at this point be emphasized that no major
concepts or results in this dissertation are theoretically restricted to two dimensions.
However, most of the illustrations are, for nothing but graphical reasons, two
dimensional. This can actually be quite misleading sometimes, especially when the
purpose of the figure is to illustrate a phenomenon whose significance increases with
the dimension. The reader is encouraged to generalize the ideas behind the illustra
tions mentally, at least to three dimensions.

A Voronoi diagram is, as subsequent sections will show, a useful tool in several
problems of communication theory. However, its use is not at all limited to commu
nications; it has been employed, and also reinvented, in a remarkably large number
of seemingly unrelated applications, ranging far outside the field of engineering. In
fact, the main textbook on the subject of Voronoi diagrams lists 19 sciences or dis
ciplines where applications have been fol#4, p. 2], but none of them covers the
coding problems that are considered in this dissertation.

The importance of this geometric structure is apparent from the number of names
that have been used for it. Some terms that have been given for “Voronoi region,” or
something very similar, are: area of influence polygon, area potentially available,
Blum’s transform, Brillouin zone, capillary domain, decision region, Dirichlet

4 However, analog-to-digital conversion is briefly mentioned on pages 343 and 428 in the book.
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region, domain, domain of action, domain of influence, honeycomb, maximum
likelihood region, nearest neighbor region, plant polygon, plesiohedron, proximal
polygon, region, representation region, Thiessen polygon, tile, Wabenzelle, Wigner
Seitz cell, Wirkungsbereich, and some variations the@hfpp. 7-8, 341-343, 369,
376-377] [26], [39, pp. 89, 169][7], [20, p. 33], [79] [38], [83], [88, p. 48], [77] It

appears impossible to determine who first introduced Voronoi diagrams, but we
know for sure that the concept is far older than any of the persons whose names have
been given to it. Similar diagrams were used in the 17th century, according to pre
served documents [69, pp. 6+But nothing indicates that the idea should have been

a novelty at the time.

To determine the Voronoi diagram, or its geometric dual, which i©#iaunay
triangulation, is computationally costly in high dimensions. Several methods have
been suggested. In 1979, Brown discovered a mapping such that the Voronoi
diagram of ad-dimensional point set is transformed into the convex hull of a
(d +1)-dimensional point sdtl5]. Hence, any general convex hull algorithm would
imply a method to construct Voronoi diagrams. This discovery has become more
significant today than it was at the time of its publication, because of the progress
that was made during the 80’s in the computation of convex hulls. For recent
overviews of convex hull algorithms, see [25, ch. 8], and [69, pp. 260-261]

Bowyer [14] and Watson [95in two similar papers in 1981 both described how a
Voronoi diagram is modified by the insertion of a new point into the set, thus-obtain
ing incremental algorithms for the construction. A different approach was suggested
by Gersho in 198229], who employed a Monte Carlo technique to identify the
shape of the Voronoi regions using a training set. The probability that this method
finds the true Voronoi diagram tends to 1 as the size of the training set approaches
infinity; for moderate training set sizes, an approximation of the Voronoi diagram is
obtained. The accuracy of the approximation can be traded for execution speed.

In 1983, Avis and Bhattacharya showed that the Voronoi diagram for a given set
of points can be established through the solution of a large number of linear pro
gramming problem¢8]. This line of thought was continued by Joshi and Poonacha
[47], who with a slightly different formulation employed the feasibility problem in
linear programming, and Agrell [2who used a similar technique to characterize
some other properties of a Voronoi diagram. Hartvigsen employed linear program
ming to the reverse problem, that of determining whether a given partition is a
Voronoi diagram of some point set and, if so, finding this point set [41]

So far, the discussion has been concerned with arbitrary point sets. In practical
problems, however, the point sets that appear are often constrained to follow a certain
structure, and corresponding constraints apply to the Voronoi diagrams. Such cases
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will be discussed in connection with some coding problems in sections 4-6 and
articles 3—7. It turns out that the general algorithms summarized above may not be
suitable for computing the Voronoi diagram of a structured point set. They may be
prohibitively slow, and they may even fail to yield correct results due to the degen
erate nature of the structure. We will see examples of both cases later in the-disserta
tion.

3. NEARESTNEIGHBOR SEARCHM ETHODS

We now turn to another problem of profound practical significance in communica
tions: nearest neighbor search. Implicit in the definitiomg{x), see (1), lies a
method to evaluate the function: compute the distance to all poirfsand select

the point that yields the minimum distance. This metfdtsearch,is conceptually

the simplest way of performing nearest neighbor search, but it is also one of the
slowest. During the past two decades or so, considerable efforts have been devoted t
faster search methods for the purpose.

Since the Voronoi diagram can be seen as a representation of the combined solu
tions of all possible nearest neighbor search problems for a given point set, it is not
surprising that the structure, once determined and stored in a suitable form, can be
utilized in nearest neighbor search. To begin with, if we want to assess whether a
certain pointc € is the nearest neighbaor.(x) of a given vectorx, it is sufficient
to compute the distances fromto ¢ and to all theneighborsof c. (A neighbo? of a
point ¢ ¢ is another point in€ whose Voronoi region shares(d —1)-dimen
sional facet with the Voronoi region af.) If [x —c|? is the shortest of these dis-
tances, them(x) =c and no more distances need to be computed. On the other
hand, if x is closer to one of the neighbors ofthan toc itself, then this neighbor
can replacec in a new test of the same kind. Repeating this procedure yields an
iterative nearest neighbor search algorithm, beginning at an arbitrary pa@haird
terminating atne(x), without computing all the distances in (1). The algorithm,
which we callneighbor descertiecause of its resemblance to steepest descernt meth
ods for the minimization of continuous functions, is illustrated in figure 3. It assumes
that the neighbors of all points i@ have been determined in advance and stored,
which for some sets may require a considerable amount of memory. Neighbor
descent appears, in one form or the other, in articles 1 and 4-7.

This search method was initially suggested by Green and Sibson inf3378
[82], who used it as an element in the construction of two-dimensional Vororoi dia

S5 A (Voronoi) neighbor is also called an adjacent, a contiguous, or a relevant vector. Note that the
word “neighbor” in “nearest neighbor search” does not refer to Voronoi neighbors.
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Figure 3. An instance of the neighbor descent search method. The posi
tion of the vectorx is marked with a star.

grams. Ohyat al. [68] and Okabeet al.[69, pp. 225—-230] cover this use of neighbor
descent thoroughly. The method was applied by Hwangddd]ButovitscH16, pts.

D—E] to channel decoding, see section 6, and by Joshi and Poonacha to vector quan
tization [47].

Several variants of the neighbor descent method come to mind. If more than one
neighbor would decrease the distancextoit is not evident which one should be
selected. Agrell compared three strate§iasd showed that the most efficient choice
is thefirst favorable neighbor found, which is not necessarily the same &eghe
one [3] Another way to vary neighbor descent is to use a different “neighbor” con-
cept, one that is not based on the Voronoi diagram. Such approaches were suggested
by Hwang and Butovitsch in their above-mentioned publications, and also byetArya
al. [4], [5], [6] and Jeong and Gibs@45]. Some results in this area are included in
articles 1 and 4. It is important to remember, however, that when the Voronoi neigh
bors are abandoned, the neighbor descent method is not anymore certain to find
ne(X); it might return a suboptimal point instead.

Neighbor descent is not the only alternative to full search, when it comes-to per
forming nearest neighbor search. On the contrary, a tremendous amount of work has
been done on search algorithms in the last two decades. Some of them are guaranteed
to return ne(x), whereas other algorithms find suboptimal solutions of the search

6 In an unpublished report, they were characterized as, respectively, timid (“let's not do anything until
we know what the choices are”), avid (“get anything that is better than before”), and rigid (“since this
has worked so far, it is worth trying once more”).
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problem. In one sense, the field has begun to stagnate: not in the amount of literature
issued every year, but perhaps in the relation between such literature and previous
work. The wheel is continually being reinvented. The disorder has reached a stage
where the presentation of another algorithm would almost certainly disappear behind
the heap of similar work. Hence, an important contribution to nearest neighbor re
search would be to somehow sort the items in that heap, thus making it easier for
future authors to put their contributions on top of it. In some other research areas
where a similar problem has occurred, a textbook has appeared and resolved the cor
fusion. This has not yet happened in this field; the closest thing to a textbook is a
couple of dissertation®0], [18], [75], [4].

Several authors have compiled literature surveys of the main approaches to near
est neighbor search. Their surveys cover to some extent different parts of the litera
ture and use different subdivisions; together they constitute a fairly good overview of
the field. Instead of providing another (incomplete) survey of algorithms, | will in
this introduction give a short survey of surveys, which, to my best knowledge, has
not been done before.

The book by Gersho and Gray contains a comprehensible summary of some main
categories of nearest neighbor search methods [31, pp. 332—-335, 47981t
going into detail on individual algorithms. For individual algorithms, the surveys in
the dissertations by Cheij8, pp. 14—-22] and Arya [4, pp. 3—8] are good sources of
information. The surveys by Vidait al. [90], [91] mention a large number of refer
ences, perhaps larger than any other survey does, but the presentation is brief. Thi
earliest work in the field is surveyed in the well-known paper by Friedrhain[28].
Ramasubramanian and Paliwal give a survey that concentrates on the development il
the so-calledk-d tree search methods [7@&nd the one by Moayeri and Neuhoff in
[61] covers mostly the same material. In addition, short but enlightening summaries
are included in [17][78], [9], and [51]

One reason for the multitude of nearest neighbor search algorithms that have beer
proposed (at least a few hundreds, reinventions included), and for the absence of ¢
consensus regarding which algorithm is actually the “best,” is that the quality of a
search algorithm can be measured in so many ways. This problem is the topic of
article 1, which is further discussed in the next section.

4. SOURCEENCODING

In this and the two following sections, the discussion is brought back to where it
began, the communication system illustrated in figure 1. The three components
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where analog-to-digital conversion occurs will be highlighted in one section each,
and various coding problems will be formulated in terms of nearest neighbor search.

Source encoding implies the representation of a message as a sequence of bits.
How this is done depends, obviously, on the type of source and application. For
efficient communication, different types of sources need their own source coders. A
typical encoder operates in two steps; first it creates a parametric representation of
the signal, then it quantizes the parameters.

The selection of a set of parameters for a certain type of source is a vast research
field in itself, divided into speech coding, image coding, etc. The parameters should
identify the significant features of the source signal. It is unnecessary, even wasteful,
to adopt parameters that contain too exact a description of the signal, if some details
are more relevant to the user than others, which is certainly the case in the above
mentioned applications.

To complete the digital representation, the parameters are quantized, one at a time
(scalar quantizatiopor several Yector quantization Because of its connection with
search problems and Voronoi diagrams, we concentrate on vector quantization.
Several tutorials and overviews have been written in this field. All-round treatments
of vector quantization are [36]84], [37, ch. 5] and[31], wheread35] and[12]
concentrate on a certain type of quantizer. Applications in speech coding are sur
veyed in [30] [53], [71], [32], and[19], and in image coding in [66]74, ch. 12]

[22], and [21]

The core of a vector quantizer (VQ) is ttwebook€, which determines the set
of parameter vectors that can be represented by the coder, iedewectorsThis
set is a finite list, so the output of the source encoder is simply an integer, most often
coded as a sequence of bits, which gives the index of the selected codevector in the
codebook! The source decoder maintains its own copyoéind identifies the code-
vector whose index equals the received integer. If the number of codeveatbis in
2% and each vector contairts elements, then thaite k/d gives the number of bits
that are used to encode one parameter.

The vector quantizer is presented with a search problem. After receiving a param
eter vectorx, its task is to find a vectax in € that is similar tox, in some sense.

How to measure similarity is a delicate question, whose answer in the end depends
on the sensitivity of the user to various kinds of changes in the message and on the
sensitivity of the message to changes in the parameter set. These sensitivities are hard
to assess, and even harder to express as a mathematical funckicemdfx. To

avoid these difficulties, a reverse approach is often preferred: First choose a distor

7 It is assumed that the computer represents thesas a list, which is why a codevector can be
represented by its index.
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tion measure, and then transform the parameter vectors into a coordinate systen
where this measure is not too inappropriate. By far the most commontidistor
measure is the squared Euclidean distaﬂ)ce,§<||2, which corresponds to the energy

of the quantization error. Parameters for miscellaneous types of sources have beel
developed for use with this measure. The main advantage, regarding the complexity
of analysis and algorithms, is that the setup creates a nearest neighbor search prot
lem; for minimal distortion, the quantizer should selget n(x). Consequently, the
objective in vector quantizer design for a certain type of paennés to find the set

€ of a given size that minimizes the distortion per parameter

1
D= EfJx ~ne0af?)- ¥

The evaluation of the expectation assumes that a statistical model is known, or can be
estimated, for the parameter vectors to be quantized.

Many of the algorithms that have been proposed for nearest neighbor search were
originally presented in the context of vector quantization. Despite the large number
of available algorithms—or perhaps because of it—no evident champion has
evolved, which leaves anyone building a vector quantizer application with an intri
cate search problem, namely, the search for a search algorithm. Article-4+

a case study that illustrates why this problem cannot be solved once aﬂqd
for all. Three nearest neighbor search algorithms are evaluated usf
several performance measures. The considered measures are average search timr
worst case search time, storage, precomputation time, and distortion when the searcl
is interrupted after an allotted period of time. In turns out that any algorithm of the
three investigated ones emerges as the winner, depending on which measure is use
Geometrically stated, performance is not a scalar but a vector, and to determine the
“greatest” vector is generally an ambiguous task. The conclusion is that there is actu
ally a “market” for a multitude of algorithms, and before an algorithm is selected for
a certain application, it is important to have precise specifications of the available
hardware and the system requirements. As a sideline, which follows naturally from
the notion that algorithms have different specialties, the three algorithms are com
bined into one. This hybrid algorithm outperforms its three constituent algorithms in
most aspects, which is illustrated in figure 4. Similar hybrids were discusg&d ,in

[69, pp. 228-232][5], and [4]

Let us for a moment return to the source-channel separation theorem, which was
summarized in section 1. It implies that the channel and the channel coder can be
completely disregarded in the design of a vector quantizer, provided that there is no
constraint on the dimension of the parameter vectors or on the codebook size. Suct
constraints pertain, however, to all practical systems, because of the limited storage,
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SNR (dB) 14}

12¢

10t

0 é5 E;O 7I5 160 1é5 1EI50 175
Encoding time
Figure4. The hybrid algorithm in article 1 finds a good candidati@ast.

(From the oral presentation of article 1 at NORSIG -94, but not included
in the article itself.)

encoding complexity, and communication delay that can be tolerated. Hence, the
relatively small quantizers that can be implemented using today’s technolegy cer
tainly benefit from a design where the possibility of a noisy channel is considered.

If the source decoder always receives the same integer index as the seurce en
coder outputs, which is assumed in conventional design of vector quantizers, then it
is irrelevant which index that corresponds to each codevector. This is not the case in
a system with channel distortion. If an erroneous index is received, the source de
coder will employ the wrong parameter vector. However, the damage can be limited
if the incorrect vector is similar to the original one, which is the idea behdeax
assignmentSince a transmitted integer is more easily confused with some integers
than others, such index pairs are assigned to codevectors whose coordinates do not
differ too much. Typically, the most common error is where just one bit in the binary
representation of the index has been inverted. It is worth emphasizing that index
assignment is an error-protection method that costs nothing but codebook preprocess
ing; once carried out, it does not increase the encoding- or decoding complexity, the
memory requirements, or the rate. The codebook is stored as a list anyhow; the index
assignment is just expressed as a reordering of the entries.

Index assignment can be regarded as a search problem. It is the search for a
permutation of2* integers such that the average distortion is minimized, assuming a
suitable statistical model of the confusion probabilities between indices. The most
common model is theinary symmetric channeccording to which bit errors occur
independently with equal probability. It is enlightening to adopt a geometric ap
proach to this search problem, such that the base-2 representations of the integers
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from O to 2X -1 are interpreted as coordinateskrdimensional space. The integers
thus define the vertices of a hypercube. Index assignment can be regarded as a maj
ping of these vertices onto the codevectors of a given codebook [49]

The essence of article 2 is that the mapping from the (possi
translated) hypercube to the codebook should bmear as possible. A
measure is defined to evaluate how well this goal is achievelih¢aeity.
The search for an index assignment with a high linearity is motivated through
theoretical and empirical results, which show that the linearity is closely linked to the
distortion, provided that the codevectors are transmitted equally often. For
computational purposes, linearity is a more expedient objective than distortion. This
is demonstrated through the index assignment algotitf8A (linearity increasing
swap algorithm), which in comparison with a few well-known algorithms is shown to
achieve a low distortion very fast.

Theoretically, a vector quantizer achieves better performance (lower distortion for
a given rate) with an increasing number of parametets®ing quantized together
[52]. However, to maintain a constant rate, the number of codeve2tdrereases
exponentially withd. This is why so much attention has been given to the nearest
neighbor search problem in vector quantization, but still the encoding time is-a limit
ing factor for the codebook size. Storage is another. One way to circumvent the limit
is to employstructuredcodebooks. This means that some constraints are imposed on
the set of codebook& considered in the minimization of (2). It is desirable to select
a structure for which a fast nearest neighbor search algorithm and a compact code
book description can be tailored. The attained distorfoof a structured codebook
is in general higher than that of the optimal unstructured codebook of the same
dimension and rate, but it may well be lower than the optimal codebook of the same
complexity(search time and memory) and rate, which is a more relevant comparison.
Several low-complexity structures have been proposed in the past, sometimes assum
ing a suboptimal search method: tree-structured VQ, multistage VQ, lattices, block
codes, etc. A comprehensive overview of the most common types is provi@dd in
ch. 12]. Lattices and block codes are the two types of structured codebooks that are
specifically considered in this dissertation.

A lattice is formally defined through a generator matii, as the set{BTu:
u DZd}. A more intuitively appealing definition is suggested in figure 5. Since a
lattice contains infinitely many points, it is not directly useful as a quantizer, but it
can be truncated into a set with a suitable number of points. This raises two ques
tions: How is a good lattice found and how is it shaped into a codebook for a given
parameter type?
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A

Figure5. If there are points at A and B, then there is one at X, too. A
structure that satisfies this rule for all point pairs is a lattice (or a transla
tion thereof).

The first question is normally addressed by considering the asymptotic problem
of vector quantizer design for uniformly distributed parameter vectors, as the rate
approaches infinity. This leads to an optimization problem in which the generator
matrix is the only variable; boundary effects can be neglected. Much effort has been
devoted to this problem, primarily with an algebraic approach JaQjrti-
cle 3, we attack the problem through numerical optimization, devel
an iterative algorithm to search for good generator matrices for the quati
zation problem. The algorithm is then let loose in 2-10 dimensions, and for the
resulting (numerically represented) lattices, underlying exact expressions are iden
tified. There are indications that we may have reached the optimal lattices in all these
dimensions. Most of them arediscoveries of known lattices, but our 9-dimensional
lattice, whose generator matrix decorates the back cover, is of a new type; signifi
cantly better than what has been previously reported. We improve on earlier results
in 10 dimensions, too. In this case, the obtained lattice has been published before, but
not in connection with qudization. Both the 9- and the 10-dimensional lattice may
be counterexamples of a long-standing conjecture regarding the connection between
this quantization problem and a related lattice problem. Finally, a few cases are
shown where the union of two lattices yields a lower distortion than does any single
lattice. We believe that the lowest dimension for which this happens is 7.

The second question regarding the design of a lattice-based vector quantizer is
how to create a finite codebook, suitable for a given type of parameters, from the
lattice. The simplest way is to truncate the lattice, discarding the points outside a

certain region [46]which yields dattice quantizer A theoretical analysis

of such a quantizer, assuming a high rate, is provided in article 4. Ad
totically exact expressions for the minimum achievable distortion are/dé
rived, which show that the discrepancy between the optimal lattice quantizer and the
optimal unstructured quantizer increases with the8raitee explicit expressions were
derived for independent and identically distributed Gaussian parameters, but since
the shortcoming has to do with forcing a uniform point density onto a nonuniform
parameter distribution, we believe that the conclusion can be generalized to a wide

8 Similar results were independently obtained by Moo and Ne(iéjf



Introduction 19

class of nonuniform distributions. This discouraging result suggests that truncation
alone is not sufficient to form a good high-rate quantizer out of a lattice, which
motivates our proposition ddttice-attracted vector quantization/e allow a lattice

to be “stretched,” so that the codebook maintains a small-scale lattice-like structure,
while on a larger scale, the point density may vary. The proposed codebook design
algorithms attain lower distortions than conventional algorithms under some con
strained design conditions, but the main advantage appears when it comes to neare:
neighbor search. A variant of the neighbor descent search method is developed for
lattice-attracted vector quantizers, where the storage requirements pertinent to ordi
nary neighbor descent is alleviated by exploiting the underlying lattice structure.

Block codesand their Voronoi regions are discussed in section 6 and in articles 6
and 7. Their traditional application is in channel coding, where soft-decision-decod
ing implies nearest neighbor search. However, block codes have found their use in
source coding, too. They were employed directly as low-rate codebooks by Adoul
and Lamblin[1] and by Swasze[85], [86], [87], whereas Hagen obtained codebooks
as linear mappings of block codes [4Uhelinear codebookwhich was defined in
article 2 as a linear mapping of the vertices of a hypercube, can be regarded as ¢
special case of the latter constructfoAs pointed out above, there exists a good
index assignment for linear codebooks, which makes them relatively robust against
channel distortion. A linear codebook with rate one forms the vertices of a paral
lelepiped. Nearest neighbor search for this structure is an important problem in
CDMA demodulation, which is discussed in the next section and in article 5.

5. DEMODULATION

In the conventional form of digital modulation, each bit or group of bits to be
transmitted determines one segment of the waveform that is output on the channel
[73]. Denoting the possible waveform segments in the time intéreal < T with
s(t), for i =1,---,q, it is always possible to find a set of orthonorivadis functions
for the signals{s(t} . That is, there exist a vectagt) of signals (basis functions)
and q vectors ¢, of real numbers, such thaf(f)=c'¢ft) for 0<t<T and
i=1...q, and IOT(mt) dt)dt=1.

This decomposition is utilized in the demodulation. The demodulator contains a
bank of matched filters, one for each basis function. If the received wavefofth is
the output of the filter bank is

9 Linear codebooks and similar structures have been discussed under the names binaj§5lattice
[54], [56], binary residual V{12], direct sum codebook [11LM codebook [43] multistep VQ [36]
two-channel conjugate VQ [63&nd VSELP codebook [33]34].
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T
X = I r(t)qit)dt. 3)
0

In the ideal case of a channel without any distortidt),=s; (t) for somej, and itis
easily shown thak = c;. However, more realistic channel models include some type
of distortion, which gives rise to various types of search problems.

For theGaussian channethe received waveform it) =s; (t) + n(t), wheren(t)
is white and Gaussian. Inserting this model into (3), it turns out that the filter bank
outputisx = ¢; +z, wherez is a vector of independent, identically distributed, zero
mean Gaussian random variablé8ecause of the rotational symmetry of the multi
dimensional Gaussian probability density function, ieeximum likelihood ML)
hypothesis detector can be implemented with a nearest neighbor search method; the
waveform most likely transmitted is the one corresponding to the coefficient vector
¢ =ne(x), where@ ={c} 1. The demodulator shows this by transmitting the index
I, binary coded.

Commonly used modulation schemes have typically a small valug ahd the
point set @ has some regular structure. QPSK, for instance, has its four ppints
located as the vertices of a square. For structures as simple as this one, there exist
trivial search algorithms. More sophisticated search problems arise if other types of
distortion than additive noise are included in the channel model, or with other modu
lation methods.

One such application multiuser detectiom a CDMA systen{92], [73, chs. 13,
15], [64]. Suppose that the transmitted waveform consists of synchronous centribu
tions from several users, each one BPSK-modulated onto itssmuature wave
form, or spreading code. If the signature waveforms, weighted to account for the
transmitted power of each user, are collected in the ve¢tprthen the total trans-
mitted signal iss(t) = biTp(t). The vectorb; consists of one bit for each user, repre
sented ast1. The number of possible signalsdss 2€, where K is the number of
users. To find a set of basis functions for this signal set, let the correlation matrix of
the signature waveforms be denotedRy IOT p(t)p' (t)dt and letT be a matrix such
that TT' =R, which can be found by Cholesky factorizationRf Now it can be
easily verified that the functionggt) =T 'p(t) form a basis for{s(f} , with the
coefficient vectorsc, = T'b; for i =1,--,q. Hence, ML detection is equivalent to
nearest neighbor search & ={c} iq:l. This point set can be visualized as the-ver
tices of aparallelepiped,i.e., a tilted hypercube. It is a special case of the “linear
codebook” mentioned in the previous section.

10 The assumed properties oft) are physically motivated, see, e g2, pp. 270-273]. However, as
long as n(t) is strictly white, its probability density function is irrelevant. Ttmats Gaussian still
follows from the central limit theorem.
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Article 5 develops this geometric treatment of multiuser detection

arlU
suggests that maximum likelihood detection, for arbitrary signature- @
forms, can be achieved by applying neighbor descent to the poi@at. get
significant gain in search time is shown, compared to full search. The article also
investigates the Voronoi diagram 6f. Exploiting properties of the parallelepiped, a
fast method to find the Voronoi neighbors is given, and their number is-upper
bounded. InN[70, ch. 3] the work initiated by article 5 is continued, and results are
presented in greater detalil.

Another channel model worth study is the intersymbol interference channel.
Demodulation can in this case, too, be formulated as a nearest neighbor search prob
lem [10], but the topic is not investigated in this dissertation.

The discussion in this section has been confined to demodulators that make an
explicit decision on the received signal. It is also possible to postpone this decision,
and hence the search problem, to the channel decoder. In this case, the demodulatc
output simply equals the matched filter outpytwhich is analog (in amplitude). The
next section considers how a channel decoder can benefit from such a system design

6. CHANNEL DECODING

The purpose of channel coding is error detection and correction. In the channel
encoder, redundant bits are added to the sequence, bits that are examined in th
channel decoder to assess whether the sequence has been correctly received. Suppc
that the output sequence of the source encoder is grouped into bldckeasecu-
tive bits, and that the channel encoder maps each such block into a biodktsf
where n= k. Since there ar@* different input blocks to the channel encoder, its
output has an equal number of possibilities. Interpreting the available output blocks,
called codewords,as vectors, they form a set 8f points in n-dimensional space.
This set,@, is abinary block codend itsrate is defined aR = k/ r. Such point sets
have been employed in vector quantization, which was discussed in section 4, but
their main use is in channel coding.

If the channel is noisy, then what the channel decoder receives may or may not be
a codeword. If it is a codeword, then all the decoder has to do is to translate it back to
the corresponding-bit block for further processing by the source decoder. If it is
not, the decoder is faced with the problem of estimating which codeword was actu
ally transmitted. Once again, a search problem appears. The nature of this problemr
can be of two kinds, depending on the type of demodulator.

The demodulator outlined in the previous section performs nearest neighbor
search in order to reach a decision on which waveform that was most likely transmit
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ted, and outputs the sequence of bits that represents this waveform. This leaves the
channel decoder as a digital-input, digital-output device, which is normally imple
mented using algebraic methods [5{86]. An alternative approach, which yields
lower distortion at the cost of more complex search problem, is to postpone the
search process to the channel decoder. In this case, the analog (in amplitude) output
of the matched filters in the demodulator is directly transferred to the channel de
coder, which performsoft-decision decoding.

Assume for simplicity that binary modulation is employed. The bits are transmit
ted sequentially, each bit controlling its own waveform segment. Hence, it suffices
with only one matched filter in the demodulator. To perform optimal soft-decision
decoding, the channel decoder colleatonsecutive matched filter outputs in a
buffer, corresponding to tha bits of the transmitted codeword, before they are
processed. Regarding the buffer contents as a vegcttre search problem in the
decoder is to find a codewor1€ that is as similar toc as possible, where the
measure of similarity depends on the employed channel model.

Again we consider the Gaussian channel. With the same method as in the
previous section, it can be shown that the vectogqualsc; +z, where the two
terms are the transmitted codeward and a vectorz of independent, identically
distributed, zero-mean Gaussian random variablésid in this context, too, maxi
mum likelihood detection implies nearest neighbor search; the optimal codeword is
ne(x). However, the point se is quite different from the parallelepiped that ap
pears in CDMA demodulation, and also from the structures considered in section 4,
so a study of the Voronoi diagram 6f cannot rely on results from these applica
tions.

The fact that all codewords are binary imposes a special structure on the point set
C. It can be regarded as a subset of the vertices nf@mensional hypercube. The
structure becomes even more attractive for theoretical and computational purposes if
we limit the considered codes to being linear as well. With a formulation analogous
to the lattice definition in figure 5, a binary block coddingar if the modulo-2
addition (exclusive-or) of any two codewords results in another code\&ord.

Hwang[44], and later Butovitsch [16, pts. D—E], considered the neighbor descent
method as an algorithm for soft-decision decoding of binary linear block &&des.

11 pespite the appearance of the expressiene; +z in both this section and the previous one, its
interpretations differ. In section 5 denotes the simultaneous output from several matched filters,
whereas here, it means consecutive outputs of the same filter.

12 Note that “linear” was used in another sense in section 4. The points of ablineacodedo not in
general form a lineazodebook.

13|t is remarkable that the same algorithm can be defined in so different ways. Hwang, who employs
an algebraic terminology, does not mention Voronoi diagrams at all and refers with “projective set” to
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Hwang also found two useful bounds relating the distance between codewords to
their being neighbors or not, which for some relatively short high-rate codes yield a
full description of the neighbors of all codewords. His paper is concluded with three

ting set of a code?” is what article 6 is about. In this article, some ge
ric properties of the Voronoi diagram are presented, properties th
utilized in the development of a fast algorithm to determine whether two given code
words are neighbors. The new algorithm is then employed to analyze the Voronoi
diagrams of some important codes. One conclusion that is drawn from the results is
that the coupling between neighbors and their distance is weaker than what was
previously assumefl6, pt. D, p. 27]

Decoding algorithms such as neighbor descent, which utilize Voronoi region
facets for binary decisions, are efficient only if the number of neighbor pairs in a
code is relatively small. Which codes have this property? This is Hwang's second
guestion, but before going into details on block codes, we elaborate a little on the
number of neighbors in a point set as a measure on the complexity of Voronoi dia
grams and Voronoi-based algorithms. Binary block codes is by no means the first
type of point sets for which the number has been considered. The interest goes bacl
to at least 1897, when Minkowski in his pioneering work on lattices showed that the
number of neighbors of a point in am+dimensional lattice is upperbounded by
29*1 -2 [59, band 2, pp. 120-121]58, pp. 81-85, 180-181A random lattice
reaches this bound with equality, under some general assumptions on the distribution
[94, esp., vol. 134, pp. 198-211]. The numbers of neighbors in some specific lattices
are given in [93]and [20, pp. 106-135, 456—-475]. If no constraint at all is placed on
the structure of a point set, it is a remarkable fact that for dimensions 3 and above,
the only upper bound on the number of neighbors is the trivial one. This was proved
by Dewdney and Vrancf24], who presented an ingenious way to pladehree-
dimensional points such that all pairs of points are neighbors, regardleds of
Hence, all Voronoi regions for this point set have-1 facets. The result rather
dramatically contrasts with the two-dimensional case, where there exists no point set,
however large, such that the average number of neighbors exceeds six. Klee obtaine:
some related bounds on the maximum complexity of an unconstrained Voronoi
diagram[48]. For randomly generated point sets, low-dimensional results have been
analytically derived[65]. The average number of neighbors in a large set of
independent uniformly distributed points is 2, 6, 15.54, and 37.78 in dimensions 1 to
4, which suggests that the number of neighbors increases faster with the dimensions

what is here called the set of neighbors of a certain point. The work by Butovitsch follows a geometric
style similar to the one used here.
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for random point sets than for lattices. Finally, it can be mentioned that even for
partitions that are not Voronoi diagrams, such as the tree-structured VQ, which was
briefly mentioned in section 4 as one of several possibilities to reduce the complexity
of vector quantization, the number of neighbors is a relevant charact@T3tif97].

Returning to binary linear block codes, a partial answer of Hwang
second question is provided in article 7. The article presents results
number of neighbors in several well-known codes, computed throug
combination of Hwang’s bounds, the algorithm of article 6, and a new algorithm. The
number of neighbors is observed as a function of the Ratevhich reveals an
interesting pattern. For codes wikh>1/2, a codeword tends to have relatively few
neighbors, whereas iR<1/2, most of the codeword pairs are neighbors, and this
threshold becomes more distinct with increasing codeword lemg#n asymptotic
analysis confirms that there is a thresholdRat 1/2 for a wide range of codes. In
short, the answer to Hwang’s second question given by article 7 is “for codes with
rates above one halt#

enjoyed being your guide today through the modern architecture of our fast-growing

city. As you may have noticed, | was especially delighted to show you the nearest
neighbor buildings that have recently been constructed in some of the districts. Did you
observe the intricate Voronoi diagrams on their walls? | find them very attractive myself. |
hope that you have had a pleasant trip, and wish you a happy stay in the city. If you should
choose to venture on your own now into one of the districts, which | highly recommend,
remember how easily you get lost. Make sure to bring a good search method!

/7: hereby the sightseeing tour in the city of Telecommunications is completed. | have
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Abstract Fast search methods for vector quantization are a necessity for benefiting
from the performance gains of large-sized codebooks in real-time applications.
We take on two 4096 vector quantizer codebooks as illustrative examples for our
study. The performance of a set of search procedures is compared. Several as-
pects of complexity are discussed. We compare average computational complex-
ity and maximum computational complexity in the light of real-time usage. We
address storage requirement and the computational complexity required to set up
the search procedures. Moreover we illustrate distortion as a function of compu-
tational effort. One main conclusion is that an accurate comparison will not yield

a

single answer. Depending on what aspects that are highlighted in a test, either of

the three search procedures in study can be elected as the winner.

A

1. INTRODUCTION

t a constant transmission rate, distortion of vector quantization decreases
monotonically with increasing dimension of the vectors to quantize.
There are several factors that have prohibited employment of large

codebooks, including storage and training problems, but the issue of searching a large
set of codevectors is often the limiting factor for applications. Hence, a major goal of

source coding research is to establish methods of handling large-dimensional
codebooks. In this contribution we focus on aspects of searching large sized
codebooks, i.e. on the search complexity.
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1.1 The search problem

The search problem in vector quantization occurs each time an input vector is to be en-
coded. The codebook has to be examined for the best representation of the input, ac-
cording to some criterion. The obvious way is an exhaustive search, that is, calculating
the distortion for each of the possible output codewords. In the last two decades, how-
ever, several approaches have been suggested to increase the encoding speed. This is
possible by employing alternative tests, computationally cheaper than full distortion
calculations, to exclude codewords, one or several at a time, from further considera-
tion. For most methods, this type of strategy requires the precomputation of some
codebook properties.

One of the earliest ideas was to precompute distances between all codewords and a
set of fixed (anchor) points. The triangle inequality, or similar tests, is utilized to select
a subset of the codewords, for which the exact distortion has to be calculated [1].
Recursive application of some subset-selection method gives rise to tree-organized al-
gorithms [2-4]. A different approach is to exploit the geometrical properties of the
Voronoi diagram, as in the neighbor descent methods [5-7].

In general, two prices are paid for obtaining a fast segreklditional memory is
required, andli) an additional preparatory analysis of the codebook is required. Since
this latter step is made once, prior to the employment of the encoder, a large computa-
tional burden can often, but not always, be tolerated for this analysis. Also, a further
speed gain can be obtained by acceptipl@n increased output distortion.

1.2 Paper outline

Because of the aforementioned multi-dimensional trade-off between different qualities,
between aspects as computational burden and memory requirements, it is not trivial to
summarize the performance of a search method in a single table or diagram.
Highlighted in this study is exactly this evaluation problem. As an example, we encode
Gaussian data with a pdf-optimized vector quantizer, using three different search al-
gorithms. We perform a few different tests, some of which measure related properties.
Nevertheless, the various tests indicate quite different performance. Each particular test
would have given a fairly clear (but possibly misleading) image of how good the
methods are, if published alone.

A comparison of three different search algorithms is the essence of our contribu-
tion. We discuss primarily the computational complexity. We also comment on the
additional storage requirement of the algorithms, and, since one of the methods does
not perform optimal codebook look-up, we compare the performance.

Finally, we relax the requirement of finding the very best codeword by introducing
a constraint on the encoding time.
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1.3 Notation

A d-dimensional vectoX drawn from a random source (with a known probability
density function) is to be encoded with a codeb{xch} of N =2 entries. The ob-
ject is to minimize the conventional Euclidean distortion measure

D= E[||X —c(‘>||2]

One of the procedures discussed below utilizes an eigenvalue analysis. We denott
the eigenvalues of the source correlation matrixAy} . A transformed source vector
Y'is Y' =AY whereA is the matrix of eigenvectors. Thus, the componentg’of
are uncorrelated.

2. SARCHMETHODS

We compare three different search methods, two neighbor descent methods, using dif
ferent adjacency tables, and one tree search method.

2.1 Neighbor descent methods

The neighbor descent (ND) methods utilizeaajacency table, which is computed
during the preencoding analysis. It gives a list of adjacent codewords for each code-
word in the codebook. The encoding of an input vector can then be done by iterative
improvement of an initial guess. An iteration consists of computing the distortions for
the adjacent codewords of the current hypothesis. If any of these codewords turns ou
to be better than the hypothesis, further examination of adjacent codewords is aborted
The current hypothesis is abandoned and the found codeword immediately become:
the new hypothesis. The overall procedure continues until none of the neighbors pro-
vide lower distortion.

Two neighbor descent algorithms were compared. Their difference lies in the
definition of adjacent codewords. The first algorithm (referred to as RND in [7]) uses
the Voronoi diagram—two codewords are regarded as adjacent if their Voronoi regions
have a facet in common. A linear programming approach is described in [8] for
efficiently establishing the adjacency table for each vector of an arbitrary codebook.

The second algorithm employs Gabriel neighbors, which is a more restricted con-
dition [9, 10] than the Voronoi neighbor concept. Two codewords are Gabriel neigh-
bors if they are Voronoi neighbors and if their common facet is intersected by the
straight line between the two codevectors.

The Gabriel approach reduces the memory requirement and increases encoding
speed, as demonstrated in this paper. However, the price to pay is distortion. In con-
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trast to Voronoi neighbor descent, which can be proved to find the optimal codeword
for every input [8], the Gabriel adjacency is not sufficient to guarantee optimality.

Before comparing the complexity of building the adjacency tables using the
Voronoi and the Gabriel approaches, it is important to stress that the creation of the ta-
bles is done as a preparatory step, i.e. before the employment of the encoding algo-
rithm. Still we find it worth mentioning that finding the set of Gabriel neighbors is far
simpler than finding the corresponding Voronoi neighbors. A flavor of the computa-
tional complexity is obtained by comparing the CPU-time for the particular 6-dimen-
sional codebook we take on as example in this study. For the Voronoi neighbors ap-
proximately 25 hours were required whereas the Gabriel neighbors were established in
one hour.

2.2 Tree search procedures

There exists a variety of tree search (TS) procedures for vector quantization. Several
important TS procedures apply only to certain (constrained) sets of codevectors. The
particular version employed in our study is general in the sense that it is applicable for
an arbitrary set of (unconstrained) codevectors. The overall architecture is that of a bal-
ancedd-level tree with2 branches from each node at levet1 [4]. Each levelm,
corresponds to one component of the transfordrgidhensional codevectods where
d=Ac.

The total number of nodek, depends on the branching, i.e.{dq} , but for any
allocation, K <2N. Associated with each node at leval are the leftmost
r, = -1 +K,, bits of a codeword index Hence, each leaf of the tree corresponds to
a codeword index. Associated with each nodenr) at any levelm<d is also a
triplet

{d9,d:0,dir)

consisting of the mean, the minimum and the maximum respectively othhsom-
ponent of the transformed codevectdys.e. d,ﬁ?, for those only that are descendent
leafs of the given node.

Preparatory to codebook employment the branching paraméig}s, must be
determined. For this we have employed a conventional bit-allocation algorithm utilizing
the eigenvalue$A,} .

Next an index assignment for the codebook vectors is obtained by sorting the trans-
formed codebook vector§d®} according to the bit-allocation. The triplets
{d,d.",dx")} are obtained as a natural part of this sorting procedure.

At run-time, a transformed source vecYors processed by first finding an initial
guess* for the indexThis is accomplished by descending the tree with hard pruning
based on utilizing the mean positioﬁﬁ) for scoring. The true distortidD* is evalu-
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ated for the winner of this step. The tree is thereafter descended level by level until the
leaf nodes are encountered while utilizfa;"”,d;} for keeping track of a lower
bound D,,,;,(m,s) of the distortion associated with a node.

Dmin(m’ S) = Dmin(m _115') + B(mﬁ,ym)

Yo - dr;(s))z Vi < dr;](s)
Bmsy,) =0 O dr® <y <dp®
Hym = dn™)?  yp, > di©
where(m-1,9') is the parent node of nodens). Propagation is inhibited for any
node ¢,m) that reaches a distortioD,,;,(m,s) that exceed®*. Finally, the true dis-
tortion of the surviving nodes are evaluated. The selected codewgdtte one yield-
ing least true distortion within the set of survivors.

3. TwWO GAUSSIAN CODEBOOKS

We have studied several different codebooks in various dimensions and for various
rates. Below we report on the performance for a six-dimensional Gaussian source, i.e
d =6, coded at a rat®R=2. Thus the codebook size i¢ = 409€. Two sample-to-
sample correlationsp, were selected, namely=0 and p =0.75. The codebooks

were trained employing an LBG-type of approach using random samples from the re-
spective sources. The iterations encompassed five million samples. Performance a
discussed below was measured on additional random sets of one million vectors
(independent of the training sets).

The high-rate approximation for Gaussian vector quantization (cf. [11]) states that

0§ = 0% [©(d) [ (d) 2~

where R=k/d is the rate and

o) =LA ) iy iaid)”
f(d) = (/21 20 + 22
0 o 0O gg O

For dimensiond =6 this formula predicts a signal-to-noise ratio (SNR) of
12.04- 157= 104 dB for p=0 and12.04- 154 299 134dB for p=0.7%,
both at rateR=2. We measured an SNR of 10.41 dB f@=0 and 13.47 dB for
p =0.7E for our trained codebooks. The discrepancy to the prediction given by the
high-rate approximation is in reasonable agreement with the accuracy of this approxi-
mation for a moderate rake For our example we thus have codebooks that are close
to optimal for the given sources.
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Table 1. Average and maximum number of neighbors, for two neighbor
types and two codebooks.

Average number of neighbors Maximum number of neighbors
Codebook Voronoi Gabriel \oronoi Gabriel
p=0 117 62 178 99
p=0.75 118 50 305 87

3.1 Voronoi properties of the codebooks

The complexity of neighbor descent, regarding encoding time as well as memory, is
directly dependent on the size of the adjacency table. This is the twofold motivation for
using Gabriel neighbors instead of the complete Voronoi description. Table 1 shows
some statistics of the adjacency tables for both codebooks.

The number of Gabriel neighbors is approximately equal to half the number of
Voronoi neighbors for the uncorrelated codebook, and considerably less than that for
p =0.7E. Corresponding improvements in search time and memory requirement will
be noted in the next section.

These results are typical for trained codebooks, i.e. codebooks that are close to op-
timal for a given source. To our experience there are some notable differences when
searching, for instance, random codebooks in comparison to (close to) optimal code-
books. The underlying property is that Voronoi regions are more regular for trained
codebooks than for randomized codebooks.

4. EVALUATION OF SEARCHMETHODS

4.1 Searching for optimum

As a measure of how fast a search algorithm is, the number of vectorial distance com-
putations is often used. In our 12-bit examples a full search obviously requires the
computation of 4096 distances, but for most fast search methods, the number of dis-
tances depends on the particular input vextomlhe maximum number of distance
computations, over aK, is a relevant measure in real-time applications where a fixed
amount of time must be assigned for the encoding of an input vector. In applications
where a large delay is allowed, the average number is more appropriate.

The three search methods were used in conjunction with the two vector quantizers
for Gaussian data described above. Table 2 shows both maximum and average number
of distance computations for the codebook with a sample-to-sample correlation of
p =0, together with the memory requirement for storage of the precomputed code-
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Table 2. Search complexity and storage requirement for the Gaussian
codebook withp = 0. The last column shows the loss in SNR compared
to a full search, which gives an SNR of 10.41 dB.

Number of distance computations AR
Method Average Maximum Sorage difference (dB)
Voronoi ND 170 326 732 kbyte 0
Gabriel ND 108 233 394 kbyte —-0.06
Tree search 78 693 12 kbyte 0

book structure. According to these tests, the TS method is faster than ND, and it alsc
requires much less memory.

The signal-to-noise ratio of the quantizer is also shown in the table. This is because
Gabriel ND theoretically does not guarantee optimal encoding. (The other two algo-
rithms do.) As it turns out, however, the SNR decrease is minor, namely .06 dB.
Gabriel ND practically always finds the truly optimal codeword, or one with almost as
low distortion.

The same set of results fgr= 0.7 are shown in table 3. The distortion is still
very close to that obtained with optimal encoding, but the difference is larger than for
the uncorrelated codebook. The explanation to this is that the Gabriel neighbors are
fewer for the correlated codebook (see table 1), which also is the cause of the lower
search complexity in this case.

Summarizing the results of tables 2 and 3, we see that the tree search method out
performs either of the two neighbor methods as regards average computational com-
plexity as well as in storage requirements. The two neighbor methods, on the other
hand, have a considerably lower maximum computational complexity.

4.2 Constraining the encoding time

However, tables 2 and 3 do not reveal all aspects of importance for applications. It is
also relevant to address how rapidly the distortion decreases during the encoding pro
cess, that is, we need to find out how significant it is to actually continue until the al-
gorithms terminate, guaranteeing optimal codebook look-up. If the last distance com-
putations have a small probability of improving the output codeword, we can buy
considerable time for just a small distortion increase by imposing a bound on the num-
ber of distance computations that are allowed. In real-time applications where the avail-
able time for encoding is limited, such a bound is a necessity.

Table 3. Search complexity, storage requirement, and SNR loss
(compared to a full search yielding 13.47 dB) when 0.75.

Number of distance computations AR
Method Average Maximum Sorage difference (dB)
Voronoi ND 165 425 737 kbyte 0
Gabriel ND 90 198 323 kbyte -0.10
Tree search 64 457 24 kbyte 0
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Figure 1. SNR as a function of complexity given by the number of dis-
tance measurements, for the vector quantizer with0.

SNR as a function of such a bound is depicted in figure 1. The diagram shows that
both ND methods gives a higher SNR than TS if more than 26 distortion computations
are allowed, or conversely, that ND reaches any SNR value greater than 6.4 dB faster.
The TS complexity displays a step after a time corresponding to 5 distance computa-
tions. This is the time needed for the initial pass through the tree, with hard pruning,
before which not even an initial guess is known. If only very little time is available,
this is an efficient method, skipping the second pass.

Figure 2 shows similar results for the correlated codebook. The encoding algo-
rithms reach a higher SNR value, but the same qualitative differences between the al-
gorithms as in figure 1 can be observed.

SNR24f
@B) | e T —

12t
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10} Voronoi ND
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Figure 2. SNR as a function of complexity fgp = 0.75.
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The curves illustrate the three phases of a search procedure: finding an initial guess
improving the guess, and verifying that the last guess cannot be further improved. The
algorithms perform differently in each of these phases. The first pass in tree searct
provides an excellent initial guess, but the improvement thereafter is slow. Of the three
algorithms, Gabriel ND is the fastest in the second phase, but Voronoi ND performs a
stronger test in the third phase, guaranteeing that the optimal codeword was indeec
found, which is important at least from a theoretical point of view.

In passing we compose a new search algorithm of the three studied algorithms,
employing each one in the phase for which it is most favorable. Thus we use TS to
find an initial guess, then iterate Gabriel ND until it terminates, and finally use Voronoi
ND to check if the solution is optimal and improve it if possible. This hybrid search al-
gorithm outperforms its three components in all aspects but storage. The memory re-
guirement is equal to that of Voronoi ND, plus one third of the TS memory (only the
first element of the triplets is needed). The Gabriel adjacency table can be included as i
part of the Voronoi table and does not require any extra memory.

5. SIMMARY AND CONCLUSIONS

Neighbor descent methods are attractive for vector quantization since such methods
isolate a good candidate at an early stage. The examples taken on illustrate this propert
well. The examples also show that neighbor descent algorithms are less effective in
their final phase when verifying that they actually have retrieved the correct entry.

Employing only Gabriel neighbors performs surprisingly well. The loss in perfor-
mance by utilizing only a subset of the true Voronoi neighbors is so marginal that it
falls below the accuracy of SNR measurements over one million sample vectors.

The tree search algorithm is effective in storage. Its average computational com-
plexity in terms of distance computations is the lowest of the methods, for optimal
codebook look-up.

Whenever optimal search is mandatory the maximum number of computations is of
importance. The descent methods have a maximum that exceeds the maximum numbe
of neighbors accounted for in the method.

“Fast” is an ambiguous term. What appears to be a competitive search method in
one test, may come out as a slow method in another. It depends on what propertie:
you measure. Therefore, it is vital to employ a test procedure that is in correspondence
with the intended application and implementation. That a method has been found to be
fast in one type of source coding system does not automatically imply that is suitable to
use in another. Especially, the relative performance may change dramatically when a
time constraint is imposed. We emphasize that an evaluation of a search algorithm
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should incorporate several different tests in order to accurately describe the “fastness”
of the algorithm.
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Lattice-Based Quantization, Part |

Thomas Eriksson and Erik Agrell

Abstract In this report we study vector quantization based on lattices. A lattice is
an infinite set of points in a regular structure. The regularity can be exploited in
vector quantization to make fast nearest-neighbor search possible, and to reduce
the storage requirements. Aspects of lattice vector quantization, such as scaling
and truncation of the infinite lattice, are treated. Theory for high rate lattice
guantization is developed, and the performance of lattice quantization of
Gaussian variables is investigated. We also propose a method to exploit the lattice
regularity to design fast search algorithms for unconstrained vector quantization.
Experiments on Gaussian input data illustrate that the method performs well in
comparison to other fast search algorithms.

1. INTRODUCTION

Vector quantization(VQ)! has since about 1980 become a popular technique for
source coding of image and speech data. The popularity of VQ is motivated
primarily by the theoretically optimal performance; no other source coding technique at
equivalent delay can achieve better performance than optimal VQ. However, direct use
of VQ suffers from a serious complexity barrier. Many authors have proposed
constrained VQ structures to overcome the complexity, for examygtestage VQ1],
tree-structured VQ2-5], vector-sum VQ6], gain-shape VQ7], etc. Each of these
solutions has disadvantages, in most cases a reduced perforbragtice.VQI[8, 9]
is another constrained VQ technique, where the codevectors form a highly regular
structure. The regular structure makes compact storage anteta®st-neighbor
search(finding the closest codevector to an input vector) possible, but also leads to
performance loss.

Another line of research, also aimed to overcome the complexity barrier of VQ, is
design of fast search methods for unconstrained quantizers. Due to the presumed lac

1 with VQ, we will sometimes meavector quantizationand sometimesector quantizerwith the
distinction left to the context.
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of structure in such quantiz&rsearest-neighbor search for unconstrained VQ is con-
siderably more difficult than search of a constrained VQ. Algorithms for fast nearest-
neighbor search of unconstrained VQ include for exampighbor descennethods

[10, 11], where the complexity of a full search is avoided by precomputiagjan
cency tableconsisting of all neighbors to all VQ points. Other methods arantteor

point algorithm [12], where codevectors are excluded from the search by the triangle
inequality, and th&-d treetechnique [13], where a prestored tree structure helps in
avoiding unnecessary operations.

In this report, we discuskattice-based quantizatiénas a solution of the
complexity problem. Lattice-based quantization is a generalization of conventional
lattice quantization, by allowing modifications of the regular lattice structure while still
maintaining a local lattice-similarity. In the first part of the report, conventional lattice
guantization is treated. After the introduction and VQ preliminaries in chapter 1 and 2,
we present high rate theory for lattice VQ for Gaussian variables in chapter 3. The high
rate theory leads to design rules for lattice VQ, and formulas for asymptotic
performance. Further, the performance of lattice VQ for a Gaussian input pdf is
compared to the performance of pdf-optimized VQ. An important task in lattice VQ
design is thdruncation of an infinite-size lattice, to include the desired number of
codevectors in the VQ. Other important aspects are for example the choice of lattice,
and scaling of the source, to get a good performance. These aspects are treated from a
practical perspective in chapter 3, and solutions are found, based on the lattice high rate
theory. In many previous reports, the focus has been on high-dimensional lattice
guantization, due to thasymptotic equipartition propertyAEP); when the
dimension grows to infinity, thé-dimensional probability density of a memoryless
input source becomes more and more localized to a "typical” region, inside which the
density is approximately uniform [15]. Thus, a lattice quantizer, with an inherent
uniform distribution of codevectors, can be expected to work well for high
dimensions. We have instead focused on low-dimensional (2-5 dimensions) lattice
VQ, since several interesting areas in speech and image coding employ low-
dimensional parameter vectors.

The density of the codevectors in a lattice quantizer is uniform, which may inflict
on the efficiency of lattice quantization for nonuniform sources. We propose a novel
VQ design concept in chapter 4, with the goal to combine some of the desirable prop-
erties of a lattice VQ with the good performance of a pdf-optimized VQ. The VQ is ini-
tialized with a truncated lattice, and an adjacency table for the lattice is computed.

2 A pdf-optimized unconstrained VQ is generally far from unstructured, but the structure may be
difficult to find and exploit.

3 Most of the conclusions in this report holds fessellation quantizeras well. More about
tessellations can be found in [14].
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Then, during the training, the quantizer is updated to keep the neighbors as given by
the lattice adjacency table. By example, we show thalattice attractioncan be im-

posed with almost no performance loss at all for a Gaussian input pdf. A neighbor de-
scent algorithm [11], modified to suit the special requirements of the lattice-attracted
guantizers, is presented in chapter 5. The performance of the new neighbor descer
method is reported in chapter 6, together with the performance of direct lattice quanti-
zation of Gaussian variables. Finally, a summary is given in chapter 7.

2. VECTORQUANTIZATION

In this chapter, we present vector quantization theory. Necessary optimality conditions
for a VQ is given, and theory for high rate quantization is discussed.

2.1 Definitions

AVQ Q of sizeN and dimensioml is a mapping from a vector in thdedimensional
Euclidean spac&* into a finite reproduction set ={c,, c,,...,c\} :

Q:RY_ . (2.1)
The setc, denoted theodebook containsN codevectors,,k=1,2,...,N, each a
vector inRY. The indexk of the codevectors is denoteddeword The rateR of the
quantizer is defined a®g,(N)/d [bits per sample]. The definition af in (2.1)
partitionsR? into N disjoint regions, each with a corresponding codevegtor
The vector quantizer can be decomposed in two components, the encoder and thi
decoder. The encoder maps fromR* to the index set ={1,2,...N}

£:RY L1, (2.2)
and the decodep maps the index set into the reproductionet.e.,
DI - R (2.3)

With this notation, the quantization operation can be written as a cascade of the encode
and decoder:

Q (x) =D (Z(x)). (2.4)
In this report, we will measure the performance by the statistical mean of the squared
Euclidean distance measure,

D=gx-a (] (2.5)

The mean squared error criterion is only one of many possible distortion measures, bu
it has the advantage of being widely used and is mathematically simple.
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2.2 Optimality conditions

In VQ design, the aim is to find encoder and decoder rules to minimize the chosen
distortion measure. For the squared Euclidean distance measure (2.5) (with a decoder
D (i) =¢;), it can be readily shown [16] that for a fixed partiti@p of the input

space, the codevecto{sl, cz,...,cN} should be chosen as the centroid of the vectors

in the region,

C = E[Xx0Q,] (2.6)

to minimize the expected distortion. (2.6) is often catlexicentroid conditionlf in-
stead the set of codevectors is fixed, the partition should bectrest neighbor
partition:

0(c,) = 0, ={xOR*:[x- ¢ <|x-g|] forali O} 2.7)
with the corresponding encoder rule
z(x)zargmirﬂx—cinz, (2.8)
iCr

together with rules to solve ties. The regidngs are often referred to a&ronoi re-
gions after the author of [17].

We see that both the encoder and the decoder are completely specified by the code-
book ¢, so finding optimal encoder and decoder rules is equivalent to finding the op-
timum set of codevectof,, ,,...,Cy} -

The centroid condition (2.6) and the nearest neighbor partition (2.7) are necessary
but not sufficient for a VQ to be optimal in the mean square sense. Sufficient condi-
tions for a globally optimal VQ have never been presented (except for some special
cases), and a quantizer fulfilling the necessary conditions may be far from optimal.
This makes VQ design a delicate problem.

Using the nearest neighbor condition, Yeronoi neighborgo a Voronoi region
Q, inaVQ can be defined as

4, ={i O[LN]:Q n Q, 20O} (2.9)

that is, the set of codevectors whose Voronoi regions share a fac@witlith this
definition, the nearest neighbor partition can be reformulated as

Q, = {x R - ¢ |2 < x - 62 for alli mk} , (2.10)

which illustrates that the Voronoi region is defined by a subset of the inequalities in
(2.7). The new definition of the nearest neighbor partition shows that to find the opti-
mum codevector to a given input vectoy it suffices to find a codevector whose
Voronoi neighbors all have greater distance to the input vector. This can be exploited in
fast search algorithms, as described in chapter 5.
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2.3 High rate theory

In [18] and [16], it is shown that for high resolution VQs, the optimal reconstruction
point densityA(x) for quantization of a stochastic vector procesaith pdf f,(x) is
given by

A(x) = ard(4+2)(x) (2.11)
whered is the dimension of the VQ, ards a normalizing constant. For a quantizer
with the above optimal point density, we have for high rates [16]

dmr?d(d2+1) di(d+2)\(@2d
D2 f (x)2(4*2 2R, 2.12
@ U HeT?) (2.12)
whereR is the rate of the quantizer, in bits per dimension.

For an uncorrelated Gaussian pdf, the above expression can be simplified to the
Gaussian lower bound (GLB)

Do g 2 27 2R 0 (d) 7, (2.13)
where
_ 2+ 20 g
f(d)—aD o @2+, (2.14)
and
of = gk ~m,J| = flix = m, | f(x)ax (2.15)
m, = E[x] =[x [F, (x)dx. (2.16)

Knagenhjelm [19] shows experimentally that the Gaussian lower bound is not only a
lower bound, but also a good approximation to the actual performance of a well-trained
vector quantizer, if the rate is high.

3. LATTICE QUANTIZATION

In this chapter, we will treat lattice quantization, both from a theoretical and a practical
perspective. High rate theory for lattice quantization of iid Gaussian variables is de-
rived, leading to formulas for lattice VQ design and performance. Practical issues in
lattice VQ design, such as truncation and scaling of the lattice, are also treated.

3.1 Definitions

A lattice is an infinite set of points, defined as

/\:{BTm: uDZd} (3.1)
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where B is thegenerator matribof the lattice. The rows dB constitute a set afl lin-
early independeriasis vectorsor the lattice,

T

B =[by, by, ,bg] (3.2)

Thus, the lattice\ consists of all linear combinations of the basis vectors, with integer
coefficients.

Thetheta functionof the lattice gives the number of lattice pointsat a specific
distance from the origin, i.e. points withirshell The theta function for many stan-
dard lattices can be found in [9].

Thefundamental parallelotopef the lattice is defined as the parallelotope

zb,+...+zb, (< z<1). (3.3)
Associated with each lattice point is a Voronoi region. Due to the regular structure
of lattices, all Voronoi regions in a lattice are simply translations of the Voronoi region

Q(0) around the zero lattice poir®(0) is referred to as thiattice Voronoi region
Q, with the definition

Q= {x OR® :|x|[* < [|x = ¢||? for all CD/\} (3.4)

Thenormalized second momeofta Voronoi regionQ(ci) is defined to be

G= %[vol(Q(ci )/ J‘”x ~ g [dx, (3.5)
olc,
where vol(Q(c;)) is the volume of the Voronoi region around Since Q(c;) is a
translation ofQ, Q(c,)=Q+ g, we can write

1 e
G =~[vol(0)] 1-2/d £||x||2dx, (3.6)

which illustrates tha® is independent af The constanG is from now on be referred
to as theguantization constardf the lattice, since it describes the mean squared error
per dimension for quantization of an infinite uniform distribution, if the volume of the
Voronoi region is normalized to one.

Lattice quantizatioris a special class of vector quantization, with the codebook
having a highly regular structure. Any codeveatpit]C in a lattice quantizer can be
written on the form

¢, = B" [y, (3.7)
whereu, is one ofN given integer vectors, an is the generator matrix of the lat-

tice. Alternatively, a lattice VQ can be described as the intersection betlattoea
N\ and ashapes,

c=NAngs (3.8)
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-------

Figure 3.1.lllustration of lattice truncation. Left: a latticA, Center: a
shapes , Right: the resulting lattice quantizer.

where s is a d-dimensional bounded region i&®. An example is shown in figure
3.1.

The design of a lattice VQ can now be separated into finding a good lattice,
specified through its generator matBx and a good shapg. In addition, a scale
factor for the lattice must be found, and an assignment of indices to the codevectors.
These problems will be treated in the following sections.

Applications of lattice vector quantization include, e.g., image coding [20, 21] and
speech coding [22, 23]. Moayeri et al. superimposed a fine lattice upon a source-op-
timized unstructured VQ to achieve a fast two-step search method [24, 25]. Kuhlmann
and Bucklew [26], Swaszek [27] and Eriksson [28] connects lattices with different
scaling into one “piecewise uniform” codebook, to approximate nonuniform source
pdfs. In [14], an overview of applications including lattice VQ is presented.

3.2 Theory for high rate lattice quantization

In this section, we derive expressions for the distortion of lattice quantization of iid
Gaussian vectors, when the r&ef the quantizer tends to infinity. Eyubognd
Forney [29], and Jeong and Gibson [30], have previously worked with high rate
theory for lattice quantization, but to the authors’ knowledge, simple analytical ex-
pressions for the optimal truncation and performanackedimensional lattice quantiz-

ers has not been presented before. A major difference between the high rate lattice the
ory presented here and the usual high rate theory for optimal quantization (section 2.3)
is that for lattice quantization, it is necessary to explicitly consider overload distortion,
while the usual high rate theory only permits granular distortion.

We assume an iid Gaussian input pdf, with zero mean, unit variance samples.
However, in the end of this section we discuss a generalization of the results.

After some definitions, two theorems concerning the distortion of a lattice VQ as a
function of the rate and truncation are given. The optimal truncation radius, and the
corresponding distortion, are found by setting the derivative of the distortion to zero.

A d-sphereis ad-dimensional sphere, defined as
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s(3={xOrR:|x|< g. (3.9)
We assume a truncation shape in the formd$§phere with radius; (figure 3.2), so
that

c=(N-v)n §(a), (3.10)
wherev is an arbitrary vector (see the discussion in section 3.4, and (3.33)).
We subdivide thé-dimensional space into two (honspherical) subregiogsarau-
lar regiong , which we define as the union of lattice Voronoi regions around all code-
vectors,
6 = (Q+q), (3.11)
¢l
and anoverloadregiong , which is the rest of the space, so thatl ¢ =R and
G N g_ =[]. Figure 3.2 illustrates the granular and overload regions for a two-di-
mensional lattice VQ, based on the well-known hexagonal laftice
The total distortionD of the lattice quantizer can be separated into a granular com-
ponent,D,, and an overload componei,

D= J;HX —C*HZ fX(X)dXZIHX_ C*HZ fX(x)dx+‘[Hx— C*HZ f(¥Ydx= 0 + D;,(3.12)
R ; ]

wherec denotes the codevector in the codebgothat is closest to the input vector
x. We now give two theorems, leading to simple approximations of the granular and
the overload distortion of lattice quantization. In the first theorem, we write the over-
load distortion as the distortion given a high codevector density close to the surface of
the truncation sphere, plus an error term. The second theorem is mainly based on the
smoothness of the Gaussian pdf, so that the pdf within the granular Voronoi regions is
nearly uniform, if the Voronoi regions are small. Both theorems are proved in ap-
pendix A.

Theorem I:The overload distortion is given by

Figure 3.2. lllustration of the granular region (the gray area) and the
overload region (everything but the gray area) of a 2-dimensional lattice
guantizer.
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D. = f.(d) ™ /2 [ﬁ1+ 55) (3.13)

where f_(d) = (2"/2‘2 T (d/ 2))_1. For asymptotically high raté® and the truncation
radiusa; suitably choseng;- tends to zero.
Theorem II:The granular distortion is given by

D, = f, (d) B 2R (f1+¢, ) (3.14)
where f_(d) = GLdOT (T (d/2+1) 7. For asymptotically high raté® and the trun-

cation radiusay suitably choseng, tends to zero.
The total distortionD, can be written

D=0, +D, =(f,(d) 2 27+ (I 6% ) ave),  (3.159)

where the error terng tends to zero wheR grows towards infinity. For the moment,
we exclude the error term, and seek the minimum of

D=0, +D- = f,(d) 2 2R+ £(d) 5 ‘6™ 2. (3.16)

In appendix A.4, it is shown that the minimum valuelpfis also the minimum
value ofD. To find the value of the truncation radias that minimizes the distortion,
we differentiateD with respect toa:

A

% =200, (d) oy 27 2% + £(d) [{d- 4 CF 0™ 2 - #( gOd 0 2.(3.17)

T

Since D is a convex and continuous function in the interesting region (see section
A.4), we get the condition for minimal distortion by setting the derivative to zero,

A

73] - _a‘lz'opl —
w0 " t(d) S, 2 [ & o+ 4- = 20f( 2. (3.18)

wherear o is the value ofa; that minimizes the distortion. We observe that by mul-
tiplying both sides of (3.18) witlaZ, we get

D, a2 o + 4 - d) = 2D, (3.19)
where D_ and D, are given by (3.16). We get

Dg— B 2

(3.20)

In appendix A it is shown that; , tends to infinity wheiR approaches infinity. We
conclude that the total distortion is dominated by the granular distortion, when the rate
tends to infinity,

D
—2 ., 0whenR - o, (3.21)
D;
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Returning to (3.18), and taking the logarithm of both sides, we have

j (2T, (d)L
- aT,20pt +(d -6) El]n(aT,Opt) + In(a%yopt+ 4- d) =— R2In 2+ |nDAD(3-22)

0 f=(d) ¢
or, equivalently,
0 4-q0 (2rF, (d)C
af opr— (d=4) Eﬂn(a%opt) - 2[nnB1+ 2 0 4In 2[R- zmn%%@g.(s.zs)
T,opt G

Since ar o, tends to infinity for rates approaching infinity, both sides are dominated
by their first terms, resulting in

a% oot = RAIN2 whenR - o. (3.24)

that is, the optimal truncation radias ., is proportional to the square rootRffor
asymptotically high rates.
The total distortion (3.15) can now be written

D=g(R J 2R, (3.25)
whereg(R d) is approximated using (3.21) and (3.24),
g(Rd=40n20f(dOF whenR - . (3.26)

It is easy to generalize the formulas to arbitrary variance, by making the substitution
y=x0/o; /d (see (3.27)-(3.29)). If we compare the lattice VQ distortion with the
distortion of a pdf-optimized quantizer (2.13), we see that the discrepancy increases
with the rate. This can be observed in figure 3.7, section 3.6, where optimal VQ and
lattice VQ are compared.

(3.25) is only proven for rates approaching infinity, but we have experimentally
verified that the formulas also hold for realistic rates. In figure 3.3, the experimental
performance of lattice quantization (see table 6.1) is compared to the high rate theory

SNR SNR
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0 1 2 3 4 5 Rate 0 1 2 3 4 5 Rate
Figure 3.3. Experimental performance for lattice quantization of an iid

Gaussian pdf (circles), and performance predicted by lattice VQ high rate
theory (line). Left: 2 dimensions. Right: 5 dimensions.
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Dimension
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Figure 3.4.Estimated performance loss for a lattice VQ compared with
a pdf-optimized VQ. The curves indicate rate and dimension for lattice
guantizers with performance loss from 1 to 5 dB.

results, for quantization of 2- and 5-dimensional Gaussian variables.

With this theoretical derivation of lattice VQ performance, we have two asymptoti-
cal lattice VQ results: the asymptotic equipartition property predicts that a lattice VQ
performs better for high dimensions, while the high rate theory predicts that a lattice
VQ performs worse for high rates. These results are illustrated in figure 3.4, where
each curve indicates a specific performance loss compared to a pdf-optimized VQ. The
curves in figure 3.4 were computed by use of the high rate lattice theory (3.25) and the
Gaussian high rate lower bound in (2.13).

The formulas above were derived for iid Gaussian densities, with zero mean, unit
variance samples, but it is straightforward to generalize the theory to arbitrary variance
and mean. The conclusions should be similar also for correlated Gaussian data, but th
theory is more complicated for correlated variables. By simple modifications, the for-
mulas can be used for a generalized Gaussian pdf. Some of the results may also b
possible to generalize to other pdfs. For all unbounded pdfs, such as Gaussian
Laplace, Gamma, etc., the size of the granular region must increase when the rate in
creases, for the overload distortion to be zero for an infinite rate. Thus, the granular
region includes parts of the space with lower and lower pdf. Therefore, the larger the
rate, the more the point density of an optimal quantizer, given by (2.11), differ from
the uniform point density of a lattice quantizer. Based on the above reasoning, and or
our experience of high rate theory for Gaussian pdfs, we believe that the suboptimality
of lattice quantizers for high rates holds under far more general conditions than for iid
Gaussian distributions.

Substituting as discussed above, to get formulas that are valid for arbitrary input
signal variance, we conclude the high rate lattice theory in the following three points:
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« The optimal squared truncation radius is proportional to the rate for high rates,

af opt = RG‘”dLZ 7 whenR - o, (3.27)
» For high rates, the granular distortion dominates over the overload distortion,
D-
—~2 , OwhenR - o, (3.28)

G

* For high rates, the performance of lattice quantizers, as given by the high rate
formula

D= R22RO50A0N 20T (d/ 2+ 372 w7 whenR - o, (3.29)

Is inferior to the performance of optimal vector quantizers, given by the Gaussian
lower bound (2.13).

3.3 Selection of lattice

The choice of lattice is of course of major importance for the performance of a lattice
VQ. Ideally, the lattice should be selected to suit both the actual pdf and the truncation.
However, for high rate quantization of smooth pdfs, the choice of lattice is fairly inde-
pendent of input pdf and truncation [16]. For these cases, the lattice can be chosen
based on its quantization performance for an infinite uniform pdf. This choice is moti-
vated by high rate theory; for high rates, the pdf in each Voronoi region can be ex-
pected to be approximately uniform, at least for reasonably smooth pdfs (such as the
Gaussian pdf). Further, the performance of infinite uniform lattice quantization, given
by the quantization consta@ is easily found in the literature for many lattices.

Conway and Sloane [9] give values of the quantization cornStand lattice basis
B for several lattices. For example, the best known lattices for quantization of infinite
uniform pdfs in 2 and 5 dimensions are generated by, respectively,

_.2 0rC
B—s@_ J3E (3.30)
and
@ 00 0 Q
O 2 0 0 &
B=s0 0 2 0 ¢ (3.31)
M 0 0 2 @
H 111 &



Lattice-Based Quantization, Part Il 117

wheres is a scale factor to be determifetihe first is the well-known hexagonal grid
(figure 3.2), also denoted th#, lattice, and the second is trmg lattice. The best
known lattices for quantization of infinite uniform pdfs in 2-5 dimensionsAg,reD;,

D, and D;, respectively. These lattices are employed in our experiments in chapter 6.
In [14], lattices for quantization purposes are thoroughly studied.

3.4 Truncation and scaling

As described previously in this chapter, a lattice quantizer is the intersection between &
lattice A and a shap@ . The procedure to reject lattice points outside the shape, called
truncationof the lattice, is of major importance for the performance of the resulting
lattice quantizer.

Truncation for known distributionsteong and Gibson [30] argue that in a good
lattice VQ, the lattice should be truncated by a contour of constant probability density
for the considered source, and design lattice VQs for Gaussian and Laplacian data. Fo
the Laplacian pdf, this leads to truncation bg-@ctahedron, which, mostly in combi-
nation with the integer lattic&?, has received much attention since Fischer introduced
the structure (Pyramid VQ) in the mid-80’s. A recent reference on this topic is [31]; see
also Swazek [32]. For a Gaussian pdf, the iso-probability contours are ellipsoids, and
a corresponding truncating shapes described by

s ={xOR":x"C;’x <a?} (3.32)

whereC, is the covariance matrix of the Gaussian input distribution,zarsda con-

stant, determining the size of the ellipsoid. To truncate a lattice to the correct number of
VQ points, the radius above must be determined. An approximate valug can be

found by using the volume of the lattice Voronoi region, and for certain eates) be

found by use of the theta function of the lattice.

A problem that may occur when lattices are truncated to a desired number of points
is that a lattice normally has many points lying on the same distance from the origin
(shell), and the truncation procedure may be required choose a few among those. T«
prevent lattice points to fall on the boundary, an arbitrary vecioR? can be added
to the shape prior to the truncation:

C=An(s+v) (or, equivalentlyC=(A-v)n S). (3.33)
After the truncation, the truncated lattice is moved to make the mean of all codevectors

equal to the mean of the source. The choice afn affect the performance of the re-
sulting quantizer. We have experimented with four different methods to select

| VvV is set to zero.

4 Lattices can of course also be rotated and translated, but for high rates and smooth pdfs, thest
operations have little influence of the performance of a lattice VQ.
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Il v is selected as a very small (small compared to the basis vectors of the lattice)
stochastic vector.

Il v is selected as a stochastic vector with length in parity with the basis vectors of
the lattice.

IV v is selected to minimize the energy of the resulting quantizer

v=argmifA n (s +u)|* where | ||2 = i”ck”2 . (3.34)
uR* =
Method | leads to truncations that are natural for the chosen lattice, truncations were the
outmost shell is full. This can of course only be achieved for certain values of the
number of VQ points. Method II, 1ll and IV can give arbitrary VQ sizes. Method IV
has been used by Conway and Sloane [33] in a different application, and they also
propose an iterative algorithm to perform the energy minimization. The first and sec-
ond method (I and Il) have proved best in the cases tested in this study. Since only a
limited set of rates can be achieved with method I, method Il is preferred in this paper,
although some results with method | are also reported.

After the truncation, the lattice VQ should be scaled to give the best possible per-
formance. The scale factor can be approximated by use of high rate theory (see section
3.2), but to get better results an iterative procedure is often necessary, were the optimal
scaling is found for a training database. Several authors have previously studied lattice
scaling by iterative procedures, e.g., [8, 30, 34]. In [30], lattice VQ of iid Gaussian
and Laplacian is treated, and the scaling is done by numerical optimization.

Data-optimized truncation: In applications, the source pdf is generally not analyti-
cally known, but described by an empirically collected database. In this case, we pro-
pose a data-optimized truncation, where every vector in the database is classified to its
closest point in the full lattice, and the most probable lattice points are kept in the lattice
quantizer. In contrast to truncation for known distributions, there is no way to avoid
storing the truncation information for the data-optimized truncation. The algorithm is
described in the following steps:

Step 1:An approximate scaling of the chosen lattice must be found. For iid Gaussian
pdfs, and for pdfs that can be approximated as iid Gaussian, the high-rate scaling
formulas in section 3.2 can be used. For unknown pdfs, ad-hoc scaling may be
necessary. We have used a scaling rule that makes the granular distortion of the
lattice equal to the distortion of a pdf-optimized quantizer with the desired rate, ac-
cording to the Gaussian lower bouby, ; (2.13) in section 2.3:

Dete
S=_ |—=, 3.35
\/ G ( )
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where G is the quantization constant of the lattice. The estimated scale factor is
only an approximation of the optimum scale, but the truncation procedure is not
very sensitive to the scale, and mismatches are easily detected in step 3 of this al
gorithm. In all tested cases, this method has proven sufficient.

Step 2:Classify each vector in the database to the nearest lattice vector, by use of &
nearest-neighbor algorithm for the chosen lattice [9]. The lattice points with the
highest probabilities become codevectors in the lattice quantizer.

Step 3:An optimal scale factos® for the lattice quantizer is found, by some numerical
optimization method. If the scale factor is very different from the one found in
step 1, go to step 2 and repeat the procedure using the new scalg'factor

Index-optimized truncation: In [33], Conway and Sloane introdMaenoi codes
where the truncation is chosen as an integer multiple of the Voronoi region of the lat-
tice. Forney subsequently generalizes the concept to other truncation shapes in [35]
With the Voronoi codes, the indexing of the lattice VQ is greatly simplified. However,
the Voronoi code truncation is generally not optimized for the pdf, and performance
loss may resuft

3.5 Indexing

In addition to the choice o\ and s, lattice VQ design involves one more issue; as-
signment of indices to the codevectors. This enumeration can be made aiming at sev
eral, partly conflicting, goalgi) Memory saving. The indexing should have a mathe-
matical formulation that is more compact than a full tafile Fast encoding. The in-
dexing should, in combination with one of the search algorithms that have been devel-
oped for lattices [9], yield a fast encoder. (iii) Fast decoding. The codevector
should be rapidly retrievable from the index in the decaderiv) Symmetry.
Characteristic for a lattice is that all points are alike in relation to the surrounding
points. The indexing should preserve this property. In chapter 5, where an adjacency
table is needed, the symmetry solves the memory prolfienRobustness. If the
codebook is used for a noisy channel, bit errors should cause as little distortion as
possible.

There exists an elegant solution of the indexing problem for Voronoi codes [33] in
such a way that differences in indices reflect the relative position between codevectors
The method, based on modular arithmetics, satigjigsv) above. On the other hand,
Voronoi codes can only attain certain raRsnamely, those for whic® is an inte-
ger.

For a Gaussian probability density function, or other densities with rotational
symmetry, it is beneficial if the truncation shape is as spherical as possible.

5 Eyubodu and Forney show in [29] that the performance loss is small for large dimensions.
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Figure 3.5. A 19-point lattice VQ, enumerated by using a 25-point set.

Unfortunately, thed -sphere does not, in general, possess any of the appealing prop-
erties mentioned above. To combine a shape that is suitable for the source (such as the
d-sphere for Gaussian data) with one that has a nice indexing (such as a Voronoi re-
gion), the former can be inscribed into the latter. This approach amounts to designing a
larger set that includes the codebook, enumerating this larger set, and then disregarding
the points that do not belong to the codebook. For this mehpdjv) above are
satisfied. The larger set can for instance be chosen as a Voronoi code [33]. An alterna-
tive larger set i8" [&, wherez is a rectangular subset of telimensional cubic lat-

tice. Figure 3.5 illustrates the latter method for a 2-dimensional example, where a 19-
point lattice VQ is enumerated by using a 25-point set, for w(ii)eliiv) are satisfied.

In the VQ design algorithm in chapter 4 and 5, we employ an indexing method in this
category.

Figure 3.6. Two 64-point quantizers for a Gaussian pdf. Left: a lattice
VQ. Right: a well-trained VQ.
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3.6 Lattice VQ examples

In figure 3.6, a lattice VQ and a pdf-optimized VQ are depicted. The SNR values for
the lattice quantizer and the optimized quantizer are 14.6 dB and 15.3 dB, respectively.
In figure 3.7, the performance of lattice VQ is compared to pdf-optimized VQ for a 2-
and a 5-dimensional iid Gaussian pdf. As predicted by the lattice high rate theory, the
discrepancy between lattice VQ and pdf-optimized VQ increases for higher rates. More
results for lattice quantization of Gaussian variables in 2 to 5 dimensions are reported
on in section 6.2.

If the pdf-trained VQ in figure 3.6 is studied in detail, a feature of high rate quan-
tizers can be observed: the structure is well-ordered, and the environment of the VQ
points is locally similar to a lattice, at least for the points close to the center. This fea-
ture is exploited in the next chapter, to design VQs for fast search.

4. LATTICE-ATTRACTED VQ DESIGN

In this chapter, we propose an extension to standard VQ design algoritlatisea
attracteddesign algorithm, where the codebook is initialized with a truncated lattice,
and the codevectors are updated to maintain a local lattice similarity for each iteration.
The goal with this procedure is to make it possible to exploit the local lattice-similarity
for fast nearest-neighbor search.

A sketch of a lattice-attracted algorithm is described in the following steps:

I: Initialize the VQ with a truncated lattice. An adjacency table for the lattice is also
required, denoted tHattice adjacency tableThis table consists of all neighbors
to codevectoD (vector zero), together with rules to compute the neighbors to an
arbitrary point in the lattice.

II: Train the VQ with a conventional design method, but add procedures to approxi-
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Figure 3.7.SNR as a function of rate for lattice V®@)(and pdf-opti-
mized VQ (+). Left: 2-dimensional VQ. Right: 5-dimensional VQ.
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mately keep the initial set of neighbors, as defined by the lattice adjacency table.

The initialization procedure is described in section 4.1. In sections 4.2 and 4.3, we
study how to extend two standard design algorithms, the generalized Lloyd algorithm
[36] and a competitive learning algorithm [37], to approximately keep a predefined
neighbor structure. In chapter 5, a novel lattice-based nearest-neighbor search method
is described, based on the local lattice-similarity of the VQs trained with the proposed
lattice-attracted algorithm. It is even possible to apply the fast search method during the
training, as described in section 5.2.

The algorithm introduced here can, together with the specialized fast nearest-neigh-
bor search method described in chapter 5, be viewed as a link between lattice quantiza-
tion and unconstrained quantization, with the goal to combine some of the advantages
of both methods.

4.1 Lattice initialization

Most iterative VQ design algorithms, such as the generalized Lloyd algorithtnd86]

the competitive learning algorithm [37], can easily be trapped in a local distortion
minimum when seeking the global minimum. A well-chosen initialization procedure
can help the algorithm to avoid local minima far from the global minimum. For exam-
ple, the generalized Lloyd algorithm is often initialized by a splitting procedure, pro-
posed by Linde et al [3] (the LBG algorithm). Another possibility is to initialize the VQ
with a truncated lattice. Here, we use the lattice as a good initialization for further
training, but also to find a lattice adjacency table for use in the fast search procedures
described later.

The lattice initialization procedure starts with selection of a lattice with a good
quantization constai@, as discussed in section 3.3. The lattice is truncated by any of
the methods described in section 3.4. If the pdf of the source process is given by a
database, the data-optimized truncation procedure can be used. For known pdfs, the
lattice can be truncated by an iso-probability contour.

Now an adjacency table must be found for the chosen lattice. Voronoi neighbors of
some standard lattices can be found in [9]. As discussed in section 3.1, the neighbors
to a codevector can be computed by translation of the neighbors to any other codevec-
tor, so only neighbors to the zero codevector have to be stored. A simple enumeration
technique is discussed in section 3.5, where the lattice VQ is enumerated by using a
larger set with desirable properties. A possible larger set is givél by, wherez is
a rectangular subset of the cubic lattice. The technique is illustrated in figure 3.5,
where we see that the neighbors to an arbitrary point in the lattice VQ can be found by

6 The generalized Lloyd algorithm is a direct generalization of a work by Lloyd, first presented in an
unpublished technical note, “Least squares quantization in PCM”, at Bell Labs 1957.
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Figure 4.1. Neighbor structure (lines) for two lattice VQs (dots). Left:
A lattice VQ optimized for uncorrelated Gaussian data. Right: A lattice
VQ optimized for correlated Gaussian daias 0.9.

adding an offset aof1, +4 or+5 to the index of the point. This is not the most efficient
method in terms of required storage, but it works and it is simple. A more storage-
efficient larger set is the Voronoi codes discussed in section 3.5 and [33, 35], and
these have been used in table 6.7. With the larger-set methods above, the neighbors
the actual codevector are found by a simple procedure; the index of the codevector is
found, the offset to the wanted neighbor is added, and the codevector corresponding t
the neighbor index is fourldThe first operation, finding the index of a codevector,
can be solved by storing a table of indices, with one integer index for each codevector.
Adding offset is trivial, and finding the codevector corresponding to the neighbor in-
dex is either solved by looking in the index table, or in another table with index-to-
codevector translations (or by a compromise between those two alternatives). See sec
tion 6.4 for storage requirements of the translation tables, and overhead complexity of
the translation.

An alternative to ellipsoid truncation and larger-set indexing by table look-up, is di-
rect use of the Voronoi codes in [33], for which no translation tables are necessary.
However, a Voronoi-shaped truncation region is in general not optimal for the source
pdf, and performance loss results.

For a complete description of the lattice Voronoi region, the distances to the neigh-
bors are also stored. The set of neighbors to the zero codevector, together with the cor
responding distances, describes the Voronoi region of any point in the lattice.

The features of the lattice initialization procedure are here illustrated by examples of
two-dimensional vector quantizers. In figure 4.1, two 64-point VQs are plotted, di-
rectly after being initialized with a truncated lattice. Each VQ point and its neighbors,
according to the lattice adjacency table, are connected by lines. The regular structure o
the lattice initialization is clearly visible.

7 Some of the codewords will not have a full set of neighbors, due to the truncation of the lattice.
Missing neighbors are easily detected with the table look-up methods used here.



124 Lattice-Based Quantization, Part Il

In the following sections, we will try to optimize the quantizers for the given
source, while still maintaining a locally lattice-similar structure. The neighbors accord-
ing to the lattice adjacency table, denotedl#tice neighborswill deviate from the
true Voronoi neighbors of the quantizer, but large similarities will remain, if the opti-
mization procedure is successful.

4.2 Lattice attraction for the generalized Lloyd algorithm

The generalized Lloyd algorithm (GLA) is often used for unconstrained VQ design. In
GLA, the two necessary conditions, (2.6) and (2.7), are alternatingly iterated until the
guantizer has converged. GLA is a greedy algorithm, with the feature that the average
distortion decreases for each iteration. This means that GLA finds the nearest local
minima, and stops the iteration. To overcome this behavior, many methods have been
proposed on how to add randomness to GLA [38], in order to make it possible to
evade local minima. A good initialization is of prime importance for the success of
GLA.

GLA is briefly described in table 4.1, step 1-3 and 5. To extend GLA to maintain
the neighborhood structure as given by the lattice adjacency table, we add an extra step
(step 4 in table 4.1), where all codevectors are moved a small step to increase the local
lattice-similarity. This extra step can be implemented in several ways, and we describe
one such way below. In advance, the codebook is initialized with a truncated lattice,
and a lattice adjacency table is found, as described in section 4.1. After the standard
GLA iteration, each codevector is moved a short step towards the centroid of its neigh-
bors, according to the distance to the corresponding neighbors in the lattice we want to
mimic. In this way, the geometrical environment to each point in the VQ becomes more
similar to the lattice, but each point has still a high degree of freedom during the train-
ing. The algorithm, from now on denot&dtice-attracted GLAor LA-GLA, is de-
scribed in table 4.1, where step 4 is added to a standard GLA. In this algorithm de-
scription, the function to compute the lattice neighbors is denatfidi), giving
neighbork of codeword in the codebook. With,, we refer to the distance to neigh-
bork in the chosen lattice.

The step size parameter, can be chosen to be constant over the training phase, or
it can be a function of time. We have experimented with a linearly decreasing (to zero)
step size,
mC
ML’
where g, is the start step size aMlis the total number of iterations of the algorithm.

Em =& J1- 4.1)

This choice makes the lattice attraction weaker and weaker, and at the end there is no
attraction at all. We have experimented with different initial step sizes, and found that a
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Table 4.1.The lattice-attracted GLA algorithm.

Step 1initialize the codebook’, = {C(ll) M le)} Setm=1.
Step 2.For the given codeboog cIaSS|fy each vectox in the training databasge
7 toa regioan,Em), using the nearest neighbor partition

pim :{x O7 :Hx - c(km)H2 < Hx— cl(m)Hz for alli O(%, N)}

2 2
If a tie occurs, that is, iNx —cf(m)H = Hx— cl(m)H for one or more, assignx to
the regionW™ for whichi is smallest.
Step 3Compute a new codebook using the centroid condition

)

m.— 1
Ckm ‘LIJIEm)‘ A

where the sum is over all training vectorslassified tow{™, and [¥{™| is the
cardinality of the set(™ (the number of elements ™). If ‘Wlfm)‘ =0 for
somek, use some other code vector assignment for that cell.

Step 4Move all codevectors a small step to increase the lattice similarity,

O

C(m+l) - C(m) " Em EZ@ HC("‘) c(m)ﬁll @ 5\ém()k,i) B C'(m)) =1...N,

wherea (k,i) is the lattice adjacency functioK(i) is the number of neighbdrs
to codeword, and w(j) is the average weighted distance between a codeyector
k and its neighbors,

(m) (m)
DZHC -G H/Ik :

The new set of vectors defines a new codeboqk, = {c(lm”) (L c‘Nm”’}
Step 5.Stop the iteration if some stopping criterion has been reached, for exammple if

the average distortion far,,,; has changed by a small enough amount ¢om-

pared to the distortion af ,. Otherwise, seim:= m+1 and go to step 2.

value of &, in the interval0.05- Q I leads to good performance. The extra step is per-
formed only once per iteration of the full training database, and thus the extra com-
plexity is small.

In figure 4.2, two 64-point quantizers are depicted after being trained for a jointly
Gaussian distribution with the LA-GLA algorithm, where the codebooks were initial-
ized as in figure 4.1. We see that most of the lattice neighbor structure is retained, bur
that the quantizers are more optimized for the Gaussian pdf now. Results from simula-
tions with the LA-GLA method are reported on in section 6.3.
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N

Figure 4.2. Two VQs optimized for Gaussian data, trained with the LA-
GLA algorithm. Lattice neighbors are depicted as lines, and codevectors as
dots. Left: uncorrelated data. Right: correlated Gaussian dat®,.9.

4.3 Competitive learning with lattice attraction

Competitive learningCL) [37] was first developed for training of artificial neural
networks, but can also be used for vector quantization training. In the CL algorithms,
the training vectors are presented one by one, and only one codevector (the closest
one) is adjusted for each input vector. The learning rule of CL can be derived from the
two necessary conditions in section 2.2 [39], which make CL and GLA essentially
equivalent. The main difference is that GLA works in a batch mode, were all training
vectors are presented before the codevectors are adapted, as opposed to the sample
iterative technique used in CL algorithms. Another important difference is that in
contrast to GLA, the CL algorithm is not greedy; the average distortion does not
necessarily decrease at each iteration. This allows the CL algorithm to evade some local
minima.

In [37], Kohonen presents tlself-organizing feature mapvhich extends CL by
modifying not only the winner at each iteration, but also neighbors to the winner ac-
cording to some topological map. The map is often a two-dimensional square lattice,
where the neighbors can be easily computed. A feature of Kohonen training is that the
structure of the map is imposed on the quantizer. Knagenhjelm [40] tisemraing
map in order to train VQs where the Hamming distance between codewords and the
Euclidean distance between codevectors are closely related. This is shown to substan-
tially robustify the VQ for transmission over a noisy binary symmetric channel.

The self-organizing feature map is a straightforward way to attract the quantizer to
the lattice. The neighbors in the map are given by the lattice adjacency table, and the
winning candidate is modified together with all neighbors in the table for each presen-
tation of input data. The algorithm is described in table 4.2. The neighbor step,size
IS, as in the LA-GLA, linearly decreasing,
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Table 4.2. The competitive learning algorithm with a lattice topology
map.

Step 1lnitialize the codebook’; = {cl, cz,...,cN} . Setm=1.
Step 2A random vectoix,,, is drawn from the training database. For the input|data
Xy, find the winning candidate according to the quadratic error criterion,

¢’ = argminx,, - d~.
cln
Step 3Modify the winning codevector as
¢ =C +n,{xn-¢).
where the “temperaturej,, is linearly decreasing from an initial temperatpge
- _mC
Nm = '70%‘ M C
Step 4Modify the neighbors to the winning candidate a small stgpaccording to
Cy = C N Em X m— G)  k=1,....K.
wherec, is one of the totall)X neighbors (found in the lattice adjacency taple)
toc.
Step 5If m= M, then stop the iteration. Otherwise, set= m+1 and go to step 2.

mrC
ML
The resulting CL algorithm is denoted tletice-attracted competitive learning
(LA-CL) algorithm. Results of simulations with this algorithm are presented in chapter
6.

E€m=E€orl— (4.2)

5. FAST SEARCH OFLATTICE-ATTRACTEDVQ

In [11], an algorithm for fast search of arbitrary VQs is described. With this algorithm,
denoted thesteepest neighbor descef8ND) algorithm an adjacency table is
precomputed, consisting of all Voronoi neighbors to all codevectors in the VQ (how to
find the adjacency table is described in [11]). When the table is found and stored, the
actual quantization can begin. For each input vextarne of the codevectors in the
codebook is selected as a starting hypothe8isThe distance between and ¢ is
computed, and then the distances betweeamd the neighbors td® (found in the
adjacency table) are computed. When all neighbor distances have been computed, th
neighbor closest ta becomes the new hypothesi8.
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This procedure is repeated until a hypothesis vector is found whose neighbors are
all worse. It can easily be shown that when a codevector with lower distance to the in-
put vector than all its neighbors is found, this vector is the optimal codevector (see
(2.10)).

The main disadvantage of the SND algorithm is the storage requirements for the
precomputed adjacency table, typically many times the required storage of the code-
book. For example, a 12 bit 6-dimensional VQ requires around 700 kbyte storage for
the adjacency table [11], and this is impractical for many applications.

Lattices have a feature that can be exploited to reduce the storage requirements for
the SND algorithm; all neighbors to an arbitrary point in a lattice can be found by
translation of the neighbors to the zero lattice point. To find the neighbors to an arbi-
trary point in a lattice VQ, the neighbors to the zero point are translated, and the set of
neighbors is truncated by the global truncation rules. Thus, we can apply the SND al-
gorithm to a lattice VQ, supported only by the neighbors to a single region. However,
this would not be a very competitive algorithm, since fast specialized search algorithms
have been developed for many important lattices [33]. A better choice is to apply the
low-storage SND algorithm to the well-performing lattice-attracted quantizers from
chapter 4. These quantizers are trained to maintain a lattice neighbor structure, and are
well suited for low-storage SND search.

In this chapter, we discuss how to apply the steepest neighbor descent method to
the quantizers trained by LA-GLA or LA-CL algorithm.

5.1 An extended SND algorithm

Here, we will propose an SND algorithm to suit the lattice-attracted quantizers from
chapter 4. The lattice neighbors of the lattice-attracted quantizers (c.f. figures 4.1 and
4.2) are not always in perfect correspondence with the real Voronoi neighbors. False
neighbors, i.e., codevectors listed as lattice neighbors without being Voronoi neigh-
bors, constitute no problem, but not listed Voronoi neighbors can lead to erroneous
decisions, and must be considered.

An important issue is the starting point of the algorithm, i.e., the choice of an initial
hypothesis codevector. For the tested Gaussian densities, the trained lattice-attracted
guantizers show a high degree of similarity with the lattice quantizer used for the
initialization of the LA-GLA and LA-CL algorithms; the codevectors stay in general
fairly close to their initial positions. Thus, a good starting hypothesis is the vector
found by nearest-neighbor search of the initial lattice quantizer. For many important
lattices, nearest neighbor search can be done with very low complexity [9]. No extra
storage is required for this, just a search algorithm for the chosen Iattice.
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We have extended the SND algorithm to handle the special problems with an in-
complete adjacency table, and also to exploit the lattice-similarity to find a good starting
point. Three extensions have been used:

I Aninitial hypothesis is found by nearest-neighbor search of the chosen lattice.

Il If the current hypothesis codevector is closer to the input vector than all of its
neighbors, the neighbor descent search continues from the second best vector
This procedure is repeated until no improvement is obtained.

[l When the SND terminates and declares a winning codewoekcaption table
is consulted, including Voronoi neighbors not found in the lattice adjacency table.
If the winning codeword is found in the exception table, the listed extra
neighbor(s) is also tested.

The exception table should be constructed prior to the actual quantization. All the
missing Voronoi neighbors do not have to be included in the exception table, only
those that lead to a substantially higher distortion if not included. The exception table
can be found by running a full search in parallel with the SND search for a training
database, and observing when the answers from the two search procedures differ.

The first extension requires a lattice nearest-neighbor search prior to the VQ search
The complexity of this extension varies with the effectiveness of the search algorithms
for the actual lattice, but for the lattices used here, the complexity corresponds to 0.5-2
extra distance computations. No extra storage is heeded. The second extension has e
perimentally shown to lead to a few additional distance computations for each input
vector, compared to the standard SND algorithm, but no extra storage is required. The
third extension, the exception table, requires some extra storage, but the extra searc
complexity is small, since the exception table is seldom consulted.

Experiments show that if the performance loss compared to a full search is required
to be less than 0.01 dB, the exception table can be very small, typically a few entries
for the 2-dimensional VQs tested here, and 20-30 entries for the high rate 5-dimen-
sional VQs. If no performance loss at all is allowed, the 5-dimensional VQs may re-
quire an exception table that includes up to 10-15% of the vectors in the codebook, to
compensate for all missing neighbors, even though these occur with a probability close
to zero.

If the exception tables are excluded, some performance loss is inevitable. The 5-
dimensional VQs require larger exception tables to reach 0.01 dB performance loss
than the 2-dimensional VQs, but on the other hand, if the exception tables are ex-
cluded, the performance loss of the 5-dimensional VQs is small, for the tested VQs al-
ways less than 0.05 dB. In section 6.4, we report the performance, in terms of storage
and search complexity, for quantizers where the exception table is designed for “almost
lossless” (less than 0.01 dB loss) operation.
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Table 5.1.The extended steepest neighbor descent (eSND) algorithm.

Step 1:Find an initial hypothesis codevector, by a lattice nearest-neighbor seafch.
Set the temporary codevectoto null.

Step 2:Find the lattice neighbors 1, by look-up and translation of the lattice adlja-
cency table.

Step 3:Compute the distortion of all untested neighbors. If a better codevectgr than
¢ is found, this becomes the new hypothesisand the execution continueg at
step 2. If no better neighbor can be found, continue to step 4.

Step 4:If the current hypothesis’ is equal to the temporary codevectyrcontinug
to step 5. Otherwise, set the temporary codevextorthe second best codevec-
tor found up to then, sef = ¢, and go back to step 2.

Step 5:If the current best hypothesis is listed in the exception table, compute the dis-
tortion of the extra neighbor(s) as given by the exception table.

Step 6:The best codevector found until now is returned.

The extended SND algorithm (eSND) is described in table 5.1.

The algorithm works well for Gaussian data. An interesting question is how well it
generalizes to other pdfs. The simple answer is that it generalizes to pdfs that can be
well quantized using a quantizer with locally lattice-similar structure. These include
pdfs where direct lattice quantization works well, and thus the VQ points typically
move only a small distance from the lattice initialization. It also generalizes to pdfs for
which a multidimensional compander in combination with a lattice quantizer works
well (see, e.qg., [41] for a treatment of this subject). However, the question if the al-
gorithm works well for arbitrary pdfs is a subject for further research.

In section 6.4 we report on the search complexity reduction that can be achieved
with the eSND algorithm. In section 5.2, we study how to apply the eSND algorithm
already during the design phase, with a design complexity reduction as result.

5.2 Fast search during the design phase

To speed up the design procedure by the LA-GLA and LA-CL algorithms, the fast
search procedure can be incorporated in the training. The introduction of the eSND
search during the design phase leads to a few problems. First, the exception table in
the eSND algorithm must be constructed "on-line” during the design process. The ex-
ception table during design may be far from complete; the training has experimentally
shown to be fairly insensitive to a few misclassifications. We have experimented with
construction of an exception table after the first iteration of the GLA algorithm, by do-
ing a full search in parallel with the eSND. For the following iterations only eSND
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search is performed. After some iterations, it might be necessary to reconstruct the ex:
ception table.

Another problem we encountered in the development of the LA-CL method was a
break-down tendency (failure to improve the VQ) for high initial temperatye$his
is caused by the random reordering of codevectors that occur for high temperatures
destroying the well-ordered initial lattice structure. When the lattice structure is de-
stroyed, the eSND search fails more often to find the optimal codevector, and as a re:
sult the VQ is adapted to destroy the lattice structure even more. However, the break-
down temperature is distinct and well above realistic start temperatures, so the problerr
is easily avoided. The LA-GLA algorithm has not shown any tendencies to break
down for the problems treated in this report.

5.3 Related work

In the literature, some other reports on fast search for unconstrained VQs can be
found. As discussed earlier, there are some methods based on the neighbor desce
concept. These algorithms show similar performance as the proposed eSND algorithrr
for lattice-attracted VQs, but the storage requirement for the adjacency table is typically
many times the required storage of the codebook [10, 11]. In [42], only a fraction of
the full adjacency table is stored, with a suboptimal search procedure as a result.

Another method is thK-d treetechnique, proposed in [43], and further developed
in, e.g., [13]. A binary tree, with hyperplane decision tests at each node, is precom-
puted and stored. The decision tree leads to one of a set of terminal nodes, where sme
sets of still eligible candidate vectors are listed.

In the projection technique [44], a rectangular partition of the space is
precomputed and stored. During the search, the rectangular cell containing the input
vector is found, and the distances to a small number of eligible codevectors are
computed. The number of distance calculations with this method is typically very
small, but the overhead complexity is considerable.

Anchor pointalgorithms [12, 45] are algorithms where VQ points are excluded
from the search by use of the triangle inequality. The distances from a small set of an-
chor points to each of the codevectors are precomputed and stored. The encoder the
computes the distance between the input vector and each anchor point, and a larg
number of codevectors can be eliminated from the nearest neighbor search.

In [46], a Kohonen feature map is used as a basis for a fast search algorithm.
However, the search algorithm shows poor performance, with a high percentage of
misclassifications, due to the selection of a map that is not a good quantizer in itself.

For comparison, we have included measurements of an anchor point algorithm and
the projection technique, in section 6.4.



132 Lattice-Based Quantization, Part Il

6. EXPERIMENTS

In many real-world applications employing vector quantization, the Gaussian distribu-
tion is used as a model for the incoming data, and also as a model of the quantization
error. This is mainly because it is possible to theoretically compute important parame-
ters for Gaussian pdfs, but also because the Gaussian distribution is often a good ap-
proximation to the pdf of the actual data. This makes the performance of quantization
of Gaussian variables interesting.

In this chapter, we present simulation results of lattice quantization and lattice-at-
tracted VQs, and study their performance for Gaussian pdfs. In section 6.1, we de-
scribe the databases used in the experiments. In section 6.2, the performance for lattice
VQ of Gaussian data is given, and in section 6.3, the performance of the new lattice-
attracted method is tabulated. The achievable search complexity reductions and extra
memory requirements for the eSND method are given in section 6.4, where it is also
compared to an anchor point algorithm.

6.1 Databases

All Gaussian variables are generated by the Box-Miller method, using a well-tested
random number generator from [47]. Both correlated and uncorrelated databases are
generated. The correlated data are sequences of samples, drawn from a first order
Markov process with correlation coefficiept=0.9.

6.2 Results for Gaussian variables

In this section, we present the performance of lattice quantization of Gauss-Markov
processes. The lattices are truncated as described in section 3.4, with method Il for
known pdfs, and the optimal scale factors are determined by an iterative procedure,
using a database of 200 000 samples. For comparison, we also present SNR values
for optimized Gaussian vector quantization (20 million iterations of a CL algorithm are
used to train the quantizers). For the performance evaluation, an independent evalua-
tion database with 1 million Gaussian vectors is used, both for lattice VQs and pdf-op-
timized VQs.

In table 6.1, we present signal-to-noise-ratios (SNR) for quantization of an iid
Gaussian pdf We see that lattice quantization can give competitive performance for
low and medium rates, but for higher rates, the pdf-optimized VQ is significantly bet-
ter. As predicted by the high-rate lattice theory in section 3.2, a lattice quantizer is in-
ferior to a pdf-optimized quantizer when the rate is high.

8 Note that the results for high-rate pdf-optimized quantizers show signs of undertraining; especially
the SNR values for 2 dimensions, 2048 codewords could be improved with longer training.
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Table 6.1. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside
parenthesis), for quantization of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d=2 d=3 d=4 d=5
8 6.78 (6.96) 4.29 (4.48) 3.16 (3.34) 2.38 (2.53)
16 9.48(9.68) 6.20 (6.29) 4.41 (4.67) 3.48 (3.66)
32 12.09 (12.44) 7.91 (8.10) 5.90 (5.99) 4.59 (4.77)
64 14.64 (15.29) 9.68(9.95) 7.17 (7.36) 5.76 (5.84)
128 17.22 (18.18) 11.48 (11.83) 8.54 (8.75) 6.77 (6.93)
256 19.85 (21.10) 13.24 (13.74) 9.90(10.15) 7.89 (8.05)
512 22.47 (24.04) 14.97 (15.66) 11.22 (11.57 8.98 (9.17)
1024 25.11 (27.03) 16.71 (17.62) 12.59 (13.00 10.07(10.31)
2048 27.75 (29.88) 18.45 (19.62) 13.91 (14.49 11.12 (11.47)
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Figure 6.1. Performance for a truncated lattice VQ on a 5-dimensional
iid Gaussian pdf. The crosses (x) indicate performance for lattice VQ where
the number of points is truncated to an even power of two, and the circles
(o) indicate the performance with a fully populated outmost shell.

We also wanted to examine the importance of the truncation procedure. For this
purpose, we have applied truncations that are natural for the chosen lattice, i.e., trun-
cations that acknowledge the shell structure of the lattice, and keep the outmost shel
fully populated (method I in section 3.4). This can of course only be achieved for cer-
tain number of points. For th; lattice, the number of points in the sheiks from
inside out, given by the theta series {1, 10, 32, 40, 80, 160, 90, 112, 320, ...}, and
thus the number of points in a quantizer with fully populated shells are {1, 11, 43, 83,
163, 323, 413, 525, 845, ...}. In figure 6.1, we compare the performance of lattice
VQs with fully populated shells with VQs where the number of points is an integer

9 Other theta series are possible if the lattice is translated.
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Table 6.2. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside
parenthesis), for a first order Gauss-Markov process, with correlation
coefficient 0.9.

Number of Dimension of VQ

codevectoryg d=2 d=3 d=4 d=5

8 9.72 (10.83) 9.20 (9.37) 8.19 (8.48) 7.43 (8.09)

16 12.48 (13.55) 10.45 (11.41) 9.23 (10.20) 8.37 (9.39)

32 15.13 (16.25) 12.30 (13.21) 10.50 (11.66 9.48 (10.69)

64 17.98 (19.05) 14.08 (15.01) 12.08 (13.03 11.02 (11.8%)
128 20.82 (21.87) 16.16 (16.85) 13.44 (14.40 11.83 (12.96)
256 23.28 (24.81) 17.80 (18.71) 14.95 (15.77 13.19 (14.0%)
512 25.80 (27.72) 19.69 (20.60) 16.46 (17.16 14.37 (15.14)
1024 28.63 (30.67) 21.36 (22.51) 17.69 (18.56 15.54 (16.23)
2048 31.24 (32.82) 23.16 (24.39) 19.18 (19.97 16.70 (17.3%)

power of 2. We see that for low rates, the truncation where the outmost shell is fully
populated has a performance advantage, but for higher rates the "unstructured” trunca-
tion procedure gives equivalent performance.

In table 6.2, we present signal-to-noise-ratios for lattice quantization of a first order
Gauss-Markov process with correlation coefficient 0.9. We see that for correlated
Gaussian data, pdf-optimized vector quantizers have in most cases a significant per-
formance advantage over lattice quantizers.

6.3 Lattice-attracted VQ design performance

With the new lattice-attracted VQ design methods, an interesting question is if the lat-
tice attraction leads to loss of performance compared to unconstrained VQ training. To
investigate this, the performance for quantizers trained until convergence with the dif-
ferent methods are compared in table 6.3. The SNR values are averaged over 20 simu-
lations with different training databases (different seeds for the random number genera-
tor). The evaluation database consists of one million Gaussian vectors. Even though
the GLA algorithm is normally aborted when the distortion change is small enough, we
have here chosen to run all algorithms for a predetermined number of iterations (100
million iterations are performed in all cases, where one iteration consists of finding the
closest codevector to an input vector). The chosen design time is large enough for all

Table 6.3.SNR (dB) for quantizers trained until convergence with the
different methods.

dim, size, corr CL LA-CL LBG LA-GLA
d=2,N=64, p=0 15.30 15.30 15.27 15.27
d=2,N=64, p=0.9 19.05 19.05 19.03 19.02
d=3,N=128, p=0 11.85 11.85 11.82 11.82
d=3,N=128, p=0.9 16.87 16.87 16.83 16.82
d=5,N=1024, p=0 10.32 10.32 10.25 10.26
d=5,N=1024, p=0.9 16.23 16.23 16.20 16.20
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the methods reach convergence, i.e., the results do not improve for longer training.
The size of the training database is limited (500 000 vectors) for the batch algorithms,
LBG and LA-GLA, but for the competitive learning methods, the database size is
“unlimited”; a new Gaussian vector is drawn for every iteration.

Note that the CL algorithms perform slightly better than LBG or LA-GLA. A rea-
son for the inferiority of the GLA-based algorithms is the limited training database,
making the greedy GLA-based algorithms more easily trapped in local minima. From
the numbers in table 6.3, we conclude that the lattice attraction does not decrease th
performance of the fully trained VQ, neither for GLA nor CL. For these extremely
well-trained quantizers, the lattice-constraint is mainly a question of indexing of the
codevectors; for all methods, the resulting structures of the quantizers are very similar.
This indicates that an indexing procedure could be applied after the training procedure
to make the fast eSND search possible. However, it would then be impossible to apply
the eSND during the training.

In reality, it may be impractical with the tedious train-until-convergence used
above, and the database size is also often limited. A more realistic database can have
size that is only 100 times the number of codewords, and in some cases even less. |
figure 6.2, we compare the different design methods for limited design time and
database size. We see that the lattice-attracted design methods reach a higher SNR foi
limited database size, due to the attraction to a well-ordered lattice structure, a structure
that otherwise can be hard to reach for limited training times and databases. No methoc
reaches an SNR close to the optimum 15.3 dB (table 6.3).

The results in this section seem to indicate that the CL-based algorithms should be
preferred for VQ design. However, the tuning of the starting temperature for the CL

SNR

15.1} .

15.0

10 000 100 000 1 000 OOQiterations

Figure 6.2. SNR as a function of number of iterations for design of a

64-point 2-dimensional VQ. For all methods, the training database con-
tains 5000 vectors, drawn from an iid Gaussian pdf. The LBG algorithm
uses a split initialization technique, while the other algorithms are initial-
ized with a truncated lattice, giving an initial SNR of 14.6 dB.
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Table 6.4. Average and maximum (within parenthesis) number of dis-
tance computations for the lattice-attracted quantizers. The database con-
sists of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d=2 d=3 d=4 d=5
8 5.8 (8) 6.1 (8) 7.7 (8) 6.7 (8)
16 7.7 (12) 10.4 (16) 12.2 (16) 12.0 (16)
32 9.1 (12) 13.8 (25) 18.7 (32) 22.1 (32)
64 9.9 (12) 17.3 (28) 24.7 (51) 32.7 (63)
128 10.6 (13) 19.6 (28) 30.9 (63) 42.1 (89)
256 10.6 (15) 21.5 (31) 36.1 (69) 53.2 (124)
512 10.5 (16) 23.3 (36) 41.5 (79) 64.8 (145)
1024 10.5 (16) 25.2 (40) 45.7 (91) 75.3 (167)
2048 10.5 (16) 25.2 (44) 50.2 (96) 81.8 (179)

algorithms can be tedious, and the empty-cluster-problem is simpler to handle in GLA-
based algorithms. Thus, LBG and LA-GLA may still be preferable in some applica-
tions.

6.4 eSND performance

In this section, we report on the performance of the eSND algorithm, in terms of
search complexity and storage requirements. For comparison, we have also included
measurements of an anchor point algorithm, using the same databases.

Search complexityWWe have applied the eSND algorithm, described in chapter 5, to
quantizers trained with LA-GLA. The exception tables are designed for “almost loss-
less” operation, with a performance loss compared to full search that is less than 0.01
dB. The average and maximum number of distance computations are listed in table 6.4
for iid Gaussian, and in table 6.5 for Gauss-Markpw=(0.9). The number of dis-
tance computations of a full search is of course equal to the number of codewords in
the quantizer. We see that a significant reduction of the number of distance computa-

Table 6.5. Average and maximum (within parenthesis) number of dis-
tance computations for the lattice-attracted quantizers. The database con-
sists of correlatedd = 0.9) Gaussian vectors.

Number of Dimension of VQ
codewords d=2 d=3 d=4 d=5
8 4.3 (6) 3.8 (5) 3.8 (5) 3.9 (5
16 6.5 (9) 6.9 (11) 7.2 (11) 7.1(11)
32 7.9 (11) 9.8 (16) 12.4 (22) 12.7 (24)
64 9.1 (12) 13.4 (24) 15.8 (30) 16.1 (30)
128 9.9 (13) 15.7 (25) 22.5 (44) 27.1 (58)
256 10.5 (14) 19.0 (30) 28.2 (52) 33.9 (70)
512 10.7 (15) 20.8 (32) 33.1 (64) 45.8 (100)
1024 10.8 (17) 23.2 (36) 39.8 (79) 56.0 (126)
2048 10.9 (19) 24.3 (40) 44.0 (84) 66.6 (148)
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tions is achieved for the eSND method, and also that the maximum is reasonable
(measured for one million test vectors).

Besides of the distance computations, some additional overhead for the eSND al-
gorithm is unavoidable. The initial hypothesis codevector is found by searching the
closest vector in the lattice associated with the lattice-attracted VQ. This procedure is
not very complex due to the regular structure of the lattice; for the lattices employed
here, the procedure involves a rescaling of the input vector, adding an offset vector anc
rounding all elements towards the nearest integer. The total overhead complexity for
finding the initial hypothesis is less than two extra distance computations for the lat-
tices used here. More about lattice nearest-neighbor search algorithms can be found i
[9]. There is also overhead for each distance computation. When a new hypothesis
codevector is found, the lattice index of the codevector must be found, by table lookup
as described in section 4.1. For each distance computation, an integer is added to th
lattice index, and the codevector corresponding to the sum is found by tablelfookup
The overhead depends on the efficiency of integer arithmetics of the given processor
but for the hardware used here (DEC Alpha), the overhead complexity is only a frac-
tion of the complexity of the distance computations.

It is interesting to compare the eSND method with other fast nearest-neighbor
search methods (see section 5.3). In comparison with other neighbor descent method:
eSND has a slight advantage, because of the good initial hypothesis given by the lattice
search, but the overall performance should be similar due to the similar approaches
Among other methods, anchor point algorithms are well-known. We have imple-
mented an anchor-point algorithm, IFAP-AESA [12]. IFAP-AESA substantially re-
duces the number of L2-norm distance computations, at the cost of a number of L1-
norm distance computations. A procedure similar to the stapdatiel distancetech-
nique [44, 48] is employed for the L1-norm computations to further reduce the com-
plexity. We have also implemented the projection method [44], briefly described in
section 5.3. The rectangular partition is optimized for "almost lossless” operation, with
at most 0.01 dB performance loss compared to full search.

While the complexity of full search and eSND is essentially proportional to the
number of L2-norm distance computations, this is not true for IFAP-AESA and the
projection method. Therefore, we report the complexity in the average number of
floating point multiplications, additions, comparisons and integer operations (given as
a proportionality constant) per input vector. The additional overhead for eSND is de-
scribed above, and for IFAP-AESA the overhead consists of frequent absolute value
computations and table look-ups. The overhead complexity for the projection method

10 a Voronoi code is used, the table lookups are unnecessary; the indices of the codewords are giver
by the sorting of the codebook. But VVoronoi codes may lead to performance loss.
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Table 6.6. Average number of multiplications, additions, comparisons
and integer operations for a full search, for an anchor point algorithm,
IFAP-AESA, the projection method and for the eSND algorithm. The
database consists of uncorrelated Gaussian vectors.

Dimension d,| Multiplications, Additions, Comparisons (Integer operations)
VQ size N Full search IFAP-AESA Projection eSND
d=2, 128, 192, 63 | 11,a=168, 117 3,4,15 20,a=30, 20
N=64 (O N ) (L1a) (O N (La)
d=3, 384, 640, 127 | 23,a=556, 386 6, 11, 26 59,a=98, 39
N=128 (O N (Lla) (ON) (La)
d=5, 5120, 9216, 102370,a=8286, 5983 26, 47, 60 377,a=678, 150
N=1024 (O N [d) (Lla) (O N ) (L1a)

is considerably higher than for the other methods, with a large number of integer op-
erations. Actually, the complexity of the projection method is dominated by the integer
operations for the cases tested here.

The nearest-neighbor algorithms are compared in table 6.6. The number of integer
operations for the projection method and for full search is proportional to the VQ size
N times the dimension, while the number of integer operations for eSND and IFAP-
AESA is proportional to the number of distance computations (which is the sum of L1-
norm and L2-norm distance computations for IFAP-AESA). This means that the num-
ber of integer operations for IFAP-AESA and eSND grows much slower than for full
search and the projection method.

We see that IFAP-AESA radically reduces the number of multiplications, but that
the number of additions and comparisons remains high. IFAP-AESA can only compete
with the other algorithms for hardware where the multiplication cost is dominating, but
in terms of FLOPS (floating-point operations per second), IFAP-AESA is inferior. On
the other hand, the projection algorithm outperforms the other algorithms in terms of
FLOPS. However, as discussed above, the overhead complexity for the projection
method is considerably higher, and which of the two methods that is the fastest in
practice is dependent on the efficiency of the hardware.

Storage requirement$o use the eSND fast search algorithm, we must precompute
and store an adjacency table, an exception table, and tables to aid translation from
codebook index to lattice index and vice versa. In table 6.7, the required storage of the
tables and the codebook is given for a few VQ examples. As seen in the table, the stor-
age requirements are dominated by the codebook and the translation tables. The larger
extra storage of the 5-dimensional VQ depends on that 2 instead of 1 byte is required to
encode the 1024 codewords. Since we only consider unconstrained VQs, the code-
book size can not be reduced, unless the precision is somehow reduced. It is possible
to reduce the storage requirements for the translation tables, at the cost of extra over-
head time for the eSND search.
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Table 6.7.Relative and absolute storage requirements (in bytes) for ex-
amples of iid Gaussian quantization. The codebooks are stored as 4-byte
floating point numbers, and the tables consist of one- or two-byte integer
values. The total storage is given in percentage of codebook only storage.

Storage requirements d=2, N=64 | d=3, N=128| d=5, N=1024
Codebook 64x 2% 4 128x 3x 4 1024x 5x ¢
=512 = 1536 = 20480
Adjacency table 6 14 62x 2=124
Exception table 0 3 15x 2=30
Translation tables 145 371 4149% 2= 8298
Total storage 129% 125% 141%

The anchor point algorithm requires storage of a floating point table with size
(d+1)/d times the size of the codebook. For the 2-, 3- and 5-dimensional cases
above, the total storage, in percent of codebook only storage, are 250%, 233% anc
220%, respectively.

For the projection method, a rectangular partition of the space, and a set of candi-
date codewords for each rectangular cell, are precomputed and stored. The total stor
age, in percent of codebook only storage, are 350%, 350% and 400% for the case:
above.

7. SUIMMARY

In this report, lattice-based quantization was studied, both from a theoretical and a
practical viewpoint. Lattice-based quantization is a generalization of conventional lattice
guantization, by allowing modifications of the regular lattice structure while still main-
taining a local lattice-similarity.

For conventional lattice quantization, high rate theory was developed. The high rate
theory leads to lattice VQ design rules, and to new insights in the performance of lattice
guantization. An important conclusion was that for high rates, lattice quantization is
severely inferior to optimal vector quantization. Practical solutions to problems in lat-
tice quantization, such as truncation and scaling, were discussed, and the performanc
of lattice quantization of Gaussian variables was presented.

To overcome the inherent shortcomings of lattice quantization, we proposed a
novel lattice-based technique for VQ design, with the feature that the resulting VQs are
locally lattice-similar, but globally optimized to the input pdf. The design algorithm
was complemented with a new lattice-based fast search algorithm. Experiments on
Gaussian data with the proposed fast search algorithm illustrated that the performance
is excellent, with only moderate extra storage requirements.
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APPENDIXA

In this appendix, theorem | (3.13) and theorem Il (3.14) in section 3.2 are proved. In
section A.1, some definitions and preliminaries are presented. Section A.2 discusses
the overload distortion (theorem [), and section A.3 treats the granular distortion
(theorem 11). In section A.4, the total distortion, which is the sum of overload and
granular distortion, is treated, and methods to find the global minimum is discussed.

A.1 Preliminaries

For the proofs in the appendix, we use the definitiond$phere (3.9), the truncation
radiusa; (3.10), and the granular regign (3.11), all defined in section 3.2. We also
use the VQ definitions in chapter 2, and the lattice definitions in section 3.1, together
with some new definitions in this section. As discussed in section 3.2, we assume zero
mean, iid Gaussian variables, with unit variance samples.

A granular Voronoi regionQ_(c) is defined as the lattice Voronoi regid,
translated to the codevectgr

Q.(c)=Q+c=Q(9ng, (A1)

where Q(c) is the Voronoi region around codevectosee 2.7),Q is the lattice
Voronoi region (see 3.4), argl is the granular region (see 3.11).

For a given input vectax, we definep(a) as the closest point toin a sphere
with radiusa,

| Ix|<a
p(a) = a;r%rgﬂ x-y|= %Eﬁi Ix|>a (A.2)

With this definition, the distance betwerrandp(a) is given by
[x - p(a)]| = max{ 0] x| - a). (A3)

We define thgranular radiusa, as the effective radius of the granular region

:D vol(g) Ef/d (A4)
v " Hol(s@)H

Wheresj(go) is a sphere with radiug, see (3.9). The volume of the sph@ﬁ(ag),
called thegranular sphereis with this definition equal to the volume of the granular
region, i.e.vol(%(%)) = vol(g). The granular radiug; and the truncation radites
are closely related, and we show in (A.24) that they are equal for infinite rates.

We define dorder region3 in the form of a spherical shell (see figure A.1),

3 ={X OR" : &y <X < e (A.5)
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Figure A.1. Left: lllustration of the border region (the gray area).
Right: Combinations of the granular and the border region.

which overlaps both the granular and the overload region. The border shell is defined
as the thinnest shell having only granular region on the inside and only overload region
on the outside, that is,,, is the radius of the inscribed sphere, ang, is the radius

of the circumscribed sphere of the granular region,

A = inf (.6
e = U (A7)

The border region is a mix of granular and overload regions. Figure A.1 illustrates the
border region for a two-dimensional lattice VQ.

With the definitions of overload and granular regions in (3.11), and the border re-
gion in (A.5), we have

G 0% ={x DR 1|} >aned 06 O{xOR*:[x|>an} =g 03 (A8)

G n §={x OR® :||x||samin} 06 D{x ORY: ||| < amax} =g038. (A9)

From (A.9), we conclude that the radius of the granular splagreis bounded be-
tweena,,;, and a,,,,, since

vol(aj(amm))svol(g):vol(g( g))svol( A A)) O @ns A< Aa(A10)

We use the covering radius,,, the packing radius,,,, and the effective radius
rp, of a granular Voronoi regiof, (c), defined as

fmax = SUp ”X_C” = SUH)X” (A-ll)
xQ, (c) xQ

r.= inf |[x—=¢|=inf|Xx A.12

= 0 x=l=inf 1 (A12)

_Owl) 3°_0 vofg) d*_Dvols(a)
*"Ho(g@)H ~Hnmol(§@)H PN mol(s(D)

=a, 27" (A.13)

e
U
5
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Figure A.2. A Voronoi region.

The three radiify, Iy, andr,,,. are illustrated in figure A.2. The granular Voronoi
regions are all bounded and congruent, and thus the mtjps, and r,,;,/ro are
bounded, nonzero and independent of the scaling of the region, so that

I r _
rmaxz%mg :rLaX@g 2R (A.14)
Q Q
r=Tmin 3 = Tmin 3z R (A.15)
min rQ Q I’Q @g . .

ann anda,,,, can be bounded as (using the definitior\oin (3.1))

o = 0fb =, nf =t = it el
ciOA\c
2_int inf(l||-Ix)= inf [q] ~supl|2 ar = o (A.16)
nax =SUPX| = sup [x|= sup suplx|= sup gep-c<
X xOU(Q+c) ¢ x(Q+q) ¢lr XQ
¢l
< sup su(i|x|| +|c ||) = sum||+ SUB|<ar + .. (A.17)
¢ e xQ ¢l xXQ

where the last inequality of (A.16) and (A.17) follows from the truncation of the lattice
by a hypersphere with radius;, as in (3.10). Now, using (A.10), (A.16) and
(A.17), we can bound the truncation radajsas

&; ~ Imax S Amax ™ MmaxS @r S A it N paS & I me (A.18)
The left- and right-most terms of (A.18) can both be writtem + 1., [O(1), and
using (A.14), we get
ar = 8, + g, [O(1) = g, [{1+ 27 0Y9). (A.19)
Using (A.19) to eliminatea, from (A.13)—(A.15), we get the useful equalities

11 with gro(1) (big-oh), we will meang[C, whereC is bounded in a neighborhood gt 0. Rules
for computation using big-oh can be found in most mathematical handbooks, e.g. [49].
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Max = a7 277 [O(1) (A.20)

o, =ar 2 7 0(1) (A.21)

[ = ar 27 0(1), (A.22)
and by inserting (A.20) into (A.18), we get

B = ar {1+ 277 (1)) (A.23)

a, =a{1+2RO(1) (A.24)

B = ar {1+ 277 10(1), (A.25)

which illustrates thaty, a;, am,, anday,, are all equal for infinite rates.

A.2 Theorem |: Overload distortion

In theorem 1 in section 3.2, we stated that the overload distortion is given by
D; = f,(d) B ™ 2 1+, ), (A.26)

where f_(d) = (2‘“2‘2 [T (d/ 2))_1, ande; tends to zero for asymptotically high rates
R. In this section, we present a proof of this theorem. In the proof, we bound the
overload distortion by use of two spheres, one outside and one inside the border re:
gion. Then we complete the proof by showing that the width of the border region tends
to zero when the rate approaches infinity.

We write the overload distortion

Dc?:IHX_C*
G

wherec is the codevector in the codebagkthat is closest to the input vector and

f.(x) is the input pdf. The integrand is nonnegative, so we can lower- and upper-
bound the distortion by integrating over a smaller and larger region, respectively.
Using (A.8), we get

I

Ix|>a,

“ (x)dx, (A.27)

x-¢ ['f(axs Dy < [[x-¢ | f(xax. (A.28)

Ix>a

We now study the upper and lower bound in (A.28) separately. First, noting that all
codevectors lie inside a sphere with radaysg,, we can lower-bound the integrand

Xx—c |=min|x-c[|= min | x-vy|=]|x- . A.29

|x=¢ |=minjx-c|> min |x-y|=|x-pam)] (29

Secondly, the integrand can be upper-bounded by use of the triangle inequality,

|x=c" | = | x=p(awin) | +] p(amin) = € |- (A.30)
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With the definition ofa,,,, in (A.6), p(amin) belongs to a granular Voronoi region.
Therefore, we can bound the distance betvm(en,m) andc” by the covering radius
of the Voronoi regionf,, .,

(A.31)

rm ax

| p(amin) -
(see (A.11) and figure A.2). Thus, we have

H X C* H = ” X” = 8min * max = H X= p(amin_ rma)) H if ” X” > & min (A-32)

where we have also used (A.3). The distortion upper bound is

Dy < []x = Plamin = Tmad) | fx(x [ = Pl@min= Trma) | e (x) . (A.33)

HXH>am|n HXH>am|n rmax

Combining (A.28), (A.29) and (A.33), we get

f1x=Pana)” 09 < D [x=(aun — ) I KX)ok, (A3)

HXH>amax HXH>amin ~max
which bounds the overload distortion by use of two spheres with aggji and
Amin — Tmax- From (A.20), (A.23) and (A.25), we see that both radii can be written on
the same formay Eﬂ1+ 2R ED(])) We define

a=a 1+ 277, (A.35)
and rewrite the overload distortion as
T[”X p(&)| % (A.36)
x>

(Ix1 - &)° £, (x) o (A.37)

x>
(Ix 7 +82 -28x ) £, (x) k. (A38)

x>a

Now thed-dimensional integral has become one-dimensional; the integrand is a func-
tion of [x| onlyl2 The stochastic variablé=|x|* has ay?-distribution withd de-
grees of freedomf, () = x*(d.£), and we get

L(E+a -28&)x%(d &) & (A.39)
o0 d/2-1 &2
J;(§+a —2avg)gm—c(‘z/2)df. (A.40)

In the sequel, we need the incomplete Gamma function,

12 since the Gaussian pdf (x) is spherically symmetrical, it is a function pd| only.
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M(b,2) = } et d. (A.41)

Using I (b, 2), we write the overload distortion as

[] 20 O
1 (d+2 & 22 Md+1 &2

D. = (20 - 24/2MA0 “ZDrEU,é—ZE[.(AAZ)
rd2) 5 02 ' 28 H2 2H® "H 2F
We approximate the incomplete Gamma function as an asymptotic series [50]:
r(bg=2"efi+(b-) Z+(bY b2 7+ 2 @]  (A43)
With this approximation, the overload distortion can, after some work, be written

Ad-4

a ‘e ~
D; = zdlzzmd,zﬁﬁl &% (1) (A44)

Insertion of (A.35) yields, again omitting the details,

D, = iy L RO 2] (A4S

which is equal to (A.26), and the proof is completed.
In section A.4, we will verify that the error term is equal to zero for asymptotically
high rates if the truncation radius is selected for minimum distortion.

A.3 Theorem II: Granular distortion
In theorem lI, the granular distortion is given by
D, = f,(d) 2 2R 2 (f1+¢, ) (A.46)

where f,(d) = GLUOTIT (d/2 + 17?9 and g, tends to zero for asymptotically high
ratesR. The proof of the theorem, which is given in this section, is based on writing
the pdf inside each Voronoi region as a uniform pdf plus an error term. The granular
distortion for a uniform pdf is easily computed, and the proof is completed by showing
that the error term is zero for infinite rates.

We write the granular distortion for tiNepoint lattice VQ as a sum of the Voronoi
region distortions

D, = [l (9 (A1)
=Z Ix Cy| F (X)dx. (A.48)

For bounded and differentiable densities, we can expand the pdf in a Taylor series as

f.(x) = f(c) +x - ¢ CO(), (A.49)
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and (A.48) can be rewritten as

%@ J'||X cl (fe(e) +[x- Ckll@(l))dXE (A.50)

Qck

0 ( U w~0O
X = ¢ dxJ+ X= G|~ dxO1) (A.51)
e Qjﬂk JF g k;@g) [lx=aff E

]
Mz

k

Now, since the granular Voronoi regiof (ck) are congruent, the integrals in

g
(A.51) are independent &f and we get
N N
D, = fIXFax Ty f(c)+ Y [Ixaxraiy). (A52)
Q k=1 k=1"Q

The first integral in (A.52) is recognized to be a scaled version of the lattice quantiza-
tion constaniG (3.6). The second integral can be simplified by using (A.11), and
writing |X] = rax [O(1). We get

D, =dol(Q 1+”‘J'EGDZ £(c) + e ol(g ) CO(D) (A.53)
= d Wol(Q)**?* usaz t(c )+ a2 3ROy, (A.54)

where (A.20) is used for the last equality.

The sum in (A.54) is considered next. For this reason, we study the granular prob-
ability Pr(x Dg). Using the same approach as in (A.47)—(A.54), we can write the
granular probability

Pr(x Og ) = [ f.(x)dx (A.55)

G

f.(c ) +ad™ 2 Ro(1). (A.56)

Nz

=vol(Q)

)
1

1

We can also write the granular probability using the overload probability, as

Prix0g)=1- P(x 0 ). (A.57)
Using (A.8), we can bound the overload probability as
Pr{x 06 ) < P(IX| > am). (A.58)
(A.58) can be written using the?-distribution as in (A.39). We get
— r(d2,&,,/2
Pr(x 0G ) < (2. &/ ) (A.59)
r(d/2)

which can be simplified using the first term in (A.43),
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Pr{x 0g ) = afy? (&2 (1) = 472062 DQ) (A.60)
(see (A.23)). Combining (A.56), (A.57) and (A.60), we get

vol(Q) Dkzl f(c)=1+ad" @ RO()+a2E¥20q).  (A61)

Using the number of codevectors in the quantizés 279, the volume of the
Voronoi region,vol(Q), can be written

_vollg)_vol[si(a)) _n* e
N N r(d2+)

vol(Q) : (A.62)

where we have used the fact that the volume of the granular re/gi()@) is equal to

the volume of al-sphere [50] with radius,, see (A.10). Inserting (A.24), the vol-
ume of the lattice Voronoi region is expressed as a function of the truncation radius
ar,

n? af R §
ol(Q) = ——T—— 1+ 27" [0(1)). A.63
vol(@) ==y | () (A63)
Inserting (A.61) and (A.63) into (A.54), we get
GhdOr

ey BT EF“ a"rp Rro() + at 262 DQJ)],(A-64)

which equals (A.46). If the error terms in (A.64) are excluded, the equation describes
the distortion for quantization of a spherical uniform pdf (see [14], (1.10)).

In section A.4, we show that for an optimal choiceagf the error terms tend to
zero for a rate approaching infinity.

A.4 Total distortion

The key issue in the high rate theory is to find the optimal value of the truncation radius
a;. We study three possible choicesagt

| a; does not grow towards infinity with the rate.

Il a; grows towards infinity with the rate, but slower than exponential in

11 a; grows towards infinity exponentially iR, or even faster, i.ea; 2 2'R for
someA.

We show in the following that | and IIl lead to higher distortion than Il. For this rea-
son, we use an arbitrary formula faf fulfilling Il, and compute the resulting distor-
tion. Then we lower-bound the distortion in | and Il by simple calculations. The proof
is completed by showing that the distortion for case Il is lower than the lower bounds
of distortion for case | and Ill.
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First we study the distortion for case Il above. For this case, the error terms in
(A.26), (A.45) and (A.46), (A.64) are zero for asymptotically high rates. The total
distortion is the sum of (A.26) and (A.46),

D= (f B 2R 2)(1+ ). (A.65)

We select the truncation radius arbitrarilyags= R, which fulfills II. Insertion ofa;
in (A.65) yields

D, = (fg RR2 R+t (R0 ® 2)(1+ £) (A.66)
=f, (RN [@1+ R-4pe R/2 EIZZRDCQ]))( 1+ £) (A.67)
= RN [Ql+ R4 g R/2+ Ran 2DCQJ))(1+ £). (A.68)

The error terms are zero for infinite rates. We write

D, = R 2R 1()), (A.69)
and observe that the distortion tends to zero when the rate approaches infinity. Since
we have used an arbitrary truncation radius fulfilling 1, the optimal truncation radius
gives a distortion lower than or equal to (A.69).
Now we study case I. In (A.34) a lower bound for the overload distortion is given.
Using (A.17) we get

D 2D; 2 [|x=p(ana) I* £ (x)cx > [1% = p(@may I £ (x) k. (A.70)
e X1 +

We observe that, for finita; andr,,,, the right-hand integral in (A.70) does not tend
to zero as the rate approaches infinity. Siagés finite in case |, and,,, is finite for
finite a; (A.20), we conclude thaD, does not tend to zero as the rate approaches
infinity. But D, — O for R - «, and we have shown that the optimal high-rate dis-
tortion in case | is higher than the distortion in case Il,De> D, .

To lower-bound the distortion in case lll, we first define a stxape the form of
ad-sphere from which we cut out spherical holes around all codevectors

s =%(B)\ CLDJC ( S O ) + c), (A.71)

Figure A.3. The hollow shapes .
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where0 < a <1, and the radiug is an arbitrary constant, independenRofs is il-
lustrated in figure A.3. Since is less than 1, the definition af,, (A.12) ensures
that the holes, with radiug (@,
radius a; (and a,,,, see (A.23)) grows towards infinity with the rate, there exists a
constantR, such that for all rateR> Ry, a,;, > 3, which makess a subset of the

granular regiorg . We have

are nonoverlapping. Further, since the truncation

Dy 2D, = fx=¢" [ () dx>J’Hx ¢ t(9dx forR>R. (AT72)

For vectorsx in §, the distance to the closest codewardis lower-bounded by

a [i.,,- The pdf f, (x) is lower-bounded by the pdf at an arbitrary point at the surface
of 5, i.e. f(x)< fx(xﬁ) where HXBH:,B. Thus, for R> R, we have that (using
(A.18))

D = I(a Do) (% Jox (A.73)
= (a oin)” Oy X5 DVOI(5) (A.74)

= 1, (x,) vol(s) o Dy 10)” @2 272 (A.75)

> , (%) BoI(S) o Gy 0)” Moy =) 272° (A.76)
>C2 272, (A.77)

whereC is a positive constant, sineg,,/a; tends to zero (see (A.20)), and the vol-
ume of §, the pdf fx(xﬁ) at the surface, anl,, /ro are all positive constants. Now,
insertinga; as in case lll yields

D, 2C2*"R22R> N, forR - o, (A.78)

and we have shown that radius selection as in case Il leads to lower distortion than
case lll.

We will now study the total distortiol, and show that, for a selection &f with
the restrictions as in case Il above, the distortion is convex and has a distinct global
minimum. As discussed above, the error term in (A.65) is zero for infinite rate. We
define D asD excluding the error term,

D=f @22 R+ 2 (A.79)

To show thatD is convex with respect ta;, we compute the second derivativedf
with respect toay:
52 -2R —a%/z _ —2 & - =4

=200, @R+ 1+(7- 29 02 +( & - 9d+ 2004, (A.80)
2

We see that the expression inside brackets is dominated by the first termaywvhen
tends to infinity, and we write
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21~ 2
ZTE =208, 2R+ [ &2 [@1+ a2 DC(])). (A.81)
2

Clearly, this expression is positive for large enough values ofl hus, D is a con-

vex function ofa; in the region defined in case Il, and the first derivative can only be
zero at the global minimum d. D is the sum ofD and error terms, bud domi-
nates the distortion for all; satisfying case II, so the global minimum Dfis the
global minimum oD as well.
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