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Abstract—The performance of a digital communication system can generally be

improved by increasing the number of variables being jointly coded. In this sense, it

is desirable to have, e.g., higher-dimensional quantizers, longer channel codes, and

more users in a multiple-access system. However, increasing the number of variables

results in higher complexity of encoding and decoding, which are two limiting

factors in the choice of coding methods. In this dissertation, which comprises seven

published or submitted articles, algorithms are discussed for three related applica-

tions in telecommunications: vector quantizer encoding, multiuser detection, and

soft-decision channel decoding. A unified approach is obtained through a common

formulation in terms of discrete optimization, or, taking on a geometric viewpoint,

searching in multidimensional point sets. A convenient instrument to characterize the

structure of these sets is the Voronoi diagram.

The first considered application is vector quantization, with some focus on

lattices. Lattices are regular structures of infinitely many points that after truncation

can be employed as quantizers. An algorithm is developed to optimize the quantiza-

tion performance of lattices. Employing the algorithm, two lattices are found that

improve on previous results. It is also discovered that the so-called D+  tessellation,

which is a union of two lattices, is superior to any known single lattice in dimensions

7 and 9. Truncated lattices are also analyzed, revealing that their distortion in relation

to that of optimal quantization increases with the number of points. An algorithm for

quantizer design is introduced that maintains close to minimal distortion by suitably

stretching the truncated lattice. The work on vector quantization also includes theory

and algorithms for index assignment, which is a way to incorporate error-robustness

into the quantizer design through a careful codevector ordering. Another contribution

is a comparison of the complexity of some encoding methods.

Multiuser detection in CDMA systems is formulated as the geometric problem of

searching a point set having a certain structure. Properties of Voronoi diagrams of

such structures are given, thus making it possible to apply a known Voronoi-based

search algorithm for detection.

Soft-decision decoding of block channel codes is the third application being

studied, again by means of the Voronoi diagram. A fast algorithm is presented to

investigate the Voronoi diagram of binary linear block codes. Several well-known

codes are characterized. Asymptotic theory shows that for most classes of long

codes, the complexity of the Voronoi diagram as a function of the bite rate displays a

distinct threshold at the rate of one half. Voronoi-based soft decision decoding is

essentially practicable only for rates above this value.

Index Terms—Source coding, channel coding, Voronoi diagram, nearest neighbor

search algorithm, complexity, vector quantization, lattice, index assignment, linear

block code, soft-decision decoding, Gaussian channel, neighbor descent, asymptotic

theory, computational geometry.



 



Preface

B
efore diving into the details of telecommunications, some general comments on this
work may be appropriate. For the preface to be accessible by a wide audience, the
presentation follows a different style here than in the rest of the dissertation.

Depending on your background, you may prefer one of the styles to the other. If you feel
offended by a lack of scientific formalism and precision, please stop reading now and skip to
page 1.

To begin with, let us make sure that everybody understands the title. When you want to
transmit a message somewhere, you are not always so lucky that the available medium, or
channel, is suited for the type of message. For example, a telephone wire cannot accommo-
date sound, only voltage. Or a movie is not visible very far through the atmosphere, but
electromagnetic radiation (of suitable wavelength) can propagate almost forever. Hence, it is
a good idea to include some coding  in a telecommunication system. Coding is the translation
of a signal from one form to another, such as the representation of your voice as a time-
varying voltage, or the image of Ingrid Bergman as radio waves.

Voronoi-based refers to a certain geometric idea. To visualize it, image a large garden
between your house and your neighbor’s. Both you and your neighbor love strolling in the
garden and picking the wonderful flowers. However, the neighbor sometimes intrudes on
your half of the garden, picking flowers that grow noticeably closer to your house than to his,
so one day you build a fence, exactly halfway between the two houses. From that day you
never see your neighbor again. Encouraged by the success, you build similar fences to sepa-
rate you from your neighbors in other directions from your house, too. Yes, I know, this is a

tale of human tragedy, but I need the scenario to explain some geometry. When I am done, you may

tear the fences down and invite all your neighbors for coffee.  Your barrier now encloses all the
flowers that grow closer to your house than to anyone else’s. This is the Voronoi region of
your house. If all of the inhabitants in the neighborhood would build fences halfway between
each other, the Voronoi diagram of the houses would be made visible. It certainly takes some
time to build all these fences, but once it has been done, it greatly simplifies the distribution
of any future flower. If you skim through this book, you will discover several Voronoi dia-
grams. There is even a Voronoi region on the front cover.

By now, I hope that any nonspecialist reading this has at least a vague idea of what
“Voronoi-based” and “coding” mean. What remains for me is to explain what the two
concepts have to do with each other. This is what the rest of the book is about. Basically,
some problems in coding theory are analyzed using the Voronoi diagram as a mathematical
tool. My apologies if you were led to believe that this is a book on gardening. You will be awfully dis-

appointed.

By the way, one more thing about Voronoi diagrams, and about geometry in general.
What I described above is a two-dimensional example, Voronoi diagrams in the plane, but
the concept can be directly generalized to more dimensions. For instance, the same story as
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above could be told of a group of birds in the jungle, living not only in different trees but
also on different heights. If they decide that every mosquito belongs to the bird in the nearest
nest, and build cages around their territories, they create a three-dimensional Voronoi dia-
gram. I suspect that birds do not normally build cages around themselves, but again, this preface was

never expected to satisfy notorious scientists. Four dimensions is where human common sense
normally breaks down. Whether this limit is physical or perceptual is an interesting question,
unfortunately beyond the narrow scope of this boringly technical dissertation. The important
point is that higher-dimensional structures can still be described mathematically, and we
should not let our inability to visualize them prevent their employment in coding.

T
he efforts that have led to this dissertation would have been absolutely impossible
without help. Qualified help, in numerous matters. In this context, I feel incapable of
mentioning anyone before my family. Magdalena, if this book had had a dedication,

it would have been to you, “who provided me with two essential ingredients—Time and
Love,” but in the first place, dissertations do not normally carry printed dedications, and in
the second place, Toby Berger used this formulation in 1971. I believe I had better say what
needs to be said in person instead. Alfred, you have given me a taste of what happiness might
really be about. I admire your ability to find it, and also to give it. Your crystal-clear sense of
logic and your unprejudiced way of observing the world invigorate our conversations greatly.
I have a lot to learn from you. Little Robert, I do not know you very well yet, but already you
mean so much to me. When my burden feels heavy, I think of you and perceive a vision of
brighter days to come. You represent the future.

My colleagues at the Department of Information Theory deserve a vector of thanks. The
first acknowledgement goes to Per Hedelin, my supervisor, who introduced me to the field of
information theory and showed me the fascination (indeed, the beauty) of vector quantiza-
tion. Regardless of what I might work with in the future, I will never forget our venture into
this realm. Per has the ability to find unexpected solutions, of research problems as well as of
practical ones. Once when I intended to write an article, I just did not know how to begin.
The research was done, I was satisfied with my results, but I felt unable to formulate a
suitable line of approach. I struggled with it for days, producing exactly as much text as I
rejected. Per though about the problem for a moment, then he told me to write the last
chapter first. I did, and then everything else fell neatly into place. His piece of advice is one
that I wish to share with all of you.

I have had the pleasure to cooperate with several inspiring colleagues. In addition to Per,
I worked with Thomas Eriksson, Petter Knagenhjelm, and Tony Ottosson, and I learned
different things from each of them. Thomas is gifted with an incredibly persistent optimism.
Thank you for your stubborn belief that even our most imaginative ideas would be fruitful!
Sometimes you were actually right, which resulted in articles 3 and 4. Petter’s ability to
present a complicated topic in a comparatively comprehensible way has been an inspiration
for me, ever since I was an undergraduate student. Also, Petter is one of the most generous
persons I know, in the widest meaning of the word. Tony has a higher ratio of things-that-he-
does to things-that-he-says-should-be-done than most people. By the way, this merit is not
due to any restraint on the amount of talking.

Mikael Skoglund and Stefan Dodunekov have been very helpful as discussion partners
on various subjects. I have always felt welcome to ask them when in need of, say, a certain
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formula or reference. Their patience with my technical and mathematical shortcomings and
their endurance with my most elementary questions is gratefully acknowledged.

Ingvar Jönsson, my friend, you always supported me. I appreciate your hearty encour-
agement and I preserve many happy memories from our years of teaching Digital Radio
Communications together. Ingvar has taken a keen interest in my work on block codes, and I
especially want to mention the so-called “H rule” in article 7, which was inspired by a
suggestion of Ingvar.

In the completion of this dissertation, I have paid less attention to other matters than I
should. Thanks to everyone who reduced my nondissertation duties, both at work and at
home! My fellow Ph.D. students have been very kind to me, and so have my family, and
Magdalena’s. Without your help, my task would have been hopeless.

I am indebted to Per, Tony, Petter, Mikael, and Thomas for careful and competent proof-
reading. The practical assistance of Lars Kollberg and Eva Axelsson has also been much
appreciated. And, not to forget, I have often sent a grateful thought to all those fabulous
cookie makers, who provided me with the physical energy source essential for extensive
periods of continuous work.

N
ow fasten your seat belts and join me for an exciting tour in the city of Tele-
communications!
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“ There is a curious and provocative duality

between the properties of a source with a

distortion measure and those of a channel.”
Claude Elwood Shannon, 1959 [81]

Introduction

1. THE TELECOMMUNICATION SYSTEM

he purpose of this introduction is to illuminate the results of the seven included

articles in a broad perspective, to outline their connections with each other and

with related work. A suitable point of departure is the digital communication system

in figure 1. In this section, the system is described from the user’s point of view;

subsequent sections will go into more technical and mathematical detail in order to

specify the problems that are considered in the articles.

The diagram in this figure has become something of a standard model and it is

reproduced in numerous textbooks in information theory and digital communications.

Strangely, no one seems to know who first pictured it. An early appearance is in [72,

p. 2]. The model is quite general and can represent a wide range of digital tele-

communication applications, including both transmission and storage. It does not,
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however, cover every imaginable system.

Suppose that we need to communicate a message somewhere, such as speech, an

image, a video sequence, medical or meteorological data, or music. These are exam-

ples of analog messages; among digital messages, we can mention text and computer

programs. The origin of the message is called the source. The (physical) channel is

any medium in which a signal can be transmitted or stored, such as a radio frequency

band, an electric wire, an optic fiber, a magnetic disk or tape, or a CD. Most channels

have in common that they are analog by nature, and that they are more or less noisy,

in the sense that they distort the signal. The user, at the end of the communication

chain, is the one for which the message is intended. It may be you or me, or a

computer.

The source, the channel, and the user are to be regarded as fixed for the

communication theorist, whose object is to design a coding scheme matched to these

three blocks. This is the purpose of the other components in figure 1. The design

aims to present the user with as accurate a message as possible, while occupying a

minimum of channel resources. The two demands conflict with each other, which

calls for a compromise.

The object of the source encoder is to represent the source as a sequence of bits

(or symbols), in such a way that the source decoder, when fed with the same

sequence, is able to reproduce the message faithfully. If the source is analog, the

source encoder includes sampling, to produce a discrete-time signal, and quantiza-

tion, to make the signal discrete in amplitude as well. This dissertation has a lot to

say on the subject of quantization, beginning in section 4 and then continuing in

articles 1–4. In source coding, the compromise mentioned in the previous paragraph

takes the shape of a tradeoff between accuracy and the number of bits in the

representation.

The communication system is traditionally designed under the assumption that

the source decoder receives a bit sequence that is identical to the output of the source

encoder. To increase the probability that this will indeed be the case, despite the

hazard that a noisy channel poses, the channel encoder adds some redundant bits,

which the channel decoder utilizes to detect if some bits have been corrupted, and

possibly also to correct the errors.

As mentioned above, physical channels have normally an analog nature: they

carry waveforms, such as a time-varying voltage or a configuration of matter. To

represent bits in such a medium, a digital modulator is employed, which maps each

bit or group of bits into a certain waveform. The demodulator performs the reverse

mapping while neutralizing as much as possible of the distortion induced by the
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channel, e.g., it combats noise with filtering, dispersion with equalization, and

multiple access interference with interference cancellation.

If the source encoder, channel encoder, and the modulator are combined into one

general “transmitter,” and the corresponding operation is done on the receiver side,

we obtain Shannon’s classical model, from which essentially all communication

models today can trace their origin. Shannon’s paper in 1948 [80] is commonly

recognized as the single most important paper that has ever been published in the

field of information theory. He defined the entropy of a digital source and the capa-

city of a channel; furthermore, he showed that for error-free transmission, the source

entropy is upperbounded by the channel capacity [13], [23]. Since then, numerous

divisions of the transmitter and receiver into smaller units have been presented,

depending on practical as well as pedagogic preferences. The structure that is

illustrated in figure 1 is sufficient for the purpose of this introduction.

One consequence of Shannon’s proof of his famous theorem mentioned above is

that the upper bound is attainable through a separate design of what is now known as

a source coder and a channel coder. However, Shannon himself did not use the terms

source and channel coding,1 nor did he suggest the separation to be built into practi-

cal communication systems. The drawback of source-channel separation is, from an

engineer’s point of view, that it is optimal in an asymptotic sense, as the complexity

and the delay of the encoder and decoder are allowed to increase towards infinity

[89], which is clearly not a practical assumption. Nevertheless, most efforts in com-

munication theory since the sixties have involved separation. Only recently has the

notion of what is nowadays called combined (or joint) source-channel coding seen a

renaissance. A recent reference discussing this topic is [57]; see also section 4.

To zoom in on the work that is contained in this dissertation, consider figure 1

again, and note especially where an analog signal is converted into a digital one. This

conversion occurs twice in a digital communication system, once in the transmitter

and once in the receiver. In the transmitter, the source encoder has to find out which

digital representation, out of a finite number of available ones, that is most accurate

for a given analog source signal. The receiver, which observes an analog signal on

the channel, has knowledge of the finite set of signals that can possibly have been

transmitted; it should decide which one of these that underlies the observation, taking

channel distortion into consideration. This decision process can be carried out in

either the demodulator or the channel decoder, depending on the system design.

The two digital-to-analog conversion processes can be described as instances of

the same search problem: Find the signal in a prespecified set that is closest, in some

well-defined sense, to a given signal. To facilitate a unified approach to the compo-

1 The common usage of the terms appears to emanate from Fano’s book in 1961 [27].
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nents of the communication system where analog-to-digital conversion occurs, we

first pause to define and study the search problem from a geometric point of view.

This leads into the important concepts of nearest neighbor search and Voronoi dia-

grams, which are the topics of the following two sections, 2 and 3. For the sake of a

unified approach, the basic theory is introduced from a “neutral” point of view, i.e.,

without any specific application in mind. Beginning in section 4, the discussion re-

turns to telecommunications, and especially to the source encoder, the demodulator,

and the channel decoder. These are the blocks in figure 1 where the search problem

arises. Each of the blocks has its own section (4–6), where the connection between

coding and geometry is established, and the positions in the system of the seven

constituent articles are clarified.

2. VORONOI DIAGRAMS

The Voronoi diagram plays a central role in this dissertation. In short, it represents a

classification of the points in Euclidean space according to which one of a number of

reference points that they are closest to. This section will initially define the Voronoi

diagram and related concepts of geometry such as the nearest neighbor search prob-

lem, and then proceed into a more algorithmically oriented discussion of how the

Voronoi diagram can be determined. Subsequent sections will discuss how it can

shed light on some coding problems.

Assume that a countable set   C  of d -dimensional vectors is given, and that

another d -dimensional vector x  is observed.2 The task of finding the vector in   C

whose Euclidean distance to x  is minimal is called nearest neighbor search, or the

closest point problem, or sometimes the post-office problem. We introduce the func-

tion n to denote the nearest neighbor, defined as

  
n x x c

c
C

C

( ) = −
∈

argmin 2 (1)

where ⋅ 2 denotes the squared Euclidean norm of a vector. This function associates

every d -dimensional vector with a vector in   C ; the set of all  d -dimensional vectors

being associated with the same vector is called the Voronoi region of that vector.

Formally, the Voronoi region of   c ∈ C  is     x n x c∈ ( ) ={ }Rd : C . The set of Voronoi

regions of all points in   C  cover the space completely, overlapping each other only at

the boundary points of the regions.3 This set of regions, and also a graphical illustra-

2 In order to maintain an interdisciplinary treatment in this section, we avoid naming the variables   C

and x .
3 Provided that n, in cases where (3) results in a tie, is allowed to be multiple-valued.
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Figure 2.  Features of a point set. The points themselves (dots), a Voronoi
region (shaded), and a part of the Voronoi diagram (lines).

tion thereof, is called a Voronoi diagram. See figure 2 for an example. Another

Voronoi region is the shaded region on the front cover.

Since so much literature has been devoted to theory and methods specific for two-

dimensional applications, it should already at this point be emphasized that no major

concepts or results in this dissertation are theoretically restricted to two dimensions.

However, most of the illustrations are, for nothing but graphical reasons, two-

dimensional. This can actually be quite misleading sometimes, especially when the

purpose of the figure is to illustrate a phenomenon whose significance increases with

the dimension. The reader is encouraged to generalize the ideas behind the illustra-

tions mentally, at least to three dimensions.

A Voronoi diagram is, as subsequent sections will show, a useful tool in several

problems of communication theory. However, its use is not at all limited to commu-

nications; it has been employed, and also reinvented, in a remarkably large number

of seemingly unrelated applications, ranging far outside the field of engineering. In

fact, the main textbook on the subject of Voronoi diagrams lists 19 sciences or dis-

ciplines where applications have been found [69, p. 2], but none of them covers the

coding problems that are considered in this dissertation.4

The importance of this geometric structure is apparent from the number of names

that have been used for it. Some terms that have been given for “Voronoi region,” or

something very similar, are: area of influence polygon, area potentially available,

Blum’s transform, Brillouin zone, capillary domain, decision region, Dirichlet

4 However, analog-to-digital conversion is briefly mentioned on pages 343 and 428 in the book.
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region, domain, domain of action, domain of influence, honeycomb, maximum

likelihood region, nearest neighbor region, plant polygon, plesiohedron, proximal

polygon, region, representation region, Thiessen polygon, tile, Wabenzelle, Wigner-

Seitz cell, Wirkungsbereich, and some variations thereof [69, pp. 7–8, 341–343, 369,

376–377], [26], [39, pp. 89, 169], [7], [20, p. 33], [79], [38], [83], [88, p. 48], [77]. It

appears impossible to determine who first introduced Voronoi diagrams, but we

know for sure that the concept is far older than any of the persons whose names have

been given to it. Similar diagrams were used in the 17th century, according to pre-

served documents [69, pp. 6–7], but nothing indicates that the idea should have been

a novelty at the time.

To determine the Voronoi diagram, or its geometric dual, which is the Delaunay

triangulation, is computationally costly in high dimensions. Several methods have

been suggested. In 1979, Brown discovered a mapping such that the Voronoi

diagram of a d -dimensional point set is transformed into the convex hull of a

d +( )1 -dimensional point set [15]. Hence, any general convex hull algorithm would

imply a method to construct Voronoi diagrams. This discovery has become more

significant today than it was at the time of its publication, because of the progress

that was made during the 80’s in the computation of convex hulls. For recent

overviews of convex hull algorithms, see [25, ch. 8], and [69, pp. 260–261].

Bowyer [14] and Watson [95] in two similar papers in 1981 both described how a

Voronoi diagram is modified by the insertion of a new point into the set, thus obtain-

ing incremental algorithms for the construction. A different approach was suggested

by Gersho in 1982 [29], who employed a Monte Carlo technique to identify the

shape of the Voronoi regions using a training set. The probability that this method

finds the true Voronoi diagram tends to 1 as the size of the training set approaches

infinity; for moderate training set sizes, an approximation of the Voronoi diagram is

obtained. The accuracy of the approximation can be traded for execution speed.

In 1983, Avis and Bhattacharya showed that the Voronoi diagram for a given set

of points can be established through the solution of a large number of linear pro-

gramming problems [8] . This line of thought was continued by Joshi and Poonacha

[47], who with a slightly different formulation employed the feasibility problem in

linear programming, and Agrell [2], who used a similar technique to characterize

some other properties of a Voronoi diagram. Hartvigsen employed linear program-

ming to the reverse problem, that of determining whether a given partition is a

Voronoi diagram of some point set and, if so, finding this point set [41].

So far, the discussion has been concerned with arbitrary point sets. In practical

problems, however, the point sets that appear are often constrained to follow a certain

structure, and corresponding constraints apply to the Voronoi diagrams. Such cases
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will be discussed in connection with some coding problems in sections 4–6 and

articles 3–7. It turns out that the general algorithms summarized above may not be

suitable for computing the Voronoi diagram of a structured point set. They may be

prohibitively slow, and they may even fail to yield correct results due to the degen-

erate nature of the structure. We will see examples of both cases later in the disserta-

tion.

3. NEAREST NEIGHBOR SEARCH METHODS

We now turn to another problem of profound practical significance in communica-

tions: nearest neighbor search. Implicit in the definition of   n xC ( ), see (1), lies a

method to evaluate the function: compute the distance to all points in   C  and select

the point that yields the minimum distance. This method, full search, is conceptually

the simplest way of performing nearest neighbor search, but it is also one of the

slowest. During the past two decades or so, considerable efforts have been devoted to

faster search methods for the purpose.

Since the Voronoi diagram can be seen as a representation of the combined solu-

tions of all possible nearest neighbor search problems for a given point set, it is not

surprising that the structure, once determined and stored in a suitable form, can be

utilized in nearest neighbor search. To begin with, if we want to assess whether a

certain point   c ∈ C  is the nearest neighbor   n xC ( ) of a given vector x , it is sufficient

to compute the distances from x  to c and to all the neighbors of c. (A neighbor5 of a

point   c ∈ C  is another point in   C  whose Voronoi region shares a d −( )1 -dimen-

sional facet with the Voronoi region of c.) If x c− 2 is the shortest of these dis-

tances, then   n x cC ( ) =  and no more distances need to be computed. On the other

hand, if x  is closer to one of the neighbors of c than to c itself, then this neighbor

can replace c in a new test of the same kind. Repeating this procedure yields an

iterative nearest neighbor search algorithm, beginning at an arbitrary point in   C  and

terminating at   n xC ( ), without computing all the distances in (1). The algorithm,

which we call neighbor descent because of its resemblance to steepest descent meth-

ods for the minimization of continuous functions, is illustrated in figure 3. It assumes

that the neighbors of all points in   C  have been determined in advance and stored,

which for some sets may require a considerable amount of memory. Neighbor

descent appears, in one form or the other, in articles 1 and 4–7.

This search method was initially suggested by Green and Sibson in 1978 [38],

[82], who used it as an element in the construction of two-dimensional Voronoi dia-

5 A (Voronoi) neighbor is also called an adjacent, a contiguous, or a relevant vector. Note that the
word “neighbor” in “nearest neighbor search” does not refer to Voronoi neighbors.
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✽

Figure 3. An instance of the neighbor descent search method. The posi-
tion of the vector x  is marked with a star.

grams. Ohya et al. [68] and Okabe et al. [69, pp. 225–230] cover this use of neighbor

descent thoroughly. The method was applied by Hwang [44] and Butovitsch [16, pts.

D–E] to channel decoding, see section 6, and by Joshi and Poonacha to vector quan-

tization [47].

Several variants of the neighbor descent method come to mind. If more than one

neighbor would decrease the distance to x , it is not evident which one should be

selected. Agrell compared three strategies,6 and showed that the most efficient choice

is the first favorable neighbor found, which is not necessarily the same as the best

one [3]. Another way to vary neighbor descent is to use a different “neighbor” con-

cept, one that is not based on the Voronoi diagram. Such approaches were suggested

by Hwang and Butovitsch in their above-mentioned publications, and also by Arya et

al. [4] , [5] , [6]  and Jeong and Gibson [45]. Some results in this area are included in

articles 1 and 4. It is important to remember, however, that when the Voronoi neigh-

bors are abandoned, the neighbor descent method is not anymore certain to find

  n xC ( ); it might return a suboptimal point instead.

Neighbor descent is not the only alternative to full search, when it comes to per-

forming nearest neighbor search. On the contrary, a tremendous amount of work has

been done on search algorithms in the last two decades. Some of them are guaranteed

to return   n xC ( ), whereas other algorithms find suboptimal solutions of the search

6 In an unpublished report, they were characterized as, respectively, timid (“let’s not do anything until
we know what the choices are”), avid (“get anything that is better than before”), and rigid (“since this
has worked so far, it is worth trying once more”).
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problem. In one sense, the field has begun to stagnate: not in the amount of literature

issued every year, but perhaps in the relation between such literature and previous

work. The wheel is continually being reinvented. The disorder has reached a stage

where the presentation of another algorithm would almost certainly disappear behind

the heap of similar work. Hence, an important contribution to nearest neighbor re-

search would be to somehow sort the items in that heap, thus making it easier for

future authors to put their contributions on top of it. In some other research areas

where a similar problem has occurred, a textbook has appeared and resolved the con-

fusion. This has not yet happened in this field; the closest thing to a textbook is a

couple of dissertations [60], [18], [75], [4].

Several authors have compiled literature surveys of the main approaches to near-

est neighbor search. Their surveys cover to some extent different parts of the litera-

ture and use different subdivisions; together they constitute a fairly good overview of

the field. Instead of providing another (incomplete) survey of algorithms, I will in

this introduction give a short survey of surveys, which, to my best knowledge, has

not been done before.

The book by Gersho and Gray contains a comprehensible summary of some main

categories of nearest neighbor search methods [31, pp. 332–335, 479–481], without

going into detail on individual algorithms. For individual algorithms, the surveys in

the dissertations by Cheng [18, pp. 14–22] and Arya [4, pp. 3–8] are good sources of

information. The surveys by Vidal et al. [90], [91] mention a large number of refer-

ences, perhaps larger than any other survey does, but the presentation is brief. The

earliest work in the field is surveyed in the well-known paper by Friedman et al. [28].

Ramasubramanian and Paliwal give a survey that concentrates on the development in

the so-called k-d tree search methods [76], and the one by Moayeri and Neuhoff in

[61] covers mostly the same material. In addition, short but enlightening summaries

are included in [17], [78], [9], and [51].

One reason for the multitude of nearest neighbor search algorithms that have been

proposed (at least a few hundreds, reinventions included), and for the absence of a

consensus regarding which algorithm is actually the “best,“ is that the quality of a

search algorithm can be measured in so many ways. This problem is the topic of

article 1, which is further discussed in the next section.

4. SOURCE ENCODING

In this and the two following sections, the discussion is brought back to where it

began, the communication system illustrated in figure 1. The three components
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where analog-to-digital conversion occurs will be highlighted in one section each,

and various coding problems will be formulated in terms of nearest neighbor search.

Source encoding implies the representation of a message as a sequence of bits.

How this is done depends, obviously, on the type of source and application. For

efficient communication, different types of sources need their own source coders. A

typical encoder operates in two steps; first it creates a parametric representation of

the signal, then it quantizes the parameters.

The selection of a set of parameters for a certain type of source is a vast research

field in itself, divided into speech coding, image coding, etc. The parameters should

identify the significant features of the source signal. It is unnecessary, even wasteful,

to adopt parameters that contain too exact a description of the signal, if some details

are more relevant to the user than others, which is certainly the case in the above-

mentioned applications.

To complete the digital representation, the parameters are quantized, one at a time

(scalar quantization) or several (vector quantization). Because of its connection with

search problems and Voronoi diagrams, we concentrate on vector quantization.

Several tutorials and overviews have been written in this field. All-round treatments

of vector quantization are [36], [84], [37, ch. 5], and [31], whereas [35] and [12]

concentrate on a certain type of quantizer. Applications in speech coding are sur-

veyed in [30], [53], [71], [32], and [19], and in image coding in [66], [74, ch. 12],

[22], and [21].

The core of a vector quantizer (VQ) is the codebook   C , which determines the set

of parameter vectors that can be represented by the coder, i.e., the codevectors. This

set is a finite list, so the output of the source encoder is simply an integer, most often

coded as a sequence of bits, which gives the index of the selected codevector in the

codebook.7 The source decoder maintains its own copy of   C  and identifies the code-

vector whose index equals the received integer. If the number of codevectors in   C  is

2k , and each vector contains d  elements, then the rate k d gives the number of bits

that are used to encode one parameter.

The vector quantizer is presented with a search problem. After receiving a param-

eter vector x , its task is to find a vector x̂  in   C  that is similar to x , in some sense.

How to measure similarity is a delicate question, whose answer in the end depends

on the sensitivity of the user to various kinds of changes in the message and on the

sensitivity of the message to changes in the parameter set. These sensitivities are hard

to assess, and even harder to express as a mathematical function of x  and x̂ . To

avoid these difficulties, a reverse approach is often preferred: First choose a distor-

7 It is assumed that the computer represents the set   C  as a list, which is why a codevector can be
represented by its index.
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tion measure, and then transform the parameter vectors into a coordinate system

where this measure is not too inappropriate. By far the most common distortion

measure is the squared Euclidean distance, x x− ˆ 2, which corresponds to the energy

of the quantization error. Parameters for miscellaneous types of sources have been

developed for use with this measure. The main advantage, regarding the complexity

of analysis and algorithms, is that the setup creates a nearest neighbor search prob-

lem; for minimal distortion, the quantizer should select   ̂x n x= ( )C . Consequently, the

objective in vector quantizer design for a certain type of parameters is to find the set

  C  of a given size that minimizes the distortion per parameter

  
D

d
E= − ( )[ ]1 2x n xC . (2)

The evaluation of the expectation assumes that a statistical model is known, or can be

estimated, for the parameter vectors to be quantized.

Many of the algorithms that have been proposed for nearest neighbor search were

originally presented in the context of vector quantization. Despite the large number

of available algorithms—or perhaps because of it—no evident champion has

evolved, which leaves anyone building a vector quantizer application with an intri-

cate search problem, namely, the search for a search algorithm. Article 1 is

a case study that illustrates why this problem cannot be solved once and

for all. Three nearest neighbor search algorithms are evaluated using

several performance measures. The considered measures are average search time,

worst case search time, storage, precomputation time, and distortion when the search

is interrupted after an allotted period of time. In turns out that any algorithm of the

three investigated ones emerges as the winner, depending on which measure is used.

Geometrically stated, performance is not a scalar but a vector, and to determine the

“greatest” vector is generally an ambiguous task. The conclusion is that there is actu-

ally a “market” for a multitude of algorithms, and before an algorithm is selected for

a certain application, it is important to have precise specifications of the available

hardware and the system requirements. As a sideline, which follows naturally from

the notion that algorithms have different specialties, the three algorithms are com-

bined into one. This hybrid algorithm outperforms its three constituent algorithms in

most aspects, which is illustrated in figure 4. Similar hybrids were discussed in [47],

[69, pp. 228–232], [5], and [4].

Let us for a moment return to the source-channel separation theorem, which was

summarized in section 1. It implies that the channel and the channel coder can be

completely disregarded in the design of a vector quantizer, provided that there is no

constraint on the dimension of the parameter vectors or on the codebook size. Such

constraints pertain, however, to all practical systems, because of the limited storage,
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Figure 4.  The hybrid algorithm in article 1 finds a good candidate x̂  fast.
(From the oral presentation of article 1 at NORSIG -94, but not included
in the article itself.)

encoding complexity, and communication delay that can be tolerated. Hence, the

relatively small quantizers that can be implemented using today’s technology cer-

tainly benefit from a design where the possibility of a noisy channel is considered.

If the source decoder always receives the same integer index as the source en-

coder outputs, which is assumed in conventional design of vector quantizers, then it

is irrelevant which index that corresponds to each codevector. This is not the case in

a system with channel distortion. If an erroneous index is received, the source de-

coder will employ the wrong parameter vector. However, the damage can be limited

if the incorrect vector is similar to the original one, which is the idea behind index

assignment. Since a transmitted integer is more easily confused with some integers

than others, such index pairs are assigned to codevectors whose coordinates do not

differ too much. Typically, the most common error is where just one bit in the binary

representation of the index has been inverted. It is worth emphasizing that index

assignment is an error-protection method that costs nothing but codebook preprocess-

ing; once carried out, it does not increase the encoding- or decoding complexity, the

memory requirements, or the rate. The codebook is stored as a list anyhow; the index

assignment is just expressed as a reordering of the entries.

Index assignment can be regarded as a search problem. It is the search for a

permutation of 2k  integers such that the average distortion is minimized, assuming a

suitable statistical model of the confusion probabilities between indices. The most

common model is the binary symmetric channel, according to which bit errors occur

independently with equal probability. It is enlightening to adopt a geometric ap-

proach to this search problem, such that the base-2 representations of the integers
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from 0 to 2 1k −  are interpreted as coordinates in k-dimensional space. The integers

thus define the vertices of a hypercube. Index assignment can be regarded as a map-

ping of these vertices onto the codevectors of a given codebook [49].

The essence of article 2 is that the mapping from the (possibly

translated) hypercube to the codebook should be as linear as possible. A

measure is defined to evaluate how well this goal is achieved, the linearity.

The search for an index assignment with a high linearity is motivated through

theoretical and empirical results, which show that the linearity is closely linked to the

distortion, provided that the codevectors are transmitted equally often. For

computational purposes, linearity is a more expedient objective than distortion. This

is demonstrated through the index assignment algorithm LISA (linearity increasing

swap algorithm), which in comparison with a few well-known algorithms is shown to

achieve a low distortion very fast.

Theoretically, a vector quantizer achieves better performance (lower distortion for

a given rate) with an increasing number of parameters d  being quantized together

[52]. However, to maintain a constant rate, the number of codevectors 2k  increases

exponentially with d . This is why so much attention has been given to the nearest

neighbor search problem in vector quantization, but still the encoding time is a limit-

ing factor for the codebook size. Storage is another. One way to circumvent the limit

is to employ structured codebooks. This means that some constraints are imposed on

the set of codebooks   C  considered in the minimization of (2). It is desirable to select

a structure for which a fast nearest neighbor search algorithm and a compact code-

book description can be tailored. The attained distortion D  of a structured codebook

is in general higher than that of the optimal unstructured codebook of the same

dimension and rate, but it may well be lower than the optimal codebook of the same

complexity (search time and memory) and rate, which is a more relevant comparison.

Several low-complexity structures have been proposed in the past, sometimes assum-

ing a suboptimal search method: tree-structured VQ, multistage VQ, lattices, block

codes, etc. A comprehensive overview of the most common types is provided in [31,

ch. 12]. Lattices and block codes are the two types of structured codebooks that are

specifically considered in this dissertation.

A lattice is formally defined through a generator matrix, B, as the set B uT :{
  u ∈ }Zd . A more intuitively appealing definition is suggested in figure 5. Since a

lattice contains infinitely many points, it is not directly useful as a quantizer, but it

can be truncated into a set with a suitable number of points. This raises two ques-

tions: How is a good lattice found and how is it shaped into a codebook for a given

parameter type?
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B

X

A

Figure 5.  If there are points at A and B, then there is one at X, too. A
structure that satisfies this rule for all point pairs is a lattice (or a transla-
tion thereof).

The first question is normally addressed by considering the asymptotic problem

of vector quantizer design for uniformly distributed parameter vectors, as the rate

approaches infinity. This leads to an optimization problem in which the generator

matrix is the only variable; boundary effects can be neglected. Much effort has been

devoted to this problem, primarily with an algebraic approach [20]. In arti-

cle 3, we attack the problem through numerical optimization, developing

an iterative algorithm to search for good generator matrices for the quanti-

zation problem. The algorithm is then let loose in 2–10 dimensions, and for the

resulting (numerically represented) lattices, underlying exact expressions are iden-

tified. There are indications that we may have reached the optimal lattices in all these

dimensions. Most of them are rediscoveries of known lattices, but our 9-dimensional

lattice, whose generator matrix decorates the back cover, is of a new type, signifi-

cantly better than what has been previously reported. We improve on earlier results

in 10 dimensions, too. In this case, the obtained lattice has been published before, but

not in connection with quantization. Both the 9- and the 10-dimensional lattice may

be counterexamples of a long-standing conjecture regarding the connection between

this quantization problem and a related lattice problem. Finally, a few cases are

shown where the union of two lattices yields a lower distortion than does any single

lattice. We believe that the lowest dimension for which this happens is 7.

The second question regarding the design of a lattice-based vector quantizer is

how to create a finite codebook, suitable for a given type of parameters, from the

lattice. The simplest way is to truncate the lattice, discarding the points outside a

certain region [46], which yields a lattice quantizer. A theoretical analysis

of such a quantizer, assuming a high rate, is provided in article 4. Asymp-

totically exact expressions for the minimum achievable distortion are de-

rived, which show that the discrepancy between the optimal lattice quantizer and the

optimal unstructured quantizer increases with the rate.8 The explicit expressions were

derived for independent and identically distributed Gaussian parameters, but since

the shortcoming has to do with forcing a uniform point density onto a nonuniform

parameter distribution, we believe that the conclusion can be generalized to a wide

8 Similar results were independently obtained by Moo and Neuhoff [62].
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class of nonuniform distributions. This discouraging result suggests that truncation

alone is not sufficient to form a good high-rate quantizer out of a lattice, which

motivates our proposition of lattice-attracted vector quantization. We allow a lattice

to be “stretched,” so that the codebook maintains a small-scale lattice-like structure,

while on a larger scale, the point density may vary. The proposed codebook design

algorithms attain lower distortions than conventional algorithms under some con-

strained design conditions, but the main advantage appears when it comes to nearest

neighbor search. A variant of the neighbor descent search method is developed for

lattice-attracted vector quantizers, where the storage requirements pertinent to ordi-

nary neighbor descent is alleviated by exploiting the underlying lattice structure.

Block codes and their Voronoi regions are discussed in section 6 and in articles 6

and 7. Their traditional application is in channel coding, where soft-decision decod-

ing implies nearest neighbor search. However, block codes have found their use in

source coding, too. They were employed directly as low-rate codebooks by Adoul

and Lamblin [1]  and by Swaszek [85], [86], [87], whereas Hagen obtained codebooks

as linear mappings of block codes [40]. The linear codebook, which was defined in

article 2 as a linear mapping of the vertices of a hypercube, can be regarded as a

special case of the latter construction.9 As pointed out above, there exists a good

index assignment for linear codebooks, which makes them relatively robust against

channel distortion. A linear codebook with rate one forms the vertices of a paral-

lelepiped. Nearest neighbor search for this structure is an important problem in

CDMA demodulation, which is discussed in the next section and in article 5.

5. DEMODULATION

In the conventional form of digital modulation, each bit or group of bits to be

transmitted determines one segment of the waveform that is output on the channel

[73]. Denoting the possible waveform segments in the time interval 0 ≤ <t T  with

s ti ( ), for 
  
i q=1, ,L , it is always possible to find a set of orthonormal basis functions

for the signals s ti ( ){ } . That is, there exist a vector φφt( ) of signals (basis functions)

and q vectors ci  of real numbers, such that s t ti i
T( ) = ( )c φφ  for 0 ≤ <t T  and

  
i q=1, ,L , and φφ φφt t dt

T T( ) ( ) =∫0 I .

This decomposition is utilized in the demodulation. The demodulator contains a

bank of matched filters, one for each basis function. If the received waveform is r t( ),
the output of the filter bank is

9 Linear codebooks and similar structures have been discussed under the names binary lattice [55],
[54], [56], binary residual VQ [12], direct sum codebook [11], LM codebook [43], multistep VQ [36],
two-channel conjugate VQ [63], and VSELP codebook [33], [34].
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x = ( ) ( )∫ r t t dt
T

φφ
0

. (3)

In the ideal case of a channel without any distortion, r t s tj( ) = ( ) for some j , and it is

easily shown that x c= j . However, more realistic channel models include some type

of distortion, which gives rise to various types of search problems.

For the Gaussian channel, the received waveform is r t s t n tj( ) = ( ) + ( ), where n t( )
is white and Gaussian. Inserting this model into (3), it turns out that the filter bank

output is x c z= +j , where z is a vector of independent, identically distributed, zero-

mean Gaussian random variables.10 Because of the rotational symmetry of the multi-

dimensional Gaussian probability density function, the maximum likelihood (ML)

hypothesis detector can be implemented with a nearest neighbor search method; the

waveform most likely transmitted is the one corresponding to the coefficient vector

  c n xl = ( )C , where   C = { } =ci i
q

1. The demodulator shows this by transmitting the index

l , binary coded.

Commonly used modulation schemes have typically a small value of q, and the

point set   C  has some regular structure. QPSK, for instance, has its four points ci

located as the vertices of a square. For structures as simple as this one, there exist

trivial search algorithms. More sophisticated search problems arise if other types of

distortion than additive noise are included in the channel model, or with other modu-

lation methods.

One such application is multiuser detection in a CDMA system [92], [73, chs. 13,

15], [64]. Suppose that the transmitted waveform consists of synchronous contribu-

tions from several users, each one BPSK-modulated onto its own signature wave-

form, or spreading code. If the signature waveforms, weighted to account for the

transmitted power of each user, are collected in the vector p t( ), then the total trans-

mitted signal is s t ti i
T( ) = ( )b p . The vector bi  consists of one bit for each user, repre-

sented as ±1. The number of possible signals is q K= 2 , where K  is the number of

users. To find a set of basis functions for this signal set, let the correlation matrix of

the signature waveforms be denoted by R p p= ( ) ( )∫ t t dtTT

0
 and let T  be a matrix such

that TT RT = , which can be found by Cholesky factorization of R . Now it can be

easily verified that the functions φφt t( ) = ( )−T p1  form a basis for s ti ( ){ } , with the

coefficient vectors c T bi
T

i=  for 
  
i q=1, ,L . Hence, ML detection is equivalent to

nearest neighbor search in   C = { } =ci i
q

1. This point set can be visualized as the ver-

tices of a parallelepiped, i.e., a tilted hypercube. It is a special case of the “linear

codebook” mentioned in the previous section.

10 The assumed properties of n t( ) are physically motivated, see, e.g., [42, pp. 270–273]. However, as
long as n t( ) is strictly white, its probability density function is irrelevant. That z is Gaussian still
follows from the central limit theorem.
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Article 5 develops this geometric treatment of multiuser detection and

suggests that maximum likelihood detection, for arbitrary signature wave-

forms, can be achieved by applying neighbor descent to the point set   C . A

significant gain in search time is shown, compared to full search. The article also

investigates the Voronoi diagram of   C . Exploiting properties of the parallelepiped, a

fast method to find the Voronoi neighbors is given, and their number is upper-

bounded. In [70, ch. 3], the work initiated by article 5 is continued, and results are

presented in greater detail.

Another channel model worth study is the intersymbol interference channel.

Demodulation can in this case, too, be formulated as a nearest neighbor search prob-

lem [10], but the topic is not investigated in this dissertation.

The discussion in this section has been confined to demodulators that make an

explicit decision on the received signal. It is also possible to postpone this decision,

and hence the search problem, to the channel decoder. In this case, the demodulator

output simply equals the matched filter output x , which is analog (in amplitude). The

next section considers how a channel decoder can benefit from such a system design.

6. CHANNEL DECODING

The purpose of channel coding is error detection and correction. In the channel

encoder, redundant bits are added to the sequence, bits that are examined in the

channel decoder to assess whether the sequence has been correctly received. Suppose

that the output sequence of the source encoder is grouped into blocks of k  consecu-

tive bits, and that the channel encoder maps each such block into a block of n bits,

where n k≥ . Since there are 2k  different input blocks to the channel encoder, its

output has an equal number of possibilities. Interpreting the available output blocks,

called codewords, as vectors, they form a set of 2k  points in n-dimensional space.

This set,   C , is a binary block code and its rate is defined as R k n= . Such point sets

have been employed in vector quantization, which was discussed in section 4, but

their main use is in channel coding.

If the channel is noisy, then what the channel decoder receives may or may not be

a codeword. If it is a codeword, then all the decoder has to do is to translate it back to

the corresponding k-bit block for further processing by the source decoder. If it is

not, the decoder is faced with the problem of estimating which codeword was actu-

ally transmitted. Once again, a search problem appears. The nature of this problem

can be of two kinds, depending on the type of demodulator.

The demodulator outlined in the previous section performs nearest neighbor

search in order to reach a decision on which waveform that was most likely transmit-
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ted, and outputs the sequence of bits that represents this waveform. This leaves the

channel decoder as a digital-input, digital-output device, which is normally imple-

mented using algebraic methods [50], [96]. An alternative approach, which yields

lower distortion at the cost of more complex search problem, is to postpone the

search process to the channel decoder. In this case, the analog (in amplitude) output

of the matched filters in the demodulator is directly transferred to the channel de-

coder, which performs soft-decision decoding.

Assume for simplicity that binary modulation is employed. The bits are transmit-

ted sequentially, each bit controlling its own waveform segment. Hence, it suffices

with only one matched filter in the demodulator. To perform optimal soft-decision

decoding, the channel decoder collects n consecutive matched filter outputs in a

buffer, corresponding to the n bits of the transmitted codeword, before they are

processed. Regarding the buffer contents as a vector x , the search problem in the

decoder is to find a codeword   c ∈ C  that is as similar to x  as possible, where the

measure of similarity depends on the employed channel model.

Again we consider the Gaussian channel. With the same method as in the

previous section, it can be shown that the vector x  equals c zj + , where the two

terms are the transmitted codeword c j  and a vector z of independent, identically

distributed, zero-mean Gaussian random variables.11 And in this context, too, maxi-

mum likelihood detection implies nearest neighbor search; the optimal codeword is

  n xC ( ). However, the point set   C  is quite different from the parallelepiped that ap-

pears in CDMA demodulation, and also from the structures considered in section 4,

so a study of the Voronoi diagram of   C  cannot rely on results from these applica-

tions.

The fact that all codewords are binary imposes a special structure on the point set

  C . It can be regarded as a subset of the vertices of an n-dimensional hypercube. The

structure becomes even more attractive for theoretical and computational purposes if

we limit the considered codes to being linear as well. With a formulation analogous

to the lattice definition in figure 5, a binary block code is linear if the modulo-2

addition (exclusive-or) of any two codewords results in another codeword.12

Hwang [44], and later Butovitsch [16, pts. D–E], considered the neighbor descent

method as an algorithm for soft-decision decoding of binary linear block codes.13

11 Despite the appearance of the expression x c z= +j  in both this section and the previous one, its
interpretations differ. In section 5, x  denotes the simultaneous output from several matched filters,
whereas here, it means consecutive outputs of the same filter.
12 Note that “linear” was used in another sense in section 4. The points of a linear block code do not in
general form a linear codebook.
13 It is remarkable that the same algorithm can be defined in so different ways. Hwang, who employs
an algebraic terminology, does not mention Voronoi diagrams at all and refers with “projective set” to
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Hwang also found two useful bounds relating the distance between codewords to

their being neighbors or not, which for some relatively short high-rate codes yield a

full description of the neighbors of all codewords. His paper is concluded with three

open questions. The first one, “How do we generally determine the projec-

ting set of a code?” is what article 6 is about. In this article, some geomet-

ric properties of the Voronoi diagram are presented, properties that are

utilized in the development of a fast algorithm to determine whether two given code-

words are neighbors. The new algorithm is then employed to analyze the Voronoi

diagrams of some important codes. One conclusion that is drawn from the results is

that the coupling between neighbors and their distance is weaker than what was

previously assumed [16, pt. D, p. 27].

Decoding algorithms such as neighbor descent, which utilize Voronoi region

facets for binary decisions, are efficient only if the number of neighbor pairs in a

code is relatively small. Which codes have this property? This is Hwang’s second

question, but before going into details on block codes, we elaborate a little on the

number of neighbors in a point set as a measure on the complexity of Voronoi dia-

grams and Voronoi-based algorithms. Binary block codes is by no means the first

type of point sets for which the number has been considered. The interest goes back

to at least 1897, when Minkowski in his pioneering work on lattices showed that the

number of neighbors of a point in any d -dimensional lattice is upperbounded by

2 21d+ −  [59, band 2, pp. 120–121], [58, pp. 81–85, 180–181]. A random lattice

reaches this bound with equality, under some general assumptions on the distribution

[94, esp., vol. 134, pp. 198–211]. The numbers of neighbors in some specific lattices

are given in [93] and [20, pp. 106–135, 456–475]. If no constraint at all is placed on

the structure of a point set, it is a remarkable fact that for dimensions 3 and above,

the only upper bound on the number of neighbors is the trivial one. This was proved

by Dewdney and Vranch [24], who presented an ingenious way to place M  three-

dimensional points such that all pairs of points are neighbors, regardless of M .

Hence, all Voronoi regions for this point set have M −1 facets. The result rather

dramatically contrasts with the two-dimensional case, where there exists no point set,

however large, such that the average number of neighbors exceeds six. Klee obtained

some related bounds on the maximum complexity of an unconstrained Voronoi

diagram [48]. For randomly generated point sets, low-dimensional results have been

analytically derived [65]. The average number of neighbors in a large set of

independent uniformly distributed points is 2, 6, 15.54, and 37.78 in dimensions 1 to

4, which suggests that the number of neighbors increases faster with the dimensions

what is here called the set of neighbors of a certain point. The work by Butovitsch follows a geometric
style similar to the one used here.
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for random point sets than for lattices. Finally, it can be mentioned that even for

partitions that are not Voronoi diagrams, such as the tree-structured VQ, which was

briefly mentioned in section 4 as one of several possibilities to reduce the complexity

of vector quantization, the number of neighbors is a relevant characteristic [67], [97].

Returning to binary linear block codes, a partial answer of Hwang’s

second question is provided in article 7. The article presents results on the

number of neighbors in several well-known codes, computed through a

combination of Hwang’s bounds, the algorithm of article 6, and a new algorithm. The

number of neighbors is observed as a function of the rate R, which reveals an

interesting pattern. For codes with R>1 2, a codeword tends to have relatively few

neighbors, whereas if R<1 2, most of the codeword pairs are neighbors, and this

threshold becomes more distinct with increasing codeword length n. An asymptotic

analysis confirms that there is a threshold at R=1 2 for a wide range of codes. In

short, the answer to Hwang’s second question given by article 7 is “for codes with

rates above one half.”14

T
hereby the sightseeing tour in the city of Telecommunications is completed. I have
enjoyed being your guide today through the modern architecture of our fast-growing
city. As you may have noticed, I was especially delighted to show you the nearest

neighbor buildings that have recently been constructed in some of the districts. Did you
observe the intricate Voronoi diagrams on their walls? I find them very attractive myself. I
hope that you have had a pleasant trip, and wish you a happy stay in the city. If you should
choose to venture on your own now into one of the districts, which I highly recommend,
remember how easily you get lost. Make sure to bring a good search method!
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Abstract Fast search methods for vector quantization are a necessity for benefiting
from the performance gains of large-sized codebooks in real-time applications.
We take on two 4096 vector quantizer codebooks as illustrative examples for our
study. The performance of a set of search procedures is compared. Several as-
pects of complexity are discussed. We compare average computational complex-
ity and maximum computational complexity in the light of real-time usage. We
address storage requirement and the computational complexity required to set up
the search procedures. Moreover we illustrate distortion as a function of compu-
tational effort. One main conclusion is that an accurate comparison will not yield
a single answer. Depending on what aspects that are highlighted in a test, either of
the three search procedures in study can be elected as the winner.

1. INTRODUCTION

A t a constant transmission rate, distortion of vector quantization decreases

monotonically with increasing dimension of the vectors to quantize.

There are several factors that have prohibited employment of large

codebooks, including storage and training problems, but the issue of searching a large

set of codevectors is often the limiting factor for applications. Hence, a major goal of

source coding research is to establish methods of handling large-dimensional

codebooks. In this contribution we focus on aspects of searching large sized

codebooks, i.e. on the search complexity.
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1 . 1 The search problem

The search problem in vector quantization occurs each time an input vector is to be en-

coded. The codebook has to be examined for the best representation of the input, ac-

cording to some criterion. The obvious way is an exhaustive search, that is, calculating

the distortion for each of the possible output codewords. In the last two decades, how-

ever, several approaches have been suggested to increase the encoding speed. This is

possible by employing alternative tests, computationally cheaper than full distortion

calculations, to exclude codewords, one or several at a time, from further considera-

tion. For most methods, this type of strategy requires the precomputation of some

codebook properties.

One of the earliest ideas was to precompute distances between all codewords and a

set of fixed (anchor) points. The triangle inequality, or similar tests, is utilized to select

a subset of the codewords, for which the exact distortion has to be calculated [1].

Recursive application of some subset-selection method gives rise to tree-organized al-

gorithms [2-4]. A different approach is to exploit the geometrical properties of the

Voronoi diagram, as in the neighbor descent methods [5-7].

In general, two prices are paid for obtaining a fast search: i) additional memory is

required, and ii) an additional preparatory analysis of the codebook is required. Since

this latter step is made once, prior to the employment of the encoder, a large computa-

tional burden can often, but not always, be tolerated for this analysis. Also, a further

speed gain can be obtained by accepting iii) an increased output distortion.

1 . 2 Paper outline

Because of the aforementioned multi-dimensional trade-off between different qualities,

between aspects as computational burden and memory requirements, it is not trivial to

summarize the performance of a search method in a single table or diagram.

Highlighted in this study is exactly this evaluation problem. As an example, we encode

Gaussian data with a pdf-optimized vector quantizer, using three different search al-

gorithms. We perform a few different tests, some of which measure related properties.

Nevertheless, the various tests indicate quite different performance. Each particular test

would have given a fairly clear (but possibly misleading) image of how good the

methods are, if published alone.

A comparison of three different search algorithms is the essence of our contribu-

tion. We discuss primarily the computational complexity. We also comment on the

additional storage requirement of the algorithms, and, since one of the methods does

not perform optimal codebook look-up, we compare the performance.

Finally, we relax the requirement of finding the very best codeword by introducing

a constraint on the encoding time.
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1 . 3 Notation

A d-dimensional vector X drawn from a random source (with a known probability

density function) is to be encoded with a codebook c( )i{ }  of N k= 2  entries. The ob-

ject is to minimize the conventional Euclidean distortion measure

D E i= −[ ]X c( ) 2

One of the procedures discussed below utilizes an eigenvalue analysis. We denote

the eigenvalues of the source correlation matrix by λm{ } . A transformed source vector

′Y  is ′ =Y AY  where A  is the matrix of eigenvectors. Thus, the components of ′Y

are uncorrelated.

2. SEARCH METHODS

We compare three different search methods, two neighbor descent methods, using dif-

ferent adjacency tables, and one tree search method.

2 . 1 Neighbor descent methods

The neighbor descent (ND) methods utilize an adjacency table, which is computed

during the preencoding analysis. It gives a list of adjacent codewords for each code-

word in the codebook. The encoding of an input vector can then be done by iterative

improvement of an initial guess. An iteration consists of computing the distortions for

the adjacent codewords of the current hypothesis. If any of these codewords turns out

to be better than the hypothesis, further examination of adjacent codewords is aborted.

The current hypothesis is abandoned and the found codeword immediately becomes

the new hypothesis. The overall procedure continues until none of the neighbors pro-

vide lower distortion.

Two neighbor descent algorithms were compared. Their difference lies in the

definition of adjacent codewords. The first algorithm (referred to as RND in [7]) uses

the Voronoi diagram—two codewords are regarded as adjacent if their Voronoi regions

have a facet in common. A linear programming approach is described in [8] for

efficiently establishing the adjacency table for each vector of an arbitrary codebook.

The second algorithm employs Gabriel neighbors, which is a more restricted con-

dition [9, 10] than the Voronoi neighbor concept. Two codewords are Gabriel neigh-

bors if they are Voronoi neighbors and if their common facet is intersected by the

straight line between the two codevectors.

The Gabriel approach reduces the memory requirement and increases encoding

speed, as demonstrated in this paper. However, the price to pay is distortion. In con-
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trast to Voronoi neighbor descent, which can be proved to find the optimal codeword

for every input [8], the Gabriel adjacency is not sufficient to guarantee optimality.

Before comparing the complexity of building the adjacency tables using the

Voronoi and the Gabriel approaches, it is important to stress that the creation of the ta-

bles is done as a preparatory step, i.e. before the employment of the encoding algo-

rithm. Still we find it worth mentioning that finding the set of Gabriel neighbors is far

simpler than finding the corresponding Voronoi neighbors. A flavor of the computa-

tional complexity is obtained by comparing the CPU-time for the particular 6-dimen-

sional codebook we take on as example in this study. For the Voronoi neighbors ap-

proximately 25 hours were required whereas the Gabriel neighbors were established in

one hour.

2 . 2 Tree search procedures

There exists a variety of tree search (TS) procedures for vector quantization. Several

important TS procedures apply only to certain (constrained) sets of codevectors. The

particular version employed in our study is general in the sense that it is applicable for

an arbitrary set of (unconstrained) codevectors. The overall architecture is that of a bal-

anced d-level tree with 2km  branches from each node at level m −1 [4]. Each level, m,

corresponds to one component of the transformed d-dimensional codevectors d, where

d Ac= .

The total number of nodes, K, depends on the branching, i.e. on km{ } , but for any

allocation, K N< 2 . Associated with each node at level m  are the leftmost

r r km m m= +−1  bits of a codeword index i . Hence, each leaf of the tree corresponds to

a codeword index i. Associated with each node ( , )m r  at any level m d<  is also a

triplet

d d dm
r

m
r

m
r( ) ( ) ( ), ,− +{ }

consisting of the mean, the minimum and the maximum respectively of the mth com-

ponent of the transformed codevectors d, i.e. dm
i( ), for those i only that are descendent

leafs of the given node.

Preparatory to codebook employment the branching parameters, km{ } , must be

determined. For this we have employed a conventional bit-allocation algorithm utilizing

the eigenvalues λm{ } .

Next an index assignment for the codebook vectors is obtained by sorting the trans-

formed codebook vectors d( )i{ }  according to the bit-allocation. The triplets

d d dm
r

m
r

m
r( ) ( ) ( ), ,− +{ }  are obtained as a natural part of this sorting procedure.

At run-time, a transformed source vector Y is processed by first finding an initial

guess i* for the index. This is accomplished by descending the tree with hard pruning

based on utilizing the mean positions dm
r( ) for scoring. The true distortion D* is evalu-
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ated for the winner of this step. The tree is thereafter descended level by level until the

leaf nodes are encountered while utilizing d dm
r

m
r− +{ }( ) ( ),  for keeping track of a lower

bound D m smin( , ) of the distortion associated with a node.
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where ( , )m s− ′1  is the parent node of node ( , )m s . Propagation is inhibited for any

node (r,m) that reaches a distortion D m smin( , ) that exceeds D*. Finally, the true dis-

tortion of the surviving nodes are evaluated. The selected codeword i is the one yield-

ing least true distortion within the set of survivors.

3. TWO GAUSSIAN CODEBOOKS

We have studied several different codebooks in various dimensions and for various

rates. Below we report on the performance for a six-dimensional Gaussian source, i.e.

d = 6, coded at a rate R = 2. Thus the codebook size is N = 4096. Two sample-to-

sample correlations, ρ , were selected, namely ρ = 0 and ρ = 0 75. . The codebooks

were trained employing an LBG-type of approach using random samples from the re-

spective sources. The iterations encompassed five million samples. Performance as

discussed below was measured on additional random sets of one million vectors

(independent of the training sets).

The high-rate approximation for Gaussian vector quantization (cf. [11]) states that

σ σQ
Rd f d2 2 22≥ ⋅ ⋅ ⋅ −

X Θ( ) ( )

where R k d= /  is the rate and
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For dimension d = 6 this formula predicts a signal-to-noise ratio (SNR) of

12 04 1 57 10 47. . .− =  dB for ρ = 0 and 12 04 1 57 2 99 13 46. . . .− + =  dB for ρ = 0 75. ,

both at rate R = 2. We measured an SNR of 10.41 dB for ρ = 0 and 13.47 dB for

ρ = 0 75.  for our trained codebooks. The discrepancy to the prediction given by the

high-rate approximation is in reasonable agreement with the accuracy of this approxi-

mation for a moderate rate R. For our example we thus have codebooks that are close

to optimal for the given sources.
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Table 1. Average and maximum number of neighbors, for two neighbor
types and two codebooks.

Average number of neighbors Maximum number of neighbors
Codebook Voronoi Gabriel Voronoi Gabriel

ρ = 0 117 62 178 99
ρ = 0 75. 118 50 305 87

3 . 1 Voronoi properties of the codebooks

The complexity of neighbor descent, regarding encoding time as well as memory, is

directly dependent on the size of the adjacency table. This is the twofold motivation for

using Gabriel neighbors instead of the complete Voronoi description. Table 1 shows

some statistics of the adjacency tables for both codebooks.

The number of Gabriel neighbors is approximately equal to half the number of

Voronoi neighbors for the uncorrelated codebook, and considerably less than that for

ρ = 0 75. . Corresponding improvements in search time and memory requirement will

be noted in the next section.

These results are typical for trained codebooks, i.e. codebooks that are close to op-

timal for a given source. To our experience there are some notable differences when

searching, for instance, random codebooks in comparison to (close to) optimal code-

books. The underlying property is that Voronoi regions are more regular for trained

codebooks than for randomized codebooks.

4. EVALUATION OF SEARCH METHODS

4 . 1 Searching for optimum

As a measure of how fast a search algorithm is, the number of vectorial distance com-

putations is often used. In our 12-bit examples a full search obviously requires the

computation of 4096 distances, but for most fast search methods, the number of dis-

tances depends on the particular input vector X. The maximum number of distance

computations, over all X, is a relevant measure in real-time applications where a fixed

amount of time must be assigned for the encoding of an input vector. In applications

where a large delay is allowed, the average number is more appropriate.

The three search methods were used in conjunction with the two vector quantizers

for Gaussian data described above. Table 2 shows both maximum and average number

of distance computations for the codebook with a sample-to-sample correlation of

ρ = 0, together with the memory requirement for storage of the precomputed code-
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Table 2. Search complexity and storage requirement for the Gaussian
codebook with ρ = 0. The last column shows the loss in SNR compared
to a full search, which gives an SNR of 10.41 dB.

Number of distance computations SNR
Method Average Maximum Storage difference (dB)

Voronoi ND 170 326 732 kbyte 0
Gabriel ND 108 233 394 kbyte –0.06
Tree search 78 693 12 kbyte 0

Table 3. Search complexity, storage requirement, and SNR loss
(compared to a full search yielding 13.47 dB) when ρ = 0 75. .

Number of distance computations SNR
Method Average Maximum Storage difference (dB)

Voronoi ND 165 425 737 kbyte 0
Gabriel ND 90 198 323 kbyte –0.10
Tree search 64 457 24 kbyte 0

book structure. According to these tests, the TS method is faster than ND, and it also

requires much less memory.

The signal-to-noise ratio of the quantizer is also shown in the table. This is because

Gabriel ND theoretically does not guarantee optimal encoding. (The other two algo-

rithms do.) As it turns out, however, the SNR decrease is minor, namely .06 dB.

Gabriel ND practically always finds the truly optimal codeword, or one with almost as

low distortion.

The same set of results for ρ = 0 75.  are shown in table 3. The distortion is still

very close to that obtained with optimal encoding, but the difference is larger than for

the uncorrelated codebook. The explanation to this is that the Gabriel neighbors are

fewer for the correlated codebook (see table 1), which also is the cause of the lower

search complexity in this case.

Summarizing the results of tables 2 and 3, we see that the tree search method out-

performs either of the two neighbor methods as regards average computational com-

plexity as well as in storage requirements. The two neighbor methods, on the other

hand, have a considerably lower maximum computational complexity.

4 . 2 Constraining the encoding time

However, tables 2 and 3 do not reveal all aspects of importance for applications. It is

also relevant to address how rapidly the distortion decreases during the encoding pro-

cess, that is, we need to find out how significant it is to actually continue until the al-

gorithms terminate, guaranteeing optimal codebook look-up. If the last distance com-

putations have a small probability of improving the output codeword, we can buy

considerable time for just a small distortion increase by imposing a bound on the num-

ber of distance computations that are allowed. In real-time applications where the avail-

able time for encoding is limited, such a bound is a necessity.
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Figure 1. SNR as a function of complexity given by the number of dis-
tance measurements, for the vector quantizer with ρ = 0.
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Figure 2. SNR as a function of complexity for ρ = 0 75. .

SNR as a function of such a bound is depicted in figure 1. The diagram shows that

both ND methods gives a higher SNR than TS if more than 26 distortion computations

are allowed, or conversely, that ND reaches any SNR value greater than 6.4 dB faster.

The TS complexity displays a step after a time corresponding to 5 distance computa-

tions. This is the time needed for the initial pass through the tree, with hard pruning,

before which not even an initial guess is known. If only very little time is available,

this is an efficient method, skipping the second pass.

Figure 2 shows similar results for the correlated codebook. The encoding algo-

rithms reach a higher SNR value, but the same qualitative differences between the al-

gorithms as in figure 1 can be observed.
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The curves illustrate the three phases of a search procedure: finding an initial guess,

improving the guess, and verifying that the last guess cannot be further improved. The

algorithms perform differently in each of these phases. The first pass in tree search

provides an excellent initial guess, but the improvement thereafter is slow. Of the three

algorithms, Gabriel ND is the fastest in the second phase, but Voronoi ND performs a

stronger test in the third phase, guaranteeing that the optimal codeword was indeed

found, which is important at least from a theoretical point of view.

In passing we compose a new search algorithm of the three studied algorithms,

employing each one in the phase for which it is most favorable. Thus we use TS to

find an initial guess, then iterate Gabriel ND until it terminates, and finally use Voronoi

ND to check if the solution is optimal and improve it if possible. This hybrid search al-

gorithm outperforms its three components in all aspects but storage. The memory re-

quirement is equal to that of Voronoi ND, plus one third of the TS memory (only the

first element of the triplets is needed). The Gabriel adjacency table can be included as a

part of the Voronoi table and does not require any extra memory.

5. SUMMARY AND CONCLUSIONS

Neighbor descent methods are attractive for vector quantization since such methods

isolate a good candidate at an early stage. The examples taken on illustrate this property

well. The examples also show that neighbor descent algorithms are less effective in

their final phase when verifying that they actually have retrieved the correct entry.

Employing only Gabriel neighbors performs surprisingly well. The loss in perfor-

mance by utilizing only a subset of the true Voronoi neighbors is so marginal that it

falls below the accuracy of SNR measurements over one million sample vectors.

The tree search algorithm is effective in storage. Its average computational com-

plexity in terms of distance computations is the lowest of the methods, for optimal

codebook look-up.

Whenever optimal search is mandatory the maximum number of computations is of

importance. The descent methods have a maximum that exceeds the maximum number

of neighbors accounted for in the method.

“Fast” is an ambiguous term. What appears to be a competitive search method in

one test, may come out as a slow method in another. It depends on what properties

you measure. Therefore, it is vital to employ a test procedure that is in correspondence

with the intended application and implementation. That a method has been found to be

fast in one type of source coding system does not automatically imply that is suitable to

use in another. Especially, the relative performance may change dramatically when a

time constraint is imposed. We emphasize that an evaluation of a search algorithm
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should incorporate several different tests in order to accurately describe the “fastness”

of the algorithm.
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Lattice-Based Quantization, Part II
Thomas Eriksson and Erik Agrell

Abstract In this report we study vector quantization based on lattices. A lattice is
an infinite set of points in a regular structure. The regularity can be exploited in
vector quantization to make fast nearest-neighbor search possible, and to reduce
the storage requirements. Aspects of lattice vector quantization, such as scaling
and truncation of the infinite lattice, are treated. Theory for high rate lattice
quantization is developed, and the performance of lattice quantization of
Gaussian variables is investigated. We also propose a method to exploit the lattice
regularity to design fast search algorithms for unconstrained vector quantization.
Experiments on Gaussian input data illustrate that the method performs well in
comparison to other fast search algorithms.

1. INTRODUCTION

Vector quantization (VQ)1 has since about 1980 become a popular technique for

source coding of image and speech data. The popularity of VQ is motivated

primarily by the theoretically optimal performance; no other source coding technique at

equivalent delay can achieve better performance than optimal VQ. However, direct use

of VQ suffers from a serious complexity barrier. Many authors have proposed

constrained VQ structures to overcome the complexity, for example multistage VQ [1],

tree-structured VQ [2–5], vector-sum VQ [6], gain-shape VQ [7], etc. Each of these

solutions has disadvantages, in most cases a reduced performance. Lattice VQ [8, 9]

is another constrained VQ technique, where the codevectors form a highly regular

structure. The regular structure makes compact storage and fast nearest-neighbor

search (finding the closest codevector to an input vector) possible, but also leads to

performance loss.

Another line of research, also aimed to overcome the complexity barrier of VQ, is

design of fast search methods for unconstrained quantizers. Due to the presumed lack

1 With VQ, we will sometimes mean vector quantization, and sometimes vector quantizer, with the
distinction left to the context.
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of structure in such quantizers2, nearest-neighbor search for unconstrained VQ is con-

siderably more difficult than search of a constrained VQ. Algorithms for fast nearest-

neighbor search of unconstrained VQ include for example neighbor descent methods

[10, 11], where the complexity of a full search is avoided by precomputing an adja-

cency table, consisting of all neighbors to all VQ points. Other methods are the anchor

point algorithm [12], where codevectors are excluded from the search by the triangle

inequality, and the K-d tree technique [13], where a prestored tree structure helps in

avoiding unnecessary operations.

In this report, we discuss lattice-based quantization3 as a solution of the

complexity problem. Lattice-based quantization is a generalization of conventional

lattice quantization, by allowing modifications of the regular lattice structure while still

maintaining a local lattice-similarity. In the first part of the report, conventional lattice

quantization is treated. After the introduction and VQ preliminaries in chapter 1 and 2,

we present high rate theory for lattice VQ for Gaussian variables in chapter 3. The high

rate theory leads to design rules for lattice VQ, and formulas for asymptotic

performance. Further, the performance of lattice VQ for a Gaussian input pdf is

compared to the performance of pdf-optimized VQ. An important task in lattice VQ

design is the truncation of an infinite-size lattice, to include the desired number of

codevectors in the VQ. Other important aspects are for example the choice of lattice,

and scaling of the source, to get a good performance. These aspects are treated from a

practical perspective in chapter 3, and solutions are found, based on the lattice high rate

theory. In many previous reports, the focus has been on high-dimensional lattice

quantization, due to the asymptotic equipartition property (AEP); when the

dimension grows to infinity, the d-dimensional probability density of a memoryless

input source becomes more and more localized to a ”typical” region, inside which the

density is approximately uniform [15]. Thus, a lattice quantizer, with an inherent

uniform distribution of codevectors, can be expected to work well for high

dimensions. We have instead focused on low-dimensional (2–5 dimensions) lattice

VQ, since several interesting areas in speech and image coding employ low-

dimensional parameter vectors.

The density of the codevectors in a lattice quantizer is uniform, which may inflict

on the efficiency of lattice quantization for nonuniform sources. We propose a novel

VQ design concept in chapter 4, with the goal to combine some of the desirable prop-

erties of a lattice VQ with the good performance of a pdf-optimized VQ. The VQ is ini-

tialized with a truncated lattice, and an adjacency table for the lattice is computed.

2 A pdf-optimized unconstrained VQ is generally far from unstructured, but the structure may be
difficult to find and exploit.
3 Most of the conclusions in this report holds for tessellation quantizers as well. More about
tessellations can be found in [14].
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Then, during the training, the quantizer is updated to keep the neighbors as given by

the lattice adjacency table. By example, we show that this lattice attraction can be im-

posed with almost no performance loss at all for a Gaussian input pdf. A neighbor de-

scent algorithm [11], modified to suit the special requirements of the lattice-attracted

quantizers, is presented in chapter 5. The performance of the new neighbor descent

method is reported in chapter 6, together with the performance of direct lattice quanti-

zation of Gaussian variables. Finally, a summary is given in chapter 7.

2. VECTOR QUANTIZATION

In this chapter, we present vector quantization theory. Necessary optimality conditions

for a VQ is given, and theory for high rate quantization is discussed.

2 . 1 Definitions

A VQ 
  
Q  of size N and dimension d is a mapping from a vector in the d-dimensional

Euclidean space   Rd into a finite reproduction set 
  
C = { }c c c1 2, ,..., N :

    Q C: Rd → . (2.1)

The set   C , denoted the codebook, contains N codevectors ck k N, , ,...,= 1 2 , each a

vector in   Rd. The index k of the codevectors is denoted codeword. The rate R of the

quantizer is defined as log2 N d( )  [bits per sample]. The definition of 
  
Q  in (2.1)

partitions   Rd into N disjoint regions, each with a corresponding codevector ck .

The vector quantizer can be decomposed in two components, the encoder and the

decoder. The encoder   E  maps from   Rd to the index set 
  
I = { }1 2, ,...,N

    E I: Rd → , (2.2)

and the decoder   D  maps the index set into the reproduction set   C , i.e.,

    D I: → Rd. (2.3)

With this notation, the quantization operation can be written as a cascade of the encoder

and decoder:

  
Q D Ex x( ) = ( )( ) . (2.4)

In this report, we will measure the performance by the statistical mean of the squared

Euclidean distance measure,

  
D = − ( )[ ]E x xQ

2
. (2.5)

The mean squared error criterion is only one of many possible distortion measures, but

it has the advantage of being widely used and is mathematically simple.
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2 . 2 Optimality conditions

In VQ design, the aim is to find encoder and decoder rules to minimize the chosen

distortion measure. For the squared Euclidean distance measure (2.5) (with a decoder

  
D i i( ) = c ), it can be readily shown [16] that for a fixed partition Ωk  of the input

space, the codevectors c c c1 2, ,..., N{ } should be chosen as the centroid of the vectors

in the region,

c x xk k= ∈[ ]E Ω  (2.6)

to minimize the expected distortion. (2.6) is often called the centroid condition. If in-

stead the set of codevectors is fixed, the partition should be the nearest neighbor

partition:

    Ω Ωc x x c x ck k
d

k i i( ) = = ∈ − ≤ − ∈{ }R :
2 2

 for all I (2.7)

with the corresponding encoder rule

  

E

I

x x c( ) = −
∈

argmin
i

i
2, (2.8)

together with rules to solve ties. The regions Ωk  are often referred to as Voronoi re-

gions, after the author of [17].

We see that both the encoder and the decoder are completely specified by the code-

book   C , so finding optimal encoder and decoder rules is equivalent to finding the op-

timum set of codevectors c c c1 2, ,..., N{ }.

The centroid condition (2.6) and the nearest neighbor partition (2.7) are necessary

but not sufficient for a VQ to be optimal in the mean square sense. Sufficient condi-

tions for a globally optimal VQ have never been presented (except for some special

cases), and a quantizer fulfilling the necessary conditions may be far from optimal.

This makes VQ design a delicate problem.

Using the nearest neighbor condition, the Voronoi neighbors to a Voronoi region

Ωk  in a VQ can be defined as

  
A k i ki N= ∈[ ] ∩ ≠ ∅{ }1, :Ω Ω (2.9)

that is, the set of codevectors whose Voronoi regions share a face with Ωk . With this

definition, the nearest neighbor partition can be reformulated as

    
Ωk

d
k i ki= ∈ − ≤ − ∈{ }x x c x cR : 2 2 for all A , (2.10)

which illustrates that the Voronoi region is defined by a subset of the inequalities in

(2.7). The new definition of the nearest neighbor partition shows that to find the opti-

mum codevector to a given input vector x , it suffices to find a codevector whose

Voronoi neighbors all have greater distance to the input vector. This can be exploited in

fast search algorithms, as described in chapter 5.
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2 . 3 High rate theory

In [18] and [16], it is shown that for high resolution VQs, the optimal reconstruction

point density λ x( ) for quantization of a stochastic vector process x  with pdf fx x( ) is
given by

λ x xx( ) = ⋅ ( )+a f d d( )2 (2.11)

where d is the dimension of the VQ, and a is a normalizing constant. For a quantizer

with the above optimal point density, we have for high rates [16]

D
d d

d
f

d
d d d d R≥

⋅ +( )
+( ) ⋅

( )( ) ⋅+ + −∫
Γ2

2 2 22 1

2
2

π x x ( ) ( )
, (2.12)

where R is the rate of the quantizer, in bits per dimension.

For an uncorrelated Gaussian pdf, the above expression can be simplified to the

Gaussian lower bound (GLB)

D f dR
GLB ≥ ⋅ ( ) ⋅−2 2 2σ x , (2.13)

where

f d
d

d

d
d

d
d( ) = +



 +( )

2 2
2 1

2
2Γ , (2.14)

and

σ x x x xx m x m x x2 2 2= −[ ] = − ( )∫E f d (2.15)

m x x x xx x= [ ] = ⋅ ( )∫E f d . (2.16)

Knagenhjelm [19] shows experimentally that the Gaussian lower bound is not only a

lower bound, but also a good approximation to the actual performance of a well-trained

vector quantizer, if the rate is high.

3. LATTICE QUANTIZATION

In this chapter, we will treat lattice quantization, both from a theoretical and a practical

perspective. High rate theory for lattice quantization of iid Gaussian variables is de-

rived, leading to formulas for lattice VQ design and performance. Practical issues in

lattice VQ design, such as truncation and scaling of the lattice, are also treated.

3 . 1 Definitions

A lattice is an infinite set of points, defined as

  Λ = ⋅ ∈{ }B u uT d: Z (3.1)
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where B is the generator matrix of the lattice. The rows of B constitute a set of d  lin-

early independent basis vectors for the lattice,

  

B b b b= [ ]1 2, , ,L d
T

(3.2)

Thus, the lattice Λ  consists of all linear combinations of the basis vectors, with integer

coefficients.

The theta function of the lattice gives the number of lattice points ci  at a specific

distance from the origin, i.e. points within a shell. The theta function for many stan-

dard lattices can be found in [9].

The fundamental parallelotope of the lattice is defined as the parallelotope

z z zd d i1 1 0 1b b+ + ≤ <... ( ). (3.3)

Associated with each lattice point is a Voronoi region. Due to the regular structure

of lattices, all Voronoi regions in a lattice are simply translations of the Voronoi region

Ω 0( ) around the zero lattice point. Ω 0( ) is referred to as the lattice Voronoi region

Ω , with the definition

  Ω Λ= ∈ ≤ − ∈{ }x x x c cRd : 2 2 for all (3.4)

The normalized second moment of a Voronoi region Ω ci( ) is defined to be

G
d

di

d

i

i

= ( )( )[ ] −
− −

( )
∫

1 1 2 2
vol Ω

Ω

c x c x
c

/
, (3.5)

where vol Ω ci( )( )  is the volume of the Voronoi region around ci . Since Ω ci( ) is a

translation of Ω , Ω Ωc ci i( ) = + , we can write

G
d

d
d= ( )[ ]− − ∫

1 1 2 2
vol Ω

Ω

/ x x , (3.6)

which illustrates that G is independent of i. The constant G  is from now on be referred

to as the quantization constant of the lattice, since it describes the mean squared error

per dimension for quantization of an infinite uniform distribution, if the volume of the

Voronoi region is normalized to one.

Lattice quantization is a special class of vector quantization, with the codebook

having a highly regular structure. Any codevector 
  
ck ∈C  in a lattice quantizer can be

written on the form

c B uk
T

k= ⋅ (3.7)

where uk is one of N given integer vectors, and B is the generator matrix of the lat-

tice. Alternatively, a lattice VQ can be described as the intersection between a lattice

Λ  and a shape   S ,

  C S= ∩Λ (3.8)
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Figure 3.1. Illustration of lattice truncation. Left: a lattice Λ , Center: a
shape   S , Right: the resulting lattice quantizer   C .

where   S  is a d -dimensional bounded region in   Rd. An example is shown in figure

3.1.

The design of a lattice VQ can now be separated into finding a good lattice,

specified through its generator matrix B, and a good shape   S . In addition, a scale

factor for the lattice must be found, and an assignment of indices to the codevectors.

These problems will be treated in the following sections.

Applications of lattice vector quantization include, e.g., image coding [20, 21] and

speech coding [22, 23]. Moayeri et al. superimposed a fine lattice upon a source-op-

timized unstructured VQ to achieve a fast two-step search method [24, 25]. Kuhlmann

and Bucklew [26], Swaszek [27] and Eriksson [28] connects lattices with different

scaling into one “piecewise uniform” codebook, to approximate nonuniform source

pdfs. In [14], an overview of applications including lattice VQ is presented.

3 . 2 Theory for high rate lattice quantization

In this section, we derive expressions for the distortion of lattice quantization of iid

Gaussian vectors, when the rate R of the quantizer tends to infinity. Eyubogˇlu and

Forney [29], and Jeong and Gibson [30], have previously worked with high rate

theory for lattice quantization, but to the authors’ knowledge, simple analytical ex-

pressions for the optimal truncation and performance of d-dimensional lattice quantiz-

ers has not been presented before. A major difference between the high rate lattice the-

ory presented here and the usual high rate theory for optimal quantization (section 2.3),

is that for lattice quantization, it is necessary to explicitly consider overload distortion,

while the usual high rate theory only permits granular distortion.

We assume an iid Gaussian input pdf, with zero mean, unit variance samples.

However, in the end of this section we discuss a generalization of the results.

After some definitions, two theorems concerning the distortion of a lattice VQ as a

function of the rate and truncation are given. The optimal truncation radius, and the

corresponding distortion, are found by setting the derivative of the distortion to zero.

A d-sphere is a d-dimensional sphere, defined as
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aT

Figure 3.2. Illustration of the granular region (the gray area) and the
overload region (everything but the gray area) of a 2-dimensional lattice
quantizer.

  S a ad
d( ) = ∈ ≤{ }x xR : . (3.9)

We assume a truncation shape in the form of a d-sphere with radius aT  (figure 3.2), so

that

  
C = −( ) ∩ ( )Λ v S ad T , (3.10)

where v is an arbitrary vector (see the discussion in section 3.4, and (3.33)).

We subdivide the d-dimensional space into two (nonspherical) subregions: a granu-

lar region 
  
G , which we define as the union of lattice Voronoi regions around all code-

vectors,

    

G

C

= +( )
∈

Ω c
c

i

i

U , (3.11)

and an overload region 
  
G , which is the rest of the space, so that 

    G G∪ = Rd  and

  
G G∩ = ∅. Figure 3.2 illustrates the granular and overload regions for a two-di-

mensional lattice VQ, based on the well-known hexagonal lattice A2.

The total distortion D  of the lattice quantizer can be separated into a granular com-

ponent, 
  
D

G
, and an overload component, 

  
D

G
,

    
D f d f d f d D D

d

= − ( ) = − ( ) + − ( ) = +∫ ∫ ∫x c x x x c x x x c x x*
x

*
x

*
x

2 2 2

R G G

G G
,(3.12)

where c*  denotes the codevector in the codebook   C  that is closest to the input vector

x . We now give two theorems, leading to simple approximations of the granular and

the overload distortion of lattice quantization. In the first theorem, we write the over-

load distortion as the distortion given a high codevector density close to the surface of

the truncation sphere, plus an error term. The second theorem is mainly based on the

smoothness of the Gaussian pdf, so that the pdf within the granular Voronoi regions is

nearly uniform, if the Voronoi regions are small. Both theorems are proved in ap-

pendix A.

Theorem I: The overload distortion is given by
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D f d a ed a

G G G
= ( ) ⋅ ⋅ ⋅ +( )− −

T
T4 22

1 ε (3.13)

where 
  
f d dd
G

( ) = ⋅ ( )( )− −
2 22 2 1

Γ / . For asymptotically high rates R, and the truncation

radius aT  suitably chosen, 
  
ε

G
 tends to zero.

Theorem II: The granular distortion is given by

  
D f d a R

G G G
= ( ) ⋅ ⋅ ⋅ +( )−

T
2 22 1 ε (3.14)

where 
  
f d G d d d
G

( ) = ⋅ ⋅ ⋅ +( )−π Γ / 2 1 2 . For asymptotically high rates R, and the trun-

cation radius aT  suitably chosen, 
  
ε

G
 tends to zero.

The total distortion, D, can be written

  

D D D f d a f d a eR d a= + = ( ) ⋅ ⋅ + ( ) ⋅ ⋅( ) ⋅ +( )− − −
G G G GT T

T2 2 4 22 1
2

ε , (3.15)

where the error term ε  tends to zero when R grows towards infinity. For the moment,

we exclude the error term, and seek the minimum of

  

ˆ ˆ ˆD D D f d a f d a eR d a= + = ( ) ⋅ ⋅ + ( ) ⋅ ⋅− − −
G G G GT T

T2 2 4 22
2

. (3.16)

In appendix A.4, it is shown that the minimum value of D̂  is also the minimum

value of D. To find the value of the truncation radius aT  that minimizes the distortion,

we differentiate ̂D  with respect to aT :

  

∂
∂

D̂

a
f d a f d d a e f d a eR d a d a

T
T T T

T T= ⋅ ( ) ⋅ ⋅ + ( ) ⋅ −( ) ⋅ ⋅ − ( ) ⋅ ⋅− − − − −2 2 42 5 2 3 22 2

G G G
.(3.17)

Since D̂  is a convex and continuous function in the interesting region (see section

A.4), we get the condition for minimal distortion by setting the derivative to zero,

  

∂
∂

D̂

a
f d a e a d f dd a R

T
T,opt T,opt

T,opt= ⇔ ( ) ⋅ ⋅ ⋅ + −( ) = ⋅ ( ) ⋅− − −0 4 2 26 2 2 2
2

G G
. (3.18)

where aT,opt is the value of aT  that minimizes the distortion. We observe that by mul-

tiplying both sides of (3.18) with aT
2 , we get

  

ˆ ˆD a d D
G G

⋅ + −( ) =T,opt
2 4 2 (3.19)

where 
  
D̂

G
 and 

  
D̂

G
 are given by (3.16). We get

  

ˆ

ˆ
D

D a d
G

G

=
+ −
2

42
T,opt

. (3.20)

In appendix A it is shown that aT,opt tends to infinity when R approaches infinity. We

conclude that the total distortion is dominated by the granular distortion, when the rate

tends to infinity,

  

D

D
G

G

→ 0 when R→ ∞ . (3.21)
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Figure 3.3. Experimental performance for lattice quantization of an iid
Gaussian pdf (circles), and performance predicted by lattice VQ high rate
theory (line). Left: 2 dimensions. Right: 5 dimensions.

Returning to (3.18), and taking the logarithm of both sides, we have

  

− + −( ) ⋅ ( ) + + −( ) = − ⋅ +
⋅ ( )

( )










a
d a a d R

f d

f d
T,opt

T,opt T,opt

2
2

2
6 4 2 2

2
ln ln ln ln G

G

,(3.22)

or, equivalently,

  

a d a
d

a
R

f d

f dT,opt T,opt
T,opt

2 2
24 2 1

4
4 2 2

2
− −( ) ⋅ ( ) − ⋅ + −





= ⋅ − ⋅

⋅ ( )
( )









ln ln ln ln G

G

.(3.23)

Since aT,opt tends to infinity for rates approaching infinity, both sides are dominated

by their first terms, resulting in

a RT,opt
2 4 2≈ ⋅ ln   when R→ ∞ . (3.24)

that is, the optimal truncation radius aT,opt is proportional to the square root of R for

asymptotically high rates.

The total distortion (3.15) can now be written

D g R d R= ( ) ⋅ −, 2 2 , (3.25)

where g R d,( )  is approximated using (3.21) and (3.24),

  
g R d f d R, ln( ) ≈ ⋅ ⋅ ( ) ⋅4 2

G
   when R→ ∞ . (3.26)

It is easy to generalize the formulas to arbitrary variance, by making the substitution

y x y= ⋅ σ 2 d  (see (3.27)–(3.29)). If we compare the lattice VQ distortion with the

distortion of a pdf-optimized quantizer (2.13), we see that the discrepancy increases

with the rate. This can be observed in figure 3.7, section 3.6, where optimal VQ and

lattice VQ are compared.

(3.25) is only proven for rates approaching infinity, but we have experimentally

verified that the formulas also hold for realistic rates. In figure 3.3, the experimental

performance of lattice quantization (see table 6.1) is compared to the high rate theory
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Figure 3.4. Estimated performance loss for a lattice VQ compared with
a pdf-optimized VQ. The curves indicate rate and dimension for lattice
quantizers with performance loss from 1 to 5 dB.

results, for quantization of 2- and 5-dimensional Gaussian variables.

With this theoretical derivation of lattice VQ performance, we have two asymptoti-

cal lattice VQ results: the asymptotic equipartition property predicts that a lattice VQ

performs better for high dimensions, while the high rate theory predicts that a lattice

VQ performs worse for high rates. These results are illustrated in figure 3.4, where

each curve indicates a specific performance loss compared to a pdf-optimized VQ. The

curves in figure 3.4 were computed by use of the high rate lattice theory (3.25) and the

Gaussian high rate lower bound in (2.13).

The formulas above were derived for iid Gaussian densities, with zero mean, unit

variance samples, but it is straightforward to generalize the theory to arbitrary variance

and mean. The conclusions should be similar also for correlated Gaussian data, but the

theory is more complicated for correlated variables. By simple modifications, the for-

mulas can be used for a generalized Gaussian pdf. Some of the results may also be

possible to generalize to other pdfs. For all unbounded pdfs, such as Gaussian,

Laplace, Gamma, etc., the size of the granular region must increase when the rate in-

creases, for the overload distortion to be zero for an infinite rate. Thus, the granular

region includes parts of the space with lower and lower pdf. Therefore, the larger the

rate, the more the point density of an optimal quantizer, given by (2.11), differ from

the uniform point density of a lattice quantizer. Based on the above reasoning, and on

our experience of high rate theory for Gaussian pdfs, we believe that the suboptimality

of lattice quantizers for high rates holds under far more general conditions than for iid

Gaussian distributions.

Substituting as discussed above, to get formulas that are valid for arbitrary input

signal variance, we conclude the high rate lattice theory in the following three points:
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• The optimal squared truncation radius is proportional to the rate for high rates,

a R
dT,opt

2 24 2≈ ⋅ ⋅ln σ y   when R→ ∞ . (3.27)

• For high rates, the granular distortion dominates over the overload distortion,

  

D

D
G

G

→ 0 when R→ ∞ . (3.28)

• For high rates, the performance of lattice quantizers, as given by the high rate

formula

D R G dR d≈ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +( ) ⋅− −2 4 2 2 12 2 2ln /π σΓ y  when R→ ∞ , (3.29)

is inferior to the performance of optimal vector quantizers, given by the Gaussian

lower bound (2.13).

3 . 3 Selection of lattice

The choice of lattice is of course of major importance for the performance of a lattice

VQ. Ideally, the lattice should be selected to suit both the actual pdf and the truncation.

However, for high rate quantization of smooth pdfs, the choice of lattice is fairly inde-

pendent of input pdf and truncation [16]. For these cases, the lattice can be chosen

based on its quantization performance for an infinite uniform pdf. This choice is moti-

vated by high rate theory; for high rates, the pdf in each Voronoi region can be ex-

pected to be approximately uniform, at least for reasonably smooth pdfs (such as the

Gaussian pdf). Further, the performance of infinite uniform lattice quantization, given

by the quantization constant G, is easily found in the literature for many lattices.

Conway and Sloane [9] give values of the quantization constant G and lattice basis

B for several lattices. For example, the best known lattices for quantization of infinite

uniform pdfs in 2 and 5 dimensions are generated by, respectively,

B = 





s
2 0
1 3

(3.30)

and

B =





















s

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

(3.31)
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where s is a scale factor to be determined4. The first is the well-known hexagonal grid

(figure 3.2), also denoted the A2 lattice, and the second is the D5
*  lattice. The best

known lattices for quantization of infinite uniform pdfs in 2–5 dimensions are A2, D3
* ,

D4
*  and D5

* , respectively. These lattices are employed in our experiments in chapter 6.

In [14], lattices for quantization purposes are thoroughly studied.

3 . 4 Truncation and scaling

As described previously in this chapter, a lattice quantizer is the intersection between a

lattice Λ  and a shape   S . The procedure to reject lattice points outside the shape, called

truncation of the lattice, is of major importance for the performance of the resulting

lattice quantizer.

Truncation for known distributions: Jeong and Gibson [30] argue that in a good

lattice VQ, the lattice should be truncated by a contour of constant probability density

for the considered source, and design lattice VQs for Gaussian and Laplacian data. For

the Laplacian pdf, this leads to truncation by a d -octahedron, which, mostly in combi-

nation with the integer lattice   Zd, has received much attention since Fischer introduced

the structure (Pyramid VQ) in the mid-80’s. A recent reference on this topic is [31]; see

also Swazek [32]. For a Gaussian pdf, the iso-probability contours are ellipsoids, and

a corresponding truncating shape   S  is described by

    S = ∈ <−{ }x x C xxRd a: T 1 2 (3.32)

where Cx  is the covariance matrix of the Gaussian input distribution, and a is a con-

stant, determining the size of the ellipsoid. To truncate a lattice to the correct number of

VQ points, the radius a above must be determined. An approximate value of a can be

found by using the volume of the lattice Voronoi region, and for certain rates, a can be

found by use of the theta function of the lattice.

A problem that may occur when lattices are truncated to a desired number of points

is that a lattice normally has many points lying on the same distance from the origin

(shell), and the truncation procedure may be required choose a few among those. To

prevent lattice points to fall on the boundary, an arbitrary vector   v ∈Rd  can be added

to the shape prior to the truncation:

  
C = ∩ +( )Λ S v   (or, equivalently, 

  
C = −( ) ∩Λ v S ). (3.33)

After the truncation, the truncated lattice is moved to make the mean of all codevectors

equal to the mean of the source. The choice of v  can affect the performance of the re-

sulting quantizer. We have experimented with four different methods to select v :

I v  is set to zero.

4 Lattices can of course also be rotated and translated, but for high rates and smooth pdfs, these
operations have little influence of the performance of a lattice VQ.
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I I v  is selected as a very small (small compared to the basis vectors of the lattice)

stochastic vector.

I I I v  is selected as a stochastic vector with length in parity with the basis vectors of

the lattice.

IV v  is selected to minimize the energy of the resulting quantizer C,

    
v u

u
= ∩ +( )

∈
argmin

Rd

Λ S
2
  where  

  

C
2 2

1

=
=

∑ ck
k

N

. (3.34)

Method I leads to truncations that are natural for the chosen lattice, truncations were the

outmost shell is full. This can of course only be achieved for certain values of the

number of VQ points. Method II, III and IV can give arbitrary VQ sizes. Method IV

has been used by Conway and Sloane [33] in a different application, and they also

propose an iterative algorithm to perform the energy minimization. The first and sec-

ond method (I and II) have proved best in the cases tested in this study. Since only a

limited set of rates can be achieved with method I, method II is preferred in this paper,

although some results with method I are also reported.

After the truncation, the lattice VQ should be scaled to give the best possible per-

formance. The scale factor can be approximated by use of high rate theory (see section

3.2), but to get better results an iterative procedure is often necessary, were the optimal

scaling is found for a training database. Several authors have previously studied lattice

scaling by iterative procedures, e.g., [8, 30, 34]. In [30], lattice VQ of iid Gaussian

and Laplacian is treated, and the scaling is done by numerical optimization.

Data-optimized truncation: In applications, the source pdf is generally not analyti-

cally known, but described by an empirically collected database. In this case, we pro-

pose a data-optimized truncation, where every vector in the database is classified to its

closest point in the full lattice, and the most probable lattice points are kept in the lattice

quantizer. In contrast to truncation for known distributions, there is no way to avoid

storing the truncation information for the data-optimized truncation. The algorithm is

described in the following steps:

Step 1: An approximate scaling of the chosen lattice must be found. For iid Gaussian

pdfs, and for pdfs that can be approximated as iid Gaussian, the high-rate scaling

formulas in section 3.2 can be used. For unknown pdfs, ad-hoc scaling may be

necessary. We have used a scaling rule that makes the granular distortion of the

lattice equal to the distortion of a pdf-optimized quantizer with the desired rate, ac-

cording to the Gaussian lower bound DGLB (2.13) in section 2.3:

s
D

G
= GLB , (3.35)
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where G  is the quantization constant of the lattice. The estimated scale factor is

only an approximation of the optimum scale, but the truncation procedure is not

very sensitive to the scale, and mismatches are easily detected in step 3 of this al-

gorithm. In all tested cases, this method has proven sufficient.

Step 2: Classify each vector in the database to the nearest lattice vector, by use of a

nearest-neighbor algorithm for the chosen lattice [9]. The lattice points with the N

highest probabilities become codevectors in the lattice quantizer.

Step 3: An optimal scale factor s*  for the lattice quantizer is found, by some numerical

optimization method. If the scale factor is very different from the one found in

step 1, go to step 2 and repeat the procedure using the new scale factor s* .

Index-optimized truncation: In [33], Conway and Sloane introduce Voronoi codes,

where the truncation is chosen as an integer multiple of the Voronoi region of the lat-

tice. Forney subsequently generalizes the concept to other truncation shapes in [35].

With the Voronoi codes, the indexing of the lattice VQ is greatly simplified. However,

the Voronoi code truncation is generally not optimized for the pdf, and performance

loss may result5.

3 . 5 Indexing

In addition to the choice of Λ  and   S , lattice VQ design involves one more issue; as-

signment of indices to the codevectors. This enumeration can be made aiming at sev-

eral, partly conflicting, goals: (i) Memory saving. The indexing should have a mathe-

matical formulation that is more compact than a full table. (ii)  Fast encoding. The in-

dexing should, in combination with one of the search algorithms that have been devel-

oped for lattices [9], yield a fast encoder   E . (iii)  Fast decoding. The codevector

should be rapidly retrievable from the index in the decoder   D . (iv) Symmetry.

Characteristic for a lattice is that all points are alike in relation to the surrounding

points. The indexing should preserve this property. In chapter 5, where an adjacency

table is needed, the symmetry solves the memory problem. (v) Robustness. If the

codebook is used for a noisy channel, bit errors should cause as little distortion as

possible.

There exists an elegant solution of the indexing problem for Voronoi codes [33] in

such a way that differences in indices reflect the relative position between codevectors.

The method, based on modular arithmetics, satisfies (i)–(iv) above. On the other hand,

Voronoi codes can only attain certain rates R, namely, those for which 2R is an inte-

ger.

For a Gaussian probability density function, or other densities with rotational

symmetry, it is beneficial if the truncation shape is as spherical as possible.

5 Eyubog ˇlu and Forney show in [29] that the performance loss is small for large dimensions.
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Figure 3.5. A 19-point lattice VQ, enumerated by using a 25-point set.

Unfortunately, the d -sphere does not, in general, possess any of the appealing prop-

erties mentioned above. To combine a shape that is suitable for the source (such as the

d -sphere for Gaussian data) with one that has a nice indexing (such as a Voronoi re-

gion), the former can be inscribed into the latter. This approach amounts to designing a

larger set that includes the codebook, enumerating this larger set, and then disregarding

the points that do not belong to the codebook. For this method, (ii)–(iv) above are

satisfied. The larger set can for instance be chosen as a Voronoi code [33]. An alterna-

tive larger set is B zT ⋅ , where z is a rectangular subset of the d-dimensional cubic lat-

tice. Figure 3.5 illustrates the latter method for a 2-dimensional example, where a 19-

point lattice VQ is enumerated by using a 25-point set, for which (ii)–(iv) are satisfied.

In the VQ design algorithm in chapter 4 and 5, we employ an indexing method in this

category.

    
Figure 3.6. Two 64-point quantizers for a Gaussian pdf. Left: a lattice
VQ. Right: a well-trained VQ.
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Figure 3.7. SNR as a function of rate for lattice VQ (  o) and pdf-opti-
mized VQ (+). Left: 2-dimensional VQ. Right: 5-dimensional VQ.

3 . 6 Lattice VQ examples

In figure 3.6, a lattice VQ and a pdf-optimized VQ are depicted. The SNR values for

the lattice quantizer and the optimized quantizer are 14.6 dB and 15.3 dB, respectively.

In figure 3.7, the performance of lattice VQ is compared to pdf-optimized VQ for a 2-

and a 5-dimensional iid Gaussian pdf. As predicted by the lattice high rate theory, the

discrepancy between lattice VQ and pdf-optimized VQ increases for higher rates. More

results for lattice quantization of Gaussian variables in 2 to 5 dimensions are reported

on in section 6.2.

If the pdf-trained VQ in figure 3.6 is studied in detail, a feature of high rate quan-

tizers can be observed: the structure is well-ordered, and the environment of the VQ

points is locally similar to a lattice, at least for the points close to the center. This fea-

ture is exploited in the next chapter, to design VQs for fast search.

4. LATTICE-ATTRACTED VQ DESIGN

In this chapter, we propose an extension to standard VQ design algorithms, a lattice-

attracted design algorithm, where the codebook is initialized with a truncated lattice,

and the codevectors are updated to maintain a local lattice similarity for each iteration.

The goal with this procedure is to make it possible to exploit the local lattice-similarity

for fast nearest-neighbor search.

A sketch of a lattice-attracted algorithm is described in the following steps:

I : Initialize the VQ with a truncated lattice. An adjacency table for the lattice is also

required, denoted the lattice adjacency table. This table consists of all neighbors

to codevector 0 (vector zero), together with rules to compute the neighbors to an

arbitrary point in the lattice.

I I : Train the VQ with a conventional design method, but add procedures to approxi-
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mately keep the initial set of neighbors, as defined by the lattice adjacency table.

The initialization procedure is described in section 4.1. In sections 4.2 and 4.3, we

study how to extend two standard design algorithms, the generalized Lloyd algorithm

[36] and a competitive learning algorithm [37], to approximately keep a predefined

neighbor structure. In chapter 5, a novel lattice-based nearest-neighbor search method

is described, based on the local lattice-similarity of the VQs trained with the proposed

lattice-attracted algorithm. It is even possible to apply the fast search method during the

training, as described in section 5.2.

The algorithm introduced here can, together with the specialized fast nearest-neigh-

bor search method described in chapter 5, be viewed as a link between lattice quantiza-

tion and unconstrained quantization, with the goal to combine some of the advantages

of both methods.

4 . 1 Lattice initialization

Most iterative VQ design algorithms, such as the generalized Lloyd algorithm [36]6, or

the competitive learning algorithm [37], can easily be trapped in a local distortion

minimum when seeking the global minimum. A well-chosen initialization procedure

can help the algorithm to avoid local minima far from the global minimum. For exam-

ple, the generalized Lloyd algorithm is often initialized by a splitting procedure, pro-

posed by Linde et al [3] (the LBG algorithm). Another possibility is to initialize the VQ

with a truncated lattice. Here, we use the lattice as a good initialization for further

training, but also to find a lattice adjacency table for use in the fast search procedures

described later.

The lattice initialization procedure starts with selection of a lattice with a good

quantization constant G, as discussed in section 3.3. The lattice is truncated by any of

the methods described in section 3.4. If the pdf of the source process is given by a

database, the data-optimized truncation procedure can be used. For known pdfs, the

lattice can be truncated by an iso-probability contour.

Now an adjacency table must be found for the chosen lattice. Voronoi neighbors of

some standard lattices can be found in [9]. As discussed in section 3.1, the neighbors

to a codevector can be computed by translation of the neighbors to any other codevec-

tor, so only neighbors to the zero codevector have to be stored. A simple enumeration

technique is discussed in section 3.5, where the lattice VQ is enumerated by using a

larger set with desirable properties. A possible larger set is given by B zT ⋅ , where z is

a rectangular subset of the cubic lattice. The technique is illustrated in figure 3.5,

where we see that the neighbors to an arbitrary point in the lattice VQ can be found by

6 The generalized Lloyd algorithm is a direct generalization of a work by Lloyd, first presented in an
unpublished technical note, “Least squares quantization in PCM”, at Bell Labs 1957.
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Figure 4.1. Neighbor structure (lines) for two lattice VQs (dots). Left:
A lattice VQ optimized for uncorrelated Gaussian data. Right: A lattice
VQ optimized for correlated Gaussian data, ρ = 0 9. .

adding an offset of ±1, ±4 or ±5 to the index of the point. This is not the most efficient

method in terms of required storage, but it works and it is simple. A more storage-

efficient larger set is the Voronoi codes discussed in section 3.5 and [33, 35], and

these have been used in table 6.7. With the larger-set methods above, the neighbors to

the actual codevector are found by a simple procedure; the index of the codevector is

found, the offset to the wanted neighbor is added, and the codevector corresponding to

the neighbor index is found7. The first operation, finding the index of a codevector,

can be solved by storing a table of indices, with one integer index for each codevector.

Adding offset is trivial, and finding the codevector corresponding to the neighbor in-

dex is either solved by looking in the index table, or in another table with index-to-

codevector translations (or by a compromise between those two alternatives). See sec-

tion 6.4 for storage requirements of the translation tables, and overhead complexity of

the translation.

An alternative to ellipsoid truncation and larger-set indexing by table look-up, is di-

rect use of the Voronoi codes in [33], for which no translation tables are necessary.

However, a Voronoi-shaped truncation region is in general not optimal for the source

pdf, and performance loss results.

For a complete description of the lattice Voronoi region, the distances to the neigh-

bors are also stored. The set of neighbors to the zero codevector, together with the cor-

responding distances, describes the Voronoi region of any point in the lattice.

The features of the lattice initialization procedure are here illustrated by examples of

two-dimensional vector quantizers. In figure 4.1, two 64-point VQs are plotted, di-

rectly after being initialized with a truncated lattice. Each VQ point and its neighbors,

according to the lattice adjacency table, are connected by lines. The regular structure of

the lattice initialization is clearly visible.

7 Some of the codewords will not have a full set of neighbors, due to the truncation of the lattice.
Missing neighbors are easily detected with the table look-up methods used here.
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In the following sections, we will try to optimize the quantizers for the given

source, while still maintaining a locally lattice-similar structure. The neighbors accord-

ing to the lattice adjacency table, denoted the lattice neighbors, will deviate from the

true Voronoi neighbors of the quantizer, but large similarities will remain, if the opti-

mization procedure is successful.

4 . 2 Lattice attraction for the generalized Lloyd algorithm

The generalized Lloyd algorithm (GLA) is often used for unconstrained VQ design. In

GLA, the two necessary conditions, (2.6) and (2.7), are alternatingly iterated until the

quantizer has converged. GLA is a greedy algorithm, with the feature that the average

distortion decreases for each iteration. This means that GLA finds the nearest local

minima, and stops the iteration. To overcome this behavior, many methods have been

proposed on how to add randomness to GLA [38], in order to make it possible to

evade local minima. A good initialization is of prime importance for the success of

GLA.

GLA is briefly described in table 4.1, step 1–3 and 5. To extend GLA to maintain

the neighborhood structure as given by the lattice adjacency table, we add an extra step

(step 4 in table 4.1), where all codevectors are moved a small step to increase the local

lattice-similarity. This extra step can be implemented in several ways, and we describe

one such way below. In advance, the codebook is initialized with a truncated lattice,

and a lattice adjacency table is found, as described in section 4.1. After the standard

GLA iteration, each codevector is moved a short step towards the centroid of its neigh-

bors, according to the distance to the corresponding neighbors in the lattice we want to

mimic. In this way, the geometrical environment to each point in the VQ becomes more

similar to the lattice, but each point has still a high degree of freedom during the train-

ing. The algorithm, from now on denoted lattice-attracted GLA or LA-GLA, is de-

scribed in table 4.1, where step 4 is added to a standard GLA. In this algorithm de-

scription, the function to compute the lattice neighbors is denoted 
  
N k i,( ), giving

neighbor k of codeword i in the codebook. With lk, we refer to the distance to neigh-

bor k in the chosen lattice.

The step size parameter εm can be chosen to be constant over the training phase, or

it can be a function of time. We have experimented with a linearly decreasing (to zero)

step size,

ε εm
m

M
= ⋅ −



0 1 , (4.1)

where ε0 is the start step size and M is the total number of iterations of the algorithm.

This choice makes the lattice attraction weaker and weaker, and at the end there is no

attraction at all. We have experimented with different initial step sizes, and found that a
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Table 4.1. The lattice-attracted GLA algorithm.

Step 1. Initialize the codebook 
  
C 1 1

1
2
1 1= { }c c c( ) ( ) ( ), ,..., N . Set m = 1.

Step 2. For the given codebook 
  
C m, classify each vector x  in the training database

  T  to a region Ψk
m( ) , using the nearest neighbor partition

  

Ψk
m

k
m

i
m i N( ) ( ) ( )= ∈ − ≤ − ∈( ){ }x x c x cT : ,

2
1

2
 for all 

If a tie occurs, that is, if x c x c− = −( ) ( )
k
m

i
m2 2

 for one or more i, assign x  to

the region Ψi
m( )  for which i is smallest.

Step 3. Compute a new codebook using the centroid condition

c xk
m

k
m i

i

k
m

( )
( )

=

=

( )

∑:
1

1Ψ

Ψ

where the sum is over all training vectors x  classified to Ψk
m( ) , and Ψk

m( )  is the

cardinality of the set Ψk
m( )  (the number of elements in Ψk

m( )). If Ψk
m( ) = 0 for

some k, use some other code vector assignment for that cell.

Step 4. Move all codevectors a small step εm to increase the lattice similarity,

  

c c
c c

c ci
m

i
m

m

k i
m

i
m

kk

K i

k i
m

i
mw k i

l
i N( ) ( )

,
( ) ( ) ,

( ) ( ),

/
,...,+

( )=

( )

( )= + ⋅ −
( )( )

−









 ⋅ −( ) =∑1

1

1 1ε
N

N

N
,

where 
  
N k i,( ) is the lattice adjacency function, K i( ) is the number of neighbors

to codeword i, and w j( )  is the average weighted distance between a codevector

k and its neighbors,

  

w j
K j

lk j
m

j
m

k
k

K j

( ) = ( ) ⋅ −( )
=

( )

∑1

1

c c
N ,
( ) ( ) / .

The new set of vectors defines a new codebook, 
  
C m

m m
N
m

+
+ + += { }1 1

1
2

1 1c c c( ) ( ) ( ), ,..., .

Step 5. Stop the iteration if some stopping criterion has been reached, for example if

the average distortion for 
  
C m+1 has changed by a small enough amount com-

pared to the distortion of 
  
C m. Otherwise, set m m:= +1 and go to step 2.

value of ε0 in the interval 0 05 0 1. .−  leads to good performance. The extra step is per-

formed only once per iteration of the full training database, and thus the extra com-

plexity is small.

In figure 4.2, two 64-point quantizers are depicted after being trained for a jointly

Gaussian distribution with the LA-GLA algorithm, where the codebooks were initial-

ized as in figure 4.1. We see that most of the lattice neighbor structure is retained, but

that the quantizers are more optimized for the Gaussian pdf now. Results from simula-

tions with the LA-GLA method are reported on in section 6.3.
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Figure 4.2. Two VQs optimized for Gaussian data, trained with the LA-
GLA algorithm. Lattice neighbors are depicted as lines, and codevectors as
dots. Left: uncorrelated data. Right: correlated Gaussian data, ρ = 0 9. .

4 . 3 Competitive learning with lattice attraction

Competitive learning (CL) [37] was first developed for training of artificial neural

networks, but can also be used for vector quantization training. In the CL algorithms,

the training vectors are presented one by one, and only one codevector (the closest

one) is adjusted for each input vector. The learning rule of CL can be derived from the

two necessary conditions in section 2.2 [39], which make CL and GLA essentially

equivalent. The main difference is that GLA works in a batch mode, were all training

vectors are presented before the codevectors are adapted, as opposed to the sample

iterative technique used in CL algorithms. Another important difference is that in

contrast to GLA, the CL algorithm is not greedy; the average distortion does not

necessarily decrease at each iteration. This allows the CL algorithm to evade some local

minima.

In [37], Kohonen presents the self-organizing feature map, which extends CL by

modifying not only the winner at each iteration, but also neighbors to the winner ac-

cording to some topological map. The map is often a two-dimensional square lattice,

where the neighbors can be easily computed. A feature of Kohonen training is that the

structure of the map is imposed on the quantizer. Knagenhjelm [40] uses a Hamming

map, in order to train VQs where the Hamming distance between codewords and the

Euclidean distance between codevectors are closely related. This is shown to substan-

tially robustify the VQ for transmission over a noisy binary symmetric channel.

The self-organizing feature map is a straightforward way to attract the quantizer to

the lattice. The neighbors in the map are given by the lattice adjacency table, and the

winning candidate is modified together with all neighbors in the table for each presen-

tation of input data. The algorithm is described in table 4.2. The neighbor step size εm

is, as in the LA-GLA, linearly decreasing,
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Table 4.2. The competitive learning algorithm with a lattice topology
map.

Step 1. Initialize the codebook 
  
C 1 1 2= { }c c c, ,..., N . Set m = 1.

Step 2. A random vector xm is drawn from the training database. For the input data

xm, find the winning candidate according to the quadratic error criterion,

  

c x c
c

* = −
∈

argmin
C m

m
2.

Step 3. Modify the winning codevector as

c c x c* * *:= + ⋅ −( )ηm m .

where the “temperature” ηm is linearly decreasing from an initial temperature η0 :

η ηm
m

M
= −



0 1 .

Step 4. Modify the neighbors to the winning candidate a small step εm, according to

c c x ck k m m m k k K: , ,...,= + ⋅ ⋅ −( ) =η ε 1 .

where ck  is one of the totally K neighbors (found in the lattice adjacency table)

to c* .

Step 5. If m M= , then stop the iteration. Otherwise, set m m:= +1 and go to step 2.

ε εm

m

M
= −



0 1 . (4.2)

The resulting CL algorithm is denoted the lattice-attracted competitive learning

(LA-CL) algorithm. Results of simulations with this algorithm are presented in chapter

6.

5. FAST SEARCH OF LATTICE-ATTRACTED VQ

In [11], an algorithm for fast search of arbitrary VQs is described. With this algorithm,

denoted the steepest neighbor descent (SND) algorithm, an adjacency table is

precomputed, consisting of all Voronoi neighbors to all codevectors in the VQ (how to

find the adjacency table is described in [11]). When the table is found and stored, the

actual quantization can begin. For each input vector x , one of the codevectors in the

codebook is selected as a starting hypothesis c( )0 . The distance between x  and c( )0  is

computed, and then the distances between x  and the neighbors to c( )0  (found in the

adjacency table) are computed. When all neighbor distances have been computed, the

neighbor closest to x  becomes the new hypothesis c( )1 .
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This procedure is repeated until a hypothesis vector is found whose neighbors are

all worse. It can easily be shown that when a codevector with lower distance to the in-

put vector than all its neighbors is found, this vector is the optimal codevector (see

(2.10)).

The main disadvantage of the SND algorithm is the storage requirements for the

precomputed adjacency table, typically many times the required storage of the code-

book. For example, a 12 bit 6-dimensional VQ requires around 700 kbyte storage for

the adjacency table [11], and this is impractical for many applications.

Lattices have a feature that can be exploited to reduce the storage requirements for

the SND algorithm; all neighbors to an arbitrary point in a lattice can be found by

translation of the neighbors to the zero lattice point. To find the neighbors to an arbi-

trary point in a lattice VQ, the neighbors to the zero point are translated, and the set of

neighbors is truncated by the global truncation rules. Thus, we can apply the SND al-

gorithm to a lattice VQ, supported only by the neighbors to a single region. However,

this would not be a very competitive algorithm, since fast specialized search algorithms

have been developed for many important lattices [33]. A better choice is to apply the

low-storage SND algorithm to the well-performing lattice-attracted quantizers from

chapter 4. These quantizers are trained to maintain a lattice neighbor structure, and are

well suited for low-storage SND search.

In this chapter, we discuss how to apply the steepest neighbor descent method to

the quantizers trained by LA-GLA or LA-CL algorithm.

5 . 1 An extended SND algorithm

Here, we will propose an SND algorithm to suit the lattice-attracted quantizers from

chapter 4. The lattice neighbors of the lattice-attracted quantizers (c.f. figures 4.1 and

4.2) are not always in perfect correspondence with the real Voronoi neighbors. False

neighbors, i.e., codevectors listed as lattice neighbors without being Voronoi neigh-

bors, constitute no problem, but not listed Voronoi neighbors can lead to erroneous

decisions, and must be considered.

An important issue is the starting point of the algorithm, i.e., the choice of an initial

hypothesis codevector. For the tested Gaussian densities, the trained lattice-attracted

quantizers show a high degree of similarity with the lattice quantizer used for the

initialization of the LA-GLA and LA-CL algorithms; the codevectors stay in general

fairly close to their initial positions. Thus, a good starting hypothesis is the vector

found by nearest-neighbor search of the initial lattice quantizer. For many important

lattices, nearest neighbor search can be done with very low complexity [9]. No extra

storage is required for this, just a search algorithm for the chosen lattice.
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We have extended the SND algorithm to handle the special problems with an in-

complete adjacency table, and also to exploit the lattice-similarity to find a good starting

point. Three extensions have been used:

I An initial hypothesis is found by nearest-neighbor search of the chosen lattice.

I I If the current hypothesis codevector is closer to the input vector than all of its

neighbors, the neighbor descent search continues from the second best vector.

This procedure is repeated until no improvement is obtained.

I I I When the SND terminates and declares a winning codeword, an exception table

is consulted, including Voronoi neighbors not found in the lattice adjacency table.

If the winning codeword is found in the exception table, the listed extra

neighbor(s) is also tested.

The exception table should be constructed prior to the actual quantization. All the

missing Voronoi neighbors do not have to be included in the exception table, only

those that lead to a substantially higher distortion if not included. The exception table

can be found by running a full search in parallel with the SND search for a training

database, and observing when the answers from the two search procedures differ.

The first extension requires a lattice nearest-neighbor search prior to the VQ search.

The complexity of this extension varies with the effectiveness of the search algorithms

for the actual lattice, but for the lattices used here, the complexity corresponds to 0.5–2

extra distance computations. No extra storage is needed. The second extension has ex-

perimentally shown to lead to a few additional distance computations for each input

vector, compared to the standard SND algorithm, but no extra storage is required. The

third extension, the exception table, requires some extra storage, but the extra search

complexity is small, since the exception table is seldom consulted.

Experiments show that if the performance loss compared to a full search is required

to be less than 0.01 dB, the exception table can be very small, typically a few entries

for the 2-dimensional VQs tested here, and 20–30 entries for the high rate 5-dimen-

sional VQs. If no performance loss at all is allowed, the 5-dimensional VQs may re-

quire an exception table that includes up to 10–15% of the vectors in the codebook, to

compensate for all missing neighbors, even though these occur with a probability close

to zero.

If the exception tables are excluded, some performance loss is inevitable. The 5-

dimensional VQs require larger exception tables to reach 0.01 dB performance loss

than the 2-dimensional VQs, but on the other hand, if the exception tables are ex-

cluded, the performance loss of the 5-dimensional VQs is small, for the tested VQs al-

ways less than 0.05 dB. In section 6.4, we report the performance, in terms of storage

and search complexity, for quantizers where the exception table is designed for “almost

lossless” (less than 0.01 dB loss) operation.
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Table 5.1. The extended steepest neighbor descent (eSND) algorithm.

Step 1: Find an initial hypothesis codevector c* , by a lattice nearest-neighbor search.

Set the temporary codevector c to null.

Step 2: Find the lattice neighbors to c* , by look-up and translation of the lattice adja-

cency table.

Step 3: Compute the distortion of all untested neighbors. If a better codevector than

c*  is found, this becomes the new hypothesis c* , and the execution continues at

step 2. If no better neighbor can be found, continue to step 4.

Step 4: If the current hypothesis c*  is equal to the temporary codevector c, continue

to step 5. Otherwise, set the temporary codevector c to the second best codevec-

tor found up to then, set c c* = , and go back to step 2.

Step 5: If the current best hypothesis is listed in the exception table, compute the dis-

tortion of the extra neighbor(s) as given by the exception table.

Step 6: The best codevector found until now is returned.

The extended SND algorithm (eSND) is described in table 5.1.

The algorithm works well for Gaussian data. An interesting question is how well it

generalizes to other pdfs. The simple answer is that it generalizes to pdfs that can be

well quantized using a quantizer with locally lattice-similar structure. These include

pdfs where direct lattice quantization works well, and thus the VQ points typically

move only a small distance from the lattice initialization. It also generalizes to pdfs for

which a multidimensional compander in combination with a lattice quantizer works

well (see, e.g., [41] for a treatment of this subject). However, the question if the al-

gorithm works well for arbitrary pdfs is a subject for further research.

In section 6.4 we report on the search complexity reduction that can be achieved

with the eSND algorithm. In section 5.2, we study how to apply the eSND algorithm

already during the design phase, with a design complexity reduction as result.

5 . 2 Fast search during the design phase

To speed up the design procedure by the LA-GLA and LA-CL algorithms, the fast

search procedure can be incorporated in the training. The introduction of the eSND

search during the design phase leads to a few problems. First, the exception table in

the eSND algorithm must be constructed ”on-line” during the design process. The ex-

ception table during design may be far from complete; the training has experimentally

shown to be fairly insensitive to a few misclassifications. We have experimented with

construction of an exception table after the first iteration of the GLA algorithm, by do-

ing a full search in parallel with the eSND. For the following iterations only eSND
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search is performed. After some iterations, it might be necessary to reconstruct the ex-

ception table.

Another problem we encountered in the development of the LA-CL method was a

break-down tendency (failure to improve the VQ) for high initial temperatures η0. This

is caused by the random reordering of codevectors that occur for high temperatures,

destroying the well-ordered initial lattice structure. When the lattice structure is de-

stroyed, the eSND search fails more often to find the optimal codevector, and as a re-

sult the VQ is adapted to destroy the lattice structure even more. However, the break-

down temperature is distinct and well above realistic start temperatures, so the problem

is easily avoided. The LA-GLA algorithm has not shown any tendencies to break

down for the problems treated in this report.

5 . 3 Related work

In the literature, some other reports on fast search for unconstrained VQs can be

found. As discussed earlier, there are some methods based on the neighbor descent

concept. These algorithms show similar performance as the proposed eSND algorithm

for lattice-attracted VQs, but the storage requirement for the adjacency table is typically

many times the required storage of the codebook [10, 11]. In [42], only a fraction of

the full adjacency table is stored, with a suboptimal search procedure as a result.

Another method is the K-d tree technique, proposed in [43], and further developed

in, e.g., [13]. A binary tree, with hyperplane decision tests at each node, is precom-

puted and stored. The decision tree leads to one of a set of terminal nodes, where small

sets of still eligible candidate vectors are listed.

In the projection technique [44], a rectangular partition of the space is

precomputed and stored. During the search, the rectangular cell containing the input

vector is found, and the distances to a small number of eligible codevectors are

computed. The number of distance calculations with this method is typically very

small, but the overhead complexity is considerable.

Anchor point algorithms [12, 45] are algorithms where VQ points are excluded

from the search by use of the triangle inequality. The distances from a small set of an-

chor points to each of the codevectors are precomputed and stored. The encoder then

computes the distance between the input vector and each anchor point, and a large

number of codevectors can be eliminated from the nearest neighbor search.

In [46], a Kohonen feature map is used as a basis for a fast search algorithm.

However, the search algorithm shows poor performance, with a high percentage of

misclassifications, due to the selection of a map that is not a good quantizer in itself.

For comparison, we have included measurements of an anchor point algorithm and

the projection technique, in section 6.4.
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6. EXPERIMENTS

In many real-world applications employing vector quantization, the Gaussian distribu-

tion is used as a model for the incoming data, and also as a model of the quantization

error. This is mainly because it is possible to theoretically compute important parame-

ters for Gaussian pdfs, but also because the Gaussian distribution is often a good ap-

proximation to the pdf of the actual data. This makes the performance of quantization

of Gaussian variables interesting.

In this chapter, we present simulation results of lattice quantization and lattice-at-

tracted VQs, and study their performance for Gaussian pdfs. In section 6.1, we de-

scribe the databases used in the experiments. In section 6.2, the performance for lattice

VQ of Gaussian data is given, and in section 6.3, the performance of the new lattice-

attracted method is tabulated. The achievable search complexity reductions and extra

memory requirements for the eSND method are given in section 6.4, where it is also

compared to an anchor point algorithm.

6 . 1 Databases

All Gaussian variables are generated by the Box-Müller method, using a well-tested

random number generator from [47]. Both correlated and uncorrelated databases are

generated. The correlated data are sequences of samples, drawn from a first order

Markov process with correlation coefficient ρ = 0 9. .

6 . 2 Results for Gaussian variables

In this section, we present the performance of lattice quantization of Gauss-Markov

processes. The lattices are truncated as described in section 3.4, with method II for

known pdfs, and the optimal scale factors are determined by an iterative procedure,

using a database of 200 000 samples. For comparison, we also present SNR values

for optimized Gaussian vector quantization (20 million iterations of a CL algorithm are

used to train the quantizers). For the performance evaluation, an independent evalua-

tion database with 1 million Gaussian vectors is used, both for lattice VQs and pdf-op-

timized VQs.

In table 6.1, we present signal-to-noise-ratios (SNR) for quantization of an iid

Gaussian pdf8. We see that lattice quantization can give competitive performance for

low and medium rates, but for higher rates, the pdf-optimized VQ is significantly bet-

ter. As predicted by the high-rate lattice theory in section 3.2, a lattice quantizer is in-

ferior to a pdf-optimized quantizer when the rate is high.

8 Note that the results for high-rate pdf-optimized quantizers show signs of undertraining; especially
the SNR values for 2 dimensions, 2048 codewords could be improved with longer training.
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Table 6.1. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside
parenthesis), for quantization of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d= 2 d= 3 d= 4 d= 5

8  6.78 (6.96)  4.29 (4.48)  3.16 (3.34)  2.38 (2.53)
1 6  9.48 (9.68)  6.20 (6.29)  4.41 (4.67)  3.48 (3.66)
3 2 12.09 (12.44)  7.91 (8.10)  5.90 (5.99)  4.59 (4.77)
6 4 14.64 (15.29)  9.68 (9.95)  7.17 (7.36)  5.76 (5.84)

1 2 8 17.22 (18.18) 11.48 (11.83)  8.54 (8.75)  6.77 (6.93)
2 5 6 19.85 (21.10) 13.24 (13.74)  9.90 (10.15)  7.89 (8.05)
5 1 2 22.47 (24.04) 14.97 (15.66) 11.22 (11.57)  8.98 (9.17)

1024 25.11 (27.03) 16.71 (17.62) 12.59 (13.00) 10.07 (10.31)
2048 27.75 (29.88) 18.45 (19.62) 13.91 (14.49) 11.12 (11.47)
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2

3

4

5

6

7

8

9

10

11

12

Rate

SNR

Outmost shell truncated
Outmost shell full

Figure 6.1. Performance for a truncated lattice VQ on a 5-dimensional
iid Gaussian pdf. The crosses (x) indicate performance for lattice VQ where
the number of points is truncated to an even power of two, and the circles
(o) indicate the performance with a fully populated outmost shell.

We also wanted to examine the importance of the truncation procedure. For this

purpose, we have applied truncations that are natural for the chosen lattice, i.e., trun-

cations that acknowledge the shell structure of the lattice, and keep the outmost shell

fully populated (method I in section 3.4). This can of course only be achieved for cer-

tain number of points. For the D5
*  lattice, the number of points in the shells9 is, from

inside out, given by the theta series {1, 10, 32, 40, 80, 160, 90, 112, 320, ...}, and

thus the number of points in a quantizer with fully populated shells are {1, 11, 43, 83,

163, 323, 413, 525, 845, ...}. In figure 6.1, we compare the performance of lattice

VQs with fully populated shells with VQs where the number of points is an integer

9 Other theta series are possible if the lattice is translated.
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Table 6.2. SNR (in dB) for lattice VQ and pdf-optimized VQ (inside
parenthesis), for a first order Gauss-Markov process, with correlation
coefficient 0.9.

Number of Dimension of VQ
codevectors d= 2 d= 3 d= 4 d= 5

8 9.72 (10.83) 9.20 (9.37) 8.19 (8.48) 7.43 (8.09)
1 6 12.48 (13.55) 10.45 (11.41) 9.23 (10.20) 8.37 (9.39)
3 2 15.13 (16.25) 12.30 (13.21) 10.50 (11.66) 9.48 (10.69)
6 4 17.98 (19.05) 14.08 (15.01) 12.08 (13.03) 11.02 (11.85)

1 2 8 20.82 (21.87) 16.16 (16.85) 13.44 (14.40) 11.83 (12.96)
2 5 6 23.28 (24.81) 17.80 (18.71) 14.95 (15.77) 13.19 (14.05)
5 1 2 25.80 (27.72) 19.69 (20.60) 16.46 (17.16) 14.37 (15.14)

1024 28.63 (30.67) 21.36 (22.51) 17.69 (18.56) 15.54 (16.23)
2048 31.24 (32.82) 23.16 (24.39) 19.18 (19.97) 16.70 (17.35)

Table 6.3. SNR (dB) for quantizers trained until convergence with the
different methods.

dim, size, corr CL LA-CL LBG LA-GLA
d=2, N=64, ρ =0 15.30 15.30 15.27 15.27

d=2, N=64, ρ =0.9 19.05 19.05 19.03 19.02
d=3, N=128, ρ =0 11.85 11.85 11.82 11.82

d=3, N=128, ρ =0.9 16.87 16.87 16.83 16.82
d=5, N=1024, ρ =0 10.32 10.32 10.25 10.26

d=5, N=1024, ρ =0.9 16.23 16.23 16.20 16.20

power of 2. We see that for low rates, the truncation where the outmost shell is fully

populated has a performance advantage, but for higher rates the ”unstructured” trunca-

tion procedure gives equivalent performance.

In table 6.2, we present signal-to-noise-ratios for lattice quantization of a first order

Gauss-Markov process with correlation coefficient 0.9. We see that for correlated

Gaussian data, pdf-optimized vector quantizers have in most cases a significant per-

formance advantage over lattice quantizers.

6 . 3 Lattice-attracted VQ design performance

With the new lattice-attracted VQ design methods, an interesting question is if the lat-

tice attraction leads to loss of performance compared to unconstrained VQ training. To

investigate this, the performance for quantizers trained until convergence with the dif-

ferent methods are compared in table 6.3. The SNR values are averaged over 20 simu-

lations with different training databases (different seeds for the random number genera-

tor). The evaluation database consists of one million Gaussian vectors. Even though

the GLA algorithm is normally aborted when the distortion change is small enough, we

have here chosen to run all algorithms for a predetermined number of iterations (100

million iterations are performed in all cases, where one iteration consists of finding the

closest codevector to an input vector). The chosen design time is large enough for all
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Figure 6.2. SNR as a function of number of iterations for design of a
64-point 2-dimensional VQ. For all methods, the training database con-
tains 5000 vectors, drawn from an iid Gaussian pdf. The LBG algorithm
uses a split initialization technique, while the other algorithms are initial-
ized with a truncated lattice, giving an initial SNR of 14.6 dB.

the methods reach convergence, i.e., the results do not improve for longer training.

The size of the training database is limited (500 000 vectors) for the batch algorithms,

LBG and LA-GLA, but for the competitive learning methods, the database size is

“unlimited”; a new Gaussian vector is drawn for every iteration.

Note that the CL algorithms perform slightly better than LBG or LA-GLA. A rea-

son for the inferiority of the GLA-based algorithms is the limited training database,

making the greedy GLA-based algorithms more easily trapped in local minima. From

the numbers in table 6.3, we conclude that the lattice attraction does not decrease the

performance of the fully trained VQ, neither for GLA nor CL. For these extremely

well-trained quantizers, the lattice-constraint is mainly a question of indexing of the

codevectors; for all methods, the resulting structures of the quantizers are very similar.

This indicates that an indexing procedure could be applied after the training procedure

to make the fast eSND search possible. However, it would then be impossible to apply

the eSND during the training.

In reality, it may be impractical with the tedious train-until-convergence used

above, and the database size is also often limited. A more realistic database can have a

size that is only 100 times the number of codewords, and in some cases even less. In

figure 6.2, we compare the different design methods for limited design time and

database size. We see that the lattice-attracted design methods reach a higher SNR for a

limited database size, due to the attraction to a well-ordered lattice structure, a structure

that otherwise can be hard to reach for limited training times and databases. No method

reaches an SNR close to the optimum 15.3 dB (table 6.3).

The results in this section seem to indicate that the CL-based algorithms should be

preferred for VQ design. However, the tuning of the starting temperature for the CL



136 Lattice-Based Quantization, Part II

Table 6.4. Average and maximum (within parenthesis) number of dis-
tance computations for the lattice-attracted quantizers. The database con-
sists of uncorrelated Gaussian vectors.

Number of Dimension of VQ
codewords d= 2 d= 3 d= 4 d= 5

8 5.8 (8) 6.1 (8) 7.7 (8) 6.7 (8)
1 6 7.7 (12) 10.4 (16) 12.2 (16) 12.0 (16)
3 2 9.1 (12) 13.8 (25) 18.7 (32) 22.1 (32)
6 4 9.9 (12) 17.3 (28) 24.7 (51) 32.7 (63)

1 2 8 10.6 (13) 19.6 (28) 30.9 (63) 42.1 (89)
2 5 6 10.6 (15) 21.5 (31) 36.1 (69) 53.2 (124)
5 1 2 10.5 (16) 23.3 (36) 41.5 (79) 64.8 (145)

1024 10.5 (16) 25.2 (40) 45.7 (91) 75.3 (167)
2048 10.5 (16) 25.2 (44) 50.2 (96) 81.8 (179)

Table 6.5. Average and maximum (within parenthesis) number of dis-
tance computations for the lattice-attracted quantizers. The database con-
sists of correlated (ρ = 0 9. ) Gaussian vectors.

Number of Dimension of VQ
codewords d= 2 d= 3 d= 4 d= 5

8 4.3 (6) 3.8 (5) 3.8 (5) 3.9 (5)
1 6 6.5 (9) 6.9 (11) 7.2 (11) 7.1 (11)
3 2 7.9 (11) 9.8 (16) 12.4 (22) 12.7 (24)
6 4 9.1 (12) 13.4 (24) 15.8 (30) 16.1 (30)

1 2 8 9.9 (13) 15.7 (25) 22.5 (44) 27.1 (58)
2 5 6 10.5 (14) 19.0 (30) 28.2 (52) 33.9 (70)
5 1 2 10.7 (15 ) 20.8 (32) 33.1 (64) 45.8 (100)

1024 10.8 (17) 23.2 (36) 39.8 (79) 56.0 (126)
2048 10.9 (19) 24.3 (40) 44.0 (84) 66.6 (148)

algorithms can be tedious, and the empty-cluster-problem is simpler to handle in GLA-

based algorithms. Thus, LBG and LA-GLA may still be preferable in some applica-

tions.

6 . 4 eSND performance

In this section, we report on the performance of the eSND algorithm, in terms of

search complexity and storage requirements. For comparison, we have also included

measurements of an anchor point algorithm, using the same databases.

Search complexity: We have applied the eSND algorithm, described in chapter 5, to

quantizers trained with LA-GLA. The exception tables are designed for “almost loss-

less” operation, with a performance loss compared to full search that is less than 0.01

dB. The average and maximum number of distance computations are listed in table 6.4

for iid Gaussian, and in table 6.5 for Gauss-Markov (ρ = 0 9. ). The number of dis-

tance computations of a full search is of course equal to the number of codewords in

the quantizer. We see that a significant reduction of the number of distance computa-
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tions is achieved for the eSND method, and also that the maximum is reasonable

(measured for one million test vectors).

Besides of the distance computations, some additional overhead for the eSND al-

gorithm is unavoidable. The initial hypothesis codevector is found by searching the

closest vector in the lattice associated with the lattice-attracted VQ. This procedure is

not very complex due to the regular structure of the lattice; for the lattices employed

here, the procedure involves a rescaling of the input vector, adding an offset vector and

rounding all elements towards the nearest integer. The total overhead complexity for

finding the initial hypothesis is less than two extra distance computations for the lat-

tices used here. More about lattice nearest-neighbor search algorithms can be found in

[9]. There is also overhead for each distance computation. When a new hypothesis

codevector is found, the lattice index of the codevector must be found, by table lookup

as described in section 4.1. For each distance computation, an integer is added to the

lattice index, and the codevector corresponding to the sum is found by table lookup10.

The overhead depends on the efficiency of integer arithmetics of the given processor,

but for the hardware used here (DEC Alpha), the overhead complexity is only a frac-

tion of the complexity of the distance computations.

It is interesting to compare the eSND method with other fast nearest-neighbor

search methods (see section 5.3). In comparison with other neighbor descent methods,

eSND has a slight advantage, because of the good initial hypothesis given by the lattice

search, but the overall performance should be similar due to the similar approaches.

Among other methods, anchor point algorithms are well-known. We have imple-

mented an anchor-point algorithm, IFAP-AESA [12]. IFAP-AESA substantially re-

duces the number of L2-norm distance computations, at the cost of a number of L1-

norm distance computations. A procedure similar to the standard partial distance tech-

nique [44, 48] is employed for the L1-norm computations to further reduce the com-

plexity. We have also implemented the projection method [44], briefly described in

section 5.3. The rectangular partition is optimized for ”almost lossless” operation, with

at most 0.01 dB performance loss compared to full search.

While the complexity of full search and eSND is essentially proportional to the

number of L2-norm distance computations, this is not true for IFAP-AESA and the

projection method. Therefore, we report the complexity in the average number of

floating point multiplications, additions, comparisons and integer operations (given as

a proportionality constant) per input vector. The additional overhead for eSND is de-

scribed above, and for IFAP-AESA the overhead consists of frequent absolute value

computations and table look-ups. The overhead complexity for the projection method

10 If a Voronoi code is used, the table lookups are unnecessary; the indices of the codewords are given
by the sorting of the codebook. But Voronoi codes may lead to performance loss.
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Table 6.6. Average number of multiplications, additions, comparisons
and integer operations for a full search, for an anchor point algorithm,
IFAP-AESA, the projection method and for the eSND algorithm. The
database consists of uncorrelated Gaussian vectors.

Dimension d , Multiplications, Additions, Comparisons (Integer operations)
VQ size N Full search IFAP-AESA Projection eSND

d=2 ,
N=64

128, 192, 63
( ∝ ⋅N d)

11, a=168, 117
( ∝ a)

3, 4, 15
( ∝ ⋅N d)

20, a=30, 20
( ∝ a)

d=3 ,
N=128

384, 640, 127
( ∝ ⋅N d)

23, a=556, 386
( ∝ a)

6, 11, 26
( ∝ ⋅N d)

59, a=98, 39
( ∝ a)

d=5 ,
N=1024

5120, 9216, 1023
( ∝ ⋅N d)

70, a=8286, 5983
( ∝ a)

26, 47, 60
( ∝ ⋅N d)

377, a=678, 150
( ∝ a)

is considerably higher than for the other methods, with a large number of integer op-

erations. Actually, the complexity of the projection method is dominated by the integer

operations for the cases tested here.

The nearest-neighbor algorithms are compared in table 6.6. The number of integer

operations for the projection method and for full search is proportional to the VQ size

N times the dimension, while the number of integer operations for eSND and IFAP-

AESA is proportional to the number of distance computations (which is the sum of L1-

norm and L2-norm distance computations for IFAP-AESA). This means that the num-

ber of integer operations for IFAP-AESA and eSND grows much slower than for full

search and the projection method.

We see that IFAP-AESA radically reduces the number of multiplications, but that

the number of additions and comparisons remains high. IFAP-AESA can only compete

with the other algorithms for hardware where the multiplication cost is dominating, but

in terms of FLOPS (floating-point operations per second), IFAP-AESA is inferior. On

the other hand, the projection algorithm outperforms the other algorithms in terms of

FLOPS. However, as discussed above, the overhead complexity for the projection

method is considerably higher, and which of the two methods that is the fastest in

practice is dependent on the efficiency of the hardware.

Storage requirements: To use the eSND fast search algorithm, we must precompute

and store an adjacency table, an exception table, and tables to aid translation from

codebook index to lattice index and vice versa. In table 6.7, the required storage of the

tables and the codebook is given for a few VQ examples. As seen in the table, the stor-

age requirements are dominated by the codebook and the translation tables. The larger

extra storage of the 5-dimensional VQ depends on that 2 instead of 1 byte is required to

encode the 1024 codewords. Since we only consider unconstrained VQs, the code-

book size can not be reduced, unless the precision is somehow reduced. It is possible

to reduce the storage requirements for the translation tables, at the cost of extra over-

head time for the eSND search.
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Table 6.7. Relative and absolute storage requirements (in bytes) for ex-
amples of iid Gaussian quantization. The codebooks are stored as 4-byte
floating point numbers, and the tables consist of one- or two-byte integer
values. The total storage is given in percentage of codebook only storage.

Storage requirements d=2, N = 6 4 d=3, N =128 d=5, N =1024
Codebook 64 2 4× ×

= 512
128 3 4× ×

= 1536
1024 5 4× ×

= 20480
Adjacency table 6 14 62 2× = 124
Exception table 0 3 15 2× = 30

Translation tables 145 371 4149 2× = 8298
Total storage 129% 125% 141%

The anchor point algorithm requires storage of a floating point table with size

d d+( )1 /  times the size of the codebook. For the 2-, 3- and 5-dimensional cases

above, the total storage, in percent of codebook only storage, are 250%, 233% and

220%, respectively.

For the projection method, a rectangular partition of the space, and a set of candi-

date codewords for each rectangular cell, are precomputed and stored. The total stor-

age, in percent of codebook only storage, are 350%, 350% and 400% for the cases

above.

7. SUMMARY

In this report, lattice-based quantization was studied, both from a theoretical and a

practical viewpoint. Lattice-based quantization is a generalization of conventional lattice

quantization, by allowing modifications of the regular lattice structure while still main-

taining a local lattice-similarity.

For conventional lattice quantization, high rate theory was developed. The high rate

theory leads to lattice VQ design rules, and to new insights in the performance of lattice

quantization. An important conclusion was that for high rates, lattice quantization is

severely inferior to optimal vector quantization. Practical solutions to problems in lat-

tice quantization, such as truncation and scaling, were discussed, and the performance

of lattice quantization of Gaussian variables was presented.

To overcome the inherent shortcomings of lattice quantization, we proposed a

novel lattice-based technique for VQ design, with the feature that the resulting VQs are

locally lattice-similar, but globally optimized to the input pdf. The design algorithm

was complemented with a new lattice-based fast search algorithm. Experiments on

Gaussian data with the proposed fast search algorithm illustrated that the performance

is excellent, with only moderate extra storage requirements.
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APPENDIX A

In this appendix, theorem I (3.13) and theorem II (3.14) in section 3.2 are proved. In

section A.1, some definitions and preliminaries are presented. Section A.2 discusses

the overload distortion (theorem I), and section A.3 treats the granular distortion

(theorem II). In section A.4, the total distortion, which is the sum of overload and

granular distortion, is treated, and methods to find the global minimum is discussed.

A . 1 Preliminaries

For the proofs in the appendix, we use the definition of a d-sphere (3.9), the truncation

radius aT  (3.10), and the granular region 
  
G  (3.11), all defined in section 3.2. We also

use the VQ definitions in chapter 2, and the lattice definitions in section 3.1, together

with some new definitions in this section. As discussed in section 3.2, we assume zero

mean, iid Gaussian variables, with unit variance samples.

A granular Voronoi region 
  
Ω

G
c( ) is defined as the lattice Voronoi region Ω ,

translated to the codevector c,

  
Ω Ω Ω

G
Gc c c( ) + = ( ) ∩= , (A.1)

where Ω c( ) is the Voronoi region around codevector c (see 2.7), Ω  is the lattice

Voronoi region (see 3.4), and 
  
G  is the granular region (see 3.11).

For a given input vector x, we define p a( )  as the closest point to x in a sphere

with radius a,

p x y
x x

x
x

xy y
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a aa
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(A.2)

With this definition, the distance between x  and p a( )  is given by

x p x− ( ) = −( )a amax ,0 . (A.3)

We define the granular radius 
  
a

G
 as the effective radius of the granular region 

  
G ,

  

a
Sd

d

G

G
= ( )

( )( )






vol

vol 1

1

, (A.4)

where Sd φ( )  is a sphere with radius φ , see (3.9). The volume of the sphere 
  
S ad G( ) ,

called the granular sphere, is with this definition equal to the volume of the granular

region, i.e. 
  
vol = volS ad G

G( )( ) ( ). The granular radius 
  
a

G
 and the truncation radius aT

are closely related, and we show in (A.24) that they are equal for infinite rates.

We define a border region   B  in the form of a spherical shell (see figure A.1),

    B = ∈ < ≤{ }x xRd a a: min max (A.5)
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Figure A.1. Left: Illustration of the border region (the gray area).
Right: Combinations of the granular and the border region.

which overlaps both the granular and the overload region. The border shell is defined

as the thinnest shell having only granular region on the inside and only overload region

on the outside, that is, amin is the radius of the inscribed sphere, and amax is the radius

of the circumscribed sphere of the granular region,

  

amin inf=
∈x

x
G

(A.6)

  

amax sup=
∈x

x
G

. (A.7)

The border region is a mix of granular and overload regions. Figure A.1 illustrates the

border region for a two-dimensional lattice VQ.

With the definitions of overload and granular regions in (3.11), and the border re-

gion in (A.5), we have

    G B G G B∩ ∈ >{ } ⊆ ⊆ ∈ >{ } = ∪= x x x xR Rd da a: :max min (A.8)

    G B G G B∩ ∈ ≤{ } ⊆ ⊆ ∈ ≤{ } = ∪= x x x xR Rd da a: :min max . (A.9)

From (A.9), we conclude that the radius of the granular sphere, 
  
a

G
, is bounded be-

tween amin and amax, since

  
vol vol vol volS a S a S a a a ad d dmin max min max( )( ) ≤ ( ) = ( )( ) ≤ ( )( ) ⇒ ≤ ≤G

G G
.(A.10)

We use the covering radius rmax, the packing radius rmin , and the effective radius

rΩ  of a granular Voronoi region 
  
Ω

G
c( ), defined as

  

rmax sup sup= − =
∈ ( ) ∈x c x

x c x
Ω Ω

G

(A.11)
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aaa

rmax

rΩ

rmin

Figure A.2. A Voronoi region.

The three radii, rΩ , rmin  and rmax, are illustrated in figure A.2. The granular Voronoi

regions are all bounded and congruent, and thus the ratios r rmax / Ω  and r rmin / Ω are

bounded, nonzero and independent of the scaling of the region, so that
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amin and amax can be bounded as (using the definition of Λ  in (3.1))
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where the last inequality of (A.16) and (A.17) follows from the truncation of the lattice

by a hypersphere with radius aT , as in (3.10). Now, using (A.10), (A.16) and

(A.17), we can bound the truncation radius aT  as

  
a r a r a a r a r

G G
− ≤ − ≤ ≤ + ≤ +max max max min max maxT . (A.18)

The left- and right-most terms of (A.18) can both be written11 
  
a r O

G
+ ⋅ ( )max 1 , and

using (A.14), we get

  
a a r O a OR

T = + ⋅ ( ) = ⋅ + ⋅ ( )( )−
G Gmax 1 1 2 1 . (A.19)

Using (A.19) to eliminate 
  
a

G
 from (A.13)–(A.15), we get the useful equalities

11 With g O⋅ ( )1  (big-oh), we will mean g C⋅ , where C is bounded in a neighborhood of g = 0. Rules
for computation using big-oh can be found in most mathematical handbooks, e.g. [49].
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r a OR
max = ⋅ ⋅ ( )−

T 2 1 (A.20)

r a OR
Ω = ⋅ ⋅ ( )−

T 2 1 (A.21)

r a OR
min = ⋅ ⋅ ( )−

T 2 1 , (A.22)

and by inserting (A.20) into (A.18), we get

a a OR
min = ⋅ + ⋅ ( )( )−

T 1 2 1 (A.23)

  
a a OR

G
= ⋅ + ⋅ ( )( )−

T 1 2 1 (A.24)

a a OR
max = ⋅ + ⋅ ( )( )−

T 1 2 1 , (A.25)

which illustrates that aT , 
  
a

G
, amin, and amax are all equal for infinite rates.

A . 2 Theorem I: Overload distortion

In theorem I in section 3.2, we stated that the overload distortion is given by

  
D f d a ed a

G G G
= ( ) ⋅ ⋅ ⋅ +( )− −

T
T4 22

1/ ε , (A.26)

where 
  
f d dd
G

( ) = ⋅ ( )( )− −
2 22 2 1/ /Γ , and 

  
ε

G
 tends to zero for asymptotically high rates

R. In this section, we present a proof of this theorem. In the proof, we bound the

overload distortion by use of two spheres, one outside and one inside the border re-

gion. Then we complete the proof by showing that the width of the border region tends

to zero when the rate approaches infinity.

We write the overload distortion

  

D f d
G

G

= − ( )∫ x c x xx
* 2

, (A.27)

where c*  is the codevector in the codebook   C  that is closest to the input vector x , and

fx x( ) is the input pdf. The integrand is nonnegative, so we can lower- and upper-

bound the distortion by integrating over a smaller and larger region, respectively.

Using (A.8), we get

  

x c x x x c x xx
x

x
x

− ( ) ≤ ≤ − ( )
> >
∫ ∫* *

max min

2 2
f d D f d

a a
G

. (A.28)

We now study the upper and lower bound in (A.28) separately. First, noting that all

codevectors lie inside a sphere with radius amax, we can lower-bound the integrand

  

x c x c x y x p
c y

− = − ≥ − = − ( )
∈ <

*
maxmin min

maxC a
a . (A.29)

Secondly, the integrand can be upper-bounded by use of the triangle inequality,

x c x p p c− ≤ − ( ) + ( ) −*
min min

*a a . (A.30)
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With the definition of amin in (A.6), p amin( )  belongs to a granular Voronoi region.

Therefore, we can bound the distance between p amin( )  and c*  by the covering radius

of the Voronoi region, rmax,

p ca rmin
*

max( ) − ≤ (A.31)

(see (A.11) and figure A.2). Thus, we have

x c x x p x− ≤ − + = − −( ) >*
min max min max mina r a r aif , (A.32)

where we have also used (A.3). The distortion upper bound is

  

D a r f d a r f d
a a r

G
≤ − −( ) ( ) ≤ − −( ) ( )

> > −
∫ ∫x p x x x p x xx

x
x

x
min max min max

min min max

2 2
.(A.33)

Combining (A.28), (A.29) and (A.33), we get

  

x p x x x p x xx
x

x
x

− ( ) ( ) ≤ ≤ − −( ) ( )
> > −
∫ ∫a f d D a r f d
a a r

max min max

max min max

2 2
G

, (A.34)

which bounds the overload distortion by use of two spheres with radii amax and

a rmin max− . From (A.20), (A.23) and (A.25), we see that both radii can be written on

the same form, a OR
T ⋅ + ⋅ ( )( )−1 2 1 . We define

â a OR= ⋅ + ⋅ ( )( )−
T 1 2 1 , (A.35)

and rewrite the overload distortion as

  

D a f d
a

G
= − ( ) ( )

>
∫ x p x xx

x

ˆ
ˆ

2
(A.36)

= −( ) ( )
>
∫ x x xx

x

ˆ
ˆ

a f d
a

2
(A.37)

= + −( ) ( )
>
∫ x x x xx

x

2 2 2ˆ ˆ
ˆ

a a f d
a

. (A.38)

Now the d-dimensional integral has become one-dimensional; the integrand is a func-

tion of x  only12. The stochastic variable ξ = x 2 has a χ2-distribution with d de-

grees of freedom, f dξ ξ χ ξ( ) = ( )2 , , and we get

  

D a a d d
a

G
= + −( ) ( )

∞

∫ ξ ξ χ ξ ξˆ ˆ ,
ˆ

2 22
2

(A.39)

= + −( ) ⋅
⋅ ( )
− −∞

∫ ξ ξ ξ ξ
ξ

ˆ ˆ
/

/ /

/
ˆ

a a
e

d
d

d

d
a

2
2 1 2

22
2 22 Γ

. (A.40)

In the sequel, we need the incomplete Gamma function,

12 Since the Gaussian pdf fx x( ) is spherically symmetrical, it is a function of x  only.
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Γ b z t e dtb t

z

,( ) = − −
∞

∫ 1 . (A.41)

Using Γ b z,( ) , we write the overload distortion as

  

D
d

d a
a

d a
a

d a
G

=
( )

⋅ ⋅ +





− ⋅ ⋅ +





+ ⋅
















1
2

2
2

2 2
2 2

1
2 2 2 2

2 2
2

2

Γ
Γ Γ Γ

/
,

ˆ
ˆ ,

ˆ
ˆ ,

ˆ
.(A.42)

We approximate the incomplete Gamma function as an asymptotic series [50]:

Γ b z z e b z b b z z Ob z,( ) = + −( ) + −( ) −( ) + ( )[ ]− − − − −1 1 2 31 1 1 2 1 . (A.43)

With this approximation, the overload distortion can, after some work, be written

  

D
a e

d
a O

d a

dG
=

⋅ ( )
⋅ + ⋅ ( )( )

− −

−
−ˆ

/
ˆ

ˆ /

/

4 2

2 2
2

2

2 2
1 1

Γ
(A.44)

Insertion of (A.35) yields, again omitting the details,

  

D
a e

d
a O a O

d a

d
R

G
= ⋅

⋅ ( )
⋅ + ⋅ ⋅ ( ) + ⋅ ( )[ ]

− −

−
− −T

T T

T4 2

2 2
2 2

2

2 2
1 2 1 1

/

/ /Γ
, (A.45)

which is equal to (A.26), and the proof is completed.

In section A.4, we will verify that the error term is equal to zero for asymptotically

high rates if the truncation radius is selected for minimum distortion.

A . 3 Theorem II: Granular distortion

In theorem II, the granular distortion is given by

  
D f d aR

G G G
= ( ) ⋅ ⋅ ⋅ +( )−2 12 2

T ε (A.46)

where 
  
f d G d d d
G

( ) = ⋅ ⋅ ⋅ +( )−π Γ / 2 1 2 , and 
  
ε

G
 tends to zero for asymptotically high

rates R. The proof of the theorem, which is given in this section, is based on writing

the pdf inside each Voronoi region as a uniform pdf plus an error term. The granular

distortion for a uniform pdf is easily computed, and the proof is completed by showing

that the error term is zero for infinite rates.

We write the granular distortion for the N-point lattice VQ as a sum of the Voronoi

region distortions

  

D f d
G

G

= − ( )∫ x c x xx
* (A.47)

  

= − ( )
( )=
∫∑ x c x xx

c
k

k

N

f d
kΩ

G
1

. (A.48)

For bounded and differentiable densities, we can expand the pdf in a Taylor series as

f f Ok kx xx c x c( ) = ( ) + − ⋅ ( )1 , (A.49)
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and (A.48) can be rewritten as

  

D f O dk k k
k

N

k

G

G

= − ( ) + − ⋅ ( )( )








( )=

∫∑ x c c x c xx
c

2

1

1
Ω

(A.50)

  

= ( ) ⋅ −










+ − ⋅ ( )








( )= ( )=

∫∑ ∫∑f d d Ok k
k

N

k
k

N

k k

x
c c

c x c x x c x
2

1

3

1

1
Ω Ω

G G

. (A.51)

Now, since the granular Voronoi regions 
  
Ω

G
ck( )  are congruent, the integrals in

(A.51) are independent of k, and we get

  

D d f d Ok
k

N

k

N

G
= ⋅ ( ) + ⋅ ( )∫ ∑ ∫∑

= =
x x c x xx

2

1

3

1

1
Ω Ω

. (A.52)

The first integral in (A.52) is recognized to be a scaled version of the lattice quantiza-

tion constant G (3.6). The second integral can be simplified by using (A.11), and

writing x = ⋅ ( )r Omax 1 . We get

  

D d G f r Od
k

k

N

G
G= ⋅ ( ) ⋅ ⋅ ( ) + ⋅ ( ) ⋅ ( )

=
∑vol vol+Ω 1 2

1

3 1x c max (A.53)

= ⋅ ( ) ⋅ ⋅ ( ) + ⋅ ⋅ ( )
=

+ −∑d G f a Od
k

k

N
d Rvol +
TΩ 1 2

1

3 32 1x c , (A.54)

where (A.20) is used for the last equality.

The sum in (A.54) is considered next. For this reason, we study the granular prob-

ability 
  
Pr x ∈( )G . Using the same approach as in (A.47)–(A.54), we can write the

granular probability

  

Pr x x xx∈( ) = ( )∫G

G

f d (A.55)

= ( ) ⋅ ( ) + ⋅ ⋅ ( )
=

+ −∑vol TΩ f a Ok
k

N
d R

x c
1

1 2 1 . (A.56)

We can also write the granular probability using the overload probability, as

  
Pr Prx x∈( ) = − ∈( )G G1 . (A.57)

Using (A.8), we can bound the overload probability as

  
Pr Pr minx x∈( ) ≤ >( )G a . (A.58)

(A.58) can be written using the χ2-distribution as in (A.39). We get

  

Pr
, min

x ∈( ) ≤
( )

( )G
Γ

Γ
d a

d

2 2

2

2

, (A.59)

which can be simplified using the first term in (A.43),



Lattice-Based Quantization, Part II 147

  
Pr min

minx ∈( ) = ⋅ ⋅ ( ) = ⋅ ⋅ ( )− − − −
G a e O a e Od a d a2 2 2 22 2

1 1T
T (A.60)

(see (A.23)). Combining (A.56), (A.57) and (A.60), we get

vol T T
TΩ( ) ⋅ ( ) = + ⋅ ⋅ ( ) + ⋅ ⋅ ( )

=

+ − − −∑ f a O a e Ok
k

N
d R d a

x c
1

1 2 21 2 1 1
2

. (A.61)

Using the number of codevectors in the quantizer, N R d= ⋅2 , the volume of the

Voronoi region, vol Ω( ) , can be written

  

vol
vol vol

Ω
Γ

( ) = ( ) =
( )( )

=
⋅ ⋅

+( )
−

G G G

N

S a

N

a

d

d
d d Rdπ 2 2

2 1
, (A.62)

where we have used the fact that the volume of the granular region, 
  
vol G( ), is equal to

the volume of a d-sphere [50] with radius 
  
a

G
, see (A.10). Inserting (A.24), the vol-

ume of the lattice Voronoi region is expressed as a function of the truncation radius

aT ,

vol TΩ
Γ

( ) = ⋅ ⋅
+( ) ⋅ + ⋅ ( )( )

−
−π d d Rd

Ra

d
O

2 2
2 1

1 2 1 . (A.63)

Inserting (A.61) and (A.63) into (A.54), we get

  

D
G d

d
a a O a e Od

R d R d a
G

= ⋅ ⋅
+( )

⋅ ⋅ ⋅ + ⋅ ⋅ ( ) + ⋅ ⋅ ( )[ ]− + − − −π
Γ2

2 2 1 2 2

2 1
2 1 2 1 1

2

/ / T T T
T ,(A.64)

which equals (A.46). If the error terms in (A.64) are excluded, the equation describes

the distortion for quantization of a spherical uniform pdf (see [14], (1.10)).

In section A.4, we show that for an optimal choice of aT , the error terms tend to

zero for a rate approaching infinity.

A . 4 Total distortion

The key issue in the high rate theory is to find the optimal value of the truncation radius

aT . We study three possible choices of aT :

I aT  does not grow towards infinity with the rate.

I I aT  grows towards infinity with the rate, but slower than exponentially in R.

I I I aT  grows towards infinity exponentially in R, or even faster, i.e. a R
T ≥ 2λ  for

some λ .

We show in the following that I and III lead to higher distortion than II. For this rea-

son, we use an arbitrary formula for aT  fulfilling II, and compute the resulting distor-

tion. Then we lower-bound the distortion in I and III by simple calculations. The proof

is completed by showing that the distortion for case II is lower than the lower bounds

of distortion for case I and III.
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α ⋅rmin

β

Figure A.3. The hollow shape   S .

First we study the distortion for case II above. For this case, the error terms in

(A.26), (A.45) and (A.46), (A.64) are zero for asymptotically high rates. The total

distortion is the sum of (A.26) and (A.46),

  

D f a f a eR d a= ⋅ ⋅ + ⋅ ⋅( ) +( )− − −
G GT T

T2 2 4 22 1
2 / ε . (A.65)

We select the truncation radius arbitrarily as a RT = , which fulfills II. Insertion of aT

in (A.65) yields

  
D f R f R eR d R

II = ⋅ ⋅ + ⋅ ⋅( ) +( )− − −
G G

2 2 4 22 1
2

ε (A.66)

  
= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ( )( ) +( )− − −f R R e OR d R R

G

2 2 4 2 22 1 2 1 1
2

ε (A.67)

  
= ⋅ ⋅ ⋅ + ⋅ ⋅ ( )( ) +( )− − − + ⋅ ⋅f R R e OR d R R

G

2 2 4 2 2 22 1 1 1
2 ln ε . (A.68)

The error terms are zero for infinite rates. We write

D R OR
II = ⋅ ⋅ ( )−2 22 1 , (A.69)

and observe that the distortion tends to zero when the rate approaches infinity. Since

we have used an arbitrary truncation radius fulfilling II, the optimal truncation radius

gives a distortion lower than or equal to (A.69).

Now we study case I. In (A.34) a lower bound for the overload distortion is given.

Using (A.17) we get

  

D D a f d a f d
a a r

I

T

≥ ≥ − ( ) ( ) ≥ − ( ) ( )
> > +
∫ ∫G

x p x x x p x xx
x

x
x

max max

max max

2 2
. (A.70)

We observe that, for finite aT  and rmax, the right-hand integral in (A.70) does not tend

to zero as the rate approaches infinity. Since aT  is finite in case I, and rmax is finite for

finite aT  (A.20), we conclude that DI  does not tend to zero as the rate approaches

infinity. But DII → 0 for R→ ∞ , and we have shown that the optimal high-rate dis-

tortion in case I is higher than the distortion in case II, i.e. D DI II> .

To lower-bound the distortion in case III, we first define a shape   S  in the form of

a d-sphere from which we cut out spherical holes around all codevectors c,

    

S
C

= ( ) ⋅( ) +( )
∈

S S rd dβ α\ min c
c
U , (A.71)
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where 0 1< <α , and the radius β  is an arbitrary constant, independent of R.   S  is il-

lustrated in figure A.3. Since α  is less than 1, the definition of rmin  (A.12) ensures

that the holes, with radius α ⋅ rmin, are nonoverlapping. Further, since the truncation

radius aT  (and amin, see (A.23)) grows towards infinity with the rate, there exists a

constant R0 such that for all rates R R> 0 , amin > β , which makes   S  a subset of the

granular region 
  
G . We have

  

D D f d f d
S

III ≥ = − ( ) ≥ − ( )∫ ∫G

G

x c x x x c x xx x
* *2 2

   for R R> 0 . (A.72)

For vectors x in   S , the distance to the closest codeword c*  is lower-bounded by

α ⋅ rmin. The pdf fx x( ) is lower-bounded by the pdf at an arbitrary point at the surface

of   S , i.e. f fx xx x( ) ≤ ( )β  where xβ β= . Thus, for R R> 0 , we have that (using

(A.18))

D r f d
S

III ≥ ⋅( ) ( )∫ α βmin
2

x x x (A.73)

  
= ⋅( ) ⋅ ( ) ⋅ ( )α βr fmin

2
x x vol S (A.74)

  
= ( ) ⋅ ( ) ⋅ ⋅( ) ⋅ ⋅ −f r r a R

x xβ αvol S
Gmin Ω

2 2 22 (A.75)

  
≥ ( ) ⋅ ( ) ⋅ ⋅( ) ⋅ −( ) ⋅ −f r r a r R

x xβ αvol TS min maxΩ
2 2 22 (A.76)

≥ ⋅ ⋅ −C a R
T
2 2 2 , (A.77)

where C is a positive constant, since r amax T tends to zero (see (A.20)), and the vol-

ume of   S , the pdf fx xβ( ) at the surface, and r rmin Ω  are all positive constants. Now,

inserting aT  as in case III yields

D C DR R
III II for R≥ ⋅ ⋅ > → ∞−2 22 2λ , (A.78)

and we have shown that radius selection as in case II leads to lower distortion than

case III.

We will now study the total distortion, D, and show that, for a selection of aT  with

the restrictions as in case II above, the distortion is convex and has a distinct global

minimum. As discussed above, the error term in (A.65) is zero for infinite rate. We

define D̂  as D excluding the error term,

  
D̂ f a f a eR d a= ⋅ ⋅ + ⋅ ⋅− − −

G GT T
T2 2 4 22
2

. (A.79)

To show that ̂D  is convex with respect to aT , we compute the second derivative of D̂

with respect to aT :

  

∂
∂

2

2
2 2 2 2 2 42 2 1 7 2 9 20

2D̂

a
f f a e d a d d aR d a

T
T T T

T= ⋅ ⋅ + ⋅ ⋅ ⋅ + −( ) ⋅ + − +( ) ⋅[ ]− − − − −
G G

. (A.80)

We see that the expression inside brackets is dominated by the first term when aT

tends to infinity, and we write
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∂
∂

2

2
2 2 2 22 2 1 1

2D̂

a
f f a e a OR d a

T
T T

T= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ( )( )− − − −
G G

. (A.81)

Clearly, this expression is positive for large enough values of aT . Thus, D̂  is a con-

vex function of aT  in the region defined in case II, and the first derivative can only be

zero at the global minimum of D̂ . D is the sum of ̂D  and error terms, but ̂D  domi-

nates the distortion for all aT  satisfying case II, so the global minimum of D̂  is the

global minimum of D as well.
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