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Abstract

The need to make renewable energy a larger part in today’s elec-
tricity generation is increasing because of environmental issues and
energy security. A potential resource of energy that is starting to
attract more attention is the energy in ocean waves. There is no
commercial approach available but a large number of applications are
competing to be the first ones to enter the market. A new approach,
which was invented by Daniel Ehrnberg, has showed good potential.
The approach is still in the design phase and a number of problems are
still unsolved. In this thesis two problems are tackled; the interaction
of the device and the ocean, and how to calculate the power output
of the device. The solution to the first problem shows how the device
will react to ocean waves. The solution to the second problem gives
an idea of the energy potential of the device. The potential energy
output of the the device is calculated for four different locations; two
in Iceland, one in Ireland and Sweden. The conclusion is that the de-
vice can reach high efficiency of converting the wave energy into useful
energy but works only when the waves are optimal for the device.

Keywords: Energy. Renewable energy. Ocean wave energy. Wave energy convert-
ers. Ocean waves. Electricity generation technology.
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1 Introduction

The electricity usage is growing all over the globe and predictions indicate that
electricity generation will increase by 77 percent from the year 2006 to 2030 taking
into account todays global economic recession [2]. Primary energy use has doubled
every thirty years since the early 1880s. Developing countries are seeing large
increase in electricity consumption, as can be seen in China where there are around
2 new coal power plants constructed each week [3]. Governments are starting to
realize how dangerous climate change is, e.g. the European Union has the target
to reduce green house gas emissions by 20 percent before the year 2020 compared
to emissions in the year 1990. This means that there is a high pressure to increase
renewable energy share in the electricity generation. The electricity scenery in the
year 2006 was that 16% comes from hydro, 15% nuclear, 20% gas, 6% oil, 41%
coal/pet and 2% is geothermal, solar wind, combustible renewable and waste, and
heat, based on 18,930 TWh/yr [1].

The energy need of human kind is small compared to the energy in nature. The
energy flux from the sun that reach Earth is estimated to be around 5, 440, 000
EJ/yr. The winds, waves and the ocean currents are estimated to be around
11, 700 EJ/yr while in the year 2006 anthropogenic energy use was around 490
EJ/yr (136, 000 TWh/yr) [3, 1].

Figure 1.1: Annual mean wave power estimates (kW per meter of wave front)
for European waters (data from the ECMWF WAM model archive; calibrated
and corrected by Fugro OCEANOR against a global buoy and Topex satellite
altimeter database) [5].

One resource of renewable energy that has not received much attention is
the energy in ocean waves. The energy potential in ocean waves is quite high.
Waves are a result from winds that blow over the oceans, and wind is a result
from temperature difference across the Earth, which is formed from solar energy.
The waves start by the random nature of pressure pulses, from wind, acting on
the water surface and the subsequent, complex growth of the perturbations in
the free surface. The wind then acts harder and harder on these perturbations
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and form waves. The potential power in waves are estimated to be of the same
magnitude as the average power consumption of humans, which is around 2 TW.
The potential to utilise this is not very high and a conservative estimate of the
utilization is around 10 to 25 percent [5]. This suggest though that wave power
could make a significant contribution to the energy mix. For example on a typical
day, about 1 TWh of wave energy enters the coastal waters of the British Isles.
This corresponds to approximately the average daily electricity consumption in
the UK. The estimated yearly average wave power in Europe is shown in figure 1.1
which shows the annual mean wave power estimates in kW per meter of wave front
[5]. The wave power potential is very high along the coast of Portugal, Ireland,
Iceland, Faroe Islands and Norway.

There are number of competing approaches trying to be the first to make the
final leap towards commercial applications, and it is still unclear which one will
be the winner.

One of the competing approaches was invented by Daniel Ehrnberg [7] which
showed good economical and environmental aspects. More detailed analysis of
the approach will be made in this thesis and a more detailed model for power
calculations will be presented. This model will be used to calculate the energy
potential at for four different locations, two in Iceland, one in Ireland and one in
Sweden.
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2 Wave theory

Before going into the mathematical theory of ocean waves, it is good to have some
idea about the movement of real waves, and the flow of the sea. Start by imagine
some small object floating in the ocean, e.g. a bottle (that hopefully somebody
finds and recycles). The bottle will move forward during the crest, pause as the
trough comes, and moves backwards in the trough, nearly to the original position.
This motion is quite close to a circular path.

Figure 2.1: Wave characteristics and definition of variables.

A two dimensional plain wave is shown in figure 2.1, propagating in the x
direction, with its characteristics. The difference between the surface elevation of
the crest and the trough is defined as the wave height H, and the time required for
the bottle to reach it original position is defined as the wave period T . The still
water level defines the origin of z and the free water surface is defined as η. The
distance from still water level to the bottom is defined as h. The distance between
two adjacent crests is defined as the wave length λ. Wave lengths are always much
larger than wave heights. When waves are too high they are much like a house of
cards, unstable and have a tendency to fall apart at the slightest nudge [11].

Figure 2.2: Surface elevation of a real waves as a function of time.

Real waves do not have the same look wave after wave and do not always
propagate in the same direction. The surface elevation of a real waves would look
similar as figure 2.2 shows over a time period.

2.1 Mathematical model of waves

The basic mathematical model of ocean waves was developed mainly by G.B. Airy
and Laplace and is known as Airy’s theory, small amplitude theory, linear wave
theory and first-order theory. A detailed derivation of the theory can be found
in e.g. [6] and [9]. The derivation for the mathematical model and the energy in
waves has been adopted from Ref. [6] chapters 3 and 4.

Definition of varibles
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φ: velocity potential for the flow
ψ: stream function
u: velocity vector for the flow
ρ: density for sea
ν: viscosity for sea
σ: the angular frequency of the wave
k: the wave number
Cw: the wave velocity or celerity Cw = λ/T
Cg: the group wave velocity or group celerity
t: time
p: pressure

The linear wave theory is based on two fundamental equations and some simple
boundary conditions. When these equations and boundary conditions are lin-
earised, freely propagating harmonic waves are solutions to the equations. The
governing differential equations are hydrodynamic equations which express con-
servation of mass and momentum, the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

and the Navier-Stokes equation

Du

Dt
≡ ∂u

∂t
+ (u · ∇)u = −1

ρ
∇ptot + ν∇2u + g. (2.2)

The assumptions that are used to find a solution to the differential equations are

• The amplitude, H/2, of the surface disturbance is very small compared to
the wave length λ and the water depth h. This is the main assumption in
linear wave theory.

• The velocity head (u2 + w2)/(2g) is small compared with the hydrostatic
pressure head ρgz. The vertical and horizontal water particle velocities are
w and u, respectively.

• The water depth h is uniform.

• The water is inviscid, ν = 0, and irrotional, ∇2ψ = 0. This is reasonable
because the turbulence from bottom does not penetrate very far into the
main body.

• The water is incompressible Dρ
Dt = 0 and homogeneous, which excludes acous-

tic and internal wave phenomena.

• The Coriolis forces due to earth’s rotation are negligible, the wave lengths
need to be shorter than a few kilometres.

• Surface tension is negligible, wave lengths need to be longer than a few
centimetres.

• The sea floor is smooth and impermeable.

• The sea level atmospheric pressure pa is uniform.

The boundary conditions to find a solution to equations 2.1 and 2.2 are of the
kinematic nature, related to the motions of the water particles and the dynamic
nature, related to forces acting on the water particles.
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The bottom boundary condition is defined as that the flow at the bottom is
tangent to the bottom and that the particles will not penetrate the bottom. There
are two boundary conditions at the free surface, kinematic and dynamic. The
kinematic states that there is no flow across the interface, i.e. particles do not
leave the surface. The dynamic free surface boundary conditions states that the
pressure on the free surface is uniform along the wave form. The lateral boundary
conditions is controlled by the assumption that the wave is periodic.

The velocity potential that describes a progressive wave is found using all the
assumptions above, appropriate boundary conditions and that the waves have a
small steepness, |∇η| << 1, and the non-linear terms are neglected. One of the
analytical solutions is then the velocity potential

φ = −H
2

g

σ

cosh(k(h + z))

cosh(kh)
sin(kx− σt). (2.3)

Using the periodic boundary conditions the angular frequency and wave number
can be found

σ =
2π

T
(2.4)

k =
2π

λ
. (2.5)

The water surface elevation can then be found using the velocity potential (eq 2.3),

η(x, t) =
1

g

[

∂φ

δt

]

z=0

=
H

2
cos(kx− σt). (2.6)

Having the velocity potential it is easy to find the horizontal (u) and vertical (w)
velocity components

u = −∂φ
∂x

=
H

2
σ

cosh(k(h + z))

sinh(kh)
cos(kx− σt) (2.7)

w = −∂φ
∂z

=
H

2
σ

sinh(k(h + z))

sinh(kh)
sin(kx− σt). (2.8)

Using the dynamic boundary conditions that there is zero pressure at the surface
the relationship between angular frequency (σ) and wave number (k) can be found

σ2 = gk tanh(kh). (2.9)

The relationship in equation 2.9 is often called the dispersion equation because it
describes how a field of propagating waves, consisting of many frequencies, would
separate or “disperse” due to the different wave speeds of each wave [6].

An important factor is the group velocity. Waves in the ocean do not all
have the same frequencies. If two harmonic waves, that have slightly different
frequencies, are added together then they will reinforce each other when they are
in phase, when the crests of the waves coincide. They will cancel each other at
another moment, as shown in figure 2.3. The group has a maximum height, where
the two waves are in phase. The velocity of that point is, by definition the group
velocity, the phase speed of the surface elevations envelope [10]. The group velocity,
when the difference between the frequencies is infinite small, is

Cg =
∂σ

∂k
=

1

2

(

1 +
2kh

sinh (2kh)

)

Cw. (2.10)
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Figure 2.3: The above figure shows two waves with slightly different frequen-
cies. Figure below shows the waves added together and shows how a group
of waves is formed.

2.1.1 Simplifications for shallow and deep water

The hyperbolic functions have convenient asymptotes for shallow and deep water,
shown in figure 2.4. The limits used here are

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

kh

← sinh(kh)cosh(kh) →

↑  tanh(kh)

π/10 π

exp(kh)/2 → ← kh

Figure 2.4: Asymptotes to hyperbolic functions. Shallow water is kh < π/10
and deep water is kh > π water.
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shallow water: kh <
π

10
,

intermediate depth:
π

10
< kh < π ,

deep water: π < kh.

It is helpful to use these asymptotes to obtain simplified forms of the equations
describing wave motion. For more detailed derivations one can look at e.g. ref.
[6]. The equations when reduced for shallow and deep water approximations are
shown in table 2.1

Table 2.1: Approximations for equations in shallow (kh < π/10) and deep
(kh > π) water

Shallow water Deep water

σ =
√

gk2h σ =
√

gk

λ =
√

ghT λ =
gT 2

2π

Cw =
√

gh Cw =
gT

2π

Cg = Cw Cg =
1

2
Cw

u =
H

2
σ

1

kh
cos(kx − σt) u =

H

2
σ exp(kz) cos(kx − σt)

w =
H

2
σ

(

1 +
1

z

)

sin(kx − σt) w =
H

2
σ exp(kz) sin(kx − σt).
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2.2 Energy in waves

The total energy in waves is the sum of potential and kinetic energy of the particles
in the ocean. The potential is from the displacement of the free surface, i.e.
particles are moved from rest to some other position, and the kinetic energy, is
due to the fact that the particles in the ocean are moving [6, 10]. The potential
energy of the wave-induced potential in the entire water, from bottom to surface
is equal to the potential energy in the presence of wave minus the potential energy
in the absence of the wave. The potential energy averaged over one period per
unit surface area is then

Epotential =

∫ η

−h
ρgz dz −

∫ 0

−h
ρgz dz =

∫ η

0

ρgz dz =
ρgH2

16
(2.11)

where the over-bar represents time-averaging.
The kinetic energy time-averaged over one time period per unit surface area is

Ekinetic =

∫ η

−h

1

2
ρg(u+ w)2 dz =

ρgH2

16
(2.12)

using equations 2.7 and 2.8 for horizontal and vertical velocities of the particles
respectively. The total time-averaged wave-induced energy density E = Epotential+
Ekinetic per surface area, using the approximations of the linear wave theory is

E =
1

8
ρgH2. (2.13)

The total average energy per wave per unit width is then

Eλ =
1

8
ρgH2λ. (2.14)

2.2.1 Energy transport

As the small-amplitude waves travel across the ocean they do not transmit mass
as they propagate, because the trajectories of the water particles are closed. They
do however carry their potential and kinetic energy with them. The wave energy
is transported only by the work done by the wave induced pressure when using
the linear approximations [10]. The energy transport, P , in waves per wave and
per unit length wave-front is

P ≈
∫ 0

−h
pwaveu dz = (

1

8
ρgH2)

1

2

(

1 +
2kh

sinh (2kh)

)

σ

k
(2.15)

where the wave induced pressure is [10]

pwave =
1

2
ρgH

cosh(k(h+ z))

cosh(kh)
sin(σt − kx) (2.16)

It is only necessary to integrate up to the mean free surface to retain the terms to
the second order in wave height. The energy transport per wave per unit width
can be expressed in a more useful form

P = ECg (2.17)

The equations for the energy transport can be simplified for shallow and deep
water. For shallow water the energy transport is

P =
ρg3/2

8
H2

√
h (2.18)
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For deep water the energy transport is

P =
ρg2

32π
H2T (2.19)

2.3 Statistical analysis of waves

Real waves are not monochromatic i.e. each wave has a different frequency. Today
large number of companies and national agencies collect wave data all around the
globe. Characterising the waves in the wave record is based on averaging all of
the individual wave heights and periods in the record. The most common way to
describe wave height is with what is called the significant wave height Hs or also
called the mean of the highest one-third of waves

Hs = H1/3 =
1

Nwaves/3

Nwaves/3
∑

j=1

Hj (2.20)

where j is not the sequence number in the record but the rank number of the wave
(j = 1 is the highest, j = 2 is the second highest, etc) and where Nwaves is the
number of waves in the wave record. Experiments have shown that the value of
this wave height is close to the height of random waves that would be reported by
an observer [10]. The most common parameter for the wave period in random sea
is Tz the zero crossing period, defined as the average period between successive
up-crossing of the zero or the mean water level. The principals of wave height-
distribution theory are less debated by experts in the field than on wave-period
distribution. It is emphasized that the average period as defined here does not
correspond to the period of the average wave height.

Surface wave heights H follow the Rayleigh probability density function p(H)
[6, 10]

p(H) =
2H

H2
rms

exp(−H2/H2
rms), (2.21)

where the root mean square value of wave height is

Hrms =

√

√

√

√

1

N

Nwaves
∑

i=1

H2
i (2.22)

where i is the sequence numer in the wave record data.
If the waves are not too steep and not in a shallow water, there is a (theoreti-

cally based) constant ratio between the various characteristics wave heights. The
ratio between the root mean square value of wave height and the significant wave
height is

Hrms =
1√
2
Hs (2.23)

and the ration between the mean wave height (H) and the significant wave height
is

H =

√
π

2
√

2
Hs. (2.24)

9



2.3.1 Wave data

Figure 2.5: Position of
buoys.

Wave data from four different locations, shown in
figure 2.5 are used to calculate the potential en-
ergy output from the Vigor. The exact locations
for the buoys are shown in table 2.2 and the dis-
tance to shore. The depth at all locations is over
30 meters, and therefore all locations can be as-
sumed to be deep water, and approximations for
deep water will therefore be used for all locations.

The wave record is one data point for each
hour. The buoys records the wave heights for 17.5
minutes and then takes average. This is then av-
eraged for each hour. The wave record for Iceland
is root mean square value, while for Ireland and
Sweden it is significant wave height. The wave pe-
riod in the wave data is the average zero crossing wave period. Using the wave

Table 2.2: Details of wave data. Locations of buoys and time span the buoys
have recorded waves.

Start End Distance to
Location Latitude Longitude [YYYYMMDD] [YYYYMMDD] land [km]

Iceland B. 63o30′62′′ N 20o08′60′′ W 20031118 20090506 2.6
Iceland H. 64o11′81′′ N 15o11′31′′ W 20020101 20090506 7
Ireland 51o21′66′′ N 10o55′00′′ W 20050101 20090319 60
Sweden 58o29′00′′ N 10o56′00′′ E 20050101 20081231 20

data, root mean square value of the wave heights and average wave period, in
equation 2.14 and deep water approximations the energy potential per year is
calculated and shown in table 2.3.

Table 2.3: Average wave energy potential per meter of wave-front. x means
that there was not enough valid data for that year.

Energy [MWh/m per year]

Location 2004 2005 2006 2007 2008

Iceland B. 510 460 480 550 580
Iceland H. 640 570 700 x 710
Ireland x 750 660 650 890
Sweden x 65 82 120 120

10



3 Wave energy converters

There are two cases of classification used for wave energy converters (WEC). The
first classification is intended to describe the principle of operation and provide
information on the geometry of the device. There are three groups in the first clas-
sification, Point Absorber, Terminator, and Attenuator. Point Absorbers are small
devices relative to the wavelength of the incident waves. Attenuators and Ter-
minators are wave energy converters which have finite dimensions relative to the
incident wave field and one horizontal dimension that is dominant. Terminators
are positioned with the dominant direction perpendicular to the incident waves
while Attenuators are aligned with the incident wave direction [5]. The alternative
classification is to label the converters as First Generation, Second Generation, or
Third Generation. The first generation converters are onshore or near-shore. Sec-
ond generation can be both offshore and near-shore and have physical dimensions
that are much smaller than the wavelength of the waves from which the device is
designed to extract energy. The third generation is defined as large-scale offshore
device, both in terms of physical size and power output.

The device proposed by Daniel Ehrnberg [7] can labelled as attenuator and
third generation system. The device is described here below. Another wave energy
converter that is also a attenuator and a third generation system is the Pelamis
wave energy converter. The Pelamis is also described here below for comparison.

3.1 Description of Vigor wave energy converter

A new idea to harvest wave energy was proposed by Daniel Ehrnberg [7]. The
device is called the Vigor Wave Energy Converter. In the thesis it will be referenced
to as Vigor. This new device will use the motion of waves to build up pressure
inside a hose that is on the surface of the ocean. The hose is filled with air in the
crests of the waves and water at the troughs, as is shown in figure 3.1.

Figure 3.1: The Vigor wave energy converter. Notation 1 is the intake, 2 is
the power take off system. The hose is filled with water at the troughs of the
waves and air at the crests of the air. The scaling is not correct, the height
of the wave is much smaller than the wave length.

The intake will periodically take in water and air. Properties of the waves, wave
height and period will control the intake so that the right amount of air and water
is in the hose. The water will be at the troughs of the waves while the air will be
at the crests of the air. The water in the hose will therefore have the same velocity
as the wave. The power take off system will let out the air under pressure, this will
then result in that the water columns will move out of equilibrium. This forms a
height difference in the water columns which can been seen as a pressure difference
that can be utilised in a turbine to make mechanical energy. The mechanical energy
can then be turned into electricity using a generator.
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3.2 Other wave energy converter - Pelamis

There are large numbers of different wave energy converters in the design phase and
trying to become commercial as previously mentioned. The WEC that has come
the farthest is the Pelamis energy converter. The Pelamis consists of four slender
semi-submerged cylinders. These cylinders are linked together with flexible joints.
These flexible joints contain the power take off system. As the cylinders move
up, down and to the sides, the pump, using hydraulic rams, high-pressure fluid
through motors. The motors then drive electrical generators to produce electricity.
The length of current production machines is 180 meters and the diameter is 4
meters. The machines have 4 power conversion modules, which are rated at 750
kW. The average energy potential of the Pelamis is between 1600 MWh/yr and
2600 MWh/yr, depending on site condition and wave resource [12].

Figure 3.2: Movements of the Pelamis in the ocean [12]. The figure shows a
earlier prototype that only has 3 power modulus.

12



4 Problem statements

As the Vigor wave energy converter is on the preliminary design states there are
a number of problems still unsolved. Two problems are how the hose will behave
in the ocean and how the power output is computed.

4.1 Interaction between the hose and the ocean

Having a large complex technical equipment in a harsh environment as the ocean
is, represents a large number of problems, e.g. large strains and stresses on equip-
ment in storms, movement of the equipment in complex wave interaction, and
other environmental aspects. Here the focus will be on the basic problem of the
interaction of a flexible hose with the ocean. Sections of the hose is filled with
water while the remaining parts are filled with air. The interactions between the
hose and the ocean are not fully understood. This influences the power output
and is therefore of high importance and needs be understood, e.g. is the hose in
the same phase as the waves and does it always lay on the surface of the ocean.

4.2 Flow inside the hose

To be able to calculate the power output from Vigor a large number of assumptions
are needed. Some of the assumptions that have been used in past research e.g. [7]
is that there is no pressure loss in the flow inside the hose. Here the pressure loss
will be included in the power output calculations.

The problem is therefore to map the pressure losses of the flow within the hose.
Pressure loss is a result of friction between the hose and the fluid. This is quite
important as the power output is a function of the pressure potential in the hose.

13



5 Models description

To solve the the problems described in section 4 computer models are built and
simulated to solve the problems. In this section the models, used to solve the
problems, are described.

5.1 Interaction between the hose and the ocean

The interaction between the ocean and the hose can be modeled as a dynamic
model with N degrees of freedom, where the forces act on the house are found by
applying Newton’s second law. The system is described by N ordinary coupled
differential equations of motion. Coupling occurs since the motions of each degree
affects the other. The model can be described as a lump mass model as the
continuous hose is cut into segments. Each segment is then described as a node
with a mass and forces that act on the segment, that are added together [14]. The
model is shown in figure 5.1.

Figure 5.1: Hose cut into segments. dx is the length of each segment. D is
the outer diameter of the hose.

The model takes only the vertical movement (z) and forces (F ) into account
because the vertical movement is of more concern in this stage. The horizontal
forces are assumed to be zero and the nodes fixed so they do not move into the
horizontal direction. This is assumed to be valid because the horizontal forces
will be transfered to the mooring lines that anchor the device. The mass of each
segment (dmi) is either the hose mass (dmhose) plus the air inside the hose (dmair)
or the hose mass plus water (dmwater) inside the hose segment.

The forces that act on each segment are due to gravitational acceleration Fg,
buoyancy Fb, drag FD, and longitudinal extension of the hose FY . The buoyancy
force is due to the amount of the section that is submerged under water, that is
volume of the segment that is submerged dVsubmerged. The drag force is due to
movement of the hose in the sea and the flow of the sea. The drag coefficient
used is for a circular rod with flow around it, the coefficient is CD = 0.3, and it
is assumed that the flow is always turbulent [4]. The nodes are coupled together
using the Hooke’s law of elasticity, using Young’s modulus, also called the elasticity
modulus, of rubber Y for longitudinal extension of the hose. By using this law it
implies that the elasticity of rubber can be assumed to be linear and the deflections
are sufficiently small. This is a large assumption as the deflections can be rather
high. Models that are non-linear, which can take into account the complex nature
of rubber, have a high computanial cost and would add hours to the computational
time. Based on this high computational cost it is considered to be valid to use
the simple model. The model is shown in figure 5.2. The rubber restrains against
elongation with the force calculated by the Hooke’s law. The force is transformed
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into a vertical force that will increase as the nodes move further apart in the
vertical direction. This implies that the hose equilibrium state is straight.

The single and double over-dots of coordinate represents the velocity and ac-
celeration, respectively, of that coordinate (dz/dt and d2z/dt2).

Figure 5.2: Hose cut into segments.

The forces on node i are then

Fg,i = −dmig

Fb,i = dV{submerged}iρwg

FD,i = −1

2
ρwżi|żi|DoutdxCD

FY,L,i =
Y

dx

π(D2
out −D2

in)

4

(

√

dx2 + (zi − zi−1)
2 − dx

)

FY,L,v,i = FY,L,i
zi − zi−1

√

dx2 + (zi − zi−1)
2

FY,R,i =
Y

dx

π(D2
out −D2

in)

4

(

√

dx2 + (zi+1 − zi)
2 − dx

)

FY,R,v,i = FY,R,i
zi+1 − zi

√

dx2 + (zi+1 − zi)
2

where

dmi =

{

dmhose + dmair

dmhose + dmwater

And where the density of the ocean is ρw = 1030 kg/m3, subscripts L and R
is left and right respectively, and the subscript v means the vertical component
of the force. The inside and the outside diameter of the hose is Din and Dout

respectively. The gravitational accelartion is g = 9.82 m/s2. Number of sections
is from i = [1, 2, ..., Lhose/dx] The equation of motion for node i is then

dmiz̈i = Fi = Fg,i + Fb,i + Fd,i + FY,R,v,i − FY,L,v,i (5.1)

The system of differential equations, shown in equation 5.1 is solved using
the Runge-kutta method. The method finds the first solution using the initial
conditions. The intial condition are that there are no waves and the hose is in
equilibrium laying on the ocean. Waves are introduced after the first time step.
Using the initial conditions the solutions for time step 1 is computed. The method
then computes the time steps in sequence, using the previous solution. The method
is used by implementing the function ode45 in MATLAB. For more information
about the Runge-kutta method see e.g. [8].
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5.2 Flow inside the hose

The power output depends on the pressure that is raised by the water columns.
The pressure depends then on the amount the water columns are out of equilibrium
and the pressure loss that happens due to the fluid flow. Therefore it is needed
to find the pressure loss in the water columns. There are only few simple cases
when it is possible to use theoretical solutions to calculate pressure losses, e.g.
fully developed laminar flow in a circular pipe. The solutions available for more
complicated cases therefore relies on experimental results and empirical relations
rather than closed-form analytical solutions. Because of this the results from these
methods are not “exact”. The results are estimates which show the magnitude of
the factors and a norm of 10 percent error for the friction factors rather than
exception [4]. This is the first step into finding the pressure losses before going
into computational fluid dynamics (CFD), and even when using CFD there will
be an error in the results as they to are also not based on analytical solutions [13].
One of the best ways to find solutions that do not have such large erro margins,
is to make experiments.

Having this in mind, the resulting solution to find the pressure loss, in a pipe,
for all types of fully developed internal flows is

∆PL = f
L

Di

ρV 2
avg

2
(5.2)

where f is the friction factor, L is the length of the pipe, Di is the inside diameter
of the pipe, ρ is the density of the fluid in the pipe, Vavg is the average velocity of
the fluid.

The methods to find the friction factor are split into two cases. The first case
is for laminar flow and the other is for turbulent flow. To find if the flow is laminar
or turbulent flow the Reynolds number is used. The Reynolds number is defined
as

Re =

[

Inertial forces

Viscous forces

]

=
VavgD

ν
=
ρVavgD

µ
(5.3)

where D is the characteristic length of the geometry, in this case it is the inside
diameter of the pipe, ν = ρ/µ is the kinematic viscosity of the fluid, ρ is the density
of the fluid, and µ is the dynamic viscosity of the fluid. Laminar flow is defined as
having Reynolds number smaller than Re < 2300 and turbulent flow is defined as
having Reynolds number larger than Re > 4000. The region in between is defined
as transition range, where the flow switches between laminar and turbulent flow.
It is quite difficult to find solutions for that region and the solutions for turbulent
flow will be used.

The friction factor for a fully developed laminar flow is

f =
64µ

ρDVavg
(5.4)

where µ is the dynamic viscosity of the fluid.

The friction factor for a fully developed turbulent flow cannot be found by
theoretical analysis. The friction factor was therefore found by using experiments,
for more discussion see e.g. [4]. In 1939, Cyril F. Colebrook combined the data
from the experiments in the following implicit relation known as the Colebrook
equation

1√
f

= −2.0 log10

(

ǫ/D

3.7
+

2.51

Re
√
f

)

(5.5)
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where ǫ is the roughness value of material and Re is the Reynolds number for the
flow, found with equation 5.3. The equivalent roughness values for some common
materials can be found in [4], the roughness value for rubber is given as ǫ =
0.01 mm. It should be kept in mind that the values are for new pipes, and the
relative roughness may increase with use as a result of corrosion, scale build-up,
and precipitation. As a result, the friction factor may increase by a factor of 5 to
10 with use.

Although both equations 5.4 and 5.5 are developed for circular pipes they can
be used for non-circular pipes by replacing the diameter by the hydraulic diameter

Dh =
4Ac

p
(5.6)

where Ac is the cross sectional area and p is the wetted parameter.

To find the pressure loss for the flow inside the Vigor an energy equation for
a steady, incompressible one-dimensional flow, on a unit-mass basis is used on the
first water column in the hose. The energy is transfered, from the waves to the
water inside, during the total length of the hose, so the largest height difference
will be in the last column, Hwave −D. The model is shown in figure 5.3, and the
energy equation is

P1

ρ
+ α1

V 2
1

2
+ gz1 =

P2

ρ
+ α2

V 2
2

2
+ gz2 +

∆PL

ρ
(5.7)

where P is the pressure, z is the height of the surfaces of the water columns, V is

Figure 5.3: Water wave with hose filled with three water columns. Figure
below shows wave and water columns characteristics.

the flow velocity, and α is the kinetic energy correction factors; α = 2 for laminar
flow, and α = 1.05 for turbulent flow [4].

Because the velocities are the same, V = V1 = V2 at position 1 and 2, and it is
assumed that the kinetic energy correction factors are the same at both positions,
equation 5.7 simplifies

P2 − P1 = gρ(z1 − z2) − ∆PL (5.8)

Taking into account the rest of the water columns in the hose, the total pressure
potential in the hose is

P2n − P1 = gρ

(

2n
∑

i

z2i−1 −
2n
∑

i

z2i

)

− n∆PL (5.9)
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where n = Lhose/λ is the number of waves under the hose. It is also assumed that
the pressure loss is the same for each water column.

This pressure difference can than be transformed into mechanical energy using
a turbine. The energy output from the Vigor is, not taking into account losses in
the turbine,

Power = V Ac(P2n − P1) (5.10)
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6 Results

The results from the models simulations of the interaction between the hose and
the ocean as well as the flow inside the hose are shown and described in the
following section. The interaction simulation is done for two types of hoses, each
with different elasticity. The simulation for the flow inside the hose is used to
optimize the potential power output. The simulation is run using wave data from
four different locations in Iceland, Ireland and Sweden.

6.1 Interaction between the hose and the ocean

The results are based on a hose that has a circular cross section. The hose proper-
ties are based on the hose TUBO OREGON SUPER LIGHT from Mèrlett Techno-
plastic. This hose will be used for experiments in small scale prototype of the Vigor
wave energy converter. The properties for the hose and the characteristics of the
waves are shown in table 6.1. The young modulus for rubber is uncertain as it
is different for each compound. Therefore a sensitive analysis is performed and
the simulation done for two values, low Young modulus Ylow = 0.1 GPa, and high
modulus Yhigh = 1 GPa. Based on a monochromatic wave it is clear that the

Table 6.1: Properties for simulation

Property Value Description

Do 0.15 m Outside diameter
Di 0.139 m Inside diameter
ρhose 580 kg/m3 Density
Y [0.1 − 1] GPa Young modulus for hose material
Lhose 200 m Length of hose
Twave 6 s Wave period
Hwave 1 m Wave height

interaction between the hose and the waves are as hoped for. This can be seen in
figure 6.1. The hose follows the crest and the troughs very closely. For the hose
with lower Young modulus it is clear that the hose is below at the troughs of the
waves.

Figure 6.2 shows a close up of both the crest and the trough of the hose with
the higher Young modulus. The hose lays on the surface on the crest but lays
under the surface at the troughs.
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Figure 6.1: The interaction between the hose and the ocean with monochro-
matic waves. The figure above shows a model with high Young modulus and
the model on the below figure has a low Young modulus. The red is the
outlines of the hose, and the blue is water inside the hose. The waves are
moving from left to right. The scaling is not correct.
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Figure 6.2: Close op of the crest, above, and the trough, below, of the hose
for high Young modulus. The red is the outlines of the hose, and the blue
vertical lines are water inside the hose. The blue horizontal lines are the
ocean surface. The waves are moving from left to right. The scaling on the
axis is not correct.
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6.2 Flow inside the hose

The results presented here are based on the hose that has a lengt of Lhose =
200 meters. This is an arbitary length which will be optimized in the future
depending on the location. The roughness value used is for rubber and is ǫ = 0.01
millimetres. A cross section of the hose is showed in figure 6.3 and these dimensions
are varied to see how they influnce the pressure potential in the unit and then the
height dimension a is varied to find the optimal height which gives the best power
potential.

Figure 6.3: Cross section of the hose with dimensions.

Figure 6.4 shows how the dimension of the hose affects the potential pressure
output. The different dimensions are shown in table 6.2. The curves show where
the pressure potential is zero for the specific dimension of the hose. To the left
of the lines the pressure is positive while to the right of the line the pressure is
negative. The device produces energy when the pressure is positvie. Figure 6.4
can be used to find if a specific hose works for a certain size of waves, in e.g. a
wave tank that has monochromatic waves. A wave with the height of 5 meters
and wave period of 5 seconds needs a hose with diameter larger than 0.2 meters.

Table 6.2: Dimensions of hose for figure 6.4.

Number 1 2 3 4 5 6 7 8 9 10 11 12

a [m] 0.1 0.2 0.4 0.6 0.8 1 0.5 1.0 1.5 2.0 2.5 3.0
b [m] 0 0 0 0 0 0 4 4 4 4 4 4

The power output is a function of the pressure potential in the hose and the
flow rate through the hose, as can be seen in equation 5.10. The flow rate is a
function of the cross sectional area of the hose. As the dimension a is increased
the mass flow increases but the pressure potential deacreases. Therefore there
is some optimal a that will result in the largest power potential for the device
depending on the wave resource. The optimum dimension is found by calculating
the total energy output, using all of the data points in the wave data using different
dimension a while the dimension b is constant, b = 4 meters. The result for the
optimization is shown in figure 6.5 which show’s that there is a optimum a in each
location. The resulting optimum a is shown in table 6.3 for each location.

The potential power output, when the pressure loss is taken into account is
shown in figure 6.6. The dimensions of the hose are, for a shown in table 6.3
for each location, b = 4 meters and length of Lhose = 200 meters. The potential
power output is calculated using wave records from four different locations shown
in table 2.2. Figure 6.6 shows that a large part of the waves are not producing
energy. The curves show the potential power output in MW as function of wave
period and height. The crosses are the wave data of eace location.
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Figure 6.4: Curves show where the pressure is zero. There are 12 hoses with
different diamensions. The diamensions are shown in table 6.2. The pressure
is positive to the left of curves and negative to the right of curves.
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Figure 6.5: Curves show the energy output, calculated using wave data from
each location, as a function of the dimension a.

Table 6.3: Optimal dimension a for the hose at each location.

Location a [m]

Iceland B. 1.5
Iceland H. 1.8
Ireland 1.8
Sweden 1.0
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Figure 6.6: Curves show the potential power output in MW and the crosses
represent the wave data. Wave data from Iceland Bakkafjara is in the upper-
left corner, Iceland Hornafjordur in the upper-right corner, Ireland in lower-
left corner and from Sweden in the lower-right corner.

The potential yearly energy output is shown in table 6.4. The average potential
is the around, 400 MWh per year for Iceland Bakkafjara, also 400 MWh/yr for
Iceland Hornafjordur, 200 MWh/yr for Ireland and 50 MWh/yr for Sweden. These
values do not take into account the losses in the power take off system, i.e. losses
in the turbine and the losses in the electricity generator. The potential wave enrgy

Table 6.4: Potential yearly energy output from Vigor. (x not enough data
for the year)

Energy [MWh/year]

Location 2004 2005 2006 2007 2008

Iceland B. 390 320 360 420 490
Iceland H. 390 300 470 x 460
Ireland x 200 120 130 360
Sweden x 20 50 60 80

at each location, using the dimension in table 6.3, is shown in table 6.5.
As mentioned above, some of the waves are not producing energy through the

Vigor converter. Table 6.6 shows how much of the time Vigor is producing energy.
The maximum amount of the year is in Iceland and is 25% which means that it
would have produced energy for around 2200 hours in the year 2008. The minimum
is in Ireland, only 6% or around 500 hours that Vigor would have produced energy
in 2007.

The early average efficiency of the Vigor is shown in table 6.7. The efficiency is
calculated as the wave energy for the wave data compared to the potential energy
produced by Vigor. The efficiency reaches nearly 60%, for some of the wave data.
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Table 6.5: Average wave energy potential at each location. x means that
there was not enough valid data for that year.

Energy [MWh/year]

Location 2004 2005 2006 2007 2008

Iceland B. 2800 2500 2600 3000 3200
Iceland H. 3700 3300 4000 x 4100
Ireland x 4400 3800 3800 5200
Sweden x 320 410 600 600

Table 6.6: Percent of the year when Vigor works (x means that that there
was not enough valid data for the year).

Location 2004 2005 2006 2007 2008

Iceland B. 22% 17% 19% 24% 25%
Iceland H. 14% 11% 16% x 14%
Ireland x 11% 7% 6% 18%
Sweden x 8% 11% 14% 16%

This high efficiency means that large part of the wave energy is transfered into
useful mechanical energy.

Table 6.7: Average yearly efficiency of Vigor (x means that that there was
not enough valid data for the year).

Location 2004 2005 2006 2007 2008

Iceland B. 24% 25% 24% 24% 25%
Iceland H. 22% 23% 24% x 26%
Ireland x 14% 15% 14% 16%
Sweden x 21% 21% 21% 20%
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6.2.1 Sensitive analysis

As mentioned in section 5 there are several uncertainties involved in some of the
variables used in calculating pressure losses. To see how sensitive the results are for
these uncertainties two variables are varied while other dimensions are constant.
The length of the hose is Lhose = 200 meters, and the height is a = 0.8 meters and
width is b = 4 meters. The variables that are varied are the roughness value, ǫ and
the friction factor, f . The sensitiveness of the results are checked by seeing how
the change in the variables will change the location of where the pressure, and the
power, are zero. The results are shown in figure 6.7 and show that the model is
more sensitive for change in the friction factor, as one might exspect considering
that the friction factor is a function of the roughness value, as can be seen in
equation 5.5. Even though the value of the friction factor would be 15 percents
lower the energy output would still be in the same range, hundreds MWh a year.
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Figure 6.7: Sensitive analysis of the roughness value and the friction factor.
Curves show when the pressure potential is zero. The pressure is positive to
the left of curves and negative to the right of curves.
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7 Conclusion

Wave energy converters have a large potential to be a part of the technology that
generates electricity in the future. It is however still uncertain what approach will
be used to transform the energy in waves into electricity. There is large number
of approaches racing against each other to be the first one to reach commercial
success. An attractive approach is the Vigor wave energy converter. The Vigor is
still in the design phase and some initial design problems and initial solutions to
the problems has been the focus of this thesis.

The problem of how the hose and the ocean ineract is complex. A simple
model of the hose and the forces that act on the hose was constructed to solve the
problem. This model was then simulated to see how the hose moves in the ocean.
The result of the simulation indicates that the interaction is how it was assumed
to be. The conclusion is that the hose moves in the same phase as the waves and
lays on the surface of the ocean, in the troughs the hose is slightly submerged but
on the crests the hose is on the surface of the ocean.

The model to calculate the power output of the Vigor wave energy converter
was enhanced to take into account pressure losses. The pressure losses are a result
of the friction between the fluid flow and the hose. The conclusion from using
this enhanced model is that the pressure losses decrease the power potential of the
Vigor quite substantially. The power output of the Vigor wave energy converter
can reach up to 60% of the the theoretical maximum which is converting all of the
wave energy into useful mechanical energy. The average efficiency is lower, around
20% of the conversion from wave energy into useful energy. The power potential
of the Vigor energy converter depends on the wave resource and for the locations
used in this thesis the largest potential is in Iceland and is 500 MWh in the year
2008.

7.1 Future research

There are still large numbers of assumptions related to both the model of the
interaction between the hose and the ocean and to the pressure loss calculations.
Further research is therefore needed to see if these assumptions are justified. For
example assuming that rubber is linear elastic material is not valid because rubber
is hyper-elastic material. Another aspect is the assumption that the pressure is
constant in the air sections in the hose. This can be modeled in CFD to check if
the assumption is valid.

Other parts that need to be researched are e.g. the energy transfer between the
waves and the hose. Another problem is to see if the the pressure loss calculations
are correct. An experiment should be done using similar material as is expected
to be used in the commercial plant. A brief idea for the experiment is to measure
the pressure loss in the hose using similar velocities as is expected to be in the
hose during operation.
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ter’s thesis, Göteborg University, 2007.

[8] J. Douglas Faires and Richard Burden. Numerical Methods. Brooks/Cole-
Thomson Learning, 3rd edition, 2003.

[9] Johannes Falnes. Ocean Waves and Oscillating Systems. Cambridge Univer-
sity Press, 2002.

[10] Leo H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cambridge, 2007.

[11] B. Kinsman. Wind Waves; Their Generation and Propagation on the Ocean
Surface. Courier Dover Publications, 2002.

[12] Pelamis Wave Power Ltd. Pelamis wave power.
http://www.pelamiswave.com/. Accessed June 2009.

[13] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid
Dynamics; The Finite Volume Method. Pearson Education Limited, 2nd edi-
tion, 2007.

[14] James F. Wilson. Dynamics of Offshore Structures. John Wiley and Sons,
2nd edition, 2003.

27



Appendices

MATLAB programs

Interaction between the hose and the ocean

Movement of the hose

1 %

2 % Egill Maron Thorbergsson 090416

3 % Simulation of the movement of the hose in regular waves

4 % Modified 090609

5 % Both ends are large floating structures

6 %**************************************************************************

7 function [y_hose x time r] = hose_movement(E)

8 % The program returns

9 % y_hose : [m m/s] the vertical position and velocity of the hose

10 % x: [m] the horizontal postion of each secment

11 % time: [s] the time when the postion and velcity where calculated

12 %**************************************************************************

13

14 % Physical properties

15 rho.w = 1030; %[kg/m^3] Density of sea

16 rho.a = 1.3; %[kg/m^3] Density of air

17 g = 9.82; %[m/s^2] Accelarition due to gravity

18

19 % initial constants

20 delta.x = 0.5; %[m] Length of section

21 delta.t = 0.5; %[s] Time section

22 L.h = 200; %[m] length of hose - depends on specific location

23 % (optimized in the future )

24 x = 0: delta.x:L.h; %[m] Position of each secment

25 n.x = length (x); %[-] Number of nodes

26 t.start = 0; %[s] Time start

27 t.e = 30; %[s] Time length
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28 t_span = t.start:delta .t:t.e; %[s] sections of time

29

30 % Hose properties

31 rho .h = 580; %[kg/m^3] Density of the hose material

32 %E = 1e9; %[Pa] Young ’s modulus of the hose material (need to find)

33 %n.h = 1; %[-] Number of hoses

34 r.in = 0.139/2; %[m] inner radius

35 r.out = 0.15/2; %[m] Outer radius

36 %L.h = 4* lambda ; %[m] Length of hose

37 width = 2*r.out; %[m] Total width of hose

38 A.in = pi*r.in^2; %[m^2] Inner area of hose

39 A.mat = pi*(r.out ^2 - r.in^2); %[m^2] Area of the hoses material

40 A.drag = width *delta .x; %[m^2] Area for the drag force

41 C.d = 0.3; %[-] Drag coefficient

42 k = E * A.mat / delta.x; %[N/m] Spring constant

43 m.hose = A.mat * delta .x * rho.h; %[kg] Mass of section of material ,

44 m.air = A.in * delta .x * rho.a; %[kg] Mass of section of air

45 m.water = A.in * delta .x * rho.w; %[kg] Mass of section of water

46

47 %--------------------------------------------------------------------------

48 % Finding the position of the hose so that it is in equilibrium with

49 % the sea

50 % [m] [Rectangle !] Where the hose(full with water is in eqilibrium with the surface [F_g == F_lift ]

51 %y_eq_hose = r.out - (m.hose + m.water) / (2* r.out *delta .x * rho .w);

52 % [m] [Circle ] Where the hose(full with water is in eqilibrium with the surface [F_g == F_lift ]

53 y_eq_hose = r.out - 2 * (m.hose + m.water) / (pi*r.out*delta.x * rho .w);

54 %--------------------------------------------------------------------------

55

56 % Vertical force from end springs . The end nodes are free.

57 F.ky(1) = 0; %[N] End spring

58 F.ky(n.x+1) = 0; %[N] End spring

59

60 % End notes are modeled as boxes

61 rho .ends = 700; %[kg/m^3] Density of end notes

62 ends.H = 0.5; %[m] Height

63 ends.area = 20; %[m^2] Bottom area

64 ends.Vol = ends.area*ends.H; %[m^3] volume of the ends

65 F.submerged_end = ends.Vol *rho.w *g;%[N] Buoancy forces

66 C.d_end = 2.2; %[-] Drag coefficient Coefficient for square rod

67 m.ends = ends.Vol *rho.ends;%[kg] Mass of ends
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68 F.g_ends = - m.ends *g; %[N] Gravity force for end notes

69

70 % Calculate the maximum and minumum buoancy force

71 %F.submerged = 2 * r.out * width * delta .x * rho .w * g; %[N] Force if fully submerged (for a rectangle )

72 F.submerged = pi * r.out ^2 * delta.x * rho.w * g; %[N] Buoancy Force if fully submerged (circle )

73 F.above = 0; %[N] Force if above water

74

75 % [-] initial conditions for the hose

76 % [y_IC(:,1) y_IC (: ,2)] = wave(x ,0);

77 % [y_IC dy_dt_IC ] = wave(x ,0);

78 % y_initial_conditions (1:2: n.x*2) = y_IC; %If the wave is not zero and the hose is floting

79 % y_initial_conditions (2:2: n.x*2) = dy_dt_IC ; %The hose has the same inital speed as the wave

80 % [m] The wave starts at zero and we have the hose full of water and in equilibrium with the sea

81 y_initial_conditions (1:2:n.x*2) = y_eq_hose ;

82 y_initial_conditions (2:2:n.x*2) = 0; %[m/s] The hose has no initial speed

83 tic

84 %Solving the differential equations tha describe the forces on the secments

85 [time y_hose ] ...

86 = ode45( @(T,y) diff_eq_hose(T,y, A,n ,rho ,F,g,k,m,r,delta ,C,x,ends), t_span , y_initial_conditions );

87 toc

88

89 end %function

90 function dy_dt = diff_eq_hose(t,y, A,n ,rho ,F,g,k,m,r,delta ,C,x,ends)

91 % Differential equations that describe the forces that act on the secments

92 % of the hose.

93 % How dy_dt and y is set up

94 % dy_dt & y : (1,2) node 1 - (3,4) node 2 - ... - (2* n.x -1, 2*n.x) node n.x

95 %

96 dy_dt = zeros (2*n.x,1); %Preallocating memory for dy_dt

97 y_wave = wave(t,x); %[m] Computing position of the wave at time t for all x

98 y_wave_delayed = wave(t-1,x); %Delay for the position of the water inside the hose delayed

99

100 for i = 2:n.x %Need to compute this first because of F.ky(i+1)

101 %Force from rubber (as spring - Hook ’s law ) between the nodes

102 %[N] Spring force (spring constant * deflection )

103 F.k(i) = k * ( sqrt( delta.x^2 + (y(2*i -1) - y(2*i -3))^2 ) - delta.x);

104 %[N] The vertical partion of the force

105 F.ky(i) = F.k(i) * ( y(2*i -1) - y(2*i -3) ) / sqrt(delta.x^2 + ( y(2*i -1) - y(2*i -3) )^2);

106 end %for

107
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108 for i = 2:n.x-1

109 w = 0;%wave_vertical_velocity (t,x(i),y(2*i -1)); %[m/s] Vertical velocity for particles in ocean

110 %m.section = m.hose + m.water; %[kg] Mass of the node

111 %The mass of the section ; air to the right of crest ; water to the right of trough

112 m.section = m.hose + m.air *( y_wave_delayed(i)>0)+ m.water *( y_wave_delayed(i) <=0); %[kg]

113 F.g = - m.section *g; %[N] Gravity force

114 %[N] Linear approximation of the buoyancy force for a circle

115 F.lift = F.submerged / (2 * r.out) * (- y(2*i-1) + (y_wave (i) + r.out ));

116 %[N] Find out if the hose is above or under water surface

117 F.lift = max( min (F.lift ,F.submerged ) ,F.above );

118 %[N] Drag force %need to check if it is under water

119 F.d = -0.5 * rho.w * (y(i*2)-w) * abs ((y(i*2)-w))*A.drag*C.d;

120 if y(2*i -1) + r.out > y_wave (i) && sign(y(i*2)) == 1

121 %Check if upper part of the hose is above water level and if the hose

122 %is going upwards

123 F.d = 0; %Drag force for air - hose is above water

124 elseif y(2*i-1) - r.out > y_wave (i) && sign(y(i*2)) == -1

125 %Check if the lower part of the hose is above water level and if

126 %the hose is going down

127 F.d = 0; %Drag force for air - hose is above water

128 end

129 %Differential equations describing the forces on the nodes

130 dy_dt (2*i-1 , 1) = y(i*2); %[m/s] Speed

131 dy_dt (2*i , 1) = (1/ m.section ) * (F.g - F.ky(i) + F.ky(i+1) + F.d + F.lift); %[m/s^2] Acceleration

132 end %for

133 %[N] Gravity force

134 for i = [1, n.x]

135 %Compute the ends i=1 and i = n.x

136 w = 0;%vertical_velocity(t,x(i),y(2*i -1));%[ m/s] Vertical velocity for particles in ocean

137 %m.section = m.hose + m.water; %[kg] Mass of the node

138 %The mass of the section ; air if crest ; water if trough

139 %[N] buoyancy force for a square

140 F.lift = ends.area * (y_wave (i)-(y(2*i-1)- ends.H/2)) * rho .w * g;

141 %[N] Find out if the hose is above or under water surface

142 F.lift = max( min (F.lift ,F.submerged_end) ,F.above );

143 %[N] Drag force %need to check if it is under water

144 F.d = -0.5 * rho.w * (y(i*2)-w) * abs ((y(i*2)-w))* ends.area*C.d_end ;

145 if y(2*i -1) + ends.H/2 > y_wave (i) && sign(y(i*2)) == 1

146 %Check if upper part of the hose is above water level and if the hose

147 %is going upwards
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148 F.d = 0; %Drag force for air - hose is above water

149 elseif y(2*i-1) - ends.H/2 > y_wave (i) && sign(y(i*2)) == -1

150 %Check if the lower part of the hose is above water level and if

151 %the hose is going down

152 F.d = 0; %Drag force for air - hose is above water

153 end

154 % Differential equations describing the forces on the nodes

155 dy_dt (2*i-1 , 1) = y(i*2); %[m/s] Speed

156 dy_dt (2*i , 1) = (1/m.ends) * (F.g_ends - F.ky(i) + F.ky(i+1) + F.d + F.lift ); %[m/s^2] Acceleration

157 end

158 end %function
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Waves

1 %

2 % Egill Maron Thorbergsson 090416

3 %

4 % Simulation of the surface position of waves

5 %

6 %**************************************************************************

7 function z_wave = wave(t,x)

8 %[z_wave dz_wave_dt ] = wave(x,t)

9 %

10 % Function for the wave calculations

11 % Assumption the t vector always starts at 0

12 % The wave starts at zero and is zero for the first t_zero secends then it starts

13 % to increase linearly until at time t_start .

14 % z_wave (t,x): time is in rowes and x is in columns

15 %

16 %--------------------------------------------------------------------------

17 % Exampel how to run the program

18 % time = [0:0.1:20];

19 % x = [0:0.1:60];

20 % y_wave = wave(time ,x);

21 % %Plots an animation of the wave

22 % for i=1: length (time)

23 % plot(x,y_wave (i ,:))

24 % axis ([x(1) x(end ) min (min (y_wave )) max (max (y_wave ))])

25 % pause (0.1)

26 % end

27 %--------------------------------------------------------------------------

28

29 %Physical properties

30 g = 9.82; %[m/s^2] Accelarition due to gravity

31 %Ocean wave properties

32 T = 6; %[s] period of waves

33 H = 1; %[m] height

34 h = H/2; %[m] amplitude

35 lambda = g*T^2/(2* pi); %[m] wavelength [deep water wave]

36 sigma = 2*pi/T; %[rad /s] angular frequency

37 omega = 2*pi/T; %[rad /s] angular frequency
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38 k = 2*pi/lambda ; %[rad /m] wave number

39 %v.wave = lambda /T; %[m/s] wave speed

40 t_zero = 5; %[s] How long is the wave zero

41 t_start = 15; %[s] When the wave is full expanded

42 n.x = length (x); %[-] number of nodes

43 n.t = length (t); %[-] number of elements in time

44 z_wave = zeros(n.t,n.x); %[m] preallocating memory for z_wave and also initializing the vector

45 %Constants to make another wave that is different from the standard wave.

46 % const_wave_height = 1;

47 % const_wave_omega = 0.96;

48 % const_wave_lambda = 0.94;

49

50 for i = 1:n.t

51 %time is rows and x position is in columns

52 if t(i)<t_zero

53 z_wave (i ,:) = h/100 * cos(-sigma * t(i) + k * x);

54 elseif t(i)>t_zero && t(i)<= t_start

55 %Check if time is in the between the linear space

56 %[m] Surface position of the ocean

57 z_wave (i ,:) = h * cos (-sigma * t(i) + k * x) *(t(i)-t_zero )/( t_start -t_zero );

58 %Add another sin function to make more realistic wave

59 %z_wave (i ,:) = (h * cos (-omega * t(i) + 2 * pi/lambda * x) + h/const_wave_height * ...

60 %cos (-omega/ const_wave_omega*t(i) +2* pi/lambda / const_wave_lambda * x))*(t(i)-t_zero )/( t_start -t_zero );

61 elseif t(i)>t_start

62 %[m] Surface position of the ocean

63 z_wave (i ,:) = h * cos (-sigma * t(i) + k * x);

64 %Add another sin function to make more realastic wave

65 %z_wave (i ,:) = h * cos (-omega * t(i) + 2 * pi/lambda * x) + h/const_wave_height * ...

66 %cos (-omega/ const_wave_omega*t(i) +2* pi/lambda / const_wave_lambda * x);

67 end %if

68 end %for
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Flow inside the hose

Power output calculation

1 %

2 % Egill Maron Thorbergsson 090602

3 % Pressure and power calculations using one wave

4 %

5 %

6 %**************************************************************************

7 function [p_height p_loss p_total Power] = pressure_power(T,H,r,width ,epsilon ,L_hose )

8 % Ouput

9 % p_height [Pa] Pressure for all water columns

10 % p_loss [Pa] Pressure loss for all water columns

11 % p_wc [Pa] Pressure at the outlet

12 % Input

13 % T [s] Wave period

14 % H [m] Wave height

15 % r [m] Hose radius

16 % width [m] Hose width between circle segments

17 % epsilon [m] Hose roughness

18 % L_hose [m] Hose length

19 %**************************************************************************

20 %Physical properties

21 g = 9.82; %[m/s^2] Accelarition due to gravity

22 rho .w = 1030; %[kg/m^3] Density of sea

23 rho .air = 1.3; %[kg/m^3] Density of air

24 mu.w = 1.519e-3; %[kg/(m s)] Dynamic viscosity for liquid water at 5 Â◦C

25 lambda = g*T^2/(2* pi); %[m] wavelength [deep water wave]

26 v.wave = lambda /T; %[m/s] Wave speed

27 %sigma = 2*pi/T; %[rad /s] angular frequency

28 %k = 2*pi/lambda ; %[rad /m] wave number

29 %n = L_hose /lambda ; %[-] Number of water columns in the hose

30 n = 1; %[-] assumption about the pressure increase

31 L.wc = n*lambda /2; %[m] The total length of water column

32 A_c = pi * r.^2 + 2* width .* r; %[m^2] cross -sectional area of the hose

33 peri = 2*pi .* r + 2 * width ; %[m] wetted perimeter

34 D_h = 4*A_c/peri; %[m] Hydraulic diameter

35 vel_wat = sqrt(v.wave^2 + (v.wave /( lambda /2))^2); %[m/s] velocity of the water inside the hose
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36 Vol_vel_wat = vel_wat * A_c ; %[m^3/ s] Volumetric flowrate

37 Re = rho.w * vel_wat * D_h/mu.w; %[-] Reynolds number

38 f = colebrook (epsilon ,D_h ,Re); %[-] Friction factor for turbulent flow

39 p_loss = 0.5 * rho.w * f * vel_wat ^2 * L.wc/D_h; %[Pa] Pressure loss for all water columns

40 p_height = n * rho .w * g * (H - 2 * r); %[Pa] Pressure for all water columns

41 p_total = p_height - p_loss ; %[Pa] The total pressure at the end of hose

42 Power = p_total * Vol_vel_wat ; %[W] Total Power in the hose

43 end

44 function f = colebrook (epsilon ,D,Re)

45 if Re < 2300 %Laminar flow

46 f = 64/ Re; %[-] friction factor for fully laminar flow in a circular pipe

47 elseif Re >= 2300 %Fully turbulent flow (2300 to 4000 is the transistion range )

48 f_sv = ( -1.8* log10 (6.9./ Re + (( epsilon ./D )./3.7).^1.11)).^( -2); %[-] Start value to find friction factor

49 f = fzero(@(f) findf (f,epsilon ,D,Re) ,f_sv); %[-] Friction factor for turbulent flow

50 end

51 end

52 function funct_value =findf(f,epsilon ,D,Re)

53 %[-] Colebrook equation to find the friction factor

54 funct_value = -2 * log10 (( epsilon ./D)./3.7 + 2.51./( Re.* sqrt(f)) ) - 1./ sqrt(f);

55 end

36



Energy and efficiency of Vigor

1 % 090610

2 % Egill Maron Thorbergsson

3 % Program to find the power and energy from the vigor at a location using

4 % a wave data. The wave data is for one hour and is rms value of wave

5 % height and an average value of wave period .

6 %**************************************************************************

7 clear all

8 i = 1; %[-] Chose what data is used see below

9 if i==1

10 [year H_rms T] = data_bakka ; %[- m s] Data from Iceland Bakkafjara

11 r = 1.5/2;

12 elseif i==2

13 [year H_rms T] = data_horna ; %[- m s] Data from Iceland Hornafjordur

14 r = 1.8/2;

15 elseif i==3

16 [year H_rms T] = data_ireland; %[- m s] Data from Ireland

17 r = 1.8/2;

18 elseif i == 4

19 [year H_rms T] = data_vaderoarna; %[- m s] Data from Sweden Vaderoarna

20 r = 0.5;

21 end

22

23 H_av = sqrt(pi /4)* H_rms ; %[m] Use the average or most likely wave

24 H_av(isnan(H_av)) = 0; %[-] putting 0 instead of NAN so it is possible to calculate

25 T(isnan(T)) = 0; %[-] putting 0 instead of NAN so it is possible to calculate

26 n.H = length (H_av); %[-] Number of data points

27 n.T = length (T); %[-] Number of data points

28

29 L_hose = 200; %[m] Length of hose

30 width = 4; %[m] width between circle segments

31 r = 0.4; %[m] Radius of circle segments

32 epsilon = 0.01e -3; %[m] Roughness for the hose [rubber ]

33 rho = 1025; %[kg/m^3] density of ocean

34 g = 9.82; %[m/s^2] gravity accelaration

35

36 points_year = []; %[-] Preallocating memory

37 E_year_vigor = []; %[-] Preallocating memory
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38 E_year_wave = []; %[-] Preallocating memory

39 time_works = []; %[-] Preallocating memory

40 eff_year_av = []; %[-] Preallocating memory

41

42 E_total_wave = 3600* rho*g^2/16/ pi*T.*H_rms .^2 * (width + r*2); %[J] Total energy in waves for one hour

43

44 for i = 1:n.H

45 if H_av(i) == 0 || T(i) == 0 %No data

46 p_height (i) = 0;

47 p_loss (i) = 0;

48 p_total (i) = 0;

49 Power (i) = 0;

50 else

51 %[Pa Pa Pa W] [Potential pressure ;pressure loss; total pressure ; Power output ]

52 [p_height (i) p_loss (i) p_total (i) Power(i)] = pressure_power(T(i),H_av(i),r,width ,epsilon ,L_hose );

53 end

54 end

55

56 Power(Power <0) = 0; %[W] Put power to zero when power is negative , no power output

57 % Using another varible so it is possible to calculate total power from waves eanch year

58 E_total_wave_v = E_total_wave;

59 E_total_wave_v(Power <=0) = 0; %[-] Putting wave energy to zero is no output from vigor

60 for i = 2004:2008

61 points_year = [points_year nansum (year ==i)]; %[-] number of data points in a year

62 time_works = [time_works sum(Power(year==i) >0)]; %[h] finds how many hours vigor works a year

63 %[J] finds the potential energy from waves for each year

64 E_year_wave = [E_year_wave nansum ( E_total_wave(year ==i))];

65 %[MWh ] The Power output is only for a 1/2 of T because the hose is only filled to half with water

66 E_year_vigor = [E_year_vigor sum (Power (year ==i))*0.5/1 e6];

67 eff_year_av = [eff_year_av nanmean (Power (year ==i )*0.5*3600./ E_total_wave_v(year==i)’)];

68 end

69 E_total_wave(Power <=0) = 0;

70 perc_year = time_works ./ points_year ; %[-] Amount of the year that vigor works

71 %[J/J] efficiency for the vigor against waves waves when we have output

72 efficiency = Power *0.5*3600./ E_total_wave_v ’;

73 eff_av = nanmean (efficiency ); %[-] The average efficiency

74 plot(efficiency ,’+’) % Plot efficiency to see if it is on a reasonable region
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