Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab
Artikel i vetenskaplig tidskrift, 2018

Magnetic reconnection is a fundamental plasma process associated with conversion of the embedded magnetic field energy into kinetic and thermal plasma energy, via bulk acceleration and Ohmic dissipation. In many high-energy astrophysical events, magnetic reconnection is invoked to explain the non-thermal signatures. However, the processes by which field energy is transferred to the plasma to power the observed emission are still not properly understood. Here, via 3D particle-in-cell simulations of a readily available (TW-mJ-class) laser interacting with a micro-scale plasma slab, we show that when the electron beams excited on both sides of the slab approach the end of the plasma structure, ultrafast relativistic magnetic reconnection occurs in a magnetically-dominated (low-β) plasma. The resulting efficient particle acceleration leads to the emission of relativistic electron jets with cut-off energy ∼ 12 MeV. The proposed scenario can significantly improve understanding of fundamental questions such as reconnection rate, field dissipation and particle acceleration in relativistic magnetic reconnection.

Författare

Longqing Yi

Chinese Academy of Sciences

Chalmers, Fysik, Subatomär fysik och plasmafysik

B Shen

Shanghai Normal University

A Pukhov

Heinrich Heine Universität Düsseldorf

Tünde Fülöp

Chalmers, Fysik, Subatomär fysik och plasmafysik

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 9 1 1601

Fundament

Grundläggande vetenskaper

Ämneskategorier

Fusion, plasma och rymdfysik

DOI

10.1038/s41467-018-04065-3

Mer information

Senast uppdaterat

2022-10-21